Cauchy problem for Laplace equation: An observer based approach
Majeed, Muhammad Usman
2013-10-01
A method to solve Cauchy Problem for Laplace equation using state observers is proposed. It is known that this problem is ill-posed. The domain under consideration is simple lipschitz in 2 with a hole. The idea is to recover the solution over whole domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace\\'s equation is compuationally robust and accurate. © 2013 IEEE.
Vector-valued Laplace Transforms and Cauchy Problems
Arendt, Wolfgang; Hieber, Matthias; Neubrander, Frank
2011-01-01
This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are studied. Diverse applications to partial differential equations are given. The book contains an introduction to the Bochner integral and several appendices on background material. It is addressed to student
Elasto-plastic torsion problem as an infinity Laplace's equation
Directory of Open Access Journals (Sweden)
Ahmed Addou
2006-12-01
Full Text Available In this paper, we study a perturbed infinity Laplace's equation, the perturbation corresponds to an Leray-Lions operator with no coercivity assumption. We consider the case where data are distributions or $L^{1}$ elements. We show that this problem has an unique solution which is the solution to the variational inequality arising in the elasto-plastic torsion problem, associated with an operator $A$.
Existence of Weak Solutions for Nonlinear Time-Fractional p-Laplace Problems
Directory of Open Access Journals (Sweden)
Meilan Qiu
2014-01-01
Full Text Available The existence of weak solution for p-Laplace problem is studied in the paper. By exploiting the relationship between the Nehari manifold and fibering maps and combining the compact imbedding theorem and the behavior of Palais-Smale sequences in the Nehari manifold, the existence of weak solutions is established. By means of the Arzela-Ascoli fixed point theorem, some existence results of the corresponding time-fractional equations of the p-Laplace problem are obtained.
Yousef, Hamood Mohammed; Ismail, Ahmad Izani
2017-11-01
In this paper, Laplace Adomian decomposition method (LADM) was applied to solve Delay differential equations with Boundary Value Problems. The solution is in the form of a convergent series which is easy to compute. This approach is tested on two test problem. The findings obtained exhibit the reliability and efficiency of the proposed method.
Triple solutions for multi-point boundary-value problem with p-Laplace operator
Directory of Open Access Journals (Sweden)
Yansheng Liu
2009-11-01
Full Text Available Using a fixed point theorem due to Avery and Peterson, this article shows the existence of solutions for multi-point boundary-value problem with p-Laplace operator and parameters. Also, we present an example to illustrate the results obtained.
Laplace type problems for a lattice with cell composed by two triangles and one hexagon
Directory of Open Access Journals (Sweden)
Marius Stoka
2016-09-01
Full Text Available We solve a Laplace type problem for a lattice of the Euclidean plane with cell composed by two triangles and one hexagon. We compute the probability that a segment of random position and constant length intersects a side of the lattice.
Laplace Boundary-Value Problem in Paraboloidal Coordinates
Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan
2012-01-01
This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a…
On Neumann and Poincare problems for Laplace equation
Ryazanov, Vladimir
2017-09-01
It is proved the existence of nonclassical solutions of the Neumann problem for the harmonic functions in the Jordan rectifiable domains with arbitrary measurable boundary distributions of normal derivatives. The same is stated for a special case of the Poincare problem on directional derivatives. Moreover, it is shown that the spaces of the found solutions have the infinite dimension.
Nonlinear boundary value problems with p-Laplace operator
Directory of Open Access Journals (Sweden)
WANG Yingbo
2013-04-01
Full Text Available We study the second-order three-point boundary value problem with a p-Laplacian operator,and give the expressions of the Green's function for the boundary problems. By the monotone iterative method,sufficient conditions for extreme solutions are obtained.An example is given to illuminate the effectiveness of the main result.
Seslija, Marko; Perunicic, Branislava; Salihbegovic, A; Supic, H; Velagic, J; Sadzak, A
2009-01-01
This paper considers the application of extrapolation techniques in finding approximate solutions of some optimization problems with constraints defined by the Robin boundary problem for the Laplace equation. When applied extrapolation techniques produce very accurate solutions of the boundary
On Inverse Topology Problem for Laplace Operators on Graphs
Directory of Open Access Journals (Sweden)
Yu. Yu. Ershova
2014-12-01
Full Text Available Laplacian operators on finite compact metric graphs are considered under the assumption that matching conditions at graph vertices are of $\\delta$ type. Under one additional assumption, the inverse topology problem is treated. Using the apparatus of boundary triples, we generalize and extend existing results on necessary conditions of isospectrality of two Laplacians defined on different graphs. A result is also given covering the case of Schrodinger operators.
Regularity of solutions of the Neumann problem for the Laplace equation
Directory of Open Access Journals (Sweden)
Dagmar Medkova
2006-11-01
Full Text Available Let u be a solution of the Neumann problem for the Laplace equation in G with the boundary condition g. It is shown that u ∈ L q (∂ G (equivalently, u ∈ Bq,21/q (G for 1 , u ∈ Lq 1/q (G for 2 ≤ q if and only if the single layer potential corresponding to the boundary condition g is in L q (∂ G . As a consequence we give a regularity result for some nonlinear boundary value problem.
Higher-order schemes for the Laplace transformation method for parabolic problems
Douglas, C.
2011-01-01
In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely high order convergent. Second, higher-order compact schemes of order four and six are used for the the spatial discretization. Finally, the discretized linear algebraic systems are solved using multigrid to show the actual convergence rate for numerical examples, which are compared to other numerical solution methods. © 2011 Springer-Verlag.
An optimal iterative algorithm to solve Cauchy problem for Laplace equation
Majeed, Muhammad Usman
2015-05-25
An optimal mean square error minimizer algorithm is developed to solve severely ill-posed Cauchy problem for Laplace equation on an annulus domain. The mathematical problem is presented as a first order state space-like system and an optimal iterative algorithm is developed that minimizes the mean square error in states. Finite difference discretization schemes are used to discretize first order system. After numerical discretization algorithm equations are derived taking inspiration from Kalman filter however using one of the space variables as a time-like variable. Given Dirichlet and Neumann boundary conditions are used on the Cauchy data boundary and fictitious points are introduced on the unknown solution boundary. The algorithm is run for a number of iterations using the solution of previous iteration as a guess for the next one. The method developed happens to be highly robust to noise in Cauchy data and numerically efficient results are illustrated.
Directory of Open Access Journals (Sweden)
Zhiqiang Zhou
2017-01-01
Full Text Available We study the pricing of the American options with fractal transmission system under two-state regime switching models. This pricing problem can be formulated as a free boundary problem of time-fractional partial differential equation (FPDE system. Firstly, applying Laplace transform to the governing FPDEs with respect to the time variable results in second-order ordinary differential equations (ODEs with two free boundaries. Then, the solutions of ODEs are expressed in an explicit form. Consequently the early exercise boundaries and the values for the American option are recovered using the Gaver-Stehfest formula. Numerical comparisons of the methods with the finite difference methods are carried out to verify the efficiency of the methods.
Directory of Open Access Journals (Sweden)
Sumit Gupta
2015-09-01
Full Text Available The aim of this paper was to present a user friendly numerical algorithm based on homotopy perturbation transform method for solving various linear and nonlinear convection-diffusion problems arising in physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. The homotopy perturbation transform method is a combined form of the homotopy perturbation method and Laplace transform method. The nonlinear terms can be easily obtained by the use of He’s polynomials. The technique presents an accurate methodology to solve many types of partial differential equations The approximate solutions obtained by proposed scheme in a wide range of the problem’s domain were compared with those results obtained from the actual solutions. The comparison shows a precise agreement between the results.
Iqbal, M.
2002-01-01
In this paper we have converted the Laplace transform into an integral equation of the first kind of convolution type, which is an ill-posed problem, and used a statistical regularization method to solve it. The method is applied to three examples. It gives a good approximation to the true solution and compares well with the method given by…
High eccentricity MMRs in the circular planar restricted three-body problem
Wang, Xianyu; Malhotra, Renu
2016-05-01
Mean motion resonances [MMRs] play an important role in the evolution of the solar system and have significantly influenced the population of the minor planets. Most previous theoretical analyses of mean motion resonances have focused on the low eccentricity regime, but with new discoveries of high eccentricity resonant minor planets and even exoplanets, there is increasing motivation to examine the dynamics of MMRs in the high eccentricity regime. Here we report on a study of the high eccentricity regime of MMRs in the circular planar restricted three-body problem. Numerical analysis of several important interior and exterior resonances are performed for a wide range of secondary-to-primary mass ratio µ, and for a wide range of eccentricity of the particle. The surface of section of a vs. ψ is used to study the stable resonant regions, where a is the semi-major axis and ψ is the angle between the planet and the particle at periapse; the usual resonant argument is an integer multiple of ψ. We find that for each resonant ratio, the center and extent of stable librations of ψ changes depending upon the eccentricity and mass ratio µ. Some libration centers that are stable at lower eccentricity become unstable and chaotic at higher eccentricity. However, large new stable islands reappear at higher eccentricity, albeit at shifted libration centers. We discuss the mass and eccentricity dependence of the centers and widths of stable resonance zones.
Luo, FuSheng; Lin, Qun; Xie, HeHu
2012-05-01
This article is devoted to computing the lower and upper bounds of the Laplace eigenvalue problem. By using the special nonconforming finite elements, i.e., enriched Crouzeix-Raviart element and extension $Q_1^{\\rm rot}$, we get the lower bound of the eigenvalue. Additionally, we also use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue. The postprocessing method need only to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented. Thus, we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once. Some numerical results are also presented to validate our theoretical analysis.
The rectilinear three-body problem as a basis for studying highly eccentric systems
Voyatzis, G.; Tsiganis, K.; Gaitanas, M.
2018-01-01
The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity e'=1, but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003-1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter μ =0.5 (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke's computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to μ and e'systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.
Highly eccentric hip-hop solutions of the 2 N-body problem
Barrabés, Esther; Cors, Josep M.; Pinyol, Conxita; Soler, Jaume
2010-02-01
We show the existence of families of hip-hop solutions in the equal-mass 2 N-body problem which are close to highly eccentric planar elliptic homographic motions of 2 N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ɛ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ɛ≠0, the topological transversality persists and Brouwer’s fixed point theorem shows the existence of this kind of solutions in the full system.
Positive solutions of second-order singular boundary value problem with a Laplace-like operator
Directory of Open Access Journals (Sweden)
Ge Weigao
2005-01-01
Full Text Available By use of the concavity of solution for an associate boundary value problem, existence criteria of positive solutions are given for the Dirichlet BVP , , , where is odd and continuous with , , and may change sign and be singular along a curve in .
Kolev, Spas D.; van der Linden, W.E.
1993-01-01
A fast numerical technique for the solution of partial differential equations describing timedependent two- or three-dimensional transport phenomena is developed. It is based on transforming the original time-domain equations into the Laplace domain where numerical integration is performed and by
Notes on the infinity Laplace equation
Lindqvist, Peter
2016-01-01
This BCAM SpringerBriefs is a treaty of the Infinity-Laplace Equation, which has inherited many features from the ordinary Laplace Equation, and is based on lectures by the author. The Infinity.Laplace Equation has delightful counterparts to the Dirichlet integral, the mean value property, the Brownian motion, Harnack's inequality, and so on. This "fully non-linear" equation has applications to image processing and to mass transfer problems, and it provides optimal Lipschitz extensions of boundary values.
Laplace Transforms without Integration
Robertson, Robert L.
2017-01-01
Calculating Laplace transforms from the definition often requires tedious integrations. This paper provides an integration-free technique for calculating Laplace transforms of many familiar functions. It also shows how the technique can be applied to probability theory.
Shafii-Mousavi, Morteza
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Laplace Transforms includes the Laplace transform, the inverse Laplace transform, special functions and properties, applications to ordinary linear differential equations, Fourier tr
Vázquez Méndez, Miguel Ernesto
2013-01-01
A transformada de Laplace é un método de gran eficiencia á hora de resolver un certo tipo de ecuacións diferenciais e integrais. Ademais do interese que pode ter desde o punto de vista puramente matemático, constitúe unha ferramenta básica na enxeñaría de control moderna e resulta especialmente útil á hora de resolver determinados problemas de valor inicial con termos non homoxéneos de natureza descontinua ou impulsiva. Este tipo de problemas aparece con relativa frecuencia en enxeñarí...
DEFF Research Database (Denmark)
Kjaer, Michael; Heinemeier, Katja Maria
2014-01-01
Eccentric exercise can influence tendon mechanical properties and matrix protein synthesis. mRNA for collagen and regulatory factors thereof are upregulated in animal tendons, independent of muscular contraction type, supporting the view that tendon, compared with skeletal muscle, is less sensitive...
On the q-Laplace Transform and Related Special Functions
Directory of Open Access Journals (Sweden)
Shanoja R. Naik
2016-09-01
Full Text Available Motivated by statistical mechanics contexts, we study the properties of the q-Laplace transform, which is an extension of the well-known Laplace transform. In many circumstances, the kernel function to evaluate certain integral forms has been studied. In this article, we establish relationships between q-exponential and other well-known functional forms, such as Mittag–Leffler functions, hypergeometric and H-function, by means of the kernel function of the integral. Traditionally, we have been applying the Laplace transform method to solve differential equations and boundary value problems. Here, we propose an alternative, the q-Laplace transform method, to solve differential equations, such as as the fractional space-time diffusion equation, the generalized kinetic equation and the time fractional heat equation.
Coin tossing and Laplace inversion
Indian Academy of Sciences (India)
An analysis of exchangeable sequences of coin tossings leads to inversion formulae for Laplace transforms of probability measures. Author Affiliations. J C Gupta1 2. Indian Statistical Institute, New Delhi 110 016, India; 32, Mirdha Tola, Budaun 243 601, India. Dates. Manuscript received: 5 May 1999; Manuscript revised: 3 ...
Coin tossing and Laplace inversion
Indian Academy of Sciences (India)
of a probability measure " on Е0Y 1К via the obvious change of variables e└t И xX An inversion formula for " in terms of its moments yields an inversion formula for # in terms of the values of its Laplace transform at n И 0Y 1Y 2Y ... and vice versa. In our discussion we allow " (respectively #) to have positive mass at 0 ...
An introduction to Laplace transforms and Fourier series
Dyke, Phil
2014-01-01
Laplace transforms continue to be a very important tool for the engineer, physicist and applied mathematician. They are also now useful to financial, economic and biological modellers as these disciplines become more quantitative. Any problem that has underlying linearity and with solution based on initial values can be expressed as an appropriate differential equation and hence be solved using Laplace transforms. In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. An Introduction to Laplace Transforms and Fourier Series will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and ...
Convergence rates of Laplace-transform based estimators
A.V. den Boer (Arnoud); M.R.H. Mandjes (Michel)
2017-01-01
textabstractThis paper considers the problem of estimating probabilities of the form ℙ(Y ≤ w), for a given value of w, in the situation that a sample of i.i.d. observations X1,..., Xn of X is available, and where we explicitly know a functional relation between the Laplace transforms of the
Inversion and approximation of Laplace transforms
Lear, W. M.
1980-01-01
A method of inverting Laplace transforms by using a set of orthonormal functions is reported. As a byproduct of the inversion, approximation of complicated Laplace transforms by a transform with a series of simple poles along the left half plane real axis is shown. The inversion and approximation process is simple enough to be put on a programmable hand calculator.
Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis.
Xie, Ji-Wei; Dong, Subo; Zhu, Zhaohuan; Huber, Daniel; Zheng, Zheng; De Cat, Peter; Fu, Jianning; Liu, Hui-Gen; Luo, Ali; Wu, Yue; Zhang, Haotong; Zhang, Hui; Zhou, Ji-Lin; Cao, Zihuang; Hou, Yonghui; Wang, Yuefei; Zhang, Yong
2016-10-11
The nearly circular (mean eccentricity [Formula: see text]) and coplanar (mean mutual inclination [Formula: see text]) orbits of the solar system planets motivated Kant and Laplace to hypothesize that planets are formed in disks, which has developed into the widely accepted theory of planet formation. The first several hundred extrasolar planets (mostly Jovian) discovered using the radial velocity (RV) technique are commonly on eccentric orbits ([Formula: see text]). This raises a fundamental question: Are the solar system and its formation special? The Kepler mission has found thousands of transiting planets dominated by sub-Neptunes, but most of their orbital eccentricities remain unknown. By using the precise spectroscopic host star parameters from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) observations, we measure the eccentricity distributions for a large (698) and homogeneous Kepler planet sample with transit duration statistics. Nearly half of the planets are in systems with single transiting planets (singles), whereas the other half are multiple transiting planets (multiples). We find an eccentricity dichotomy: on average, Kepler singles are on eccentric orbits with [Formula: see text] 0.3, whereas the multiples are on nearly circular [Formula: see text] and coplanar [Formula: see text] degree) orbits similar to those of the solar system planets. Our results are consistent with previous studies of smaller samples and individual systems. We also show that Kepler multiples and solar system objects follow a common relation [[Formula: see text](1-2)[Formula: see text
Introducing Earth's Orbital Eccentricity
Oostra, Benjamin
2015-01-01
Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…
Generalized Laplace Transforms and Extended Heaviside Calculus
Deakin, Michael A. B.
2008-01-01
An extended Heaviside calculus proposed by Peraire in a recent paper is similar to a generalization of the Laplace transform proposed by the present author. This similarity will be illustrated by analysis of an example supplied by Peraire.
Laplace transforms and the American straddle
Directory of Open Access Journals (Sweden)
G. Alobaidi
2002-01-01
partial Laplace transform techniques due to Evans et al. (1950 to derive a pair of integral equations giving the locations of the optimal exercise boundaries for an American straddle option with a constant dividend yield.
Eccentricity from transit photometry
DEFF Research Database (Denmark)
Van Eylen, Vincent; Albrecht, Simon
2015-01-01
and can be described by a Rayleigh distribution with $\\sigma$ = 0.049 $\\pm$ 0.013. This is in full agreement with solar system eccentricities, but in contrast to the eccentricity distributions previously derived for exoplanets from radial velocity studies. Our findings are helpful in identifying which...... (TTVs), and we present some previously unreported TTVs. Finally transit durations help distinguish between false positives and true planets and we use our measurements to confirm six new exoplanets....
Graf, Urs
2004-01-01
The theory of Laplace transformation is an important part of the mathematical background required for engineers, physicists and mathematicians. Laplace transformation methods provide easy and effective techniques for solving many problems arising in various fields of science and engineering, especially for solving differential equations. What the Laplace transformation does in the field of differential equations, the z-transformation achieves for difference equations. The two theories are parallel and have many analogies. Laplace and z transformations are also referred to as operational calculus, but this notion is also used in a more restricted sense to denote the operational calculus of Mikusinski. This book does not use the operational calculus of Mikusinski, whose approach is based on abstract algebra and is not readily accessible to engineers and scientists. The symbolic computation capability of Mathematica can now be used in favor of the Laplace and z-transformations. The first version of the Mathema...
One-soliton solutions from Laplace's seed
Indian Academy of Sciences (India)
One-soliton solutions of axially symmetric vacuum Einstein ﬁeld equations are presented in this paper. Two sets of Laplace's solutions are used as seed and it is shown that the derived solutions reduce to some already known solutions when the constants are properly adjusted. An analysis of the solutions in terms of the ...
One-soliton solutions from Laplace's seed
Indian Academy of Sciences (India)
Abstract. One-soliton solutions of axially symmetric vacuum Einstein field equations are pre- sented in this paper. Two sets of Laplace's solutions are used as seed and it is shown that the derived solutions reduce to some already known solutions when the constants are properly adjusted. An analysis of the solutions in ...
Laplace's 1774 Memoir on Inverse Probability
Stigler, Stephen M.
1986-01-01
Laplace's first major article on mathematical statistics was published in 1774. It is arguably the most influential article in this field to appear before 1800, being the first widely read presentation of inverse probability and its application to both binomial and location parameter estimation. After a brief introduction, and English translation of this epochal memoir is given.
TMB: Automatic differentiation and laplace approximation
DEFF Research Database (Denmark)
Kristensen, Kasper; Nielsen, Anders; Berg, Casper Willestofte
2016-01-01
computations. The user defines the joint likelihood for the data and the random effects as a C++ template function, while all the other operations are done in R; e.g., reading in the data. The package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random effects...
The Laplace Transform Method for Linear Differential Equations of the Fractional Order
Podlubny, I
1997-01-01
The Laplace transform method for solving of a wide class of initial value problems for fractional differential equations is introduced. The method is based on the Laplace transform of the Mittag-Leffler function in two parameters. To extend the proposed method for the case of so-called "sequential" fractional differential equations, the Laplace transform for the ''sequential'' fractional derivative is also obtained. Besides that, tools necessary for testing candidate solutions by direct substitution in corresponding equations are introduced: fractional derivatives of the Mittag-Leffler function and the rule for the fractional differentiation of integrals depending on a parameter. Definition of the fractional Green's function is given and some of its properties, necessary for constructing solutions of initial-value problems for fractional linear differential equations, are presented. Explicit expressions for the fractional Green's function for the special cases of one-, two-, three- and four-term equations are...
Eigenfunction of the Laplace operator in n+1-dimentional simplex
Directory of Open Access Journals (Sweden)
Ovchintsev Mikhail Petrovich
2014-12-01
Full Text Available In order to find eigenfunction of the Laplace operator in regular n+1-dimensional simplex the barycentric coordinates are used. For obtaining this result we need some formulas of the analytical geometry. A similar result was obtained in the earlier papers of the author in a tetrahedron from R 3 and in gipertetrahedron from R 4. Let П be unlimited cylinder in the space R n, its cross-section with hyperplane has a special form. Let L be a second order linear differential operator in divergence form, which is uniformly elliptic and η is its ellipticity constant. Let u be a solution of the mixed boundary value problem in Π with homogeneous Dirichlet and Neumann data on the boundary of the cylinder. In some cases the eigenfunction of the Laplace operator allows us to continue this solution from the cylinder Π to the whole space R n with the same ellipticity constant. The obtained result allows us to get a number of various theorems on the solution growth for mixed boundary value problem for linear differential uniformly elliptical equation of the second order, given in unlimited cylinder with special cross-section. In addition we consider n-1-dimensional hill tetrahedron and the eigenfunction for an elliptic operator with constant coefficients in it.
The Laplace transform solution of a one dimensional groundwater recharge by spreading
Directory of Open Access Journals (Sweden)
A. P. VERMA
1969-06-01
Full Text Available An analytical expression for the moisture content distribution,
in a problem of one dimensional vertical groundwater recharge, has
been obtained by using the Laplace transform method. The average diffusivity coefficient over the whole range of moisture content is regarded as constant, and a linear variation of permeability with moisture content is assumed.
Some Half-Row Sums from Pascal's Triangle via Laplace Transforms
Dence, Thomas P.
2007-01-01
This article presents some identities on the sum of the entries in the first half of a row in Pascal's triangle. The results were discovered while the author was working on a problem involving Laplace transforms, which are used in proving of the identities.
Experiments on Active Cloaking and Illusion for Laplace Equation
Ma, Qian; Mei, Zhong Lei; Zhu, Shou Kui; Jin, Tian Yu; Cui, Tie Jun
2013-10-01
In recent years, invisibility cloaks have received a lot of attention and interest. These devices are generally classified into two types: passive and active. The design and realization of passive cloaks have been intensively studied using transformation optics and plasmonic approaches. However, active cloaks are still limited to theory and numerical simulations. Here, we present the first experiment on active cloaking and propose an active illusion for the Laplace equation. We make use of a resistor network to simulate a conducting medium. Then, we surround the central region with controlled sources to protect it from outside detection. We show that by dynamically changing the controlled sources, the protected region can be cloaked or disguised as different objects (illusion). Our measurement results agree very well with numerical simulations. Compared with the passive counterparts, the active cloaking and illusion devices do not need complicated metamaterials. They are flexible, in-line controllable, and adaptable to the environment. In addition to dc electricity, the proposed method can also be used for thermodynamics and other problems governed by the Laplace equation.
Virtual Proprioception for eccentric training.
LeMoyne, Robert; Mastroianni, Timothy
2017-07-01
Wireless inertial sensors enable quantified feedback, which can be applied to evaluate the efficacy of therapy and rehabilitation. In particular eccentric training promotes a beneficial rehabilitation and strength training strategy. Virtual Proprioception for eccentric training applies real-time feedback from a wireless gyroscope platform enabled through a software application for a smartphone. Virtual Proprioception for eccentric training is applied to the eccentric phase of a biceps brachii strength training and contrasted to a biceps brachii strength training scenario without feedback. During the operation of Virtual Proprioception for eccentric training the intent is to not exceed a prescribed gyroscope signal threshold based on the real-time presentation of the gyroscope signal, in order to promote the eccentric aspect of the strength training endeavor. The experimental trial data is transmitted wireless through connectivity to the Internet as an email attachment for remote post-processing. A feature set is derived from the gyroscope signal for machine learning classification of the two scenarios of Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback. Considerable classification accuracy is achieved through the application of a multilayer perceptron neural network for distinguishing between the Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback.
The Young-Laplace equation links capillarity with geometrical optics
Rodriguez-Valverde, M A; Hidalgo-Alvarez, R
2003-01-01
Analogies in physics are unusual coincidences that can be very useful to solve problems and to clarify some theoretical concepts. Apart from their own curiosity, analogies are attractive tools because they reduce the abstraction of some complex phenomena in such a way that these can be understood by means of other phenomena closer to daily experience. Usually, two analogous systems share a common aspect, like the movement of particles or transport of matter. On account of this, the analogy presented is exceptional since the involved phenomena are a priori disjoined. The most important equation of capillarity, the Young-Laplace equation, has the same structure as the Gullstrand equation of geometrical optics, which relates the optic power of a thick lens to its geometry and the properties of the media.
LAPLACE EQUATIONS, CONFORMAL SUPERINTEGRABILITY AND BÔCHER CONTRACTIONS
Directory of Open Access Journals (Sweden)
Ernest G. Kalnins
2016-06-01
Full Text Available Quantum superintegrable systems are solvable eigenvalue problems. Their solvability is due to symmetry, but the symmetry is often ``hidden''.The symmetry generators of 2nd order superintegrable systems in 2 dimensions close under commutation to define quadratic algebras, a generalization of Lie algebras. Distinct systems and their algebras are related by geometric limits, induced by generalized Inönü-Wigner Lie algebra contractions of the symmetry algebras of the underlying spaces. These have physical/geometric implications, such as the Askey scheme for hypergeometric orthogonal polynomials. The systems can be best understood by transforming them to Laplace conformally superintegrable systems and using ideas introduced in the 1894 thesis of Bôcher to study separable solutions of the wave equation. The contractions can be subsumed into contractions of the conformal algebra so(4,C to itself. Here we announce main findings, with detailed classifications in papers under preparation.
Directory of Open Access Journals (Sweden)
Ratchata Theinchai
2016-01-01
Full Text Available We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM. The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.
Towards Informetrics: Haitun, Laplace, Zipf, Bradford and the Alvey Programme.
Brookes, B. C.
1984-01-01
Review of recent developments in statistical theories for social sciences highlights Haitun's statistical distributions, Laplace's "Law of Succession" and distribution, Laplace and Bradford analysis of book-index data, inefficiency of frequency distribution analysis, Laws of Bradford and Zipf, natural categorization, and Bradford Law and…
Feeling Wall Tension in an Interactive Demonstration of Laplace's Law
Letic, Milorad
2012-01-01
Laplace's Law plays a major role in explanations of the wall tension of structures like blood vessels, the bladder, the uterus in pregnancy, bronchioles, eyeballs, and the behavior of aneurisms or the enlarged heart. The general relation of Laplace's law, expressing that the product of the radius of curvature (r) and pressure (P) is equal to wall…
Animal models and integrated nested Laplace approximations.
Holand, Anna Marie; Steinsland, Ingelin; Martino, Sara; Jensen, Henrik
2013-08-07
Animal models are generalized linear mixed models used in evolutionary biology and animal breeding to identify the genetic part of traits. Integrated Nested Laplace Approximation (INLA) is a methodology for making fast, nonsampling-based Bayesian inference for hierarchical Gaussian Markov models. In this article, we demonstrate that the INLA methodology can be used for many versions of Bayesian animal models. We analyze animal models for both synthetic case studies and house sparrow (Passer domesticus) population case studies with Gaussian, binomial, and Poisson likelihoods using INLA. Inference results are compared with results using Markov Chain Monte Carlo methods. For model choice we use difference in deviance information criteria (DIC). We suggest and show how to evaluate differences in DIC by comparing them with sampling results from simulation studies. We also introduce an R package, AnimalINLA, for easy and fast inference for Bayesian Animal models using INLA.
Laplace transform in tracer kinetic modeling
Energy Technology Data Exchange (ETDEWEB)
Hauser, Eliete B., E-mail: eliete@pucrs.br [Instituto do Cerebro (InsCer/FAMAT/PUC-RS), Porto Alegre, RS, (Brazil). Faculdade de Matematica
2013-07-01
The main objective this paper is to quantify the pharmacokinetic processes: absorption, distribution and elimination of radiopharmaceutical(tracer), using Laplace transform method. When the drug is administered intravenously absorption is complete and is available in the bloodstream to be distributed throughout the whole body in all tissues and fluids, and to be eliminated. Mathematical modeling seeks to describe the processes of distribution and elimination through compartments, where distinct pools of tracer (spatial location or chemical state) are assigned to different compartments. A compartment model is described by a system of differential equations, where each equation represents the sum of all the transfer rates to and from a specific compartment. In this work a two-tissue irreversible compartment model is used for description of tracer, [{sup 18}F]2-fluor-2deoxy-D-glucose. In order to determine the parameters of the model, it is necessary to have information about the tracer delivery in the form of an input function representing the time-course of tracer concentration in arterial blood or plasma. We estimate the arterial input function in two stages and apply the Levenberg-Marquardt Method to solve nonlinear regressions. The transport of FDG across de arterial blood is very fast in the first ten minutes and then decreases slowly. We use de Heaviside function to represent this situation and this is the main contribution of this study. We apply the Laplace transform and the analytical solution for two-tissue irreversible compartment model is obtained. The only approach is to determinate de arterial input function. (author)
A contact binary asteroid evolutionary cycle driven by BYORP & the classical Laplace plane
Rieger, Samantha; Scheeres, Daniel J.
2017-10-01
Several contact binaries have been observed to have high obliquities distributed around 90°. With this information, we explore the possibility of these high obliquities being a key characteristic that causes an evolutionary cycle of contact binary formation and separation.The contact binary cycle begins with a single asteroid that is spinning up due to the YORP effect. For the binary cycle we assume YORP will drive the obliquity to 90°. Eventually, the asteroid will reach a critical spin frequency that will cause the asteroid to fission into a binary. We assume that the mass-ratio, q, of the system is greater than 0.2. With a high q, the secondary will not escape/impact the primary but will evolve through tides into a stable circular double-synchronous orbit. The binary being synchronous will cause the forces from BYORP to have secular effects on the system. For this cycle, BYORP will need to expand the secondary away from the primary.As the system expands, we have found that the secondary will follow the classical Laplace plane. Therefore, the secondary’s orbit will increase in inclination with respect to the equator as the secondary’s orbit expands. The Laplace plane is a stable orbit to perturbations from J2 & Sun tides except for an instability region that exists for primaries with obliquities above 68.875° & a secondary orbital radius of 13.5-19.5 primary radii. Once BYORP expands the secondary into this instability region, the eccentricity of the secondary’s orbit will increase until the orbit intersects with the primary & causes an impact. This impact will create a contact binary with a new obliquity that will randomly range from 23°-150°. The cycle will begin again with YORP driving the contact binary to an obliquity of 90°.Our contribution will discuss the proposed contact binary cycle in more detail, including the mechanics of the system that drives the events given above. We will include investigations into how losing synchronous lock will
Laplace's equation and Faraday's lines of force
Energy Technology Data Exchange (ETDEWEB)
Narasimhan, T.N.
2007-06-01
Boundary-value problems involve two dependent variables: a potential function, and a stream function. They can be approached in two mutually independent ways. The first, introduced by Laplace, involves spatial gradients at a point. Inspired by Faraday, Maxwell introduced the other, visualizing the flow domain as a collection of flow tubes and isopotential surfaces. Boundary-value problems intrinsically entail coupled treatment (or, equivalently, optimization) of potential and stream functions Historically, potential theory avoided the cumbersome optimization task through ingenious techniques such as conformal mapping and Green's functions. Laplace's point-based approach, and Maxwell's global approach, each provides its own unique insights into boundary-value problems. Commonly, Laplace's equation is solved either algebraically, or with approximate numerical methods. Maxwell's geometry-based approach opens up novel possibilities of direct optimization, providing an independent logical basis for numerical models, rather than treating them as approximate solvers of the differential equation. Whereas points, gradients, and Darcy's law are central to posing problems on the basis of Laplace's approach, flow tubes, potential differences, and the mathematical form of Ohm's law are central to posing them in natural coordinates oriented along flow paths. Besides being of philosophical interest, optimization algorithms can provide advantages that complement the power of classical numerical models. In the spirit of Maxwell, who eloquently spoke for a balance between abstract mathematical symbolism and observable attributes of concrete objects, this paper is an examination of the central ideas of the two approaches, and a reflection on how Maxwell's integral visualization may be practically put to use in a world of digital computers.
LAPLACE-RUNGE-LENZ VECTOR IN QUANTUM MECHANICS IN NONCOMMUTATIVE SPACE
Directory of Open Access Journals (Sweden)
Peter Prešnajder
2014-04-01
Full Text Available The object under scrutiny is the dynamical symmetry connected with conservation of the Laplace-Runge-Lenz vector (LRL in the hydrogen atom problem solved by means of noncommutative quantum mechanics (NCQM. The considered noncommutative configuration space has such a “fuzzy”structure that the rotational invariance is not spoilt. An analogy with the LRL vector in the NCQM is brought to provide our results and also a comparison with the standard QM predictions.
Laplace transforms and their applications to differential equations
McLachlan, NW
2014-01-01
This introduction to modern operational calculus offers a classic exposition of Laplace transform theory and its application to the solution of ordinary and partial differential equations. The treatment is addressed to graduate students in engineering, physics, and applied mathematics and may be used as a primary text or supplementary reading.Chief topics include the theorems or rules of the operational calculus, evaluation of integrals and establishment of mathematical relationships, derivation of Laplace transforms of various functions, the Laplace transform for a finite interval, and other
Cryptanalysis of Application of Laplace Transform for Cryptography
Directory of Open Access Journals (Sweden)
Gençoğlu Muharrem Tuncay
2017-01-01
Full Text Available Although Laplace Transform is a good application field in the design of cryptosystems, many cryptographic algorithm proposals become unsatisfactory for secure communication. In this cryptanalysis study, one of the significant disadvantages of the proposed algorithm is performed with only statistical test of security analysis. In this study, Explaining what should be considered when performing security analysis of Laplace Transform based encryption systems and using basic mathematical rules, password has broken without knowing secret key. Under the skin; This study is a refutation for the article titled Application of Laplace Transform for Cryptography written by Hiwerakar[3].
Joint Laplace-Fourier Transforms For Fractional PDEs
Directory of Open Access Journals (Sweden)
arman aghili
2014-12-01
In this paper, the authors implemented one dimensional Laplace and Fourier transforms to evaluate certain integrals, series and solve non homogeneous fractional PDEs. Illustrative examples are also provided. The results reveal that the integral transforms are very effective and convenient.
Computer-Aided Numerical Inversion of Laplace Transform
Umesh Kumar
2000-01-01
This paper explores the technique for the computer aided numerical inversion of Laplace transform. The inversion technique is based on the properties of a family of three parameter exponential probability density functions. The only limitation in the technique is the word length of the computer being used. The Laplace transform has been used extensively in the frequency domain solution of linear, lumped time invariant networks but its application to the time domain has been limited, mainly be...
Use and Misuse of Laplace's Law in Ophthalmology
Chung, Cheuk Wang; Girard, Michaël J. A.; Jan, Ning-Jiun; Sigal, Ian A.
2016-01-01
Purpose Laplace's Law, with its compactness and simplicity, has long been employed in ophthalmology for describing the mechanics of the corneoscleral shell. We questioned the appropriateness of Laplace's Law for computing wall stress in the eye considering the advances in knowledge of ocular biomechanics. Methods In this manuscript we recapitulate the formulation of Laplace's Law, as well as common interpretations and uses in ophthalmology. Using numerical modeling, we study how Laplace's Law cannot account for important characteristics of the eye, such as variations in globe shape and size or tissue thickness, anisotropy, viscoelasticity, or that the eye is a living, dynamic organ. Results We show that accounting for various geometrical and material factors, excluded from Laplace's Law, can alter estimates of corneoscleral wall stress as much as 456% and, therefore, that Laplace's Law is unreliable. Conclusions We conclude by illustrating how computational techniques, such as finite element modeling, can account for the factors mentioned above, and are thus more suitable tools to provide quantitative characterization of corneoscleral biomechanics. PMID:26803799
SUPER-ECCENTRIC MIGRATING JUPITERS
Energy Technology Data Exchange (ETDEWEB)
Socrates, Aristotle; Katz, Boaz; Dong Subo; Tremaine, Scott [Institute for Advanced Study, Princeton, NJ 08540 (United States)
2012-05-10
An important class of formation theories for hot Jupiters involves the excitation of extreme orbital eccentricity (e = 0.99 or even larger) followed by tidal dissipation at periastron passage that eventually circularizes the planetary orbit at a period less than 10 days. In a steady state, this mechanism requires the existence of a significant population of super-eccentric (e > 0.9) migrating Jupiters with long orbital periods and periastron distances of only a few stellar radii. For these super-eccentric planets, the periastron is fixed due to conservation of orbital angular momentum and the energy dissipated per orbit is constant, implying that the rate of change in semi-major axis a is a-dot {proportional_to}a{sup 1/2} and consequently the number distribution satisfies dN/d log a{proportional_to}a{sup 1/2}. If this formation process produces most hot Jupiters, Kepler should detect several super-eccentric migrating progenitors of hot Jupiters, allowing for a test of high-eccentricity migration scenarios.
Laplace-Stieltjes transform of the system mean lifetime via geometric process model
Directory of Open Access Journals (Sweden)
Gökdere Gökhan
2016-01-01
Full Text Available Operation principle of the engineering systems occupies an important role in the reliability theory. In most of the studies, the reliability function of the system is obtained analytically according to the structure of the system. Also in such studies the mean operating time of the system is calculated. However, the reliability function of some systems, such as repairable system, cannot be easily obtained analytically. In this case, forming Laplace-Stieltjes transform of the system can provide a solution to the problem. In this paper, we have designed a system which consists of two components that can be repairable with the aging property. Firstly, the Laplace-Stieltjes transform of the system is formed. Later, the mean operating time of the system is calculated by means of Laplace-Stieltjes transform. The system’s repair policy is evaluated depending on the geometric process. This property provides the aging of the system. We also provide special systems with different marginal lifetime distributions to illustrate the theoretical results in this study.
On a transform method for the Laplace equation in a polygon
Fokas, A. S.; Kapaev, A. A.
2003-08-01
Let q(x, y) satisfy a boundary value problem for the Laplace equation in an arbitrary convex polygon with n sides. An integral representation in the complex k-plane is given for q(x, y) in terms of n functions {rho}j(k), j = 1, ..., n. The function {rho}j consists of an integral over the jth side involving both qx and qy , thus each {rho}j involves one unknown boundary value. The functions {rho}j are not independent but they satisfy the important global relation that their sum vanishes. The solution of a given boundary value problem reduces to the analysis of this single relation for the n unknown {rho}j. For a general polygon with general Poincare boundary conditions, this gives rise to a matrix Riemann-Hilbert problem. In this paper it is shown that for simple polygons and for a large class of boundary conditions, the above Riemann-Hilbert problem (a) can either be reduced to a triangular RH problem which can be solved in closed form or (b) can be bypassed, and the {rho}j can be obtained using only algebraic manipulations. As an illustration of these triangular' and algebraic' cases we solve the Laplace equation in the quarter-plane, the semi-infinite strip and the right isosceles triangle with certain Poincare boundary conditions. These boundary value problems, which include the Dirichlet and the Neumann problems as particular cases, cannot be solved by conformal mappings.
A new kinematical definition of orbital eccentricity
Directory of Open Access Journals (Sweden)
Ninković S.
2009-01-01
Full Text Available A new concept of orbital eccentricity is given. The dimensionless quantities proposed in the present paper to serve as orbital eccentricities have a kinematical nature. The purpose is to use them in describing the motion for the case of three-dimensional orbits. A comparison done for nearly planar orbits shows that the values of the eccentricities proposed here do not differ significantly from those corresponding to the eccentricities of geometric nature usually applied.
An extension of the Laplace transform to Schwartz distributions
Price, D. R.
1974-01-01
A characterization of the Laplace transform is developed which extends the transform to the Schwartz distributions. The class of distributions includes the impulse functions and other singular functions which occur as solutions to ordinary and partial differential equations. The standard theorems on analyticity, uniqueness, and invertibility of the transform are proved by using the characterization as the definition of the Laplace transform. The definition uses sequences of linear transformations on the space of distributions which extends the Laplace transform to another class of generalized functions, the Mikusinski operators. It is shown that the sequential definition of the transform is equivalent to Schwartz' extension of the ordinary Laplace transform to distributions but, in contrast to Schwartz' definition, does not use the distributional Fourier transform. Several theorems concerning the particular linear transformations used to define the Laplace transforms are proved. All the results proved in one dimension are extended to the n-dimensional case, but proofs are presented only for those situations that require methods different from their one-dimensional analogs.
ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS
Energy Technology Data Exchange (ETDEWEB)
Duffell, Paul C.; Chiang, Eugene, E-mail: duffell@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley (United States)
2015-10-20
Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions.
The highly eccentric detached eclipsing binaries in ACVS and MACC
Shivvers, Isaac; Bloom, Joshua S.; Richards, Joseph W.
2014-06-01
Next-generation synoptic photometric surveys will yield unprecedented (for the astronomical community) volumes of data and the processes of discovery and rare-object identification are, by necessity, becoming more autonomous. Such autonomous searches can be used to find objects of interest applicable to a wide range of outstanding problems in astronomy, and in this paper we present the methods and results of a largely autonomous search for highly eccentric detached eclipsing binary systems in the Machine-learned All-Sky Automated Survey Classification Catalog. 106 detached eclipsing binaries with eccentricities of e ≳ 0.1 are presented, most of which are identified here for the first time. We also present new radial-velocity curves and absolute parameters for six of those systems with the long-term goal of increasing the number of highly eccentric systems with orbital solutions, thereby facilitating further studies of the tidal circularization process in binary stars.
Laplace Synthesis Validation through Measurements on Underground Transmission Cables
Directory of Open Access Journals (Sweden)
Uribe-Campos Felipe Alejandro
2014-10-01
Full Text Available Underground cable electrical parameters ZY as well as their modal propagation characteristics are highly frequency dependent which in certain cases turns its analysis difficult. To perform electromagnetic transient studies of cables the calculation of electrical parameters is essential to obtain the waves propagation solution through the multiconductor system. At the same time this requires to solve the inverse Laplace transform on a numerical form. Although the analytic Laplace transform has an indisputable accuracy, the application of its numerical version up-to-date has not been completely accepted. A complete methodology is developed in this work to guide analyst engineers or graduate students in the calculation of electromagnetic transients of underground cable systems. Finally, to help the validation of the numerical inverse Laplace transform a scaled prototype experiment is performed in the laboratory in which a transient step-response at the remote end of an energized conductor is measured.
A Finite-Interval Uniqueness Theorem for Bilateral Laplace Transforms
Directory of Open Access Journals (Sweden)
Patrick Chareka
2007-01-01
Full Text Available Two or more bilateral Laplace transforms with a complex argument “s” may be equal in a finite vertical interval when, in fact, the transforms correspond to different functions. In this article, we prove that the existence of a bilateral Laplace transform in any finite horizontal interval uniquely determines the corresponding function. The result appears to be new as we could not find it in the literature. The novelty of the result is that the interval need not contain zero, the function need not be nonnegative and need not be integrable. The result has a potential to be useful in the context of fitting probability distributions to data using Laplace transforms or moment generating functions.
Filter frequency response of time dependent signal using Laplace transform
Energy Technology Data Exchange (ETDEWEB)
Shestakov, Aleksei I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2018-01-16
We analyze the effect a filter has on a time dependent signal x(t). If X(s) is the Laplace transform of x and H (s) is the filter Transfer function, the response in frequency space is X (s) H (s). Consequently, in real space, the response is the convolution (x*h) (t), where hi is the Laplace inverse of H. Effects are analyzed and analytically for functions such as (t/t_{c})^{2} e^{-t/t$_c$}, where t_{c} = const. We consider lowpass, highpass and bandpass filters.
The Laplace transform and polynomial approximation in L2
DEFF Research Database (Denmark)
Labouriau, Rodrigo
2016-01-01
This short note gives a sufficient condition for having the class of polynomials dense in the space of square integrable functions with respect to a finite measure dominated by the Lebesgue measure in the real line, here denoted by L2. It is shown that if the Laplace transform of the measure...... concerning the polynomial approximation is original, even thought the proof is relatively simple. Additionally, an alternative stronger condition (easier to be verified) not involving the calculation of the Laplace transform is given. The condition essentially says that the density of the measure should have...
The Eccentric Behavior of Nearly Frozen Orbits
Sweetser, Theodore H.; Vincent, Mark A.
2013-01-01
Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.
Introducing the Moon's Orbital Eccentricity
Oostra, Benjamin
2014-11-01
I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a guided exercise, rather than just telling them the facts.1 The inclination and nodes may be found by direct observation, monitoring carefully the position of the Moon among the stars. Even the regression of the nodes may be discovered in this way2 To find the eccentricity from students' observations is also possible,3 but that requires considerable time and effort. if a whole class should discover it in a short time, here is a method more suitable for a one-day class or home assignment. The level I aim at is, more or less, advanced high school or first-year college students. I assume them to be acquainted with celestial coordinates and the lunar phases, and to be able to use algebra and trigonometry.
Variations of (pseudo-)rotations and the Laplace-Beltrami operator on homogeneous spaces
Energy Technology Data Exchange (ETDEWEB)
Brezov, D. S. [Department of Mathematics, University of Architecture, Civil Engineering and Geodesy, 1 Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Mladenova, C. D. [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, 1113 Sofia (Bulgaria); Mladenov, I. M., E-mail: mladenov@bio21.bas.bg [Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia (Bulgaria)
2015-10-28
In this paper we obtain the Lie derivatives of the scalar parameters in the generalized Euler decomposition with respect to arbitrary axes under left and right deck transformations. This problem can be directly related to the representation of the angular momentum in quantum mechanics. As a particular example, we calculate the angular momentum and the corresponding quantum hamiltonian in the standard Euler and Bryan representations. Similarly, in the hyperbolic case, the Laplace-Beltrami operator is retrieved for the Iwasawa decomposition. The case of two axes is considered as well.
Who let the demon out? Laplace and Boscovich on determinism.
Kožnjak, Boris
2015-06-01
In this paper, I compare Pierre-Simon Laplace's celebrated formulation of the principle of determinism in his 1814 Essai philosophique sur les probabilités with the formulation of the same principle offered by Roger Joseph Boscovich in his Theoria philosophiae naturalis, published 56 years earlier. This comparison discloses a striking general similarity between the two formulations of determinism as well as certain important differences. Regarding their similarities, both Boscovich's and Laplace's conceptions of determinism involve two mutually interdependent components-ontological and epistemic-and they are both intimately linked with the principles of causality and continuity. Regarding their differences, however, Boscovich's formulation of the principle of determinism turns out not only to be temporally prior to Laplace's but also-being founded on fewer metaphysical principles and more rooted in and elaborated by physical assumptions-to be more precise, complete and comprehensive than Laplace's somewhat parenthetical statement of the doctrine. A detailed analysis of these similarities and differences, so far missing in the literature on the history and philosophy of the concept of determinism, is the main goal of the present paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
Laplace transform and the Mittag-Leffler function
Sales Teodoro, G.; Capelas de Oliveira, E.
2014-05-01
The exponential function is solution of a linear differential equation with constant coefficients, and the Mittag-Leffler function is solution of a fractional linear differential equation with constant coefficients. Using infinite series and Laplace transform, we introduce the Mittag-Leffler function as a generalization of the exponential function. Particular cases are recovered.
Application of Laplace Transformation to the Analysis of an ...
African Journals Online (AJOL)
Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing differential ...
How fast the Laplace equation was solved in 1995
Botta, E.F.F.; Dekker, K.; Notay, Y.; Ploeg, A. van der; Vuik, C.; Wubs, F.W.
On the occasion of the third centenary of the appointment of Johann Bernoulli at the University of Groningen, a number of linear systems solvers for some Laplace-like equations have been compared during a one-day workshop. CPU times of several advanced solvers measured on the same computer (an
Hereditary Effects in Eccentric Compact Binary Inspirals to Third Post-Newtonian Order
Loutrel, Nicholas
2016-01-01
While there has been much success in understanding the orbital dynamics and gravitational wave emission of eccentric compact binaries in the post-Newtonian formalism, some problems still remain. The largest of these concerns hereditary effects: non-linear phenomena related to the scattering off of the background curved spacetime (tails) and to the generation of gravitational waves by gravitational waves (memory). Currently, these hereditary effects are only known numerically for arbitrary eccentricity through infinite sums of Bessel functions, with closed-form, analytic results only available in the small eccentricity limit. We here calculate, for the first time, closed-form, analytic expressions for all hereditary effects to third post-Newtonian order in binaries with arbitrary eccentricity. For the tails, we first asymptotically expand all Bessel functions in high eccentricity and find a superasymptotic series for each enhancement factor, accurate to better than $10^{-3}$ relative to post-Newtonian numerica...
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2014-01-01
Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.
Transmission line resonance technique for eccentric core optical fibers
Georgantzos, E.; Boucouvalas, A. C.
2016-12-01
In several cases optical fibers in telecommunications have cores of non circular geometry. Fibre optic deformations appear in optical fibres for many reasons. Optical fibre core ellipticity for example where the fibre optic core is not perfectly circular due to fibre optic manufacturing tolerances, is measured and often is a problem. Optical fibre core eccentricity, where the fibre core is not on the axis of the fibre, but it is offset by a small length. This is another issue and very important for ensuring performance low loss splices and connector losses. Both of ellipticity and eccentricity are specified in accordance to international standards for fibre optic manufacturing telecommunications grade fibres. The present paper studies ellipticity and core eccentricity specifically and presents a new method for analysing their effect. We present an extension of the transmission line technique as a means of studying such fibers and deriving necessary parameters. Conformal mapping on the other hand is a simple mathematical tool by which we can generate sets of orthogonal two-dimensional coordinate systems. Shortly a conformal map of Cartesian two-dimensional space is defined by any analytical function W(z) where z, w, are: z = x + jy, W = θ + j φ The function deriving by the conformal mapping transformation h(θ ,φ )=| ∂w/∂z | = 1/|∂z/∂w|, can be used in order to define ∇A → and ∇×A → where A → is the magnetic or electric field in the derived orthogonal coordinate system. Useful conformal maps for fiber optics applications should have the property that the equation θ(x, y) = constant, is forming closed curves in a Cartesian two-dimensional space (x,y). If θ(x, y) = constant represents a set of co-eccentric circles, we obtain the normal case of conventional fibers with circular cores. If θ(x, y) = constant represents a set of eclipses, we are have the formation of elliptic core optical fibers. If θ(x, y) = constant represents a set of
Mean Motion Resonances at High Eccentricities: The 2:1 and the 3:2 Interior Resonances
Wang, Xianyu; Malhotra, Renu
2017-07-01
Mean motion resonances (MMRs) play an important role in the formation and evolution of planetary systems and have significantly influenced the orbital properties and distribution of planets and minor planets in the solar system and in exoplanetary systems. Most previous theoretical analyses have focused on the low- to moderate-eccentricity regime, but with new discoveries of high-eccentricity resonant minor planets and even exoplanets, there is increasing motivation to examine MMRs in the high-eccentricity regime. Here we report on a study of the high-eccentricity regime of MMRs in the circular planar restricted three-body problem. Numerical analyses of the 2:1 and the 3:2 interior resonances are carried out for a wide range of planet-to-star mass ratio μ, and for a wide range of eccentricity of the test particle. The surface-of-section technique is used to study the phase space structure near resonances. We find that new stable libration zones appear at higher eccentricity at libration centers that are shifted from those at low eccentricities. We provide physically intuitive explanations for these transitions in phase space, and we present novel results on the mass and eccentricity dependence of the resonance widths. Our results show that MMRs have sizable libration zones at high eccentricities, comparable to those at lower eccentricities.
Eccentric crank variable compression ratio mechanism
Lawrence, Keith Edward [Kobe, JP; Moser, William Elliott [Peoria, IL; Roozenboom, Stephan Donald [Washington, IL; Knox, Kevin Jay [Peoria, IL
2008-05-13
A variable compression ratio mechanism for an internal combustion engine that has an engine block and a crankshaft is disclosed. The variable compression ratio mechanism has a plurality of eccentric disks configured to support the crankshaft. Each of the plurality of eccentric disks has at least one cylindrical portion annularly surrounded by the engine block. The variable compression ratio mechanism also has at least one actuator configured to rotate the plurality of eccentric disks.
Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats
DEFF Research Database (Denmark)
Kongsgaard, M; Aagaard, P; Roikjaer, S
2006-01-01
Recent studies have shown excellent clinical results using eccentric squat training on a 25 degrees decline board to treat patellar tendinopathy. It remains unknown why therapeutic management of patellar tendinopathy using decline eccentric squats offer superior clinical efficacy compared to stan...... to standard horizontal eccentric squats. This study aimed to compare electromyography activity, patellar tendon strain and joint angle kinematics during standard and decline eccentric squats....
Beck, Joakim
2017-10-10
In calculating expected information gain in optimal Bayesian experimental design, the computation of the inner loop in the classical double-loop Monte Carlo requires a large number of samples and suffers from underflow if the number of samples is small. These drawbacks can be avoided by using an importance sampling approach. We present a computationally efficient method for optimal Bayesian experimental design that introduces importance sampling based on the Laplace method to the inner loop. We derive the optimal values for the method parameters in which the average computational cost is minimized according to the desired error tolerance. We use three numerical examples to demonstrate the computational efficiency of our method compared with the classical double-loop Monte Carlo, and a more recent single-loop Monte Carlo method that uses the Laplace method as an approximation of the return value of the inner loop. The first example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The third example deals with the optimal sensor placement for an electrical impedance tomography experiment to recover the fiber orientation in laminate composites.
Alexandre de Humboldt et le Marquis de Laplace
Directory of Open Access Journals (Sweden)
Eberhard Knobloch
2014-12-01
Full Text Available Pierre-Simon Marquis de Laplace joua un rôle éminent dans la vie scientifique d’Alexandre de Humboldt. Humboldt avait fait la connaissance du savant français qui avait vingt ans de plus que lui-même à Paris en 1798. L’article de Eberhard Knobloch examine la relation entre ces deux géants de la science en s’appuyant entre autre pour la première fois sur des documents inédits: les quatre lettres de Laplace à Humboldt, le journal d’Humboldt et sur le matériel d’archives conservé aux Archives de l’Académie des Sciences de Berlin-Brandebourg.
Computer-Aided Numerical Inversion of Laplace Transform
Directory of Open Access Journals (Sweden)
Umesh Kumar
2000-01-01
Full Text Available This paper explores the technique for the computer aided numerical inversion of Laplace transform. The inversion technique is based on the properties of a family of three parameter exponential probability density functions. The only limitation in the technique is the word length of the computer being used. The Laplace transform has been used extensively in the frequency domain solution of linear, lumped time invariant networks but its application to the time domain has been limited, mainly because of the difficulty in finding the necessary poles and residues. The numerical inversion technique mentioned above does away with the poles and residues but uses precomputed numbers to find the time response. This technique is applicable to the solution of partially differentiable equations and certain classes of linear systems with time varying components.
Exponentials and Laplace transforms on nonuniform time scales
Ortigueira, Manuel D.; Torres, Delfim F. M.; Trujillo, Juan J.
2016-10-01
We formulate a coherent approach to signals and systems theory on time scales. The two derivatives from the time-scale calculus are used, i.e., nabla (forward) and delta (backward), and the corresponding eigenfunctions, the so-called nabla and delta exponentials, computed. With these exponentials, two generalised discrete-time Laplace transforms are deduced and their properties studied. These transforms are compatible with the standard Laplace and Z transforms. They are used to study discrete-time linear systems defined by difference equations. These equations mimic the usual continuous-time equations that are uniformly approximated when the sampling interval becomes small. Impulse response and transfer function notions are introduced. This implies a unified mathematical framework that allows us to approximate the classic continuous-time case when the sampling rate is high or to obtain the standard discrete-time case, based on difference equations, when the time grid becomes uniform.
Solving Differential Equations by Parallel Laplace Method with Assured Accuracy
Malaschonok, Natasha
2007-01-01
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006 We produce a parallel algorithm realizing the Laplace transform method for the symbolic solving of differential equations. In this paper we consider systems of ordinary linear differential equations with constant coefficients, nonzero initial conditions and right-hand parts reduced to sums of exponents with polynomial coefficients.
Receptor binding kinetics equations: Derivation using the Laplace transform method.
Hoare, Sam R J
Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time
INTRODUCTION OF GENERALIZED LAPLACE-FRACTIONAL MELLIN TRANSFORM
V. D. Sharma*, M. M. Thakare
2016-01-01
In present era, Fractional Integral Transform plays an important role in various fields of mathematics and Technology. Mellin transform has an many application in navigations, correlaters, in area of statistics, probability and also solving in differential equation. Fractional Mellin transform is integral part of mathematical modeling method because of its scale invariance property. The aim of this paper is to generalization of Laplace-Fractional Mellin Transform. Analyticity theore...
Coronary Artery Circumferential Stress: Departure from Laplace Expectations with Aging
Directory of Open Access Journals (Sweden)
Richard E Tracy
2009-01-01
Full Text Available Normal, youthful arteries generally maintain constant radius/wall thickness ratios, with the relationship being described by the Laplace Law. Whether this relationship is maintained during aging is unclear. This study first examines the Laplace relationships in postmortem coronary arteries using a novel method to correct measurements for postmortem artifacts, uses data from the literature to provide preliminary validation, and then describes histology associated with low circumferential stress. Measurements of radius and wall thickness, taken at sites free from atheromas, were used with national population estimates of age-, gender-, and race-specific blood pressure data to calculate average circumferential stress within demographic groups. The estimated circumferential stress at ages 55-74 years was about half that at ages 18-24 years because of a disproportionate increase of wall thickness relative to artery radius at older ages, violating the expected relationships described by the Laplace Law. Arteries with low circumferential stress (estimated at sites distant from atherosclerosis had more necrotic atheromas than arteries with high stress. At sites with low stress and intimal thickening, smooth muscle cells (SMCs were spread apart, thereby diminishing their density within both the intima and media. Thus, older arteries displayed both low circumferential stress and abundant matrix of low cellularity microscopically. Such changes might alter SMC-matrix interactions.
WHY ARE ECCENTRIC EXERCISES EFFECTIVE FOR ACHILLES TENDINOPATHY?
O’Neill, Seth; Watson, Paul J; Barry, Simon
2015-01-01
Achilles Tendinopathy is a complex problem, with the most common conservative treatment being eccentric exercises. Despite multiple studies assessing this treatment regime little is known about the mechanism of effect. This lack of understanding may be hindering therapeutic care and preventing optimal rehabilitation. Of the mechanisms proposed, most relate to tendon adaptation and fail to consider other possibilities. The current consensus is that tendon adaptation does not occur within timef...
Eccentric binaries of compact objects in strong-field gravity
Energy Technology Data Exchange (ETDEWEB)
Gold, Roman
2011-09-27
In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on
Eccentricity distribution in the main asteroid belt
Malhotra, Renu; Wang, Xianyu
2017-03-01
The observationally complete sample of the main belt asteroids now spans more than two orders of magnitude in size and numbers more than 64 000 (excluding collisional family members). We undertook an analysis of asteroids' eccentricities and their interpretation with simple physical models. We find that a century old conclusion that the asteroids' eccentricities follow a Rayleigh distribution holds for the osculating eccentricities of large asteroids, but the proper eccentricities deviate from a Rayleigh distribution; there is a deficit of eccentricities smaller than ∼0.1 and an excess of larger eccentricities. We further find that the proper eccentricities do not depend significantly on asteroid size but have strong dependence on heliocentric distance; the outer asteroid belt follows a Rayleigh distribution, but the inner belt is strikingly different. Eccentricities in the inner belt can be modelled as a vector sum of a primordial eccentricity vector of random orientation and magnitude drawn from a Rayleigh distribution of parameter ∼0.06, and an excitation of random phase and magnitude ∼0.13. These results imply that when a late dynamical excitation of the asteroids occurred, it was independent of asteroid size and was stronger in the inner belt than in the outer belt. We discuss implications for the primordial asteroid belt and suggest that the observationally complete sample size of main belt asteroids is large enough that more sophisticated model-fitting of the eccentricities is warranted and could serve to test alternative theoretical models of the dynamical excitation history of asteroids and its links to the migration history of the giant planets.
Celik, Hasan; Bouhrara, Mustapha; Reiter, David A; Fishbein, Kenneth W; Spencer, Richard G
2013-11-01
We propose a new approach to stabilizing the inverse Laplace transform of a multiexponential decay signal, a classically ill-posed problem, in the context of nuclear magnetic resonance relaxometry. The method is based on extension to a second, indirectly detected, dimension, that is, use of the established framework of two-dimensional relaxometry, followed by projection onto the desired axis. Numerical results for signals comprised of discrete T1 and T2 relaxation components and experiments performed on agarose gel phantoms are presented. We find markedly improved accuracy, and stability with respect to noise, as well as insensitivity to regularization in quantifying underlying relaxation components through use of the two-dimensional as compared to the one-dimensional inverse Laplace transform. This improvement is demonstrated separately for two different inversion algorithms, non-negative least squares and non-linear least squares, to indicate the generalizability of this approach. These results may have wide applicability in approaches to the Fredholm integral equation of the first kind. Published by Elsevier Inc.
On the Analytical and Numerical Properties of the Truncated Laplace Transform II
2015-05-29
of the Truncated Laplace Transform II. Roy R. Lederman †, Vladimir Rokhlin‡, Technical Report YALEU/DCS/TR-1507 May 29, 2015 † This author’s research...41 (1962), pp. 1295–1336. [11] R. R. Lederman and V. Rokhlin, On the analytical and numerical properties of the truncated laplace transform., tech. rep...Yale CS, 2014. [12] R. R. Lederman and V. Rokhlin, On the analytical and numerical properties of the truncated laplace transform - I, In
Reactor fuel element heat conduction via numerical Laplace transform inversion
Energy Technology Data Exchange (ETDEWEB)
Ganapol, Barry D.; Furfaro, Roberto [University of Arizona, Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering], e-mail: ganapol@cowboy.ame.arizona.edu
2001-07-01
A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient temperature distribution within a nuclear reactor fuel element. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted is one that relies on acceleration of the convergence of an infinite series towards its limit. The inversion will be applied to the prediction of the transient temperature distribution within an MTR type nuclear fuel element through a novel formulation of the solution to the transformed heat conduction equation. (author)
Eccentric exercise in treatment of Achilles tendinopathy
DEFF Research Database (Denmark)
Nørregaard, J; Larsen, C C; Bieler, T
2007-01-01
Prognosis and treatment of Achilles tendon pain (achillodynia) has been insufficiently studied. The purpose of the present study was to examine the long-term effect of eccentric exercises compared with stretching exercises on patients with achillodynia....
Long, Quan
2014-01-06
Shannon-type expected information gain is an important utility in evaluating the usefulness of a proposed experiment that involves uncertainty. Its estimation, however, cannot rely solely on Monte Carlo sampling methods, that are generally too computationally expensive for realistic physical models, especially for those involving the solution of stochastic partial differential equations. In this work we present a new methodology, based on the Laplace approximation of the posterior probability density function, to accelerate the estimation of expected information gain in the model parameters and predictive quantities of interest. Furthermore, in order to deal with the issue of dimensionality in a complex problem, we use sparse quadratures for the integration over the prior. We show the accuracy and efficiency of the proposed method via several nonlinear numerical examples, including a single parameter design of one dimensional cubic polynomial function and the current pattern for impedance tomography.
Blacic, T. M.; Jun, H.; Shin, C.; Rosado, H.
2016-02-01
2-D temperature images of the ocean with resolution within a few tens of meters in distance and depth can be recovered from conventional marine multichannel seismic (MCS; low frequency acoustic) data via full waveform inversion (FWI), as demonstrated by several research groups in recent years. A primary limitation with FWI is that the more computationally efficient local inversion methods require an accurate estimate of the background sound speed in the material as a starting point to avoid converging to a local, rather than global, solution. In the ocean, expendable instruments are often used to obtain 1-D temperature and sound speed profiles; in typical MCS data collection, however, expendables are deployed just once per day, resulting in only one hydrographic profile every few hundred kilometers. In addition, the band-limited nature of seismic data, which typically lacks reliable frequencies below 5 Hz, makes it inherently challenging to extract the long wavelength sound speed directly from seismic data. Laplace domain inversion (LDI) developed by Changsoo Shin and colleagues requires only a simple starting model to produce smooth background sound speed models without requiring prior information about the medium. It works by transforming input data to the Laplace domain and then examining the zero frequency component of the damped wavefield to extract a smooth sound speed model. Laplace-Fourier domain inversion extends the technique to include additional frequencies below 5 Hz. This ability to use frequencies below those effectively propagated by the seismic source is what enables LDI to produce the smooth background trend from the data. We applied LDI to five synthetic data sets based on simplified models of oceanographic features and recovered smoothed versions of our synthetic models, demonstrating the viability of this method for creating sound speed profiles suitable for use as starting models for other FWI methods that produce more detailed models.
Laplace pressure based disjoining pressure isotherm in non symmetric conditions
Huerre, Axel; Valignat, Marie-Pierre; Maggs, A. C.; Theodoly, Olivier; Jullien, Marie-Caroline
2017-11-01
Understanding the stability and dynamics of two phase systems, such as foams and emulsions, in porous media is still a challenge for physicists and calls for a better understanding of the intermolecular interactions between interfaces. In a classical approach, these interactions are investigated in the framework of Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory by building disjoining pressure isotherms. This paper reports on a technique allowing the measurement of disjoining pressure isotherms in a thin liquid film squeezed by either a gas or a liquid phase on a solid substrate. We couple a Reflection Interference Contrast Microscopy set-up to a microfluidic channel that sets the disjoining pressure through the Laplace pressure. This simple technique is found to be both accurate and precise. The Laplace pressure mechanism provides extremely stable conditions and offers opportunity for parallelizing experiments by producing several drops in channels of different heights. We illustrate its potential by comparing experimental isotherms for oil—[(water and sodium dodecyl sulfate (SDS)]—glass systems with different models focusing on the electrostatic contribution of the disjoining pressure. The extracted values of the interface potentials are in agreement with the constant surface potential model and with a full computation. The derived SDS surface concentration agrees with values reported in the literature. We believe that this technique is suitable for investigating other working fluids and intermolecular interactions at smaller scales.
Energy Technology Data Exchange (ETDEWEB)
Petersen, Claudio Zen
2008-07-01
In this dissertation we use the Laplace transform to derive expressions for nonstandard albedo boundary conditions for one and two non-multiplying regions at the ends of one dimensional domains. In practice, the fuel regions of reactor cores are surrounded by reflector regions that reduce neutron leakage. In order to exclude the reflector regions from the calculations, we introduce a reflection coefficient or albedo. We use the present albedo boundary conditions to solve numerically slab-geometry monoenergetic and multigroup diffusion equations using the conventional finite difference method. Numerical results are generated for fixed source and eigenvalue diffusion problems in slab geometry(author)
Laplace's equation and the Dirichlet-Neumann map in multiply connected domains
Greenbaum, A.; Greengard, L.; Mcfadden, G. B.
1993-01-01
A variety of problems in material science and fluid dynamics require the solution of Laplace's equation in multiply connected domains. Integral equation methods are natural candidates for such problems, since they discretize the boundary alone, require no special effort for free boundaries, and achieve superalgebraic convergence rates on sufficiently smooth domains in two space dimensions, regardless of shape. Current integral equation methods for the Dirichlet problem, however, require the solution of M independent problems of dimension N, where M is the number of boundary components and N is the total number of points in the discretization. In this paper, we present a new boundary integral equation approach, valid for both interior and exterior problems, which requires the solution of a single linear system of dimension N + M. We solve this system by making use of an iterative method (GMRES) combined with the last multipole method for the rapid calculation of the necessary matrix vector products. For a two-dimensional system with 200 components and 100 points on each boundary, we gain a speedup of a factor of 100 from the new analytic formulation and a factor of 50 from the fast multipole method. The resulting scheme brings large scale calculations in extremely complex domains within practical reach.
A Laplace method for under-determined Bayesian optimal experimental designs
Long, Quan
2014-12-17
In Long et al. (2013), a new method based on the Laplace approximation was developed to accelerate the estimation of the post-experimental expected information gains (Kullback–Leibler divergence) in model parameters and predictive quantities of interest in the Bayesian framework. A closed-form asymptotic approximation of the inner integral and the order of the corresponding dominant error term were obtained in the cases where the parameters are determined by the experiment. In this work, we extend that method to the general case where the model parameters cannot be determined completely by the data from the proposed experiments. We carry out the Laplace approximations in the directions orthogonal to the null space of the Jacobian matrix of the data model with respect to the parameters, so that the information gain can be reduced to an integration against the marginal density of the transformed parameters that are not determined by the experiments. Furthermore, the expected information gain can be approximated by an integration over the prior, where the integrand is a function of the posterior covariance matrix projected over the aforementioned orthogonal directions. To deal with the issue of dimensionality in a complex problem, we use either Monte Carlo sampling or sparse quadratures for the integration over the prior probability density function, depending on the regularity of the integrand function. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear under-determined test cases. They include the designs of the scalar parameter in a one dimensional cubic polynomial function with two unidentifiable parameters forming a linear manifold, and the boundary source locations for impedance tomography in a square domain, where the unknown parameter is the conductivity, which is represented as a random field.
Ghehsareh, Hadi Roohani; Abbasbandy, Saeid; Soltanalizadeh, Babak
2012-05-01
In this research, the Laplace-Adomian decomposition method (LADM) is applied for the analytical and numerical treatment of the nonlinear differential equation that describes a magnetohydrodynamic (MHD) flow under slip condition over a permeable stretching surface. The technique is well applied to approximate the similarity solutions of the problem for some typical values of model parameters. The obtained series solutions by the LADM are combined with the Padé approximation to improve the accuracy and enlarge the convergence domain of the obtained results. Through tables and figures, the efficiency of the presented method is illustrated.
Directory of Open Access Journals (Sweden)
Lei Wang
2015-09-01
Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.
Laplace transformations of hydrodynamic type systems in Riemann invariants periodic sequences
Ferapontov, E V
1997-01-01
The conserved densities of hydrodynamic type system in Riemann invariants satisfy a system of linear second order partial differential equations. For linear systems of this type Darboux introduced Laplace transformations, generalising the classical transformations in the scalar case. It is demonstrated that Laplace transformations can be pulled back to the transformations of the corresponding hydrodynamic type systems. We discuss periodic Laplace sequences of with the emphasize on the simplest nontrivial case of period 2. For 3-component systems in Riemann invariants a complete description of closed quadruples is proposed. They turn to be related to a special quadratic reduction of the (2+1)-dimensional 3-wave system which can be reduced to a triple of pairwize commuting Monge-Ampere equations. In terms of the Lame and rotation coefficients Laplace transformations have a natural interpretation as the symmetries of the Dirac operator, associated with the (2+1)-dimensional n-wave system. The 2-component Laplace...
Eccentric Exercise to Enhance Neuromuscular Control.
Lepley, Lindsey K; Lepley, Adam S; Onate, James A; Grooms, Dustin R
Neuromuscular alterations are a major causal factor of primary and secondary injuries. Though injury prevention programs have experienced some success, rates of injuries have not declined, and after injury, individuals often return to activity with functionality below clinical recommendations. Considering alternative therapies to the conventional concentric exercise approach, such as one that can target neuromuscular injury risk and postinjury alterations, may provide for more effective injury prevention and rehabilitation protocols. Peer-reviewed sources available on the Web of Science and MEDLINE databases from 2000 through 2016 were gathered using searches associated with the keywords eccentric exercise, injury prevention, and neuromuscular control. Eccentric exercise will reduce injury risk by targeting specific neural and morphologic alterations that precipitate neuromuscular dysfunction. Clinical review. Level 4. Neuromuscular control is influenced by alterations in muscle morphology and neural activity. Eccentric exercise beneficially modifies several underlying factors of muscle morphology (fiber typing, cross-sectional area, working range, and pennation angle), and emerging evidence indicates that eccentric exercise is also beneficial to peripheral and central neural activity (alpha motorneuron recruitment/firing, sarcolemma activity, corticospinal excitability, and brain activation). There is mounting evidence that eccentric exercise is not only a therapeutic intervention influencing muscle morphology but also targets unique alterations in neuromuscular control, influencing injury risk.
Theories of comets to the age of Laplace
Heidarzadeh, Tofigh
Although the development of ideas about cometary motion has been investigated in several projects, a comprehensive and detailed survey of physical theories of comets has not been conducted. The available works either illustrate relatively short periods in the history of physical cometology or portray a landscape view without adequate details. The present study is an attempt to depict the details of the major physical theories of comets from Aristotle to the age of Laplace. The basic question from which this project originated was simple: how did natural philosophers and astronomers define the nature and place of a new category of celestial objects--the comets--after Brahe's estimation of cometary distances? However, a study starting merely from Brahe without covering classical and medieval thought about comets would be incomplete. Thus, based on the fundamental physical characteristics attributed to comets, the history of cometology may be divided into three periods: from Aristotle to Brahe, in which comets were assumed to be meteorological phenomena; from Brahe to Newton, when comets were admitted as celestial bodies but with unknown trajectories; and from Newton to Laplace, in which they were treated as members of the solar system having more or less the same properties of the planets. By estimating the mass of comets in the 1800s, Laplace diverted cometology into a different direction wherein they were considered among the smallest bodies in the solar system and deprived of the most important properties that had been used to explain their physical constitution during the previous two millennia. Ideas about the astrological aspects of comets are not considered in this study. Also, topics concerning the motion of comets are explained to the extent that is helpful in illustrating their physical properties. The main objective is to demonstrate the foundations of physical theories of comets, and the interaction between observational and mathematical astronomy, and
Spectral Laplace-Beltrami wavelets with applications in medical images.
Tan, Mingzhen; Qiu, Anqi
2015-05-01
The spectral graph wavelet transform (SGWT) has recently been developed to compute wavelet transforms of functions defined on non-Euclidean spaces such as graphs. By capitalizing on the established framework of the SGWT, we adopt a fast and efficient computation of a discretized Laplace-Beltrami (LB) operator that allows its extension from arbitrary graphs to differentiable and closed 2-D manifolds (smooth surfaces embedded in the 3-D Euclidean space). This particular class of manifolds are widely used in bioimaging to characterize the morphology of cells, tissues, and organs. They are often discretized into triangular meshes, providing additional geometric information apart from simple nodes and weighted connections in graphs. In comparison with the SGWT, the wavelet bases constructed with the LB operator are spatially localized with a more uniform "spread" with respect to underlying curvature of the surface. In our experiments, we first use synthetic data to show that traditional applications of wavelets in smoothing and edge detectio can be done using the wavelet bases constructed with the LB operator. Second, we show that multi-resolutional capabilities of the proposed framework are applicable in the classification of Alzheimer's patients with normal subjects using hippocampal shapes. Wavelet transforms of the hippocampal shape deformations at finer resolutions registered higher sensitivity (96%) and specificity (90%) than the classification results obtained from the direct usage of hippocampal shape deformations. In addition, the Laplace-Beltrami method requires consistently a smaller number of principal components (to retain a fixed variance) at higher resolution as compared to the binary and weighted graph Laplacians, demonstrating the potential of the wavelet bases in adapting to the geometry of the underlying manifold.
MHD Flow of the Micropolar Fluid between Eccentrically Rotating Disks.
Srivastava, Neetu
2014-01-01
This analytical investigation examines the magnetohydrodynamic flow problem of an incompressible micropolar fluid between the two eccentrically placed disks. Employing suitable transformations, the flow governing partial differential equations is reduced to ordinary differential equations. An exact solution representing the different flow characteristic of micropolar fluid has been derived by solving the ordinary differential equations. Analysis of the flow characteristics of the micropolar fluid has been done graphically by varying the Reynolds number and the Hartmann number. This analysis has been carried out for the weak and strong interactions.
Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats.
Kongsgaard, M; Aagaard, P; Roikjaer, S; Olsen, D; Jensen, M; Langberg, H; Magnusson, S P
2006-08-01
Recent studies have shown excellent clinical results using eccentric squat training on a 25 degrees decline board to treat patellar tendinopathy. It remains unknown why therapeutic management of patellar tendinopathy using decline eccentric squats offer superior clinical efficacy compared to standard horizontal eccentric squats. This study aimed to compare electromyography activity, patellar tendon strain and joint angle kinematics during standard and decline eccentric squats. Thirteen subjects performed unilateral eccentric squats on flat-and a 25 degrees decline surface. During the squats, electromyography activity was obtained in eight representative muscles. Also, ankle, knee and hip joint goniometry was obtained. Additionally, patellar tendon strain was measured in vivo using ultrasonography as subjects maintained a unilateral isometric 90 degrees knee angle squat position on either flat or 25 degrees decline surface. Patellar tendon strain was significantly greater (Pcompared to the standard surface. The stop angles of the ankle and hip joints were significantly smaller during the decline compared to the standard squats (Pcompared to the standard squats (Pstandard and decline squats. The use of a 25 degrees decline board increases the load and the strain of the patellar tendon during unilateral eccentric squats. This finding likely explains previous reports of superior clinical efficacy of decline eccentric squats in the rehabilitative management of patellar tendinopathy.
Eccentric connectivity index and eccentric distance sum of some graph operations
Directory of Open Access Journals (Sweden)
Buzohragul Eskender
2013-03-01
Full Text Available Let $G=(V,E$ be a connected graph. The eccentric connectivity index of $G$, $xi^{c}(G$, is defined as $xi^{c}(G=sum_{vin V(G}deg(vec(v$, where $deg(v$ is the degree of a vertex $v$ and $ec(v$ is its eccentricity. The eccentric distance sum of $G$ is defined as $xi^{d}(G=sum_{vin V(G}ec(vD(v$, where $D(v=sum_{uin V(G}d_{G}(u,v$ and $d_{G}(u,v$ is the distance between $u$ and $v$ in $G$. In this paper, we calculate the eccentric connectivity index and eccentric distance sum of generalized hierarchical product of graphs. Moreover, we present explicit formulae for the eccentric connectivity index of $F$-sum graphs in terms of some invariants of the factors. As applications, we present exact formulae for the values of the eccentric connectivity index of some graphs of chemical interest such as $C_{4}$ nanotubes, $C_{4}$ nanotoris and hexagonal chains.
Tropical sea surface temperatures and the earth's orbital eccentricity cycles
Digital Repository Service at National Institute of Oceanography (India)
Gupta, S.M.; Fernandes, A.A.; Mohan, R.
cyclicities at ~100- and ~400-ka corresponding to the Earth's orbital eccentricity cycles. Results, therefore imply that the tropical Indian Ocean warm pool persisted during the Quaternary and the paleo-SSTs fluctuating at the orbital eccentricity frequencies...
First and Second Zagreb Eccentricity Indices of Thorny Graphs
Directory of Open Access Journals (Sweden)
Nazeran Idrees
2017-01-01
Full Text Available The Zagreb eccentricity indices are the eccentricity reformulation of the Zagreb indices. Let H be a simple graph. The first Zagreb eccentricity index ( E 1 ( H is defined to be the summation of squares of the eccentricity of vertices, i.e., E 1 ( H = ∑ u ∈ V ( H Ɛ H 2 ( u . The second Zagreb eccentricity index ( E 2 ( H is the summation of product of the eccentricities of the adjacent vertices, i.e., E 2 ( H = ∑ u v ∈ E ( H Ɛ H ( u Ɛ H ( v . We obtain the thorny graph of a graph H by attaching thorns i.e., vertices of degree one to every vertex of H . In this paper, we will find closed formulation for the first Zagreb eccentricity index and second Zagreb eccentricity index of different well known classes of thorny graphs.
Electromyographic comparison of concentric and eccentric ...
African Journals Online (AJOL)
The study was conducted to compare the Electromyographic (EMG) activity variation of contractions (concentric and eccentric) during three different abdominal exercises (sit-up) exercises on rectus abdominal (upper and lower rectus). The sit-up exercises were: straight leg sit-up, bent leg sit-up and crunches. The EMG ...
Markov chain Monte Carlo with the Integrated Nested Laplace Approximation
Gómez-Rubio, Virgilio
2017-10-06
The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with
A fast Laplace solver approach to pore scale permeability
Arns, Christoph; Adler, Pierre
2017-04-01
The permeability of a porous medium can be derived by solving the Stokes equations in the pore space with no slip at the walls. The resulting velocity averaged over the pore volume yields the permeability KS by application of the Darcy law. The Stokes equations can be solved by a number of different techniques such as finite differences, finite volume, Lattice Boltzmann, but whatever the technique it remains a heavy task since there are four unknowns at each node (the three velocity components and the pressure) which necessitate the solution of four equations (the projection of Newton's law on each axis and mass conservation). By comparison, the Laplace equation is scalar with a single unknown at each node. The objective of this work is to replace the Stokes equations by an elliptical equation with a space dependent permeability. More precisely, the local permeability k is supposed to be proportional to (r-alpha)**2 where r is the distance of the voxel to the closest wall, and alpha a constant; k is zero in the solid phase. The elliptical equation is div(k gradp)=0. A macroscopic pressure gradient is assumed to be exerted on the medium and again the resulting velocity averaged over space yields a permeability K_L. In order to validate this method, systematic calculations have been performed. First, elementary shapes (plane channel, circular pipe, rectangular channels) were studied for which flow occurs along parallel lines in which case KL is the arithmetic average of the k's. KL was calculated for various discretizations of the pore space and various values of alpha. For alpha=0.5, the agreement with the exact analytical value of KS is excellent for the plane and rectangular channels while it is only approximate for circular pipes. Second, the permeability KL of channels with sinusoidal walls was calculated and compared with analytical results and numerical ones provided by a Lattice Boltzmann algorithm. Generally speaking, the discrepancy does not exceed 25% when
Effect of Encoder Eccentricity on Rolling Speed Control and Elimination Method
Directory of Open Access Journals (Sweden)
Zhao Ren-Tao
2017-01-01
Full Text Available Aiming to solve the problems of incremental photoelectric encoder eccentricity in the speed control system of rolling mill, this paper deduces the calculation model of actual speed, and gives a high precision approximation calculation method. Furthermore, the effectiveness and accuracy of the simplified model are verified by the simulation results. The online identification method of eccentricity and initial angle is also given in the paper. In addition, on the basis of continuous model, this article derives from the discrete model of traditional speed measurement scheme based on digital control system. This proposed algorithm has simplicity and excellent application value, and the effectiveness of the algorithm has been verified.
Robust surface reconstruction via Laplace-Beltrami eigen-projection and boundary deformation.
Shi, Yonggang; Lai, Rongjie; Morra, Jonathan H; Dinov, Ivo; Thompson, Paul M; Toga, Arthur W
2010-12-01
In medical shape analysis, a critical problem is reconstructing a smooth surface of correct topology from a binary mask that typically has spurious features due to segmentation artifacts. The challenge is the robust removal of these outliers without affecting the accuracy of other parts of the boundary. In this paper, we propose a novel approach for this problem based on the Laplace-Beltrami (LB) eigen-projection and properly designed boundary deformations. Using the metric distortion during the LB eigen-projection, our method automatically detects the location of outliers and feeds this information to a well-composed and topology-preserving deformation. By iterating between these two steps of outlier detection and boundary deformation, we can robustly filter out the outliers without moving the smooth part of the boundary. The final surface is the eigen-projection of the filtered mask boundary that has the correct topology, desired accuracy and smoothness. In our experiments, we illustrate the robustness of our method on different input masks of the same structure, and compare with the popular SPHARM tool and the topology preserving level set method to show that our method can reconstruct accurate surface representations without introducing artificial oscillations. We also successfully validate our method on a large data set of more than 900 hippocampal masks and demonstrate that the reconstructed surfaces retain volume information accurately.
Laplace Inversion of Low-Resolution NMR Relaxometry Data Using Sparse Representation Methods.
Berman, Paula; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev
2013-05-01
Low-resolution nuclear magnetic resonance (LR-NMR) relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed inverse Laplace transform problem. The most common numerical method implemented today for dealing with this kind of problem is based on L2-norm regularization. However, sparse representation methods via L1 regularization and convex optimization are a relatively new approach for effective analysis and processing of digital images and signals. In this article, a numerical optimization method for analyzing LR-NMR data by including non-negativity constraints and L1 regularization and by applying a convex optimization solver PDCO, a primal-dual interior method for convex objectives, that allows general linear constraints to be treated as linear operators is presented. The integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions when compared with those suggested by existing tools. © 2013 Wiley Periodicals, Inc. Concepts Magn Reson Part A 42A: 72-88, 2013.
Directory of Open Access Journals (Sweden)
Feng Qi
2014-10-01
Full Text Available The authors find the absolute monotonicity and complete monotonicity of some functions involving trigonometric functions and related to estimates the lower bounds of the first eigenvalue of Laplace operator on Riemannian manifolds.
Directory of Open Access Journals (Sweden)
Yong-Ju Yang
2013-01-01
Full Text Available The local fractional variational iteration method for local fractional Laplace equation is investigated in this paper. The operators are described in the sense of local fractional operators. The obtained results reveal that the method is very effective.
The Yang-Laplace Transform for Solving the IVPs with Local Fractional Derivative
Directory of Open Access Journals (Sweden)
Chun-Guang Zhao
2014-01-01
Full Text Available The IVPs with local fractional derivative are considered in this paper. Analytical solutions for the homogeneous and nonhomogeneous local fractional differential equations are discussed by using the Yang-Laplace transform.
Why Professor Richard Feynman was upset solving the Laplace equation for spherical waves?
Khelashvili, Anzor; Nadareishvili, Teimuraz
2013-01-01
We take attention to the singular behavior of the Laplace operator in spherical coordinates, which was established in our earlier work. This singularity has many non-trivial consequences. In this article we consider only the simplest ones, which are connected to the solution of Laplace equation in Feynman classical books and Lectures. Feynman was upset looking in his derived solutions, which have a fictitious singular behavior at the origin. We show how these inconsistencies can be avoided.
Handibag, S. S.; Karande, B. D.
2014-12-01
In this article, we develop a method to obtain approximate solutions of nonlinear coupled partial differential equations involving mixed partial derivatives with the help of Laplace Substitution Method (LSM). The technique is based on the application of Laplace transform to nonlinear coupled partial differential equations. The nonlinear term can easily be handled with the help of Adomian polynomials. We illustrate this technique with the help of three examples and results of the present technique have closed agreement with exact solutions.
Effects of Retinal Eccentricity on Human Manual Control
Popovici, Alexandru; Zaal, Peter M. T.
2017-01-01
This study investigated the effects of viewing a primary flight display at different retinal eccentricities on human manual control behavior and performance. Ten participants performed a pitch tracking task while looking at a simplified primary flight display at different horizontal and vertical retinal eccentricities, and with two different controlled dynamics. Tracking performance declined at higher eccentricity angles and participants behaved more nonlinearly. The visual error rate gain increased with eccentricity for single-integrator-like controlled dynamics, but decreased for double-integrator-like dynamics. Participants' visual time delay was up to 100 ms higher at the highest horizontal eccentricity compared to foveal viewing. Overall, vertical eccentricity had a larger impact than horizontal eccentricity on most of the human manual control parameters and performance. Results might be useful in the design of displays and procedures for critical flight conditions such as in an aerodynamic stall.
Directory of Open Access Journals (Sweden)
Nurettin Doğan
2012-01-01
Full Text Available A new method for approximate analytic series solution called multistep Laplace Adomian Decomposition Method (MLADM has been proposed for solving the model for HIV infection of CD4+T cells. The proposed method is modification of the classical Laplace Adomian Decomposition Method (LADM with multistep approach. Fourth-order Runge-Kutta method (RK4 is used to evaluate the effectiveness of the proposed algorithm. When we do not know the exact solution of a given problem, generally we use the RK4 method for comparison since it is widely used and accepted. Comparison of the results with RK4 method is confirmed that MLADM performs with very high accuracy. Results show that MLADM is a very promising method for obtaining approximate solutions to the model for HIV infection of CD4+T cells. Some plots and tables are presented to show the reliability and simplicity of the methods. All computations have been made with the aid of a computer code written in Mathematica 7.
Patterns in exoplanet count and eccentricity distributions
Taylor, Stuart F.
2018-01-01
The distribution of exoplanets of contains an unexpected level of features, starting with an unexpected gap the splits the main pileup of much of the planet population. In the population of planets of metal-rich sunlike single stars (SLSS objects), which comprises 40% of planets found by the radial velocity method, when counting logarithmic periods the main pileup of planets with periods longer than 100 days is split into two peaks separated by a significant gap. There is a wide region which has so few planets that none are found in the current data set. We show that this gap is extremely unlikely to occur by random. Because this gap is well-filled among planets of low surface gravity and low metallicity stars with 31 objects, it is unlikely that the bimodal nature of the metal rich SLSS population is due to observational effects. Comparisons of eccentricity of the metal-rich and metal-poor SLSS populations depend strongly on the two-peak-gap structure of counts of the metal-rich SLSS (rSLSS) population. Consideration of these features is essential to properly study the correlations of eccentricity with other planet-system parameters given how the eccentricity of rSLSS objects is highest in the two peaks of the rSLSS population.
Vibroacoustic response of an eccentric hollow cylinder
Hasheminejad, Seyyed M.; Mousavi-akbarzadeh, Hessam
2012-07-01
The linear 3D elasticity theory in conjunction with the classical method of separation of variables and the translational addition theorem for cylindrical wave functions are employed to investigate the three-dimensional steady-state sound radiation characteristics of an arbitrarily thick eccentric hollow cylinder of infinite length, submerged in an unbounded ideal acoustic medium, and subjected to arbitrary time-harmonic on-surface mechanical drives. The spatial Fourier transform along the shell axis and Fourier series expansion in the circumferential direction are utilized to obtain a formal integral expression for the radiated pressure field in the frequency domain. The method of stationary phase is subsequently implemented to evaluate the integral for an observation point in the far field. The analytical results are illustrated with numerical examples in which air-filled water-submerged concentric and eccentric steel cylinders are driven by harmonic concentrated radial and transverse surface loads. Effects of excitation and cylinder eccentricity on the far-field radiated pressure amplitudes/directivities are discussed and contributions from pseudo-Rayleigh, whispering gallery, and axially guided waves are examined through selected spatial dispersion patterns. Limiting cases are considered and the validity of results is established with the aid of a commercial finite element package as well as by comparison with the data in the existing literature.
Eccentric Contraction-Induced Muscle Fibre Adaptation
Directory of Open Access Journals (Sweden)
Arabadzhiev T. I.
2009-12-01
Full Text Available Hard-strength training induces strength increasing and muscle damage, especially after eccentric contractions. Eccentric contractions also lead to muscle adaptation. Symptoms of damage after repeated bout of the same or similar eccentrically biased exercises are markedly reduced. The mechanism of this repeated bout effect is unknown. Since electromyographic (EMG power spectra scale to lower frequencies, the adaptation is related to neural adaptation of the central nervous system (CNS presuming activation of slow-non-fatigable motor units or synchronization of motor unit firing. However, the repeated bout effect is also observed under repeated stimulation, i.e. without participation of the CNS. The aim of this study was to compare the possible effects of changes in intracellular action potential shape and in synchronization of motor units firing on EMG power spectra. To estimate possible degree of the effects of central and peripheral changes, interferent EMG was simulated under different intracellular action potential shapes and different degrees of synchronization of motor unit firing. It was shown that the effect of changes in intracellular action potential shape and muscle fibre propagation velocity (i.e. peripheral factors on spectral characteristics of EMG signals could be stronger than the effect of synchronization of firing of different motor units (i.e. central factors.
Obliquity and Eccentricity Constraints for Terrestrial Exoplanets
Kane, Stephen R.; Torres, Stephanie M.
2017-11-01
Exoplanet discoveries over recent years have shown that terrestrial planets are exceptionally common. Many of these planets are in compact systems that result in complex orbital dynamics. A key step toward determining the surface conditions of these planets is understanding the latitudinally dependent flux incident at the top of the atmosphere as a function of orbital phase. The two main properties of a planet that influence the time-dependent nature of the flux are the obliquity and orbital eccentricity of the planet. We derive the criterion for which the flux variation due to obliquity is equivalent to the flux variation due to orbital eccentricity. This equivalence is computed for both the maximum and average flux scenarios, the latter of which includes the effects of the diurnal cycle. We apply these calculations to four known multi-planet systems (GJ 163, K2-3, Kepler-186, and Proxima Centauri), where we constrain the eccentricity of terrestrial planets using orbital dynamics considerations and model the effect of obliquity on incident flux. We discuss the implications of these simulations on climate models for terrestrial planets and outline detectable signatures of planetary obliquity.
Long, Quan
2013-06-01
Shannon-type expected information gain can be used to evaluate the relevance of a proposed experiment subjected to uncertainty. The estimation of such gain, however, relies on a double-loop integration. Moreover, its numerical integration in multi-dimensional cases, e.g., when using Monte Carlo sampling methods, is therefore computationally too expensive for realistic physical models, especially for those involving the solution of partial differential equations. In this work, we present a new methodology, based on the Laplace approximation for the integration of the posterior probability density function (pdf), to accelerate the estimation of the expected information gains in the model parameters and predictive quantities of interest. We obtain a closed-form approximation of the inner integral and the corresponding dominant error term in the cases where parameters are determined by the experiment, such that only a single-loop integration is needed to carry out the estimation of the expected information gain. To deal with the issue of dimensionality in a complex problem, we use a sparse quadrature for the integration over the prior pdf. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear numerical examples, including the designs of the scalar parameter in a one-dimensional cubic polynomial function, the design of the same scalar in a modified function with two indistinguishable parameters, the resolution width and measurement time for a blurred single peak spectrum, and the boundary source locations for impedance tomography in a square domain. © 2013 Elsevier B.V.
Petrov, P.; Newman, G. A.
2010-12-01
Quantitative imaging of the subsurface objects is essential part of modern geophysical technology important in oil and gas exploration and wide-range engineering applications. A significant advancement in developing a robust, high resolution imaging technology is concerned with using the different geophysical measurements (gravity, EM and seismic) sense the subsurface structure. A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data (electromagnetic and seismic) due to their differing physical nature - diffusive and attenuated propagation of electromagnetic energy and nonlinear, multiple scattering wave propagation of seismic energy. Recent progress has been reported in the solution of this problem by reducing the complexity of seismic wave field. Works formed by Shin and Cha (2009 and 2008) suggests that low-pass filtering the seismic trace via Laplace-Fourier transformation can be an effective approach for obtaining seismic data that has similar spatial resolution to EM data. The effect of Laplace- Fourier transformation on the low-pass filtered trace changes the modeling of the seismic wave field from multi-wave propagation to diffusion. The key benefit of transformation is that diffusive wave-field inversion works well for both data sets seismic (Shin and Cha, 2008) and electromagnetic (Commer and Newman 2008, Newman et al., 2010). Moreover the different data sets can also be matched for similar and consistent resolution. Finally, the low pass seismic image is also an excellent choice for a starting model when analyzing the entire seismic waveform to recover the high spatial frequency components of the seismic image; its reflectivity (Shin and Cha, 2009). Without a good starting model full waveform seismic imaging and migration can encounter serious difficulties. To produce seismic wave fields consistent for joint imaging in the Laplace
Investigation of viscous fluid flow in an eccentrically deposited annulus using CFD methods
Bojko, M.; Kozdera, M.; Kozubkova, M.
2013-04-01
The theory of fluid flow in an eccentrically deposited annulus has of great importance especially in the design of sliding bearings (axial, radial). If the geometry is more complex or shaft is deposited eccentrically, then a suitable alternative for design hydrostatic bearing is using ANSYS Fluent, which solves the general three-dimensional viscous fluid flow also in complex geometry. The problem of flow solves in the narrow gap between the cylinders in this paper, when the inner cylinder is stored with a defined eccentricity. The movement of the inner cylinder is composed of two motions (rotation, precession), i.e. rotation around its own axis and move along the circle whose radius is the size of the eccentricity. Addition the pressure gradient is considered in the axial direction. In the introductory section describes the methodology for defining of motions (rotation and precession of the inner cylinder) when the user function (UDF) is created that defines the rotation and move along the circle in C++. The above described methodology of the solution was then applied to the 3D model with a defined pressure drop when the problem was solved as a time-dependent with a time value corresponding to two turns of the internal shaft.
Investigation of viscous fluid flow in an eccentrically deposited annulus using CFD methods
Directory of Open Access Journals (Sweden)
Kozubkova M.
2013-04-01
Full Text Available The theory of fluid flow in an eccentrically deposited annulus has of great importance especially in the design of sliding bearings (axial, radial. If the geometry is more complex or shaft is deposited eccentrically, then a suitable alternative for design hydrostatic bearing is using ANSYS Fluent, which solves the general three-dimensional viscous fluid flow also in complex geometry. The problem of flow solves in the narrow gap between the cylinders in this paper, when the inner cylinder is stored with a defined eccentricity. The movement of the inner cylinder is composed of two motions (rotation, precession, i.e. rotation around its own axis and move along the circle whose radius is the size of the eccentricity. Addition the pressure gradient is considered in the axial direction. In the introductory section describes the methodology for defining of motions (rotation and precession of the inner cylinder when the user function (UDF is created that defines the rotation and move along the circle in C++. The above described methodology of the solution was then applied to the 3D model with a defined pressure drop when the problem was solved as a time-dependent with a time value corresponding to two turns of the internal shaft.
Relevance of ellipse eccentricity for camera calibration
Mordwinzew, W.; Tietz, B.; Boochs, F.; Paulus, D.
2015-05-01
Plane circular targets are widely used within calibrations of optical sensors through photogrammetric set-ups. Due to this popularity, their advantages and disadvantages are also well studied in the scientific community. One main disadvantage occurs when the projected target is not parallel to the image plane. In this geometric constellation, the target has an elliptic geometry with an offset between its geometric and its projected center. This difference is referred to as ellipse eccentricity and is a systematic error which, if not treated accordingly, has a negative impact on the overall achievable accuracy. The magnitude and direction of eccentricity errors are dependent on various factors. The most important one is the target size. The bigger an ellipse in the image is, the bigger the error will be. Although correction models dealing with eccentricity have been available for decades, it is mostly seen as a planning task in which the aim is to choose the target size small enough so that the resulting eccentricity error remains negligible. Besides the fact that advanced mathematical models are available and that the influence of this error on camera calibration results is still not completely investigated, there are various additional reasons why bigger targets can or should not be avoided. One of them is the growing image resolution as a by-product from advancements in the sensor development. Here, smaller pixels have a lower S/N ratio, necessitating more pixels to assure geometric quality. Another scenario might need bigger targets due to larger scale differences whereas distant targets should still contain enough information in the image. In general, bigger ellipses contain more contour pixels and therefore more information. This supports the target-detection algorithms to perform better even at non-optimal conditions such as data from sensors with a high noise level. In contrast to rather simple measuring situations in a stereo or multi-image mode, the impact
Moderately eccentric warm Jupiters from secular interactions with exterior companions
Anderson, Kassandra R.; Lai, Dong
2017-12-01
Recent studies have proposed that most warm Jupiters (WJs, giant planets with semi-major axes in the range of 0.1-1 AU) probably form in-situ, or arrive in their observed orbits through disk migration. However, both in-situ formation and disk migration, in their simplest flavors, predict WJs to be in low-eccentricity orbits, in contradiction with many observed WJs that are moderately eccentric (e=0.2-0.7). This paper examines the possibility that the WJ eccentricities are raised by secular interactions with exterior giant planet companions, following in-situ formation or migration on a circular orbit. Eccentricity growth may arise from an inclined companion (through Lidov-Kozai cycles), or from an eccentric, nearly coplanar companion (through apsidal precession resonances). We quantify the necessary conditions (in terms of the eccentricity, semi-major axis and inclination) for external perturbers of various masses to raise the WJ eccentricity. We also consider the sample of eccentric WJs with detected outer companions, and for each system, identify the range of mutual inclinations needed to generate the observed eccentricity. For most systems, we find that relatively high inclinations (at least $\\sim 40^\\circ$) are needed so that Lidov-Kozai cycles are induced; the observed outer companions are typically not sufficiently eccentric to generate the observed WJ eccentricity in a low-inclination configuration. The results of this paper place constraints on possibly unseen external companions to eccentric WJs. Observations that probe mutual inclinations of giant planet systems will help clarify the origin of eccentric WJs and the role of external companions.
Pichierri, Gabriele; Morbidelli, Alessandro; Lai, Dong
2017-09-01
Context. It is well known that asteroids and comets fall into the Sun. Metal pollution of white dwarfs and transient spectroscopic signatures of young stars like β-Pic provide growing evidence that extra solar planetesimals can attain extreme orbital eccentricities and fall into their parent stars. Aims: We aim to develop a general, implementable, semi-analytical theory of secular eccentricity excitation of small bodies (planetesimals) in mean motion resonances with an eccentric planet valid for arbitrary values of the eccentricities and including the short-range force due to General Relativity. Methods: Our semi-analytic model for the restricted planar three-body problem does not make use of series expansion and therefore is valid for any eccentricity value and semi-major axis ratio. The model is based on the application of the adiabatic principle, which is valid when the precession period of the longitude of pericentre of the planetesimal is much longer than the libration period in the mean motion resonance. In resonances of order larger than 1 this is true except for vanishingly small eccentricities. We provide prospective users with a Mathematica notebook with implementation of the model allowing direct use. Results: We confirm that the 4:1 mean motion resonance with a moderately eccentric (e' ≲ 0.1) planet is the most powerful one to lift the eccentricity of planetesimals from nearly circular orbits to star-grazing ones. However, if the planet is too eccentric, we find that this resonance is unable to pump the planetesimal's eccentricity to a very high value. The inclusion of the General Relativity effect imposes a condition on the mass of the planet to drive the planetesimals into star-grazing orbits. For a planetesimal at 1 AU around a solar mass star (or white dwarf), we find a threshold planetary mass of about 17 Earth masses. We finally derive an analytical formula for this critical mass. Conclusions: Planetesimals can easily fall into the central star
Cluster analysis of European Y-chromosomal STR haplotypes using the discrete Laplace method
DEFF Research Database (Denmark)
Andersen, Mikkel Meyer; Eriksen, Poul Svante; Morling, Niels
2014-01-01
The European Y-chromosomal short tandem repeat (STR) haplotype distribution has previously been analysed in various ways. Here, we introduce a new way of analysing population substructure using a new method based on clustering within the discrete Laplace exponential family that models the probabi......The European Y-chromosomal short tandem repeat (STR) haplotype distribution has previously been analysed in various ways. Here, we introduce a new way of analysing population substructure using a new method based on clustering within the discrete Laplace exponential family that models...... the probability distribution of the Y-STR haplotypes. Creating a consistent statistical model of the haplotypes enables us to perform a wide range of analyses. Previously, haplotype frequency estimation using the discrete Laplace method has been validated. In this paper we investigate how the discrete Laplace...... method can be used for cluster analysis to further validate the discrete Laplace method. A very important practical fact is that the calculations can be performed on a normal computer. We identified two sub-clusters of the Eastern and Western European Y-STR haplotypes similar to results of previous...
Ruin problems and tail asymptotics
DEFF Research Database (Denmark)
Rønn-Nielsen, Anders
The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...
Truss Joint with Positive Eccentricity Experimental Research
Directory of Open Access Journals (Sweden)
Gordziej-Zagórowska Małgorzata
2017-06-01
Full Text Available Due to the technological reasons in modern lightweight steel trusses, fabricated from cold-formed sections, positive eccentricities appear in the truss nodes what induce additional forces in the truss chords. To account for the real load-carrying capacity of truss node area the steel structure research in scale 1:1 were conducted. The experiments consisted of two parts: preliminary and proper one, when conclusions from the first part were applied. Carrying out preliminary studies helped to identify of the research station drawbacks and eliminate most of them, what ensure the appropriate research results. The initial numerical analysis were also conducted what was presented in the paper.
Directory of Open Access Journals (Sweden)
J. Prakash
2016-03-01
Full Text Available In this paper, a numerical algorithm based on a modified He-Laplace method (MHLM is proposed to solve space and time nonlinear fractional differential-difference equations (NFDDEs arising in physical phenomena such as wave phenomena in fluids, coupled nonlinear optical waveguides and nanotechnology fields. The modified He-Laplace method is a combined form of the fractional homotopy perturbation method and Laplace transforms method. The nonlinear terms can be easily decomposed by the use of He’s polynomials. This algorithm has been tested against time-fractional differential-difference equations such as the modified Lotka Volterra and discrete (modified KdV equations. The proposed scheme grants the solution in the form of a rapidly convergent series. Three examples have been employed to illustrate the preciseness and effectiveness of the proposed method. The achieved results expose that the MHLM is very accurate, efficient, simple and can be applied to other nonlinear FDDEs.
Fundamental improvements of the piecewise semi-smooth Laplace-Beltrami operator numerical stability
Pecha, Marek; Jirutkova, Pavla; Cermak, Martin
2017-07-01
The Laplace-Beltrami operator plays an important role as C2 function smoother and its eigenfunction applications are studied extensively in last five decades, not only, in image processing field but we can meet with these functions ranging from molecular physics scientific field to mechanical engineering. However, in many non-trivial cases, e.g. computations on non-uniform meshes, the discrete Laplace operator could be ill-conditioned and inappropriate for numerical computations. Especially, in the spectral clustering tool, a condition number of the graph Laplacian goes to infinity, when pairwise similarities among most graph nodes go to zero. Therefore, in this paper, we reformulate the image graph Laplacian as the semi-smooth Laplace-Beltrami operator on a non-uniform mesh and study its numerical properties, then we introduce our fundamental approach for improving a numerical stability of this operator.
A new Laplace transformation method for dynamic testing of solar collectors
DEFF Research Database (Denmark)
Kong, Weiqiang; Perers, Bengt; Fan, Jianhua
2015-01-01
A new dynamic method for solar collector testing is developed. It is characterized by using the Laplace transformation technique to solve the differential governing equation. The new method was inspired by the so called New Dynamic Method (NDM) (Amer E. et al (1999) [1]) but totally different....... By integration of the Laplace transformation technique with the Quasi Dynamic Test (QDT) model (Fischer S. et al (2004) [2]), the Laplace – QDT (L-QDT) model is derived. Two experimental methods are then introduced. One is the shielding method which needs to shield and un-shield solar collector continuously...... and the natural experimental method. The identified collector parameters are then compared and analyzed with those obtained by the steady state test method and the QDT test method. The results comparison shows that the L-QDT method and the natural experimental method are also valid. It can be concluded...
Huerta, E. A.; Moore, C. J.; Kumar, Prayush; George, Daniel; Chua, Alvin J. K.; Haas, Roland; Wessel, Erik; Johnson, Daniel; Glennon, Derek; Rebei, Adam; Holgado, A. Miguel; Gair, Jonathan R.; Pfeiffer, Harald P.
2018-01-01
We present ENIGMA, a time domain, inspiral-merger-ringdown waveform model that describes nonspinning binary black holes systems that evolve on moderately eccentric orbits. The inspiral evolution is described using a consistent combination of post-Newtonian theory, self-force and black hole perturbation theory. Assuming eccentric binaries that circularize prior to coalescence, we smoothly match the eccentric inspiral with a stand-alone, quasicircular merger, which is constructed using machine learning algorithms that are trained with quasicircular numerical relativity waveforms. We show that ENIGMA reproduces with excellent accuracy the dynamics of quasicircular compact binaries. We validate ENIGMA using a set of Einstein Toolkit eccentric numerical relativity waveforms, which describe eccentric binary black hole mergers with mass-ratios between 1 ≤q ≤5.5 , and eccentricities e0≲0.2 ten orbits before merger. We use this model to explore in detail the physics that can be extracted with moderately eccentric, nonspinning binary black hole mergers. In particular, we use ENIGMA to show that the gravitational wave transients GW150914, GW151226, GW170104, GW170814 and GW170608 can be effectively recovered with spinning, quasicircular templates if the eccentricity of these events at a gravitational wave frequency of 10 Hz satisfies e0≤{0.175 ,0.125 ,0.175 ,0.175 ,0.125 }, respectively. We show that if these systems have eccentricities e0˜0.1 at a gravitational wave frequency of 10 Hz, they can be misclassified as quasicircular binaries due to parameter space degeneracies between eccentricity and spin corrections. Using our catalog of eccentric numerical relativity simulations, we discuss the importance of including higher-order waveform multipoles in gravitational wave searches of eccentric binary black hole mergers.
Moderate Load Eccentric Exercise; A Distinct Novel Training Modality.
Hoppeler, Hans
2016-01-01
Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400-500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20-30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate
Moderate load eccentric exercise; a distinct novel training modality
Directory of Open Access Journals (Sweden)
Hans Hoppeler
2016-11-01
Full Text Available Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial three weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400-500W in rehabilitative settings and over 1200W in elite athletes. Training is typically carried out 3 times per week for durations of 20-30 minutes. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al. 2014 (LaStayo et al., 2014. It is distinct from plyometric exercises (i.e. drop jumps that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically four fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2 and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular
2D acoustic-elastic coupled waveform inversion in the Laplace domain
Bae, Hoseuk
2010-04-01
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth\\'s structures since the early 1980s, most of the time- and frequency-domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non-linear objective function and the unreliable low-frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace-domain waveform inversion has been proposed. The Laplace-domain waveform inversion has been known to provide a long-wavelength velocity model even for field data, which may be because it employs the zero-frequency component of the damped wavefield and a well-behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media.We extend the Laplace-domain waveform inversion algorithm to a 2D acoustic-elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic-elastic coupled media, the Laplace-domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic-elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid-solid interfaces.Our Laplace-domain waveform inversion algorithm is also based on the finite-element method and logarithmic wavefields. To compute gradient direction, we apply the back-propagation technique. Under the assumption that density is fixed, P- and S-wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace-domain waveform inversion
The discrete Laplace exponential family and estimation of Y-STR haplotype frequencies
DEFF Research Database (Denmark)
Andersen, Mikkel Meyer; Eriksen, Poul Svante; Morling, Niels
2013-01-01
of the Fisher-Wright model of evolution for haploid lineage DNA markers. An exponential family (a class of probability distributions that is well understood in probability theory such that inference is easily made by using existing software) called the 'discrete Laplace distribution' is described. We illustrate...... haplotype frequencies for haploid lineage DNA markers (such as Y-chromosomal short tandem repeats), which in turn can be used to assess the evidential weight of a DNA profile found at a crime scene. This was done by making inference in a mixture of multivariate, marginally independent, discrete Laplace...
Una hipótesis innecesaria : Laplace y el sistema del mundo
Rivas Lado, Ángel Luis
2001-01-01
El objetivo de este artículo es mostrar las principales consecuencias filosóficas de la obra científica de Piorne-Simon Laplace (1749-1827), las influencias que recibió de Newton y su relación con la Ilustración francesa tardía y la hipótesis cosmogónica de Kant, prestando especial atención a las razones de Laplace para califican a Dios de "hipótesis innecesaria".
He-Laplace Method for Linear and Nonlinear Partial Differential Equations
Directory of Open Access Journals (Sweden)
Hradyesh Kumar Mishra
2012-01-01
Full Text Available A new treatment for homotopy perturbation method is introduced. The new treatment is called He-Laplace method which is the coupling of the Laplace transform and the homotopy perturbation method using He’s polynomials. The nonlinear terms can be easily handled by the use of He’s polynomials. The method is implemented on linear and nonlinear partial differential equations. It is found that the proposed scheme provides the solution without any discretization or restrictive assumptions and avoids the round-off errors.
Numerical Solutions of Fractional Fokker-Planck Equations Using Iterative Laplace Transform Method
Directory of Open Access Journals (Sweden)
Limei Yan
2013-01-01
Full Text Available A relatively new iterative Laplace transform method, which combines two methods; the iterative method and the Laplace transform method, is applied to obtain the numerical solutions of fractional Fokker-Planck equations. The method gives numerical solutions in the form of convergent series with easily computable components, requiring no linearization or small perturbation. The numerical results show that the approach is easy to implement and straightforward when applied to space-time fractional Fokker-Planck equations. The method provides a promising tool for solving space-time fractional partial differential equations.
Normative values of eccentric hip abduction strength in novice runners
DEFF Research Database (Denmark)
Ramskov, D; Pedersen, M B; Kastrup, K
2014-01-01
PURPOSE: Low eccentric strength of the hip abductors, might increase the risk of patellofemoral pain syndrome and iliotibial band syndrome in runners. No normative values for maximal eccentric hip abduction strength have been established. Therefore the purpose of this study was to establish norma...
Response of electrostatic probes to eccentric charge distributions
DEFF Research Database (Denmark)
Johansson, Torben; McAllister, Iain Wilson
2001-01-01
The response of an electrostatic probe mounted in an electrode is examined with reference to eccentric charge distributions. The study involves using the probe λ function to derive a characteristic parameter. This parameter enables the response of the probe to different degrees of eccentricity...
detection of static eccentricity fault in saturated induction motors
African Journals Online (AJOL)
2013-06-30
Jun 30, 2013 ... Key Words: Induction motor, static eccentricity (SE), time stepping finite elements (TSFE) method ... machines eccentricity usually occurs due to the build-up of tolerances during manufacturing stage [6]. Fig. 1. ... In 1988 the Time Stepping Finite Element (TSFE) technique proposed by researchers of GEC.
Comparison of the Halving of Tablets Prepared with Eccentric and Rotary Tablet Presses
Sovány, T.; Kása Jr., P.; Pintye-Hódi, K.
2009-01-01
The aim of this study was to compare the densification of powder mixtures on eccentric and rotary tablet presses and to establish relationships with the halving properties of the resulting scored tablets. This is an important problem because the recent guidelines of EU require verification of the equal masses of tablet halves. The models of Walker, Heckel, and Kawakita were used to describe the powder densification on the two machines. The calculated parameters revealed that the shorter compr...
Flow Mode Magnetorheological Dampers with an Eccentric Gap
Directory of Open Access Journals (Sweden)
Young-Tai Choi
2014-07-01
Full Text Available This paper analyzes flow mode magnetorheological (MR dampers with an eccentric annular gap (i.e., a nonuniform annular gap. To this end, an MR damper analysis for an eccentric annular gap is constructed based on approximating the eccentric annular gap using a rectangular duct with a variable gap, as well as a Bingham-plastic constitutive model of the MR fluid. Performance of flow mode MR dampers with an eccentric gap was assessed analytically using both field-dependent damping force and damping coefficient, which is the ratio of equivalent viscous field-on damping to field-off damping. In addition, damper capabilities of flow mode MR dampers with an eccentric gap were compared to a concentric gap (i.e., uniform annular gap.
Eccentric exercise decreases maximal insulin action in humans
DEFF Research Database (Denmark)
Asp, Svend; Daugaard, J R; Kristiansen, S
1996-01-01
) necessary to maintain euglycaemia during maximal insulin stimulation was lower during PEC compared with CC (15.7%, 81.3 +/- 3.2 vs. 96.4 +/- 8.8 mumol kg-1 min-1, P 2 days after unaccustomed eccentric exercise, muscle and whole-body insulin action is impaired at maximal...... subjects participated in two euglycaemic clamps, performed in random order. One clamp was preceded 2 days earlier by one-legged eccentric exercise (post-eccentric exercise clamp (PEC)) and one was without the prior exercise (control clamp (CC)). 2. During PEC the maximal insulin-stimulated glucose uptake...... over the eccentric thigh was marginally lower when compared with the control thigh, (11.9%, 64.6 +/- 10.3 vs. 73.3 +/- 10.2 mumol kg-1 min-1, P = 0.08), whereas no inter-thigh difference was observed at a submaximal insulin concentration. The glycogen concentration was lower in the eccentric thigh...
Wu, Meng-Yun; Dai, Dao-Qing; Shi, Yu; Yan, Hong; Zhang, Xiao-Fei
2012-01-01
Biomarker identification and cancer classification are two closely related problems. In gene expression data sets, the correlation between genes can be high when they share the same biological pathway. Moreover, the gene expression data sets may contain outliers due to either chemical or electrical reasons. A good gene selection method should take group effects into account and be robust to outliers. In this paper, we propose a Laplace naive Bayes model with mean shrinkage (LNB-MS). The Laplace distribution instead of the normal distribution is used as the conditional distribution of the samples for the reasons that it is less sensitive to outliers and has been applied in many fields. The key technique is the L1 penalty imposed on the mean of each class to achieve automatic feature selection. The objective function of the proposed model is a piecewise linear function with respect to the mean of each class, of which the optimal value can be evaluated at the breakpoints simply. An efficient algorithm is designed to estimate the parameters in the model. A new strategy that uses the number of selected features to control the regularization parameter is introduced. Experimental results on simulated data sets and 17 publicly available cancer data sets attest to the accuracy, sparsity, efficiency, and robustness of the proposed algorithm. Many biomarkers identified with our method have been verified in biochemical or biomedical research. The analysis of biological and functional correlation of the genes based on Gene Ontology (GO) terms shows that the proposed method guarantees the selection of highly correlated genes simultaneously
Fadly Nurullah Rasedee, Ahmad; Ahmedov, Anvarjon; Sathar, Mohammad Hasan Abdul
2017-09-01
The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.
Cross-education strength and activation after eccentric exercise.
Lepley, Lindsey K; Palmieri-Smith, Riann M
2014-01-01
After injury, eccentric exercise of the injured limb is often contraindicated. Cross-education training, whereby the uninvolved limb is exercised, is an alternative that may improve quadriceps muscle strength and activation in the unexercised limb. To determine the effect of eccentric exercise on quadriceps strength and activation gains in the unexercised limb. Eighteen healthy individuals were randomly assigned to an eccentric training group or a control group. Quadriceps strength and activation measures were collected at preintervention, midintervention, and postintervention. Eccentric training participants exercised their dominant limb with a dynamometer in eccentric mode at 60°/s, 3 times per week for 8 weeks. Quadriceps strength was quantified at 30° and 60°/s in concentric and eccentric modes. Quadriceps activation was assessed using the burst superimposition technique and quantified via the central activation ratio. A 2 × 3 repeated-measures analysis of variance was used to detect the effects of group and testing session on quadriceps strength and activation. Where appropriate, post hoc Bonferroni multiple-comparisons procedures were used. We found greater eccentric strength in the unexercised limbs of eccentric training participants between preintervention and midintervention and between preintervention and postintervention (preintervention to midintervention: 30°/s P = .05; preintervention to postintervention: 30°/s P = .02, 60°/s P = .02). No differences were noted in concentric strength (P > .05). An overall trend toward greater quadriceps activation in the unexercised knee was detected between preintervention and postintervention (P = .063), with the eccentric training group demonstrating a strong effect (Cohen d = 0.83). Control strength did not change (P > .05). Exercising with eccentric actions resulted in mode-specific and velocity-specific gains in quadriceps strength in the unexercised limb. A trend toward greater quadriceps activation in
New modification of Laplace decomposition method for seventh order KdV equation
Kashkari, B. S.; Bakodah, H. O.
2013-10-01
In this paper, we develop a new modification of Laplace decomposition method for solving the seventh order KdV equations. The numerical results show that the method converges rapidly and compared with the Adomian decomposition method. The conservation properties of solution are examined by calculating the first three invariants.
Directory of Open Access Journals (Sweden)
Sheng-Ping Yan
2014-01-01
Full Text Available We perform a comparison between the local fractional Adomian decomposition and local fractional function decomposition methods applied to the Laplace equation. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.
Directory of Open Access Journals (Sweden)
Yan Li-Mei
2013-01-01
Full Text Available The purpose of this paper is to extend the homotopy perturbation method to fractional heat transfer and porous media equations with the help of the Laplace transform. The fractional derivatives described in this paper are in the Caputo sense. The algorithm is demonstrated to be direct and straightforward, and can be used for many other non-linear fractional differential equations.
Double Laplace Transform Method for Solving Space and Time Fractional Telegraph Equations
Directory of Open Access Journals (Sweden)
Ranjit R. Dhunde
2016-01-01
Full Text Available Double Laplace transform method is applied to find exact solutions of linear/nonlinear space-time fractional telegraph equations in terms of Mittag-Leffler functions subject to initial and boundary conditions. Furthermore, we give illustrative examples to demonstrate the efficiency of the method.
University Teachers' Perspectives on the Role of the Laplace Transform in Engineering Education
Holmberg, Margarita; Bernhard, Jonte
2017-01-01
The Laplace transform is an important tool in many branches of engineering, for example, electric and control engineering, but is also regarded as a difficult topic for students to master. We have interviewed 22 university teachers from five universities in three countries (Mexico, Spain and Sweden) about their views on relationships among…
The Laplace series solution for local fractional Korteweg-de Vries equation
Directory of Open Access Journals (Sweden)
Ye Shan-Shan
2016-01-01
Full Text Available In this paper, we consider a new application of the local fractional Laplace series expansion method to handle the local fractional Korteweg-de Vries equation. The obtained solution with non-differentiable type shows that the technology is accurate and efficient.
Veestraeten, D.
2015-01-01
The Laplace transforms of the transition probability density and distribution functions for the Ornstein-Uhlenbeck process contain the product of two parabolic cylinder functions, namely Dv(x)Dv(y) and Dv(x)Dv−1(y), respectively. The inverse transforms of these products have as yet not been
Laplace-Gauss and Helmholtz-Gauss paraxial modes in media with quadratic refraction index.
Kiselev, Aleksei P; Plachenov, Alexandr B
2016-04-01
The scalar theory of paraxial wave propagation in an axisymmetric medium where the refraction index quadratically depends on transverse variables is addressed. Exact solutions of the corresponding parabolic equation are presented, generalizing the Laplace-Gauss and Helmholtz-Gauss modes earlier known for homogeneous media. Also, a generalization of a zero-order asymmetric Bessel-Gauss beam is given.
A scalable Helmholtz solver combining the shifted Laplace preconditioner with multigrid deflation
Sheikh, A.H.; Lahaye, D.; Vuik, C.
2011-01-01
A Helmholtz solver whose convergence is parameter independent can be obtained by combining the shifted Laplace preconditioner with multigrid deflation. To proof this claim, we develop a Fourier analysis of a two-level variant of the algorithm proposed in [1]. In this algorithm those eigenvalues that
DEFF Research Database (Denmark)
Aagaard, Per; Simonsen, E.B.; Andersen, J.L.
2000-01-01
neuromuscular activation, muscle strength, neural efferent drive, eccentric activation deficiency, force inhibition......neuromuscular activation, muscle strength, neural efferent drive, eccentric activation deficiency, force inhibition...
The discrete Laplace exponential family and estimation of Y-STR haplotype frequencies.
Andersen, Mikkel Meyer; Eriksen, Poul Svante; Morling, Niels
2013-07-21
Estimating haplotype frequencies is important in e.g. forensic genetics, where the frequencies are needed to calculate the likelihood ratio for the evidential weight of a DNA profile found at a crime scene. Estimation is naturally based on a population model, motivating the investigation of the Fisher-Wright model of evolution for haploid lineage DNA markers. An exponential family (a class of probability distributions that is well understood in probability theory such that inference is easily made by using existing software) called the 'discrete Laplace distribution' is described. We illustrate how well the discrete Laplace distribution approximates a more complicated distribution that arises by investigating the well-known population genetic Fisher-Wright model of evolution by a single-step mutation process. It was shown how the discrete Laplace distribution can be used to estimate haplotype frequencies for haploid lineage DNA markers (such as Y-chromosomal short tandem repeats), which in turn can be used to assess the evidential weight of a DNA profile found at a crime scene. This was done by making inference in a mixture of multivariate, marginally independent, discrete Laplace distributions using the EM algorithm to estimate the probabilities of membership of a set of unobserved subpopulations. The discrete Laplace distribution can be used to estimate haplotype frequencies with lower prediction error than other existing estimators. Furthermore, the calculations could be performed on a normal computer. This method was implemented in the freely available open source software R that is supported on Linux, MacOS and MS Windows. Copyright © 2013 Elsevier Ltd. All rights reserved.
Relationships between eccentric hip isokinetic torque and functional performance.
Baldon, Rodrigo de Marche; Lobato D, Ferreira Moreira; Carvalho, Lívia Pinheiro; Wun P, Yan Lam; Presotti, Cátia Valéria; Serrão, Fábio Viadanna
2012-02-01
Recently, attention in sports has been given to eccentric hip-muscle function, both in preventing musculoskeletal injuries and improving performance. To determine the key isokinetic variables of eccentric hip torque that predict the functional performance of women in the single-leg triple long jump (TLJ) and the timed 6-m single-leg hop (TH). Within-subject correlational study. Musculoskeletal laboratory. 32 healthy women age 18-25 y. The participants performed 2 sets of 5 eccentric hip-abductor/adductor and lateral/medial-rotator isokinetic contractions (30°/s) and 3 attempts in the TLJ and TH. The independent variables were the eccentric hip-abductor and -adductor and medial- and lateral-rotator isokinetic peak torque, normalized according to body mass (Nm/kg). The dependent variables were the longest distance achieved in the TLJ normalized according to body height and the shortest time spent during the execution of the TH. The forward-stepwise-regression analysis showed that the combination of the eccentric hip lateral-rotator and -abductor isokinetic peak torque provided the most efficient estimate of both functional tests, explaining 65% of the TLJ variance (P < .001) and 55% of the TH variance (P < .001). Higher values for eccentric hip lateral-rotator and hip-abductor torques reflected better performance. Thus, the eccentric action of these muscles should be considered in the development of physical training programs that aim to increase functional performance.
Angle-specific eccentric hamstring fatigue after simulated soccer.
Cohen, Daniel D; Zhao, Bingnan; Okwera, Brian; Matthews, Martyn J; Delextrat, Anne
2015-04-01
To evaluate the effect of simulated soccer on the hamstrings eccentric torque-angle profile and angle of peak torque (APTeccH), and on the hamstrings:quadriceps torque ratio at specific joint angles (ASHecc:Qcon). The authors assessed dominant-limb isokinetic concentric and eccentric knee flexion and concentric knee extension at 120°/s in 9 semiprofessional male soccer players immediately before and after they completed the Loughborough Intermittent Shuttle Test (LIST). The LIST resulted in significant decreases in eccentric hamstrings torque at 60°, 50°, and 10° and a significant (21.8%) decrease in ASHecc:Qcon at 10° (P soccer results in a selective loss of eccentric hamstrings torque and hamstrings-to-quadriceps muscle balance at an extended joint position and a shift in the eccentric hamstrings APT to a shorter length, changes that could increase vulnerability to hamstrings injury. These findings suggest that injury-risk screening could be improved by evaluating the eccentric hamstrings torque-angle profile and hamstrings strength-endurance and that the development of hamstrings fatigue resistance and long-length eccentric strength may reduce injury incidence.
Dynamical problem of micropolar viscoelasticity
Indian Academy of Sciences (India)
The dynamic problem in micropolar viscoelastic medium has been investigated by employing eigen value approach after applying Laplace and Fourier transformations. An example of infinite space with concentrated force at the origin has been presented to illustrate the application of the approach. The integral transforms ...
Normative values of eccentric hip abduction strength in novice runners
DEFF Research Database (Denmark)
Jørgensen, Daniel Ramskov; Pedersen, Mette Broen; Kastrup, Kristrian
2014-01-01
normative values of maximal eccentric hip abduction strength in novice runners. METHODS: Novice healthy runners (n = 831) were recruited through advertisements at a hospital and a university. Maximal eccentric hip abduction strength was measured with a hand-held dynamometer. The demographic variables...... associated with maximal eccentric hip abduction strength from a univariate analysis were included in a multivariate linear regression model. Based on the results from the regression model, a regression equation for normative hip abduction strength is presented. RESULTS: A SIGNIFICANT DIFFERENCE IN MAXIMAL...
The Torsional Eccentricity of the Structures in Miscellaneous Design Codes
Directory of Open Access Journals (Sweden)
Ioana Olteanu
2010-03-01
Full Text Available Structures rarely achieve structural symmetry. Even in symmetric structures, the asymmetric position of the structural components tends to produce an effective asymmetric structure. Such an asymmetry even if is small, can produce a torsional response coupled with translational response. In the torsional analysis, the provisions of the seismic norms are based on determining the static eccentricity. In this paper is presented a general way of computing the eccentricity in torsional design. The purpose of this article is to make a comparison of the general rules used to determine the eccentricity and their values. Are taken into account the norms from: Romania, Europe, Japan, Germany and the United States of America.
Directory of Open Access Journals (Sweden)
Damian Wiśniewski
2016-07-01
Full Text Available We consider the eigenvalue problem for the p(x-Laplace - Beltrami operator on the unit sphere. We prove an integro - differential inequality related to the smallest positive eigenvalue of this problem.
The orbital eccentricities of binary millisecond pulsars in globular clusters
Rasio, Frederic A.; Heggie, Douglas C.
1995-01-01
Low-mass binary millisecond pulsars (LMBPs) are born with very small orbital eccentricities, typically of order e(sub i) approximately 10(exp -6) to 10(exp -3). In globular clusters, however, higher eccentricities e(sub f) much greater than e(sub i) can be induced by dynamical interactions with passing stars. Here we show that the cross section for this process is much larger than previously estimated. This is becuse, even for initially circular binaries, the induced eccentricity e(sub f) for an encounter with pericenter separation r(sub p) beyond a few times the binary semimajor axis a declines only as a power law (e(sub f) varies as (r(sub p)/a)(exp -5/2), and not as an exponential. We find that all currently known LMBPs in clusters were probably affected by interactions, with their current eccentricities typically greater than at birth by an order of magnitude or more.
FOREVER ALONE? TESTING SINGLE ECCENTRIC PLANETARY SYSTEMS FOR MULTIPLE COMPANIONS
Energy Technology Data Exchange (ETDEWEB)
Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Bailey, J.; Salter, G. S.; Wright, D. [Department of Astrophysics, School of Physics, Faculty of Science, The University of New South Wales, Sydney, NSW 2052 (Australia); Wang Songhu; Zhou Jilin [Department of Astronomy and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210093 (China); Butler, R. P. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Jones, H. R. A. [University of Hertfordshire, Centre for Astrophysics Research, Science and Technology Research Institute, College Lane, AL10 9AB Hatfield (United Kingdom); O' Toole, S. J. [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Carter, B. D., E-mail: rob@phys.unsw.edu.au [Faculty of Sciences, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia)
2013-09-15
Determining the orbital eccentricity of an extrasolar planet is critically important for understanding the system's dynamical environment and history. However, eccentricity is often poorly determined or entirely mischaracterized due to poor observational sampling, low signal-to-noise, and/or degeneracies with other planetary signals. Some systems previously thought to contain a single, moderate-eccentricity planet have been shown, after further monitoring, to host two planets on nearly circular orbits. We investigate published apparent single-planet systems to see if the available data can be better fit by two lower-eccentricity planets. We identify nine promising candidate systems and perform detailed dynamical tests to confirm the stability of the potential new multiple-planet systems. Finally, we compare the expected orbits of the single- and double-planet scenarios to better inform future observations of these interesting systems.
Flow of viscoplastic fluids in eccentric annular geometries
DEFF Research Database (Denmark)
Szabo, Peter; Hassager, Ole
1992-01-01
A classification of flowfields for the flow of a Bingham fluid in general eccentric annular geometries is presented. Simple arguments show that a singularity can exist in the stress gradient on boundaries between zones with yielded and un-yielded fluid respectively. A Finite Element code is used...... to verify this property of the Bingham fluid. An analytical solution for the flowfield in case of small eccentricities is derived....
Concentric or eccentric training: effects and cross-education
Maquet, Didier; Delvaux, François; Croisier, Jean-Louis
2009-01-01
The purpose of this study was to compare pure concentric and eccentric isokinetic training with respect to their possible specificity in the progression of strength of the knee flexor and extensor muscles. Subjects were divided into 2 groups (eccentric or concentric training) and performed a specific training of dominant leg. Before and after the training session, isokinetic performances of trained leg and non-trained leg (cross-education) were evaluated. We observed a greater increase of ...
Exoplanet orbital eccentricity: multiplicity relation and the Solar System.
Limbach, Mary Anne; Turner, Edwin L
2015-01-06
The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity-multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index -1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼ 80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets.
Eccentric or Concentric Exercises for the Treatment of Tendinopathies?
DEFF Research Database (Denmark)
Couppé, Christian; Svensson, René B; Silbernagel, Karin Grävare
2015-01-01
with respect to parameters like load magnitude, speed of movement, and recovery period between exercise sessions. Future studies should control for these loading parameters, evaluate various exercise dosages, and also think beyond isolated eccentric exercises to arrive at firm recommendations regarding...... evidence that demonstrate that isolated eccentric loading exercises improve the clinical outcome more than other loading therapies. However, the great variation and sometimes insufficient reporting of details of treatment protocols hamper the interpretation of what may be the optimal exercise regime...
Chronic Adaptations to Eccentric Training: A Systematic Review.
Douglas, Jamie; Pearson, Simon; Ross, Angus; McGuigan, Mike
2017-05-01
Resistance training is an integral component of physical preparation for athletes. A growing body of evidence indicates that eccentric strength training methods induce novel stimuli for neuromuscular adaptations. The purpose of this systematic review was to determine the effects of eccentric training in comparison to concentric-only or traditional (i.e. constrained by concentric strength) resistance training. Searches were performed using the electronic databases MEDLINE via EBSCO, PubMed and SPORTDiscus via EBSCO. Full journal articles investigating the long-term (≥4 weeks) effects of eccentric training in healthy (absence of injury or illness during the 4 weeks preceding the training intervention), adult (17-35 years), human participants were selected for the systematic review. A total of 40 studies conformed to these criteria. Eccentric training elicits greater improvements in muscle strength, although in a largely mode-specific manner. Superior enhancements in power and stretch-shortening cycle (SSC) function have also been reported. Eccentric training is at least as effective as other modalities in increasing muscle cross-sectional area (CSA), while the pattern of hypertrophy appears nuanced and increased CSA may occur longitudinally within muscle (i.e. the addition of sarcomeres in series). There appears to be a preferential increase in the size of type II muscle fibres and the potential to exert a unique effect upon fibre type transitions. Qualitative and quantitative changes in tendon tissue that may be related to the magnitude of strain imposed have also been reported with eccentric training. Eccentric training is a potent stimulus for enhancements in muscle mechanical function, and muscle-tendon unit (MTU) morphological and architectural adaptations. The inclusion of eccentric loads not constrained by concentric strength appears to be superior to traditional resistance training in improving variables associated with strength, power and speed
Rolling Element Bearing Fault Diagnosis Using Laplace-Wavelet Envelope Power Spectrum
Directory of Open Access Journals (Sweden)
D. K. Harrison
2007-01-01
Full Text Available The bearing characteristic frequencies (BCF contain very little energy, and are usually overwhelmed by noise and higher levels of macro-structural vibrations. They are difficult to find in their frequency spectra when using the common technique of fast fourier transforms (FFT. Therefore, Envelope Detection (ED has always been used with FFT to identify faults occurring at the BCF. However, the computation of the ED is suffering to strictly define the resonance frequency band. In this paper, an alternative approach based on the Laplace-wavelet enveloped power spectrum is proposed. The Laplace-Wavelet shape parameters are optimized based on Kurtosis maximization criteria. The results for simulated as well as real bearing vibration signal show the effectiveness of the proposed method to extract the bearing fault characteristic frequencies from the resonant frequency band.
Texture Segmentation Using Laplace Distribution-Based Wavelet-Domain Hidden Markov Tree Models
Directory of Open Access Journals (Sweden)
Yulong Qiao
2016-11-01
Full Text Available Multiresolution models such as the wavelet-domain hidden Markov tree (HMT model provide a powerful approach for image modeling and processing because it captures the key features of the wavelet coefficients of real-world data. It is observed that the Laplace distribution is peakier in the center and has heavier tails compared with the Gaussian distribution. Thus we propose a new HMT model based on the two-state, zero-mean Laplace mixture model (LMM, the LMM-HMT, which provides significantly potential for characterizing real-world textures. By using the HMT segmentation framework, we develop LMM-HMT based segmentation methods for image textures and dynamic textures. The experimental results demonstrate the effectiveness of the introduced model and segmentation methods.
Acute Effects of Eccentric Overload on Concentric Front Squat Performance.
Munger, Cameron N; Archer, David C; Leyva, Whitney D; Wong, Megan A; Coburn, Jared W; Costa, Pablo B; Brown, Lee E
2017-05-01
Munger, CN, Archer, DC, Leyva, WD, Wong, MA, Coburn, JW, Costa, PB, and Brown, LE. Acute effects of eccentric overload on concentric front squat performance. J Strength Cond Res 31(5): 1192-1197, 2017-Eccentric overload is used to enhance performance. The purpose of this study was to investigate the acute effects of eccentric overload on concentric front squat performance. Twenty resistance-trained men (age = 23.80 ± 1.82 years, height = 176.95 ± 5.21 cm, mass = 83.49 ± 10.43 kg, 1 repetition maximum [1RM] front squat = 131.02 ± 21.32 kg) volunteered. A dynamic warm-up and warm-up sets of front squat were performed. Eccentric hooks were added to the barbell. They descended for 3 seconds, until eccentric hooks released, and performed the concentric phase as fast as possible. There were 3 randomly ordered conditions with the concentric phase always at 90% 1RM and the eccentric phase at 105, 110, and 120% of 1RM. Two repetitions were performed for each condition. A repeated measures analysis of variance was used to determine differences. For peak velocity, there were main effects for time and condition (p front squat is a precursor.
Eccentric strength and endurance in patients with unilateral intermittent claudication
Directory of Open Access Journals (Sweden)
Márcio Basyches
2009-04-01
Full Text Available OBJECTIVE: To analyze concentric and eccentric strength and endurance in patients with unilateral intermittent claudication. INTRODUCTION: Basic motor tasks are composed of concentric, isometric, and eccentric actions, which are related and contribute to physical performance. In previous studies of patients with intermittent claudication, the disease-related reduction in concentric and isometric muscular strength and endurance resulted in poorer walking performance. To date, no study has evaluated eccentric muscle action in patients with intermittent claudication. METHODS: Eleven patients with unilateral intermittent claudication performed isokinetic concentric and eccentric actions at the ankle joints to assess peak torque and total work in both symptomatic and asymptomatic legs. RESULTS: Concentric peak torque and total work were lower in the symptomatic than in the asymptomatic leg (80 ± 32 vs. 95 ± 41 N/m, P = 0.01; 1479 ± 667 vs. 1709 ± 879 J, P = 0.03, respectively. There were no differences in eccentric peak torque and total work between symptomatic and asymptomatic legs (96 ± 30 vs. 108 ± 48 N/m; 1852 ± 879 vs. 1891 ± 755 J, respectively. CONCLUSION: Strength and endurance in the symptomatic leg were lower during concentric compared to eccentric action. Future studies are recommended to investigate the mechanisms underlying these responses and to analyze the effects of interventions to improve concentric strength and endurance on functional limitations in patients with intermittent claudication.
Energy Technology Data Exchange (ETDEWEB)
Schwanz, Daphne, E-mail: daphne_schwanz@yahoo.com.b [Universidade Estadual do Rio Grande do Sul, Novo Hamburgo, RS (Brazil); Petersen, Claudio Z., E-mail: claudiopetersen@yahoo.com.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Leite, Sargio Q.B., E-mail: bogado@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Reatores e Ciclo do Combustivel
2009-07-01
In this work, the punctual kinetic equation, which consists of a Stiff type ordinary equation system, will be solved by the technique of Laplace Transformation with numerical inversion. The punctual kinetic equation will be written in a matrix form assuming constant reactivity. The inversion of the Laplace Transformation will be solved by the gaussian quadrature method. We will perform numerical simulation and will make comparisons with obtained results in the literature for constant reactivity
Study on the optical properties of the off-axis parabolic collimator with eccentric pupil
Li, Gang; Gao, Xin; Duan, Jing; Zhang, Henjin
2017-02-01
The off-axis parabolic collimator with eccentric pupil has the advantages of wide spectrum, simple structure, easy assembly and adjustment, high performance price ratio. So, it is widely used for parameters testing and image quality calibration of ground-based and space-based cameras. In addition to the Strehl ratio, resolution, wavefront aberration, modulation transfer function, the general evaluation criteria on the imaging quality of the optical system, the beam parallelism characterize the collimator angle resolving capability and collimation condition of the collimator with the target board, can be measured easily ,quickly and operation process is simple, but the study mainly focus on how to measure it so far. In order to solve Quantitative calculation of this problem, firstly, the discussion of aberration condition of the off- axis parabolic is carried out based on the primary aberration theory. Secondly, analysis on the influencing factor on collimator optical properties is given, including the geometrical aberrations of spherical aberration, coma, astigmatism , the relation between the position of the eccentric pupil and the aberration and optical element surface wavefront aberration, after that, according to the basis of diffraction and wavefront aberration theory, the paper deduced calculation method of the beam parallelism, at last, an example of a 400mm diameter off-axis parabolic collimator with eccentric pupil is given to calculate, the practical results shows that calculation data is well in accordance with actual measurement data and results can meet the demand and has a guiding significance to the actual project manufacture and the theory analysis.
3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS
Directory of Open Access Journals (Sweden)
FAROUK TAHROUR
2015-11-01
Full Text Available The use of 3-D computational fluid dynamics (CFD is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, this study analyzes the effects of fin spacing and fin tube diameter on heat transfer and flow characteristics for a range of Reynolds numbers, 4500≤Re≤22500. A satisfactory qualitative and quantitative agreement was obtained between the numerical predictions and the results published in the literature. For small fin spacings, the eccentric annular finned tube is more efficient than the concentric one. Among the cases examined, the average heat transfer coefficient of the eccentric annular-finned tube, for a tube shift St =12 mm and a Reynolds number Re = 9923, was 7.61% greater than that of the concentric one. This gain is associated with a 43.09% reduction in pressure drop.
Pardo, David
2013-02-13
We describe a numerical study to quantify the influence of tool-eccentricity on wireline (WL) and logging-while-drilling (LWD) sonic logging measurements. Simulations are performed with a height-polynomial-adaptive (hp) Fourier finite-element method that delivers highly accurate solutions of linear visco-elasto-acoustic problems in the frequency domain. The analysis focuses on WL instruments equipped with monopole or dipole sources and LWD instruments with monopole excitation. Analysis of the main propagation modes obtained from frequency dispersion curves indicates that the additional high-order modes arising as a result of borehole-eccentricity interfere with the main modes (i.e., Stoneley, pseudo-Rayleigh and flexural). This often modifies (decreases) the estimation of shear and compressional formation velocities, which should be corrected (increased) to account for borehole-eccentricity effects. Undesired interferences between different modes can occur at different frequencies depending upon the properties of the formation and fluid annulus size, which may difficult the estimation of the formation velocities. © 2013 European Association of Geoscientists & Engineers.
Codomains for the Cauchy-Riemann and Laplace operators in ℝ2
Directory of Open Access Journals (Sweden)
Lloyd Edgar S. Moyo
2008-01-01
Full Text Available A codomain for a nonzero constant-coefficient linear partial differential operator P(∂ with fundamental solution E is a space of distributions T for which it is possible to define the convolution E*T and thus solving the equation P(∂S=T. We identify codomains for the Cauchy-Riemann operator in ℝ2 and Laplace operator in ℝ2 . The convolution is understood in the sense of the S′-convolution.
Directory of Open Access Journals (Sweden)
Fatima A. Alawad
2013-01-01
Full Text Available In this paper, the exact solutions of space-time fractional telegraph equations are given in terms of Mittage-Leffler functions via a combination of Laplace transform and variational iteration method. New techniques are used to overcome the difficulties arising in identifying the general Lagrange multiplier. As a special case, the obtained solutions reduce to the solutions of standard telegraph equations of the integer orders.
Predicting the size of droplets produced through Laplace pressure induced snap-off
Barkley, Solomon; Weeks, Eric R; Dalnoki-Veress, Kari
2016-01-01
Laplace pressure driven snap-off is a technique that is used to produce droplets for emulsions and microfluidics purposes. Previous predictions of droplet size have assumed a quasi-equilibrium low flow limit. We present a simple model to predict droplet sizes over a wide range of flow rates, demonstrating a rich landscape of droplet stability depending on droplet size and growth rate. The model accounts for the easily adjusted experimental parameters of geometry, interfacial tension, and the viscosities of both phases.
Infinity Laplace equation with non-trivial right-hand side
Directory of Open Access Journals (Sweden)
Guozhen Lu
2010-06-01
Full Text Available We analyze the set of continuous viscosity solutions of the infinity Laplace equation $-Delta^N_{infty}w(x = f(x$, with generally sign-changing right-hand side in a bounded domain. The existence of a least and a greatest continuous viscosity solutions, up to the boundary, is proved through a Perron's construction by means of a strict comparison principle. These extremal solutions are proved to be absolutely extremal solutions.
Fundamental solutions to the p-Laplace equation in a class of Grushin vector fields
Directory of Open Access Journals (Sweden)
Thomas Bieske
2011-06-01
Full Text Available We find the fundamental solution to the p-Laplace equation in a class of Grushin-type spaces. The singularity occurs at the sub-Riemannian points, which naturally corresponds to finding the fundamental solution of a generalized Grushin operator in Euclidean space. We then use this solution to find an infinite harmonic function with specific boundary data and to compute the capacity of annuli centered at the singularity.
From entropy-maximization to equality-maximization: Gauss, Laplace, Pareto, and Subbotin
Eliazar, Iddo
2014-12-01
The entropy-maximization paradigm of statistical physics is well known to generate the omnipresent Gauss law. In this paper we establish an analogous socioeconomic model which maximizes social equality, rather than physical disorder, in the context of the distributions of income and wealth in human societies. We show that-on a logarithmic scale-the Laplace law is the socioeconomic equality-maximizing counterpart of the physical entropy-maximizing Gauss law, and that this law manifests an optimized balance between two opposing forces: (i) the rich and powerful, striving to amass ever more wealth, and thus to increase social inequality; and (ii) the masses, struggling to form more egalitarian societies, and thus to increase social equality. Our results lead from log-Gauss statistics to log-Laplace statistics, yield Paretian power-law tails of income and wealth distributions, and show how the emergence of a middle-class depends on the underlying levels of socioeconomic inequality and variability. Also, in the context of asset-prices with Laplace-distributed returns, our results imply that financial markets generate an optimized balance between risk and predictability.
Lu Liu; Feng Pan; Dingyu Xue
2015-01-01
Fractional-order time-delay system is thought to be a kind of oscillatory complex system which could not be controlled efficaciously so far because it does not have an analytical solution when using inverse Laplace transform. In this paper, a type of fractional-order controller based on numerical inverse Laplace transform algorithm INVLAP was proposed for the mentioned systems by searching for the optimal controller parameters with the objective function of ITAE index due to the verified natu...
Exoplanet orbital eccentricity: Multiplicity relation and the Solar System
Limbach, Mary Anne; Turner, Edwin L.
2015-01-01
The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity−multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index –1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets. PMID:25512527
Wie, Bong; Ahn, Jaemyung
2017-03-01
This paper is concerned with a classical yet still mystifying problem regarding multiple roots of the angles-only initial orbit determination (IOD) polynomial equations of Lagrange, Laplace, and Gauss of the form: f( x) = x 8+ a x 6+ b x 3+ c=0 where a, c0 has been extensively treated in the celestial mechanics literature. However, the literature on applied astrodynamics has not treated this multiple-root issue in detail, and not many specific numerical examples with multiple roots are available in the literature. In this paper, a very simple method of determining the correct root from two or three non-spurious roots is presented, which doesn't utilize any a priori knowledge and/or additional observations of the object. The proposed method exploits a simple approximate polynomial equation of the form: g( x) = x 8+ a x 6=0. An approximate polynomial equation, either g( x) = x 8+ c=0 or g( x) = x 8+ a x 6= x 6( x 2+ a) = 0, can also be used for quickly estimating an initial guess of the correct root.
Transiting planets - light-curve analysis for eccentric orbits
Kipping, David M.
2008-09-01
Transiting planet light curves have historically been used predominantly for measuring the depth and hence ratio of the planet-star radii, p. Equations have previously been presented by Seager & Mallén-Ornelas for the analysis of the total and trough transit light-curve time to derive the ratio of semimajor axis to stellar radius, a/R*, in the case of circular orbits. Here, a new analytic model is proposed which operates for the more general case of an eccentric orbit. We aim to investigate three major effects our model predicts: (i) the degeneracy in transit light-curve solutions for eccentricity, e > 0; (ii) the asymmetry of the light curve and the resulting shift in the mid-transit time, TMID; (iii) the effect of eccentricity on the ingress and egress slopes. It is also shown that a system with changing eccentricity and inclination may produce a long-term transit time variation (LTTV). Furthermore, we use our model in a re-analysis of HD209458b archived data by Richardson et al., where we include the confirmed non-zero eccentricity and derive a 24-μm planetary radius of RP = 1.275RJ +/- 0.082RJ (where RJ = 1 Jovian radius), which is ~1 per cent larger than if we assume a circular orbit.
Effects of age and eccentricity on visual target detection
Directory of Open Access Journals (Sweden)
Nicole eGruber
2014-01-01
Full Text Available The aim of this study was to examine the effects of aging and target eccentricity on a visual search task comprising 30 images of everyday life projected into a hemisphere, realizing a ± 90° visual field. The task performed binocularly allowed participants to freely move their eyes to scan images for an appearing target or distractor stimulus (presented at 10°; 30°, and 50° eccentricity. The distractor stimulus required no response, while the target stimulus required acknowledgment by pressing the response button. 117 healthy subjects (mean age=49.63 years, SD=17.40 years, age range 20-78 years were studied. The results show that target detection performance decreases with age as well as with increasing eccentricity, especially for older subjects. Reaction time also increases with age and eccentricity, but in contrast to target detection, there is no interaction between age and eccentricity. Eye movement analysis showed that younger subjects exhibited a passive search strategy while older subjects exhibited an active search strategy probably as a compensation for their reduced peripheral detection performance.
Inclination evolution of protoplanetary discs around eccentric binaries
Zanazzi, J. J.; Lai, Dong
2018-01-01
It is usually thought that viscous torque works to align a circumbinary disc with the binary's orbital plane. However, recent numerical simulations suggest that the disc may evolve to a configuration perpendicular to the binary orbit ('polar alignment) if the binary is eccentric and the initial disc-binary inclination is sufficiently large. We carry out a theoretical study on the long-term evolution of inclined discs around eccentric binaries, calculating the disc warp profile and dissipative torque acting on the disc. For discs with aspect ratio H/r larger than the viscosity parameter α, bending wave propagation effectively makes the disc precess as a quasi-rigid body, while viscosity acts on the disc warp and twist to drive secular evolution of the disc-binary inclination. We derive a simple analytic criterion (in terms of the binary eccentricity and initial disc orientation) for the disc to evolve towards polar alignment with the eccentric binary. When the disc has a non-negligible angular momentum compared to the binary, the final 'polar alignment' inclination angle is reduced from 90°. For typical protoplanetary disc parameters, the time-scale of the inclination evolution is shorter than the disc lifetime, suggesting that highly inclined discs and planets may exist orbiting eccentric binaries.
The Role of Visual Eccentricity on Preference for Abstract Symmetry.
Rampone, Giulia; O' Sullivan, Noreen; Bertamini, Marco
2016-01-01
This study tested preference for abstract patterns, comparing random patterns to a two-fold bilateral symmetry. Stimuli were presented at random locations in the periphery. Preference for bilateral symmetry has been extensively studied in central vision, but evaluation at different locations had not been systematically investigated. Patterns were presented for 200 ms within a large circular region. On each trial participant changed fixation and were instructed to select any location. Eccentricity values were calculated a posteriori as the distance between ocular coordinates at pattern onset and coordinates for the centre of the pattern. Experiment 1 consisted of two Tasks. In Task 1, participants detected pattern regularity as fast as possible. In Task 2 they evaluated their liking for the pattern on a Likert-scale. Results from Task 1 revealed that with our parameters eccentricity did not affect symmetry detection. However, in Task 2, eccentricity predicted more negative evaluation of symmetry, but not random patterns. In Experiment 2 participants were either presented with symmetry or random patterns. Regularity was task-irrelevant in this task. Participants discriminated the proportion of black/white dots within the pattern and then evaluated their liking for the pattern. Even when only one type of regularity was presented and regularity was task-irrelevant, preference evaluation for symmetry decreased with increasing eccentricity, whereas eccentricity did not affect the evaluation of random patterns. We conclude that symmetry appreciation is higher for foveal presentation in a way not fully accounted for by sensitivity.
Selective serotonin reuptake inhibitors and rhabdomyolysis after eccentric exercise.
Labotz, Michele; Wolff, Toby K; Nakasone, Kenneth T; Kimura, Iris F; Hetzler, Ronald K; Nichols, Andrew W
2006-09-01
The purpose of this report was to review three cases of clinically significant rhabdomyolysis that developed in research subjects after completing an eccentric exercise protocol. All three cases occurred in subjects who reported use of selective serotonin reuptake inhibitors (SSRI). Sixty-three subjects enrolled in the study. Subjects performed 15 sets of 15 repetitions of maximal eccentric contractions of the elbow flexors. Subjects were then monitored on a daily basis for development of delayed onset muscle soreness (DOMS). Subjects received either microcurrent electrical neuromuscular stimulation (MENS) or sham treatment. Three subjects developed clinically significant rhabdomyolysis after performing this exercise protocol. Affected subjects were the only subjects who reported use of SSRI during the study period. This report raises suspicion of SSRI use as a predisposing factor to muscle injury after eccentric exercise.
Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames
Directory of Open Access Journals (Sweden)
Kamanli Mehmet
2017-01-01
Full Text Available After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.
Involvement of eccentric muscle actions in giant slalom racing.
Berg, H E; Eiken, O; Tesch, P A
1995-12-01
Joint angular movements and muscle activation (EMG), were determined in male elite racers while performing the giant slalom. Movement cycles averaged 3.5 +/- 0.6 s (left plus right turn), and knee angle ranged 66-114 degrees (180 degrees = straight leg). Knee extensor muscle use was dominated (rectified EMG; P ski during the turn. Time spent while decreasing knee angle (eccentric muscle action) of outside leg averaged 1.0 +/- 0.2 s. This phase was longer (P slalom skiing is dominated by slow eccentric muscle actions performed at near maximum voluntary force. Because of their greater ability to generate force, eccentric muscle actions may be warranted or even required to resist the G-forces induced during the turn phase.
Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames
Kamanli, Mehmet; Unal, Alptug
2017-10-01
After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.
Eccentric exercise training: modalities, applications and perspectives.
Isner-Horobeti, Marie-Eve; Dufour, Stéphane Pascal; Vautravers, Philippe; Geny, Bernard; Coudeyre, Emmanuel; Richard, Ruddy
2013-06-01
Eccentric (ECC) exercise is classically used to improve muscle strength and power in healthy subjects and athletes. Due to its specific physiological and mechanical properties, there is an increasing interest in employing ECC muscle work for rehabilitation and clinical purposes. Nowadays, ECC muscle actions can be generated using various exercise modalities that target small or large muscle masses with minimal or no muscle damage or pain. The most interesting feature of ECC muscle actions is to combine high muscle force with a low energy cost (typically 4- to 5-times lower than concentric muscle work) when measured during leg cycle ergometry at a similar mechanical power output. Therefore, if caution is taken to minimize the occurrence of muscle damage, ECC muscle exercise can be proposed not only to athletes and healthy subjects, but also to individuals with moderately to severely limited exercise capacity, with the ultimate goal being to improve their functional capacity and quality of life. The first part of this review article describes the available exercise modalities to generate ECC muscle work, including strength and conditioning exercises using the body's weight and/or additional external loads, classical isotonic or isokinetic exercises and, in addition, the oldest and newest specifically designed ECC ergometers. The second part highlights the physiological and mechanical properties of ECC muscle actions, such as the well-known higher muscle force-generating capacity and also the often overlooked specific cardiovascular and metabolic responses. This point is particularly emphasized by comparing ECC and concentric muscle work performed at similar mechanical (i.e., cycling mechanical power) or metabolic power (i.e., oxygen uptake, VO2). In particular, at a similar mechanical power, ECC muscle work induces lower metabolic and cardiovascular responses than concentric muscle work. However, when both exercise modes are performed at a similar level of VO2, a
The eccentric-distance sum of some graphs
Directory of Open Access Journals (Sweden)
Padmapriya P
2017-04-01
Full Text Available Let $G = (V,E$ be a simple connected graph. Theeccentric-distance sum of $G$ is defined as$\\xi^{ds}(G =\\ds\\sum_{\\{u,v\\}\\subseteq V(G} [e(u+e(v] d(u,v$, where $e(u$ %\\dsis the eccentricity of the vertex $u$ in $G$ and $d(u,v$ is thedistance between $u$ and $v$. In this paper, we establish formulaeto calculate the eccentric-distance sum for some graphs, namelywheel, star, broom, lollipop, double star, friendship, multi-stargraph and the join of $P_{n-2}$ and $P_2$.
Directory of Open Access Journals (Sweden)
Mishra Vinod
2016-01-01
Full Text Available Numerical Laplace transform method is applied to approximate the solution of nonlinear (quadratic Riccati differential equations mingled with Adomian decomposition method. A new technique is proposed in this work by reintroducing the unknown function in Adomian polynomial with that of well known Newton-Raphson formula. The solutions obtained by the iterative algorithm are exhibited in an infinite series. The simplicity and efficacy of method is manifested with some examples in which comparisons are made among the exact solutions, ADM (Adomian decomposition method, HPM (Homotopy perturbation method, Taylor series method and the proposed scheme.
KURTOSIS CORRECTION METHOD FOR VARIABLE CONTROL CHARTS - A COMPARISON IN LAPLACE DISTRIBUTION
Directory of Open Access Journals (Sweden)
Metlapalli Chaitanya Priya
2010-12-01
Full Text Available A variable quality characteristic is assumed to follow the well known Laplace Distribution. Control chart constants for the process mean, process dispersion based on a number of sub group statistics including sub group mean and range are evaluated from the first principles. Limits obtained through kurtosis correction method are borrowed from Tadikamalla and Popescu (2003. The performance of these sets of control limits is compared through a simulation study and the relative preferences are arrived at. The methods are illustrated by an example.
Decoupling the NLO-coupled QED⊗QCD, DGLAP evolution equations, using Laplace transform method
Mottaghizadeh, Marzieh; Eslami, Parvin; Taghavi-Shahri, Fatemeh
2017-05-01
We analytically solved the QED⊗QCD-coupled DGLAP evolution equations at leading order (LO) quantum electrodynamics (QED) and next-to-leading order (NLO) quantum chromodynamics (QCD) approximations, using the Laplace transform method and then computed the proton structure function in terms of the unpolarized parton distribution functions. Our analytical solutions for parton densities are in good agreement with those from CT14QED (1.2952 ZEUS and H1 collaborations at HERA. There is a nice agreement between them in the range of low and high x and Q2.
Plane strain problem in microstretch elastic solid
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
MS received 17 February 2000; revised 1 August 2003. Abstract. The eigenvalue approach is developed for the two-dimensional plane strain problem in a microstretch elastic medium. Applying Laplace and Fourier transforms, an infinite space subjected to a concentrated force is studied. The inte- gral transforms are ...
An application to Kato's square root problem
Directory of Open Access Journals (Sweden)
Toka Diagana
2002-01-01
general Schrödinger operator on ℝn, given by L=−Δ+Q, where Δ is the Laplace differential operator, verifies the well-known Kato's square problem. As an application, we will consider the case where Q∈Lloc1(Ω.
Reiman, Michael
2011-01-01
The benefits and proposed physiological mechanisms of eccentric exercise have previously been elucidated and eccentric exercise has been used for well over seventy years. Traditionally, eccentric exercise has been used as a regular component of strength training. However, in recent years, eccentric exercise has been used in rehabilitation to manage a host of conditions. Of note, there is evidence in the literature supporting eccentric exercise for the rehabilitation of tendinopathies, muscle strains, and in anterior cruciate ligament (ACL) rehabilitation. The purpose of this Clinical Commentary is to discuss the physiologic mechanism of eccentric exercise as well as to review the literature regarding the utilization of eccentric training during rehabilitation. A secondary purpose of this commentary is to provide the reader with a framework for the implementation of eccentric training during rehabilitation of tendinopathies, muscle strains, and after ACL reconstruction. PMID:21655455
Criterio de Laplace: Premisa fundamental en inducción estadística
Directory of Open Access Journals (Sweden)
Emilio José Chaves
2015-01-01
Full Text Available Se discute el Criterio o Regla de Laplace y fundamenta su uso para construir la curva de Lorenz, CL, a partir de series de datos. Presenta ejemplos y gráficos de modelos de ajuste de la CL y de la FDA inferidas; comenta los límites del modelo. El método separa la media real, U, de la función de distribución adimensional (en medias, de modo que FDA(real = U(real*FDA(en medias. Busca fundamentar la inferencia estadística univariable de datos positivos a partir del criterio de Laplace, matemáticas clásicas y lógica de conjuntos.Este método no-paramétrico supone frecuencias 1/N idénticas para los N datos, sin usar funciones de distribución a-priori. Dada su sencillez, propone su empleo en educación estadística y su aplicación en investigación, como elemento teórico previo al manejo del análisis ultivariable.
Heat and Laplace type equations with complex spatial variables in weighted Bergman spaces
Directory of Open Access Journals (Sweden)
Ciprian G. Gal
2017-09-01
Full Text Available In a recent book, the authors of this paper have studied the classical heat and Laplace equations with real time variable and complex spatial variable by the semigroup theory methods, under the hypothesis that the boundary function belongs to the space of analytic functions in the open unit disk and continuous in the closed unit disk, endowed with the uniform norm. The purpose of the present note is to show that the semigroup theory methods works for these evolution equations of complex spatial variables, under the hypothesis that the boundary function belongs to the much larger weighted Bergman space $B_{\\alpha }^p(D$ with $1\\leq p<+\\infty $, endowed with a $L^p$-norm. Also, the case of several complex variables is considered. The proofs require some new changes appealing to Jensen's inequality, Fubini's theorem for integrals and the $L^p$-integral modulus of continuity. The results obtained can be considered as complex analogues of those for the classical heat and Laplace equations in $L^p(\\mathbb{R}$ spaces.
Detection of Static Eccentricity Fault in Saturated Induction Motors by ...
African Journals Online (AJOL)
Unfortunately, motor current signature analysis (MCSA) cannot detect the small degrees of the purely static eccentricity (SE) defects, while the air-gap magnetic flux signature analysis (FSA) is applied successfully. The simulation results are obtained by using time stepping finite elements (TSFE) method. In order to show the ...
Systemic cytokine response to three bouts of eccentric exercise
Directory of Open Access Journals (Sweden)
Stephen M. Cornish
2014-01-01
Full Text Available This research examined the changes in inflammatory cytokines interleukin 6 (IL-6, IL-1β, IL-10, as well as muscle force, muscle soreness, thigh circumference, and range of motion in response to 3 bouts of eccentric knee extension. Ten males were recruited to participate. The participants performed eccentric exercise on 3 consecutive days on the knee extensors on the right leg separated by 24 h. Participants performed 6 sets of 10 repetitions of isokinetic eccentric knee extension at 120° per second. Blood was sampled before and after each exercise bout and 24 h after the final exercise bout. Muscle isometric force, delayed onset muscle soreness (DOMS, thigh circumference, and range of motion were evaluated before and after each exercise bout and 24 h after the final exercise bout. There were no statistically significant differences noted for the changes in isometric strength, thigh circumference, and range of motion, or IL-6 over the 4 days (all p > 0.05. On the second day and third day there was a significant increase noted in DOMS as compared with baseline (p < 0.05. These results suggest that 3 consecutive days of eccentric exercise results in DOMS but does not produce a sustained systemic inflammatory reaction or changes in muscle function.
Corneal eccentricity as a tool for the diagnosis of keratoconus
Dao, C. L.; Kok, J. H.; Brinkman, C. J.; van Mil, C. J.
1994-01-01
Ninety-nine eyes with keratoconus of 64 patients were examined using the sagittal radii method to determine the corneal flattening and compared with 100 eyes of 50 healthy controls. To express the degree of this flattening, four numerical eccentricity (E) values for each eye were calculated. The
Effects of concentric vs eccentric loading on cardiovascular ...
African Journals Online (AJOL)
So, the present study was aimed at bridging this gap. This is the first study to compare the metabolic effects of eccentric and concentric resistance exercise at sub maximal workload (75% of the 10-Repetition maximum) previously shown to produce skeletal muscle hypertrophy and to augment strength during chronic training ...
A massive millisecond pulsar in an eccentric binary
Barr, E. D.; Freire, P. C. C.; Kramer, M.; Champion, D. J.; Berezina, M.; Bassa, C. G.; Lyne, A. G.; Stappers, B. W.
2017-02-01
The recent discovery of a population of eccentric (e ˜ 0.1) millisecond pulsar (MSP) binaries with low-mass white dwarf companions in the Galactic field represents a challenge to evolutionary models that explain MSP formation as recycling: All such models predict that the orbits become highly circularized during a long period of accretion. The members of this new population exhibit remarkably similar properties (orbital periods, eccentricities, companion masses, spin periods), and several models have been put forward that suggest a common formation channel. In this work, we present the results of an extensive timing campaign focusing on one member of this new population, PSR J1946+3417. Through the measurement of both the advance of periastron and the Shapiro delay for this system, we determine the mass of the pulsar, mass of the companion and the inclination of the orbit to be 1.828(22) M⊙, 0.2656(19) M⊙ and 76.4 ± 0.6 degrees, respectively, under the assumption that general relativity is the true description of gravity. Notably, this is the third highest mass measured for any pulsar. Using these masses and the astrometric properties of PSR J1946+3417, we examine three proposed formation channels for eccentric MSP binaries. While our results are consistent with circumbinary disc-driven eccentricity growth or neutron star to strange star phase transition, we rule out rotationally delayed accretion-induced collapse as the mechanism responsible for the configuration of the PSR J1946+3417 system.
Eccentric-fluted beam pipes to damp quadrupole higher-order modes
Directory of Open Access Journals (Sweden)
M. Sawamura
2010-02-01
Full Text Available An eccentric-fluted beam pipe is proposed to damp quadrupole modes in a cavity. The eccentric flutes act as a mode converter from quadrupole to dipole. Optimizing the parameters of the eccentric-fluted beam pipe allows sufficient damping of both degenerate quadrupole modes. The external Q values of the eccentric-fluted beam pipe measured with a low power model cavity agree well with those calculated with the 3D electromagnetic field simulation code MAFIA.
Eccentric-fluted beam pipes to damp quadrupole higher-order modes
Sawamura, M.; Furuya, T.; Sakai, H.; Takahashi, T.; Umemori, K.; Shinoe, K.
2010-02-01
An eccentric-fluted beam pipe is proposed to damp quadrupole modes in a cavity. The eccentric flutes act as a mode converter from quadrupole to dipole. Optimizing the parameters of the eccentric-fluted beam pipe allows sufficient damping of both degenerate quadrupole modes. The external Q values of the eccentric-fluted beam pipe measured with a low power model cavity agree well with those calculated with the 3D electromagnetic field simulation code MAFIA.
Initial Eccentricity in Deformed 197Au+197Au and 238U+238U Collisions at RHIC
Energy Technology Data Exchange (ETDEWEB)
Filip, Peter; Lednicky, Richard; Masui, Hiroshi; Xu, Nu
2010-07-07
Initial eccentricity and eccentricity fluctuations of the interaction volume created in relativistic collisions of deformed {sup 197}Au and {sup 238}U nuclei are studied using optical and Monte-Carlo (MC) Glauber simulations. It is found that the non-sphericity noticeably influences the average eccentricity in central collisions and eccentricity fluctuations are enhanced due to deformation. Quantitative results are obtained for Au+Au and U+U collisions at energy {radical}s{sub NN} = 200 GeV.
Orbital Eccentricity and the Stability of Planets in the Alpha Centauri System
Lissauer, Jack
2016-01-01
Planets on initially circular orbits are typically more dynamically stable than planets initially having nonzero eccentricities. However, the presence of a major perturber that forces periodic oscillations of planetary eccentricity can alter this situation. We investigate the dependance of system lifetime on initial eccentricity for planets orbiting one star within the alpha Centauri system. Our results show that initial conditions chosen to minimize free eccentricity can substantially increase stability compared to planets on circular orbits.
Achilles tendon of wistar rats treated with laser therapy and eccentric exercise
Souza, Maria Verônica de; Silva, Carlos Henrique Osório; Silva, Micheline Ozana da; Costa, Marcela Bueno Martins da; Dornas, Raul Felipe; Borges, Andréa Pacheco Batista; Natali, Antônio José
2015-01-01
ABSTRACTIntroduction:Both laser therapy and eccentric exercises are used in tendon injuries. However, the association of these physiotherapeutic modalities is yet little investigated.Objective:To evaluate the effect of low-level laser therapy associated to eccentric exercise (downhill walking) on Achilles tendinopathy of Wistar rats.Method:Eighteen Achilles tendon from 15 adult male Wistar rats were used. Tendons were distributed in six groups (laser, eccentric exercise, laser and eccentric e...
How can periodic orbits puzzle out the coexistence of terrestrial planets with giant eccentric ones?
Antoniadou, K. I.; Libert, A.-S.
2017-09-01
Hitherto unprecedented detections of exoplanets have been triggered by missions and ground based telescopes. The quest of ``exo-Earths'' has become intriguing and the long-term stability of planetary orbits is a crucial factor for the biosphere to evolve. Planets in mean-motion resonances (MMRs) prompt the investigation of the dynamics in the framework of the three-body problem, where the families of stable periodic orbits constitute the backbone of stability domains in phase space. In this talk, we address the question of the possible coexistence of terrestrial planets with a giant companion on circular or eccentric orbit and explore the extent of the stability regions, when both the eccentricity of the outer giant planet and the semi-major axis of the inner terrestrial one vary, i.e. we investigate both non-resonant and resonant configurations. The families of periodic orbits in the restricted three-body problem are computed for the 3/2, 2/1, 5/2, 3/1, 4/1 and 5/1 MMRs. We then construct maps of dynamical stability (DS-maps) to identify the boundaries of the stability domains where such a coexistence is allowed. Guided by the periodic orbits, we delve into regular motion in phase space and propose the essential values of the orbital elements, in order for such configurations to survive long time spans and hence, for observations to be complemented or revised.
Ischemic Preconditioning Blunts Muscle Damage Responses Induced by Eccentric Exercise.
Franz, Alexander; Behringer, Michael; Harmsen, Jan-Frieder; Mayer, Constantin; Krauspe, Rüdiger; Zilkens, Christoph; Schumann, Moritz
2017-08-22
Ischemic preconditioning (IPC) is known to reduce muscle damage induced by ischemia and reperfusion-injury (I/R-Injury) during surgery. Due to similarities between the pathophysiological formation of I/R-injury and eccentric exercise-induced muscle damage (EIMD), as characterized by an intracellular accumulation of Ca, an increased production of reactive oxygen species and increased pro-inflammatory signaling, the purpose of the present study was to investigate whether IPC performed prior to eccentric exercise may also protect against EIMD. Nineteen healthy men were matched to an eccentric only (ECC) (n=9) or eccentric proceeded by IPC group (IPC+ECC) (n=10). The exercise protocol consisted of bilateral biceps curls (3x10 repetitions at 80% of the concentric 1RM). In IPC+ECC, IPC was applied bilaterally at the upper arms by a tourniquet (200 mmHg) immediately prior to the exercise (3x5 minutes of occlusion, separated by 5 minutes of reperfusion). Creatine Kinase (CK), arm circumference, subjective pain (VAS score) and radial displacement (Tensiomyography, Dm) were assessed before IPC, pre-exercise, post-exercise, 20 minutes-, 2 hours-, 24 hours-, 48 hours- and 72 hours post-exercise. CK differed from baseline only in ECC at 48h (pIPC+ECC (between groups: 24h: p=0.004, 48h: pIPC+ECC (between groups: all pIPC+ECC (between-groups pIPC performed prior to a bout of eccentric exercise of the elbow flexors blunts EIMD and exercise-induced pain, while maintaining the contractile properties of the muscle.
Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu
2017-05-01
The boundary-value problem in the classical theory of elasticity for a core-shell nanowire with an eccentric parallelepipedal core of an arbitrary rectangular cross section is solved. The core is subjected to one-dimensional cross dilatation eigenstrain. The misfit stresses are given in a closed analytical form suitable for theoretical modeling of misfit accommodation in relevant heterostructures.
Directory of Open Access Journals (Sweden)
Hassan Kamil Jassim
2017-04-01
Full Text Available In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution with less computation as compared with local fractional variational iteration method. Some illustrative examples are discussed. The results show that the methodology is very efficient and a simple tool for solving integral equations.
Applying KAM Theory to Highly Eccentric Orbits
2014-03-27
period of a planet is proportional to the cube of the semi- major axis of its orbit. In 1687, Isaac Newton would prove Kepler’s discoveries after...solving the n-body problem) gave way for more exhaustive research efforts of Newton , Euler, Lagrange, Jacobi, Poincaré, and many others. The King...coordinates, H(I, θ) = H ′(I′), (2.5) 3. Solving the Hamilton-Jacobi equation for the following generating function (Equa- tion (2.6) using a Newton
Circumplanetary Debris Disks and Consequences of an Eccentric Fomalhaut b
Tamayo, Daniel; Burns, J. A.
2013-10-01
Each of the Solar System’s giant planets hosts many small and distant irregular satellites. These moons’ radially overlapping orbits and their unusually shallow size distributions imply a violent collisional history (Bottke et al. 2010). Thus, at early epochs, the giant planets likely displayed prominent circumplanetary debris clouds. For my PhD I numerically studied how such debris in the Saturnian system would evolve inward through radiation forces to coat the striking two-faced moon Iapetus (Tamayo et al. 2011). I also investigated the analogous process at Uranus, where the planet’s extreme obliquity renders infalling dust orbits chaotic. We find that this could explain the color dichotomies observed on the largest four Uranian satellites (Tamayo et al. 2013a, 2013b). Even today, Saturn has such a vast dust disk, sourced by the irregular satellite Phoebe (Verbiscer et al. 2009). This ‘Phoebe Ring’, can be used to observationally study the gravitational effects of moons on the dust; I have successfully probed this ring with Cassini, but was unsuccessful with Herschel observations. By these combined observational and dynamical studies, I hope to inform the field of extrasolar debris disks, where one tries to use dust signatures to infer the existence of planets that are too faint to see. I am now focusing on a related problem involving the exoplanet candidate Fomalhaut b (Kalas et al. 2008). While its optical flux is too large to come directly from a planet, perhaps we are observing a disk supplied by irregular moons (Kennedy & Wyatt 2011). Additional observation epochs imply that Fomalhaut-b’s orbit is very eccentric (Kalas et al. 2013). Yet despite crossing the system’s observed circumstellar debris disk in projection, Fomalhaut b does not appear to have significantly disturbed it. We argue from simulations that if Fomalhaut b is a giant planet, it must have scattered into its present orbit in the past ~10 Myr. If so, the young Fomalhaut system 400
Hill, Ethan C; Housh, Terry J; Camic, Clayton L; Smith, Cory M; Cochrane, Kristen C; Jenkins, Nathaniel D M; Cramer, Joel T; Schmidt, Richard J; Johnson, Glen O
2016-06-01
The purposes of this study were to examine the effects of the velocity of repeated eccentric muscle actions on the torque and neuromuscular responses during maximal isometric and eccentric muscle actions. Twelve resistance-trained men performed 30 repeated, maximal, eccentric, isokinetic muscle actions at randomly ordered velocities of 60, 120, or 180°·s on separate days. Maximal voluntary isometric contractions (MVICs) were performed before (pretest) and after (posttest) the repeated eccentric muscle actions on each day. Eccentric isokinetic peak torque (EIPT) values were the averages of the first 3 and last 3 repetitions of the 30 repeated eccentric muscle actions. During the EIPT and MVIC muscle actions, electromyographic (EMG) and mechanomyographic (MMG) amplitude (EMG AMP and MMG AMP) and mean power frequency (EMG MPF and MMG MPF) values were assessed. These results indicated that the repeated eccentric muscle actions had no effects on EIPT, or the EMG AMP, EMG MPF, or MMG MPF values assessed during the EIPT muscle actions, but decreased MMG AMP. The repeated eccentric muscle actions, however, decreased MVIC torque, and also the EMG AMP and MMG MPF values assessed during the MVIC muscle actions, but increased MMG AMP. The results indicated that the velocity of the repeated eccentric muscle actions affected the MVIC torque responses, but not EIPT or any of the neuromuscular parameters. Furthermore, there are differences in the torque and neuromuscular responses for isometric vs. eccentric muscle actions after repeated eccentric muscle actions.
ELECTROMAGNETIC VIBRATION DISTURBING FORCES AT THE ECCENTRICITY OF ROTOR OF TURBOGENERATOR
Directory of Open Access Journals (Sweden)
Yu.M. Vaskovskyi
2016-09-01
Full Text Available Electromagnetic vibration disturbing forces in different variants of the rotor displacement from an axis of the stator bore is carried out. Investigation for ТG type ТGV-200-2 by finite element method in COMSOL Multiphysics is carried out. The field mathematical model of static and dynamic eccentricity is described. The amplitude vibration disturbing forces are greatest, when a static eccentricity direction coincides with an axis of the stator winding phase is shown. The diagnostic features static and dynamic eccentricities are formulated. The most value of forces in the point with minimal air gap is shown. The diagnostic features static and dynamic eccentricities and the method of diagnostic eccentricity are formulated. Diagnostic feature of static eccentricity is to change the amplitude Maxwell stress tensor is established. The dynamic eccentricity diagnostic features are appearance in the spectrum of vibration disturbing forces rotating and multiple harmonics.
Bearing Capacity Analysis of N90T20 Rack Column Under Eccentric Compression
Directory of Open Access Journals (Sweden)
Hao Jianing
2016-01-01
Full Text Available The bearing capacity of cold-formed porous steel N90T20 rack column is studied, the eccentric positions, the spacing between holes, column thickness are discussed in details. The results obtained from this study demonstrate that when eccentric space is small, eccentric compression weaken column ultimate bearing capacity is small. From the results, it is clear that when eccentric space is large, eccentric compression can cause the column ultimate bearing capacity of plummeting. If the eccentricity is close proximity to the web, the ultimate bearing capacity declines to be smaller than the eccentric near the curling side of the column. The spacing of the holes on the column web do not present significant effect to the ultimate bearing capacity of the column. The wall thickness of column component greatly influence on the ultimate bearing capacity of the columns. This study makes contribution to the N90T20 rack design in the engineering practice and research areas.
Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions
Heikenfeld, J.; Zhou, K.; Kreit, E.; Raj, B.; Yang, S.; Sun, B.; Milarcik, A.; Clapp, L.; Schwartz, R.
2009-05-01
Conventional electrowetting displays reconfigure the contact angle of a coloured oil film on a planar hydrophobic surface. We report on electrofluidic displays, in particular a three-dimensional microfluidic display device that provides a direct view of brilliantly coloured pigment dispersions. Electromechanical pressure is used to pull the aqueous dispersion from a reservoir of small viewable area (90%). The hydrophobic channel and reservoir respectively impart a small or large radius of curvature on the dispersion. Therefore, with no voltage, Young-Laplace pressure forces the dispersion to retract into the reservoir. Preliminary prototypes exhibit ~55% white reflectance, and future development points towards a reflectance of ~85%. Uniquely, compared to electrowetting pixels, the electrofluidic pixels reduce the visible area of the coloured fluid by an additional two to three times (improving contrast), are potentially bistable, are as thin as ~15 µm (giving potential for rollable displays), and can be miniaturized without increased operating voltage.
Bonito, Andrea
2012-09-01
We design and analyze variational and non-variational multigrid algorithms for the Laplace-Beltrami operator on a smooth and closed surface. In both cases, a uniform convergence for the V -cycle algorithm is obtained provided the surface geometry is captured well enough by the coarsest grid. The main argument hinges on a perturbation analysis from an auxiliary variational algorithm defined directly on the smooth surface. In addition, the vanishing mean value constraint is imposed on each level, thereby avoiding singular quadratic forms without adding additional computational cost. Numerical results supporting our analysis are reported. In particular, the algorithms perform well even when applied to surfaces with a large aspect ratio. © 2011 American Mathematical Society.
Analytical modeling for fractional multi-dimensional diffusion equations by using Laplace transform
Directory of Open Access Journals (Sweden)
Devendra Kumar
2015-01-01
Full Text Available In this paper, we propose a simple numerical algorithm for solving multi-dimensional diffusion equations of fractional order which describes density dynamics in a material undergoing diffusion by using homotopy analysis transform method. The fractional derivative is described in the Caputo sense. This homotopy analysis transform method is an innovative adjustment in Laplace transform method and makes the calculation much simpler. The technique is not limited to the small parameter, such as in the classical perturbation method. The scheme gives an analytical solution in the form of a convergent series with easily computable components, requiring no linearization or small perturbation. The numerical solutions obtained by the proposed method indicate that the approach is easy to implement and computationally very attractive.
LaPlace's law revisited: Cecal perforation as an unusual presentation of pancreatic carcinoma
Directory of Open Access Journals (Sweden)
Cason Frederick D
2007-02-01
Full Text Available Abstract Background Pancreatic cancer is often locally and distally aggressive, but initial presentation as cecal perforation is uncommon. Case presentation We describe a patient presenting with pneumoperitoneum, found at initial exploration to have a cecal perforation believed to be secondary to a large cecal adenoma, after palpation of the remainder of the colon revealed hard stool but no distal obstruction. Postoperatively, however, the patient progressed to large bowel obstruction and upon reexploration, a mass could now be delineated, encompassing the splenic flexure, splenic hilum, and distal pancreas. Histological evaluation determined this was locally invasive pancreatic adenocarcinoma, and therefore the true etiology of the original cecal perforation. Conclusion Any perforation localized to the cecum must be highly suspicious for a distal obstruction, as dictated by the law of LaPlace.
Directory of Open Access Journals (Sweden)
Shanshan Wang
2017-12-01
Full Text Available In cities’ policy-making, it is a hot issue to grasp the determinants of carbon dioxide emission in Chinese cities. And the common method is to use the STIRPAT model, where its coefficients represent the influence intensity of each determinants of carbon emission. However, less work discusses estimation accuracy, especially in the framework of non-normal distribution and heterogeneity among cities’ emission. To improve the estimation accuracy, this paper employs a new method to estimate the STIRPAT model. The method uses a mixture of Asymmetric Laplace distributions (ALDs to approximate the true distribution of the error term. Meantime, a designed two-layer EM algorithm is used to obtain estimators. We test the robustness via the comparison results of five different models. We find that the ALDs Mixture Model is more reliable the others. Further, a significant Kuznets curve relationship is identified in China.
Costabel, M.; Ervin, V. J.; Stephan, E. P.
1990-07-01
Previously Costabel and Stephan proved the convergence of the collocation method for boundary integral equations on polygonal domains for piecewise linear trial functions which are constant on subintervals next to corners. The convergence and associated error estimates were given in suitable Sobolev spaces with appropriately weighted norms. In this paper we present, for Laplace's equation, the implementation of their method and a slightly modified version. In the latter we use piecewise linear trial functions which are discontinuous at the corners. Of particular note is that the computed experimental convergence rates are in complete agreement with the predicted theoretical rates. In particular, our numerical results underline clearly how the order of convergence depends on the graded mesh.
Shi, Yonggang; Lai, Rongjie; Gill, Raja; Pelletier, Daniel; Mohr, David; Sicotte, Nancy; Toga, Arthur W
2011-01-01
In this paper we develop a novel technique for surface deformation and mapping in the high-dimensional Laplace-Beltrami embedding space. The key idea of our work is to realize surface deformation in the embedding space via optimization of a conformal metric on the surface. Numerical techniques are developed for computing derivatives of the eigenvalues and eigenfunctions with respect to the conformal metric, which is then applied to compute surface maps in the embedding space by minimizing an energy function. In our experiments, we demonstrate the robustness of our method by applying it to map hippocampal atrophy of multiple sclerosis patients with depression on a data set of 109 subjects. Statistically significant results have been obtained that show excellent correlation with clinical variables. A comparison with the popular SPHARM tool has also been performed to demonstrate that our method achieves more significant results.
A primordial origin of the Laplace relation among the Galilean satellites.
Peale, S J; Lee, Man Hoi
2002-10-18
Understanding the origin of the orbital resonances of the Galilean satellites of Jupiter will constrain the longevity of the extensive volcanism on Io, may explain a liquid ocean on Europa, and may guide studies of the dissipative properties of stars and Jupiter-like planets. The differential migration of the newly formed Galilean satellites due to interactions with a circumjovian disk can lead to the primordial formation of the Laplace relation n(1) - 3n(2) + 2n(3) = 0, where the n(i) are the mean orbital angular velocities of Io, Europa, and Ganymede, respectively. This contrasts with the formation of the resonances by differential expansion of the orbits from tidal torques from Jupiter.
Renormalization group summation of Laplace QCD sum rules for scalar gluon currents
Directory of Open Access Journals (Sweden)
Farrukh Chishtie
2016-03-01
Full Text Available We employ renormalization group (RG summation techniques to obtain portions of Laplace QCD sum rules for scalar gluon currents beyond the order to which they have been explicitly calculated. The first two of these sum rules are considered in some detail, and it is shown that they have significantly less dependence on the renormalization scale parameter μ2 once the RG summation is used to extend the perturbative results. Using the sum rules, we then compute the bound on the scalar glueball mass and demonstrate that the 3 and 4-Loop perturbative results form lower and upper bounds to their RG summed counterparts. We further demonstrate improved convergence of the RG summed expressions with respect to perturbative results.
Ardonceau, Pascal
2009-04-01
The Note presents an unconventional computational method for irrotational and incompressible fluid flows over lifting bodies. At first, Laplace's equation for the velocity potential is solved with internal Dirichlet conditions expressed at the nodes of the mesh rather than at smooth surface positions. Continuous distributions of surface normal doublets are used, and obtaining the surface velocity field with such distributions becomes straightforward. Secondly, an original Neumann type formulation of the Kutta conditions is proposed. Expressing the minimization of the velocity flux across the wall shows a significant reduction of the discretization impact upon the computed global efforts when compared to local no-load conditions. The method can be applied to 2 or 3-dimensional flows, steady or not. To cite this article: P. Ardonceau, C. R. Mecanique 337 (2009).
Malezan, A.; Tomal, A.; Antoniassi, M.; Watanabe, P. C. A.; Albino, L. D.; Poletti, M. E.
2015-11-01
In this work, a spectral reconstruction methodology for diagnostic X-ray, using Laplace inverse transform of the attenuation, was successfully applied to dental X-ray equipments. The attenuation curves of 8 commercially available dental X-ray equipment, from 3 different manufactures (Siemens, Gnatus and Dabi Atlante), were obtained by using an ionization chamber and high purity aluminium filters, while the kVp was obtained with a specific meter. A computational routine was implemented in order to adjust a model function, whose inverse Laplace transform is analytically known, to the attenuation curve. This methodology was validated by comparing the reconstructed and the measured (using semiconductor detector of cadmium telluride) spectra of a given dental X-ray unit. The spectral reconstruction showed the Dabi Atlante equipments generating similar shape spectra. This is a desirable feature from clinic standpoint because it produces similar levels of image quality and dose. We observed that equipments from Siemens and Gnatus generate significantly different spectra, suggesting that, for a given operating protocol, these units will present different levels of image quality and dose. This fact claims for the necessity of individualized operating protocols that maximize image quality and dose. The proposed methodology is suitable to perform a spectral reconstruction of dental X-ray equipments from the simple measurements of attenuation curve and kVp. The simplified experimental apparatus and the low level of technical difficulty make this methodology accessible to a broad range of users. The knowledge of the spectral distribution can help in the development of operating protocols that maximize image quality and dose.
Directory of Open Access Journals (Sweden)
Pari Sharareh Mehrabi
2016-01-01
Full Text Available The “Laplace Transform Method” is used to solve the Fokker-Plank equation for finding the time evolution of the heavy quarks distribution functions such as charm and bottom in quark gluon plasma. These solutions will lead us to calculation of nuclear suppression factor RAA. The results have good agreement with available experiment data from the PHENIX collaboration.
Flow instability and vortex street in eccentric annular channels
Choueiri, George; Tavoularis, Stavros
2013-11-01
Flow development in an eccentric annular channel with a diameter ratio of 0.5 has been investigated using flow visualization, two-component laser Doppler velocimetry and planar and stereoscopic particle image velocimetry. The eccentricity e was varied between 0.3 and 0.9 and the Reynolds number was 1000 flow instability and the generation of a quasi-periodic vortex street, which manifested itself by strong cross-flows across the gap and an increase in axial velocity in the gap region, but also affected the flow in the entire channel. The vortex strength was highest for e ~ 0 . 7 and the Strouhal number of the cross-flow oscillations (based on bulk velocity and core diameter) increased with increasing Re, reaching an asymptote near 0.12 for Re >= 10000 . Supported by NSERC and AECL.
Tidal disruption flares from stars on eccentric orbits
Directory of Open Access Journals (Sweden)
Loeb A.
2012-12-01
Full Text Available We study tidal disruption and subsequent mass fallback for stars approaching supermassive black holes on bound orbits, by performing three dimensional Smoothed Particle Hydrodynamics simulations with a pseudo-Newtonian potential. We find that the mass fallback rate decays with the expected -5/3 power of time for parabolic orbits, albeit with a slight deviation due to the self-gravity of the stellar debris. For eccentric orbits, however, there is a critical value of the orbital eccentricity, significantly below which all of the stellar debris is bound to the supermassive black hole. All the mass therefore falls back to the supermassive black hole in a much shorter time than in the standard, parabolic case. The resultant mass fallback rate considerably exceeds the Eddington accretion rate and substantially differs from the -5/3 power of time.
Low frequency axisymmetric longitudinal guided waves in eccentric annular cylinders.
Pattanayak, Roson Kumar; Manogharan, Prabhakaran; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2015-06-01
This paper studies the effect of axially uniform eccentricity on the modal structures and velocities of the lower order axisymmetric guided wave mode L(0,2) in circular tubes or pipes. The semi-analytical finite element method is mainly used, supported by fully three-dimensional finite element models and validated using experiments. The studies show that even a small eccentricity in the pipe can cause a loss in the L(0,2) mode axisymmetry, leading to its confinement in the thinned side of the pipe cross-section and also a reduction in mode velocities. The physics of this phenomenon is related to the feature-guiding and mode confinement effects noted in recent years in the literature, particularly studies on waveguides with local cross-section variations and curvature.
Neptune's Eccentricity and the Nature of the Kuiper Belt
Ward, William R.; Hahn, Joseph M.
1998-01-01
The small eccentricity of Neptune may be a direct consequence of apsidal wave interaction with the trans-Neptune population of debris called the Kuiper belt. The Kuiper belt is subject to resonant perturbations from Neptune, so that the transport of angular momentum by density waves can result in orbital evolution of Neptune as well as changes in the structure of the Kuiper belt. In particular, for a belt eroded out to the vicinity of Neptune's 2:1 resonance at about 48 astronomical units, Neptune's eccentricity can damp to its current value over the age of the solar system if the belt contains slightly more than an earth mass of material out to about 75 astronomical units.
An Eccentric Binary Millisecond Pulsar in the Galactic Plane
Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri;
2008-01-01
Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.
An eccentric binary millisecond pulsar in the galactic plane.
Champion, David J; Ransom, Scott M; Lazarus, Patrick; Camilo, Fernando; Bassa, Cees; Kaspi, Victoria M; Nice, David J; Freire, Paulo C C; Stairs, Ingrid H; van Leeuwen, Joeri; Stappers, Ben W; Cordes, James M; Hessels, Jason W T; Lorimer, Duncan R; Arzoumanian, Zaven; Backer, Don C; Bhat, N D Ramesh; Chatterjee, Shami; Cognard, Ismaël; Deneva, Julia S; Faucher-Giguère, Claude-André; Gaensler, Bryan M; Han, Jinlin; Jenet, Fredrick A; Kasian, Laura; Kondratiev, Vlad I; Kramer, Michael; Lazio, Joseph; McLaughlin, Maura A; Venkataraman, Arun; Vlemmings, Wouter
2008-06-06
Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M(middle dot in circle)) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 M solar symbol, an unusually high value.
Progressive coxa vara by eccentric growth tethering in immature pigs.
Chang, Chia-Hsieh; Chi, Chau-Hwa; Lee, Zhon-Liau
2006-07-01
The present study tested progressive coxa vara by eccentric growth tethering that might be used to correct coxa valga in cerebral palsy. Eight young pigs received screw fixation at inferior portion of right femoral head at age 4 months and were killed at age 7.25 months for bilateral femurs for comparison. The neck-shaft angle at the tethered side was significantly less than that at the control side (129.8 vs. 138.3 degrees , P<0.05). Histological study showed bony bar formation. Eccentric growth tethering by one screw resulted in a reduction of neck-shaft angle by 8.5 degrees and shortening of femoral length by 4%.
Functional changes of human quadriceps muscle injured by eccentric exercise
Directory of Open Access Journals (Sweden)
F.V. Serrão
2003-06-01
Full Text Available The present study evaluated functional changes of quadriceps muscle after injury induced by eccentric exercise. Maximal isometric torque of quadriceps and the surface electromyography (root mean square, RMS, and median frequency, MDF of the vastus medialis oblique (VMO and vastus lateralis (VL muscles were examined before, immediately after and during the first 7 days after injury. Serum creatine kinase (CK levels and magnetic resonance imaging (MRI were used to identify muscle injury. The subject was used as her own control and percent refers to pre-injury data. Experiments were carried out with a sedentary 23-year-old female. Injury was induced by 4 bouts of 15 maximal isokinetic eccentric contractions (angular velocity of 5º/s; range of motion from 40º to 110º of knee flexion. The isometric torque of the quadriceps (knee at 90º flexion decreased 52% immediately after eccentric exercise and recovered on the 5th day. The highest reduction of RMS occurred on the 2nd day after injury in both VL (63% and VMO (66% and only VL recovered to the pre-injury level on the 7th day. Immediately after injury, the MDF decreased by 5 and 3% (VMO and VL, respectively and recovered one day later. Serum CK levels increased by 109% on the 2nd day and were still increased by 32% on the 7th day. MRI showed large areas of injury especially in the deep region of quadriceps. In conclusion, eccentric exercise decreased the isometric torque and electromyographic signals of quadriceps muscle, which were recovered in one week, despite the muscle regeneration signals.
Experimental Investigations on Axially and Eccentrically Loaded Masonry Walls
Keshava, Mangala; Raghunath, Seshagiri Rao
2017-12-01
In India, un-reinforced masonry walls are often used as main structural components in load bearing structures. Indian code on masonry accounts the reduction in strength of walls by using stress reduction factors in its design philosophy. This code was introduced in 1987 and reaffirmed in 1995. The present study investigates the use of these factors for south Indian masonry. Also, with the gaining popularity in block work construction, the aim of this study was to find out the suitability of these factors given in the Indian code to block work masonry. Normally, the load carrying capacity of masonry walls can be assessed in three ways, namely, (1) tests on masonry constituents, (2) tests on masonry prisms and (3) tests on full-scale wall specimens. Tests on bricks/blocks, cement-sand mortar, brick/block masonry prisms and 14 full-scale brick/block masonry walls formed the experimental investigation. The behavior of the walls was investigated under varying slenderness and eccentricity ratios. Hollow concrete blocks normally used as in-fill masonry can be considered as load bearing elements as its load carrying capacity was found to be high when compared to conventional brick masonry. Higher slenderness and eccentricity ratios drastically reduced the strength capacity of south Indian brick masonry walls. The reduction in strength due to slenderness and eccentricity is presented in the form of stress reduction factors in the Indian code. These factors obtained through experiments on eccentrically loaded brick masonry walls was lower while that of brick/block masonry under axial loads was higher than the values indicated in the Indian code. Also the reduction in strength is different for brick and block work masonry thus indicating the need for separate stress reduction factors for these two masonry materials.
The Effects of Spatial Endogenous Pre-cueing across Eccentricities
Directory of Open Access Journals (Sweden)
Jing Feng
2017-06-01
Full Text Available Frequently, we use expectations about likely locations of a target to guide the allocation of our attention. Despite the importance of this attentional process in everyday tasks, examination of pre-cueing effects on attention, particularly endogenous pre-cueing effects, has been relatively little explored outside an eccentricity of 20°. Given the visual field has functional subdivisions that attentional processes can differ significantly among the foveal, perifoveal, and more peripheral areas, how endogenous pre-cues that carry spatial information of targets influence our allocation of attention across a large visual field (especially in the more peripheral areas remains unclear. We present two experiments examining how the expectation of the location of the target shapes the distribution of attention across eccentricities in the visual field. We measured participants’ ability to pick out a target among distractors in the visual field after the presentation of a highly valid cue indicating the size of the area in which the target was likely to occur, or the likely direction of the target (left or right side of the display. Our first experiment showed that participants had a higher target detection rate with faster responses, particularly at eccentricities of 20° and 30°. There was also a marginal advantage of pre-cueing effects when trials of the same size cue were blocked compared to when trials were mixed. Experiment 2 demonstrated a higher target detection rate when the target occurred at the cued direction. This pre-cueing effect was greater at larger eccentricities and with a longer cue-target interval. Our findings on the endogenous pre-cueing effects across a large visual area were summarized using a simple model to assist in conceptualizing the modifications of the distribution of attention over the visual field. We discuss our finding in light of cognitive penetration of perception, and highlight the importance of examining
António Reis and Margarida Cordeiro, eccentric filmmakers
Directory of Open Access Journals (Sweden)
Lucas Tavares Neves
2016-02-01
Full Text Available The international symposium "António Reis and Margarida Cordeiro, eccentric filmmakers" took place in Paris between the 3rd and the 4th of June, 2015. Speakers exchanged on the political, social and poetical aspects of the duo's cinematography, as well as on the reverberations of titles such as Jaime (1974 and Trás-os-montes (1976 on the Portuguese filmic landscape of the decades that followed.
Gluon field fluctuations in nuclear collisions: Multiplicity and eccentricity distributions
Energy Technology Data Exchange (ETDEWEB)
Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Tribedy, Prithwish [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Venugopalan, Raju [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)
2014-06-15
We discuss different sources of fluctuations in nuclear collisions and their realization in the IP-Glasma model. We present results for multiplicity distributions in p+p and p+A collisions and compare eccentricity (ε{sub 2}, ε{sub 3}, ε{sub 4}) distributions in A + A collisions to the v{sub n} distributions in 10 centrality classes measured by the ATLAS Collaboration.
Muscle preservation in long duration space missions: The eccentric factor
Buchanan, Paul; Dudley, Gary A.; Tesch, Per A.; Hather, Bruce M.
1990-01-01
In our quest to understand, and eventually prevent, the loss of muscle strength and mass that occurs during prolonged periods in microgravity, we have organized our research approach by systems and useful terrestrial analogs. Our hypothesis was that: The eccentric movement, or lengthening component, of dynamic, resistive exercise, is required for the production of the greatest gains in strength and muscle hypertrophy in the most metabolically efficient, and time effective manner. The exercises selected were leg presses, leg (knee) extensions, and hamstring curls. In this 30 week study, 38 male subjects, between the ages of 25 and 50, were divided into four groups. One group performed 5 sets of 8-12 repetitions per set of conventional concentric/eccentric (CON/ECC) exercises. Another group performed only the concentric (CON) movement on the same schedule. The third group performed twice the number of sets in the concentric only mode (CON/CON), and the last group served as controls. We interpret these data as convincing evidence that the eccentric component of heavy resistance training is required along with the concentric for the most effective increase in strength and muscle fiber size in the least time. We also conclude that such heavy exercise of any such muscle group need not consume inordinately long periods of time, and is quite satisfactorily effective when performed on 72 hour centers.
Processes involved in oculomotor adaptation to eccentric reading.
Fornos, Angélica Pérez; Sommerhalder, Jörg; Rappaz, Benjamin; Pelizzone, Marco; Safran, Avinoam B
2006-04-01
Adaptation to eccentric viewing in subjects with a central scotoma remains poorly understood. The purpose of this study was to analyze the adaptation stages of oculomotor control to forced eccentric reading in normal subjects. Three normal adults (25.7 +/- 3.8 years of age) were trained to read full-page texts using a restricted 10 degrees x 7 degrees viewing window stabilized at 15 degrees eccentricity (lower visual field). Gaze position was recorded throughout the training period (1 hour per day for approximately 6 weeks). In the first sessions, eye movements appeared inappropriate for reading, mainly consisting of reflexive vertical (foveating) saccades. In early adaptation phases, both vertical saccade count and amplitude dramatically decreased. Horizontal saccade frequency increased in the first experimental sessions, then slowly decreased after 7 to 15 sessions. Amplitude of horizontal saccades increased with training. Gradually, accurate line jumps appeared, the proportion of progressive saccades increased, and the proportion of regressive saccades decreased. At the end of the learning process, eye movements mainly consisted of horizontal progressions, line jumps, and a few horizontal regressions. Two main adaptation phases were distinguished: a "faster" vertical process aimed at suppressing reflexive foveation and a "slower" restructuring of the horizontal eye movement pattern. The vertical phase consisted of a rapid reduction in the number of vertical saccades and a rapid but more progressive adjustment of remaining vertical saccades. The horizontal phase involved the amplitude adjustment of horizontal saccades (mainly progressions) to the text presented and the reduction of regressions required.
Pons-Llinares, J.; Antonino-Daviu, J.; Roger-Folch, J.; Moríñigo-Sotelo, D.; Duque-Pérez, O.
2014-10-01
This paper researches the detection of mixed eccentricity in Inverter-Fed Induction Motors. The classic FFT method cannot be applied when the stator current captured is not in steady state, which is very common in these motors. Therefore, a transform able to detect the time-frequency evolutions of the components present in the transient signal captured must be applied. In order to optimize the result, a method to calculate the theoretical time-frequency evolution of the stator current components is presented, using only the captured current. This previously obtained information enables the use of the proposed transform: the Adaptive Slope Transform, based on appropriately choosing the atom slope in each point analyzed. Thanks to its adaptive characteristics, the time-frequency evolution of the main components in a stator transient current is traced precisely and with high detail in the 2D time-frequency plot obtained. As a consequence, the time-frequency plane characteristic patterns produced by the Eccentricity Related Harmonics are easily and clearly identified enabling a reliable diagnosis. Moreover, the problem of quantifying the presence of the fault is solved presenting a simple and easy to apply method. The transform capabilities have been shown successfully diagnosing an Inverter-Fed Induction Motor with mixed eccentricity during a startup, a decrease in the assigned frequency, and a load variation with and without slip compensation.
Climate of an Earth-Like World with Changing Eccentricity
Kohler, Susanna
2017-02-01
Having a giant planet like Jupiter next door can really wreak havoc on your orbit! A new study examines what such a bad neighbor might mean for the long-term climate of an Earth-like planet.Influence of a Bad NeighborThe presence of a Jupiter-like giant planet in a nearby orbit can significantly affect how terrestrial planets evolve dynamically, causing elements like the planets orbital eccentricities and axial tilts to change over time. Earth is saved this inconvenience Jupiter isnt close enough to significantly influence us, and our large moon stabilizes our orbit against Jupiters tugs.Top panels: Authors simulationoutcomes for Case1, in which the planets eccentricity varies from 0 to 0.283 over 6500 years. Bottom panels: Outcomes for Case 2, in which the planets eccentricity varies from 0 to 0.066 over 4500 years. The highereccentricities reached in Case 1 causes the climate parameters to vary more widely. Click for a better look! [Way Georgakarakos 2017]Mars, on the other hand, isnt as lucky: its possible that Jupiters gravitational pull causes Marss axial tilt, for instance, to evolve through a range as large as 0 to 60 degrees on timescales of millions of years! Marss orbital eccentricity is similarly thought to vary due to Jupiters influence, and both of these factors play a major role in determining Marss climate.As exoplanet missions discover more planets many of which are Earth-like we must carefully consider which among these are most likely to be capable of sustaining life. If having a nearby neighbor like a Jupiter can tug an Earth-like world into an orbit with varying eccentricity, how does this affect the planets climate? Will the planet remain temperate? Or will it develop a runaway heating or cooling effect as it orbits, rendering it uninhabitable?Oceans and OrbitsTo examine these questions, two scientists have built the first ever 3D global climate model simulations of an Earth-like world using a fully coupled ocean (necessary for understanding
Effects of eccentric versus concentric training on thigh muscle strength and EMG.
Seger, J Y; Thorstensson, A
2005-01-01
The purpose of this study was to compare pure eccentric and concentric strength training regarding possible specific effects of muscle action type on neuromuscular parameters, such as a decreased inhibition during maximal voluntary eccentric actions. Two groups of young healthy adult men performed 10 weeks of either eccentric or concentric unilateral isokinetic knee extensor training at 90 degrees.s(-1), 4 sets of 10 maximal efforts, 3 days a week. Knee extensor torque and surface EMG from the quadriceps and hamstring muscle groups were collected and quantified in a window between 30 and 70 degrees knee angle (range of motion 90-5 degrees ) during maximal voluntary eccentric and concentric knee extensor actions at 30, 90, and 270 degrees.s(-1). Changes in strength of the trained legs revealed more signs of specificity related to velocity and contraction type after eccentric than concentric training. No major training effects were present in eccentric to concentric ratios of agonist EMG or in relative antagonist (hamstring) activation. Thus, for the trained leg, the muscle action type and speed specific changes in maximal voluntary eccentric strength could not be related to any effects on neural mechanisms, such as a selective increase in muscle activation during eccentric actions. Interestingly, with both types of training there were specific cross-education effects, that is, action type and velocity specific increases in strength occurred in the contralateral, untrained, leg, accompanied by a specific increase in eccentric to concentric EMG ratio after eccentric training.
Zhang, Zhihong; Tendulkar, Amod; Sun, Kay; Saloner, David A; Wallace, Arthur W; Ge, Liang; Guccione, Julius M; Ratcliffe, Mark B
2011-01-01
Both the Young-Laplace law and finite element (FE) based methods have been used to calculate left ventricular wall stress. We tested the hypothesis that the Young-Laplace law is able to reproduce results obtained with the FE method. Magnetic resonance imaging scans with noninvasive tags were used to calculate three-dimensional myocardial strain in 5 sheep 16 weeks after anteroapical myocardial infarction, and in 1 of those sheep 6 weeks after a Dor procedure. Animal-specific FE models were created from the remaining 5 animals using magnetic resonance images obtained at early diastolic filling. The FE-based stress in the fiber, cross-fiber, and circumferential directions was calculated and compared to stress calculated with the assumption that wall thickness is very much less than the radius of curvature (Young-Laplace law), and without that assumption (modified Laplace). First, circumferential stress calculated with the modified Laplace law is closer to results obtained with the FE method than stress calculated with the Young-Laplace law. However, there are pronounced regional differences, with the largest difference between modified Laplace and FE occurring in the inner and outer layers of the infarct borderzone. Also, stress calculated with the modified Laplace is very different than stress in the fiber and cross-fiber direction calculated with FE. As a consequence, the modified Laplace law is inaccurate when used to calculate the effect of the Dor procedure on regional ventricular stress. The FE method is necessary to determine stress in the left ventricle with postinfarct and surgical ventricular remodeling. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Zhang, Zhihong; Tendulkar, Amod; Sun, Kay; Stander, Nielen; Saloner, David A.; Wallace, Arthur W.; Ge, Liang; Guccione, Julius M.; Ratcliffe, Mark B.
2010-01-01
Objectives Both the Young Laplace law and finite element (FE) based methods have been used to calculate left ventricular (LV) wall stress. We tested the hypothesis that the Young Laplace law is able to reproduce results obtained with FE method. Methods Magnetic resonance (MRI) images with non-invasive tags were used to calculate 3D myocardial strain in five sheep 16 weeks after anteroapical myocardial infarction and in one of those sheep 6 weeks after a Dor procedure. Animal specific FE models were created from the remaining five animals using MRI images obtained at early diastolic filling. FE based stress in the fiber, cross fiber and circumferential directions was calculated and compared to stress calculated with (Young Laplace law) and without (Modified Laplace) the assumption that wall thickness is very much less than the radius of curvature. Results First,circumferential stress calculated with the Modified Laplace law is closer to results obtained with the FE method than stress calculated with the Young Laplace law. However, there are pronounced regional differences with the largest difference between Modified Laplace and FE occurring especially in the inner and outer layers of the infarct borderzone. Also, stress calculated with Modified Laplace is very different than stress in the fiber and cross fiber direction calculated with FE. As a consequence, the Modified Laplace law is inaccurate when used to calculate the effect of the Dor procedure on regional ventricular stress. Conclusion The FE method is necessary to determine stress in the LV with post infarct and surgical ventricular remodeling. PMID:21172505
Computing the Distribution of Pareto Sums Using Laplace Transformation and Stehfest Inversion
Harris, C. K.; Bourne, S. J.
2017-05-01
that is shared by the sum of an arbitrary number of such variables. The technique involves applying the Laplace transform to the normalized sum (which is simply the product of the Laplace transforms of the densities of the individual variables, with a suitable scaling of the Laplace variable), and then inverting it numerically using the Gaver-Stehfest algorithm. After validating the method using a number of test cases, it was applied to address the distribution of total seismic moment, and the quantiles computed for various numbers of seismic events were compared with those obtained in the literature using Monte Carlo simulation. Excellent agreement was obtained. As an application, the method was applied to the evolution of total seismic moment released by tremors due to gas production in the Groningen gas field in the northeastern Netherlands. The speed, accuracy and ease of implementation of the method allows the development of accurate correlations for constraining statistical seismological models using, for example, the maximum-likelihood method. It should also be of value in other natural processes governed by Pareto distributions with exponent less than unity.
Measurement accuracy of articulated arm CMMs with circular grating eccentricity errors
Zheng, Dateng; Yin, Sanfeng; Luo, Zhiyang; Zhang, Jing; Zhou, Taiping
2016-11-01
The 6 circular grating eccentricity errors model attempts to improve the measurement accuracy of an articulated arm coordinate measuring machine (AACMM) without increasing the corresponding hardware cost. We analyzed the AACMM’s circular grating eccentricity and obtained the 6 joints’ circular grating eccentricity error model parameters by conducting circular grating eccentricity error experiments. We completed the calibration operations for the measurement models by using home-made standard bar components. Our results show that the measurement errors from the AACMM’s measurement model without and with circular grating eccentricity errors are 0.0834 mm and 0.0462 mm, respectively. Significantly, we determined that measurement accuracy increased by about 44.6% when the circular grating eccentricity errors were corrected. This study is significant because it promotes wider applications of AACMMs both in theory and in practice.
Eston, R. G.; Mickleborough, J; Baltzopoulos, V
1995-01-01
An eccentric muscle activation is the controlled lengthening of the muscle under tension. Functionally, most leg muscles work eccentrically for some part of a normal gait cycle, to support the weight of the body against gravity and to absorb shock. During downhill running the role of eccentric work of the 'anti-gravity' muscles--knee extensors, muscles of the anterior and posterior tibial compartments and hip extensors--is accentuated. The purpose of this paper is to review the relationship b...
Isacco, Laurie; Ritter, Ophélie; Tordi, Nicolas; Laroche, Davy; Degano, Bruno; Bouhaddi, Malika; Rakobowchuk, Mark; Mourot, Laurent
2016-11-01
This study investigated substrate oxidation in concentric and eccentric cycling matched for aerobic power output in the postprandial state. Energy expenditure, respiratory exchange ratio, and fat and carbohydrate oxidation rates were measured at rest and after 15, 30, and 45 min of eccentric and concentric cycling in 12 men. Absolute and relative aerobic power output and energy expenditure were similar during concentric and eccentric exercise. No effect of exercise modality was observed for substrate metabolism.
Initial value problem of the toroidal ion temperature gradient mode
Energy Technology Data Exchange (ETDEWEB)
Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M. [National Inst. for Fusion Science, Toki, Gifu (Japan); Horton, W.
1998-06-01
The initial value problem of the toroidal ion temperature gradient mode is studied based on the Laplace transform of the ion gyrokinetic equation and the electron Boltzmann relation with the charge neutrality condition. Due to the toroidal magnetic drift, the Laplace-transformed density and potential perturbations have a branch cut as well as poles on the complex-frequency plane. The inverse Laplace transform shows that the temporal evolution of the density and potential perturbations consists of the normal modes and the continuum mode, which correspond to contributions from the poles and the branch cut, respectively. The normal modes have exponential time dependence with the eigenfrequencies determined by the dispersion relation while the continuum mode shows power-law decay oscillation. For the stable case, the long-time asymptotic behavior of the potential and density perturbations is dominated by the continuum mode which decays slower than the normal modes. (author)
Grounding after moderate eccentric contractions reduces muscle damage.
Brown, Richard; Chevalier, Gaétan; Hill, Michael
2015-01-01
Grounding a human to the earth has resulted in changes in the physiology of the body. A pilot study on grounding and eccentric contractions demonstrated shortened duration of pain, reduced creatine kinase (CK), and differences in blood parameters. This follow-up study was conducted to investigate the effects of grounding after moderate eccentric contractions on pain, CK, and complete blood counts. Thirty-two healthy young men were randomly divided into grounded (n=16) and sham-grounded (n=16) groups. On days 1 through 4, visual analog scale for pain evaluations and blood draws were accomplished. On day 1, the participants performed eccentric contractions of 200 half-knee bends. They were then grounded or sham-grounded to the earth for 4 hours on days 1 and 2. Both groups experienced pain on all posttest days. On day 2, the sham-grounded group experienced significant CK increase (Pgrounded group did not increase significantly; the between-group difference was significant (P=0.04). There was also an increase in the neutrophils of the grounded group on day 3 (P=0.05) compared to the sham-grounded group. There was a significant increase in platelets in the grounded group on days 2 through 4. Grounding produced changes in CK and complete blood counts that were not shared by the sham-grounded group. Grounding significantly reduced the loss of CK from the injured muscles indicating reduced muscle damage. These results warrant further study on the effects of earthing on delayed onset muscle damage.
Eccentricity samples: Implications on the potential and the velocity distribution
Directory of Open Access Journals (Sweden)
Cubarsi R.
2017-01-01
Full Text Available Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. No 176011: Dynamics and Kinematics of Celestial Bodies and Systems
The orbital eccentricity distribution of solar-neighbourhood halo stars
Hattori, K.; Yoshii, Y.
2011-12-01
We present theoretical calculations for the differential distribution of stellar orbital eccentricity for a sample of solar-neighbourhood halo stars. Two types of static, spherical gravitational potentials are adopted to define the eccentricity e for given energy E and angular momentum L, such as an isochrone potential and a Navarro-Frenk-White potential that can serve as two extreme ends covering in between any realistic potential of the Milky Way halo. The solar-neighbourhood eccentricity distribution ΔN(e) is then formulated, based on a static distribution function of the form f(E, L) in which the velocity anisotropy parameter β monotonically increases in the radial direction away from the galaxy centre, such that β is below unity (near-isotropic velocity dispersion) in the central region and asymptotically approaches ˜1 (radially anisotropic velocity dispersion) in the far distant region of the halo. We find that ΔN(e) sensitively depends upon the radial profile of β, and this sensitivity is used to constrain such a profile in comparison with some observational properties of ΔNobs(e) recently reported by Carollo et al. In particular, the linear e-distribution and the fraction of higher e stars for their sample of solar-neighbourhood inner-halo stars rule out a constant profile of β, contrary to the opposite claim by Bond et al. Our constraint of β≲ 0.5 at the galaxy centre indicates that the violent relaxation that has acted on the inner halo is effective within a scale radius of ˜10 kpc from the galaxy centre. We argue that our result would help to understand the formation and evolution of the Milky Way halo.
Collisions and drag in debris discs with eccentric parent belts
Löhne, T.; Krivov, A. V.; Kirchschlager, F.; Sende, J. A.; Wolf, S.
2017-08-01
Context. High-resolution images of circumstellar debris discs reveal off-centred rings that indicate past or ongoing perturbation, possibly caused by secular gravitational interaction with unseen stellar or substellar companions. The purely dynamical aspects of this departure from radial symmetry are well understood. However, the observed dust is subject to additional forces and effects, most notably collisions and drag. Aims: To complement the studies of dynamics, we therefore aim to understand how the addition of collisional evolution and drag forces creates new asymmetries and strengthens or overrides existing ones. Methods: We augmented our existing numerical code Analysis of Collisional Evolution (ACE) by an azimuthal dimension, the longitude of periapse. A set of fiducial discs with global eccentricities ranging from 0 to 0.4 was evolved over gigayear timescales. Size distribution and spatial variation of dust were analysed and interpreted. We discuss the basic impact of belt eccentricity on spectral energy distributions and images. Results: We find features imposed on characteristic timescales. First, radiation pressure defines size cut-offs that differ between periapse and apoapse, resulting in an asymmetric halo. The differences in size distribution make the observable asymmetry of the halo depend on wavelength. Second, collisional equilibrium prefers smaller grains on the apastron side of the parent belt, reducing the effect of pericentre glow and the overall asymmetry. Third, Poynting-Robertson drag fills the region interior to an eccentric belt such that the apastron side is more tenuous. Interpretation and prediction of the appearance in scattered light is problematic when spatial and size distribution are coupled.
Eccentricity Samples: Implications on the Potential and the Velocity Distribution
Cubarsi, R.; Stojanović, M.; Ninković, S.
2017-06-01
Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples.
Nature of occlusion during eccentric mandibular movements in young adults.
Sreekumar, A V; Rupesh, P L; Pradeep, Nishna
2012-09-01
The aim of this study was to find out the nature of occlusion and tooth contact during various eccentric mandibular movements in young adults with class I occlusion. The sample consisted of 100 young adults with class I occlusion with full complement of teeth. Anterior disclusion in centric occlusion was demonstrated using a shim stock interposed between the upper and lower anteriors. Disclusion of posteriors was ascertained during 1.5 mm straight protusion and in edge-to-edge protrusion, visually as well as using a silk floss method. Posterior disclusion was also verified during lateroprotrusion and crossover. Besides these occlusal wear of teeth also were observed. The results of this study showed that the anterior disclusion is seen only in one-fourth of the subjects compared to almost three-fourth showing posterior disclusion. Mutually protected occlusion was also seen only in one-fourth of the subjects. Canine protective mechanism is seen in a relatively large number of subjects, but it was not overwhelmingly predominant. No correlation could be established between cuspid wear and the type of occlusion. A relatively high percentage of subjects showed wear on posterior teeth when there was no posterior disclusion. From the above study it is seen that posterior disclusion is acknowledged as a common factor except when a bilateral balance is present. Since bilateral balance is harmful, the ideal occlusal relationship in eccentric movements is in favor of posterior disclusion. Posterior disclusion is easily obtainable when restorations are planned. From the findings and results it has been possible to make some contributions on the nature of tooth contacts and disclusion during various eccentric movements and compare it with the requirements of ideal occlusion.
Computing the Ediz eccentric connectivity index of discrete dynamic structures
Directory of Open Access Journals (Sweden)
Wu Hualong
2017-06-01
Full Text Available From the earlier studies in physical and chemical sciences, it is found that the physico-chemical characteristics of chemical compounds are internally connected with their molecular structures. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. In our article, we study the physico-chemical properties of certain molecular structures via computing the Ediz eccentric connectivity index from mathematical standpoint. The results we yielded mainly apply to the techniques of distance and degree computation of mathematical derivation, and the conclusions have guiding significance in physical engineering.
Biomechanical characteristics of the eccentric Achilles tendon exercise
DEFF Research Database (Denmark)
Henriksen, Marius; Aaboe, Jens; Bliddal, Henning
2009-01-01
into the biomechanics of the exercise may improve our understanding. METHODS: Sixteen healthy subjects performed one-legged full weight bearing ankle plantar and dorsiflexion exercises during which three-dimensional ground reaction forces (GRF), ankle joint kinematics and surface electromyography (EMG) of the lower leg....... No differences in Achilles tendon loads were found. INTERPRETATION: This descriptive study demonstrates differences in the movement biomechanics between the eccentric and concentric phases of one-legged full weight bearing ankle dorsal and plantar flexion exercises. In particular, the findings imply...
Computing the Ediz eccentric connectivity index of discrete dynamic structures
Wu, Hualong; Kamran Siddiqui, Muhammad; Zhao, Bo; Gan, Jianhou; Gao, Wei
2017-06-01
From the earlier studies in physical and chemical sciences, it is found that the physico-chemical characteristics of chemical compounds are internally connected with their molecular structures. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. In our article, we study the physico-chemical properties of certain molecular structures via computing the Ediz eccentric connectivity index from mathematical standpoint. The results we yielded mainly apply to the techniques of distance and degree computation of mathematical derivation, and the conclusions have guiding significance in physical engineering.
Directory of Open Access Journals (Sweden)
Nosratollah Hedayatpour
2015-01-01
Full Text Available Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered.
Evolution of eccentricity and inclination of hot protoplanets embedded in radiative discs
Eklund, Henrik; Masset, Frédéric S.
2017-07-01
We study the evolution of the eccentricity and inclination of protoplanetary embryos and low-mass protoplanets (from a fraction of an Earth mass to a few Earth masses) embedded in a protoplanetary disc, by means of three-dimensional hydrodynamics calculations with radiative transfer in the diffusion limit. When the protoplanets radiate in the surrounding disc the energy released by the accretion of solids, their eccentricity and inclination experience a growth towards values that depend on the luminosity-to-mass ratio of the planet, which are comparable to the disc's aspect ratio and which are reached over time-scales of a few thousand years. This growth is triggered by the appearance of a hot, underdense region in the vicinity of the planet. The growth rate of the eccentricity is typically three times larger than that of the inclination. In long-term calculations, we find that the excitation of eccentricity and the excitation of inclination are not independent. In the particular case in which a planet has initially a very small eccentricity and inclination, the eccentricity largely overruns the inclination. When the eccentricity reaches its asymptotic value, the growth of inclination is quenched, yielding an eccentric orbit with a very low inclination. As a side result, we find that the eccentricity and inclination of non-luminous planets are damped more vigorously in radiative discs than in isothermal discs.
Yokoyama, Tadashi; Frouard, J. H.; Deienno, R.
2013-05-01
Abstract (2,250 Maximum Characters): In this work we consider the rotational long term dynamics of an axy-simmetric body under the action of a high inclined and eccentric disturber. The problem is written in terms of Andoyer canonical variables (L,G,H, l,g,h), with respect to an independent inertial frame. Since A=B (moments of inertia ), the l angle is an ignorable variable, so that spin-orbit resonance is ruled out. Therefore the Hamiltonian can be averaged in the mean anomaly of the orbital motion of the disturber. An extra average is still possible in g as it is a fast Andoyer variable. In order to have a first and rough idea of the real dynamics, the disturber is assumed in a simplified precessing keplerian motion (Henrard & Schwanen, 2004) . Then the Hamiltonian is reduced to a problem of one degree of freedom and the level curves show a gross idea of the basic dynamics. In particular the curves show interesting equilibrium points, some of them are related to Cassini’s second law. Depending on the mass and eccentricity or inclination of the disturber, a strong resonance between h and longitude of the node of the disturber can appear. This resonance can cause interesting variations of the inclination of the plane normal to the angular momentum of the perturbed body. Finally, numerical integrations of the complete averaged problem are performed. In particular, we study the possible cumulative effects of temporary satellites when they orbit their host planet in high inclined and eccentric orbit. These satellites ( planetesimals) might have existed during the planetary migration but due to Lidov-Kozai resonance they should have ejected after some time.
Jorjandi, Sahar; Rabbani, Hossein; Kafieh, Raheleh; Amini, Zahra
2017-07-01
Optical Coherence Tomography (OCT) is known as a non-invasive and high resolution imaging modality in ophthalmology. Effecting noise on the OCT images as well as other reasons cause a random behavior in these images. In this study, we introduce a new statistical model for retinal layers in healthy OCT images. This model, namely asymmetric Normal Laplace (NL), fits well the advent of asymmetry and heavy-tailed in intensity distribution of each layer. Due to the layered structure of retina, a mixture model is addressed. It is proposed to evaluate the fitness criteria called Kull-back Leibler Divergence (KLD) and chi-square test along visual results. The results express the well performance of proposed model in fitness of data except for 6th and 7th layers. Using a complicated model, e.g. a mixture model with two component, seems to be appropriate for these layers. The mentioned process for train images can then be devised for a test image by employing the Expectation Maximization (EM) algorithm to estimate the values of parameters in mixture model.
Metric optimization for surface analysis in the Laplace-Beltrami embedding space.
Shi, Yonggang; Lai, Rongjie; Wang, Danny J J; Pelletier, Daniel; Mohr, David; Sicotte, Nancy; Toga, Arthur W
2014-07-01
In this paper, we present a novel approach for the intrinsic mapping of anatomical surfaces and its application in brain mapping research. Using the Laplace-Beltrami eigen-system, we represent each surface with an isometry invariant embedding in a high dimensional space. The key idea in our system is that we realize surface deformation in the embedding space via the iterative optimization of a conformal metric without explicitly perturbing the surface or its embedding. By minimizing a distance measure in the embedding space with metric optimization, our method generates a conformal map directly between surfaces with highly uniform metric distortion and the ability of aligning salient geometric features. Besides pairwise surface maps, we also extend the metric optimization approach for group-wise atlas construction and multi-atlas cortical label fusion. In experimental results, we demonstrate the robustness and generality of our method by applying it to map both cortical and hippocampal surfaces in population studies. For cortical labeling, our method achieves excellent performance in a cross-validation experiment with 40 manually labeled surfaces, and successfully models localized brain development in a pediatric study of 80 subjects. For hippocampal mapping, our method produces much more significant results than two popular tools on a multiple sclerosis study of 109 subjects.
Wang, Gang; Zhang, Xiaofeng; Su, Qingtang; Shi, Jie; Caselli, Richard J; Wang, Yalin
2015-05-01
Cortical thickness estimation in magnetic resonance imaging (MRI) is an important technique for research on brain development and neurodegenerative diseases. This paper presents a heat kernel based cortical thickness estimation algorithm, which is driven by the graph spectrum and the heat kernel theory, to capture the gray matter geometry information from the in vivo brain magnetic resonance (MR) images. First, we construct a tetrahedral mesh that matches the MR images and reflects the inherent geometric characteristics. Second, the harmonic field is computed by the volumetric Laplace-Beltrami operator and the direction of the steamline is obtained by tracing the maximum heat transfer probability based on the heat kernel diffusion. Thereby we can calculate the cortical thickness information between the point on the pial and white matter surfaces. The new method relies on intrinsic brain geometry structure and the computation is robust and accurate. To validate our algorithm, we apply it to study the thickness differences associated with Alzheimer's disease (AD) and mild cognitive impairment (MCI) on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Our preliminary experimental results on 151 subjects (51 AD, 45 MCI, 55 controls) show that the new algorithm may successfully detect statistically significant difference among patients of AD, MCI and healthy control subjects. Our computational framework is efficient and very general. It has the potential to be used for thickness estimation on any biological structures with clearly defined inner and outer surfaces. Copyright © 2015 Elsevier B.V. All rights reserved.
Metric Optimization for Surface Analysis in the Laplace-Beltrami Embedding Space
Lai, Rongjie; Wang, Danny J.J.; Pelletier, Daniel; Mohr, David; Sicotte, Nancy; Toga, Arthur W.
2014-01-01
In this paper we present a novel approach for the intrinsic mapping of anatomical surfaces and its application in brain mapping research. Using the Laplace-Beltrami eigen-system, we represent each surface with an isometry invariant embedding in a high dimensional space. The key idea in our system is that we realize surface deformation in the embedding space via the iterative optimization of a conformal metric without explicitly perturbing the surface or its embedding. By minimizing a distance measure in the embedding space with metric optimization, our method generates a conformal map directly between surfaces with highly uniform metric distortion and the ability of aligning salient geometric features. Besides pairwise surface maps, we also extend the metric optimization approach for group-wise atlas construction and multi-atlas cortical label fusion. In experimental results, we demonstrate the robustness and generality of our method by applying it to map both cortical and hippocampal surfaces in population studies. For cortical labeling, our method achieves excellent performance in a cross-validation experiment with 40 manually labeled surfaces, and successfully models localized brain development in a pediatric study of 80 subjects. For hippocampal mapping, our method produces much more significant results than two popular tools on a multiple sclerosis study of 109 subjects. PMID:24686245
Plain strain problem of poroelasticity using eigenvalue approach
Indian Academy of Sciences (India)
A plain strain problem of an isotropic elastic liquid-saturated porous medium in poroelasticity has been studied. The eigenvalue approach using the Laplace and Fourier transforms has been employed and these transforms have been inverted by using a numerical technique. An application of infinite space with ...
New solutions of stokes problem for an oscillating plate using ...
African Journals Online (AJOL)
New solutions of stokes problem for an oscillating plate using Laplace transform. Ehsan Ellahi Ashraf, Muhammad R Mohyuddin. Abstract. An exact solution of the flow of a Newtonian fluid on a porous plate is obtained when the plate at y = 0 is oscillating with the amplitude β and oscillating frequency ω with the assumption ...
Jäntschi, Lorentz; Bálint, Donatella; Bolboacă, Sorana D
2016-01-01
Multiple linear regression analysis is widely used to link an outcome with predictors for better understanding of the behaviour of the outcome of interest. Usually, under the assumption that the errors follow a normal distribution, the coefficients of the model are estimated by minimizing the sum of squared deviations. A new approach based on maximum likelihood estimation is proposed for finding the coefficients on linear models with two predictors without any constrictive assumptions on the distribution of the errors. The algorithm was developed, implemented, and tested as proof-of-concept using fourteen sets of compounds by investigating the link between activity/property (as outcome) and structural feature information incorporated by molecular descriptors (as predictors). The results on real data demonstrated that in all investigated cases the power of the error is significantly different by the convenient value of two when the Gauss-Laplace distribution was used to relax the constrictive assumption of the normal distribution of the error. Therefore, the Gauss-Laplace distribution of the error could not be rejected while the hypothesis that the power of the error from Gauss-Laplace distribution is normal distributed also failed to be rejected.
The role of eccentric exercise in sport injuries rehabilitation.
Frizziero, Antonio; Trainito, Sabina; Oliva, Francesco; Nicoli Aldini, Nicolò; Masiero, Stefano; Maffulli, Nicola
2014-06-01
Sports injuries frequently involve tendons, muscles and ligaments. The variable outcome of surgery and medical treatment support early functional treatments. Eccentric exercise (EE) showed effectiveness in the management of Achilles tendinopathy (AT), patellar tendinopathy (PT) and lateral epicondyle tendinopathy (LET). Preliminary results of EE in other tendinopathies and sports injuries suggest its wide prescription in the sport rehabilitation field. A comprehensive search of PubMed, Web of Science, the Cochrane Collaboration Database, Physiotherapy Evidence Database (PEDro), Evidence Based Medicine (EBM) Search review, National Guidelines, Scopus and Google Scholar was performed using keywords such as 'eccentric exercise', 'sports injuries rehabilitation', 'tendinopathy', 'hamstrings strain' 'adductor injuries' and 'ACL reconstruction rehabilitation'. EE, alone or associated with other therapies, represents a feasible, cost-effective and successful tool in the treatment of well-known targets and might be promising in shoulder tendinopathy, adductor-related groin pain, hamstring strains, and ACL rehabilitation. The lack of standardization of protocols, the variable amount, quality and follow-up of studies, the different anatomy and pathophysiology of the therapeutic targets limit the evidence of applicability of EE to sports injuries. The role of pathology and biomechanics in the response to EE should be further investigated. New randomized controlled trials should test the effectiveness of standardized EE regimens to various sites of sports injuries. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Eccentric Exercise, Kinesiology Tape, and Balance in Healthy Men.
Hosp, Simona; Folie, Ramona; Csapo, Robert; Hasler, Michael; Nachbauer, Werner
2017-07-01
Deficits in balance have been identified as a possible risk factor for knee injuries in athletes. Despite a lack of evidence for its effectiveness, kinesiology tape (KT) is widely used to prevent knee injuries. To investigate the influence of KT at the knee joint on balance ability in healthy men after eccentric exercise. Crossover study. University laboratory. Twelve young men with no history of lower limb injury volunteered for the study (age = 23.3 ± 2.6 years). All participants were students enrolled in a sports science program. Participants performed the balance test with and without KT at the knee joint on 2 separate days. The ability to maintain balance was assessed during a single-legged-stance test using a computerized balance-stability test system. The test was performed before and after 30 minutes of downhill walking on a treadmill. Eccentric exercise resulted in a deterioration of balance ability, which was attenuated by the use of KT. Further analyses revealed that the effectiveness of KT depended on the participant's balance status, with the preventive effect being greater in participants presenting with poorer baseline balance ability. Applied to the knee joint, KT counteracted the exercise-related deterioration of balance ability observed when no tape was used. Participants presenting with below-average balance ability received more benefit from KT. By preventing exercise-related impairment of balance ability, KT might help to reduce the risk of sport-associated knee injuries.
Arterial stiffness results from eccentrically biased downhill running exercise.
Burr, J F; Boulter, M; Beck, K
2015-03-01
There is increasing evidence that select forms of exercise are associated with vascular changes that are in opposition to the well-accepted beneficial effects of moderate intensity aerobic exercise. To determine if alterations in arterial stiffness occur following eccentrically accentuated aerobic exercise, and if changes are associated with measures of muscle soreness. Repeated measures experimental cohort. Twelve (m=8/f=4) moderately trained (VO₂max=52.2 ± 7.4 ml kg(-1)min(-1)) participants performed a downhill run at -12° grade using a speed that elicited 60% VO₂max for 40 min. Cardiovascular and muscle soreness measures were collected at baseline and up to 72 h post-running. Muscle soreness peaked at 48 h (p=running is associated with arterial stiffening in the absence of an extremely prolonged duration or fast pace. The timing of alterations coincides with the well-documented inflammatory response that occurs from the muscular insult of downhill running, but whether the observed changes are a result of either systemic or local inflammation is yet unclear. These findings may help to explain evidence of arterial stiffening in long-term runners and following prolonged duration races wherein cumulative eccentric loading is high. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Long-term evaluation of eccentric viewing spectacles in patients with bilateral central scotomas.
Verezen, C.A.; Meulendijks, C.F.M.; Hoyng, C.B.; Klevering, B.J.
2006-01-01
PURPOSE: Yoked prism spectacles (eccentric viewing spectacles [EVS]) facilitate eccentric viewing in patients with bilateral central scotomas. This study was conducted to evaluate the long-term success and patient satisfaction of this type of low-vision aid. METHODS. In this retrospective
Koller, Arnold; Fuchs, Birgit; Leichtfried, Veronika; Schobersberger, Wolfgang
2015-01-01
Background To effectively prevent injury in recreational alpine skiing, it is important to identify modifiable risk factors that can be targeted through exercise and training. Fatigue is a potential risk factor in recreational skiing, but no investigations have evaluated concentric/eccentric quadriceps and hamstring fatigue in recreational skiers. We tested the hypothesis that recreational skiing is associated with more pronounced eccentric as compared with concentric muscle fatigue. Methods Twenty-four healthy and fit recreational skiers (14 male and 10 female) performed an isokinetic muscle test 1 day before, 1 h after, and 24 h after a 4 h skiing session. The testing protocol consisted of concentric and eccentric quadriceps and hamstring contractions for both legs. Results Eccentric peak hamstring torque (both thighs) and eccentric peak quadriceps torque (left thigh) were reduced in male and female participants (pskiing session. There were no other significant findings. Summary Recreational skiing is associated with prolonged (at least 24 h) eccentric quadriceps (left thigh) and hamstring (both thighs) fatigue in men and women. Eccentric quadriceps and hamstring fatigue may be a potential injury risk factor in male and female recreational skiers. This provides some justification for judicious use of additional eccentric training modalities for alpine skiing. PMID:27900115
Eccentric overload training in patients with a chronic Achilles tendinopathy: a systematic review.
R. de Knikker; T. Takken; J.J. Kingma; Dr. H.M. Wittink
2007-01-01
Background: Eccentric overload training seems to be a promising conservative intervention in patients with chronic Achilles tendinopathy. The efficacy of eccentric overload training on the outcome measures of pain and physical functioning are not exactly clear. Study design: Systematic review of the
Estimates of the Hyperbolic Radius Gradient and Schwarz–Pick Inequalities for the Eccentric Annulus
Directory of Open Access Journals (Sweden)
D.Kh. Giniyatova
2016-06-01
Full Text Available Let Ω and Π be hyperbolic domains in the complex plane C. By A(Ω, Π we shall designate the class of functions f which are holomorphic or meromorphic in Ω and such that f(Ω ϲ Π. Estimates of the higher derivatives |f(n(z| of the analytic functions from the class A(Ω, Π with the punishing factor Cn(Ω, Π is one of the main problems of geometric theory of functions. These estimates are commonly referred to as Schwarz–Pick inequalities. Many results concerning this problem have been obtained for simply connected domains. Therefore, the research interest in such problems for finitely connected domains is natural. As known, the constant C2(Ω, Π for any pairs of hyperbolic domains depends only on the hyperbolic radius gradient of the corresponding domains. The main result of this paper is estimates of the hyperbolic radius gradient and the punishing factor in the Schwarz–Pick inequality for the eccentric annulus. We also consider the extreme case – the randomly punctured circle.
Li, De Z.; Wang, Wilson; Ismail, Fathy
2017-11-01
Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.
Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye
Roorda, Austin; Campbell, Melanie C. W.; Bobier, W. R.
1995-08-01
In eccentric photorefraction, light returning from the retina of the eye is photographed by a camera focused on the eye's pupil. We use a geometrical model of eccentric photorefraction to generate intensity profiles across the pupil image. The intensity profiles for three different monochromatic aberration functions induced in a single eye are predicted and show good agreement with the measured eccentric photorefraction intensity profiles. A directional reflection from the retina is incorporated into the calculation. Intensity profiles for symmetric and asymmetric aberrations are generated and measured. The latter profile shows a dependency on the source position and the meridian. The magnitude of the effect of thresholding on measured pattern extents is predicted. Monochromatic aberrations in human eyes will cause deviations in the eccentric photorefraction measurements from traditional crescents caused by defocus and may cause misdiagnoses of ametropia or anisometropia. Our results suggest that measuring refraction along the vertical meridian is preferred for screening studies with the eccentric photorefractor.
Numerical solutions of a three-point boundary value problem with an ...
African Journals Online (AJOL)
Numerical solutions of a three-point boundary value problem with an integral condition for a third-order partial differential equation by using Laplace transform method Solutions numeriques d'un probleme pour une classe d'equations differentielles d'ordr.
Probing Gravitational Theories with Eccentric Eclipsing Detached Binary Stars
Directory of Open Access Journals (Sweden)
Leopoldo Milano
2014-12-01
Full Text Available In this paper, we compare the effects of different theories of gravitation on the apsidal motion of eccentric eclipsing detached binary stars. The comparison is performed by using the formalism of the post-Newtonian parametrization to calculate the theoretical advance at periastron and compare it to the observed one, after having considered the effects of the structure and rotation of the involved stars. A variance analysis on the results of this comparison shows that no signicant difference can be found due to the effect of the different theories under test with respect to the standard general relativity (GR. It will be possible to observe differences, as we would expect, by checking the observed period variation on a much larger lapse of time.
Importance of eccentric actions in performance adaptations to resistance training
Dudley, Gary A.; Miller, Bruce J.; Buchanan, Paul; Tesch, Per A.
1991-01-01
The importance of eccentric (ecc) muscle actions in resistance training for the maintenance of muscle strength and mass in hypogravity was investigated in experiments in which human subjects, divided into three groups, were asked to perform four-five sets of 6 to 12 repetitions (rep) per set of three leg press and leg extension exercises, 2 days each weeks for 19 weeks. One group, labeled 'con', performed each rep with only concentric (con) actions, while group con/ecc with performed each rep with only ecc actions; the third group, con/con, performed twice as many sets with only con actions. Control subjects did not train. It was found that resistance training wih both con and ecc actions induced greater increases in muscle strength than did training with only con actions.
Xanthine oxidase in human skeletal muscle following eccentric exercise
DEFF Research Database (Denmark)
Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.
1997-01-01
1. The present study tested the hypothesis that the level of xanthine oxidase is elevated in injured human skeletal muscle in association with inflammatory events. Seven male subjects performed five bouts of strenuous one-legged eccentric exercise. Muscle biopsies from both the exercised...... and the control leg, together with venous blood samples, were obtained prior to exercise and at 45 min, 24, 48 and 96 h after exercise. The time courses of xanthine oxidase immunoreactivity and indicators of muscle damage and inflammation were examined. 2. The number of xanthine oxidase structures observed...... by immunohistological methods in the exercised muscle was up to eightfold higher than control from day 1 to day 4 after exercise (P
DEFF Research Database (Denmark)
Souza-Silva, Eduardo; Wittrup Christensen, Steffan; Hirata, Rogerio Pessoto
2017-01-01
Purpose: Delayed onset muscle soreness (DOMS) occur within 1-2 days after eccentric exercise but the mechanism mediating hypersensitivity is unclear. This study hypothesized that eccentric exercise reduces the blood flow response following muscle contractions and cuff occlusion, which may result ...... that eccentric contractions decreased vessel diameter, impaired the blood flow response and promoted hyperalgesia. Thus, the results suggest that the blood flow reduction may be involved in the increased pain response after eccentric exercise....
Protein hydrolysates and recovery of muscle damage following eccentric exercise
Directory of Open Access Journals (Sweden)
Dale M.J.
2015-01-01
Full Text Available Background: A whey protein hydrolysate (NatraBoost XR; WPHNB has been shown to speed repair muscle damage. We sought to determine whether this benefit is specific to this hydrolysate to evaluate a marker for quality control. Methods: Three hydrolysates of the same whey protein isolate (WPI were prepared (WPHNB, WPH1 and WPH2. Isometric knee extensor strength was measured in 39 sedentary male participants before and after 100 maximal eccentric contractions of the knee extensors to induce muscle damage. Participants were then randomised to consume 250 ml of flavoured water (FW, n=9, or 250 ml of FW containing 25 g of either NatraBoost XR (n=3, WPH1 (n=9, WPH2 (n=9 or WPI (n=9. Strength was reassessed over the next seven days while the supplements were consumed daily. Fibroblasts were cultured for 48 hr in the presence of the different hydrolysates, WPI, saline or fetal bovine serum to ascertain effects on cell proliferation. Results: Strength was reduced in all treatment groups after eccentric exercise (P<0.001. Strength recovered steadily over 7 days in the FW, WPI, WPH1 and WPH2 treatment groups (P<0.001, with no difference between treatments (P=0.87. WPHNB promoted faster strength recovery compared with the other treatments (P<0.001. Fibroblast proliferation was greater with WPHNB compared with saline, WPI or the other hydrolysates (P<0.001. Conclusions: Promoting recovery from muscle damage seems unique to WPHNB. In vitro fibroblast proliferation may be a useful marker for quality control. It is not clear whether effects on fibroblast proliferation contribute to the in vivo effect of WPHNB on muscle damage.
Laplace-Pressure Actuation of Liquid Metal Devices For Reconfigurable Electromagnetics
Cumby, Brad Lee
it is resilient and shapeable to allow for reconfigurability. In this dissertation, first background information is given on the existing technology for reconfigurable microwave devices and the basic principles that these mechanisms are based upon. Then a new reconfigurable method is introduced that utilizes Laplace pressure. Materials that are associated with using liquid metals are discussed and an overall systematic view is given to provide a set of proof of concepts that are more applied and understandable by electronic designers and engineers. Finally a novel approach to making essential measurements of liquid metal microwave devices is devised and discussed. This dissertation encompasses a complete device design from materials used for fabrication, fabrication methods and measurement processes to provide a knowledge base for designing liquid metal microwave devices.
An Empirically Derived Three-Dimensional Laplace Resonance in the GJ 876 Planetary System
Nelson, Benjamin Earl; Robertson, Paul; Pritchard, Seth
2015-08-01
We report constraints on the three-dimensional orbital architecture for all four planets known to orbit the nearby M dwarf Gliese 876 (=GJ 876) based solely on Doppler measurements and demanding long-term orbital stability. Our dataset incorporates publicly available radial velocities taken with the ELODIE and CORALIE spectrographs, HARPS, and Keck HIRES as well as previously unpublished HIRES RVs. We first quantitatively assess the validity of the planets thought to orbit GJ 876 by computing the Bayes factors for a variety of different coplanar models using an importance sampling algorithm. We confirm that a four-planet model is indeed preferred over a three-planet model. Next, we apply a Newtonian MCMC algorithm (RUN DMC, B. Nelson et al. 2014) to perform a Bayesian analysis of the planet masses and orbits using an n-body model that allows each planet to take on its own orbit in three-dimensional space. Based on the radial velocities alone, the mutual inclinations for the outer three resonant planets are constrained to Φcb = 2.8±1.71.3 degrees for the "c" and "b" pair and Φbe = 10.3±6.35.1 degrees for the "b" and "e" pair. We integrate the equations of motion of a sample of initial conditions drawn from our posterior for 107 years. We identify dynamically unstable models and find that the GJ 876 planets must be roughly coplanar (Φcb = 1.41±0.620.57 degrees) and (Φbe = 3.9±2.01.9 degrees), indicating the amount of planet-planet scattering in the system has been low. We investigate the distribution of the respective resonant arguments of each planet pair and find that at least one resonant argument for each planet pair and the Laplace argument librate. The libration amplitudes in our three-dimensional orbital model supports the idea of the outer-three planets having undergone significant past disk migration.
Directory of Open Access Journals (Sweden)
Susmita Paul
2016-03-01
Full Text Available This paper reflects some research outcome denoting as to how Lotka–Volterra prey predator model has been solved by using the Runge–Kutta–Fehlberg method (RKF. A comparison between Runge–Kutta–Fehlberg method (RKF and the Laplace Adomian Decomposition method (LADM is carried out and exact solution is found out to verify the applicability, efficiency and accuracy of the method. The obtained approximate solution shows that the Runge–Kutta–Fehlberg method (RKF is a more powerful numerical technique for solving a system of nonlinear differential equations.
Koller, Arnold; Fuchs, Birgit; Leichtfried, Veronika; Schobersberger, Wolfgang
2015-01-01
To effectively prevent injury in recreational alpine skiing, it is important to identify modifiable risk factors that can be targeted through exercise and training. Fatigue is a potential risk factor in recreational skiing, but no investigations have evaluated concentric/eccentric quadriceps and hamstring fatigue in recreational skiers. We tested the hypothesis that recreational skiing is associated with more pronounced eccentric as compared with concentric muscle fatigue. Twenty-four healthy and fit recreational skiers (14 male and 10 female) performed an isokinetic muscle test 1 day before, 1 h after, and 24 h after a 4 h skiing session. The testing protocol consisted of concentric and eccentric quadriceps and hamstring contractions for both legs. Eccentric peak hamstring torque (both thighs) and eccentric peak quadriceps torque (left thigh) were reduced in male and female participants (pfatigue in men and women. Eccentric quadriceps and hamstring fatigue may be a potential injury risk factor in male and female recreational skiers. This provides some justification for judicious use of additional eccentric training modalities for alpine skiing.
Donát, Martin; Dušek, Daniel
2015-05-01
Time-varying magnetic forces are the main source of vibrations in rotating electrical machines. A number of papers dealing with computational modelling of the dynamic behaviour of rotating electrical machines have been published. Almost all of these papers do not consider electro-mechanical interaction between the stator and the rotor of the machine. A computational model including electro-mechanical interaction is proposed in this paper. The influence of the air gap eccentricity due to eccentric mounting of the rotor pack on the shaft of the rotor is investigated. Electromagnetic coupled-field analysis was performed to obtain the dependence of the magnetic forces, which act on the stator and the rotor pack, on the time and air gap eccentricity. Attention has been paid to the air gap eccentricity due to the interaction between the stator and the rotor and the influence of the air gap eccentricity on the vibration and sound power of the machine. The obtained results show that the air gap eccentricity affects the amplitude spectrum of the magnetic forces. This change of amplitude spectrum causes a significant increase in the torsional vibration of the stator of the examined machine. The air gap eccentricity is also significantly reflected in the trajectory of the rotor centre line and radial load of bearings in the machine.
The effect of face eccentricity on the perception of gaze direction.
Todorović, Dejan
2009-01-01
The perception of a looker's gaze direction depends not only on iris eccentricity (the position of the looker's irises within the sclera) but also on the orientation of the lookers' head. One among several potential cues of head orientation is face eccentricity, the position of the inner features of the face (eyes, nose, mouth) within the head contour, as viewed by the observer. For natural faces this cue is confounded with many other head-orientation cues, but in schematic faces it can be studied in isolation. Salient novel illustrations of the effectiveness of face eccentricity are 'Necker faces', which involve equal iris eccentricities but multiple perceived gaze directions. In four experiments, iris and face eccentricity in schematic faces were manipulated, revealing strong and consistent effects of face eccentricity on perceived gaze direction, with different types of tasks. An additional experiment confirmed the 'Mona Lisa' effect with this type of stimuli. Face eccentricity most likely acted as a simple but robust cue of head turn. A simple computational account of combined effects of cues of eye and head turn on perceived gaze direction is presented, including a formal condition for the perception of direct gaze. An account of the 'Mona Lisa' effect is presented.
Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model.
Kaux, Jean-François; Libertiaux, Vincent; Leprince, Pierre; Fillet, Marianne; Denoel, Vincent; Wyss, Clémence; Lecut, Christelle; Gothot, André; Le Goff, Caroline; Croisier, Jean-Louis; Crielaard, Jean-Michel; Drion, Pierre
2017-05-01
The tendon is a dynamic entity that remodels permanently. Platelet-rich plasma (PRP) injection has been shown to have a beneficial effect on tendon healing after lesion in rats. Furthermore, eccentric exercise seems to improve the mechanical quality of the tendon. A combination of PRP injection and eccentric training might be more effective than either treatment alone. Controlled laboratory study. Adult male rats were anesthetized, an incision was performed in the middle of their left patellar tendon and an injection of physiological fluid (PF) or homologous PRP was randomly made at the lesion level. The rats were then divided into 2 groups: the eccentric group, undergoing eccentric training 3 times a week, and the untrained group, without any training. Thus, 4 groups were compared. After 5 weeks, the tendons were removed and their ultimate tensile strength and energy were measured. Tendons were frozen for proteomic analyses when all biomechanical tests were completed. Statistical analysis was performed with linear mixed effect models. No significant difference was found between the treatments using PF injection or PRP injection alone. However, the value of the ultimate tensile force at rupture was increased by 4.5 N (108% of control, P = .006) when eccentric training was performed. An intragroup analysis revealed that eccentric training significantly improved the ultimate force values for the PRP group. Proteomic analysis revealed that eccentric training led to an increase in abundance of several cytoskeletal proteins in the PF group, while a decrease in abundance of enzymes of the glycolytic pathway occurred in the PRP-treated groups, indicating that this treatment might redirect the exercise-driven metabolic plasticity of the tendon. Eccentric training altered the metabolic plasticity of tendon and led to an improvement of injured tendon resistance regardless of the treatment injected (PF or PRP). This study demonstrates the necessity of eccentric rehabilitation
The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males
Directory of Open Access Journals (Sweden)
Yanita McLeay
2017-10-01
Full Text Available Eccentric exercise is known to bring about microstructural damage to muscle, initiating an inflammatory cascade involving various reactive oxygen species. This, in turn, can significantly impair physical performance over subsequent days. Taurine, a powerful endogenous antioxidant, has previously been shown to have a beneficial effect on muscle damage markers and recovery when taken for a few days to several weeks prior to eccentric exercise. However, to date no studies have looked at the effects of supplementing over the days following eccentric exercise on performance recovery. Thus, this study aimed to determine whether supplementing with taurine over three days following eccentric exercise attenuated the rise in serum creatine kinase and improved performance recovery in males. In a blinded, randomized, crossover design, ten recreationally-fit male participants completed 60 eccentric contractions of the biceps brachii muscle at maximal effort. Following this, participants were supplemented with 0.1 g∙kg−1 body weight∙day−1 of either taurine or rice flour in capsules. Over the next three mornings participants underwent blood tests for the analysis of the muscle damage marker creatine kinase and carried out performance measures on the isokinetic dynamometer. They also continued to consume the capsules in the morning and evening. The entire protocol was repeated two weeks later on the alternate arm and supplement. Significant decreases were seen in all performance measures from pre- to 24-h post-eccentric exercise (p < 0.001 for both taurine and placebo, indicating the attainment of muscle damage. Significant treatment effects were observed only for peak eccentric torque (p < 0.05. No significant time × treatment effects were observed (all p > 0.05. Serum creatine kinase levels did not significantly differ over time for either treatments, nor between treatments (p > 0.05. These findings suggest that taurine supplementation taken twice
The Effect of Estrogen Usage on Eccentric Exercise-Induced Damage in Rat Testes
Can, Serpil; Selli, Jale; Buyuk, Basak; Aydin, Sergulen; Kocaaslan, Ramazan; Guvendi, Gulname Findik
2015-01-01
Background: Recent years, lots of scientific studies are focused on the possible mechanism of inflammatory response and oxidative stress which are the mechanism related with tissue damage and exercise fatigue. It is well-known that free oxygen radicals may be induced under invitro conditions as well as oxidative stress by exhaustive physical exercise. Objectives: The aim of this study was to investigate the effects of anabolic steroids in conjunction with exercise in the process of spermatogenesis in the testes, using histological and stereological methods. Materials and Methods: Thirty-six male Sprague Dawley rats were divided to six groups, including the control group, the eccentric exercise administered group, the estrogen applied group, the estrogen applied and dissected one hour after eccentric exercise group, the no estrogen applied and dissected 48 hours after eccentric exercise group and the estrogen applied and dissected 48 hours after eccentric exercise group. Eccentric exercise was performed on a motorized rodent treadmill and the estrogen applied groups received daily physiological doses by subcutaneous injections. Testicular tissues were examined using specific histopathological, immunohistochemical and stereological methods. Sections of the testes tissue were stained using the TUNEL method to identify apoptotic cells. Apoptosis was calculated as the percentage of positive cells, using stereological analysis. A statistical analysis of the data was carried out with one-way analysis of variance (ANOVA) for the data obtained from stereological analysis. Results: Conventional light microscopic results revealed that testes tissues of the eccentric exercise administered group and the estrogen supplemented group exhibited slight impairment. In groups that were both eccentrically exercised and estrogen supplemented, more deterioration was detected in testes tissues. Likewise, immunohistochemistry findings were also more prominent in the eccentrically exercised
Energy Technology Data Exchange (ETDEWEB)
Dawson, Rebekah I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States); Johnson, John Asher, E-mail: rdawson@cfa.harvard.edu [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States)
2012-09-10
Exoplanet orbital eccentricities offer valuable clues about the history of planetary systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link the 'cold' Jupiters beyond the ice line to close-in hot Jupiters, which are unlikely to have formed in situ. To date, eccentricities of individual transiting planets primarily come from radial-velocity measurements. Kepler has discovered hundreds of transiting Jupiters spanning a range of periods, but the faintness of the host stars precludes radial-velocity follow-up of most. Here, we demonstrate a Bayesian method of measuring an individual planet's eccentricity solely from its transit light curve using prior knowledge of its host star's density. We show that eccentric Jupiters are readily identified by their short ingress/egress/total transit durations-part of the 'photoeccentric' light curve signature of a planet's eccentricity-even with long-cadence Kepler photometry and loosely constrained stellar parameters. A Markov Chain Monte Carlo exploration of parameter posteriors naturally marginalizes over the periapse angle and automatically accounts for the transit probability. To demonstrate, we use three published transit light curves of HD 17156 b to measure an eccentricity of e = 0.71{sup +0.16}{sub -0.09}, in good agreement with the discovery value e = 0.67 {+-} 0.08 based on 33 radial-velocity measurements. We present two additional tests using Kepler data. In each case, the technique proves to be a viable method of measuring exoplanet eccentricities and their confidence intervals. Finally, we argue that this method is the most efficient, effective means of identifying the extremely eccentric, proto-hot Jupiters predicted by Socrates et al.
DEFF Research Database (Denmark)
Thorborg, Kristian; Branci, Sonia; Nielsen, Peter Martin
2014-01-01
BACKGROUND: Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been...... investigated. PURPOSE: To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction...... strength than players without adductor-related groin pain. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain...
Energy Technology Data Exchange (ETDEWEB)
Gwynllyw, D.Rh.; Phillips, T.N. [Univ. of Wales, Aberystwyth (United Kingdom)
1994-12-31
The journal bearing is an essential part of all internal combustion engines as a means of transferring the energy from the piston rods to the rotating crankshaft. It consists essentially of an inner cylinder (the journal), which is part of the crankshaft, and an outer cylinder (the bearing), which is at the end of the piston rod. In general, the two cylinders are eccentric and there is a lubricating film of oil separating the two surfaces. The addition of polymers to mineral (Newtonian) oils to minimize the variation of viscosity with temperature has the added effect of introducing strain-dependent viscosity and elasticity. The physical problem has many complicating features which need to be modelled. It is a fully three-dimensional problem which means that significant computational effort is required to solve the problem numerically. The system is subject to dynamic loading in which the journal is allowed to move under the forces the fluid imparts on it and also any other loads such as that imparted by the engine force. The centre of the journal traces out a nontrivial locus in space. In addition, there is significant deformation of the bearing and journal and extensive cavitation of the oil lubricant. In the present study the authors restrict themselves to the two-dimensional statically loaded problem. In previous work a single domain spectral method was used which employed a bipolar coordinate transformation to map the region between the journal and the bearing onto a rectangle. The flow variables were then approximated on this rectangle using Fourier-Chebyshev expansions. However, to allow for future possible deformation of the journal and bearing surfaces due to increased load in the dynamically loaded case they have decided to use a more versatile spectral element formulation.
Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.
Directory of Open Access Journals (Sweden)
M Carmen Valero
Full Text Available Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1 positive, non-hematopoetic (CD45⁻ cells were evaluated in wild type (WT and α7 integrin transgenic (α7Tg mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs, predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.
Laverón-Simavilla, Ana; Lapuerta, Victoria; Rodríguez, Angel; Perales, Jose Manuel
A cylindrical liquid bridge supported between two circular-shaped disks in isorotation is considered. The combined effect of a lateral gravity field and an offset between the rotation axis and the axis of the supporting disks (eccentricity) on the stability of the liquid bridge is here studied. In a previous work a numerical method used to determine the stability limit for different values of eccentricity was validated by comparing with analytical results at small eccentricity. In this work we use an extension of that algorithm applied to liquid bridges in a lateral gravitational field rotating around an eccentric axis to study the combined effect of rotation, eccentricity and lateral gravity. The analysis shows that the combined effect of lateral gravity and eccentricity can narrow or broaden the stability region depending on the angle between the gravity direction and the eccentric axis displacement.
Roscoe, Christopher William Thomas
Several methods are presented for the design of satellite formations for science missions in high-eccentricity reference orbits with quantifiable performance criteria specified throughout only a portion the orbit, called the Region of Interest (RoI). A modified form of the traditional average along-track drift minimization condition is introduced to account for the fact that performance criteria are only specified within the RoI, and a robust formation design algorithm (FDA) is defined to improve performance in the presence of formation initialization errors. Initial differential mean orbital elements are taken as the design variables and the Gim-Alfriend state transition matrix (G-A STM) is used for relative motion propagation. Using mean elements and the G-A STM allows for explicit inclusion of J2 perturbation effects in the design process. The methods are applied to the complete formation design problem of the NASA Magnetospheric Multiscale (MMS) mission and results are verified using the NASA General Mission Analysis Tool (GMAT). Since satellite formations in high-eccentricity orbits will spend long times at high altitude, third-body perturbations are an important design consideration as well. A detailed analytical analysis of third-body perturbation effects on satellite formations is also performed and averaged dynamics are derived for the particular case of the lunar perturbation. Numerical results of the lunar perturbation analysis are obtained for the example application of the MMS mission and verified in GMAT.
Directory of Open Access Journals (Sweden)
Lu Liu
2015-01-01
Full Text Available Fractional-order time-delay system is thought to be a kind of oscillatory complex system which could not be controlled efficaciously so far because it does not have an analytical solution when using inverse Laplace transform. In this paper, a type of fractional-order controller based on numerical inverse Laplace transform algorithm INVLAP was proposed for the mentioned systems by searching for the optimal controller parameters with the objective function of ITAE index due to the verified nature that fractional-order controllers were the best means of controlling fractional-order systems. Simulations of step unit tracking and load-disturbance responses of the proposed fractional-order optimal PIλDμ controller (FOPID and corresponding conventional optimal PID (OPID controller have been done on three typical kinds of fractional time-delay system with different ratio between time delay (L and time constant (T and a complex high-order fractional time delay system to verify the availability of the presented control method.
Jafari, Nasrin; Azhari, Mojtaba
2017-08-01
In this paper, the stability analysis of moderately thick time-dependent viscoelastic plates with various shapes is studied using the Laplace-Carson transformation and simple hp cloud meshless method. The shear effect of the plate is described by the first order shear deformation theory. The mechanical properties of the materials are supposed to be linear viscoelastic based on the constant bulk modulus. The displacement field is assumed to be the product of two functions, one being a function of geometrical parameters and the other a known exponential function of time. The simple hp cloud method is used for discretization which is based on Kronecker-delta properties. Thus, the essential boundary conditions can be imposed directly. A numerical investigation is made by employing the inverse of Laplace-Carson transformation. The time history of buckling coefficients of viscoelastic plates of various shapes with different boundary conditions is considered. Moreover, a number of numerical results are presented to study the effect of thickness, aspect ratio, different boundary conditions, and various shapes on the time history of buckling coefficients of the viscoelastic plate.
Cholesky decomposed density matrices in Laplace transform Moeller-Plesset perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Clin, Lucien Cyril
2012-06-04
The evaluation of correlation energies in the canonical formulation of second order Moeller-Plesset Perturbation Theory (MP2) is limited to systems of about 100 atoms, due to the method's steep O(N{sup 5}) scaling. In order to extend the method's applicability to larger systems, it is therefore imperative to develop alternative formulations that allow for efficient scaling reduction. One such approach is the Laplace transform formalism introduced by Almloef and Haeser, with which MP2 can be expressed in the basis of atom-centered orbitals (AO-MP2), whose local character allows to take advantage of the short range of correlation effects. The overall scaling can thus be reduced through the application of integral pre-selection schemes to discard all numerically irrelevant contributions to the energy. This dissertation is concerned with the study of Cholesky decomposed pseudo-density (CDD) matrices within this AO-MP2 scheme. For technical reasons, namely, the AO-MP2 implementation of Doser et al. is restricted to the evaluation of the opposite spin component of MP2, and is thus bound to the empirical scaled opposite spin parametrization procedure. Applying a Cholesky decomposition to the occurring pseudo-density matrices, the same spin component required for full MP2 energies is naturally included in the resulting CDD-MP2 method, whereby the ab initio character is restored. The investigation of the CDD-approach was further motivated by the fact that the orbitals generated by the decomposition are localized (for electronically non-delocalized systems), and thus allow for the pre-selection of only numerically significant integrals. However, although it could be shown on simple systems that the method does in principle scale linearly, its application to even moderately sized systems with large basis sets is yet hampered by severe technical and numerical difficulties, which are analysed and discussed in detail. Another closely related project has been to extend
Eccentric utilization ratio: effect of sport and phase of training.
McGuigan, Michael R; Doyle, Timothy L A; Newton, Michael; Edwards, Dylan J; Nimphius, Sophia; Newton, Robert U
2006-11-01
The eccentric utilization ratio (EUR), which is the ratio of countermovement jump (CMJ) to static jump (SJ) performance, has been suggested as a useful indicator of power performance in athletes. The purpose of the study was to compare the EUR of athletes from a variety of different sports and during different phases of training. A total of 142 athletes from rugby union, Australian Rules Football, soccer, softball, and field hockey were tested. Subjects performed both CMJ and SJ on a force plate integrated with a position transducer. The EUR was measured as the ratio of CMJ to SJ for jump height and peak power. The rugby union, Australian Rules Football, and hockey athletes were tested during off-season and preseason to provide EUR data during different phases of training. For men, EUR for soccer, Australian Rules Football, and rugby was greater than softball (effect size range, 0.83-0.92). For women, EUR for soccer was greater than field hockey and softball (0.86- 1.0). There was a significant difference between the jump height and peak power method for the Australian Rules Football, rugby, and field hockey tests conducted preseason (p training with the values significantly increasing from off-season to preseason. The EUR provides the practitioner with information about the performance of athletes and appears to be sensitive to changes in the type of training being undertaken.
A study of eccentric viewing training for low vision rehabilitation.
Jeong, Jae Hoon; Moon, Nam Ju
2011-12-01
The definition of eccentric viewing (EV) is using non-foveal preferred retinal loci (PRL) for viewing. The purpose of the present study was to investigate the clinical effect of EV training for low vision rehabilitation in patients with central scotomas. The direction of EV was monitored in 30 low vision patients with central scotomas by moving the patient's view. The PRL was found by using a direct ophthalmoscope and retinal camera; the preserved visual field was identified using a kinetic visual field analyzer. The relationships between EV, PRL, and visual field were evaluated. The patients and their guardians were educated regarding EV. After 2 weeks of self-training, maintenance of EV was checked and changes in best-corrected visual acuity (BCVA), reading speed, and satisfaction questionnaire were evaluated. A relationship between EV, PRL, and visual field was in accordance in half of the patients. There were no significant differences in demographics and basic visual characteristics in patients where the relationship was not in accordance. EV was maintained in two-thirds of the patients, but there were no significant differences in demographics and basic visual characteristics in patients who discontinued EV. There were no significant improvements in BCVA; however, reading speed and the satisfaction scores increased significantly with EV. The direction of EV was effectively detected by convenient access using an inexpensive method. Functional vision and satisfaction significantly improved following EV training. EV training can be used as an effective method for low vision rehabilitation in patients with central scotomas.
Dyadic Green's function of an eccentrically stratified sphere.
Moneda, Angela P; Chrissoulidis, Dimitrios P
2014-03-01
The electric dyadic Green's function (dGf) of an eccentrically stratified sphere is built by use of the superposition principle, dyadic algebra, and the addition theorem of vector spherical harmonics. The end result of the analytical formulation is a set of linear equations for the unknown vector wave amplitudes of the dGf. The unknowns are calculated by truncation of the infinite sums and matrix inversion. The theory is exact, as no simplifying assumptions are required in any one of the analytical steps leading to the dGf, and it is general in the sense that any number, position, size, and electrical properties can be considered for the layers of the sphere. The point source can be placed outside of or in any lossless part of the sphere. Energy conservation, reciprocity, and other checks verify that the dGf is correct. A numerical application is made to a stratified sphere made of gold and glass, which operates as a lens.
The Eccentric Kozai-Lidov Mechanism for Outer Test Particle
Naoz, Smadar; Li, Gongjie; Zanardi, Macarena; de Elía, Gonzalo Carlos; Di Sisto, Romina P.
2017-07-01
The secular approximation of the hierarchical three body systems has been proven to be very useful in addressing many astrophysical systems, from planets to stars to black holes. In such a system, two objects are on a tight orbit and the tertiary is on a much wider orbit. Here, we study the dynamics of a system by taking the tertiary mass to zero and solve the hierarchical three body system up to the octupole level of approximation. We find a rich dynamics that the outer orbit undergoes due to gravitational perturbations from the inner binary. The nominal result of the precession of the nodes is mostly limited for the lowest order of approximation; however, when the octupole level of approximation is introduced, the system becomes chaotic, as expected, and the tertiary oscillates below and above 90°, similarly to the non-test particle flip behavior. We provide the Hamiltonian of the system and investigate the dynamics of the system from the quadrupole to the octupole level of approximations. We also analyze the chaotic and quasi-periodic orbital evolution by studying the surfaces of sections. Furthermore, including general relativity, we showcase the long-term evolution of individual debris disk particles under the influence of a far-away interior eccentric planet. We show that this dynamics can naturally result in retrograde objects and a puffy disk after a long timescale evolution (a few Gyr) for initially aligned configuration.
The Eccentric Kozai–Lidov Mechanism for Outer Test Particle
Energy Technology Data Exchange (ETDEWEB)
Naoz, Smadar [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Li, Gongjie [Harvard Smithsonian Center for Astrophysics, Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); Zanardi, Macarena; De Elía, Gonzalo Carlos; Di Sisto, Romina P., E-mail: snaoz@astro.ucla.edu [Instituto de Astrofísica de La Plata, CCT La Plata-CONICET-UNLP Paseo del Bosque S/N (1900), La Plata (Argentina)
2017-07-01
The secular approximation of the hierarchical three body systems has been proven to be very useful in addressing many astrophysical systems, from planets to stars to black holes. In such a system, two objects are on a tight orbit and the tertiary is on a much wider orbit. Here, we study the dynamics of a system by taking the tertiary mass to zero and solve the hierarchical three body system up to the octupole level of approximation. We find a rich dynamics that the outer orbit undergoes due to gravitational perturbations from the inner binary. The nominal result of the precession of the nodes is mostly limited for the lowest order of approximation; however, when the octupole level of approximation is introduced, the system becomes chaotic, as expected, and the tertiary oscillates below and above 90°, similarly to the non-test particle flip behavior. We provide the Hamiltonian of the system and investigate the dynamics of the system from the quadrupole to the octupole level of approximations. We also analyze the chaotic and quasi-periodic orbital evolution by studying the surfaces of sections. Furthermore, including general relativity, we showcase the long-term evolution of individual debris disk particles under the influence of a far-away interior eccentric planet. We show that this dynamics can naturally result in retrograde objects and a puffy disk after a long timescale evolution (a few Gyr) for initially aligned configuration.
Effects of fast-velocity eccentric resistance training on early and late rate of force development
DEFF Research Database (Denmark)
Oliveira, Anderson S.C.; Corvino, Rogério Bulhões; Caputo, Fabrizio
2016-01-01
This study examined whether short-term maximal resistance training employing fast-velocity eccentric knee extensor actions would induce improvements in maximal isometric torque and rate of force development (RFD) at early (100 ms) of rising torque. Twenty healthy men were...... assigned to two experimental groups: eccentric resistance training (TG) or control (CG). Participants on the TG trained three days a week for a total of eight weeks. Training consisted of maximal unilateral eccentric knee extensors actions performed at 180°s-1. Maximal isometric knee extensor torque (MVC......, no changes in the late phase of incremental RFD were observed in TG. No changes were found in the CG. In summary, we have demonstrated, in active individuals, that a short period of resistance training performed with eccentric fast-velocity isokinetic muscle contractions is able to enhance RFDINC and RFDREL...
Directory of Open Access Journals (Sweden)
Rodrigo de Azevedo Franke
2014-09-01
Full Text Available Vastus lateralis (VL and vastus medialis (VM are frequently targeted in conditioning/rehabilitation programs due to their role in patellar stabilization during knee extension. This study assessed neural and muscular adaptations in these two muscles after an isokinetic eccentric training program. Twenty healthy men underwent a four-week control period followed by a 12-week period of isokinetic eccentric training. Ultrasound evaluations of VL and VM muscle thickness at rest and electromyographic evaluations during maximal isometric tests were used to assess the morphological and neural properties, respectively. No morphological and neural changes were found throughout the control period, whereas both muscles showed significant increases in thickness (VL = 6.9%; p .05 post-training. Isokinetic eccentric training produces neural and greater morphological adaptations in VM compared to VL, which shows that synergistic muscles respond differently to an eccentric isokinetic strength training program
Effects of kinesio taping on anaerobic power recovery after eccentric exercise.
Szymura, Jadwiga; Maciejczyk, Marcin; Wiecek, Magdalena; Maciejczyk, Grzegorz; Wiecha, Szczepan; Ochalek, Katarzyna; Kepinska, Magdalena; Szygula, Zbigniew
2016-01-01
The aim of the study was to evaluate the effectiveness of kinesio taping (KT) in anaerobic power recovery after eccentric exercise. The study was carried out on 10 healthy men. The participants performed two 60-min downhill runs with a constant intensity. Peak anaerobic power (PP) and mean power (MP) were measured before and five times after eccentric exercise. Anaerobic power was evaluated with the Maximal Cycling Sprint Test. After the downhill run, passive recovery (PR) and KT (lymphatic application) were applied in random order. A significant decrease in PP and MP was observed at least for 24 h after PR, compared to baseline. After the KT application 24 h after eccentric exercises, anaerobic power was already similar to the baseline measurement. The application of KT significantly improved anaerobic power recovery time after eccentric exercise compared to the period of passive rest immediately prior to testing.
Contralateral Repeated Bout Effect of Eccentric Exercise of the Elbow Flexors
National Research Council Canada - National Science Library
Chen, TREVOR C; CHEN, HSIN-LIAN; LIN, MING-JU; YU, HUI-I; NOSAKA, KAZUNORI
2016-01-01
PURPOSEThis study compared the magnitude of the repeated bout effect (RBE) for different time intervals between two bouts of eccentric exercise of the elbow flexors to better understand the contralateral RBE (CL-RBE...
Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order
Moore, Blake; Arun, K G; Mishra, Chandra Kant
2016-01-01
[abridged] Although gravitational radiation causes inspiralling compact binaries to circularize, a variety of astrophysical scenarios suggest that binaries might have small but nonnegligible orbital eccentricities when they enter the low-frequency bands of ground and space-based gravitational-wave detectors. If not accounted for, even a small orbital eccentricity can cause a potentially significant systematic error in the mass parameters of an inspiralling binary. Gravitational-wave search templates typically rely on the quasi-circular approximation, which provides relatively simple expressions for the gravitational-wave phase to 3.5 post-Newtonian (PN) order. The quasi-Keplerian formalism provides an elegant but complex description of the post-Newtonian corrections to the orbits and waveforms of inspiralling binaries with any eccentricity. Here we specialize the quasi-Keplerian formalism to binaries with low eccentricity. In this limit the non-periodic contribution to the gravitational-wave phasing can be ex...
Effects of an eccentric training programme on hamstring strain injuries in women football players
Directory of Open Access Journals (Sweden)
del Ama Espinosa Gurutze
2015-09-01
Full Text Available Study aim: to test the hypothesis that an eccentric training programme applied on women football players would reduce the hamstring injury rate by improving thigh muscle balance and, particularly, hamstring strength.
Directory of Open Access Journals (Sweden)
Guilherme Augusto Minozzo
Full Text Available ABSTRACT: This paper describes a case of congenital aortic stenosis with eccentric left ventricular hypertrophy associated with hypothyroidism in a 1-year-old Bourdeaux Mastiff dog. The dog had ascites, apathy, alopecic and erythematous skin lesions in different parts of the body. A two-dimensional echocardiogram revealed aortic valve stenosis, with poststenotic dilation in the ascending aorta. The same exam showed eccentric hypertrophy and dilation of the left ventricle during systole and diastole. Aortic stenosis usually results in concentric left ventricular hypertrophy instead of eccentric hypertrophy; and therefore, this finding was very unusual. Hypothyroidism, which is uncommon in young dogs, may be incriminated as the cause of ventricular dilation, making this report even more interesting. Because hypothyroidism would only result in dilatation, the eccentric hypertrophy was attributed to pressure overload caused by aortic stenosis. Thus, cardiac alterations of this case represent a paradoxical association of both diseases.
The role of eccentric regime of leg muscle work in alpine skiing
Directory of Open Access Journals (Sweden)
Ropret Robert
2017-01-01
Full Text Available Alpine skiing is characterized by a great number of leg movements with muscle contractions in eccentric regime. The role of these movements is to absorb gravitation and inertial forces, manage skis more precisely and maintain balance. Recent studies have determined the volume, duration and intenisty of eccentric contractions as well as the basic characteristics of movement amplitudes and velocities. Based on the previous findings the experiments involving eccentric training using a bicycle ergometer confirmed a positive impact that this kind of training has on increasing maximum power, strength, endurance, coordination, injury prevention, metabolic work efficiency, more efficient work with longer muscle length and its role in miming skiers' movements. This paper is an review of the studies so far in the field of kinematics, skiing dynamics and the effect of eccentric training on the development of athletes' performances.
Detection of Eccentricity Faults in Five-Phase Ferrite-PM Assisted Synchronous Reluctance Machines
National Research Council Canada - National Science Library
Carlos López-Torres; Jordi-Roger Riba; Antonio Garcia; Luís Romeral
2017-01-01
... (zero-sequence voltage component). However, there is a lack of research dealing with the topic of fault diagnosis in multi-phase PMa-SynRMs, and in particular, those focused on detecting eccentricity faults...
Effect of load eccentricity and stress level on monopile support for offshore wind turbines
DEFF Research Database (Denmark)
Klinkvort, Rasmus Tofte; Hededal, Ole
2014-01-01
on which load is applied with a large eccentricity. With centrifuge tests as the basis, this paper investigates the behaviour of a rigid pile loaded with a high eccentricity. A test series was carried out to simulate idealized monotonic load cases for monopiles supporting an offshore wind turbine....... Centrifuge tests were performed on model monopiles subjected to stress distributions equal to prototype monopiles with pile diameters ranging from 1–5 m and eccentricities ranging from 8.25–17.75 pile diameters. It was possible to identify a unified response of all of these tests by using dimensional...... analysis and Rankine’s passive earth pressure coefficient as a normalization parameter. The normalized ultimate soil resistance was unaffected by acceleration level and load eccentricity, indicating that the failure mechanism was the same for all tests. Based on the centrifuge tests, a reformulation...
Spectral signatures of disk eccentricity in young binary systems. I. Circumprimary case
Regály, Zs.; Sándor, Zs.; Dullemond, C. P.; Kiss, L. L.
2011-04-01
Context. Star formation occurs via fragmentation of molecular clouds, which means that the majority of stars born are members of binary systems. There is growing evidence that planets might form in circumprimary disks of medium-separation (≲50 AU) binaries. The tidal forces caused by the secondary generally act to distort the originally circular circumprimary disk to an eccentric one. Since the disk eccentricity might play a major role in planet formation, it is of great importance to understand how it evolves. Aims: We investigate disk eccentricity evolution to reveal its dependence on the physical parameters of the binary system and the protoplanetary disk. To infer the disk eccentricity from high-resolution near-IR spectroscopy, we calculate the fundamental band (4.7 μm) emission lines of the CO molecule emerging from the atmosphere of the eccentric disk. Methods: We model circumprimary disk evolution under the gravitational perturbation of the orbiting secondary using a 2D grid-based hydrodynamical code, assuming α-type viscosity. The hydrodynamical results are combined with our semianalytical spectral code to calculate the CO molecular line profiles. Our thermal disk model is based on the double-layer disk model approximation. We assume LTE and canonical dust and gas properties for the circumprimary disk. Results: We find that the orbital velocity distribution of the gas parcels differs significantly from the circular Keplerian fashion. The line profiles are double-peaked and asymmetric in shape. The magnitude of asymmetry is insensitive to the binary mass ratio, the magnitude of viscosity (α), and the disk mass. In contrast, the disk eccentricity, thus the magnitude of the line profile asymmetry, is influenced significantly by the binary eccentricity and the disk geometrical thickness. Conclusions: We demonstrate that the disk eccentricity profile in the planet-forming region can be determined by fitting the high-resolution CO line profile asymmetry
Directory of Open Access Journals (Sweden)
Abdullah Selim KAPLAN
2014-08-01
Full Text Available Extensive line of evidence suggest that pain threshold and tolerance alters following exercise, although the mechanisms have not been elucidated yet. In this st udy, we investigated the role of sport massage on pressure pain threshold and tolerance in athletes under eccentric exercise. Ten male athletes aged 23 ± 1 years with 9.67 ± 3.04 years of athletic training were recruited for this study . Following baseline measurements of pressure pain threshold and tolerance from m. biceps brachii and m. triceps brachii muscle and myofascial regions of the dominant upper extremity by using a digital algometer, subjects were underwent an acute bout of eccentric exercise. Par ticipants were completed 4 sets of eccentric exercise each comprising 20 repetitions of lifting 80% of their 1 RM by using a dumbbell. Pressure pain threshold and tolerance tests were repeated 10, 20 and 30 minutes, and 24 and 48 hours following exercise. One week after eccentric exercise, sport massage protocol for 10 minutes was manually administered to the dominant arm immediately after exercise, and all measurements were repeated at the same timeline as eccentric exercise. Results are presented as mean + standart deviation. Data of the same timeline were analyzed by using t test. A level of p<0.05 was accepted statistical significant. Eccentric exercise resulted to increase the pain tolerance from muscle and myofascia regions of m. biceps and triceps br achii, and sport massage was found to decrease the pain tolerance at 10 minutes from muscle regions of m. biceps and triceps brachii, 10, 20 and 30 minutes from myofascial region of biceps brachii, and 20 minutes, 24 and 48 hours from myofascial region of m. triceps brachii following acute bout of eccentric exercise in athletes. We concluded that sport massage reduces the hypoalgesic response during acute and delayed period of recovery after eccentric exercise.
Franke,Rodrigo de Azevedo; Baroni,Bruno Manfredini; Rodrigues,Rodrigo; Geremia,Jeam Marcel; Lanferdini,Fábio Juner; Vaz,Marco Aurélio
2014-01-01
Vastus lateralis (VL) and vastus medialis (VM) are frequently targeted in conditioning/rehabilitation programs due to their role in patellar stabilization during knee extension. This study assessed neural and muscular adaptations in these two muscles after an isokinetic eccentric training program. Twenty healthy men underwent a four-week control period followed by a 12-week period of isokinetic eccentric training. Ultrasound evaluations of VL and VM muscle thickness at rest and electromyograp...
Eccentric Left Ventricular Hypertrophy and Sudden Death in Patients with End-Stage Kidney Disease.
de Roij van Zuijdewijn, Camiel L M; Hansildaar, Romy; Bots, Michiel L; Blankestijn, Peter J; van den Dorpel, Marinus A; Grooteman, Muriel P C; Kamp, Otto; ter Wee, Piet M; Nubé, Menso J
2015-01-01
Both all-cause and cardiovascular mortality risks are extremely high in patients with end-stage kidney disease (ESKD). Sudden death accounts for approximately one-quarter of all fatal events. Left ventricular hypertrophy (LVH) is a known risk factor for mortality and can be divided in 2 types: concentric and eccentric. This study evaluated possible differences in all-cause mortality, cardiovascular mortality and sudden death between prevalent ESKD patients with concentric and eccentric LVH. Participants of the CONvective TRAnsport STudy (CONTRAST) who underwent transthoracic echocardiography (TTE) at baseline were analyzed. In patients with LVH, a relative wall thickness of ≤0.42 was considered eccentric and >0.42 was considered concentric hypertrophy. Cox proportional hazards models, adjusted for potential confounders, were used to calculate hazard ratios (HRs) of patients with eccentric LVH versus patients with concentric LVH for all-cause mortality, cardiovascular mortality and sudden death. TTE was performed in 328 CONTRAST participants. LVH was present in 233 participants (71%), of which 87 (37%) had concentric LVH and 146 (63%) eccentric LVH. The HR for all-cause mortality of eccentric versus concentric LVH was 1.14 (p = 0.52), 1.79 (p = 0.12) for cardiovascular mortality and 4.23 (p = 0.02) for sudden death in crude analyses. Propensity score-corrected HR for sudden death in patients with eccentric LVH versus those with concentric LVH was 5.22 (p = 0.03). (1) The hazard for all-cause mortality, cardiovascular mortality and sudden death is markedly increased in patients with LVH. (2) The sudden death risk is significantly higher in ESKD patients with eccentric LVH compared to subjects with concentric LVH. © 2015 S. Karger AG, Basel.
José L. Arias-Buría; Sebastián Truyols-Domínguez; Raquel Valero-Alcaide; Jaime Salom-Moreno; María A. Atín-Arratibel; César Fernández-de-las-Peñas
2015-01-01
Objective. To compare effects of ultrasound- (US-) guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n = 17) group or exercise (n = 19) group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous ele...
Choi, Seung Jun
2014-01-01
Activity-induced muscle injury and dysfunction have been identified as key components of musculoskeletal injuries. These injuries often occur following eccentric contractions, when the muscle is under tension and stretched by a force that is greater than the force generated by the muscle. Many daily activities require muscles to perform eccentric contractions, including walking (or running) downhill or down stairs, lowering heavy objects, and landing from a jump. Injuries often occur when the...
The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males.
McLeay, Yanita; Stannard, Stephen; Barnes, Matthew
2017-10-17
Eccentric exercise is known to bring about microstructural damage to muscle, initiating an inflammatory cascade involving various reactive oxygen species. This, in turn, can significantly impair physical performance over subsequent days. Taurine, a powerful endogenous antioxidant, has previously been shown to have a beneficial effect on muscle damage markers and recovery when taken for a few days to several weeks prior to eccentric exercise. However, to date no studies have looked at the effects of supplementing over the days following eccentric exercise on performance recovery. Thus, this study aimed to determine whether supplementing with taurine over three days following eccentric exercise attenuated the rise in serum creatine kinase and improved performance recovery in males. In a blinded, randomized, crossover design, ten recreationally-fit male participants completed 60 eccentric contractions of the biceps brachii muscle at maximal effort. Following this, participants were supplemented with 0.1 g∙kg-1 body weight∙day-1 of either taurine or rice flour in capsules. Over the next three mornings participants underwent blood tests for the analysis of the muscle damage marker creatine kinase and carried out performance measures on the isokinetic dynamometer. They also continued to consume the capsules in the morning and evening. The entire protocol was repeated two weeks later on the alternate arm and supplement. Significant decreases were seen in all performance measures from pre- to 24-h post-eccentric exercise (p time × treatment effects were observed (all p > 0.05). Serum creatine kinase levels did not significantly differ over time for either treatments, nor between treatments (p > 0.05). These findings suggest that taurine supplementation taken twice daily for 72 h following eccentric exercise-induced muscle damage may help improve eccentric performance recovery of the biceps brachii.
DEFF Research Database (Denmark)
Crameri, Regina M; Langberg, Henning; Teisner, Børge
2004-01-01
young healthy male subjects performed a single bout of unaccustomed high intensity eccentric exercise on one leg, with the contralateral leg being the control. A significant increase in the muscle interstitial concentration of the N-terminal propeptide of procollagen type I (PINP) was observed (day 0: 1...... mechanical load and inflammation. This study shows that following a single bout of high intensity eccentric exercise there is an increase in procollagen processing within skeletal muscle in humans....
Scalar self-force for highly eccentric equatorial orbits in Kerr spacetime
Thornburg, Jonathan
2016-01-01
If a small "particle" of mass $\\mu M$ (with $\\mu \\ll 1$) orbits a black hole of mass $M$, the leading-order radiation-reaction effect is an $\\mathcal{O}(\\mu^2)$ "self-force" acting on the particle, with a corresponding $\\mathcal{O}(\\mu)$ "self-acceleration" of the particle away from a geodesic. Such "extreme--mass-ratio inspiral" systems are likely to be important gravitational-wave sources for future space-based gravitational-wave detectors. Here we consider the "toy model" problem of computing the self-force for a scalar-field particle on a bound eccentric orbit in Kerr spacetime. We use the Barack-Golbourn-Vega-Detweiler effective-source regularization with a 4th order puncture field, followed by an $e^{im\\phi}$ ("m-mode") Fourier decomposition and a separate time-domain numerical evolution in $2+1$ dimensions for each $m$. We introduce a finite worldtube that surrounds the particle worldline and define our evolution equations in a piecewise manner so that the effective source is only used within the world...
Directory of Open Access Journals (Sweden)
Titus N. Ofei
2014-01-01
Full Text Available In oil and gas drilling operations, predictions of pressure losses and cuttings concentration in the annulus are very complex due to the combination of interacting drilling parameters. Past studies have proposed many empirical correlations to estimate pressure losses and cuttings concentration. However, these developed correlations are limited to their experimental data range and setup, and hence, they cannot be applicable to all cases. CFD methods have the advantages of handling complex multiphase flow problems, as well as, an unlimited number of physical and operational conditions. The present study employs the inhomogeneous (Eulerian-Eulerian model to simulate a two-phase solid-fluid flow and predict pressure losses and cuttings concentration in eccentric horizontal annuli as a function of varying drilling parameters: fluid velocity, diameter ratio (ratio of inner pipe diameter to outer pipe diameter, inner pipe rotation speed, and fluid type. Experimental data for pressure losses and cuttings concentration from previous literature compared very well with simulation data, confirming the validity of the current model. The study shows how reliable CFD methods can replicate the actual, yet complex oil and gas drilling operations.
On rational approximation methods for inverse source problems
Rundell, William
2011-02-01
The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Such is the ubiquity of these problems, the underlying model can lead to a partial differential equation of any of the major types, but here we focus on the case of steady-state electrostatic or thermal imaging and consider boundary value problems for Laplace\\'s equation. Our inclusions are interior forces with compact support and our data consists of a single measurement of (say) voltage/current or temperature/heat flux on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler "equivalent point source" problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2011 American Institute of Mathematical Sciences.
Directory of Open Access Journals (Sweden)
Kaikai Lv
2017-01-01
Full Text Available This paper investigates the influence of wheel eccentricity on vertical vibration of suspended monorail vehicle based on experiment and simulation. Two sets of tests are conducted in the first Chinese suspended monorail, and the tested acceleration is analyzed and exhibited. A multibody dynamic model of the suspended monorail vehicle is established to simulate the vertical vibration of car body excited by wheel eccentricity. The results show that there are three factors which may cause an abnormal vibration considering the track and the vehicle system. The influence of wheel eccentricity on the car body vibration was firstly analyzed. Simulated acceleration of car body has a great accordance with test. The wheel eccentricity could excite the resonance of car body at the speed of 21 km/h, and the vertical acceleration would increase considerably. Decreasing the secondary stiffness can effectively reduce the vertical vibration caused by wheel eccentricity, especially at the resonant speed. In the secondary test, the peak of car body acceleration at speed of 20 km/h is not appearing when only renewing the wheels, and the acceleration is decreasing obviously at the domain frequency. It is further determined that the abnormal vibration is mainly caused by the wheel eccentricity.
Silva, Luciano A; Tromm, Camila B; Da Rosa, Guilherme; Bom, Karoliny; Luciano, Thais F; Tuon, Talita; De Souza, Cláudio T; Pinho, Ricardo A
2013-01-01
Thirty-six male rats were used; divided into 6 groups (n = 6): saline; creatine (Cr); eccentric exercise (EE) plus saline 24 h (saline + 24 h); eccentric exercise plus Cr 24 h (Cr + 24 h); eccentric exercise plus saline 48 h (saline + 48 h); and eccentric exercise plus Cr 48 h (Cr + 48 h). Cr supplementation was administered as a solution of 300 mg · kg body weight(-1) · day(-1) in 1 mL water, for two weeks, before the eccentric exercise. The animals were submitted to one downhill run session at 1.0 km · h(-1) until exhaustion. Twenty-four and forty-eight hours after the exercise, the animals were killed, and the quadriceps were removed. Creatine kinase levels, superoxide production, thiobarbituric acid reactive substances (TBARS) level, carbonyl content, total thiol content, superoxide dismutase, catalase, glutathione peroxidase, interleukin-1b (IL-1β), nuclear factor kappa B (NF-kb), and tumour necrosis factor (TNF) were analysed. Cr supplementation neither decreases Cr kinase, superoxide production, lipoperoxidation, carbonylation, total thiol, IL-1β, NF-kb, or TNF nor alters the enzyme activity of superoxide dismutase, catalase, and glutathione peroxides in relation to the saline group, respectively (P exercise. The present study suggests that Cr supplementation does not decrease oxidative stress and inflammation after eccentric contraction.
Arias-Buría, José L.; Truyols-Domínguez, Sebastián; Valero-Alcaide, Raquel; Salom-Moreno, Jaime; Atín-Arratibel, María A.; Fernández-de-las-Peñas, César
2015-01-01
Objective. To compare effects of ultrasound- (US-) guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n = 17) group or exercise (n = 19) group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous electrolysis group also received the application of galvanic current through acupuncture needle on each session once a week (total 4 sessions). Shoulder pain (NPRS) and disability (DASH) were assessed at baseline, after 2 sessions, and 1 week after the last session. Results. The ANOVA revealed significant Group∗Time interactions for shoulder pain and disability (all, P electrolysis combined with the eccentric exercises experienced greater improvement than those receiving eccentric exercise alone. Conclusions. US-guided percutaneous electrolysis combined with eccentric exercises resulted in small better outcomes at short term compared to when only eccentric exercises were applied in subacromial pain syndrome. The effect was statistically and clinically significant for shoulder pain but below minimal clinical difference for function. Future studies should investigate the long-term effects and potential placebo effect of this intervention. PMID:26649058
Arias-Buría, José L; Truyols-Domínguez, Sebastián; Valero-Alcaide, Raquel; Salom-Moreno, Jaime; Atín-Arratibel, María A; Fernández-de-Las-Peñas, César
2015-01-01
Objective. To compare effects of ultrasound- (US-) guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n = 17) group or exercise (n = 19) group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous electrolysis group also received the application of galvanic current through acupuncture needle on each session once a week (total 4 sessions). Shoulder pain (NPRS) and disability (DASH) were assessed at baseline, after 2 sessions, and 1 week after the last session. Results. The ANOVA revealed significant Group∗Time interactions for shoulder pain and disability (all, P percutaneous electrolysis combined with the eccentric exercises experienced greater improvement than those receiving eccentric exercise alone. Conclusions. US-guided percutaneous electrolysis combined with eccentric exercises resulted in small better outcomes at short term compared to when only eccentric exercises were applied in subacromial pain syndrome. The effect was statistically and clinically significant for shoulder pain but below minimal clinical difference for function. Future studies should investigate the long-term effects and potential placebo effect of this intervention.
An analytical model of heat generation for eccentric cylindrical pin in friction stir welding
Directory of Open Access Journals (Sweden)
Ahmed Ramadan Shaaban Essa
2016-07-01
Full Text Available An analytical model for heat generation for eccentric cylindrical pin in friction stir welding was developed that utilizes a new factor based on the tool pin eccentricity. The proposed analytical expression is a modification of previous analytical models from the literature, which is verified and well matches with the model developed by previous researchers. Results of plunge force and peak temperature were used to validate the current proposed model. The cylindrical tool pin with eccentricities of 0, 0.2, and 0.8 mm were used to weld two types of aluminum alloys; a low deformation resistant AA1050-H12, and a relatively high deformation resistant AA5754-H24 alloy. The FSW was performed at constant tool rotation speed of 600 rpm and different welding speeds of 100, 300, and 500 mm/min. Experimental results implied that less temperature is generated using eccentric cylindrical pin than cylindrical pin without eccentricity under the given set of FSW process conditions. Furthermore, numerical simulation results show that increasing the pin eccentricity leads to decrease in peak temperature.
Possible vascular injury due to screw eccentricity in minimally invasive total hip arthroplasty
Directory of Open Access Journals (Sweden)
Nishant Kumar Singh
2017-01-01
Full Text Available Background: Vascular injury during minimally invasive total hip arthroplasty (THA is uncommon, yet a well-recognized and serious issue. It emerges because of non-visibility of vascular structures proximal to the pelvic bone during reaming, drilling holes, and fixing of screws. Numerous studies have found that screw fixation during cementless THA is beneficial for the initial stability of cup; yet, no anatomical guidelines support angular eccentric screw fixation. Materials and Methods: In this study, we obtained the pelvic arterial-phase computed tomographic data of thirty eight humans and reconstructed the three-dimensional models of osseous and vessel structures. We performed the surgical simulation to fix these structures with cementless cups and screws with angular eccentricities. Results: The effect of screw eccentricities (angular eccentricities of ±17° and ±34° on the vascular injury was determined. Measurement between screw and adjoining vessels was performed and analyzed statistically to ascertain a comparative risk study for blood vessels that are not visible during surgery. Conclusion: Authors similarly discussed the significant absence of appreciation of quadrant systems proposed by Wasielewski et al. on eccentric screws. Adjustment of quadrant systems provided by Wasielewski et al. is required for acetabular implants with eccentric holes for fixation of acetabular screws.
Directory of Open Access Journals (Sweden)
Norio Saga
2008-03-01
Full Text Available The purpose of this study was to clarify whether heat preconditioning results in less eccentric exercise-induced muscle damage and muscle soreness, and whether the repeated bout effect is enhanced by heat preconditioning prior to eccentric exercise. Nine untrained male volunteers aged 23 ± 3 years participated in this study. Heat preconditioning included treatment with a microwave hyperthermia unit (150 W, 20 min that was randomly applied to one of the subject's arms (MW; the other arm was used as a control (CON. One day after heat preconditioning, the subjects performed 24 maximal isokinetic eccentric contractions of the elbow flexors at 30°·s-1 (ECC1. One week after ECC1, the subjects repeated the procedure (ECC2. After each bout of exercise, maximal voluntary contraction (MVC, range of motion (ROM of the elbow joint, upper arm circumference, blood creatine kinase (CK activity and muscle soreness were measured. The subjects experienced both conditions at an interval of 3 weeks. MVC and ROM in the MW were significantly higher than those in the CON (p < 0.05 for ECC1; however, the heat preconditioning had no significant effect on upper arm circumference, blood CK activity, or muscle soreness following ECC1 and ECC2. Heat preconditioning may protect human skeletal muscle from eccentric exercise-induced muscle damage after a single bout of eccentric exercise but does not appear to promote the repeated bout effect after a second bout of eccentric exercise
Directory of Open Access Journals (Sweden)
José L. Arias-Buría
2015-01-01
Full Text Available Objective. To compare effects of ultrasound- (US- guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n=17 group or exercise (n=19 group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous electrolysis group also received the application of galvanic current through acupuncture needle on each session once a week (total 4 sessions. Shoulder pain (NPRS and disability (DASH were assessed at baseline, after 2 sessions, and 1 week after the last session. Results. The ANOVA revealed significant Group∗Time interactions for shoulder pain and disability (all, P<0.01: individuals receiving US-guided percutaneous electrolysis combined with the eccentric exercises experienced greater improvement than those receiving eccentric exercise alone. Conclusions. US-guided percutaneous electrolysis combined with eccentric exercises resulted in small better outcomes at short term compared to when only eccentric exercises were applied in subacromial pain syndrome. The effect was statistically and clinically significant for shoulder pain but below minimal clinical difference for function. Future studies should investigate the long-term effects and potential placebo effect of this intervention.
Yu, Ji-Guo; Liu, Jing-Xia; Carlsson, Lena; Thornell, Lars-Eric; Stål, Per S
2013-01-01
The results regarding the effects of unaccustomed eccentric exercise on muscle tissue are often conflicting and the aetiology of delayed onset muscle soreness (DOMS) induced by eccentric exercise is still unclear. This study aimed to re-evaluate the paradigm of muscular alterations with regard to muscle sarcolemma integrity and fibre swelling in human muscles after voluntary eccentric exercise leading to DOMS. Ten young males performed eccentric exercise by downstairs running. Biopsies from the soleus muscle were obtained from 6 non-exercising controls, 4 exercised subjects within 1 hour and 6 exercised subjects at 2-3 days and 7-8 days after the exercise. Muscle fibre sarcolemma integrity, infiltration of inflammatory cells and changes in fibre size and fibre phenotype composition as well as capillary supply were examined with specific antibodies using enzyme histochemistry and immunohistochemistry. Although all exercised subjects experienced DOMS which peaked between 1.5 to 2.5 days post exercise, no significant sarcolemma injury or inflammation was detected in any post exercise group. The results do not support the prevailing hypothesis that eccentric exercise causes an initial sarcolemma injury which leads to subsequent inflammation after eccentric exercise. The fibre size was 24% larger at 7-8 days than at 2-3 days post exercise (pmuscle is not directly associated with the symptom of DOMS.
Park, Su-Ik; Kim, Mi-Sun; Choi, Jong-Duk
2016-07-01
[Purpose] This study examines the effect of concentric and eccentric control training of the paretic leg on balance and gross motor function in children with spastic hemiplegia. [Subjects and Methods] Thirty children with spastic hemiplegia were randomly divided into experimental and control groups. In the experimental group, 20 min of neurodevelopmental therapy and 20 min of concentric and eccentric control exercise were applied to the paretic leg. In the control group, 40 min of neurodevelopmental therapy was applied. The Pediatric Balance Scale test and standing and gait items of the Gross Motor Function Measure were evaluated before and after intervention. [Results] In the experimental group, Gross Motor Function Measure and Pediatric Balance Scale scores statistically significantly increased after the intervention. The control group showed no statistically significant difference in either score after the intervention. [Conclusion] Concentric and eccentric control exercise therapy in children with spastic hemiplegia can be effective in improving gross motor function and balance ability, and can be used to solve functional problems in a paretic leg.
Mike, Jonathan N; Cole, Nathan; Herrera, Chris; VanDusseldorp, Trisha; Kravitz, Len; Kerksick, Chad M
2017-03-01
Mike, JN, Cole, N, Herrera, C, VanDusseldorp, T, Kravitz, L, and Kerksick, CM. The effects of eccentric contraction duration on muscle strength, power production, vertical jump, and soreness. J Strength Cond Res 31(3): 773-786, 2017-Previous research has investigated the effects of either eccentric-only training or comparing eccentric and concentric exercise on changes related to strength and power expression, but no research to date has investigated the impact of altering the duration of either the concentric or the eccentric component on these parameters. Therefore, the purpose of this study was to assess the duration of eccentric (i.e., 2-second, 4-second vs. 6-second) muscle contractions and their effect on muscle strength, power production, vertical jump, and soreness using a plate-loaded barbell Smith squat exercise. Thirty college-aged men (23 ± 3.5 years, 178 ± 6.8 cm, 82 ± 12 kg, and 11.6 ± 5.1% fat) with 3.0 ± 1.0 years of resistance training experience and training frequency of 4.3 ± 0.9 days per week were randomized and assigned to 1 of 3 eccentric training groups that incorporated different patterns of contraction. For every repetition, all 3 groups used 2-second concentric contractions and paused for 1 second between the concentric and eccentric phases. The control group (2S) used 2-second eccentric contractions, whereas the 4S group performed 4-second eccentric contractions and the 6S group performed 6-second eccentric contractions. All repetitions were completed using the barbell Smith squat exercise. All participants completed a 4-week training protocol that required them to complete 2 workouts per week using their prescribed contraction routine for 4 sets of 6 repetitions at an intensity of 80-85% one repetition maximum (1RM). For all performance data, significant group × time (G × T) interaction effects were found for average power production across all 3 sets of a squat jump protocol (p = 0.04) while vertical jump did not reach
Aging interferes central control mechanism for eccentric muscle contraction.
Yao, Wan X; Li, Jinqi; Jiang, Zhiguo; Gao, Jia-Hong; Franklin, Crystal G; Huang, Yufei; Lancaster, Jack L; Yue, Guang H
2014-01-01
Previous studies report greater activation in the cortical motor network in controlling eccentric contraction (EC) than concentric contraction (CC) despite lower muscle activation level associated with EC vs. CC in healthy, young individuals. It is unknown, however, whether elderly people exhibiting increased difficulties in performing EC than CC possess this unique cortical control mechanism for EC movements. To address this question, we examined functional magnetic resonance imaging (fMRI) data acquired during EC and CC of the first dorsal interosseous (FDI) muscle in 11 young (20-32 years) and 9 old (67-73 years) individuals. During the fMRI experiment, all subjects performed 20 CC and 20 EC of the right FDI with the same angular distance and velocity. The major findings from the behavioral and fMRI data analysis were that (1) movement stability was poorer in EC than CC in the old but not the young group; (2) similar to previous electrophysiological and fMRI reports, the EC resulted in significantly stronger activation in the motor control network consisting of primary, secondary and association motor cortices than CC in the young and old groups; (3) the biased stronger activation towards EC was significantly greater in the old than the young group especially in the secondary and association cortices such as supplementary and premotor motor areas and anterior cingulate cortex; and (4) in the primary motor and sensory cortices, the biased activation towards EC was significantly greater in the young than the old group. Greater activation in higher-order cortical fields for controlling EC movement by elderly adults may reflect activities in these regions to compensate for aging-related impairments in the ability to control complex EC movements. Our finding is useful for potentially guiding the development of targeted therapies to counteract age-related movement deficits and to prevent injury.
Grant, Allison; Murji, Ally; Atri, Mostafa
2017-08-01
Differentiation of an eccentric intrauterine pregnancy (IUP) from an interstitial ectopic pregnancy (EP) is challenging. No sign for differentiation is reported. The purpose of this study was to determine whether the presence of surrounding endometrium (SE) can distinguish eccentric IUP from interstitial EP. This study was approved by the institutional ethics board; consent acquisition was waived. Cases were identified using ultrasound (US) reports that included the words "interstitial," "cornual," and "angular." Blinded to official reports, one reviewer reviewed US examinations retrospectively for the presence of SE, defined as the extension of endometrial lining around the gestational sac (GS) as an indication of an eccentric IUP. US examinations without SE on the retrospective review were diagnosed as interstitial EP. Forty-four cases were identified from 2007 to 2015. On retrospective review, 20 cases were labeled as eccentric IUP and 24 as interstitial EP. Ten of the 20 cases retrospectively labeled as eccentric IUP had been reported and managed as eccentric IUP prospectively: four followed to a viable second trimester, and six had spontaneous abortion/termination. The remaining 10 cases retrospectively labeled eccentric IUPs because of the presence of SE had been reported and managed as interstitial EP on the official prospective report. There was follow-up suggestion of eccentric IUP in six of the latter discordant pregnancies with non-concordant retrospective and prospective diagnosis: three had hysteroscopy/curettage demonstrating retained products, two had US follow-up showing the GS moving farther down in the uterine cavity, and in one patient, the GS was shown to pass per vagina. Twenty-four of the 44 cases were called interstitial EP both on the retrospective and prospective reviews and were managed as interstitial EP. None of these patients (without SE) had follow-up suggestive of eccentric IUP. Our results suggest that the presence of surrounding
Tidal disruption events from eccentric nuclear disks in post-merger galaxies
Madigan, Ann-Marie
Surprisingly, in more than twenty percent of nearby elliptical galaxies, the distribution of stars orbiting the central supermassive black hole is strongly asymmetric. In these galaxies, the stars are on apsidally-aligned orbits in an eccentric nuclear disk. Long thought to be exotic, this configuration is quite common in our local universe. Despite the prevalence of eccentric disks however, their dynamics have been largely overlooked. Naively, one might expect that packing orbits so closely together would make them violently unstable to gravitational scattering, or that differential precession would wipe out their large-scale apsidal-alignment. We have recently identified a new dynamical mechanism which stabilizes eccentric nuclear disks (Madigan et al., 2016), thus explaining their observed ubiquity. The stabilizing mechanism produces oscillations of orbital eccentricities of stars in the disk, pushing many stars extremely close to the black hole. If these disks form in gas-rich mergers, as is found in cosmological simulations, there will be an enhanced rate of stellar tidal disruption events (TDEs) following the merger. In a preliminary calculation, we show the TDE rate is initially so high that the nucleus would appear as an AGN, or as a changing-look-quasar. We therefore suggest that accretion of dense stellar material may contribute significantly to the growth of supermassive black holes; if so, this could explain the presence of supermassive black holes in the extremely early universe, z>7, as well as the peaking of quasar activity around z 2, when the galaxy merger rate peaks. Our model can also explain the recently observed preference of TDEs in post-merger, post-starburst (K+A) galaxies. Here we propose to quantify these calculations. We will also undertake a statistical analysis of the literature to determine the true occurrence rate of eccentric nuclear disks. Long after the merger and the K+A phase, eccentric disks no longer directly produce TDEs
Growth conditions and uniqueness of the Cauchy problem for the evolutionary infinity Laplacian
Leonori, Tommaso; Urbano, José Miguel
2008-01-01
We study the Cauchy problem for the parabolic infinity Laplace equation. We prove a new comparison principle and obtain uniqueness of viscosity solutions in the class of functions with a polinomial growth at infinity, improving previous results obtained assuming a linear growth.
Direct and Inverse problems in Electrocardiography
Boulakia, M.; Fernández, M. A.; Gerbeau, J. F.; Zemzemi, N.
2008-09-01
We present numerical results related to the direct and the inverse problems in electrocardiography. The electrical activity of the heart is described by the bidomain equations. The electrocardiograms (ECGs) recorded in different points on the body surface are obtained by coupling the bidomain equation to a Laplace equation in the torso. The simulated ECGs are quite satisfactory. As regards the inverse problem, our goal is to estimate the parameters of the bidomain-torso model. Here we present some preliminary results of a parameter estimation for the torso model.
Directory of Open Access Journals (Sweden)
Mikulović Jovan Č.
2014-01-01
Full Text Available A methodology for calculation of overvoltages in transformer windings, based on a numerical method of inverse Laplace transform, is presented. Mathematical model of transformer windings is described by partial differential equations corresponding to distributed parameters electrical circuits. The procedure of calculating overvoltages is applied to windings having either isolated neutral point, or grounded neutral point, or neutral point grounded through impedance. A comparative analysis of the calculation results obtained by the proposed numerical method and by analytical method of calculation of overvoltages in transformer windings is presented. The results computed by the proposed method and measured voltage distributions, when a voltage surge is applied to a three-phase 30 kVA power transformer, are compared. [Projekat Ministartsva nauke Republike Srbije, br. TR-33037 i br. TR-33020
Directory of Open Access Journals (Sweden)
Mario Faliva
2017-03-01
Full Text Available The paper devises a family of leptokurtic bell-shaped distributions which is based on the hyperbolic secant raised to a positive power, and bridges the Laplace and Gaussian laws on asymptotic arguments. Moment and cumulant generating functions are then derived and represented in terms of polygamma functions. The behaviour of shape parameters, namely kurtosis and entropy, is investigated. In addition, Gram–Charlier-type (GCT expansions, based on the aforementioned distributions and their orthogonal polynomials, are specified, and an operational criterion is provided to meet modelling requirements in a possibly severe kurtosis and skewness environment. The role played by entropy within the kurtosis ranges of GCT expansions is also examined.
Amiri, Manouchehr
2014-01-01
We introduce a type of symmetry breaking and associated order parameter in connection with Laplace-Runge-Lenz vector of Kepler orbit through an extended spatial dimension and Ensemble view. By implementation of a small extra spatial dimension and embedded infinitesimal toral manifold, it has been shown that emerging of LRL vector under SO(4)symmetry is in analogy with a variety of explicit and spontaneous symmetry breaking situations and related Goldstone bosons such as phonons and spin waves. A theorem introduced to generalize this concept of breaking symmetry. The diffeomorphism of circular orbit(geodesic)to elliptic one proved to be equivalent with a covariant derivative and related parallel displacement in this extended four dimensional spatial space.Respect to ensemble definition this diffeomorphism breaks the O(2) symmetry of initial orbit and Hamiltonian to Z2 resulting in broken generators in quotient space and associated Goldstone boson as perturbing Hamiltonian term leading to a perpetual circular m...
Directory of Open Access Journals (Sweden)
Selman Burak UĞURLU
2014-08-01
Full Text Available Exercise - induced hypoalgesia typically reported during and / or follow ing exercise. In this study, we investigated the role of transcutaneous electromyostimulation (EMS on pressure pain threshold and tolerance in athletes under eccentric exercise. Eleven male athletes aged 23,125 ± 0,99 years with 10,25 ± 2,66 years of athl etic training were recruited for this study . Following baseline measurements of pressure pain threshold and tolerance from m. biceps brachii and m. triceps brachii muscle and myofascial regions of the dominant upper extremity by using a digital algometer, subjects were underwent an acute bout of eccentric exercise. Participants were completed 4 sets of eccentric exercise each comprising 20 repetitions of lifting 80% of their 1 RM by using a dumbbell. Pressure pain threshold and tolerance tests were repeated 10, 20 and 30 minutes, and 24 and 48 hours following exercise. One week after acute exercise protocol, EMS protocol was applied to the participants immediately following eccentric exercise, and all measurements were repeated at the same timeline as eccent ric exercise. Standard EMS protocol at active recovery mode for 10 minutes was applied to the m. biceps brachii muscle by using surface electrodes. Results are presented as mean + standarts deviation. Data of the same timeline were analyzed by using repeat ed measures of ANOVA followed by Tukey’s post hoc test . A level of p<0.05 was accepted statistical significant. Eccentric exercise resulted to increase the pain tolerence in athletes, and EMS was found to decrease the pain tolerence 10 and 20 minutes at th e muscle region, and 10 and 30 minutes, and 24 hours at the myofascial region of m. biceps brachii, 10 min and 24 hr from muscle region, 10 and 30 min and 24 hr from myofascial region of M. triceps brachii following acute bout of eccentric exercise. We con cluded that EMS at active recovery phase mitigates the the hypoalgesic response following single bout of
Wang, Ying; Zhou, Ji-lin; hui-gen, Liu; Meng, Zeyang
2017-10-01
Exoplanets discovered over the past decades have provided a new sample of giant exoplanets: hot Jupiters. For lack of enough materials in the current locations of hot Jupiters, they are perceived to form outside the snowline. Then, they migrate to the locations observed through interactions with gas disks or high-eccentricity mechanisms. We examined the efficiencies of different high-eccentricity mechanisms for forming hot Jupiters in near-coplanar multi-planet systems. These mechanisms include planet-planet scattering, the Kozai-Lidov mechanism, coplanar high-eccentricity migration, and secular chaos, as well as other two new mechanisms that we present in this work, which can produce hot Jupiters with high inclinations even in retrograde. We find that the Kozai-Lidov mechanism plays the most important role in producing hot Jupiters among these mechanisms. Secular chaos is not the usual channel for the formation of hot Jupiters due to the lack of an angular momentum deficit within {10}7{T}{in} (periods of the inner orbit). According to comparisons between the observations and simulations, we speculate that there are at least two populations of hot Jupiters. One population migrates into the boundary of tidal effects due to interactions with the gas disk, such as ups And b, WASP-47 b, and HIP 14810 b. These systems usually have at least two planets with lower eccentricities, and remain dynamically stable in compact orbital configurations. Another population forms through high-eccentricity mechanisms after the excitation of eccentricity due to dynamical instability. These kinds of hot Jupiters usually have Jupiter-like companions in distant orbits with moderate or high eccentricities.
Intra-tester Reliability and Construct Validity of a Hip Abductor Eccentric Strength Test.
Brindle, Richard A; Ebaugh, D David; Milner, Clare E
2017-11-15
Side-lying hip abductor strength tests are commonly used to evaluate muscle strength. In a 'break' test the tester applies sufficient force to lower the limb to the table while the patient resists. The peak force is postulated to occur while the leg is lowering, thus representing the participant's eccentric muscle strength. However, it is unclear whether peak force occurs before or after the leg begins to lower. To determine intra-rater reliability and construct validity of a hip abductor eccentric strength test. Intra-rater reliability and construct validity study. Twenty healthy adults (26 ±6 years; 1.66 ±0.06 m; 62.2 ±8.0 kg) made two visits to the laboratory at least one week apart. During the hip abductor eccentric strength test, a hand-held dynamometer recorded peak force and time to peak force and limb position was recorded via a motion capture system. Intra-rater reliability was determined using intra-class correlation (ICC), standard error of measurement (SEM), and minimal detectable difference (MDD). Construct validity was assessed by determining if peak force occurred after the start of the lowering phase using a one-sample t-test. The hip abductor eccentric strength test had substantial intra-rater reliability (ICC(3,3) = 0.88; 95% confidence interval: 0.65-0.95), SEM of 0.9%BWh, and a MDD of 2.5%BWh. Construct validity was established as peak force occurred 2.1s (±0.6s; range 0.7s to 3.7s) after the start of the lowering phase of the test (p ≤ 0.001). The hip abductor eccentric strength test is a valid and reliable measure of eccentric muscle strength. This test may be used clinically to assess changes in eccentric muscle strength over time.
Directory of Open Access Journals (Sweden)
Akira Nagamori
2016-11-01
Full Text Available Eccentric contractions can affect musculotendon mechanical properties and disrupt muscle proprioception, but their behavioral consequences are poorly understood. We tested whether repeated eccentric contractions of plantarflexor muscles of one leg affected the dexterity of either leg. Twenty healthy male subjects (27.3+/-4.0 yrs compressed a compliant and slender spring prone to buckling with each isolated leg. The maximal instability they could control (i.e., the maximal average sustained compression force, or lower extremity dexterity force, LEDForce quantified the dexterity of each leg. We found that eccentric contractions did not affect LEDForce, but reduced force variability (LEDSD. Surprisingly, LEDForce increased in the non-exposed, contralateral leg. These effects were specific to exposure to eccentric contractions because an effort-matched exposure to walking did not affect leg dexterity. In the exposed leg, eccentric contractions (i reduced voluntary error corrections during spring compressions (i.e., reduced 0.5-4 Hz power of LEDForce; (ii did not change spinal excitability (i.e., unaffected H-reflexes; and (iii changed the structure of the neural drive to the alpha-motoneuron pool (i.e., reduced EMG power within the 4-8 Hz physiological tremor band. These results suggest that repeated eccentric contractions alter the feedback control for dexterity in the exposed leg by reducing muscle spindle sensitivity. Moreover, the unexpected improvement in LEDForce in the non-exposed contralateral leg was likely a consequence of crossed-effects on its spinal and supraspinal feedback control. We discuss the implications of these bilateral effects of unilateral eccentric contractions, their effect on spinal and supraspinal control of dynamic foot-ground interactions, and their potential to facilitate rehabilitation from musculoskeletal and neuromotor impairments.
Directory of Open Access Journals (Sweden)
Michelle eMoyer
2012-09-01
Full Text Available K+ channel blockers like 3,4-diaminopyridine (DAP can double isometric muscle force. Functional movements require more complex concentric and eccentric contractions, however the effects of K+ channel blockade on these types of contractions in situ are unknown. Extensor digitorum longus (EDL muscles were stimulated in situ with and without DAP in anesthetized rats and fatigability was addressed using a series of either concentric or eccentric contractions. During isotonic protocols (5-100% load, DAP significantly shifted shortening- and maximum shortening velocity-load curves upward and to the right and increased power and work. Maximum shortening, maximum shortening velocity and power doubled while work increased by approximately 250% during isotonic contraction at 50% load. During isotonic fatigue, DAP significantly augmented maximum shortening, work, shortening velocity and power. During constant velocity eccentric protocols (2-12 mm/s, DAP increased muscle force during eccentric contractions at 6, 8, 10 and 12 mm/s. During eccentric contraction at a constant velocity of 6mm/s while varying the stimulation frequency, DAP significantly increased muscle force during 20, 40 and 70 Hz . The effects of DAP on muscle contractile performance during eccentric fatigue varied with level of fatigue. DAP-induced contractile increases during isotonic contractions were similar to those produced during previously studied isometric contractions, while the DAP effect during eccentric contractions was more modest. These findings are especially important in attempting to optimize functional electrical stimulation parameters for spinal cord injury patients while also preventing rapid fatigue of those muscles.
Chronic ankle instability alters eccentric eversion/inversion and dorsiflexion/plantarflexion ratio.
Abdel-aziem, Amr Almaz; Draz, Amira Hussin
2014-01-01
To determine if the eccentric evertor/invertor and dorsiflexor/plantar-flexor ratio are altered in subjects with chronic ankle instability. Twenty chronic ankle instability (CAI) subjects as an experimental group, and twenty healthy subjects as a control group, were matched in age, gender, and activity level. CAI subjects have a history of at least one ankle sprain and repeated episodes of giving way were included in CAI group. Subjects with no prior history of ankle injury were included in the control group. Ankle evertor/invertor and dorsiflexor/plantar-flexor muscles eccentric torque ratios were measured using the eccentric muscle contraction at angular velocities 60 and 120°/s. Analysis of variance revealed that the eccentric contraction eversion/inversion ratio of CAI group was significantly lower than normal group ratio at angular velocities 60 and 120°/s (p=0.041 and 0.012) respectively. The eccentric contraction dorsiflexion/plantarflexion ratio of CAI group was significantly higher than normal group ratio at both angular velocities (p=0.036 and 0.013) respectively. Moreover, at angular velocities of 60°/s and 120°/s a deficit in inversion and eversion eccentric torques were identified in CAI group (p=0.000), plantarflexion torque deficit of CAI group (p=0.034 and 0.028), respectively, and no deficit was identified for dorsiflexion torque of CAI group (p=0.595 and 0.696) respectively. Chronic ankle instability increases the dorsiflexion/plantarflexion muscles torque ratio and decreases the eversion/inversion ratio at angular velocities 60 and 120°/s. Therefore, the restoration of a normal eccentric inversion, eversion, and plantarflexion strength may prevent recurrent lateral ankle ligament sprain.
Directory of Open Access Journals (Sweden)
Kenny Guex
2016-08-01
Full Text Available Most common preventive eccentric-based exercises, such as Nordic hamstring do not include any hip flexion. So, the elongation stress reached is lower than during the late swing phase of sprinting. The aim of this study was to assess the evolution of hamstring architectural (fascicle length and pennation angle and functional (concentric and eccentric optimum angles and concentric and eccentric peak torques parameters following a 3-week eccentric resistance program performed at long (LML versus short muscle length (SML. Both groups performed eight sessions of 3-5x8 slow maximal eccentric knee extensions on an isokinetic dynamometer: the SML group at 0° and the LML group at 80° of hip flexion. Architectural parameters were measured using ultrasound imaging and functional parameters using the isokinetic dynamometer. The fascicle length increased by 4.9% (p<0.01, medium effect size in the SML and by 9.3% (p<0.001, large effect size in the LML group. The pennation angle did not change (p=0.83 in the SML and tended to decrease by 0.7° (p=0.09, small effect size in the LML group. The concentric optimum angle tended to decrease by 8.8° (p=0.09, medium effect size in the SML and by 17.3° (p<0.01, large effect size in the LML group. The eccentric optimum angle did not change (p=0.19, small effect size in the SML and tended to decrease by 10.7° (p=0.06, medium effect size in the LML group. The concentric peak torque did not change in the SML (p=0.37 and the LML (p=0.23 groups, whereas eccentric peak torque increased by 12.9% (p<0.01, small effect size and 17.9% (p<0.001, small effect size in the SML and the LML group, respectively. No group-by-time interaction was found for any parameters. A correlation was found between the training-induced change in fascicle length and the change in concentric optimum angle (r=-0.57, p<0.01. These results suggest that performing eccentric exercises lead to several architectural and functional adaptations. However
Hessel, Anthony L.; Lindstedt, Stan L.; Nishikawa, Kiisa C.
2017-01-01
When active muscles are stretched, our understanding of muscle function is stretched as well. Our understanding of the molecular mechanisms of concentric contraction has advanced considerably since the advent of the sliding filament theory, whereas mechanisms for increased force production during eccentric contraction are only now becoming clearer. Eccentric contractions play an important role in everyday human movements, including mobility, stability, and muscle strength. Shortly after the sliding filament theory of muscle contraction was introduced, there was a reluctant recognition that muscle behaved as if it contained an “elastic” filament. Jean Hanson and Hugh Huxley referred to this structure as the “S-filament,” though their concept gained little traction. This additional filament, the giant titin protein, was identified several decades later, and its roles in muscle contraction are still being discovered. Recent research has demonstrated that, like activation of thin filaments by calcium, titin is also activated in muscle sarcomeres by mechanisms only now being elucidated. The mdm mutation in mice appears to prevent activation of titin, and is a promising model system for investigating mechanisms of titin activation. Titin stiffness appears to increase with muscle force production, providing a mechanism that explains two fundamental properties of eccentric contractions: their high force and low energetic cost. The high force and low energy cost of eccentric contractions makes them particularly well suited for athletic training and rehabilitation. Eccentric exercise is commonly prescribed for treatment of a variety of conditions including sarcopenia, osteoporosis, and tendinosis. Use of eccentric exercise in rehabilitation and athletic training has exploded to include treatment for the elderly, as well as muscle and bone density maintenance for astronauts during long-term space travel. For exercise intolerance and many types of sports injuries
Tyler, Timothy F; Nicholas, Stephen J; Schmitt, Brandon M; Mullaney, Michael; Hogan, Daniel E
2014-05-01
Eccentric training of the wrist extensors has been shown to be effective in treating chronic lateral epicondylosis. However, its efficacy in the treatment of medial epicondylosis has yet to be demonstrated. The objective of this study was to assess the effectiveness of a novel eccentric wrist flexor exercise added to standard treatment for chronic medial epicondylosis in patients who did not respond to previous therapeutic interventions for this disorder. 20. Patients (13 men, 7 women; age 49±12 yr) with chronic medial epicondylosis who had failed previous treatment for this disorder (physical therapy 7, cortisone injection 7, PRP 1, NSAIDS 15) were prescribed isolated eccentrics in addition to wrist stretching, ultrasound, cross-friction massage, heat and ice. The specific isolated eccentric wrist flexor strengthening exercise performed by the patients involved twisting a rubber bar (Flexbar, Hygenic Corportation, Akron OH) with concentric wrist flexion of the noninvolved arm and releasing the twist by eccentrically contracting the wrist flexors of the involved arm (3 × 15 twice daily). A DASH questionnaire was recorded at baseline and again after the treatment period. Treating clinicians were blinded to baseline DASH scores. Treatment effect was assessed using paired t-test. Based on previous work it was estimated that with a sample of 20 patients there would be 80% power to detect a 13 point improvement in DASH scores (ptennis (2), basketball (1), weight lifting (1), and general activities of daily living (2). There was a significant improvement in outcomes following the addition of isolated eccentrics (Pre DASH 34.7±16.2 vs. Post DASH 7.9±11.1, p<.001). For the 18 patients involved in sports, the sports module of the DASH score improved from 73.9±28.9 to 13.2±25.0, p<.001). Physical therapy visits ranged from 1-22 with an average of 12±6 and, average treatment duration of 6.1±2.5 wks (range 1-10). Home exercise program compliance was recorded for each
Directory of Open Access Journals (Sweden)
Vasaghi Gharamaleki B
2008-09-01
Full Text Available "nBackground: The typical features of eccentric exercise-induced muscle damage are delayed-onset muscle soreness (DOMS and prolonged loss of muscle strength. It has been shown that passive warmth is effective in reducing muscle injury. Due to the interaction of different systems in vivo, we used isolated perfused medial gastrocnemius skeletal muscle to study the direct effect of temperature on the eccentric contraction-induced force loss. "nMethods: After femoral artery cannulation of a rat, the left medial gastrocnemius muscle was separated and then the entire lower limb was transferred into a prewarmed (35oC chamber. With the chamber temperature at 31, 35 and 39oC before and during eccentric contraction. Isometric force loss was measured after 15 eccentric contractions (N=7-9. "nResults: Maximum contraction force reduction has been used as an index for eccentric contraction-induced force loss. In this study eccentric contraction caused a significant reduction in maximum isometric tension (p<0.01, but no significant difference was seen in isometric force loss at 31oC and 39oC compared with that at 35oC. "nConclusions: Our results suggest that temperature changes before or during eccentric contractions have no effect on eccentric contraction-induced force loss. "nKeywords: Isolated perfused muscle, skeletal muscle, eccentric contractions, isometric force, gastrocnemius muscle, temperature.
Madigan, Ann-Marie; Halle, Andrew; Moody, Mackenzie; McCourt, Michael; Nixon, Chris; Wernke, Heather
2018-02-01
In some galaxies, the stars orbiting the supermassive black hole take the form of an eccentric nuclear disk, in which every star is on a coherent, apsidally aligned orbit. The most famous example of an eccentric nuclear disk is the double nucleus of Andromeda, and there is strong evidence for many more in the local universe. Despite their apparent ubiquity, however, a dynamical explanation for their longevity has remained a mystery: differential precession should wipe out large-scale apsidal-alignment on a short timescale. Here we identify a new dynamical mechanism which stabilizes eccentric nuclear disks, and explain for the first time the negative eccentricity gradient seen in the Andromeda nucleus. The stabilizing mechanism drives oscillations of the eccentricity vectors of individual orbits, both in direction (about the mean body of the disk) and in magnitude. Combined with the negative eccentricity gradient, the eccentricity oscillations push some stars near the inner edge of the disk extremely close to the black hole, potentially leading to tidal disruption events (TDEs). Order of magnitude calculations predict extremely high rates in recently formed eccentric nuclear disks (∼0.1–1 {{yr}}-1 {{gal}}-1). Unless the stellar disks are replenished, these rates should decrease with time as the disk depletes in mass. If eccentric nuclear disks form during gas-rich major mergers, this may explain the preferential occurrence of TDEs in recently merged and post-merger (E+A/K+A) galaxies.
Guex, Kenny J; Lugrin, Véronique; Borloz, Stéphane; Millet, Grégoire P
2016-02-01
Hamstring injuries are common in sprinters and mainly occur during the terminal swing phase. Eccentric training has been shown to reduce hamstring injury rate by improving several risk factors. The aim of this study was to test the hypothesis that an additional swing phase-specific hamstring eccentric training in well-trained sprinters performed at the commencement of the winter preparation is more efficient to improve strength, ratio, optimum angle, and flexibility than a similar program without hamstring eccentric exercises. Twenty sprinters were randomly allocated to an eccentric (n = 10) or a control group (n = 10). Both groups performed their usual track and field training throughout the study period. Sprinters in the eccentric group performed an additional 6-week hamstring eccentric program, which was specific to the swing phase of the running cycle (eccentric high-load open-chain kinetic movements covering the whole hamstring length-tension relationship preformed at slow to moderate velocity). Isokinetic and flexibility measurements were performed before and after the intervention. The eccentric group increased hamstring peak torques in concentric at 60° · s(-1) by 16% (p training in sprinters seems to be crucial to address different risk factors for hamstring strain injuries, such as eccentric and concentric strength, hamstring-to-quadriceps ratio ratio, and flexibility.
Densities and eccentricities of 139 Kepler planets from transit time variations
Energy Technology Data Exchange (ETDEWEB)
Hadden, Sam; Lithwick, Yoram [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States)
2014-05-20
We extract densities and eccentricities of 139 sub-Jovian planets by analyzing transit time variations (TTVs) obtained by the Kepler mission through Quarter 12. We partially circumvent the degeneracies that plague TTV inversion with the help of an analytical formula for the TTV. From the observed TTV phases, we find that most of these planets have eccentricities of the order of a few percent. More precisely, the rms eccentricity is 0.018{sub −0.004}{sup +0.005}, and planets smaller than 2.5 R {sub ⊕} are around twice as eccentric as those bigger than 2.5 R {sub ⊕}. We also find a best-fit density-radius relationship ρ ≈ 3 g cm{sup –3} × (R/3 R {sub ⊕}){sup –2.3} for the 56 planets that likely have small eccentricity and hence small statistical correction to their masses. Many planets larger than 2.5 R {sub ⊕} are less dense than water, implying that their radii are largely set by a massive hydrogen atmosphere.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Long; Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China); Dey, Jishnu; Dey, Mira, E-mail: lixd@nju.edu.cn [Department of Physics, Presidency University, 86/1, College Street, Kolkata 700 073 (India)
2015-07-01
According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X–1, which also possesses a low-field compact star in an eccentric orbit.
Transient dynamics of eccentric double emulsion droplets in a simple shear flow
Kim, Sangkyu; Dabiri, Sadegh
2017-10-01
We numerically examine the time-dependent behavior of double emulsions in a simple shear flow using finite volume and front-tracking methods. A single inner drop is initially located eccentrically to the outer drop. When the eccentricity is contained within the plane of shear, the inner drop experiences a "revolving" motion within the plane of shear, orbiting about the center of the compound drop while slowly moving outward. The inner drop eventually experiences a limit cycle, where no more outward movement occurs because the distance between the two interfaces is reduced to a thin liquid film for portions of the revolving cycle. In addition, eccentricity in the direction normal to the plane of shear is tested. In this case, the inner droplet undergoes a "drifting" motion, slowly moving perpendicularly to the plane of shear until only a thin layer remains between the two interfaces. Finally, the revolving and drifting motions are simultaneously observed when the in-plane-of-shear eccentricity is included in addition to the off-plane-of-shear eccentricity. The observed behaviors are not qualitatively affected by the inner to outer droplet radii ratio, and are preserved when Re≤5 ,Cao≤0.1 , and Cai<0.2 .
Effect of Strength Eccentricity on Torsional Behaviour of RC Frame Buildings
Rizwan, Shaik Mohammed; Singh, Yogendra
2012-02-01
This study attempts to understand the inelastic seismic behaviour of asymmetric multistory RC buildings using non-linear dynamic time history analysis. Both inherently asymmetric and artificially generated eccentric building models were considered. Two categories of artificially generated models were considered. In the first category, groups of mass symmetric systems (MSS) having strength, stiffness and both strength and stiffness eccentricities were considered. In the second category of models, mass eccentricity was introduced in otherwise symmetric models. Building systems were modelled as 3D space frame with lumped plasticity. The response is evaluated using the peak rotational ductility demand of beams of the different frames as measures of their inelastic response. Investigations of first category of artificially generated MSS showed that the response can be better co-related with the strength eccentricity. The results from the second category of systems not designed for torsion indicated that there is significant variation in the beam ductility demands of different frames, whereas systems designed for torsion indicated a shift in the center of strength towards the center of mass and exhibited almost uniform ductility demand in beams of various frames for smaller eccentricities.
Development of a new universal machine device for eccentric shafts processing
Directory of Open Access Journals (Sweden)
Михайло Володимирович Маргуліс
2015-11-01
Full Text Available The analysis of the existing lathe devices for machining of eccentric details and the reasons for the development of a new universal machine device– a shifting lathe center-have been described in the article. The device design, its operating principle, the main parts functions and elements of the case were described and illustrated One of the most complicated cases of eccentric shaft turning, that is turning design and scheme of the eccentric shaft of precessional harmonic drive with intermediate rolling bodies when the proposed device was used was described in the article. The shifting lathe center can reduce the complexity of the machine tool for turning eccentric shafts configuration. The ability to install the shifting center in the tailstock and headstock of the lathe, and the availability of the leash makes it possible to turn various eccentric parts, conical surfaces, to apply the device to compensate for the emerging taper in cylindrical shafts processing. All the above mentioned makes the device universal. The specific feature of this device is the use of a ball center and the connection of the centering element with the adjusting screw by a fine thread screw, this increasing the precision machining. The protective cover of the device makes it possible to reduce the chance of possible injury from protruding parts of the device, namely the leash and the centering element
Effects of sport massage on limb girth and discomfort associated with eccentric exercise.
Hart, Joseph M; Swanik, C Buz; Tierney, Ryan T
2005-01-01
Sport massage is often used to help prepare for exercise, expedite recovery from muscle soreness, and enhance athletic performance. However, the effect of sport massage on recovery from delayed-onset muscle soreness is unknown. To determine the effect of a short sport massage treatment on intramuscular swelling and pain in response to eccentric exercise. We used a 2 x 8 (treatment x time) repeated-measures design to compare triceps surae muscle girth and pain ratings over the 72 hours after eccentric exercise. University research laboratory. Nineteen healthy, college-aged subjects. Delayed-onset muscle soreness was induced with several sets of eccentric triceps surae contractions at 90% of the estimated concentric, 1-repetition maximum weight. Subjects returned on 3 consecutive days after eccentric exercise with a cycle ergometer for active rest treatments. In addition, 1 leg received the sport massage. Girth measurements were taken at 5.08 cm (2 in), 10.16 cm (4 in), 15.24 cm (6 in), and 20.32 cm (8 in) below the knee joint line, and pain was assessed with a visual analog scale before and after all 4 sessions. No interaction was noted between treatment and time for any girth or pain measurements, and no main effect was seen for treatment. Sport massage did not reduce girth or pain in the lower leg after eccentric exercise within 72 hours.
Analysis of scattering wave for a conducting cylinder coated with eccentric plasma
Yin, Bo; Yang, Feng; Hao, Honggang; Li, Changyong
2013-05-01
Object coated with plasma has stimulated great interests of many people because of its stealth capability. The study on a conducting cylinder coated with coaxial plasma is very much, but there are little works on a conducting cylinder coated with eccentric plasma. In this article, a model for a conducting cylinder coated with eccentric unmagnetized plasma is set up, the scattering cross section of the object cylinder is studied by adopting the superposition of cylindrical wave functions and the coordinate transformation, where these wave functions are the solutions of Maxwell's equations with boundary conditions in cylindrical coordinates. The results show that the radar cross section for a conducting cylinder coated with eccentric plasma in every direction decrease obviously with an increase of the distance between two eccentric axes, but is almost not impacted by electron-neutral collision frequency of plasma, and the backscattering cross section of the target reduce with the increase of electron density. Comparing with the coaxial model, the backscattering cross section of the eccentric model has a smaller value in a wide frequency band. This is of significance for the target plasma stealth technology in practice.
Jiang, Long; Li, Xiang-Dong; Dey, Jishnu; Dey, Mira
2015-07-01
According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X-1, which also possesses a low-field compact star in an eccentric orbit.
CUERVO: A finite element computer program for nonlinear scalar transport problems
Energy Technology Data Exchange (ETDEWEB)
Sirman, M.B.; Gartling, D.K.
1995-11-01
CUERVO is a finite element code that is designed for the solution of multi-dimensional field problems described by a general nonlinear, advection-diffusion equation. The code is also applicable to field problems described by diffusion, Poisson or Laplace equations. The finite element formulation and the associated numerical methods used in CUERVO are outlined here; detailed instructions for use of the code are also presented. Example problems are provided to illustrate the use of the code.
DEFF Research Database (Denmark)
Vissing, K.; Bayer, M.L.; Overgaard, K.
2009-01-01
weeks between bouts, and were compared with a control group (n = 6). Muscle biopsies collected from m. vastus lateralis of both legs prior to and at 3 h, 24 h and 7 days after exercise were quantified for mRNA levels and/or for HSP27, alpha beta-crystallin and inducible HSP70 content in cytosolic....... mRNA levels for HSP70, HSP27 and alpha beta-crystallin were upregulated within approximately two to fourfold ranges at time points 3 and 24 h post-exercise (P ... HSP70 and HSP27 protein content in cytoskeletal fractions were observed exclusively after eccentric exercise (P fold upregulation after first-bout eccentric exercise was attenuated to a an approximately fourfold upregulation after the repeated eccentric exercise bout...
The Pan-Pacific Planet Search. VII. The Most Eccentric Planet Orbiting a Giant Star
Wittenmyer, Robert A.; Jones, M. I.; Horner, Jonathan; Kane, Stephen R.; Marshall, J. P.; Mustill, A. J.; Jenkins, J. S.; Pena Rojas, P. A.; Zhao, Jinglin; Villaver, Eva; Butler, R. P.; Clark, Jake
2017-12-01
Radial velocity observations from three instruments reveal the presence of a 4 M Jup planet candidate orbiting the K giant HD 76920. HD 76920b has an orbital eccentricity of 0.856 ± 0.009, making it the most eccentric planet known to orbit an evolved star. There is no indication that HD 76920 has an unseen binary companion, suggesting a scattering event rather than Kozai oscillations as a probable culprit for the observed eccentricity. The candidate planet currently approaches to about four stellar radii from its host star, and is predicted to be engulfed on a ∼100 Myr timescale due to the combined effects of stellar evolution and tidal interactions.
Hanci, Erdal; Sekir, Ufuk; Gur, Hakan; Akova, Bedrettin
2016-06-01
The aim of this study was to investigate the effects of a combined eccentric-concentric exercise program of the ankle evertors and dorsiflexors on proprioception in functionally unstable ankles. Thirteen male recreational athletes with unilateral functional ankle instability were admitted to this study. The unaffected opposite ankles were used as controls. The functionnaly unstable ankle of the subjects performed an isokinetic exercise program of the ankle evertors and dorsiflexors in a combined eccentric-concentric mode for 3 days per week for 6 wks. Before and after the isokinetic exercise program, active and passive joint position sense and kinesthesia and isokinetic strength of the ankle joint were evaluated. Active and passive joint position sense error scores for inversion (P proprioceptive acuity of the ankle joint after a 6-wk eccentric-concentric isokinetic training program in functionally unstable ankles.
Implementation of a Reuse Process for Liquid Crystal Displays Using an Eccentric-Form Tool
Pa, Pai-Shan
2009-01-01
This study presents a new nanotechnology application involving an ITO thin-film removal reuse process using an eccentric-form negative electrode, offering a fast removal rate from the surface of liquid crystal displays (LCDs). For the precision removal process, a small amount of eccentricity of the negative electrode or a higher rotational speed of the negative electrode corresponds to a higher etching rate for the ITO. A higher flow velocity of the electrolyte and a higher working temperature also correspond to a higher removal rate. The average effect of the eccentricity is better than the effects of a pulsed current, while the current rating need not be prolonged by the off-time. PMID:19865539
Highly eccentric Kozai mechanism and gravitational-wave observation for neutron-star binaries.
Seto, Naoki
2013-08-09
The Kozai mechanism for a hierarchical triple system could reduce the merger time of inner eccentric binary emitting gravitational waves (GWs) and has been qualitatively explained with the secular theory that is derived by averaging short-term orbital revolutions. However, with the secular theory, the minimum value of the inner pericenter distance could be excessively limited by the averaging operation. Compared with traditional predictions, the actual evolution of an eccentric inner binary could be accompanied by (i) a higher characteristic frequency of the pulselike GWs around its pericenter passages and (ii) a larger residual eccentricity at its final inspiral phase. These findings would be important for GW astronomy with the forthcoming advanced detectors.
Probabilistic eccentricity bifurcation for stars around shrinking massive black hole binaries
Iwasa, Mao; Seto, Naoki
2017-12-01
Based on the secular theory, we discuss the orbital evolution of stars in a nuclear star cluster to which a secondary massive black hole is infalling with vanishing eccentricity. We find that the eccentricities of the stars could show sharp transitions, depending strongly on their initial conditions. By examining the phase-space structure of an associated Hamiltonian, we show that these characteristic behaviours are partly due to a probabilistic bifurcation at a separatrix crossing, resulting from the retrograde apsidal precession by the cluster potential. We also show that separatrix crossings are closely related to realization of a large eccentricity and could be important for astrophysical phenomena such as tidal disruption events or gravitational wave emissions.
Effect of Eccentricity of Load on Critical Force of Thin-Walled Columns CFRP
Directory of Open Access Journals (Sweden)
Pawel Wysmulski
2017-09-01
Full Text Available The subject of study was a thin-walled C-section made of carbon fiber reinforced polymer (CFRP. Column was subjected to eccentric compression in the established direction. In the computer simulation, the boundary conditions were assumed in the form of articulated support of the sections of the column. Particular studies included an analysis of the effects of eccentricity on the critical force value. The research was conducted using two independent research methods: numerical and experimental. Numerical simulations were done using the finite element method using the advanced system Abaqus®. The high sensitivity of the critical force value corresponding to the local buckling of the channel section to the load eccentricity was demonstrated.
Decreased muscle GLUT-4 and contraction-induced glucose transport after eccentric contractions
DEFF Research Database (Denmark)
Kristiansen, S; Asp, Svend; Richter, Erik
1996-01-01
Eccentric exercise causes muscle damage and decreased muscle glycogen and glucose transporter isoform (GLUT-4) protein content. We investigated whether the contraction-induced increase in skeletal muscle glucose transport and muscle performance is affected by prior eccentric contractions. The calf...... contractions. EC rats had a significantly lower total GLUT-4 protein content in the white gastrocnemius (GW) muscle (55%) and red gastrocnemius (GR) muscle (34%) compared with muscle from the CT, ST, and CC rats. In contrast, GLUT-1 protein content was approximately twofold higher in the GW muscle in EC rats...... than in CT rats. In the GW and GR muscle, prior eccentric exercise decreased contraction-induced stimulation of glucose transport compared with CT, ST, and CC rats despite no difference in tension development and oxygen uptake among the groups. There was no change in total GLUT-4 content and glucose...
Temporalis muscle hypertrophy and reduced skull eccentricity in Duchenne muscular dystrophy.
Straathof, C S M; Doorenweerd, N; Wokke, B H A; Dumas, E M; van den Bergen, J C; van Buchem, M A; Hendriksen, J G M; Verschuuren, J J G M; Kan, H E
2014-10-01
Muscle hypertrophy and muscle weakness are well known in Duchenne muscular dystrophy. Decreased muscle force can have secondary effects on skeletal growth and development such as facial and dental morphology changes. In this study, we quantified temporal muscle thickness, circumference, and eccentricity of the skull and the head on T1-weighted magnetic resonance imaging (MRI) scans of the head of 15 Duchenne muscular dystrophy patients and 15 controls. Average temporal muscle thickness was significantly increased in patients (12.9 ± 5.2 mm) compared to controls (6.8 ± 1.4 mm) (P muscle thickness and skull eccentricity were significantly negatively correlated in patients, and positively in controls. Hypertrophy of the temporal muscles and changes in skull eccentricity appear to occur early in the course of Duchenne muscular dystrophy. Further studies in younger patients are needed to confirm a causal relationship. © The Author(s) 2014.
Impact of the sleeve thickness on the armature eccentricity in a solenoid valve
Directory of Open Access Journals (Sweden)
Goraj Robert
2016-06-01
Full Text Available Most studies on solenoid valves (SVs assumed that the armature is concentrically positioned in the sleeve. Under this assumption the transversal component of the magnetic force is equal zero. The article presents an analytical calculation model for the estimation of the armature eccentricity. Using this model the eccentricity was calculated as a function of the sleeve thickness and the hydraulic clearance between the armature and the sleeve. After finding the eccentricity also the permeance of the radial air gap was calculated. This permeance has a direct influence on the drop of the magnetomotive force in the magnetic circuit and finally influences also the axial component of the magnetic force. In the article a calculation of both transversal and axial components of the magnetic force was carried out and presented in the appendix to the article.
Prolonged submaximal eccentric exercise is associated with increased levels of plasma IL-6
DEFF Research Database (Denmark)
Rohde, Thomas; MacLean, D A; Richter, Erik
1997-01-01
To study the relationship between exercise-related muscle proteolysis and the cytokine response, a prolonged eccentric exercise model of one leg was used. Subjects performed two trials [a branched-chain amino acid (BCAA) supplementation and a control trial]. The release of amino acids from muscle...... during and after the eccentric exercise was decreased in the BCAA trial, suggesting a suppression of net muscle protein degradation. The plasma concentrations of interleukin (IL)-6 increased from 0.75 +/- 0.19 (preexercise) to 5.02 +/- 0.96 pg/ml (2 h postexercise) in the control trial and in the BCAA...... supplementation trial from 1.07 +/- 0.41 to 4.15 +/- 1.21 pg/ml. Eccentric exercise had no effect on the concentrations of neutrophils, lymphocytes, CD16+/CD56+, CD4+, CD8+, CD14+/CD38+, lymphocyte proliferative response, or cytotoxic activities. BCAA supplementation reduced the concentration of CD14+/CD38+ cells...
Faramaz, V.; Beust, H.; Thebault, P.; Augereau, J.-C.; Bonsor, A.; delBurgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.;
2014-01-01
Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions
Adaptive strength gains in dystrophic muscle exposed to repeated bouts of eccentric contraction
Call, Jarrod A.; Eckhoff, Michael D.; Baltgalvis, Kristen A.; Warren, Gordon L.
2011-01-01
The objective of this study was to determine the functional recovery and adaptation of dystrophic muscle to multiple bouts of contraction-induced injury. Because lengthening (i.e., eccentric) contractions are extremely injurious for dystrophic muscle, it was considered that repeated bouts of such contractions would exacerbate the disease phenotype in mdx mice. Anterior crural muscles (tibialis anterior and extensor digitorum longus) and posterior crural muscles (gastrocnemius, soleus, and plantaris) from mdx mice performed one or five repeated bouts of 100 electrically stimulated eccentric contractions in vivo, and each bout was separated by 10–18 days. Functional recovery from one bout was achieved 7 days after injury, which was in contrast to a group of wild-type mice, which still showed a 25% decrement in electrically stimulated isometric torque at that time point. Across bouts there was no difference in the immediate loss of strength after repeated bouts of eccentric contractions for mdx mice (−70%, P = 0.68). However, after recovery from each bout, dystrophic muscle had greater torque-generating capacity such that isometric torque was increased ∼38% for both anterior and posterior crural muscles at bout 5 compared with bout 1 (P muscles excised from in vivo-tested hindlimbs 14–18 days after bout 5 had greater specific force than contralateral control muscles (12.2 vs. 10.4 N/cm2, P = 0.005) and a 20% greater maximal relaxation rate (P = 0.049). Additional adaptations due to the multiple bouts of eccentric contractions included rapid recovery and/or sparing of contractile proteins, enhanced parvalbumin expression, and a decrease in fiber size variability. In conclusion, eccentric contractions are injurious to dystrophic skeletal muscle; however, the muscle recovers function rapidly and adapts to repeated bouts of eccentric contractions by improving strength. PMID:21960659
Eccentric Torque-Producing Capacity is Influenced by Muscle Length in Older Healthy Adults.
Melo, Ruth C; Takahashi, Anielle C M; Quitério, Robison J; Salvini, Tânia F; Catai, Aparecida M
2016-01-01
Considering the importance of muscle strength to functional capacity in the elderly, the study investigated the effects of age on isokinetic performance and torque production as a function of muscle length. Eleven younger (24.2 ± 2.9 years) and 16 older men (62.7 ± 2.5 years) were subjected to concentric and eccentric isokinetic knee extension/flexion at 60 and 120° · s(-1) through a functional range of motion. The older group presented lower peak torque (in newton-meters) than the young group for both isokinetic contraction types (age effect, p torque deficits in the older group were near 30 and 29% for concentric and eccentric contraction, respectively. Concentric peak torque was lower at 120° · s(-1) than at 60° · s(-1) for both groups (angular velocity effect, p torque was the only exercise tested that showed an interaction effect between age and muscle length (p torque responses to the muscle length between groups. Compared with the young group, the eccentric knee extension torque was 22-56% lower in the older group, with the deficits being lower in the shortened muscle length (22-27%) and higher (33-56%) in the stretched muscle length. In older men, the production of eccentric knee strength seems to be dependent on the muscle length. At more stretched positions, older subjects lose the capacity to generate eccentric knee extension torque. More studies are needed to assess the mechanisms involved in eccentric strength preservation with aging and its relationship with muscle length.
Schoenfeld, Brad J; Ogborn, Dan I; Vigotsky, Andrew D; Franchi, Martino V; Krieger, James W
2017-09-01
Schoenfeld, BJ, Ogborn, DI, Vigotsky, AD, Franchi, MV, and Krieger, JW. Hypertrophic effects of concentric vs. eccentric muscle actions: A systematic review and meta-analysis. J Strength Cond Res 31(9): 2599-2608, 2017-Controversy exists as to whether different dynamic muscle actions produce divergent hypertrophic responses. The purpose of this paper was to conduct a systematic review and meta-analysis of randomized controlled trials comparing the hypertrophic effects of concentric vs. eccentric training in healthy adults after regimented resistance training (RT). Studies were deemed eligible for inclusion if they met the following criteria: (a) were an experimental trial published in an English-language refereed journal; (b) directly compared concentric and eccentric actions without the use of external implements (i.e., blood pressure cuffs) and all other RT variables equivalent; (c) measured morphologic changes using biopsy, imaging (magnetic resonance imaging, computerized tomography, or ultrasound), bioelectrical impedance, and/or densitometry; (d) had a minimum duration of 6 weeks; and (e) used human participants without musculoskeletal injury or any health condition that could directly, or through the medications associated with the management of said condition, be expected to impact the hypertrophic response to resistance exercise. A systematic literature search determined that 15 studies met inclusion criteria. Results showed that eccentric muscle actions resulted in a greater effect size (ES) compared with concentric actions, but results did not reach statistical significance (ES difference = 0.25 ± 0.13; 95% confidence interval: -0.03 to 0.52; p = 0.076). The mean percent change in muscle growth across studies favored eccentric compared with concentric actions (10.0% vs. 6.8, respectively). The findings indicate the importance of including eccentric and concentric actions in a hypertrophy-oriented RT program, as both have shown to be effective in
Achilles tendon of wistar rats treated with laser therapy and eccentric exercise
Directory of Open Access Journals (Sweden)
Maria Verônica de Souza
2015-10-01
Full Text Available ABSTRACTIntroduction:Both laser therapy and eccentric exercises are used in tendon injuries. However, the association of these physiotherapeutic modalities is yet little investigated.Objective:To evaluate the effect of low-level laser therapy associated to eccentric exercise (downhill walking on Achilles tendinopathy of Wistar rats.Method:Eighteen Achilles tendon from 15 adult male Wistar rats were used. Tendons were distributed in six groups (laser, eccentric exercise, laser and eccentric exercise, rest, contralateral tendon, and healthy tendon. Unilateral tendinopathy was surgically induced by transversal compression followed by scarification of tendon fibers. The treatments laser therapy (904 nm, 3J/cm² and/or eccentric exercise (downhill walking; 12 m/min; 50 min/day; 15o inclination treadmill began 24 hours after surgery and remained for 20 days. Clinical and biomechanical analyzes were conducted. Achilles tendon was macroscopically evaluated and the transversal diameter measured. Euthanasia was performed 21 days after lesion induction. Tendons of both limbs were collected and frozen at -20°C until biomechanical analysis, on which the characteristic of maximum load (N, stress at ultimate (MPa and maximum extension (mm were analyzed.Results:Swelling was observed within 72 hours postoperative. No fibrous adhesions were observed nor increase in transversal diameter of tendons. Animals with the exercised tendons, but not treated with laser therapy, presented lower (p=0.0000 locomotor capacity. No difference occurred be-tween groups for the biomechanical characteristics maximum load (p=0.4379, stress at ultimate (p=0.4605 and maximum extension (p=0.3820 evaluated, even considering healthy and contralateral tendons.Conclusion:The concomitant use of low-level laser and the eccentric exercise of downhill walking, starting 24 hours after surgically induced tendinopathy, do not result in a tendon with the same biomechanical resistance or elasticity
Directory of Open Access Journals (Sweden)
Ji-Guo Yu
Full Text Available The results regarding the effects of unaccustomed eccentric exercise on muscle tissue are often conflicting and the aetiology of delayed onset muscle soreness (DOMS induced by eccentric exercise is still unclear. This study aimed to re-evaluate the paradigm of muscular alterations with regard to muscle sarcolemma integrity and fibre swelling in human muscles after voluntary eccentric exercise leading to DOMS. Ten young males performed eccentric exercise by downstairs running. Biopsies from the soleus muscle were obtained from 6 non-exercising controls, 4 exercised subjects within 1 hour and 6 exercised subjects at 2-3 days and 7-8 days after the exercise. Muscle fibre sarcolemma integrity, infiltration of inflammatory cells and changes in fibre size and fibre phenotype composition as well as capillary supply were examined with specific antibodies using enzyme histochemistry and immunohistochemistry. Although all exercised subjects experienced DOMS which peaked between 1.5 to 2.5 days post exercise, no significant sarcolemma injury or inflammation was detected in any post exercise group. The results do not support the prevailing hypothesis that eccentric exercise causes an initial sarcolemma injury which leads to subsequent inflammation after eccentric exercise. The fibre size was 24% larger at 7-8 days than at 2-3 days post exercise (p<0.05. In contrast, the value of capillary number per fibre area tended to decrease from 2-3 days to 7-8 days post exercise (lower in 5 of the 6 subjects at 7-8 days than at 2-3 days; p<0.05. Thus, the increased fibre size at 7-8 days post exercise was interpreted to reflect fibre swelling. Because the fibre swelling did not appear at the time that DOMS peaked (between 1.5 to 2.5 days post exercise, we concluded that fibre swelling in the soleus muscle is not directly associated with the symptom of DOMS.
Physiological comparison of concentric and eccentric arm cycling in males and females.
Directory of Open Access Journals (Sweden)
C Martyn Beaven
Full Text Available Lower body eccentric exercise is well known to elicit high levels of muscular force with relatively low cardiovascular and metabolic strain. As a result, eccentric exercise has been successfully utilised as an adaptive stressor to improve lower body muscle function in populations ranging from the frail and debilitated, to highly-trained individuals. Here we investigate the metabolic, cardiorespiratory, and energy costs of upper body eccentric exercise in a healthy population. Seven men and seven women performed 4-min efforts of eccentric (ECC or concentric (CON arm cycling on a novel arm ergometer at workloads corresponding to 40, 60, and 80% of their peak workload as assessed in an incremental concentric trial. The heart rate, ventilation, cardiac output, respiratory exchange ratio, and blood lactate concentrations were all clearly greater in CON condition at all of the relative workloads (all p0.05. In contrast, delta efficiency (ηΔ, as previously defined by Coyle and colleagues in 1992, demonstrated a sex difference (men>women; p<0.05. Sex differences were also apparent in arteriovenous oxygen difference and heart rate during CON. Here, we reinforce the high-force, low cost attributes of eccentric exercise which can be generalised to the muscles of the upper body. Upper body eccentric exercise is likely to form a useful adjunct in debilitative, rehabilitative, and adaptive clinical exercise programs; however, reports of a shift towards an oxidative phenotype should be taken into consideration by power athletes. We suggest delta efficiency as a sensitive measure of efficiency that allowed the identification of sex differences.
The relationships of eccentric strength and power with dynamic balance in male footballers.
Booysen, Marc Jon; Gradidge, Philippe Jean-Luc; Watson, Estelle
2015-01-01
Unilateral balance is critical to kicking accuracy in football. In order to design interventions to improve dynamic balance, knowledge of the relationships between dynamic balance and specific neuromuscular factors such as eccentric strength and power is essential. Therefore, the aim was to determine the relationships of eccentric strength and power with dynamic balance in male footballers. The Y-balance test, eccentric isokinetic strength testing (knee extensors and flexors) and the countermovement jump were assessed in fifty male footballers (university (n = 27, mean age = 20.7 ± 1.84 years) and professional (n = 23, mean age = 23.0 ± 3.08 years). Spearman Rank Order correlations were used to determine the relationships of eccentric strength and power with dynamic balance. Multiple linear regression, adjusting for age, mass, stature, playing experience and competitive level was performed on significant relationships. Normalised reach score in the Y-balance test using the non-dominant leg for stance correlated with (1) eccentric strength of the non-dominant leg knee extensors in the university group (r = 0.50, P = 0.008) and (2) countermovement jump height in the university (r = 0.40, P = 0.04) and professional (r = 0.56, P = 0.006) football groups, respectively. No relationships were observed between eccentric strength (knee flexors) and normalised reach scores. Despite the addition of potential confounders, the relationship of power and dynamic balance was significant (r = 0.52, P power correlates moderately with dynamic balance on the non-dominant leg in male footballers.
COMPRESSION GARMENTS AND RECOVERY FROM ECCENTRIC EXERCISE: A 31P-MRS STUDY
Directory of Open Access Journals (Sweden)
Michael I. Trenell
2006-03-01
Full Text Available The low oxidative demand and muscular adaptations accompanying eccentric exercise hold benefits for both healthy and clinical populations. Compression garments have been suggested to reduce muscle damage and maintain muscle function. This study investigated whether compression garments could benefit metabolic recovery from eccentric exercise. Following 30-min of downhill walking participants wore compression garments on one leg (COMP, the other leg was used as an internal, untreated control (CONT. The muscle metabolites phosphomonoester (PME, phosphodiester (PDE, phosphocreatine (PCr, inorganic phosphate (Pi and adenosine triphosphate (ATP were evaluated at baseline, 1-h and 48-h after eccentric exercise using 31P-magnetic resonance spectroscopy. Subjective reports of muscle soreness were recorded at all time points. The pressure of the garment against the thigh was assessed at 1-h and 48-h following exercise. There was a significant increase in perceived muscle soreness from baseline in both the control (CONT and compression (COMP leg at 1-h and 48-h following eccentric exercise (p < 0.05. Relative to baseline, both CONT and COMP showed reduced pH at 1-h (p < 0.05. There was no difference between CONT and COMP pH at 1-h. COMP legs exhibited significantly (p < 0.05 elevated skeletal muscle PDE 1-h following exercise. There was no significant change in PCr/Pi, Mg2+ or PME at any time point or between CONT and COMP legs. Eccentric exercise causes disruption of pH control in skeletal muscle but does not cause disruption to cellular control of free energy. Compression garments may alter potential indices of the repair processes accompanying structural damage to the skeletal muscle following eccentric exercise allowing a faster cellular repair
Directory of Open Access Journals (Sweden)
Martino V. Franchi
2017-07-01
Full Text Available Skeletal muscle contracts either by shortening or lengthening (concentrically or eccentrically, respectively; however, the two contractions substantially differ from one another in terms of mechanisms of force generation, maximum force production and energy cost. It is generally known that eccentric actions generate greater force than isometric and concentric contractions and at a lower metabolic cost. Hence, by virtue of the greater mechanical loading involved in active lengthening, eccentric resistance training (ECC RT is assumed to produce greater hypertrophy than concentric resistance training (CON RT. Nonetheless, prevalence of either ECC RT or CON RT in inducing gains in muscle mass is still an open issue, with some studies reporting greater hypertrophy with eccentric, some with concentric and some with similar hypertrophy within both training modes. Recent observations suggest that such hypertrophic responses to lengthening vs. shortening contractions are achieved by different adaptations in muscle architecture. Whilst the changes in muscle protein synthesis in response to acute and chronic concentric and eccentric exercise bouts seem very similar, the molecular mechanisms regulating the myogenic adaptations to the two distinct loading stimuli are still incompletely understood.Thus, the present review aims to, (a critically discuss the literature on the contribution of eccentric vs. concentric loading to muscular hypertrophy and structural remodeling, and, (b clarify the molecular mechanisms that may regulate such adaptations.We conclude that, when matched for either maximum load or work, similar increase in muscle size is found between ECC and CON RT. However, such hypertrophic changes appear to be achieved through distinct structural adaptations, which may be regulated by different myogenic and molecular responses observed between lengthening and shortening contractions.
Sanz-López, Fernando; Berzosa Sánchez, César; Hita-Contreras, Fidel; Cruz-Diaz, David; Martínez-Amat, Antonio
2016-07-01
Sanz-López, F, Berzosa Sánchez, C, Hita-Contreras, F, Cruz-Diaz, D, and Martínez-Amat, A. Ultrasound changes in Achilles tendon and gastrocnemius medialis muscle on squat eccentric overload and running performance. J Strength Cond Res XX(X): 000-000, 2015-Previous studies have proven the adaptation to load in the Achilles tendon and gastrocnemius muscle after different types of exercise, such as running, heel drop training, and a variety of sports. These findings have been applied to improve performance and in the treatment and prevention of overuse injuries. However, the effects that squat performance may have on the Achilles tendon and gastrocnemius muscle are still unknown. Squats are a widely used training exercise that involves calf-muscle activation. Similarly, no reports have been published regarding the adaptation to load of trained and untrained subjects during several consecutive days of running. The purpose of this study was to analyze changes in the Achilles tendon and in the pennation angles of the gastrocnemius medialis after eccentric overload training and within 3 days of running. Twenty healthy males who volunteered for this study were divided into 2 groups. Subjects in the eccentric overload training (ECC) group performed 6 weeks of eccentric overload training (twice weekly, 4 sets of 7 repetitions in a Yoyo squat device) before the running intervention. All participants, ECC and control (CONT) groups, ran on 3 consecutive days. After the eccentric training, an increase in the cross-sectional area of the Achilles tendon and in the pennation angle was observed. As for the running intervention, the behavior of tissues in both groups was similar. These results suggest that eccentric overload training with squats promotes changes in the Achilles tendon and in the pennation angle of the gastrocnemius medialis muscle. Nevertheless, significant changes in the tissue do not appear between the running performance of trained and untrained subjects.
Heavy Slow Resistance Versus Eccentric Training as Treatment for Achilles Tendinopathy
DEFF Research Database (Denmark)
Beyer, Rikke; Kongsgaard, Mads; Hougs Kjær, Birgitte
2015-01-01
BACKGROUND: Previous studies have shown that eccentric training has a positive effect on Achilles tendinopathy, but few randomized controlled trials have compared it with other loading-based treatment regimens. PURPOSE: To evaluate the effectiveness of eccentric training (ECC) and heavy slow...... resistance training (HSR) among patients with midportion Achilles tendinopathy. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: A total of 58 patients with chronic (>3 months) midportion Achilles tendinopathy were randomized to ECC or HSR for 12 weeks. Function and symptoms......), and the mean training session compliance rate was 78% in the ECC group and 92% in the HSR group, with a significant difference between groups (P
DEFF Research Database (Denmark)
Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard
2014-01-01
well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso...... of supplementation. In conclusion, whey protein supplementation may accelerate SC proliferation as part of the regeneration or remodeling process after high-intensity eccentric exercise.......Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not been...
Heat transfer in CO{sub 2} at supercritical pressures in an eccentric annular channel
Energy Technology Data Exchange (ETDEWEB)
Bae, Yoon-Yeong, E-mail: yybae@kaeri.re.kr
2013-12-15
Highlights: • Heat transfer under supercritical pressure in an eccentric annular channel pressure was studied. • The studied geometry was an eccentric annular channel with an eccentricity of 0.33. • The effect of spacer as a turbulence generator was investigated. • The effects of the mass flux, heat flux, and pressure were investigated. • The obtained data were evaluated against the correlation. - Abstract: An experimental investigation of a supercritical heat transfer in an eccentric annular channel was performed using a supercritical heat transfer test facility, SPHINX, at the Korea Atomic Energy Research Institute (KAERI). The eccentric channel was built by placing a 9.5 mm outer diameter heater rod in a 12.5 mm inner diameter tube with an eccentricity of 0.33. The narrowest gap was 1 mm, and the widest gap was 2 mm. The rod was heated indirectly by an imbedded Nickel Chrome heating wire made of NCHW1. Three simple spacers were installed to see their effect, if any, on the heat transfer. The mass fluxes were 400 and 1200 kg/m{sup 2} s, and the heat flux was varied between 30 and 150 kW/m{sup 2} such that the pseudo-critical point was located within the test section as long as possible. When this was not the case, several tests with stepwise increased inlet temperatures were performed so that at least one of them included the pseudo-critical point. The tests were performed at two different pressures of 7.75 and 8.12 MPa to check the pressure effect. The influence of the gap size was clearly seen with the eccentric channel, if not significant. The wall temperatures along the narrowest gap were higher than those along the widest gap as expected, while it was reversed at the end part of the test section. The test results for the eccentric channel were not much different from those for the concentric channel of a similar gap size. As we have seen from the plain tube test, the diameter effect on the heat transfer was also not significant in this test. On the
Mansur, Nacime Salom?o Barbachan; Faloppa, Fl?vio; Belloti, Jo?o Carlos; Ingham, Sheila J McNeill; Matsunaga, Fabio Teruo; dos Santos, Paulo Roberto Dias; dos Santos, Bruno Schiefer; Carrazzone, Oreste Lemos [UNIFESP; Peixoto, Gabriel; Aoyama, Bruno Takeshi; Tamaoki, Marcel Jun Sugawara [UNIFESP
2017-01-01
Background There is no consensus regarding the treatment of Achilles insertional tendinopathies. Eccentric training remains the main choice in the conservative treatment of this illness; however, the good results in the management of non-insertional Achilles tendinopathy were not replicated in the insertional condition. Low energy shock wave therapy has been described as an alternative to these patients, but has yet to be empirically tested. Hypothesis Shock wave therapy, adjunctive to the ec...
DEFF Research Database (Denmark)
Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs
2015-01-01
content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies...
DEFF Research Database (Denmark)
Andersen, P. S.; Jensen, A.; Mannov, G.
1974-01-01
Measurements of (1) burn-out, (2) circumferential film flow distribution, and (3) pressure drop in a 17 × 27.2 × 3500 mm concentric and eccentric annulus geometry are presented. The eccentric displacement was varied between 0 and 3 mm. The working fluid was water. Burn-out curves at 70 bar...... flow variation on burn-out is discussed....
Vukicevic, Meri; Fitzmaurice, Kerry
2009-01-01
Macular degeneration has a severe impact on a person's ability to perform activities of daily living. This study investigated the impact of in-home training in eccentric viewing on near acuity and performance of activities of daily living. The results suggest that eccentric viewing can ameliorate the impact of the loss of vision that is due to…
Directory of Open Access Journals (Sweden)
Mahdi Karami
2014-01-01
Full Text Available This paper is dedicated to investigating static eccentricity in a three-phase LSPMSM. The modeling of LSPMSM with static eccentricity between stator and rotor is developed using finite element method (FEM. The analytical expression for the permeance and flux components of nonuniform air-gap due to static eccentricity fault is discussed. Various indexes for static eccentricity detection using stator current signal of IM and permanent magnet synchronous motor (PMSM are presented. Since LSPMSM is composed of a rotor which is a combination of these two motors, the ability of these features is evaluated for static eccentricity diagnosis in LSPMSM. The simulated stator current signal of LSPMSM in the presence of static eccentricity is analyzed in frequency domain using power spectral density (PSD. It is demonstrated that static eccentricity fault generates a series of low frequency harmonic components in the form of sidebands around the fundamental frequency. Moreover, the amplitudes of these components increase in proportion to the fault severity. According to the mentioned observations, an accurate frequency pattern is specified for static eccentricity detection in three-phase LSPMSM.
Stefenelli, Mario; Todt, Juraj; Riedl, Angelika; Ecker, Werner; Müller, Thomas; Daniel, Rostislav; Burghammer, Manfred; Keckes, Jozef
2013-10-01
Novel scanning synchrotron cross-sectional nanobeam and conventional laboratory as well as synchrotron Laplace X-ray diffraction methods are used to characterize residual stresses in exemplary 11.5 µm-thick TiN coatings. Both real and Laplace space approaches reveal a homogeneous tensile stress state and a very pronounced compressive stress gradient in as-deposited and blasted coatings, respectively. The unique capabilities of the cross-sectional approach operating with a beam size of 100 nm in diameter allow the analysis of stress variation with sub-micrometre resolution at arbitrary depths and the correlation of the stress evolution with the local coating microstructure. Finally, advantages and disadvantages of both approaches are extensively discussed.
Kjærgaard, Thomas
2017-01-28
The divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-RI-MP2) theory method introduced in Baudin et al. [J. Chem. Phys. 144, 054102 (2016)] is significantly improved by introducing the Laplace transform of the orbital energy denominator in order to construct the double amplitudes directly in the local basis. Furthermore, this paper introduces the auxiliary reduction procedure, which reduces the set of the auxiliary functions employed in the individual fragments. The resulting Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation method is applied to the insulin molecule where we obtain a factor 9.5 speedup compared to the DEC-RI-MP2 method.
Lai, Ruixun; Wang, Min; Yang, Ming; Zhang, Chao
2018-02-01
The accuracy of the widely-used two-dimensional hydrodynamic numerical model depends on the quality of the river terrain model, particularly in the main channel. However, in most cases, the bathymetry of the river channel is difficult or expensive to obtain in the field, and there is a lack of available data to describe the geometry of the river channel. We introduce a method that originates from the grid generation with the elliptic equation to generate streamlines of the river channel. The streamlines are numerically solved with the Laplace equations. In the process, streamlines in the physical domain are first computed in a computational domain, and then transformed back to the physical domain. The interpolated streamlines are integrated with the surrounding topography to reconstruct the entire river terrain model. The approach was applied to a meandering reach in the Qinhe River, which is a tributary in the middle of the Yellow River, China. Cross-sectional validation and the two-dimensional shallow-water equations are used to test the performance of the river terrain generated. The results show that the approach can reconstruct the river terrain using the data from measured cross-sections. Furthermore, the created river terrain can maintain a geometrical shape consistent with the measurements, while generating a smooth main channel. Finally, several limitations and opportunities for future research are discussed.
Miftahurrohmah, Brina; Iriawan, Nur; Fithriasari, Kartika
2017-06-01
Stocks are known as the financial instruments traded in the capital market which have a high level of risk. Their risks are indicated by their uncertainty of their return which have to be accepted by investors in the future. The higher the risk to be faced, the higher the return would be gained. Therefore, the measurements need to be made against the risk. Value at Risk (VaR) as the most popular risk measurement method, is frequently ignore when the pattern of return is not uni-modal Normal. The calculation of the risks using VaR method with the Normal Mixture Autoregressive (MNAR) approach has been considered. This paper proposes VaR method couple with the Mixture Laplace Autoregressive (MLAR) that would be implemented for analysing the first three biggest capitalization Islamic stock return in JII, namely PT. Astra International Tbk (ASII), PT. Telekomunikasi Indonesia Tbk (TLMK), and PT. Unilever Indonesia Tbk (UNVR). Parameter estimation is performed by employing Bayesian Markov Chain Monte Carlo (MCMC) approaches.
A dimension decomposition approach based on iterative observer design for an elliptic Cauchy problem
Majeed, Muhammad Usman
2015-07-13
A state observer inspired iterative algorithm is presented to solve boundary estimation problem for Laplace equation using one of the space variables as a time-like variable. Three dimensional domain with two congruent parallel surfaces is considered. Problem is set up in cartesian co-ordinates and Laplace equation is re-written as a first order state equation with state operator matrix A and measurements are provided on the Cauchy data surface with measurement operator C. Conditions for the existence of strongly continuous semigroup generated by A are studied. Observability conditions for pair (C, A) are provided in infinite dimensional setting. In this given setting, special observability result obtained allows to decompose three dimensional problem into a set of independent two dimensional sub-problems over rectangular cross-sections. Numerical simulation results are provided.
Wasielewski, Noah J; Kotsko, Kevin M
2007-01-01
To critically review evidence for the effectiveness of eccentric exercise to treat lower extremity tendinoses. Databases used to locate randomized controlled trials (RCTs) included PubMed (1980-2006), CINAHL (1982-2006), Web of Science (1995-2006), SPORT Discus (1980-2006), Physiotherapy Evidence Database (PEDro), and the Cochrane Collaboration Database. Key words included tendon, tendonitis, tendinosis, tendinopathy, exercise, eccentric, rehabilitation, and therapy. The criteria for trial selection were (1) the literature was written in English, (2) the research design was an RCT, (3) the study participants were adults with a clinical diagnosis of tendinosis, (4) the outcome measures included pain or strength, and (5) eccentric exercise was used to treat lower extremity tendinosis. Specific data were abstracted from the RCTs, including eccentric exercise protocol, adjunctive treatments, concurrent physical activity, and treatment outcome. The calculated post hoc statistical power of the selected studies (n = 11) was low, and the average methodologic score was 5.3/10 based on PEDro criteria. Eccentric exercise was compared with no treatment (n = 1), concentric exercise (n = 5), an alternative eccentric exercise protocol (n = 1), stretching (n = 2), night splinting (n = 1), and physical agents (n = 1). In most trials, tendinosis-related pain was reduced with eccentric exercise over time, but only in 3 studies did eccentric exercise decrease pain relative to the control treatment. Similarly, the RCTs demonstrated that strength-related measures improved over time, but none revealed significant differences relative to the control treatment. Based on the best evidence available, it appears that eccentric exercise may reduce pain and improve strength in lower extremity tendinoses, but whether eccentric exercise is more effective than other forms of therapeutic exercise for the resolution of tendinosis symptoms remains questionable.
Waanders, Jeroen; Beijersbergen, Chantal; Murgia, Alessio; Hortobagyi, Tibor
2016-01-01
BACKGROUND: Old referenced to young adults show a relative maintenance of maximal eccentric (RELM) compared to concentric muscle torque: ∼76 and ∼59%, respectively. However, it is unknown if RELM affords functional benefits in old adults. OBJECTIVE: We examined if there is specificity between the
Observational Bias and the Clustering of Distant Eccentric Kuiper Belt Objects
Brown, Michael E.
2017-08-01
The hypothesis that a massive Planet Nine exists in the outer solar system on a distant eccentric orbit was inspired by observations showing that the objects with the most distant eccentric orbits in the Kuiper Belt have orbits that are physically aligned, that is, they are clustered in longitude of perihelion and have similar orbital planes. Questions have remained, however, about the effects of observational bias on these observations, particularly on the longitudes of perihelion. Specifically, distant eccentric Kuiper Belt objects (KBOs) tend to be faint and only observable near their perihelia, suggesting that the longitudes of perihelion of the known distant objects could be strongly biased by the limited number of locations in the sky where deep surveys have been carried out. We have developed a method to rigorously estimate the bias in longitude of perihelion for Kuiper Belt observations. We find that the probability that the 10 known KBOs with semimajor axis beyond 230 au are drawn from a population with uniform longitude of perihelion is 1.2%. Combined with the observation that the orbital poles of these objects are also clustered, the overall probability of detecting these two independent clusterings in a randomly distributed sample is 0.025%. While observational bias is clearly present in these observations, it is unlikely to explain the observed alignment of the distant eccentric KBOs.
ON THE FORMATION OF ECCENTRIC MILLISECOND PULSARS WITH HELIUM WHITE-DWARF COMPANIONS
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, John, E-mail: antoniadis@dunlap.utoronto.ca [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada)
2014-12-20
Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire and Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (10{sup 4}-10{sup 5} yr) disk can result in eccentricities of e ≅ 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range.
Paschalis, Vassilis; Nikolaidis, Michalis G; Theodorou, Anastasios A; Deli, Chariklia K; Raso, Vagner; Jamurtas, Athanasios Z; Giakas, Giannis; Koutedakis, Yiannis
2013-09-01
The aim of this study was to estimate the effect of being overweight or underweight on proprioception at rest and after muscle damaging eccentric exercise. Twelve lean, 12 overweight, and 8 underweight female participants performed an eccentric exercise session using the knee extensor muscles of the dominant leg. Muscle damage indices and proprioception were assessed up to 3 days postexercise. The results indicated that proprioception at baseline of the lean individuals was superior to that of the other 2 groups. The overweight individuals exhibited a smaller knee joint reaction angle to release than did the lean group, whereas the underweight individuals exhibited a larger reaction angle to release than did the lean group. After eccentric exercise, proprioception was affected more in the overweight and the underweight groups than in the lean group. The greater exercise-induced muscle damage appeared in the overweight group, and the deficient muscle mass of the underweight participants could explain in part the greater disturbances that appeared in proprioception in these 2 groups than for the lean counterparts. In conclusion, deviating from the normal body mass is associated with significant disturbances in the proprioception of the legs at rest and after participation in activities involving eccentric actions.
Deli, Chariklia K; Fatouros, Ioannis G; Paschalis, Vassilis; Georgakouli, Kalliopi; Zalavras, Athanasios; Avloniti, Alexandra; Koutedakis, Yiannis; Jamurtas, Athanasios Z
2017-08-01
Research regarding exercise-induced muscle-damage mainly focuses on adults. The present study examined exercise-induced muscle-damage responses in adults compared with children. Eleven healthy boys (10-12 y) and 15 healthy men (18-45 y) performed 5 sets of 15 maximal eccentric contractions of the knee extensors. Range of motion (ROM), delayed onset muscle soreness (DOMS) during squat and walking, and peak isometric, concentric and eccentric torque were assessed before, post, 24, 48, 72, and 96 hr postexercise. Creatine kinase (CK) activity was assessed before and 72 hr postexercise. Eccentric exercise resulted in DOMS during squat that persisted for up to 96h in men, and 48 hr in boys (p < .05), and DOMS during walking that persisted for up to 72 hr in men, and 48 hr in boys (p < .01). The ROM was lower in both age groups 48 hr postexercise (p < .001). Isometric (p < .001), concentric (p < .01) and eccentric (p < .01) force decreased post, and up to 48 hr postexercise in men. Except for a reduction in isometric force immediately after exercise, no other changes occurred in boys' isokinetic force. CK activity increased in men at 72 hr postexercise compared with pre exercise levels (p = .05). Our data provide further confirmation that children are less susceptible to exercise-induced muscle damage compared with adults.
DEFF Research Database (Denmark)
Kongsgaard, M; Kovanen, V; Aagaard, P
2009-01-01
A randomized-controlled single-blind trial was conducted to investigate the clinical, structural and functional effects of peritendinous corticosteroid injections (CORT), eccentric decline squat training (ECC) and heavy slow resistance training (HSR) in patellar tendinopathy. Thirty-nine male...
Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats.
Helge, J W; Therkildsen, K J; Jørgensen, T B; Wu, B J; Storlien, L H; Asp, S
2001-09-01
This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised to three groups who received chow with added fish oil (n = 8), vitamin C (n = 8) or no supplement (n = 7). After 3 weeks of feeding, calf muscles on one side were stimulated electrically during anaesthesia causing eccentric contractions. Two days later the white gastrocnemius, a part of the stimulated calf muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0.1% of total fatty acids, respectively) was uniformly higher across groups (P muscle. Thus one severe bout of eccentric contractions modulates the fatty acid composition of the muscle membrane phospholipids when compared to a control leg, and supplemental intake of fish oil or vitamin C did not attenuate this effect.
Therapeutic potential of eccentric exercises for age-related muscle atrophy
Directory of Open Access Journals (Sweden)
Jae-Young Lim
2016-09-01
Full Text Available Recent studies have focused on evidence-based interventions to prevent mobility decline and enhance physical performance in older adults. Several modalities, in addition to traditional strengthening programs, have been designed to manage age-related functional decline more effectively. In this study, we reviewed the current relevant literatures to assess the therapeutic potential of eccentric exercises for age-related muscle atrophy (sarcopenia. Age-related changes in human skeletal muscle, and their relationship with physical performance, are discussed with reference to in vitro physiologic and human biomechanics studies. An overview of issues relevant to sarcopenia is provided in the context of the recent consensus on the diagnosis and management of the condition. A decline in mobility among the aging population is closely linked with changes in the muscle force–velocity relationship. Interventions based specifically on increasing velocity and eccentric strength can improve function more effectively compared with traditional strengthening programs. Eccentric strengthening programs are introduced as a specific method for improving both muscle force and velocity. To be more effective, exercise interventions for older adults should focus on enhancing the muscle force–velocity relationship. Exercises that can be performed easily, and that utilize eccentric strength (which is relatively spared during the aging process, are needed to improve both muscle force and velocity.
Eccentric hip adduction and abduction strength in elite soccer players and matched controls
DEFF Research Database (Denmark)
Thorborg, Kristian; Couppé, C; Petersen, J
2011-01-01
Eccentric hip adduction and abduction strength plays an important role in the treatment and prevention of groin injuries in soccer players. Lower extremity strength deficits of less than 10% on the injured side, compared to the uninjured side, have been suggested as the clinical milestone before...
Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System
Energy Technology Data Exchange (ETDEWEB)
Wit, Julien de [Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Knutson, Heather A.; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Fuller, Jim [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Antoci, Victoria [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Fulton, Benjamin J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Laughlin, Gregory [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Shporer, Avi [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91009 (United States); Cowan, Nicolas B. [Department of Physics, Department of Earth and Planetary Sciences, McGill University, 3550 rue University, Montreal, QC H3A 2A7 (Canada); Agol, Eric [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, Adam S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)
2017-02-20
Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.
Age versus size determination of radial variation in wood specific gravity : lessons from eccentrics
G. Bruce Williamson; Michael C. Wiemann
2011-01-01
Radial increases in wood specific gravity have been shown to characterize early successional trees from tropical forests. Here, we develop and apply a novel method to test whether radial increases are determined by tree age or tree size. The method compares the slopes of specific gravity changes across a short radius and a long radius of trees with eccentric trunks. If...
Directory of Open Access Journals (Sweden)
Mishra Prashant Akhilesh
2014-04-01
Full Text Available Background and Objective: Therapeutic eccentric exercise may provide both a structural and functional benefit during tendinopathy rehabilitation. The objective is to find the effect of eccentric exercises on improvement of pain and grip strength for subjects with Medial Epicondylitis. Method: Pre to post test experimental study design randomized thirty subjects with medial epicondylitis, 15 each into Group A and Group B. Group B subjects were treated with conventional therapy and Eccentric exercises. Group A subjects were treated with conventional therapy. Results: When means of post intervention were compared using Independent ‘t’ between groups there was no statistically significant difference in improvements obtained in VAS scores and grip strength. There was a statistically significant change in means of VAS score and Grip strength when means were analyzed by using Paired‘t’ test and Wilcoxon signed rank test within the groups with positive percentage of change. Conclusion: It is concluded that four weeks of Eccentric Exercise Programme combined with conventional therapy shown significant effect on improving pain and Grip strength, however the improvement obtained has no difference when compared with control conventional treatment for Subjects with Medial Epicondylitis.
CSIR Research Space (South Africa)
Kruger, OA
2000-01-01
Full Text Available , eccentricity and pyramidal errors of the measuring faces. Deviations in the flatness of angle surfaces have been held responsible for the lack of agreement in angle comparisons. An investigation has been carried out using a small-angle generator...
Effects of Horn Ellipticity and Eccentricity on Neutrino Flux for DUNE
Amador, Eric; Yu, Jaehoon; Lebrun, Paul; Avila, Monica; Lira, Nicholas; Deep Underground Neutrino Experiment Collaboration
We will simulate the effects of horn ellipticity, eccentricity and current equalizer on our horn focusing system for the Deep Underground Neutrino Experiment (DUNE). The muon neutrino and electron neutrino integrated fluxes will be measured at both Near and Far Detector, and will be compared to its anti-neutrino mode integrated fluxes.
Synthesis of eccentric titania-silica core-shell and composite particles
Demirors, A.F.|info:eu-repo/dai/nl/30483176X; van Blaaderen, A.|info:eu-repo/dai/nl/092946488; Imhof, A.|info:eu-repo/dai/nl/145641600
2009-01-01
We describe a novel method to synthesize colloidal particles with an eccentric core-shell structure. Titania-silica core-shell particles were synthesized by silica coating of porous titania particles under Sto¨ber (Sto¨ber et al. J. Colloid Interface Sci. 1968, 26, 62) conditions. We can control
Eccentric hip abductor weakness in patients with symptomatic external snapping hip
DEFF Research Database (Denmark)
Jacobsen, Julie Sandell; Thorborg, Kristian; Søballe, K
2012-01-01
Symptomatic external snapping hip can be a long-standing condition affecting physical function in younger people between 15-40 years. Gluteal weakness has been suggested to be associated with the condition. The aim of this study was to investigate whether eccentric hip abduction strength....... Eccentric hip abduction strength was 16% lower in patients with external snapping hip compared with healthy matched controls (1.50 ± 0.47 Nm/kg versus 1.82 ± 0.48 Nm/kg, P = 0.01). No other strength differences were measured between patients and controls (P > 0.05). Eccentric hip abductor weakness...... were compared with 13 healthy matched controls in a cross-sectional study design. The mean age of the patients was 25.5 ± 3.4 years and the mean age of the controls was 25.6 ± 2.6 years. Eccentric and isometric strength were assessed with a handheld dynamometer, using reliable test procedures...
Vugt, N. van; Langereis, C.G.; Hilgen, F.J.
2001-01-01
Milankovitch forcing of climate is expressed in the sedimentary record as lithological cycles that can have one or more of four typical periods related to precession (21 kyr), obliquity (41 kyr) and eccentricity (100 and 400 kyr). In several Mediterranean continental successions, striking
Folkerts, Mireille A; Hijmans, Juha M.; Elsinghorst, Anne L.; Mulderij, Yvon; Murgia, Alessio; Dekker, Rienk
2017-01-01
BACKGROUND: Strength training can increase function in individuals with stroke. However it is unclear which type of strength training is most effective and feasible. OBJECTIVE: To assess the effect and feasibility of an intervention combining eccentric and task-oriented strength training in
Directory of Open Access Journals (Sweden)
Thomas W. Kaminski
2003-06-01
Full Text Available Protocols for strengthening muscle are important for fitness, rehabilitation, and the prevention of myotendinous injuries. In trained individuals, the optimal method of increasing strength remains unclear. The purpose of this study was to compare the effects of a traditional method of strengthening with a method that allowed for enhanced-eccentric training, on changes in elbow flexor strength in trained subjects. Thirty-nine (8 male, 31 female trained subjects with normal elbow function participated in this study. Subjects were rank-ordered according to isometric force production and randomly assigned to one of three training groups: control (CONT, traditional concentric/eccentric (TRAD, and concentric/enhanced-eccentric (NEG. The training groups completed 24 training sessions. An evaluator blinded to training group performed all testing. Mixed model ANOVA techniques were used to determine if differences existed in concentric one repetition maximum strength, and isometric force production among groups. Changes in peak and average isokinetic force production were also compared. Type 1 error was maintained at 5%. While both groups improved concentric one repetition maximum (NEG = 15.5%, TRAD = 13.8% neither training group statistically differed from changes demonstrated by the CONT group. Nor did either training group show significant improvements in isometric or isokinetic force production over the CONT group. These results do not support the superiority of enhanced-eccentric training for increasing force production in trained subjects.
Einstein@Home Discovery of a PALFA Millisecond Pulsar in an Eccentric Binary Orbit
Knispel, B.; Lyne, A.G.; Stappers, B.W.; Freire, P.C.C.; Lazarus, P.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; Cordes, J.M.; Crawford, F.; Deneva, J.S.; Eggenstein, H.B.; Fehrmann, H.; Ferdman, R.; Hessels, J.W.T.; Jenet, F.A.; Karako-Argaman, C.; Kaspi, V.M.; van Leeuwen, J.; Lorimer, D.R.; Lynch, R.; Machenschalk, B.; Madsen, E.; McLaughlin, M.A.; Patel, C.; Ransom, S.M.; Scholz, P.; Siemens, X.; Spitler, L.G.; Stairs, I.H.; Stovall, K.; Swiggum, J.K.; Venkataraman, A.; Wharton, R.S.; Zhu, W.W.
2015-01-01
We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 (P = 4.3 ms) in a binary system with an eccentric (e = 0.08) 22 day orbit in Pulsar Arecibo L-band Feed Array survey observations with the Arecibo telescope. Its companion star has a median mass of 0.3 M⊙ and is most likely a
DEFF Research Database (Denmark)
Krabbenhøft, Sven; Damkilde, Lars; Krabbenhøft, Kristian
2012-01-01
. The results are reported as tables and graphs showing the bearing capacity as a function of the eccentricity and surcharge. Normalised interaction diagrams in the vertical force versus moment plane have been produced. The results from the analysis are in reasonable agreement with existing methods for smaller...
Investigating the Effects of Knee Flexion during the Eccentric Heel-Drop Exercise
Directory of Open Access Journals (Sweden)
Robert A. Weinert-Aplin, Anthony M.J. Bull, Alison H. McGregor
2015-06-01
Full Text Available This study aimed to characterise the biomechanics of the widely practiced eccentric heel-drop exercises used in the management of Achilles tendinosis. Specifically, the aim was to quantify changes in lower limb kinematics, muscle lengths and Achilles tendon force, when performing the exercise with a flexed knee instead of an extended knee. A musculoskeletal modelling approach was used to quantify any differences between these versions of the eccentric heel drop exercises used to treat Achilles tendinosis. 19 healthy volunteers provided a group from which optical motion, forceplate and plantar pressure data were recorded while performing both the extended and flexed knee eccentric heel-drop exercises over a wooden step when barefoot or wearing running shoes. This data was used as inputs into a scaled musculoskeletal model of the lower limb. Range of ankle motion was unaffected by knee flexion. However, knee flexion was found to significantly affect lower limb kinematics, inter-segmental loads and triceps muscle lengths. Peak Achilles load was not influenced despite significantly reduced peak ankle plantarflexion moments (p < 0.001. The combination of reduced triceps lengths and greater ankle dorsiflexion, coupled with reduced ankle plantarflexion moments were used to provide a basis for previously unexplained observations regarding the effect of knee flexion on the relative loading of the triceps muscles during the eccentric heel drop exercises. This finding questions the role of the flexed knee heel drop exercise when specifically treating Achilles tendinosis.
Measuring the Eccentricity of the Earth's Orbit with a Nail and a Piece of Plywood
Lahaye, Thierry
2012-01-01
I describe how to obtain a rather good experimental determination of the eccentricity of the Earth's orbit, as well as the obliquity of the Earth's rotation axis, by measuring, over the course of a year, the elevation of the Sun as a function of time during a day. With a very simple "instrument" consisting of an elementary sundial, first-year…
Johansson, Fredrik R; Skillgate, Eva; Lapauw, Mattis L; Clijmans, Dorien; Deneulin, Valentijn P; Palmans, Tanneke; Engineer, Human Kinetic; Cools, Ann M
2015-07-01
Shoulder strength assessment plays an important role in the clinical examination of the shoulder region. Eccentric strength measurements are of special importance in guiding the clinician in injury prevention or return-to-play decisions after injury. To examine the absolute and relative reliability and validity of a standardized eccentric strength-measurement protocol for the glenohumeral external rotators. Descriptive laboratory study. Testing environment at the Department of Rehabilitation Sciences and Physiotherapy of Ghent University, Belgium. Twenty-five healthy participants (9 men and 16 women) without any history of shoulder pain were tested by 2 independent assessors using a handheld dynamometer (HHD) and underwent an isokinetic testing procedure. The clinical protocol used an HHD, a DynaPort accelerometer to measure acceleration and angular velocity of testing 30°/s over 90° of range of motion, and a Biodex dynamometer to measure isokinetic activity. Three eccentric strength measurements: (1) tester 1 with the HHD, (2) tester 2 with the HHD, and (3) Biodex isokinetic strength measurement. The intratester reliability was excellent (0.879 and 0.858), whereas the intertester reliability was good, with an intraclass correlation coefficient between testers of 0.714. Pearson product moment correlation coefficients of 0.78 and 0.70 were noted between the HHD and the isokinetic data, showing good validity of this new procedure. Standardized eccentric rotator cuff strength can be tested and measured in the clinical setting with good-to-excellent reliability and validity using an HHD.
Qureshi, N; denHeijer, P; vanBoven, AJ; Tio, R; deKam, PJ; Crijns, HJGM
1997-01-01
Percutaneous coronary angioplasty (PTCA) is usually performed using concentric shaped balloon catheters with the guidewire passing through the center of the shaft. The Falcon(TM) balloon catheter features a guide wire lumen on the outside of the balloon so that an eccentric balloon catheter profile
Eccentric small-zone ray tracing wavefront aberrometry for refraction in keratoconus.
Fredriksson, Anneli; Behndig, Anders
2016-11-01
To compare objective refraction using small-zone eccentric laser ray tracing (LRT) wavefront aberrometry to standard autorefraction in keratoconus (KC), and whether the visual acuities achieved with these refractions differ from corresponding values in healthy eyes. Twenty-nine eyes of 29 patients with KC and 29 eyes of 29 healthy controls were included in this prospective unmasked case-control study. The uncorrected (UCVA) and spectacle-corrected (SCVA) Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuities based on refractions derived from LRT in central and four eccentric zones were compared to those achieved with standard autorefraction. The spherical equivalent (M) and two astigmatic power vectors (C0 and C45) were calculated for all refractions. Pentacam HR ® was used to generate keratometry readings of the corresponding zones. In KC, the refraction from the upper nasal zone rendered a higher SCVA than the standard autorefraction more often than in the controls (p refractions rendered similar SCVA:s in KC. Pentacam HR ® showed higher keratometry readings infero-temporally, but also lower readings supero-nasally, compared to controls. In KC, eccentric LRT measurements gave better SCVA than standard autorefraction more often than in healthy eyes. Eccentric LRT may become a valuable tool in the demanding task of subjective refraction in KC. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
The Influence of Mass Loss on the Eccentricity of Double Star Orbits
Docobo, J. A.; Prieto, C.; Ling, J. F.
In this comunication we study the behaviour of the eccentricity of double star orbits (visual and wide spectroscopic binaries) according to simplified laws of mass loss. Applications to the systems WDS 05245S0224 - HD 35411, WDS 05387S0236 - HD 37468 and WDS 06154S0902 - HD 43362 are included.
Directory of Open Access Journals (Sweden)
Ibrahem Hussein
2018-01-01
Full Text Available Line start permanent magnet synchronous motors experience different types of failures, including static eccentricity. The first step in detecting such failures is the mathematical modeling of the motor under healthy and failed conditions. In this paper, an attempt to develop an accurate mathematical model for this motor under static eccentricity is presented. The model is based on the modified winding function method and coupled magnetic circuits approach. The model parameters are calculated directly from the motor winding layout and its geometry. Static eccentricity effects are considered in the motor inductances calculation. The performance of the line start permanent magnet synchronous motor using the developed mathematical model is investigated using MATLAB/SIMULINK® software (2013b, MathWorks, Natick, MA, USA under healthy and static eccentricity condition for different loading values. A finite element method analysis is conducted to verify the mathematical model results, using the commercial JMAG® software (16.0.02n, JSOL Corporation, Tokyo, Japan. The results show a fine agreement between JMAG® and the developed mathematical model simulation results.
A novel optical rotary encoder with eccentricity self-detection ability
Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng
2017-11-01
Eccentricity error is the main error source of optical rotary encoders. Real-time detection and compensation of the eccentricity error is an effective way of improving the accuracy of rotary optical encoders. In this paper, a novel rotary optical encoder is presented to realize eccentricity self-detection. The proposed encoder adopts a spider-web-patterned scale grating as a measuring standard which is scanned by a dual-head scanning unit. Two scanning heads of the dual-head scanning unit, which are arranged orthogonally, have the function of scanning the periodic pattern of the scale grating along the angular and radial directions, respectively. By this means, synchronous measurement of angular and radial displacements of the scale grating is realized. This paper gives the details of the operating principle of the rotary optical encoder, developing and testing work of a prototype. The eccentricity self-detection result agrees well with the result measured by an optical microscope. The experimental result preliminarily proves the feasibility and effectiveness of the proposed optical encoder.
Load eccentricity effects on behavior of circular footings reinforced with geogrid sheets
Directory of Open Access Journals (Sweden)
Ehsan Badakhshan
2015-12-01
Full Text Available In this paper, an experimental study for an eccentrically loaded circular footing, resting on a geogrid reinforced sand bed, is performed. To achieve this aim, the steel model footing of 120 mm in diameter and sand in relative density of 60% are used. Also, the effects of depth of first and second geogrid layers and number of reinforcement layers (1–4 on the settlement-load response and tilt of footing under various load eccentricities (0 cm, 0.75 cm, 1.5 cm, 2.25 cm and 3 cm are investigated. Test results indicate that ultimate bearing capacity increases in comparison with unreinforced condition. It is observed that when the reinforcements are placed in the optimum embedment depth (u/D = 0.42 and h/D = 0.42, the bearing capacity ratio (BCR increases with increasing load eccentricity to the core boundary of footing, and that with further increase of load eccentricity, the BCR decreases. Besides, the tilt of footing increases linearly with increasing settlement. Finally, by reinforcing the sand bed, the tilt of footing decreases at 2 layers of reinforcement and then increases by increasing the number of reinforcement layers.
DEFF Research Database (Denmark)
Samani, Afshin; Holtermann, Andreas; Søgaard, Karen
2009-01-01
) and active (30% maximum voluntary contraction of shoulder elevation) pauses given every 40s over 2 days, before, immediately and 24h after eccentric exercise. Surface EMG signals were recorded from four parts of the trapezius during computer work. FINDINGS: EMG amplitude during computer work decreased...... immediately after exercise (Prest time was observed during...... active pause (Prest...
Decreased insulin action on muscle glucose transport after eccentric contractions in rats
DEFF Research Database (Denmark)
Asp, S; Richter, Erik
1996-01-01
We have recently shown that eccentric contractions (Ecc) of rat calf muscles cause muscle damage and decreased glycogen and glucose transporter GLUT-4 protein content in the white (WG) and red gastrocnemius (RG) but not in the soleus (S) (S. Asp, S. Kristiansen, and E. A. Richter. J. Appl. Physio...
Directory of Open Access Journals (Sweden)
Marcel B Lanza
2017-11-01
Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2017v19n4p375 The aim of this study was to propose a mechanical device that could increase the mechanical load during the entire eccentric (ECC action on a knee flexor machine and to compare the muscular activity when the device was used during a testing protocol. Fifteen physically active women were recruited, and they performed two protocols: control and eccentric overload. Control protocol was performed with concentric (CON and ECC actions with similar load (60% of one repetition maximum whilst eccentric overload protocol consisted of ECC actions with 40% more load than CON actions. Muscular activation was measured using surface electromyography of the biceps femoris (BF and the gastrocnemius medialis (GM muscles. ECC actions presented a higher muscular activation during eccentric overload protocol than control protocol for BF (p = 0.032, but not for the GM (p = 0.439. The mechanical device increased the mechanical load during the ECC muscle action and consequently increased the amplitude of the neural drive to the BF muscle; however, it did not increase the amplitude of the neural drive to the GM muscle.
Matthews, Martyn J; Heron, Kate; Todd, Stefanie; Tomlinson, Andrew; Jones, Paul; Delextrat, Anne; Cohen, Daniel D
2017-05-01
To investigate the effect of two hamstring training protocols on eccentric peak torque before and after soccer specific fatigue. Twenty-two university male soccer players. Isokinetic strength tests were performed at 60°/s pre and post fatigue, before and after 2 different training interventions. A 45-min soccer specific fatigue modified BEAST protocol (M-BEAST) was used to induce fatigue. Players were randomly assigned to a 4 week hamstrings conditioning intervention with either a maximum strength (STR) or a muscle endurance (END) emphasis. The following parameters were evaluated: Eccentric peak torque (EccPT), angle of peak torque (APT), and angle specific torques at knee joint angles of 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80° and 90°. There was a significant effect of the M-BEAST on the Eccentric torque angle profile before training as well as significant improvements in post-fatigue torque angle profile following the effects of both strength and muscle endurance interventions. Forty-five minutes of simulated soccer activity leads to reduced eccentric hamstring torque at longer muscle lengths. Short-term conditioning programs (4-weeks) with either a maximum strength or a muscular endurance emphasis can equally reduce fatigue induced loss of strength over this time period. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metabolic demand and muscle damage induced by eccentric cycling of knee extensor and flexor muscles.
Peñailillo, Luis; Guzmán, Nicolás; Cangas, José; Reyes, Alvaro; Zbinden-Foncea, Hermann
2017-03-01
The aim of this study was to examine the metabolic demand and extent of muscle damage of eccentric cycling targeting knee flexor (FLEX) and knee extensor (EXT) muscles. Eight sedentary men (23.3 ± 0.7 y) underwent two eccentric cycling sessions (EXT and FLEX) of 30 min each, at 60% of the maximum power output. Oxygen consumption (VO 2 ), heart rate (HR) and rated perceived exertion (RPE) were measured during cycling. Countermovement and squat jumps (CMJ and SJ), muscle flexibility, muscle soreness and pain pressure threshold (PPT) of knee extensor and flexor muscles were measured before, immediately after and 1-4 days after cycling. FLEX showed greater VO 2 (+23%), HR (+14%) and RPE (+18%) than EXT. CMJ and SJ performance decreased similarly after cycling. Muscle soreness increased more after EXT than FLEX and PPT decreased in knee extensor muscles after EXT and decreased in knee flexor muscles after FLEX. Greater loss of muscle flexibility in knee flexor muscles after FLEX was observed. Eccentric cycling of knee flexor muscles is metabolically more demanding than that of knee extensors, however muscle damage induced is similar. Knee flexors experienced greater loss of muscle flexibility possibly due to increased muscle stiffness following eccentric contractions.
Reid, Siobhan; Hamer, Peter; Alderson, Jacqueline; Lloyd, David
2010-01-01
Aim: To determine the neuromuscular outcomes of an eccentric strength-training programme for children and adolescents with cerebral palsy (CP). Method: In this randomised, parallel-group trial with waiting control, 14 participants with CP (six males, eight females; mean age 11y, SD 2y range 9-15y), diagnosed with upper-limb spasticity were…
EXPLORING A 'FLOW' OF HIGHLY ECCENTRIC BINARIES WITH KEPLER
Energy Technology Data Exchange (ETDEWEB)
Dong Subo; Katz, Boaz; Socrates, Aristotle [Institute for Advanced Study, Princeton, NJ 08540 (United States)
2013-01-20
With 16-month of Kepler data, 15 long-period (40-265 days) eclipsing binaries on highly eccentric orbits (minimum e between 0.5 and 0.85) are identified from their closely separated primary and secondary eclipses ({Delta}t{sub I,II} = 3-10 days). These systems confirm the existence of a previously hinted binary population situated near a constant angular momentum track at P(1 - e {sup 2}){sup 3/2} {approx} 15 days, close to the tidal circularization period P{sub circ}. They may be presently migrating due to tidal dissipation and form a steady-state 'flow' ({approx}1% of stars) feeding the close-binary population (few % of stars). If so, future Kepler data releases will reveal a growing number (dozens) of systems at longer periods, following dN/dlgP {proportional_to} P {sup 1/3} with increasing eccentricities reaching e {yields} 0.98 for P {yields} 1000 days. Radial-velocity follow-up of long-period eclipsing binaries with no secondary eclipses could offer a significantly larger sample. Orders of magnitude more (hundreds) may reveal their presence from periodic 'eccentricity pulses', such as tidal ellipsoidal variations near pericenter passages. Several new few-day-long eccentricity-pulse candidates with long periods (P = 25-80 days) are reported.
Eccentric Knee Flexor Strength and Risk of Hamstring Injuries in Rugby Union: A Prospective Study.
Bourne, Matthew N; Opar, David A; Williams, Morgan D; Shield, Anthony J
2015-11-01
Hamstring strain injuries (HSIs) represent the most common cause of lost playing time in rugby union. Eccentric knee flexor weakness and between-limb imbalance in eccentric knee flexor strength are associated with a heightened risk of HSIs in other sports; however, these variables have not been explored in rugby union. To determine if lower levels of eccentric knee flexor strength or greater between-limb imbalance in this parameter during the Nordic hamstring exercise are risk factors for HSIs in rugby union. Cohort study; Level of evidence, 2. This prospective study was conducted over the 2014 Super Rugby and Queensland Rugby Union seasons. In total, 178 rugby union players (mean age, 22.6 ± 3.8 years; mean height, 185.0 ± 6.8 cm; mean weight, 96.5 ± 13.1 kg) had their eccentric knee flexor strength assessed using a custom-made device during the preseason. Reports of previous hamstring, quadriceps, groin, calf, and anterior cruciate ligament injuries were also obtained. The main outcome measure was the prospective occurrence of HSIs. Twenty players suffered at least 1 HSI during the study period. Players with a history of HSIs had a 4.1-fold (95% CI, 1.9-8.9; P = .001) greater risk of subsequent HSIs than players without such a history. Between-limb imbalance in eccentric knee flexor strength of ≥15% and ≥20% increased the risk of HSIs by 2.4-fold (95% CI, 1.1-5.5; P = .033) and 3.4-fold (95% CI, 1.5-7.6; P = .003), respectively. Lower eccentric knee flexor strength and other prior injuries were not associated with an increased risk of future HSIs. Multivariate logistic regression revealed that the risk of reinjuries was augmented in players with strength imbalances. Previous HSIs and between-limb imbalance in eccentric knee flexor strength were associated with an increased risk of future HSIs in rugby union. These results support the rationale for reducing imbalance, particularly in players who have suffered a prior HSI, to mitigate the risk of future
Grimm, C. A.
This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…
A robust data completion method for 2D Laplacian Cauchy problems
Energy Technology Data Exchange (ETDEWEB)
Delvare, F [Laboratoire Energetique Explosions Structures and Institut PRISME, Universite d' Orleans and ENSI de Bourges, 88 Boulevard Lahitolle, 18020 Bourges Cedex (France); Cimetiere, A [Laboratoire de Metallurgie Physique, Universite de Poitiers and ENSMA Poitiers, Boulevard Marie et Pierre CURIE, Teleport 2, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France)], E-mail: franck.delvare@ensi-bourges.fr, E-mail: alain.cimetiere@univ-poitiers.fr
2008-11-01
The purpose is to propose an improved regularization method for data completion problems. This method is presented on the Cauchy problem for the Laplace equation in 2D situations. Many numerical simulations using finite element method highlight the efficiency of this new approach. In particular, it gives reconstructions with an increased accuracy, it is stable with respect to strong perturbations on the data and is able to deblur noisy data.
2017-01-01
Purpose/Background Shoulder proprioception is essential in the activities of daily living as well as in sports. Acute muscle fatigue is believed to cause a deterioration of proprioception, increasing the risk of injury. The purpose of this study was to evaluate if fatigue of the shoulder external rotators during eccentric versus concentric activity affects shoulder joint proprioception as determined by active reproduction of position. Study design Quasi-experimental trial. Methods Twenty-two healthy subjects with no recent history of shoulder pathology were randomly allocated to either a concentric or an eccentric exercise group for fatiguing the shoulder external rotators. Proprioception was assessed before and after the fatiguing protocol using an isokinetic dynamometer, by measuring active reproduction of position at 30 ° of shoulder external rotation, reported as absolute angular error. The fatiguing protocol consisted of sets of fifteen consecutive external rotator muscle contractions in either the concentric or eccentric action. The subjects were exercised until there was a 30% decline from the peak torque of the subjects’ maximal voluntary contraction over three consecutive muscle contractions. Results A one-way analysis of variance test revealed no statistical difference in absolute angular error (p > 0.05) between concentric and eccentric groups. Moreover, no statistical difference (p > 0.05) was found in absolute angular error between pre- and post-fatigue in either group. Conclusions Eccentric exercise does not seem to acutely affect shoulder proprioception to a larger extent than concentric exercise. Level of evidence 2b PMID:28515976
An isokinetic eccentric programme for the management of chronic lateral epicondylar tendinopathy.
Croisier, Jean-Louis; Foidart-Dessalle, Marguerite; Tinant, France; Crielaard, Jean-Michel; Forthomme, Bénédicte
2007-04-01
Lateral epicondylitis represents a frequent overuse injury. In spite of many conservative treatment procedures, prolonged symptoms and relapse are frequently observed. To compare the outcome of patients performing an isokinetic eccentric training with that of age-, gender-, activity-matched patients receiving a non-strengthening classical rehabilitation. Ninety-two patients with unilateral chronic lateral epicondylar tendinopathy (mean duration of symptoms 8+/-3 months) were assigned either to a control group (n = 46) or to an eccentrically trained group (n = 46). The control group underwent a passive standardised rehabilitation programme that excluded strengthening exercises. In addition to this programme, the trained group also performed eccentric exercises based on the repetitive lengthening of the active musculo-tendinous unit. The latter exercises started with submaximal contraction intensity and slow speed movement. Modalities were progressively intensified (increase in intensity contraction and speed movement) over a long period of treatment. Programme effectiveness was assessed through pain score evaluation, a disability questionnaire, muscle strength measurement and ultrasonographic examination. Compared to the non-strengthening control group, the following observations were made in the eccentrically trained group: (1) a significantly more marked reduction of pain intensity, mainly after one month of treatment; (2) an absence of strength deficit on the involved side through bilateral comparison for the forearm supinator and wrist extensor muscles; (3) an improvement of the tendon image as demonstrated by decreasing thickness and a recovered homogenous tendon structure; and (4) a more marked improvement in disability status during occupational, spare time and sports activities. These results highlight the relevance of implementing isokinetic adapted eccentric training in the management of chronic lateral epicondylar tendinopathy.
McLeay, Yanita; Barnes, Matthew J; Mundel, Toby; Hurst, Suzanne M; Hurst, Roger D; Stannard, Stephen R
2012-07-11
Exercise-induced muscle damage (EIMD) is accompanied by localized oxidative stress / inflammation which, in the short-term at least, is associated with impaired muscular performance. Dietary antioxidants have been shown to reduce excessive oxidative stress; however, their effectiveness in facilitating recovery following EIMD is not clear. Blueberries demonstrate antioxidant and anti-inflammatory properties. In this study we examine the effect of New Zealand blueberries on EIMD after strenuous eccentric exercise. In a randomized cross-over design, 10 females consumed a blueberry smoothie or placebo of a similar antioxidant capacity 5 and 10 hours prior to and then immediately, 12 and 36 hours after EIMD induced by 300 strenuous eccentric contractions of the quadriceps. Absolute peak and average peak torque across the knee, during concentric, isometric, and eccentric actions were measured. Blood biomarkers of oxidative stress, antioxidant capacity, and inflammation were assessed at 12, 36 and 60 hours post exercise. Data were analyzed using a two-way ANOVA. A significant (p blueberry intervention group. A similar trend was observed for concentric and eccentric strength. An increase in oxidative stress and inflammatory biomarkers was also observed in both treatment groups following EIMD. Although a faster rate of decrease in oxidative stress was observed in the blueberry group, it was not significant (p blueberry smoothie prior to and after EIMD accelerates recovery of muscle peak isometric strength. This effect, although independent of the beverage's inherent antioxidant capacity, appears to involve an up-regulation of adaptive processes, i.e. endogenous antioxidant processes, activated by the combined actions of the eccentric exercise and blueberry consumption. These findings may benefit the sporting community who should consider dietary interventions that specifically target health and performance adaptation.
Metabolic and muscle damage profiles of concentric versus repeated eccentric cycling.
Peñailillo, Luis; Blazevich, Anthony; Numazawa, Hideo; Nosaka, Kazunori
2013-09-01
Eccentric cycling is an exercise modality that could elicit multiple health benefits with low metabolic cost, but unaccustomed performance results in significant muscle damage. It is not known whether muscle damage is attenuated when eccentric cycling is repeated; thus, this study compared metabolic and muscle damage responses to concentric (CONC) and two consecutive eccentric (ECC1 and ECC2) cycling bouts. Ten men (28 ± 8 yr) performed each cycling bout for 30 min at 60% of the maximal concentric power output at 60 rpm, with 2 wk between bouts. HR, oxygen consumption (V˙O2), blood lactate (BLa), RPE, and muscle activity (EMG) data were collected during cycling. Maximal voluntary isometric knee extensor (MVC) strength, squat (SJ), countermovement jump (CMJ) height, muscle soreness indicators, and plasma creatine kinase (CK) activity were measured before, immediately after, and 1-4 d after exercise. Average HR, V˙O2, BLa, and RPE were lower (P < 0.05) during ECC1 than CONC, and EMG amplitude was also lower during ECC1 than CONC. Decreases in MVC, CMJ, and SJ and the increase in muscle soreness were greater (P x0003C; 0.05) after ECC1 than CONC. Increases in creatine kinase were minimal after all bouts. When comparing ECC1 and ECC2, HR and BLa were lower (P < 0.05) during ECC2 than ECC1, and decreases in MVC, CMJ, and SJ and the increase in muscle soreness were greater (P < 0.05) after ECC1 than ECC2. After ECC2, MVC, CMJ, and SJ did not change and no muscle soreness was developed. Eccentric cycling was less metabolically demanding than concentric cycling, and HR and BLa were further reduced during ECC2. Muscle damage is minimal after ECC2 and should not influence the choice to undertake eccentric cycling training.
Forman, Jeffrey; Geertsen, Lisbeth; Rogers, Michael E
2014-01-01
Many studies have evaluated the effects of different interventions on hamstring length. However, little research has been conducted on the effects of deep stripping massage strokes (DSMS) alone, or combined with eccentric resistance, on hamstring length and strength. To determine: 1) if DSMS have an effect on hamstring length and strength and 2) if the effects on hamstring length and strength are any different when DSMS are combined with eccentric exercise. 89 Community College students and community members between the ages of 18 and 62 volunteered for the study. Of these, 64 demonstrated tight hamstrings on either one or both sides as defined by supine, passive terminal knee extension of ≤75° and participated in the study. Strength was assessed by pressing the posterior calcaneus into a strain gauge for approximately 5 s while seated with the knee flexed to 90°. On their tighter side, participants were administered longitudinal DSMS during 15, 10-s bouts of eccentric resistance with an elastic resistance band. On their other hamstring, participants were administered 15, 10-s longitudinal DSMS while lying passive. All massage strokes were performed at a depth of 7 out of 10 on a verbal pressure scale index. Afterwards, the hamstring flexibility and strength tests were repeated. Both DSMS with eccentric resistance (10.7%) and DSMS alone (6.3%) resulted in improved (p affected by either treatment. These results suggest that DSMS increases hamstring length in less than 3 min but has no affect on strength. Furthermore, combining DSMS with eccentric resistance produces more hamstring flexibility gains than DSMS alone and does not affect strength. Copyright © 2013 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
McLeay Yanita
2012-07-01
Full Text Available Abstract Background Exercise-induced muscle damage (EIMD is accompanied by localized oxidative stress / inflammation which, in the short-term at least, is associated with impaired muscular performance. Dietary antioxidants have been shown to reduce excessive oxidative stress; however, their effectiveness in facilitating recovery following EIMD is not clear. Blueberries demonstrate antioxidant and anti-inflammatory properties. In this study we examine the effect of New Zealand blueberries on EIMD after strenuous eccentric exercise. Methods In a randomized cross-over design, 10 females consumed a blueberry smoothie or placebo of a similar antioxidant capacity 5 and 10 hours prior to and then immediately, 12 and 36 hours after EIMD induced by 300 strenuous eccentric contractions of the quadriceps. Absolute peak and average peak torque across the knee, during concentric, isometric, and eccentric actions were measured. Blood biomarkers of oxidative stress, antioxidant capacity, and inflammation were assessed at 12, 36 and 60 hours post exercise. Data were analyzed using a two-way ANOVA. Results A significant (p p = 0.047 interaction effect was seen for peak isometric tension suggesting a faster rate of recovery in the blueberry intervention group. A similar trend was observed for concentric and eccentric strength. An increase in oxidative stress and inflammatory biomarkers was also observed in both treatment groups following EIMD. Although a faster rate of decrease in oxidative stress was observed in the blueberry group, it was not significant (p Conclusions This study demonstrates that the ingestion of a blueberry smoothie prior to and after EIMD accelerates recovery of muscle peak isometric strength. This effect, although independent of the beverage’s inherent antioxidant capacity, appears to involve an up-regulation of adaptive processes, i.e. endogenous antioxidant processes, activated by the combined actions of the eccentric exercise
Fourier analysis and boundary value problems
Gonzalez-Velasco, Enrique A
1996-01-01
Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics.A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field.Key Features* Topics are covered from a historical perspective with biographical information on key contributors to the field* The text contains more than 500 exercises* Includes practical applicati...
Rochester, L; Vujnovich, A; Newstead, D; Williams, M
2001-01-01
Application of eccentric contractions and muscle stretch are clinically effective in reducing spasticity and increasing ROM (7). This may be explained by a change in the excitability of motoneurons supplying the spastic muscle. Excitability of motoneurons can be indirectly assessed using the H-reflex. Experiments were performed on 20 normal subjects and 17 subjects with spasticity resulting from neurological disorder. Subjects were seated in a secure position and the ankle joint was moved from 30 degrees plantarflexion to 20 degrees dorsiflexion at a velocity of 30 degrees/sec. Sixty eccentric contractions of the triceps surae muscle were performed using a Kin-Com dynamometer (Chattanooga Corp, Tennessee). Two protocols were used: (1) eccentric contractions only, and (2) eccentric contractions with a 5s stretch of the relaxed triceps surae after each contraction. Two sets of 10 H-reflexes were collected from the soleus muscle before (trial 1 & 2) and after (trial 3 & 4) eccentric and eccentric + stretch protocols. The mean peak to peak H-reflex amplitude was calculated for each trial and compared using ANOVA. Eccentric contractions resulted in a significant and maintained increase in the H-reflex in neurological compared to normal subjects (P spasticity resulted in an increase in motoneuron excitability which may assist in corticospinal activation of motoneurons during voluntary movement. The eccentric + stretch protocol, resulted in a decrease in the mean amplitude of H-reflexes in neurological subjects, however, this was not significant. The application of a stretch following eccentric contractions decreased motoneuron excitability and may thus be beneficial to decrease spasticity whilst strengthening muscle.
Mansur, Nacime Salomão Barbachan; Faloppa, Flávio; Belloti, João Carlos; Ingham, Sheila J McNeill; Matsunaga, Fabio Teruo; Santos, Paulo Roberto Dias Dos; Santos, Bruno Schiefer Dos; Carrazzone, Oreste Lemos; Peixoto, Gabriel; Aoyama, Bruno Takeshi; Tamaoki, Marcel Jun Sugawara
2017-01-27
There is no consensus regarding the treatment of Achilles insertional tendinopathies. Eccentric training remains the main choice in the conservative treatment of this illness; however, the good results in the management of non-insertional Achilles tendinopathy were not replicated in the insertional condition. Low energy shock wave therapy has been described as an alternative to these patients, but has yet to be empirically tested. Shock wave therapy, adjunctive to the eccentric strengthening protocol, will improve measures of pain and function. Double blind, placebo-controlled, parallel groups, randomised clinical trial. 93 patients with a diagnosis of chronic insertional tendinopathy, referred from primary or secondary healthcare services, will be assessed and enrolled in this study. They will be divided into two groups (randomised by sequentially numbered identical envelopes, which will be administered serially to participants), one containing the combination of low energy shock wave and eccentric exercises, as treatment and the other comprehending the exercises and the placebo treatment (an apparatus placed in the therapeutic head). The assessments will occur in 2, 4, 6, 12 and 24 weeks. Patients will be evaluated primarily by the Victorian Institute of Sport Assessment-Achilles questionnaire and secondarily by the visual analogue scale, Algometry, the American Orthopedic Foot and Ankle Society scale, the Foot and Ankle Outcome Score and the 12-item Short Form Health Survey. We will use comparison of two proportions via relative frequency analysis, the Pearson Correlation the χ2 test and the analysis of variance for statistical analyses. This study intends to demonstrate if the association of the eccentric exercise programme with the shock wave therapy can produce good results regarding the treatment of the Achilles insertional tendinopathy. In an attempt to prevent the high costs and complications associated with the surgical intervention, we will try to
Jia, Pin; Cheng, Linsong; Huang, Shijun; Xu, Zhongyi; Xue, Yongchao; Cao, Renyi; Ding, Guanyang
2017-08-01
This paper provides a comprehensive model for the flow behavior of a two-zone system with discrete fracture network. The discrete fracture network within the inner zone is represented explicitly by fracture segments. The Laplace-transform finite-difference method is used to numerically model discrete fracture network flow, with sufficient flexibility to consider arbitrary fracture geometries and conductivity distributions. Boundary-element method and line-source functions in the Laplace domain are employed to derive a semi-analytical flow solution for the two-zone system. By imposing the continuity of flux and pressure on discrete fracture surfaces, the semi-analytical two-zone system flow model and the numerical fracture flow model are coupled dynamically. The main advantage of the approach occurring in the Laplace domain is that simulation can be done with nodes only for discrete fractures and elements for boundaries and at predetermined, discrete times. Thus, stability and convergence problems caused by time discretization are avoided and the burden of gridding and computation is decreased without loss of important fracture characteristics. The model is validated by comparison with the results from an analytical solution and a fully numerical solution. Flow regime analysis shows that a two-zone system with discrete fracture network may develop six flow regimes: fracture linear flow, bilinear flow, inner zone linear flow, inner zone pseudosteady-state flow, outer zone pseudoradial flow and outer zone boundary-dominated flow. Especially, local solutions for the inner-zone linear flow have the same form with that of a finite conductivity planar fracture and can be correlated with the total length of discrete fractures and an intercept term. In the inner zone pseudosteady-state flow period, the discrete fractures, along with the boundary of the inner zone, will act as virtual closed boundaries, due to the pressure interference caused by fracture network and the
Directory of Open Access Journals (Sweden)
S. Mahdiuon-Rad
2013-08-01
Full Text Available This paper investigates both static and dynamic eccentricities in single phase brushless DC (BLDC motors and analyzes the effect of the PM magnetization field on unbalanced magnetic forces acting on the rotor. Three common types of PM magnetization field patterns including radial, parallel and sinusoidal magnetizations are considered. In both static and dynamic eccentricities, harmonic components of the unbalanced magnetic forces on the rotor are extracted and analyzed. Based on simulation results, the magnetization fields that produce the lowest and highest unbalanced magnetic forces are determined in rotor eccentricity conditions.
Crill, Matthew T; Berlet, Gregory; Hyer, Christopher
2014-12-01
Eccentric training for Achilles tendinosis (AT) has been reported to significantly improve patient symptoms. There has been no biomechanical explanation on the mechanism for specific rehabilitation technique. The purpose of this study was to determine changes in muscle architecture that occurred as a result of Achilles tendinosis injury and a subsequent eccentric rehabilitation program. Twenty-five patients (age, 53.3 ± 17.5 years) diagnosed with AT participated in 6 weeks of rehabilitation. Specific exercises for the ankle plantar flexors consisted of maximal load eccentric muscle action using 3 sets of 15 repetitions. Patients also completed a protocol for AT, which consisting of traditional rehabilitation. Medial gastrocnemius (GM) and lateral gastrocnemius (GL) muscle fascicle length and thickness were measured with ultrasound at 2-week intervals from initial treatment day to the end of 6 weeks of rehabilitation. Medial gastrocnemius fascicle length increased (45.1 ± 10.5 mm to 51.4 ± 10.5 mm; P = .22) between the initial day of rehabilitation and after 6 weeks of rehabilitation. But, GM thickness (16.3 ± 3.5 mm to 16.8 ± 2.0 mm), GL fascicle length (47.2 ± 10.0 mm to 47.1 ± 7.4 mm), and GL thickness (14.9 ± 5.2 mm to 14.4 ± 2.7 mm) did not change as a result of rehabilitation. A 6-week eccentric-biased exercise increased the GM muscle fascicle length by 12%, but GM thickness, GL fascicle length, and GL thickness did not change as a result of rehabilitation. Eccentric training for the treatment of AT is well recognized, but the mechanism of action has not been previously reported. A 6-week eccentric training protocol increased the GM muscle fascicle length by 12%, and this correlated with improvement in a validated patient outcome scoring system. Further study is warranted to determine a predictive relationship between improvement of GM fascicle length and outcome scores. Therapeutic, Level IV: Case series. © 2014 The Author(s).
The orbits of subdwarf-B + main-sequence binaries. III. The period-eccentricity distribution
Vos, J.; Østensen, R. H.; Vučković, M.; Van Winckel, H.
2017-09-01
Context. The predicted orbital-period distribution of the subdwarf-B (sdB) population is bi-modal with peaks at short (500 days) periods. Observationally, many short-period sdB systems are known, but only few wide sdB binaries have been studied in detail. Based on a long-term monitoring programme the wide sdB sample has been increased, discovering an unexpected positive correlation between the eccentricity and orbital period. Aims: In this article we present the orbital solution and spectral analysis of four new systems, BD-7°5977, EC 11031-1348, TYC 2084-448-1 and TYC 3871-835-1, and update the orbital solution of PG 1104+243. Using the whole sample of wide sdB binaries, we aim to find possible correlations between orbital and spectral properties. The ultimate goal is to improve theoretical models of Roche-lobe overflow. Methods: High-resolution spectroscopic time series were obtained to determine the RVs of both the sdB and main sequence (MS) components. Literature photometry was used to construct the spectral-energy distributions, which were fitted with atmosphere models to determine the surface gravities and temperatures of both components in all systems. Spectral parameters of the cool companion were verified using the GSSP code. Furthermore the amount of accreted mass was estimated. Results: Orbital parameters matching the earlier observed period-eccentricity relation were found for three systems, while TYC 2084-448-1 is found to have a lower eccentricity than expected from the period-eccentricity trend indicated by the other systems. Based on new observations, the orbit of PG 1104+243 has a small but significant eccentricity of 0.04 ± 0.02, matching that of the other systems with similar periods. Furthermore, a positive correlation between accreted mass and orbital period was found, as well as a possible relation between the initial mass-ratio and the final period-eccentricity. Conclusions: The wide sdB-binary sample shows interesting possible correlations
Factors contributing to lower metabolic demand of eccentric compared with concentric cycling.
Peñailillo, Luis; Blazevich, Anthony J; Nosaka, Kazunori
2017-10-01
This study compared muscle-tendon behavior, muscle oxygenation, and muscle activity between eccentric and concentric cycling exercise at the same work output to investigate why metabolic demand is lower during eccentric cycling than with concentric cycling. Eleven untrained men (27.1 ± 7.0 y) performed concentric cycling (CONC) and eccentric cycling (ECC) for 10 min (60 rpm) at 65% of the maximal concentric cycling power output (191 ± 45 W) 4 wk apart. During cycling, oxygen consumption (V̇o 2 ), heart rate (HR), vastus lateralis (VL) tissue total hemoglobin (tHb), and oxygenation index (TOI) were recorded, and muscle-tendon behavior was assessed using ultrasonography. The surface electromyogram (EMG) was recorded from VL, vastus medialis (VM), rectus femoris (RF), and biceps femoris (BF) muscles, and cycling torque and knee joint angle during each revolution were also recorded. Average V̇o 2 (-65 ± 7%) and HR (-35 ± 9%) were lower and average TOI was greater (16 ± 1%) during ECC than CONC, but tHb was similar between bouts. Positive and negative cycling peak crank torques were greater (32 ± 21 and 48 ± 24%, respectively) during ECC than CONC, but muscle-tendon unit and fascicle and tendinous tissue length changes during pedal revolutions were similar between CONC and ECC. VL, VM, RF, and BF peak EMG amplitudes were smaller (24 ± 15, 22 ± 18, 16 ± 17, and 18 ± 9%, respectively) during ECC than CONC. These results suggest that the lower metabolic cost of eccentric compared with concentric cycling was due mainly to a lower level of muscle activation per torque output. NEW & NOTEWORTHY This study shows that lower oxygen consumption of eccentric compared with concentric cycling at the same workload is explained by lower muscle activity of agonist and antagonist muscles during eccentric compared with during concentric cycling. Copyright © 2017 the American Physiological Society.
Ma, Hongliang; Xu, Shijie
2016-11-01
By defining two open-time impulse points, the optimization of a two-impulse, open-time terminal rendezvous and docking with target spacecraft on large-eccentricity elliptical orbit is proposed in this paper. The purpose of optimization is to minimize the velocity increment for a terminal elliptic-reference-orbit rendezvous and docking. Current methods for solving this type of optimization problem include for example genetic algorithms and gradient based optimization. Unlike these methods, interval methods can guarantee that the globally best solution is found for a given parameterization of the input. The non-linear Tschauner- Hempel(TH) equations of the state transitions for a terminal elliptic target orbit are transformed form time domain to target orbital true anomaly domain. Their homogenous solutions and approximate state transition matrix for the control with a short true anomaly interval can be used to avoid interval integration. The interval branch and bound optimization algorithm is introduced for solving the presented rendezvous and docking optimization problem and optimizing two open-time impulse points and thruster pulse amplitudes, which systematically eliminates parts of the control and open-time input spaces that do not satisfy the path and final time state constraints. Several numerical examples are undertaken to validate the interval optimization algorithm. The results indicate that the sufficiently narrow spaces containing the global optimization solution for the open-time two-impulse terminal rendezvous and docking with target spacecraft on large-eccentricity elliptical orbit can be obtained by the interval algorithm (IA). Combining the gradient-based method, the global optimization solution for the discontinuous nonconvex optimization problem in the specifically remained search space can be found. Interval analysis is shown to be a useful tool and preponderant in the discontinuous nonconvex optimization problem of the terminal rendezvous and
Directory of Open Access Journals (Sweden)
Maria V. de Souza
2015-12-01
Full Text Available Abstract: Low-level laser therapy is recommended for the treatment of tendinopathies despite the contradictory results related to the ideal dose of energy, wavelength and time of application. This study aimed to assess the effects of laser therapy and eccentric exercise on tendinopathy of the Achilles tendon of Wistar rats. Forty-eight adult male rats were randomly distributed into four groups (L= laser; E= eccentric exercise; LE = laser and eccentric exercise; and R= rest. Laser therapy (904nm/3J/cm2 and/or eccentric exercise (downhill walking; 15o incline treadmill; 12m/min; 50min/day was started 24h after induction of unilateral tendinopathy and remained for 20 days. At 3, 7, 14 and 21 days after lesion induction, three rats from each group were euthanized and the tendons were collected for histological and morphometric analyses. There was no difference among groups or among times for the characteristics hemorrhage (p=0.4154, fibrinous adhesion formation (p=0.0712, and organization of collagen fibers (p=0.2583 and of the connective tissue (p=0.1046. For these groups, regardless of the time, eccentric exercise led to epitenon thickening (p=0.0204, which was lower in the group treated with laser therapy. Histological analysis revealed differences (p=0.0032 in the number of inflammatory cells over time. They were more numerous in the group that only exercised. This result was confirmed by morphometric analysis, which showed a significant interaction (groups x time for this characteristic. Eccentric exercise increased (p=0.0014 the inflammatory infiltrate over time (3 and 21 days. However, association with laser therapy reduced inflammatory reaction. On the other hand, the combination of the treatments increased angiogenesis in morphometric (p=0.0000 and histological (p=0.0006 analyses compared with the other groups, while the isolated application of low-level laser reduced this characteristic over time. Animals maintained at rest presented the
The advanced eccentricity and broken cage diagnostic method for medium voltage induction motors
Directory of Open Access Journals (Sweden)
Janda Žarko
2012-01-01
Full Text Available In the paper the comparative diagnostics of medium voltage induction motors has been presented. The methods employed are the motor current signature analysis (MCSA and the axial leakage flux spectral analysis. All presented test procedures have been conducted on partially loaded motors, one without fault and the other with fault. Rated parameters of case study motors are 6 kV and 3.15 MW, and both motors are installed in one combined steam power plant. The reliable broken rotor bars detection and existence of static eccentricity have been demonstrated. The new method for combined fault detection has also been announced. The combined fault under scope is the simultaneous existence of broken rotor bars and static eccentricity. The proposed combined fault detection method is based upon axial leakage flux spectral analysis, especially in the vicinity of the double fundamental frequency. The existence of three broken rotor bars has been confirmed after physical rotor cage examination.
Directory of Open Access Journals (Sweden)
R. Lalthlamuana
2014-01-01
Full Text Available Dynamic response of a single span bridge subjected to moving flexible vehicles has been studied using a semianalytical approach. The eccentricity of vehicle path giving rise to torsional motion of the bridge has been incorporated in the approach. The bridge surface irregularity has been considered as the nonhomogeneous process in spatial domain. A closed form expression has been derived to generate response samples corresponding to each input of roughness profile to form an ensemble. Thereafter, averaging across the ensemble has been carried out at each time step to determine mean and standard deviation of bridge and vehicle response. Further, dynamic amplification factor (DAF of the bridge response has been obtained for several combinations of bridge-vehicle parameters. The study reveals that structural bending modes of vehicle can significantly reduce dynamic response of the bridge. The eccentricity of vehicle path and flexural/torsional rigidity ratios plays a significant role in dynamic amplification of bridge response.
Energy Technology Data Exchange (ETDEWEB)
Chen, H.W.; Aine, C.J.; Flynn, E.R.; Wood, C.C.
1996-07-01
The human luminance spatial frequency contrast sensitivity function (CSF) has been well studied using psychophysical measurements by detecting spatial frequency (SF) grating patterns at threshold. Threshold CSFs at different eccentricities have proven to be quite useful in both basic and clinical vision research. However, near threshold, the CSF is measured at a linear area of the saturating contrast-response curve. In contrast, most of our everyday vision may be at suprathreshold levels, and thus may function most of the time at the nonlinear area of the contrast-response curve. In this study, in order to better characterize the CSF at normal contrast levels, we measured the SF tuning functions as well as the CR functions at different suprathreshold contrast levels and different eccentricities of the visual field using noninvasive MEG techniques. In this study, in addition to peak analysis, we have developed more reliable averaged power analysis methods where the average power can be calculated from the entire waveforms.
Detecting eccentricity faults in a PMSM in non-stationary conditions
Directory of Open Access Journals (Sweden)
Javier Rosero García
2012-01-01
Full Text Available Permanent magnet alternating current machines are being widely used in applications demanding high and rugged performance, such as industrial automation and the aerospace and automotive industries. This paper presents a study of a permanent magnet synchronous machine (PMSM running in eccentricity; these machines’ condition monitoring and fault detection would provide added value and they are also assuming growing importance. This paper investigates the effect of eccentricity faults on PMSM motors’ current spectrum with a view to developing an effective condition-monitoring scheme using two-dimensional (2-D finite element analysis (FEA. Stator current induced harmonics were investigated for fault conditions and advanced signal analysis involved continuous and discrete wavelet transforms. Simulation and experimental results are presented to substantiate that the proposed method worked over a wide speed range for motor operation and that it provided an effective tool for diagnosing PMSM operating condition.
Stress intensity factors of eccentric cracks in bi-materials plate under mode I loading
Energy Technology Data Exchange (ETDEWEB)
Ismail, A. E. [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia)
2015-05-15
Bi-material plates were generally used to joint electronic devices or mechanical components requiring dissimilar materials to be attached. During services, mechanical failure can be occurred due to the formation of cracks at the interfacial joint or away from the centre. Generally, linear elastic fracture mechanics approach is used to characterize these cracks based on stress intensity factors (SIF). Based on the literature survey, the SIFs for the central cracks were easily available. However, the SIFs for eccentric cracks were difficult to obtain. Therefore, this paper presented the SIFs for eccentric cracks subjected to mode I tension loading. Three important parameters were used such as relative crack depth, a/L, relative offset distance, b/L and elastic mismatch, E{sub 1}/E{sub 2} or α. It was found that such parameters significantly affected the characteristic of SIFs and it was depend on the location of cracks.
Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats
DEFF Research Database (Denmark)
Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B
2001-01-01
This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0.......1% of total fatty acids, respectively) was uniformly higher across groups (P acids) compared to the control leg (38.2 +/- 0...
Apocenter Glow in Eccentric Debris Disks: Implications for Fomalhaut and Epsilon Eridani
Pan, Margaret; Nesvold, Erika R.; Kuchner, Marc J.
2016-01-01
Debris disks often take the form of eccentric rings with azimuthal asymmetries in surface brightness. Such disks are often described as showing pericenter glow, an enhancement of the disk brightness in regions nearest the central star. At long wavelengths, however, the disk apocenters should appear brighter than their pericenters: in the long-wavelength limit, we find that the apocenter pericenter flux ratio scales as 1 + e for disk eccentricity e. We produce new models of this apocenter glow to explore its causes and wavelength dependence and study its potential as a probe of dust grain properties. Based on our models, we argue that several far-infrared and (sub)millimeter images of the Fomalhaut and Epsilon Eridani debris rings obtained with Herschel, JCMT, SHARC II, ALMA, and ATCA should be reinterpreted as suggestions or examples of apocenter glow. This reinterpretation yields new constraints on the disks dust grain properties and size distributions.