Cauchy problem for Laplace equation: An observer based approach
Majeed, Muhammad Usman
2013-10-01
A method to solve Cauchy Problem for Laplace equation using state observers is proposed. It is known that this problem is ill-posed. The domain under consideration is simple lipschitz in 2 with a hole. The idea is to recover the solution over whole domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace\\'s equation is compuationally robust and accurate. © 2013 IEEE.
Cauchy problem for Laplace equation: An observer based approach
Majeed, Muhammad Usman; Zayane-Aissa, Chadia; Laleg-Kirati, Taous Meriem
2013-01-01
domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace's equation is compuationally robust and accurate. © 2013 IEEE.
Application of Laplace transform to industrial problems
International Nuclear Information System (INIS)
Dubois, D.J.M.; Vagner, J.
1989-01-01
This paper presents two industrial applications of a new methodology based on Laplace transform properties which has been implemented in an industrial finite element program. In structures endowed with thermal and mechanical properties constant with the temperature, the stresses are computed for unit thermal shocks applied on the areas which are actually affected by the temperature variations. The analytical formulation and the general feature of this implementation are presented
Solution of Milne problem by Laplace transformation with numerical inversion
International Nuclear Information System (INIS)
Campos Velho, H.F. de.
1987-12-01
The Milne problem for monoenergetic neutrons, by Laplace Transform of the neutron transport integral equation with numerical inversion of the transformed solution by gaussian quadrature, using the fatorization of the dispersion function. The resulted is solved compared its analitical solution. (author) [pt
Elasto-plastic torsion problem as an infinity Laplace's equation
Directory of Open Access Journals (Sweden)
Ahmed Addou
2006-12-01
Full Text Available In this paper, we study a perturbed infinity Laplace's equation, the perturbation corresponds to an Leray-Lions operator with no coercivity assumption. We consider the case where data are distributions or $L^{1}$ elements. We show that this problem has an unique solution which is the solution to the variational inequality arising in the elasto-plastic torsion problem, associated with an operator $A$.
Directory of Open Access Journals (Sweden)
Guo Zheng-Hong
2016-01-01
Full Text Available In this article, the Sumudu transform series expansion method is used to handle the local fractional Laplace equation arising in the steady fractal heat-transfer problem via local fractional calculus.
Higher-order schemes for the Laplace transformation method for parabolic problems
Douglas, C.; Kim, I.; Lee, H.; Sheen, D.
2011-01-01
In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely
Yousef, Hamood Mohammed; Ismail, Ahmad Izani
2017-11-01
In this paper, Laplace Adomian decomposition method (LADM) was applied to solve Delay differential equations with Boundary Value Problems. The solution is in the form of a convergent series which is easy to compute. This approach is tested on two test problem. The findings obtained exhibit the reliability and efficiency of the proposed method.
Directory of Open Access Journals (Sweden)
Chen Jie-Dong
2016-01-01
Full Text Available In this paper, we investigate the local fractional Laplace equation in the steady heat-conduction problem. The solutions involving the non-differentiable graph are obtained by using the characteristic equation method (CEM via local fractional derivative. The obtained results are given to present the accuracy of the technology to solve the steady heat-conduction in fractal media.
Boundedness of the solution of the third problem for the Laplace equation
Czech Academy of Sciences Publication Activity Database
Medková, Dagmar
2005-01-01
Roč. 55, č. 2 (2005), s. 317-340 ISSN 0011-4642 R&D Projects: GA ČR(CZ) GA201/00/1515 Institutional research plan: CEZ:AV0Z10190503 Keywords : third problem * Laplace equation Subject RIV: BA - General Mathematics Impact factor: 0.112, year: 2005
Transmission problem for the Laplace equation and the integral equation method
Czech Academy of Sciences Publication Activity Database
Medková, Dagmar
2012-01-01
Roč. 387, č. 2 (2012), s. 837-843 ISSN 0022-247X Institutional research plan: CEZ:AV0Z10190503 Keywords : transmission problem * Laplace equation * boundary integral equation Subject RIV: BA - General Mathematics Impact factor: 1.050, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022247X11008985
Triple solutions for multi-point boundary-value problem with p-Laplace operator
Directory of Open Access Journals (Sweden)
Yansheng Liu
2009-11-01
Full Text Available Using a fixed point theorem due to Avery and Peterson, this article shows the existence of solutions for multi-point boundary-value problem with p-Laplace operator and parameters. Also, we present an example to illustrate the results obtained.
Solving fuzzy two-point boundary value problem using fuzzy Laplace transform
Ahmad, Latif; Farooq, Muhammad; Ullah, Saif; Abdullah, Saleem
2014-01-01
A natural way to model dynamic systems under uncertainty is to use fuzzy boundary value problems (FBVPs) and related uncertain systems. In this paper we use fuzzy Laplace transform to find the solution of two-point boundary value under generalized Hukuhara differentiability. We illustrate the method for the solution of the well known two-point boundary value problem Schrodinger equation, and homogeneous boundary value problem. Consequently, we investigate the solutions of FBVPs under as a ne...
Laplace Boundary-Value Problem in Paraboloidal Coordinates
Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan
2012-01-01
This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a…
Laplace boundary-value problem in paraboloidal coordinates
International Nuclear Information System (INIS)
Duggen, L; Willatzen, M; Voon, L C Lew Yan
2012-01-01
This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a boundary-value problem on a paraboloidal surface. In spite of the complex nature of the former, it is shown that the latter solution can be quite simple. Results are provided for the equipotential surfaces and electric field lines are given near a paraboloidal conductor. (paper)
A Laplace type problem for regular lattices with circular section obstacles
Directory of Open Access Journals (Sweden)
D. Barilla
2013-12-01
Full Text Available In this paper, we compute the probability that a segment of random position and of constant length intersects a side of a regular lattice with circular sections obstacles. In particular, we obtain the formula of a probability already computed by Caristi and Stoka, as well as the formula of the Laplace probability. The results can be used for possible applications in economy and engineering, in particular for transportation problems.
About potential of double layer and boundary value problems for Laplace equation
International Nuclear Information System (INIS)
Aleshin, M.V.
1991-01-01
An integral operator raisen by a kernel of the double layer's potential is investigated. The kernel is defined on S (S - two-digit variety of C 2 class presented by a boundary of the finite domain in R 3 ). The operator is considered on C(S). Following results are received: the operator's spectrum belongs to [-1,1]; it's eigenvalues and eigenfunctions may be found by Kellog's method; knowledge of the operator's spectrum is enough to construct it's resolvent. These properties permit to point out the determined interation processes, solving boundary value problems for Laplace equation. One of such processes - solving of Roben problem - is generalized on electrostatic problems. 6 refs
The Laplace equation boundary value problems on bounded and unbounded Lipschitz domains
Medková, Dagmar
2018-01-01
This book is devoted to boundary value problems of the Laplace equation on bounded and unbounded Lipschitz domains. It studies the Dirichlet problem, the Neumann problem, the Robin problem, the derivative oblique problem, the transmission problem, the skip problem and mixed problems. It also examines different solutions - classical, in Sobolev spaces, in Besov spaces, in homogeneous Sobolev spaces and in the sense of non-tangential limit. It also explains relations between different solutions. The book has been written in a way that makes it as readable as possible for a wide mathematical audience, and includes all the fundamental definitions and propositions from other fields of mathematics. This book is of interest to research students, as well as experts in partial differential equations and numerical analysis.
Laplace transform homotopy perturbation method for the approximation of variational problems.
Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R
2016-01-01
This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.
Application of a numerical Laplace transform inversion technique to a problem in reactor dynamics
International Nuclear Information System (INIS)
Ganapol, B.D.; Sumini, M.
1990-01-01
A newly developed numerical technique for the Laplace transform inversion is applied to a classical time-dependent problem of reactor physics. The dynamic behaviour of a multiplying system has been analyzed through a continuous slowing down model, taking into account a finite slowing down time, the presence of several groups of neutron precursors and simplifying the spatial analysis using the space asymptotic approximation. The results presented, show complete agreement with analytical ones previously obtained and allow a deeper understanding of the model features. (author)
Higher-order schemes for the Laplace transformation method for parabolic problems
Douglas, C.
2011-01-01
In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely high order convergent. Second, higher-order compact schemes of order four and six are used for the the spatial discretization. Finally, the discretized linear algebraic systems are solved using multigrid to show the actual convergence rate for numerical examples, which are compared to other numerical solution methods. © 2011 Springer-Verlag.
An optimal iterative algorithm to solve Cauchy problem for Laplace equation
Majeed, Muhammad Usman
2015-05-25
An optimal mean square error minimizer algorithm is developed to solve severely ill-posed Cauchy problem for Laplace equation on an annulus domain. The mathematical problem is presented as a first order state space-like system and an optimal iterative algorithm is developed that minimizes the mean square error in states. Finite difference discretization schemes are used to discretize first order system. After numerical discretization algorithm equations are derived taking inspiration from Kalman filter however using one of the space variables as a time-like variable. Given Dirichlet and Neumann boundary conditions are used on the Cauchy data boundary and fictitious points are introduced on the unknown solution boundary. The algorithm is run for a number of iterations using the solution of previous iteration as a guess for the next one. The method developed happens to be highly robust to noise in Cauchy data and numerically efficient results are illustrated.
A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus
Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei
2005-01-01
Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem.
A quasi-spectral method for Cauchy problem of 2/D Laplace equation on an annulus
International Nuclear Information System (INIS)
Saito, Katsuyoshi; Nakada, Manabu; Iijima, Kentaro; Onishi, Kazuei
2005-01-01
Real numbers are usually represented in the computer as a finite number of digits hexa-decimal floating point numbers. Accordingly the numerical analysis is often suffered from rounding errors. The rounding errors particularly deteriorate the precision of numerical solution in inverse and ill-posed problems. We attempt to use a multi-precision arithmetic for reducing the rounding error evil. The use of the multi-precision arithmetic system is by the courtesy of Dr Fujiwara of Kyoto University. In this paper we try to show effectiveness of the multi-precision arithmetic by taking two typical examples; the Cauchy problem of the Laplace equation in two dimensions and the shape identification problem by inverse scattering in three dimensions. It is concluded from a few numerical examples that the multi-precision arithmetic works well on the resolution of those numerical solutions, as it is combined with the high order finite difference method for the Cauchy problem and with the eigenfunction expansion method for the inverse scattering problem
International Nuclear Information System (INIS)
Petersen, Claudio Zen; Vilhena, Marco T.; Barros, Ricardo C.
2009-01-01
In this paper the application of the Laplace transform method is described in order to determine the energy-dependent albedo matrix that is used in the boundary conditions multigroup neutron diffusion eigenvalue problems in slab geometry for nuclear reactor global calculations. In slab geometry, the diffusion albedo substitutes without approximation the baffle-reflector system around the active domain. Numerical results to typical test problems are shown to illustrate the accuracy and the efficiency of the Chebysheff acceleration scheme. (orig.)
Numerical Laplace inversion in problems of elastodynamics: Comparison of four algorithms
Czech Academy of Sciences Publication Activity Database
Adámek, V.; Valeš, František; Červ, Jan
2017-01-01
Roč. 113, November (2017), s. 120-129 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 Keywords : inverse Laplace transform * numerical algorithm * wave propagation * multi-precision computation * Maple code Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 3.000, year: 2016
Directory of Open Access Journals (Sweden)
Liu Chun-Feng
2013-01-01
Full Text Available A reconstructive scheme for variational iteration method using the Yang-Laplace transform is proposed and developed with the Yang-Laplace transform. The identification of fractal Lagrange multiplier is investigated by the Yang-Laplace transform. The method is exemplified by a fractal heat conduction equation with local fractional derivative. The results developed are valid for a compact solution domain with high accuracy.
Highly eccentric hip-hop solutions of the 2 N-body problem
Barrabés, Esther; Cors, Josep M.; Pinyol, Conxita; Soler, Jaume
2010-02-01
We show the existence of families of hip-hop solutions in the equal-mass 2 N-body problem which are close to highly eccentric planar elliptic homographic motions of 2 N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ɛ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ɛ≠0, the topological transversality persists and Brouwer’s fixed point theorem shows the existence of this kind of solutions in the full system.
International Nuclear Information System (INIS)
Bakhos, Tania; Saibaba, Arvind K.; Kitanidis, Peter K.
2015-01-01
We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method
Energy Technology Data Exchange (ETDEWEB)
Bakhos, Tania, E-mail: taniab@stanford.edu [Institute for Computational and Mathematical Engineering, Stanford University (United States); Saibaba, Arvind K. [Department of Electrical and Computer Engineering, Tufts University (United States); Kitanidis, Peter K. [Institute for Computational and Mathematical Engineering, Stanford University (United States); Department of Civil and Environmental Engineering, Stanford University (United States)
2015-10-15
We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method.
Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley
2014-03-01
We will describe a general formalism for obtaining spatially localized (``sparse'') solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an L1 regularization term to the variational principle, which is shown to yield solutions with compact support (``compressed modes''). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size. In addition, we introduce an L1 regularized variational framework for developing a spatially localized basis, compressed plane waves (CPWs), that spans the eigenspace of a differential operator, for instance, the Laplace operator. Our approach generalizes the concept of plane waves to an orthogonal real-space basis with multiresolution capabilities. Supported by NSF Award DMR-1106024 (VO), DOE Contract No. DE-FG02-05ER25710 (RC) and ONR Grant No. N00014-11-1-719 (SO).
National Research Council Canada - National Science Library
Gibou, Frederic; Fedkiw, Ronald
2004-01-01
In this paper, the authors first describe a fourth order accurate finite difference discretization for both the Laplace equation and the heat equation with Dirichlet boundary conditions on irregular domains...
Multi-dimensional Laplace transforms and applications
International Nuclear Information System (INIS)
Mughrabi, T.A.
1988-01-01
In this dissertation we establish new theorems for computing certain types of multidimensional Laplace transform pairs from known one-dimensional Laplace transforms. The theorems are applied to the most commonly used special functions and so we obtain many two and three dimensional Laplace transform pairs. As applications, some boundary value problems involving linear partial differential equations are solved by the use of multi-dimensional Laplace transformation. Also we establish some relations between the Laplace transformation and other integral transformation in two variables
Shape differentiability of the Neumann problem of the Laplace equation in the half-space
Czech Academy of Sciences Publication Activity Database
Amrouche, Ch.; Nečasová, Šárka; Sokolowski, J.
2008-01-01
Roč. 37, č. 4 (2008), s. 748-769 ISSN 0324-8569 R&D Projects: GA ČR GA201/05/0005; GA ČR GA201/08/0012 Institutional research plan: CEZ:AV0Z10190503 Keywords : shape optimization * Neumann problem * half space * material derivative Subject RIV: BA - General Mathematics Impact factor: 0.689, year: 2008
Notes on the infinity Laplace equation
Lindqvist, Peter
2016-01-01
This BCAM SpringerBriefs is a treaty of the Infinity-Laplace Equation, which has inherited many features from the ordinary Laplace Equation, and is based on lectures by the author. The Infinity.Laplace Equation has delightful counterparts to the Dirichlet integral, the mean value property, the Brownian motion, Harnack's inequality, and so on. This "fully non-linear" equation has applications to image processing and to mass transfer problems, and it provides optimal Lipschitz extensions of boundary values.
Laplace Transforms without Integration
Robertson, Robert L.
2017-01-01
Calculating Laplace transforms from the definition often requires tedious integrations. This paper provides an integration-free technique for calculating Laplace transforms of many familiar functions. It also shows how the technique can be applied to probability theory.
Haji, Umran; Pryor, Carlton; Applebaum, Elaad; Brooks, Alyson
2018-01-01
We compare the orbital properties of the satellite galaxies of the Milky Way to those of satellites found in simulated Milky Way-like systems as a means of testing cosmological simulations of galaxy formation. The particular problem that we are investigating is a discrepancy in the distribution of orbital eccentricities. Previous studies of Milky Way-mass systems analyzed in a semi-analytic ΛCDM cosmological model have found that the satellites tend to have significantly larger fractions of their kinetic energy invested in radial motion with respect to their central galaxy than do the real-world Milky Way satellites. We analyze several high-resolution ("zoom-in") hydrodynamical simulations of Milky Way-mass galaxies and their associated satellite systems to investigate why previous works found Milky Way-like systems to be rare. We find a possible relationship between a quiescent galactic assembly history and a distribution of satellite kinematics resembling that of the Milky Way. This project has been supported by funding from National Science Foundation grant PHY-1560077.
Fractional Laplace Transforms - A Perspective
Directory of Open Access Journals (Sweden)
Rudolf A. Treumann
2014-06-01
Full Text Available A new form of the Laplace transform is reviewed as a paradigm for an entire class of fractional functional transforms. Various of its properties are discussed. Such transformations should be useful in application to differential/integral equations or problems in non-extensive statistical mechanics.
Eccentric exercises; why do they work, what are the problems and how can we improve them?
Rees, J D; Wolman, R L; Wilson, A
2009-04-01
Eccentric exercises (EE) have proved successful in the management of chronic tendinopathy, particularly of the Achilles and patellar tendons, where they have been shown to be effective in controlled trials. However, numerous questions regarding EE remain. The standard protocols are time-consuming and require very motivated patients. EE are effective in some tendinopathies but not others. Furthermore, the location of the lesion can have a profound effect on efficacy; for example, standard EE in insertional lesions of the Achilles are ineffective. Until recently little was known of the effect of EE on tendinopathic tendons, although a greater understanding of this process is emerging. Additionally, recent in vivo evidence directly comparing eccentric and concentric exercises provides a possible explanation for the therapeutic benefit of EE. The challenge now is to make EE more effective. Suggestions on areas of future research are made.
Simon, Laurent
2017-08-01
An integral-based method was employed to evaluate the behavior of a countercurrent hemodialyzer model. Solute transfer from the blood into the dialysate was described by writing mass balance equations over a section of the device. The approach provided Laplace transform concentration profiles on both sides of the membrane. Applications of the final value theorem led to the development of the effective time constants and steady-state concentrations in the exit streams. Transient responses were derived by a numerical inversion algorithm. Simulations show that the period elapsed, before reaching equilibrium in the effluents, decreased when the blood flow rate increased from 0.25 to 0.30 ml/s. The performance index decreased from 0.80 to 0.71 when the blood-to-dialysate flow ratio increased by 20% and increased from 0.80 to 0.85 when this fraction was reduced by 17%. The analytical solution predicted methadone removal in patients undergoing dialysis. Clinicians can use these findings to predict the time required to achieve a target extraction ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Cao Hui; Pereverzev, Sergei V; Klibanov, Michael V
2009-01-01
The quasi-reversibility method of solving the Cauchy problem for the Laplace equation in a bounded domain Ω is considered. With the help of the Carleman estimation technique improved error and stability bounds in a subdomain Ω σ is a subset of Ω are obtained. This paves the way for the use of the balancing principle for an a posteriori choice of the regularization parameter ε in the quasi-reversibility method. As an adaptive regularization parameter choice strategy, the balancing principle does not require a priori knowledge of either the solution smoothness or a constant K appearing in the stability bound estimation. Nevertheless, this principle allows an a posteriori parameter choice that up to a controllable constant achieves the best accuracy guaranteed by the Carleman estimate
Shafii-Mousavi, Morteza
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Laplace Transforms includes the Laplace transform, the inverse Laplace transform, special functions and properties, applications to ordinary linear differential equations, Fourier tr
An exemplified introduction of the Laplace transform
Directory of Open Access Journals (Sweden)
Marcel BOGDAN
2018-06-01
Full Text Available We solve a linear Cauchy problem with discontinuous perturbation two ways, by solving continuous Cauchy problems successively and by using Laplace transform. An example is given when the last one cannot be used any longer, still the Cauchy problems are solvable and the Cauchy problem with discontinuous perturbation as well.
Some properties of the log-Laplace distribution
International Nuclear Information System (INIS)
Uppuluri, V.R.R.
1980-01-01
A random variable Y is said to have the Laplace distribution or the double exponential distribution whenever its probability density function is given by lambda exp(-lambda abs. value y), where -infinity 0. The random variable X = exp(Y) is said to have the log-Laplace distribution. With the problem of extrapolation to low doses in dose response curves as motivation, an axiomatic characterization of the log-Laplace distribution is obtained. 1 figure
Some properties of the log-Laplace distribution
International Nuclear Information System (INIS)
Uppuluri, V.R.R.
1980-08-01
A random variable γ is said to have the Laplace distribution or the double exponential distribution whenever its probability density function is given by lambda exp(-lambda absolute value (y)), where -infinity 0. The random variable X = exp(γ) is said to have the log-Laplace distribution. With the problem of extrapolation to low doses in dose response curves as a motivation, an axiomatic characterization of the log-Laplace distribution is obtained. 1 figure
Ebaid, Abdelhalim; Wazwaz, Abdul-Majid; Alali, Elham; Masaedeh, Basem S.
2017-03-01
Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.
A Paradox of Newtonian Gravitation and Laplace's Solution
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 5. A Paradox of Newtonian Gravitation and Laplace's Solution. General Article Volume ... A physical phenomenonthat can justify Laplace's suggestion isalso mentioned briefly. This article also posesan interesting mathematical problem that can ...
DEFF Research Database (Denmark)
Kjaer, Michael; Heinemeier, Katja Maria
2014-01-01
to differences in type and/or amount of mechanical stimulus with regard to expression of collagen, regulatory factors for collagen, and cross-link regulators. In overused (tendinopathic) human tendon, eccentric exercise training has a beneficial effect, but the mechanism by which this is elicited is unknown......Eccentric exercise can influence tendon mechanical properties and matrix protein synthesis. mRNA for collagen and regulatory factors thereof are upregulated in animal tendons, independent of muscular contraction type, supporting the view that tendon, compared with skeletal muscle, is less sensitive......, and slow concentric loading appears to have similar beneficial effects. It may be that tendinopathic regions, as long as they are subjected to a certain magnitude of load at a slow speed, independent of whether this is eccentric or concentric in nature, can reestablish their normal tendon fibril alignment...
Asymptotics of Laplace-Dirichlet integrals
International Nuclear Information System (INIS)
Kozlov, S.M.
1990-01-01
Here we consider the problem of the asymptotic expansion of the Laplace-Dirichlet integral. In homogenization theory such an integral represents the energy, and in general depends on the cohomology class. Here the asymptotic behaviour of this integral is found. The full text will appear in Functional Analysis and Applications, 1990, No.2. (author). 3 refs
Modelling skin penetration using the Laplace transform technique.
Anissimov, Y G; Watkinson, A
2013-01-01
The Laplace transform is a convenient mathematical tool for solving ordinary and partial differential equations. The application of this technique to problems arising in drug penetration through the skin is reviewed in this paper. © 2013 S. Karger AG, Basel.
Laplace-Laplace analysis of the fractional Poisson process
Gorenflo, Rudolf; Mainardi, Francesco
2013-01-01
We generate the fractional Poisson process by subordinating the standard Poisson process to the inverse stable subordinator. Our analysis is based on application of the Laplace transform with respect to both arguments of the evolving probability densities.
International Nuclear Information System (INIS)
Berezin, F.A.
1977-01-01
The Laplace-Cazimir operators on the Lie supergroups are defined, and their radial parts are calculated under some general assumptions on supergroup. Under the same assumptions the characters of nondegenerate irreducible finite-dimensional representations are found
The PROSAIC Laplace and Fourier Transform
International Nuclear Information System (INIS)
Smith, G.A.
1994-01-01
Integral Transform methods play an extremely important role in many branches of science and engineering. The ease with which many problems may be solved using these techniques is well known. In Electrical Engineering especially, Laplace and Fourier Transforms have been used for a long time as a way to change the solution of differential equations into trivial algebraic manipulations or to provide alternate representations of signals and data. These techniques, while seemingly overshadowed by today's emphasis on digital analysis, still form an invaluable basis in the understanding of systems and circuits. A firm grasp of the practical aspects of these subjects provides valuable conceptual tools. This tutorial paper is a review of Laplace and Fourier Transforms from an applied perspective with an emphasis on engineering applications. The interrelationship of the time and frequency domains will be stressed, in an attempt to comfort those who, after living so much of their lives in the time domain, find thinking in the frequency domain disquieting
On an application of Laplace transforms
murat düz
2017-01-01
In this study, complex differential equations are solved using laplace transform. Firstly we seperate real and imaginer parts of equation. Thus from one unknown equation is obtained two unknown equation system. Later we obtain laplace transforms of real and imaginer parts of solutions using laplace transform. In the latest we obtain real and imaginer parts of solution using inverse laplace transform .
On an application of Laplace transforms
Directory of Open Access Journals (Sweden)
murat düz
2017-08-01
Full Text Available In this study, complex differential equations are solved using laplace transform. Firstly we seperate real and imaginer parts of equation. Thus from one unknown equation is obtained two unknown equation system. Later we obtain laplace transforms of real and imaginer parts of solutions using laplace transform. In the latest we obtain real and imaginer parts of solution using inverse laplace transform .
Wigner functions defined with Laplace transform kernels.
Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George
2011-10-24
We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America
Radial fractional Laplace operators and Hessian inequalities
Ferrari, Fausto; Verbitsky, Igor E.
In this paper we deduce a formula for the fractional Laplace operator ( on radially symmetric functions useful for some applications. We give a criterion of subharmonicity associated with (, and apply it to a problem related to the Hessian inequality of Sobolev type: ∫Rn |(u| dx⩽C∫Rn -uFk[u] dx, where Fk is the k-Hessian operator on Rn, 1⩽kFerrari et al. [5] contains the extremal functions for the Hessian Sobolev inequality of X.-J. Wang (1994) [15]. This is proved using logarithmic convexity of the Gaussian ratio of hypergeometric functions which might be of independent interest.
The Laplace transformation of adjoint transport equations
International Nuclear Information System (INIS)
Hoogenboom, J.E.
1985-01-01
A clarification is given of the difference between the equation adjoint to the Laplace-transformed time-dependent transport equation and the Laplace-transformed time-dependent adjoint transport equation. Proper procedures are derived to obtain the Laplace transform of the instantaneous detector response. (author)
An introduction to Laplace transforms and Fourier series
Dyke, Phil
2014-01-01
Laplace transforms continue to be a very important tool for the engineer, physicist and applied mathematician. They are also now useful to financial, economic and biological modellers as these disciplines become more quantitative. Any problem that has underlying linearity and with solution based on initial values can be expressed as an appropriate differential equation and hence be solved using Laplace transforms. In this book, there is a strong emphasis on application with the necessary mathematical grounding. There are plenty of worked examples with all solutions provided. This enlarged new edition includes generalised Fourier series and a completely new chapter on wavelets. Only knowledge of elementary trigonometry and calculus are required as prerequisites. An Introduction to Laplace Transforms and Fourier Series will be useful for second and third year undergraduate students in engineering, physics or mathematics, as well as for graduates in any discipline such as financial mathematics, econometrics and ...
The prosaic Laplace and Fourier transform
International Nuclear Information System (INIS)
Smith, G.A.
1995-01-01
Integral Transform methods play an extremely important role in many branches of science and engineering. The ease with which many problems may be solved using these techniques is well known. In Electrical Engineering especially, Laplace and Fourier Transforms have been used for a long time as a way to change the solution of differential equations into trivial algebraic manipulations or to provide alternate representations of signals and data. These techniques, while seemingly overshadowed by today's emphasis on digital analysis, still form an invaluable basis in the understanding of systems and circuits. A firm grasp of the practical aspects of these subjects provides valuable conceptual tools. This tutorial paper is a review of Laplace and Fourier Transforms from an applied perspective with an emphasis on engineering applications. The interrelationship of the time and frequency domains will be stressed, in an attempt to comfort those who, after living so much of their lives in the time domain, find thinking in the frequency domain disquieting. copyright 1995 American Institute of Physics
Introducing Earth's Orbital Eccentricity
Oostra, Benjamin
2015-01-01
Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…
Optimal deep neural networks for sparse recovery via Laplace techniques
Limmer, Steffen; Stanczak, Slawomir
2017-01-01
This paper introduces Laplace techniques for designing a neural network, with the goal of estimating simplex-constraint sparse vectors from compressed measurements. To this end, we recast the problem of MMSE estimation (w.r.t. a pre-defined uniform input distribution) as the problem of computing the centroid of some polytope that results from the intersection of the simplex and an affine subspace determined by the measurements. Owing to the specific structure, it is shown that the centroid ca...
Real Variable Inversion of Laplace Transforms: An Application in Plasma Physics.
Bohn, C. L.; Flynn, R. W.
1978-01-01
Discusses the nature of Laplace transform techniques and explains an alternative to them: the Widder's real inversion. To illustrate the power of this new technique, it is applied to a difficult inversion: the problem of Landau damping. (GA)
Eccentricity from transit photometry
DEFF Research Database (Denmark)
Van Eylen, Vincent; Albrecht, Simon
2015-01-01
and can be described by a Rayleigh distribution with $\\sigma$ = 0.049 $\\pm$ 0.013. This is in full agreement with solar system eccentricities, but in contrast to the eccentricity distributions previously derived for exoplanets from radial velocity studies. Our findings are helpful in identifying which...... (TTVs), and we present some previously unreported TTVs. Finally transit durations help distinguish between false positives and true planets and we use our measurements to confirm six new exoplanets....
Friedrich, R.; Drewelow, W.
1978-01-01
An algorithm is described that is based on the method of breaking the Laplace transform down into partial fractions which are then inverse-transformed separately. The sum of the resulting partial functions is the wanted time function. Any problems caused by equation system forms are largely limited by appropriate normalization using an auxiliary parameter. The practical limits of program application are reached when the degree of the denominator of the Laplace transform is seven to eight.
TMB: Automatic Differentiation and Laplace Approximation
Directory of Open Access Journals (Sweden)
Kasper Kristensen
2016-04-01
Full Text Available TMB is an open source R package that enables quick implementation of complex nonlinear random effects (latent variable models in a manner similar to the established AD Model Builder package (ADMB, http://admb-project.org/; Fournier et al. 2011. In addition, it offers easy access to parallel computations. The user defines the joint likelihood for the data and the random effects as a C++ template function, while all the other operations are done in R; e.g., reading in the data. The package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random effects are automatically integrated out. This approximation, and its derivatives, are obtained using automatic differentiation (up to order three of the joint likelihood. The computations are designed to be fast for problems with many random effects (≈ 106 and parameters (≈ 103 . Computation times using ADMB and TMB are compared on a suite of examples ranging from simple models to large spatial models where the random effects are a Gaussian random field. Speedups ranging from 1.5 to about 100 are obtained with increasing gains for large problems. The package and examples are available at http://tmb-project.org/.
Laplace transforms and the American straddle
Directory of Open Access Journals (Sweden)
G. Alobaidi
2002-01-01
partial Laplace transform techniques due to Evans et al. (1950 to derive a pair of integral equations giving the locations of the optimal exercise boundaries for an American straddle option with a constant dividend yield.
On computing Laplace's coefficients and their derivatives.
Gerasimov, I. A.; Vinnikov, E. L.
The algorithm of computing Laplace's coefficients and their derivatives is proposed with application of recurrent relations. The A.G.M.-method is used for the calculation of values L0(0), L0(1). The FORTRAN-program corresponding to the algorithm is given. The precision control was provided with numerical integrating by Simpsons method. The behavior of Laplace's coefficients and their third derivatives whith varying indices K, n for fixed values of the α-parameter is presented graphically.
Resolution of Laplace equation in a region containing plane and cylindrical charged plates
International Nuclear Information System (INIS)
Jesus Paes, A.C. de.
1986-05-01
A computational program to solve the Laplace equation, in two dimensions, was developed. Cylindrical coordinates were used and the electric potential was calculated in a region bounded by an eccentric circunference that is grounded and in this region there were electrodes at known potential. The iterative method of Gauss-Seidel was used to solve the equation and the matrix of the coefficients, a sparse matrix, was stored in a compacted form in three line matrices. The distribution of this electric field were obtained from the potential and a subroutine to draw was developed. (author) [pt
Graf, Urs
2004-01-01
The theory of Laplace transformation is an important part of the mathematical background required for engineers, physicists and mathematicians. Laplace transformation methods provide easy and effective techniques for solving many problems arising in various fields of science and engineering, especially for solving differential equations. What the Laplace transformation does in the field of differential equations, the z-transformation achieves for difference equations. The two theories are parallel and have many analogies. Laplace and z transformations are also referred to as operational calculus, but this notion is also used in a more restricted sense to denote the operational calculus of Mikusinski. This book does not use the operational calculus of Mikusinski, whose approach is based on abstract algebra and is not readily accessible to engineers and scientists. The symbolic computation capability of Mathematica can now be used in favor of the Laplace and z-transformations. The first version of the Mathema...
Fast Laplace solver approach to pore-scale permeability
Arns, C. H.; Adler, P. M.
2018-02-01
We introduce a powerful and easily implemented method to calculate the permeability of porous media at the pore scale using an approximation based on the Poiseulle equation to calculate permeability to fluid flow with a Laplace solver. The method consists of calculating the Euclidean distance map of the fluid phase to assign local conductivities and lends itself naturally to the treatment of multiscale problems. We compare with analytical solutions as well as experimental measurements and lattice Boltzmann calculations of permeability for Fontainebleau sandstone. The solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.
An evolution infinity Laplace equation modelling dynamic elasto-plastic torsion
Messelmi, Farid
2017-12-01
We consider in this paper a parabolic partial differential equation involving the infinity Laplace operator and a Leray-Lions operator with no coercitive assumption. We prove the existence and uniqueness of the corresponding approached problem and we show that at the limit the solution solves the parabolic variational inequality arising in the elasto-plastic torsion problem.
Virtual Proprioception for eccentric training.
LeMoyne, Robert; Mastroianni, Timothy
2017-07-01
Wireless inertial sensors enable quantified feedback, which can be applied to evaluate the efficacy of therapy and rehabilitation. In particular eccentric training promotes a beneficial rehabilitation and strength training strategy. Virtual Proprioception for eccentric training applies real-time feedback from a wireless gyroscope platform enabled through a software application for a smartphone. Virtual Proprioception for eccentric training is applied to the eccentric phase of a biceps brachii strength training and contrasted to a biceps brachii strength training scenario without feedback. During the operation of Virtual Proprioception for eccentric training the intent is to not exceed a prescribed gyroscope signal threshold based on the real-time presentation of the gyroscope signal, in order to promote the eccentric aspect of the strength training endeavor. The experimental trial data is transmitted wireless through connectivity to the Internet as an email attachment for remote post-processing. A feature set is derived from the gyroscope signal for machine learning classification of the two scenarios of Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback. Considerable classification accuracy is achieved through the application of a multilayer perceptron neural network for distinguishing between the Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback.
Parseval-Type Relations for Laplace Transform and their Applications
Herman, S.; Maceli, J.; Rogala, M.; Yurekli, O.
2008-01-01
In the present note, two Parseval-type relations involving the Laplace transform are given. The application of the relations is demonstrated in evaluating improper integrals and Laplace transforms of trigonometric functions.
Laplace, Pierre-Simon (1749-1827)
Murdin, P.
2000-11-01
Celestial mechanician, born in Beaumont-en-Auge, Normandy, France, became professor of mathematics at the Ecole Militaire in Paris, examining the cadet Napoleon Bonaparte. This position made Laplace well known to people in positions of power, which he opportunistically exploited, becoming, under Napoleon, Minister of the Interior (Napoleon soon removed him from office `because he brought the spir...
Holism and Emergence: Dynamical Complexity Defeats Laplace's ...
African Journals Online (AJOL)
ideal for scientific theories whose cogency is often not questioned. Laplace's demon is an idealization of mechanistic scientific method. Its principles together imply reducibility, and rule out holism and emergence. I will argue that Laplacean determinism fails even in the realm of planetary dynamics, and that it does not give ...
International Nuclear Information System (INIS)
Garratt, T.J.
1989-05-01
Compartment models for the transport of radionuclides in the biosphere are conventionally solved using a numerical time-stepping procedure. This report examines an alternative method based on the numerical inversion of Laplace transforms, which is potentially more efficient and accurate for some classes of problem. The central problem considered is the most efficient and robust technique for solving the Laplace-transformed rate equations. The conclusion is that Gaussian elimination is the most efficient and robust solution method. A general compartment model has been implemented on a personal computer and used to solve a realistic case including radionuclide decay chains. (author)
A numerical approach to the time dependent neutron flux using the Laplace transform technique
International Nuclear Information System (INIS)
El-Demerdash, A; Beynon, T.D.
1979-01-01
In this study a time dependent transport problem in which an isotopic neutron source emits a pulse of neutrons into a finite sphere has been solved by a numerical Laplace transform technique. The object has been to investigate the time behaviour of the neutron field in the moderators at times shortly after the neutron source initiation, that is in the nanosecond time period. The basis of the solution is a numercial evaluation of the Laplace transform of the flux in the linear Boltzmann equation with the use of a modified version of a steady state energy multi-group spatially dependent code. The explicit or direct inversion of the Laplace transformed flux is complicated to be solved numerically due to the ill-conditioned matrix obtained. The suggested method of solutions depends on choice of a function that satisfies the physical condition known from the neutron behaviour and that has a Laplace inversion which is analytically amenable. By employing a least square fitting procedure the function is modified in order to minimize the error in the Laplace transformed values and hence in the time dependent solution. This method has been applied satisfactorily in comparison to analytical and experimental results
The Laplace Likelihood Ratio Test for Heteroscedasticity
Directory of Open Access Journals (Sweden)
J. Martin van Zyl
2011-01-01
Full Text Available It is shown that the likelihood ratio test for heteroscedasticity, assuming the Laplace distribution, gives good results for Gaussian and fat-tailed data. The likelihood ratio test, assuming normality, is very sensitive to any deviation from normality, especially when the observations are from a distribution with fat tails. Such a likelihood test can also be used as a robust test for a constant variance in residuals or a time series if the data is partitioned into groups.
Solution of the diffusion equation in the GPT theory by the Laplace transform technique
International Nuclear Information System (INIS)
Lemos, R.S.M.; Vilhena, M.T.; Segatto, C.F.; Silva, M.T.
2003-01-01
In this work we present a analytical solution to the auxiliary and importance functions attained from the solution of a multigroup diffusion problem in a multilayered slab by the Laplace Transform technique. We also obtain the the transcendental equation for the effective multiplication factor, resulting from the application of the boundary and interface conditions. (author)
One-dimensional treatment of polyatomic crystals by the Laplace transform method
International Nuclear Information System (INIS)
Rosato, A.; Santana, P.H.A.
1976-01-01
The one dimensional periodic potential problem is solved using the Laplace transform method and a condensed expression for the relation E x k and effective mass for one electron in a polyatomic structure is determined. Applications related to the effect of the asymmetry of the potential upon the one dimensional band structure are discussed [pt
Regularized Laplace-Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function
Jun, Hyunggu; Kwon, Jungmin; Shin, Changsoo; Zhou, Hongbo; Cogan, Mike
2017-03-01
Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace-Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace-Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace-Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace-Fourier-domain FWI. Because the Laplace-Fourier-domain FWI is improved, the
Experiments on Active Cloaking and Illusion for Laplace Equation
Ma, Qian; Mei, Zhong Lei; Zhu, Shou Kui; Jin, Tian Yu; Cui, Tie Jun
2013-10-01
In recent years, invisibility cloaks have received a lot of attention and interest. These devices are generally classified into two types: passive and active. The design and realization of passive cloaks have been intensively studied using transformation optics and plasmonic approaches. However, active cloaks are still limited to theory and numerical simulations. Here, we present the first experiment on active cloaking and propose an active illusion for the Laplace equation. We make use of a resistor network to simulate a conducting medium. Then, we surround the central region with controlled sources to protect it from outside detection. We show that by dynamically changing the controlled sources, the protected region can be cloaked or disguised as different objects (illusion). Our measurement results agree very well with numerical simulations. Compared with the passive counterparts, the active cloaking and illusion devices do not need complicated metamaterials. They are flexible, in-line controllable, and adaptable to the environment. In addition to dc electricity, the proposed method can also be used for thermodynamics and other problems governed by the Laplace equation.
Modelling a single phase voltage controlled rectifier using Laplace transforms
Kraft, L. Alan; Kankam, M. David
1992-01-01
The development of a 20 kHz, AC power system by NASA for large space projects has spurred a need to develop models for the equipment which will be used on these single phase systems. To date, models for the AC source (i.e., inverters) have been developed. It is the intent of this paper to develop a method to model the single phase voltage controlled rectifiers which will be attached to the AC power grid as an interface for connected loads. A modified version of EPRI's HARMFLO program is used as the shell for these models. The results obtained from the model developed in this paper are quite adequate for the analysis of problems such as voltage resonance. The unique technique presented in this paper uses the Laplace transforms to determine the harmonic content of the load current of the rectifier rather than a curve fitting technique. Laplace transforms yield the coefficient of the differential equations which model the line current to the rectifier directly.
DYNAM, Once Through Boiling Flow with Steam Superheat, Laplace Transformation
International Nuclear Information System (INIS)
Schlueter, G.; Efferding, L.E.
1973-01-01
1 - Description of problem or function: DYNAM performs a dynamic analysis of once-through boiling flow oscillations with steam superheat. The model describing the superheat regime (single- phase, variable density fluid) for subcritical pressure operation is also applicable to the study of once-through operation using supercritical pressure water. 2 - Method of solution: Linearized partial differential conservation equations are solved using Laplace transformation of the temporal terms and integration of the spatial variations. DYNAM is written in complex variable notation. 3 - Restrictions on the complexity of the problem - Maxima of: 30 intervals used to describe the power distribution in the non-boiling and boiling regions, 29 boiling nodes, 7 intervals and corresponding friction multipliers read in per case, 14 exit qualities read in per case, 40 superheat nodes, 10 coefficients read in for the phi 2 vs, x-polynomial fit, 48 frequencies at which open-loop frequency response is desired, 48 frequencies at which signal output is desired
Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux
Rubincam, David P.
2015-01-01
The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.
TMB: Automatic differentiation and laplace approximation
DEFF Research Database (Denmark)
Kristensen, Kasper; Nielsen, Anders; Berg, Casper Willestofte
2016-01-01
TMB is an open source R package that enables quick implementation of complex nonlinear random effects (latent variable) models in a manner similar to the established AD Model Builder package (ADMB, http://admb-project.org/; Fournier et al. 2011). In addition, it offers easy access to parallel...... computations. The user defines the joint likelihood for the data and the random effects as a C++ template function, while all the other operations are done in R; e.g., reading in the data. The package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random effects...
The Young-Laplace equation links capillarity with geometrical optics
International Nuclear Information System (INIS)
Rodriguez-Valverde, M A; Cabrerizo-Vilchez, M A; Hidalgo-Alvarez, R
2003-01-01
Analogies in physics are unusual coincidences that can be very useful to solve problems and to clarify some theoretical concepts. Apart from their own curiosity, analogies are attractive tools because they reduce the abstraction of some complex phenomena in such a way that these can be understood by means of other phenomena closer to daily experience. Usually, two analogous systems share a common aspect, like the movement of particles or transport of matter. On account of this, the analogy presented is exceptional since the involved phenomena are a priori disjoined. The most important equation of capillarity, the Young-Laplace equation, has the same structure as the Gullstrand equation of geometrical optics, which relates the optic power of a thick lens to its geometry and the properties of the media
Hybrid SN Laplace Transform Method For Slab Lattice Calculations
International Nuclear Information System (INIS)
Segatto, Cynthia F.; Vilhena, Marco T.; Zani, Jose H.; Barros, Ricardo C.
2008-01-01
In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this paper we describe a hybrid discrete ordinates (S N ) method for slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. We use special fuel-moderator interface conditions based on an approximate angular flux interpolation analytical method and the Laplace transform (LTS N ) numerical method to calculate the neutron flux distribution and the thermal disadvantage factor. We present numerical results for a range of typical model problems. (authors)
A Laplace transform method for energy multigroup hybrid discrete ordinates
International Nuclear Information System (INIS)
Segatto, C.F.; Vilhena, M.T.; Barros, R.C.
2010-01-01
In typical lattice cells where a highly absorbing, small fuel element is embedded in the moderator, a large weakly absorbing medium, high-order transport methods become unnecessary. In this work we describe a hybrid discrete ordinates (S N) method for energy multigroup slab lattice calculations. This hybrid S N method combines the convenience of a low-order S N method in the moderator with a high-order S N method in the fuel. The idea is based on the fact that in weakly absorbing media whose physical size is several neutron mean free paths in extent, even the S 2 method (P 1 approximation), leads to an accurate result. We use special fuel-moderator interface conditions and the Laplace transform (LTS N ) analytical numerical method to calculate the two-energy group neutron flux distributions and the thermal disadvantage factor. We present numerical results for a range of typical model problems.
Directory of Open Access Journals (Sweden)
Ratchata Theinchai
2016-01-01
Full Text Available We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM. The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.
Theinchai, Ratchata; Chankan, Siriwan; Yukunthorn, Weera
2016-01-01
We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM). The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.
International Nuclear Information System (INIS)
Sharifi, M. J.; Adibi, A.
2000-01-01
In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as poisson, Laplace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in several cases including the problem of finding electron concentration profile in the channel of a HEMT. In another section, we solve the Poisson equation by this method, choosing the problem of SBD as an example. Finally we solve the Laplace equation in two dimensions and as an example, we focus on the VED. In this paper, we have shown that, the method can get stable and precise results in solving all of these problems. Also the programs which have been written based on this method become considerably faster, more clear, and more abstract
Towards Informetrics: Haitun, Laplace, Zipf, Bradford and the Alvey Programme.
Brookes, B. C.
1984-01-01
Review of recent developments in statistical theories for social sciences highlights Haitun's statistical distributions, Laplace's "Law of Succession" and distribution, Laplace and Bradford analysis of book-index data, inefficiency of frequency distribution analysis, Laws of Bradford and Zipf, natural categorization, and Bradford Law and…
Laplace and the era of differential equations
Weinberger, Peter
2012-11-01
Between about 1790 and 1850 French mathematicians dominated not only mathematics, but also all other sciences. The belief that a particular physical phenomenon has to correspond to a single differential equation originates from the enormous influence Laplace and his contemporary compatriots had in all European learned circles. It will be shown that at the beginning of the nineteenth century Newton's "fluxionary calculus" finally gave way to a French-type notation of handling differential equations. A heated dispute in the Philosophical Magazine between Challis, Airy and Stokes, all three of them famous Cambridge professors of mathematics, then serves to illustrate the era of differential equations. A remark about Schrödinger and his equation for the hydrogen atom finally will lead back to present times.
Laplace transform in tracer kinetic modeling
Energy Technology Data Exchange (ETDEWEB)
Hauser, Eliete B., E-mail: eliete@pucrs.br [Instituto do Cerebro (InsCer/FAMAT/PUC-RS), Porto Alegre, RS, (Brazil). Faculdade de Matematica
2013-07-01
The main objective this paper is to quantify the pharmacokinetic processes: absorption, distribution and elimination of radiopharmaceutical(tracer), using Laplace transform method. When the drug is administered intravenously absorption is complete and is available in the bloodstream to be distributed throughout the whole body in all tissues and fluids, and to be eliminated. Mathematical modeling seeks to describe the processes of distribution and elimination through compartments, where distinct pools of tracer (spatial location or chemical state) are assigned to different compartments. A compartment model is described by a system of differential equations, where each equation represents the sum of all the transfer rates to and from a specific compartment. In this work a two-tissue irreversible compartment model is used for description of tracer, [{sup 18}F]2-fluor-2deoxy-D-glucose. In order to determine the parameters of the model, it is necessary to have information about the tracer delivery in the form of an input function representing the time-course of tracer concentration in arterial blood or plasma. We estimate the arterial input function in two stages and apply the Levenberg-Marquardt Method to solve nonlinear regressions. The transport of FDG across de arterial blood is very fast in the first ten minutes and then decreases slowly. We use de Heaviside function to represent this situation and this is the main contribution of this study. We apply the Laplace transform and the analytical solution for two-tissue irreversible compartment model is obtained. The only approach is to determinate de arterial input function. (author)
Laplace's equation and Faraday's lines of force
Energy Technology Data Exchange (ETDEWEB)
Narasimhan, T.N.
2007-06-01
Boundary-value problems involve two dependent variables: a potential function, and a stream function. They can be approached in two mutually independent ways. The first, introduced by Laplace, involves spatial gradients at a point. Inspired by Faraday, Maxwell introduced the other, visualizing the flow domain as a collection of flow tubes and isopotential surfaces. Boundary-value problems intrinsically entail coupled treatment (or, equivalently, optimization) of potential and stream functions Historically, potential theory avoided the cumbersome optimization task through ingenious techniques such as conformal mapping and Green's functions. Laplace's point-based approach, and Maxwell's global approach, each provides its own unique insights into boundary-value problems. Commonly, Laplace's equation is solved either algebraically, or with approximate numerical methods. Maxwell's geometry-based approach opens up novel possibilities of direct optimization, providing an independent logical basis for numerical models, rather than treating them as approximate solvers of the differential equation. Whereas points, gradients, and Darcy's law are central to posing problems on the basis of Laplace's approach, flow tubes, potential differences, and the mathematical form of Ohm's law are central to posing them in natural coordinates oriented along flow paths. Besides being of philosophical interest, optimization algorithms can provide advantages that complement the power of classical numerical models. In the spirit of Maxwell, who eloquently spoke for a balance between abstract mathematical symbolism and observable attributes of concrete objects, this paper is an examination of the central ideas of the two approaches, and a reflection on how Maxwell's integral visualization may be practically put to use in a world of digital computers.
LAPLACE-RUNGE-LENZ VECTOR IN QUANTUM MECHANICS IN NONCOMMUTATIVE SPACE
Directory of Open Access Journals (Sweden)
Peter Prešnajder
2014-04-01
Full Text Available The object under scrutiny is the dynamical symmetry connected with conservation of the Laplace-Runge-Lenz vector (LRL in the hydrogen atom problem solved by means of noncommutative quantum mechanics (NCQM. The considered noncommutative configuration space has such a “fuzzy”structure that the rotational invariance is not spoilt. An analogy with the LRL vector in the NCQM is brought to provide our results and also a comparison with the standard QM predictions.
Application of the numerical Laplace transform inversion to neutron transport theory
International Nuclear Information System (INIS)
Ganapol, B.D.
1989-01-01
A numerical Laplace transform inversion is developed using the Hurwitz-Zweifel method of evaluating the Fourier cosine integral coupled with an Euler-Knopp transformation. The numerical inversion is then applied to problems in linear transport theory concerning slowing down, time-dependence and featuring the determination of the interior scalar flux solution to the one-group stationary transport equation in half-space geometry
A new kinematical definition of orbital eccentricity
Directory of Open Access Journals (Sweden)
Ninković S.
2009-01-01
Full Text Available A new concept of orbital eccentricity is given. The dimensionless quantities proposed in the present paper to serve as orbital eccentricities have a kinematical nature. The purpose is to use them in describing the motion for the case of three-dimensional orbits. A comparison done for nearly planar orbits shows that the values of the eccentricities proposed here do not differ significantly from those corresponding to the eccentricities of geometric nature usually applied.
Cryptanalysis of Application of Laplace Transform for Cryptography
Directory of Open Access Journals (Sweden)
Gençoğlu Muharrem Tuncay
2017-01-01
Full Text Available Although Laplace Transform is a good application field in the design of cryptosystems, many cryptographic algorithm proposals become unsatisfactory for secure communication. In this cryptanalysis study, one of the significant disadvantages of the proposed algorithm is performed with only statistical test of security analysis. In this study, Explaining what should be considered when performing security analysis of Laplace Transform based encryption systems and using basic mathematical rules, password has broken without knowing secret key. Under the skin; This study is a refutation for the article titled Application of Laplace Transform for Cryptography written by Hiwerakar[3].
The conformally invariant Laplace-Beltrami operator and factor ordering
International Nuclear Information System (INIS)
Ryan, Michael P.; Turbiner, Alexander V.
2004-01-01
In quantum mechanics the kinetic energy term for a single particle is usually written in the form of the Laplace-Beltrami operator. This operator is a factor ordering of the classical kinetic energy. We investigate other relatively simple factor orderings and show that the only other solution for a conformally flat metric is the conformally invariant Laplace-Beltrami operator. For non-conformally-flat metrics this type of factor ordering fails, by just one term, to give the conformally invariant Laplace-Beltrami operator
ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS
International Nuclear Information System (INIS)
Duffell, Paul C.; Chiang, Eugene
2015-01-01
Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions
Analytic solution for American strangle options using Laplace-Carson transforms
Kang, Myungjoo; Jeon, Junkee; Han, Heejae; Lee, Somin
2017-06-01
A strangle has been important strategy for options when the trader believes there will be a large movement in the underlying asset but are uncertain of which way the movement will be. In this paper, we derive analytic formula for the price of American strangle options. American strangle options can be mathematically formulated into the free boundary problems involving two early exercise boundaries. By using Laplace-Carson Transform(LCT), we can derive the nonlinear system of equations satisfied by the transformed value of two free boundaries. We then solve this nonlinear system using Newton's method and finally get the free boundaries and option values using numerical Laplace inversion techniques. We also derive the Greeks for the American strangle options as well as the value of perpetual American strangle options. Furthermore, we present various graphs for the free boundaries and option values according to the change of parameters.
Energy Technology Data Exchange (ETDEWEB)
Shao, Yan-Lin, E-mail: yanlin.shao@dnvgl.com; Faltinsen, Odd M.
2014-10-01
We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.
Laplace Synthesis Validation through Measurements on Underground Transmission Cables
Uribe-Campos Felipe Alejandro
2014-01-01
Underground cable electrical parameters ZY as well as their modal propagation characteristics are highly frequency dependent which in certain cases turns its analysis difficult. To perform electromagnetic transient studies of cables the calculation of electrical parameters is essential to obtain the waves propagation solution through the multiconductor system. At the same time this requires to solve the inverse Laplace transform on a numerical form. Although the analytic Laplace transform has...
Cryptanalysis of Application of Laplace Transform for Cryptography
Gençoğlu Muharrem Tuncay
2017-01-01
Although Laplace Transform is a good application field in the design of cryptosystems, many cryptographic algorithm proposals become unsatisfactory for secure communication. In this cryptanalysis study, one of the significant disadvantages of the proposed algorithm is performed with only statistical test of security analysis. In this study, Explaining what should be considered when performing security analysis of Laplace Transform based encryption systems and using basic mathematical rules, p...
The Eccentric Behavior of Nearly Frozen Orbits
Sweetser, Theodore H.; Vincent, Mark A.
2013-01-01
Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.
Continuous administration of short-lived radioisotope tracers and the analogous Laplace transform
International Nuclear Information System (INIS)
Orr, J.S.
1979-01-01
Short-lived radioactive tracers are used because of the low radiation dose to patients. Another advantage finding increasing use, however, is that the equilibrium activities achieved by continuous administration to a steady state contain kinetic information. This is not the case with long-lived isotopes. The derivation of quantitative kinetic information in the form of rate constants or flows requires the formulation of a model of the system being studied. Several approaches to this have been published based on a model of single compartments with simultaneous arrival of tracer. To deal with more realistic models a method is proposed which uses the analogy between the procedure of continuous administration of short-lived tracer and the Laplace transform. This analogy permits all the theorems of Laplace transform theory to be applied to the analysis of measured activities. The basis of the analogy is explained and examples are given of its application to a number of models which represent actual physiology more realistically than single compartment models. In these applications the transformed equations representing the model, with measured values of activity inserted for each transform, are solved to derive the rate constants. This is different from the use of Laplace transforms where the constant coefficients are known and the initial value problem is solved to find the behaviour of the variables. (author)
Hereditary effects in eccentric compact binary inspirals to third post-Newtonian order
Loutrel, Nicholas; Yunes, Nicolás
2017-02-01
While there has been much success in understanding the orbital dynamics and gravitational wave emission of eccentric compact binaries in the post-Newtonian formalism, some problems still remain. The largest of these concerns hereditary effects: non-linear phenomena related to the scattering off of the background curved spacetime (tails) and to the generation of gravitational waves by gravitational waves (memory). Currently, these hereditary effects are only known numerically for arbitrary eccentricity through infinite sums of Bessel functions, with closed-form, analytic results only available in the small eccentricity limit. We here calculate, for the first time, closed-form, analytic expressions for all hereditary effects to third post-Newtonian order in binaries with arbitrary eccentricity. For the tails, we first asymptotically expand all Bessel functions in high eccentricity and find a superasymptotic series for each enhancement factor, accurate to better than 10-3 relative to post-Newtonian numerical calculations at all eccentricities. We further improve the small-eccentricity behavior of the superasymptotic series by generating hyperasymptotic expressions for each enhancement factor, typically accurate to better than 10-8 at all eccentricities. For the memory, we discuss its computation within the context of an osculating approximation of the binary’s orbit and the difficulties that arise. Our closed-form analytic expressions for the hereditary fluxes allow us to numerically compute orbital phases that are identical to those found using an infinite sum of Bessel functions to double numerical precision.
Hereditary effects in eccentric compact binary inspirals to third post-Newtonian order
International Nuclear Information System (INIS)
Loutrel, Nicholas; Yunes, Nicolás
2017-01-01
While there has been much success in understanding the orbital dynamics and gravitational wave emission of eccentric compact binaries in the post-Newtonian formalism, some problems still remain. The largest of these concerns hereditary effects: non-linear phenomena related to the scattering off of the background curved spacetime (tails) and to the generation of gravitational waves by gravitational waves (memory). Currently, these hereditary effects are only known numerically for arbitrary eccentricity through infinite sums of Bessel functions, with closed-form, analytic results only available in the small eccentricity limit. We here calculate, for the first time, closed-form, analytic expressions for all hereditary effects to third post-Newtonian order in binaries with arbitrary eccentricity. For the tails, we first asymptotically expand all Bessel functions in high eccentricity and find a superasymptotic series for each enhancement factor, accurate to better than 10 −3 relative to post-Newtonian numerical calculations at all eccentricities. We further improve the small-eccentricity behavior of the superasymptotic series by generating hyperasymptotic expressions for each enhancement factor, typically accurate to better than 10 −8 at all eccentricities. For the memory, we discuss its computation within the context of an osculating approximation of the binary’s orbit and the difficulties that arise. Our closed-form analytic expressions for the hereditary fluxes allow us to numerically compute orbital phases that are identical to those found using an infinite sum of Bessel functions to double numerical precision. (paper)
Eccentric crank variable compression ratio mechanism
Lawrence, Keith Edward [Kobe, JP; Moser, William Elliott [Peoria, IL; Roozenboom, Stephan Donald [Washington, IL; Knox, Kevin Jay [Peoria, IL
2008-05-13
A variable compression ratio mechanism for an internal combustion engine that has an engine block and a crankshaft is disclosed. The variable compression ratio mechanism has a plurality of eccentric disks configured to support the crankshaft. Each of the plurality of eccentric disks has at least one cylindrical portion annularly surrounded by the engine block. The variable compression ratio mechanism also has at least one actuator configured to rotate the plurality of eccentric disks.
Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats
DEFF Research Database (Denmark)
Kongsgaard, M; Aagaard, P; Roikjaer, S
2006-01-01
Recent studies have shown excellent clinical results using eccentric squat training on a 25 degrees decline board to treat patellar tendinopathy. It remains unknown why therapeutic management of patellar tendinopathy using decline eccentric squats offer superior clinical efficacy compared...
Image Analysis of Eccentric Photorefraction
Directory of Open Access Journals (Sweden)
J. Dušek
2004-01-01
Full Text Available This article deals with image and data analysis of the recorded video-sequences of strabistic infants. It describes a unique noninvasive measuring system based on two measuring methods (position of I. Purkynje image with relation to the centre of the lens and eccentric photorefraction for infants. The whole process is divided into three steps. The aim of the first step is to obtain video sequences on our special system (Eye Movement Analyser. Image analysis of the recorded sequences is performed in order to obtain curves of basic eye reactions (accommodation and convergence. The last step is to calibrate of these curves to corresponding units (diopter and degrees of movement.
Laplace Synthesis Validation through Measurements on Underground Transmission Cables
Directory of Open Access Journals (Sweden)
Uribe-Campos Felipe Alejandro
2014-10-01
Full Text Available Underground cable electrical parameters ZY as well as their modal propagation characteristics are highly frequency dependent which in certain cases turns its analysis difficult. To perform electromagnetic transient studies of cables the calculation of electrical parameters is essential to obtain the waves propagation solution through the multiconductor system. At the same time this requires to solve the inverse Laplace transform on a numerical form. Although the analytic Laplace transform has an indisputable accuracy, the application of its numerical version up-to-date has not been completely accepted. A complete methodology is developed in this work to guide analyst engineers or graduate students in the calculation of electromagnetic transients of underground cable systems. Finally, to help the validation of the numerical inverse Laplace transform a scaled prototype experiment is performed in the laboratory in which a transient step-response at the remote end of an energized conductor is measured.
Filter frequency response of time dependent signal using Laplace transform
Energy Technology Data Exchange (ETDEWEB)
Shestakov, Aleksei I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2018-01-16
We analyze the effect a filter has on a time dependent signal x(t). If X(s) is the Laplace transform of x and H (s) is the filter Transfer function, the response in frequency space is X (s) H (s). Consequently, in real space, the response is the convolution (x*h) (t), where hi is the Laplace inverse of H. Effects are analyzed and analytically for functions such as (t/t_{c})^{2} e^{-t/t$_c$}, where t_{c} = const. We consider lowpass, highpass and bandpass filters.
On the Laplace transform of the Lognormal distribution
DEFF Research Database (Denmark)
Asmussen, Søren; Jensen, Jens Ledet; Rojas-Nandayapa, Leonardo
-form approximation L˜(θ) of the Laplace transform L(θ) which is obtained via a modified version of Laplace's method. This approximation, given in terms of the Lambert W(⋅) function, is tractable enough for applications. We prove that L˜(θ) is asymptotically equivalent to L(θ) as θ→∞. We apply this result......Integral transforms of the lognormal distribution are of great importance in statistics and probability, yet closed-form expressions do not exist. A wide variety of methods have been employed to provide approximations, both analytical and numerical. In this paper, we analyze a closed...
Gradient estimates on the weighted p-Laplace heat equation
Wang, Lin Feng
2018-01-01
In this paper, by a regularization process we derive new gradient estimates for positive solutions to the weighted p-Laplace heat equation when the m-Bakry-Émery curvature is bounded from below by -K for some constant K ≥ 0. When the potential function is constant, which reduce to the gradient estimate established by Ni and Kotschwar for positive solutions to the p-Laplace heat equation on closed manifolds with nonnegative Ricci curvature if K ↘ 0, and reduce to the Davies, Hamilton and Li-Xu's gradient estimates for positive solutions to the heat equation on closed manifolds with Ricci curvature bounded from below if p = 2.
Eccentric binaries of compact objects in strong-field gravity
International Nuclear Information System (INIS)
Gold, Roman
2011-01-01
In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on to the
Eccentric binaries of compact objects in strong-field gravity
Energy Technology Data Exchange (ETDEWEB)
Gold, Roman
2011-09-27
In this thesis we study the dynamics as well as the resulting gravitational radiation from eccentric binaries of compact objects in the non-linear regime of General Relativity. For this purpose we solve Einstein's field equation numerically in a 3+1 decomposition using the moving-puncture technique. We focus our study on very particular orbits, arising as a purely relativistic phenomenon of the two-body problem in General Relativity, which are associated with unstable circular orbits. They are governed by a fast, nearly circular revolution at a short distance followed by a slow, radial motion on a nearly elliptic trajectory. Due to the unique features of their orbital trajectories they are called zoom-whirl orbits. We analyze how the peculiar dynamics manifests itself in the emitted gravitational radiation and to which extent one can infer the orbital properties from observations of the gravitational waves. In the first part, we consider black hole binaries. We perform a comprehensive parameter study by varying the initial eccentricity, computing and characterizing the resulting gravitational waveforms. We address aspects, which can only be obtained from non-perturbative methods, and which are crucial to the astrophysical relevance of these orbits. In particular, our results imply a fairly low amount of fine-tuning necessary to spot zoom-whirl effects. We find whirl orbits for values of the eccentricities, which fall in disjunct intervals extending to rather low values. Furthermore, we show that whirl effects just before merger cause a signal with significant amplitude. In the second part, we investigate neutron star binaries on eccentric orbits in full General Relativity, which has not been studied so far. We explore their phenomenology and study the consequences for the matter after the neutron stars have merged. In these evolutions the merged neutron stars sooner or later collapse to form a black hole. During the collapse most of the matter is accreted on
A Fortran program (RELAX3D) to solve the 3 dimensional Poisson (Laplace) equation
International Nuclear Information System (INIS)
Houtman, H.; Kost, C.J.
1983-09-01
RELAX3D is an efficient, user friendly, interactive FORTRAN program which solves the Poisson (Laplace) equation Λ 2 =p for a general 3 dimensional geometry consisting of Dirichlet and Neumann boundaries approximated to lie on a regular 3 dimensional mesh. The finite difference equations at these nodes are solved using a successive point-iterative over-relaxation method. A menu of commands, supplemented by HELP facility, controls the dynamic loading of the subroutine describing the problem case, the iterations to converge to a solution, and the contour plotting of any desired slices, etc
Variations of (pseudo-)rotations and the Laplace-Beltrami operator on homogeneous spaces
Energy Technology Data Exchange (ETDEWEB)
Brezov, D. S. [Department of Mathematics, University of Architecture, Civil Engineering and Geodesy, 1 Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Mladenova, C. D. [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, 1113 Sofia (Bulgaria); Mladenov, I. M., E-mail: mladenov@bio21.bas.bg [Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia (Bulgaria)
2015-10-28
In this paper we obtain the Lie derivatives of the scalar parameters in the generalized Euler decomposition with respect to arbitrary axes under left and right deck transformations. This problem can be directly related to the representation of the angular momentum in quantum mechanics. As a particular example, we calculate the angular momentum and the corresponding quantum hamiltonian in the standard Euler and Bryan representations. Similarly, in the hyperbolic case, the Laplace-Beltrami operator is retrieved for the Iwasawa decomposition. The case of two axes is considered as well.
A Boundary Value Problem for Introductory Physics?
Grundberg, Johan
2008-01-01
The Laplace equation has applications in several fields of physics, and problems involving this equation serve as paradigms for boundary value problems. In the case of the Laplace equation in a disc there is a well-known explicit formula for the solution: Poisson's integral. We show how one can derive this formula, and in addition two equivalent…
RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS
Energy Technology Data Exchange (ETDEWEB)
Naoz, Smadar; Kocsis, Bence; Loeb, Abraham [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yunes, Nicolas, E-mail: snaoz@cfa.harvard.edu [Department of Physics, Montana State University, Bozeman, MT 59718 (United States)
2013-08-20
We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effects suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.
Eccentric training as a new approach for rotator cuff tendinopathy: Review and perspectives
Camargo, Paula R; Alburquerque-Sendín, Francisco; Salvini, Tania F
2014-01-01
Excessive mechanical loading is considered the major cause of rotator cuff tendinopathy. Although tendon problems are very common, they are not always easy to treat. Eccentric training has been proposed as an effective conservative treatment for the Achilles and patellar tendinopathies, but less evidence exists about its effectiveness for the rotator cuff tendinopathy. The mechanotransduction process associated with an adequate dose of mechanical load might explain the beneficial results of applying the eccentric training to the tendons. An adequate load increases healing and an inadequate (over or underuse) load can deteriorate the tendon structure. Different eccentric training protocols have been used in the few studies conducted for people with rotator cuff tendinopathy. Further, the effects of the eccentric training for rotator cuff tendinopathy were only evaluated on pain, function and strength. Future studies should assess the effects of the eccentric training also on shoulder kinematics and muscle activity. Individualization of the exercise prescription, comprehension and motivation of the patients, and the establishment of specific goals, practice and efforts should all be considered when prescribing the eccentric training. In conclusion, eccentric training should be used aiming improvement of the tendon degeneration, but more evidence is necessary to establish the adequate dose-response and to determine long-term follow-up effects. PMID:25405092
Discovering the Laplace Transform in Undergraduate Differential Equations
Quinn, Terrance J.; Rai, Sanjay
2008-01-01
The Laplace Transform is an object of fundamental importance in pure and applied mathematics. In addition, it has special pedagogical value in that it can provide a natural and concrete setting for a student to begin thinking about the modern concepts of "operator" and "functional". Most undergraduate textbooks, however, merely define the…
Who let the demon out? Laplace and Boscovich on determinism.
Kožnjak, Boris
2015-06-01
In this paper, I compare Pierre-Simon Laplace's celebrated formulation of the principle of determinism in his 1814 Essai philosophique sur les probabilités with the formulation of the same principle offered by Roger Joseph Boscovich in his Theoria philosophiae naturalis, published 56 years earlier. This comparison discloses a striking general similarity between the two formulations of determinism as well as certain important differences. Regarding their similarities, both Boscovich's and Laplace's conceptions of determinism involve two mutually interdependent components-ontological and epistemic-and they are both intimately linked with the principles of causality and continuity. Regarding their differences, however, Boscovich's formulation of the principle of determinism turns out not only to be temporally prior to Laplace's but also-being founded on fewer metaphysical principles and more rooted in and elaborated by physical assumptions-to be more precise, complete and comprehensive than Laplace's somewhat parenthetical statement of the doctrine. A detailed analysis of these similarities and differences, so far missing in the literature on the history and philosophy of the concept of determinism, is the main goal of the present paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
Numerical accuracy of real inversion formulas for the Laplace transform
Masol, V.; Teugels, J.L.
2008-01-01
In this paper we investigate and compare a number of real inversion formulas for the Laplace transform. The focus is on the accuracy and applicability of the formulas for numerical inversion. In this contribution, we study the performance of the formulas for measures concentrated on a positive
Application of laplace transform method in heavy ion reaction research
International Nuclear Information System (INIS)
Wang Jinchuan; Xi Hongfei; Guo Zhongyan; Zhan Wenlong; Zhu Yongtai; Zhou Jianqun; Liu Guanhua
1993-01-01
Laplace transform method (LTM) is applied to investigate the effects of different spectroscopy amplifiers parameters on identification of the light charged particles (LCP) emitted from 12 C(46,7 MeV/u) + 58 Ni reaction. The significance of application of LTM in heavy ion experimental nuclear physics is also discussed
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2014-01-01
Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.
Energy Technology Data Exchange (ETDEWEB)
Ledermüller, Katrin; Schütz, Martin, E-mail: martin.schuetz@chemie.uni-regensburg.de [Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg (Germany)
2014-04-28
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.
Ledermüller, Katrin; Schütz, Martin
2014-04-28
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.
International Nuclear Information System (INIS)
Ledermüller, Katrin; Schütz, Martin
2014-01-01
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest
Beck, Joakim
2018-02-19
In calculating expected information gain in optimal Bayesian experimental design, the computation of the inner loop in the classical double-loop Monte Carlo requires a large number of samples and suffers from underflow if the number of samples is small. These drawbacks can be avoided by using an importance sampling approach. We present a computationally efficient method for optimal Bayesian experimental design that introduces importance sampling based on the Laplace method to the inner loop. We derive the optimal values for the method parameters in which the average computational cost is minimized for a specified error tolerance. We use three numerical examples to demonstrate the computational efficiency of our method compared with the classical double-loop Monte Carlo, and a single-loop Monte Carlo method that uses the Laplace approximation of the return value of the inner loop. The first demonstration example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The third example deals with the optimal sensor placement for an electrical impedance tomography experiment to recover the fiber orientation in laminate composites.
Beck, Joakim; Dia, Ben Mansour; Espath, Luis F. R.; Long, Quan; Tempone, Raúl
2018-06-01
In calculating expected information gain in optimal Bayesian experimental design, the computation of the inner loop in the classical double-loop Monte Carlo requires a large number of samples and suffers from underflow if the number of samples is small. These drawbacks can be avoided by using an importance sampling approach. We present a computationally efficient method for optimal Bayesian experimental design that introduces importance sampling based on the Laplace method to the inner loop. We derive the optimal values for the method parameters in which the average computational cost is minimized according to the desired error tolerance. We use three numerical examples to demonstrate the computational efficiency of our method compared with the classical double-loop Monte Carlo, and a more recent single-loop Monte Carlo method that uses the Laplace method as an approximation of the return value of the inner loop. The first example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The third example deals with the optimal sensor placement for an electrical impedance tomography experiment to recover the fiber orientation in laminate composites.
International Nuclear Information System (INIS)
Monticelli, Cintia O.; Wortmann, Sergio; Segatto, Cynthia F.
2005-01-01
In this work is obtained a hybrid solution to the Fokker-Planck equation with energy dependency, very used in ion implantation problems. The main idea relies on the application of Laplace transform in the energy variable, and finite-difference in the spatial variable and in the angular variable. This procedure leads to a symbolic matrix problem for the transformed energy. To solve this system, is needed to do the Laplace inverse of the (sI+A) matrix, where s is a complex parameter, I is the identity matrix and A is a square matrix that was proceeded from the finite-difference in the spatial variable and in the angular variable. The matrix A is not defective, then is taken decomposition of A in a sum of two others matrices, where one is defective. It leads a iterative inversion method, similar the source fixed method combined with the diagonalization method, then is obtained the values to the angular flux. Hereafter we can to determine the energy deposited into the electronic system and in the nuclear system of the target. To comprove the results obtained, the simulation of implantation of B into Si at energies ranging from 1 KeV to 50 MeV was carried out and compared with the results by software SRIM2003. (author)
International Nuclear Information System (INIS)
Rivera, Eugenio J.; Laughlin, Gregory; Vogt, Steven S.; Meschiari, Stefano; Butler, R. Paul; Haghighipour, Nader
2010-01-01
Continued radial velocity (RV) monitoring of the nearby M4V red dwarf star GJ 876 with Keck/High Resolution Echelle Spectrograph has revealed the presence of a Uranus-mass fourth planetary companion in the system. The new planet has a mean period of P e = 126.6 days (over the 12.6-year baseline of the RV observations), and a minimum mass of m e sin i e = 12.9 ± 1.7 M + . The detection of the new planet has been enabled by significant improvements to our RV data set for GJ 876. The data have been augmented by 36 new high-precision measurements taken over the past five years. In addition, the precision of all of the Doppler measurements have been significantly improved by the incorporation of a high signal-to-noise template spectrum for GJ 876 into the analysis pipeline. Implementation of the new template spectrum improves the internal rms errors for the velocity measurements taken during 1998-2005 from 4.1 m s -1 to 2.5 m s -1 . Self-consistent, N-body fits to the RV data set show that the four-planet system has an invariable plane with an inclination relative to the plane of the sky of i = 59. 0 5. The fit is not significantly improved by the introduction of a mutual inclination between the planets 'b' and 'c', but the new data do confirm a non-zero eccentricity, e d = 0.207 ± 0.055 for the innermost planet, 'd'. In our best-fit coplanar model, the mass of the new component is m e = 14.6 ± 1.7 M + . Our best-fitting model places the new planet in a three-body resonance with the previously known giant planets (which have mean periods of P c = 30.4 and P b = 61.1 days). The critical argument, ψ Laplace = λ c - 3λ b + 2λ e , for the Laplace resonance librates with an amplitude of Δψ Laplace = 40 0 ± 13 0 about ψ Laplace = 0 0 . Numerical integration indicates that the four-planet system is stable for at least a billion years (at least for the coplanar cases). This resonant configuration of three giant planets orbiting an M dwarf primary differs from the
Ultrasonic guided waves in eccentric annular pipes
International Nuclear Information System (INIS)
Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2014-01-01
This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection
Laplace transform analysis of a multiplicative asset transfer model
Sokolov, Andrey; Melatos, Andrew; Kieu, Tien
2010-07-01
We analyze a simple asset transfer model in which the transfer amount is a fixed fraction f of the giver’s wealth. The model is analyzed in a new way by Laplace transforming the master equation, solving it analytically and numerically for the steady-state distribution, and exploring the solutions for various values of f∈(0,1). The Laplace transform analysis is superior to agent-based simulations as it does not depend on the number of agents, enabling us to study entropy and inequality in regimes that are costly to address with simulations. We demonstrate that Boltzmann entropy is not a suitable (e.g. non-monotonic) measure of disorder in a multiplicative asset transfer system and suggest an asymmetric stochastic process that is equivalent to the asset transfer model.
Alexandre de Humboldt et le Marquis de Laplace
Directory of Open Access Journals (Sweden)
Eberhard Knobloch
2014-12-01
Full Text Available Pierre-Simon Marquis de Laplace joua un rôle éminent dans la vie scientifique d’Alexandre de Humboldt. Humboldt avait fait la connaissance du savant français qui avait vingt ans de plus que lui-même à Paris en 1798. L’article de Eberhard Knobloch examine la relation entre ces deux géants de la science en s’appuyant entre autre pour la première fois sur des documents inédits: les quatre lettres de Laplace à Humboldt, le journal d’Humboldt et sur le matériel d’archives conservé aux Archives de l’Académie des Sciences de Berlin-Brandebourg.
Computer-Aided Numerical Inversion of Laplace Transform
Directory of Open Access Journals (Sweden)
Umesh Kumar
2000-01-01
Full Text Available This paper explores the technique for the computer aided numerical inversion of Laplace transform. The inversion technique is based on the properties of a family of three parameter exponential probability density functions. The only limitation in the technique is the word length of the computer being used. The Laplace transform has been used extensively in the frequency domain solution of linear, lumped time invariant networks but its application to the time domain has been limited, mainly because of the difficulty in finding the necessary poles and residues. The numerical inversion technique mentioned above does away with the poles and residues but uses precomputed numbers to find the time response. This technique is applicable to the solution of partially differentiable equations and certain classes of linear systems with time varying components.
Eccentric exercise in treatment of Achilles tendinopathy
DEFF Research Database (Denmark)
Nørregaard, J; Larsen, C C; Bieler, T
2007-01-01
Prognosis and treatment of Achilles tendon pain (achillodynia) has been insufficiently studied. The purpose of the present study was to examine the long-term effect of eccentric exercises compared with stretching exercises on patients with achillodynia.......Prognosis and treatment of Achilles tendon pain (achillodynia) has been insufficiently studied. The purpose of the present study was to examine the long-term effect of eccentric exercises compared with stretching exercises on patients with achillodynia....
On the Laplace transform of the Weinberg type sum rules
International Nuclear Information System (INIS)
Narison, S.
1981-09-01
We consider the Laplace transform of various sum rules of the Weinberg type including the leading non-perturbative effects. We show from the third type Weinberg sum rules that 7.5 to 8.9 1 coupling to the W boson, while the second sum rule gives an upper bound on the A 1 mass (Msub(A 1 ) < or approx. 1.25 GeV). (author)
General Dirichlet Series, Arithmetic Convolution Equations and Laplace Transforms
Czech Academy of Sciences Publication Activity Database
Glöckner, H.; Lucht, L.G.; Porubský, Štefan
2009-01-01
Roč. 193, č. 2 (2009), s. 109-129 ISSN 0039-3223 R&D Projects: GA ČR GA201/07/0191 Institutional research plan: CEZ:AV0Z10300504 Keywords : arithmetic function * Dirichlet convolution * polynomial equation * analytic equation * topological algebra * holomorphic functional calculus * implicit function theorem * Laplace transform * semigroup * complex measure Subject RIV: BA - General Mathematics Impact factor: 0.645, year: 2009 http://arxiv.org/abs/0712.3172
INTRODUCTION OF GENERALIZED LAPLACE-FRACTIONAL MELLIN TRANSFORM
V. D. Sharma*, M. M. Thakare
2016-01-01
In present era, Fractional Integral Transform plays an important role in various fields of mathematics and Technology. Mellin transform has an many application in navigations, correlaters, in area of statistics, probability and also solving in differential equation. Fractional Mellin transform is integral part of mathematical modeling method because of its scale invariance property. The aim of this paper is to generalization of Laplace-Fractional Mellin Transform. Analyticity theore...
Receptor binding kinetics equations: Derivation using the Laplace transform method.
Hoare, Sam R J
Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time
Laplace: ensayo filosófico sobre las probabilidades
Campos, Alberto
2011-01-01
Una lectura del Ensayo filosófico. Ideas claves de Laplace: Todo está perfectamente determinado. El azar es ignorancia de cómo están determinados los sucesos. La teoría del azar o cálculo de probabilidades es el cálculo de las posibilidades de algunos sucesos dentro de un conjunto de ellos.
Analysis of the Block-Grid Method for the Solution of Laplace's Equation on Polygons with a Slit
Directory of Open Access Journals (Sweden)
S. Cival Buranay
2013-01-01
Full Text Available The error estimates obtained for solving Laplace's boundary value problem on polygons by the block-grid method contain constants that are difficult to calculate accurately. Therefore, the experimental analysis of the method could be essential. The real characteristics of the block-grid method for solving Laplace's equation on polygons with a slit are analysed by experimental investigations. The numerical results obtained show that the order of convergence of the approximate solution is the same as in the case of a smooth solution. To illustrate the singular behaviour around the singular point, the shape of the highly accurate approximate solution and the figures of its partial derivatives up to second order are given in the “singular” part of the domain. Finally a highly accurate formula is given to calculate the stress intensity factor, which is an important quantity in fracture mechanics.
End Effects on the Linear Induction MHD Generator Calculated by Two-Sided Laplace Transform
Energy Technology Data Exchange (ETDEWEB)
Engeln, F.; Peschka, W. [Deutsche Versuchsanstalt fuer Luft- und Raumfahrt e.V., Institut fuer Energiewandlung und Elektrische Antriebe, Stuttgart, Federal Republic of Germany (Germany)
1966-11-15
In induction MHD systems special problems occur where the flow enters or leaves the magnetic field. These problems are generally described as end effects. Large gradients of the magnetic field are present at the inlet and also at the outlet of an MHD induction engine, these generating electric current systems in the fluid which may spoil the performance characteristics of the generator due to the interaction with the primary field of the engine. The two-dimensional induction MHD generator of finite length, using a polyphase winding system to obtain a travelling magnetic field, is treated as a boundary value problem by two-sided Laplace transform. For simplicity incompressibility is assumed. The two- dimensional boundary value problem of the induction engine is solved for - {infinity} Less-Than-Over-Equal-To x Less-Than-Over-Equal-To {infinity}. x is parallel to the flow direction of the linear MHD generator. In the region 0 Less-Than-Over-Equal-To x Less-Than-Over-Equal-To L the magnetic travelling wave is sinusoidal with a cyclical frequency {omega} and a phase-velocity v{sub s}. At x = 0 the conducting incompressible working fluid enters the field region and leaves it at the point-x = L. Two mathematical methods can be used to solve the boundary value problem, the Fourier transform or the two-sided Laplace transform. The latter offers the advantage of representing a complex analytical function in the image space. Moreover, it is possible to obtain the characteristics of the generator in the image space (e. g. field configuration, power flow function, etc.). That implies a large simplification of mathematical treatment. The solution in the original space then is given by asymptotic expansion of the known image function. (author)
Celik, Hasan; Bouhrara, Mustapha; Reiter, David A.; Fishbein, Kenneth W.; Spencer, Richard G.
2013-01-01
We propose a new approach to stabilizing the inverse Laplace transform of a multiexponential decay signal, a classically ill-posed problem, in the context of nuclear magnetic resonance relaxometry. The method is based on extension to a second, indirectly detected, dimension, that is, use of the established framework of two-dimensional relaxometry, followed by projection onto the desired axis. Numerical results for signals comprised of discrete T1 and T2 relaxation components and experiments performed on agarose gel phantoms are presented. We find markedly improved accuracy, and stability with respect to noise, as well as insensitivity to regularization in quantifying underlying relaxation components through use of the two-dimensional as compared to the one-dimensional inverse Laplace transform. This improvement is demonstrated separately for two different inversion algorithms, nonnegative least squares and non-linear least squares, to indicate the generalizability of this approach. These results may have wide applicability in approaches to the Fredholm integral equation of the first kind. PMID:24035004
OPEX: Optimized Eccentricity Computation in Graphs
Energy Technology Data Exchange (ETDEWEB)
Henderson, Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2011-11-14
Real-world graphs have many properties of interest, but often these properties are expensive to compute. We focus on eccentricity, radius and diameter in this work. These properties are useful measures of the global connectivity patterns in a graph. Unfortunately, computing eccentricity for all nodes is O(n2) for a graph with n nodes. We present OPEX, a novel combination of optimizations which improves computation time of these properties by orders of magnitude in real-world experiments on graphs of many different sizes. We run OPEX on graphs with up to millions of links. OPEX gives either exact results or bounded approximations, unlike its competitors which give probabilistic approximations or sacrifice node-level information (eccentricity) to compute graphlevel information (diameter).
Tidal Disruption Events from Eccentric Nuclear Disks
Wernke, Heather N.; Madigan, Ann-Marie
2018-04-01
Stars that get too close to a supermassive black hole are in danger of being tidally disrupted. Stellar two-body relaxation is commonly assumed to be the main driver of these events. Recent work has shown, however, that secular gravitational torques from eccentric nuclear disks can push stars to extreme eccentricities at much higher rates than predicted by two-body relaxation. This work did not include the effects of general relativity, however, which could quench secular torques via rapid apsidal precession. Here we show that, for a star in danger of disruption, general relativity acts on a timescale of less than an orbital period. This short timescale means that general relativity does not have enough time to have a major effect on the orbit. When driven by secular torques from eccentric nuclear disks, tidal disruption event rates are not affected by general relativity.
Reactor fuel element heat conduction via numerical Laplace transform inversion
International Nuclear Information System (INIS)
Ganapol, Barry D.; Furfaro, Roberto
2001-01-01
A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient temperature distribution within a nuclear reactor fuel element. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted is one that relies on acceleration of the convergence of an infinite series towards its limit. The inversion will be applied to the prediction of the transient temperature distribution within an MTR type nuclear fuel element through a novel formulation of the solution to the transformed heat conduction equation. (author)
Reactor fuel element heat conduction via numerical Laplace transform inversion
Energy Technology Data Exchange (ETDEWEB)
Ganapol, Barry D.; Furfaro, Roberto [University of Arizona, Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering], e-mail: ganapol@cowboy.ame.arizona.edu
2001-07-01
A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient temperature distribution within a nuclear reactor fuel element. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted is one that relies on acceleration of the convergence of an infinite series towards its limit. The inversion will be applied to the prediction of the transient temperature distribution within an MTR type nuclear fuel element through a novel formulation of the solution to the transformed heat conduction equation. (author)
Cone-beam ROI reconstruction using the laplace operator
Energy Technology Data Exchange (ETDEWEB)
Dennerlein, Frank [Siemens AG, Nuernberg (Germany). Healthcare Sector
2011-07-01
A novel filtered-backprojection (FBP) algorithm for 3D reconstruction in the circular geometry is presented. This algorithm achieves data filtering in two steps. The first step is a 2D Laplace filtering of the projections, which acts locally on the data and can thus be carried out accurately even in presence of (transaxial) data truncation. In a second step, a nonlocal 2D filtering operation is applied on the outcome of step 1. First simulation studies show that our algorithm is implicitly more resistant to truncated projections than many standard FBP methods without the need to involve an explicit data extrapolation scheme. (orig.)
An application to H2+ of Laplace type integral transform
International Nuclear Information System (INIS)
Primorac, M.; Kovacevic, K.
1985-01-01
Laplace type integral transformation (LIT) has been applied to wavefunctions. The effect of the inverse transform is also discussed. LIT wavefunctions are tested in the calculation of the ground-state energy of H 2 + , where the untransformed functions were 1s, 12s, 123s and 1234s-STO. The results presented here show that LIT wavefunctions are applicable in molecular computations. The analytical formulae for two-centre one-electron integrals over LIT wavefunctions are derived by use of a Barnett-Coulson-like expansion of rsub(b)sup(N)(rsub(b)+p)sup(-ν). (orig.)
Open active cloaking and illusion devices for the Laplace equation
International Nuclear Information System (INIS)
Ma, Qian; Yang, Fan; Jin, Tian Yu; Mei, Zhong Lei; Cui, Tie Jun
2016-01-01
We propose open active cloaking and illusion devices for the Laplace equation. Compared with the closed configurations of active cloaking and illusion devices, we focus on improving the distribution schemes for the controlled sources, which do not have to surround the protected object strictly. Instead, the controlled sources can be placed in several small discrete clusters, and produce the desired voltages along the controlled boundary, to actively hide or disguise the protected object. Numerical simulations are performed with satisfactory results, which are further validated by experimental measurements. The open cloaking and illusion devices have many advantages over the closed configurations in various potential applications. (paper)
HABITABLE CLIMATES: THE INFLUENCE OF ECCENTRICITY
International Nuclear Information System (INIS)
Dressing, Courtney D.; Spiegel, David S.; Scharf, Caleb A.; Menou, Kristen; Raymond, Sean N.
2010-01-01
In the outer regions of the habitable zone, the risk of transitioning into a globally frozen 'snowball' state poses a threat to the habitability of planets with the capacity to host water-based life. Here, we use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and the fraction of the surface covered by ocean might influence the onset of such a snowball state. For an exoplanet, these parameters may be strikingly different from the values observed for Earth. Since, for a constant semimajor axis, the annual mean stellar irradiation scales with (1 - e 2 ) -1/2 , one might expect the greatest habitable semimajor axis (for fixed atmospheric composition) to scale as (1 - e 2 ) -1/4 . We find that this standard simple ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of both obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity 0.5, for instance, our EBM suggests that the greatest habitable semimajor axis can vary by more than 0.8 AU (78%!) depending on obliquity, with higher obliquity worlds generally more stable against snowball transitions. One might also expect that the long winter at an eccentric planet's apoastron would render it more susceptible to global freezing. Our models suggest that this is not a significant risk for Earth-like planets around Sun-like stars, as considered here, since such planets are buffered by the thermal inertia provided by oceans covering at least 10% of their surface. Since planets on eccentric orbits spend much of their year particularly far from the star, such worlds might turnout to be especially good targets for direct observations with missions such as TPF-Darwin. Nevertheless, the extreme temperature variations achieved on highly eccentric exo-Earths raise questions about the adaptability of life to marginally or transiently habitable conditions.
Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats.
Kongsgaard, M; Aagaard, P; Roikjaer, S; Olsen, D; Jensen, M; Langberg, H; Magnusson, S P
2006-08-01
Recent studies have shown excellent clinical results using eccentric squat training on a 25 degrees decline board to treat patellar tendinopathy. It remains unknown why therapeutic management of patellar tendinopathy using decline eccentric squats offer superior clinical efficacy compared to standard horizontal eccentric squats. This study aimed to compare electromyography activity, patellar tendon strain and joint angle kinematics during standard and decline eccentric squats. Thirteen subjects performed unilateral eccentric squats on flat-and a 25 degrees decline surface. During the squats, electromyography activity was obtained in eight representative muscles. Also, ankle, knee and hip joint goniometry was obtained. Additionally, patellar tendon strain was measured in vivo using ultrasonography as subjects maintained a unilateral isometric 90 degrees knee angle squat position on either flat or 25 degrees decline surface. Patellar tendon strain was significantly greater (Psquat position on the decline surface compared to the standard surface. The stop angles of the ankle and hip joints were significantly smaller during the decline compared to the standard squats (Psquats (Psquats. The use of a 25 degrees decline board increases the load and the strain of the patellar tendon during unilateral eccentric squats. This finding likely explains previous reports of superior clinical efficacy of decline eccentric squats in the rehabilitative management of patellar tendinopathy.
Long, Quan; Scavino, Marco; Tempone, Raul; Wang, Suojin
2014-01-01
Shannon-type expected information gain is an important utility in evaluating the usefulness of a proposed experiment that involves uncertainty. Its estimation, however, cannot rely solely on Monte Carlo sampling methods, that are generally too computationally expensive for realistic physical models, especially for those involving the solution of stochastic partial differential equations. In this work we present a new methodology, based on the Laplace approximation of the posterior probability density function, to accelerate the estimation of expected information gain in the model parameters and predictive quantities of interest. Furthermore, in order to deal with the issue of dimensionality in a complex problem, we use sparse quadratures for the integration over the prior. We show the accuracy and efficiency of the proposed method via several nonlinear numerical examples, including a single parameter design of one dimensional cubic polynomial function and the current pattern for impedance tomography.
Long, Quan
2014-01-06
Shannon-type expected information gain is an important utility in evaluating the usefulness of a proposed experiment that involves uncertainty. Its estimation, however, cannot rely solely on Monte Carlo sampling methods, that are generally too computationally expensive for realistic physical models, especially for those involving the solution of stochastic partial differential equations. In this work we present a new methodology, based on the Laplace approximation of the posterior probability density function, to accelerate the estimation of expected information gain in the model parameters and predictive quantities of interest. Furthermore, in order to deal with the issue of dimensionality in a complex problem, we use sparse quadratures for the integration over the prior. We show the accuracy and efficiency of the proposed method via several nonlinear numerical examples, including a single parameter design of one dimensional cubic polynomial function and the current pattern for impedance tomography.
Three-dimensional transient electromagnetic modeling in the Laplace Domain
International Nuclear Information System (INIS)
Mizunaga, H.; Lee, Ki Ha; Kim, H.J.
1998-01-01
In modeling electromagnetic responses, Maxwell's equations in the frequency domain are popular and have been widely used (Nabighian, 1994; Newman and Alumbaugh, 1995; Smith, 1996, to list a few). Recently, electromagnetic modeling in the time domain using the finite difference (FDTD) method (Wang and Hohmann, 1993) has also been used to study transient electromagnetic interactions in the conductive medium. This paper presents a new technique to compute the electromagnetic response of three-dimensional (3-D) structures. The proposed new method is based on transforming Maxwell's equations to the Laplace domain. For each discrete Laplace variable, Maxwell's equations are discretized in 3-D using the staggered grid and the finite difference method (FDM). The resulting system of equations is then solved for the fields using the incomplete Cholesky conjugate gradient (ICCG) method. The new method is particularly effective in saving computer memory since all the operations are carried out in real numbers. For the same reason, the computing speed is faster than frequency domain modeling. The proposed approach can be an extremely useful tool in developing an inversion algorithm using the time domain data
Electromyographic comparison of concentric and eccentric ...
African Journals Online (AJOL)
The study was conducted to compare the Electromyographic (EMG) activity variation of contractions (concentric and eccentric) during three different abdominal exercises (sit-up) exercises on rectus abdominal (upper and lower rectus). The sit-up exercises were: straight leg sit-up, bent leg sit-up and crunches. The EMG ...
Chain hexagonal cacti with the extremal eccentric distance sum.
Qu, Hui; Yu, Guihai
2014-01-01
Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.
Energy Technology Data Exchange (ETDEWEB)
Petersen, Claudio Zen
2008-07-01
In this dissertation we use the Laplace transform to derive expressions for nonstandard albedo boundary conditions for one and two non-multiplying regions at the ends of one dimensional domains. In practice, the fuel regions of reactor cores are surrounded by reflector regions that reduce neutron leakage. In order to exclude the reflector regions from the calculations, we introduce a reflection coefficient or albedo. We use the present albedo boundary conditions to solve numerically slab-geometry monoenergetic and multigroup diffusion equations using the conventional finite difference method. Numerical results are generated for fixed source and eigenvalue diffusion problems in slab geometry(author)
A Laplace method for under-determined Bayesian optimal experimental designs
Long, Quan
2014-12-17
In Long et al. (2013), a new method based on the Laplace approximation was developed to accelerate the estimation of the post-experimental expected information gains (Kullback–Leibler divergence) in model parameters and predictive quantities of interest in the Bayesian framework. A closed-form asymptotic approximation of the inner integral and the order of the corresponding dominant error term were obtained in the cases where the parameters are determined by the experiment. In this work, we extend that method to the general case where the model parameters cannot be determined completely by the data from the proposed experiments. We carry out the Laplace approximations in the directions orthogonal to the null space of the Jacobian matrix of the data model with respect to the parameters, so that the information gain can be reduced to an integration against the marginal density of the transformed parameters that are not determined by the experiments. Furthermore, the expected information gain can be approximated by an integration over the prior, where the integrand is a function of the posterior covariance matrix projected over the aforementioned orthogonal directions. To deal with the issue of dimensionality in a complex problem, we use either Monte Carlo sampling or sparse quadratures for the integration over the prior probability density function, depending on the regularity of the integrand function. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear under-determined test cases. They include the designs of the scalar parameter in a one dimensional cubic polynomial function with two unidentifiable parameters forming a linear manifold, and the boundary source locations for impedance tomography in a square domain, where the unknown parameter is the conductivity, which is represented as a random field.
A Laplace transform/potential-theoretic method for acoustic propagation in subsonic flows
International Nuclear Information System (INIS)
Hariharan, S.I.; Sawyer, Scott; Dane Quinn, D.
2003-01-01
This paper introduces a competitive computational approach for determining time-dependent far-field sound generated by subsonic flows around lifting airfoils. The procedure assumes the linearity of the sound field away from a bounded region surrounding the airfoil. It is assumed that the sound pressure on the boundary of this enclosed region (referred to as the Kirchhoff surface) is specified, possibly by another procedure such as solving the full Euler equations. Away from the Kirchhoff surface, the Euler equations are linearized about a uniform mean flow. It is well known that linearized Euler equations can be uncoupled into a scalar convective wave equation. However, due to the anisotropy present in the convective wave equation, it is difficult to compute solutions. In this context, direct numerical simulation of the convective wave equation requires proper numerical descriptions of far-field boundary conditions which is a non-trivial task. Moreover, if accurate far-field conditions can be formulated, the computational cost of direct simulation can be prohibitive even in a modest computational domain. In this paper, we present an alternate solution procedure. First, the problem is transformed via the Laplace transform (with appropriate initial conditions) into a reduced wave equation. The convective term in the reduced wave equation is removed using a dependent variable transformation. Then we use Gothert's rule, to obtain a Helmholtz like equation with complex wave number, which is subsequently solved using double layer potential theory. Finally upon application of numerical inverse Laplace transform techniques, far-field acoustic pressure is obtained as a function of space and time
Directory of Open Access Journals (Sweden)
Amal Khalaf Haydar
2016-01-01
Full Text Available The main aim in this paper is to use all the possible arrangements of objects such that r1 of them are equal to 1 and r2 (the others of them are equal to 2, in order to generalize the definitions of Riemann-Liouville and Caputo fractional derivatives (about order 0<β
Directory of Open Access Journals (Sweden)
Lei Wang
2015-09-01
Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.
Theories of comets to the age of Laplace
Heidarzadeh, Tofigh
Although the development of ideas about cometary motion has been investigated in several projects, a comprehensive and detailed survey of physical theories of comets has not been conducted. The available works either illustrate relatively short periods in the history of physical cometology or portray a landscape view without adequate details. The present study is an attempt to depict the details of the major physical theories of comets from Aristotle to the age of Laplace. The basic question from which this project originated was simple: how did natural philosophers and astronomers define the nature and place of a new category of celestial objects--the comets--after Brahe's estimation of cometary distances? However, a study starting merely from Brahe without covering classical and medieval thought about comets would be incomplete. Thus, based on the fundamental physical characteristics attributed to comets, the history of cometology may be divided into three periods: from Aristotle to Brahe, in which comets were assumed to be meteorological phenomena; from Brahe to Newton, when comets were admitted as celestial bodies but with unknown trajectories; and from Newton to Laplace, in which they were treated as members of the solar system having more or less the same properties of the planets. By estimating the mass of comets in the 1800s, Laplace diverted cometology into a different direction wherein they were considered among the smallest bodies in the solar system and deprived of the most important properties that had been used to explain their physical constitution during the previous two millennia. Ideas about the astrological aspects of comets are not considered in this study. Also, topics concerning the motion of comets are explained to the extent that is helpful in illustrating their physical properties. The main objective is to demonstrate the foundations of physical theories of comets, and the interaction between observational and mathematical astronomy, and
Evaluating the Laplace pressure of water nanodroplets from simulations
Malek, Shahrazad M. A.; Sciortino, Francesco; Poole, Peter H.; Saika-Voivod, Ivan
2018-04-01
We calculate the components of the microscopic pressure tensor as a function of radial distance r from the centre of a spherical water droplet, modelled using the TIP4P/2005 potential. To do so, we modify a coarse-graining method for calculating the microscopic pressure (Ikeshoji et al 2003 Mol. Simul. 29 101) in order to apply it to a rigid molecular model of water. As test cases, we study nanodroplets ranging in size from 776 to 2880 molecules at 220 K. Beneath a surface region comprising approximately two molecular layers, the pressure tensor becomes approximately isotropic and constant with r. We find that the dependence of the pressure on droplet radius is that expected from the Young-Laplace equation, despite the small size of the droplets.
Alexandre de Humboldt et le Marquis de Laplace
Eberhard Knobloch
2014-01-01
Pierre-Simon Marquis de Laplace joua un rôle éminent dans la vie scientifique d’Alexandre de Humboldt. Humboldt avait fait la connaissance du savant français qui avait vingt ans de plus que lui-même à Paris en 1798. Si l’on n’étudie pas seulement leurs œuvres, mais aussi leurs correspondances et le journal américain d’Humboldt, on en conclut qu’il faut réviser l’impression superficielle qui se dégage des publications d’Humboldt. L’estime réciproque entre les deux hommes ne se mit en place que...
Young-Laplace equation for liquid crystal interfaces
Rey, Alejandro D.
2000-12-01
This letter uses the classical theories of liquid crystal physics to derive the Young-Laplace equation of capillary hydrostatics for interfaces between viscous isotropic (I) fluids and nematic liquid crystals (NLC's), and establishes the existence of four energy contributions to pressure jumps across these unusual anisotropic interfaces. It is shown that in addition to the usual curvature contribution, bulk and surface gradient elasticity, elastic stress, and anchoring energy contribute to pressure differentials across the interface. The magnitude of the effect is proportional to the elastic moduli of the NLC, and to the bulk and surface orientation gradients that may be present in the nematic phase. In contrast to the planar interface between isotropic fluids, flat liquid crystal interfaces support pressure jumps if elastic stresses, bulk and surface gradient energy, and/or anchoring energies are finite.
Eccentric connectivity index of chemical trees
International Nuclear Information System (INIS)
Haoer, R. S.; Atan, K. A.; Said, M. R. Md.; Khalaf, A. M.; Hasni, R.
2016-01-01
Let G = (V, E) be a simple connected molecular graph. In such a simple molecular graph, vertices and edges are depicted atoms and chemical bonds respectively, we refer to the sets of vertices by V (G) and edges by E (G). If d(u, v) be distance between two vertices u, v ∈ V(G) and can be defined as the length of a shortest path joining them. Then, the eccentricity connectivity index (ECI) of a molecular graph G is ξ(G) = ∑_v_∈_V_(_G_) d(v) ec(v), where d(v) is degree of a vertex v ∈ V(G). ec(v) is the length of a greatest path linking to another vertex of v. In this study, we focus the general formula for the eccentricity connectivity index (ECI) of some chemical trees as alkenes.
Eccentric superconducting rf cavity separator structure
International Nuclear Information System (INIS)
Aggus, J.R.; Giordano, S.T.; Halama, H.J.
1976-01-01
An accelerator apparatus is described having an eccentric-shaped, iris-loaded deflecting cavity for an rf separator for a high energy high momentum, charged particle accelerator beam. In one embodiment, the deflector is superconducting, and the apparatus of this invention provides simplified machining and electron beam welding techniques. Model tests have shown that the electrical characteristics provide the desired mode splitting without adverse effects
Gravitational waves from spinning eccentric binaries
Csizmadia, Péter; Debreczeni, Gergely; Rácz, István; Vasúth, Mátyás
2012-12-01
This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations, while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems, it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity, thus confirming a similar result obtained by Brown and Zimmerman (2010 Phys. Rev. D 81 024007). In addition, by investigating the validity of the energy balance relation we show that, contrary to the general expectations, the PN approximation should not be applied once the PN parameter gets beyond the critical value ˜0.08 - 0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems—which could be formed e.g. in various many-body interactions in the galactic halo—we have found that they possess very specific characteristics which may be used to identify these type of binary systems. This paper is dedicated to the memory of our colleague and friend Péter Csizmadia a young physicist, computer expert and one of the best Hungarian mountaineers who disappeared in China’s Sichuan near the Ren Zhong Feng peak of the Himalayas on 23 Oct. 2009. We started to develop CBwaves jointly with Péter a couple of months before he left for China.
Eccentric Contraction-Induced Muscle Fibre Adaptation
Directory of Open Access Journals (Sweden)
Arabadzhiev T. I.
2009-12-01
Full Text Available Hard-strength training induces strength increasing and muscle damage, especially after eccentric contractions. Eccentric contractions also lead to muscle adaptation. Symptoms of damage after repeated bout of the same or similar eccentrically biased exercises are markedly reduced. The mechanism of this repeated bout effect is unknown. Since electromyographic (EMG power spectra scale to lower frequencies, the adaptation is related to neural adaptation of the central nervous system (CNS presuming activation of slow-non-fatigable motor units or synchronization of motor unit firing. However, the repeated bout effect is also observed under repeated stimulation, i.e. without participation of the CNS. The aim of this study was to compare the possible effects of changes in intracellular action potential shape and in synchronization of motor units firing on EMG power spectra. To estimate possible degree of the effects of central and peripheral changes, interferent EMG was simulated under different intracellular action potential shapes and different degrees of synchronization of motor unit firing. It was shown that the effect of changes in intracellular action potential shape and muscle fibre propagation velocity (i.e. peripheral factors on spectral characteristics of EMG signals could be stronger than the effect of synchronization of firing of different motor units (i.e. central factors.
A new Laplace transformation method for dynamic testing of solar collectors
DEFF Research Database (Denmark)
Kong, Weiqiang; Perers, Bengt; Fan, Jianhua
2015-01-01
A new dynamic method for solar collector testing is developed. It is characterized by using the Laplace transformation technique to solve the differential governing equation. The new method was inspired by the so called New Dynamic Method (NDM) (Amer E. et al (1999) [1]) but totally different....... By integration of the Laplace transformation technique with the Quasi Dynamic Test (QDT) model (Fischer S. et al (2004) [2]), the Laplace – QDT (L-QDT) model is derived. Two experimental methods are then introduced. One is the shielding method which needs to shield and un-shield solar collector continuously...
Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method
Directory of Open Access Journals (Sweden)
Eman M. A. Hilal
2014-01-01
Full Text Available The aim of this study is to give a good strategy for solving some linear and nonlinear partial differential equations in engineering and physics fields, by combining Laplace transform and the modified variational iteration method. This method is based on the variational iteration method, Laplace transforms, and convolution integral, introducing an alternative Laplace correction functional and expressing the integral as a convolution. Some examples in physical engineering are provided to illustrate the simplicity and reliability of this method. The solutions of these examples are contingent only on the initial conditions.
Markov chain Monte Carlo with the Integrated Nested Laplace Approximation
Gómez-Rubio, Virgilio
2017-10-06
The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with
Markov chain Monte Carlo with the Integrated Nested Laplace Approximation
Gó mez-Rubio, Virgilio; Rue, Haavard
2017-01-01
The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with
Pichierri, Gabriele; Morbidelli, Alessandro; Lai, Dong
2017-09-01
Context. It is well known that asteroids and comets fall into the Sun. Metal pollution of white dwarfs and transient spectroscopic signatures of young stars like β-Pic provide growing evidence that extra solar planetesimals can attain extreme orbital eccentricities and fall into their parent stars. Aims: We aim to develop a general, implementable, semi-analytical theory of secular eccentricity excitation of small bodies (planetesimals) in mean motion resonances with an eccentric planet valid for arbitrary values of the eccentricities and including the short-range force due to General Relativity. Methods: Our semi-analytic model for the restricted planar three-body problem does not make use of series expansion and therefore is valid for any eccentricity value and semi-major axis ratio. The model is based on the application of the adiabatic principle, which is valid when the precession period of the longitude of pericentre of the planetesimal is much longer than the libration period in the mean motion resonance. In resonances of order larger than 1 this is true except for vanishingly small eccentricities. We provide prospective users with a Mathematica notebook with implementation of the model allowing direct use. Results: We confirm that the 4:1 mean motion resonance with a moderately eccentric (e' ≲ 0.1) planet is the most powerful one to lift the eccentricity of planetesimals from nearly circular orbits to star-grazing ones. However, if the planet is too eccentric, we find that this resonance is unable to pump the planetesimal's eccentricity to a very high value. The inclusion of the General Relativity effect imposes a condition on the mass of the planet to drive the planetesimals into star-grazing orbits. For a planetesimal at 1 AU around a solar mass star (or white dwarf), we find a threshold planetary mass of about 17 Earth masses. We finally derive an analytical formula for this critical mass. Conclusions: Planetesimals can easily fall into the central star
Quasi-eccentricity error modeling and compensation in vision metrology
Shen, Yijun; Zhang, Xu; Cheng, Wei; Zhu, Limin
2018-04-01
Circular targets are commonly used in vision applications for its detection accuracy and robustness. The eccentricity error of the circular target caused by perspective projection is one of the main factors of measurement error which needs to be compensated in high-accuracy measurement. In this study, the impact of the lens distortion on the eccentricity error is comprehensively investigated. The traditional eccentricity error turns to a quasi-eccentricity error in the non-linear camera model. The quasi-eccentricity error model is established by comparing the quasi-center of the distorted ellipse with the true projection of the object circle center. Then, an eccentricity error compensation framework is proposed which compensates the error by iteratively refining the image point to the true projection of the circle center. Both simulation and real experiment confirm the effectiveness of the proposed method in several vision applications.
Application of the Laplace transform method for computational modelling of radioactive decay series
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Deise L.; Damasceno, Ralf M.; Barros, Ricardo C. [Univ. do Estado do Rio de Janeiro (IME/UERJ) (Brazil). Programa de Pos-graduacao em Ciencias Computacionais
2012-03-15
It is well known that when spent fuel is removed from the core, it is still composed of considerable amount of radioactive elements with significant half-lives. Most actinides, in particular plutonium, fall into this category, and have to be safely disposed of. One solution is to store the long-lived spent fuel as it is, by encasing and burying it deep underground in a stable geological formation. This implies estimating the transmutation of these radioactive elements with time. Therefore, we describe in this paper the application of the Laplace transform technique in matrix formulation to analytically solve initial value problems that mathematically model radioactive decay series. Given the initial amount of each type of radioactive isotopes in the decay series, the computer code generates the amount at a given time of interest, or may plot a graph of the evolution in time of the amount of each type of isotopes in the series. This computer code, that we refer to as the LTRad{sub L} code, where L is the number of types of isotopes belonging to the series, was developed using the Scilab free platform for numerical computation and can model one segment or the entire chain of any of the three radioactive series existing on Earth today. Numerical results are given to typical model problems to illustrate the computer code efficiency and accuracy. (orig.)
Application of the Laplace transform method for computational modelling of radioactive decay series
International Nuclear Information System (INIS)
Oliveira, Deise L.; Damasceno, Ralf M.; Barros, Ricardo C.
2012-01-01
It is well known that when spent fuel is removed from the core, it is still composed of considerable amount of radioactive elements with significant half-lives. Most actinides, in particular plutonium, fall into this category, and have to be safely disposed of. One solution is to store the long-lived spent fuel as it is, by encasing and burying it deep underground in a stable geological formation. This implies estimating the transmutation of these radioactive elements with time. Therefore, we describe in this paper the application of the Laplace transform technique in matrix formulation to analytically solve initial value problems that mathematically model radioactive decay series. Given the initial amount of each type of radioactive isotopes in the decay series, the computer code generates the amount at a given time of interest, or may plot a graph of the evolution in time of the amount of each type of isotopes in the series. This computer code, that we refer to as the LTRad L code, where L is the number of types of isotopes belonging to the series, was developed using the Scilab free platform for numerical computation and can model one segment or the entire chain of any of the three radioactive series existing on Earth today. Numerical results are given to typical model problems to illustrate the computer code efficiency and accuracy. (orig.)
Driving dynamic colloidal assembly using eccentric self-propelled colloids
Ma, Zhan; Lei, Qun-li; Ni, Ran
2017-01-01
Designing protocols to dynamically direct the self-assembly of colloidal particles has become an important direction in soft matter physics because of the promising applications in fabrication of dynamic responsive functional materials. Here using computer simulations, we found that in the mixture of passive colloids and eccentric self-propelled active particles, when the eccentricity and self-propulsion of active particles are high enough, the eccentric active particles can push passive coll...
A Laplace method for under-determined Bayesian optimal experimental designs
Long, Quan; Scavino, Marco; Tempone, Raul; Wang, Suojin
2014-01-01
In Long et al. (2013), a new method based on the Laplace approximation was developed to accelerate the estimation of the post-experimental expected information gains (Kullback–Leibler divergence) in model parameters and predictive quantities
Directory of Open Access Journals (Sweden)
Feng Qi
2014-10-01
Full Text Available The authors find the absolute monotonicity and complete monotonicity of some functions involving trigonometric functions and related to estimates the lower bounds of the first eigenvalue of Laplace operator on Riemannian manifolds.
Solution of linear transport equation using Chebyshev polynomials and Laplace transform
International Nuclear Information System (INIS)
Cardona, A.V.; Vilhena, M.T.M.B. de
1994-01-01
The Chebyshev polynomials and the Laplace transform are combined to solve, analytically, the linear transport equation in planar geometry, considering isotropic scattering and the one-group model. Numerical simulation is presented. (author)
Truong, K. V.; Unal, Aynur; Tobak, M.
1989-01-01
Various features of the solutions of Duffing's equation are described using a representation of the solutions in the Laplace-Borel transform domain. An application of this technique is illustrated for the symmetry-breaking bifurcation of a hard spring.
Quantum systems related to root systems and radial parts of Laplace operators
Olshanetsky, M. A.; Perelomov, A. M.
2002-01-01
The relation between quantum systems associated to root systems and radial parts of Laplace operators on symmetric spaces is established. From this it follows the complete integrability of some quantum systems.
Flow Mode Magnetorheological Dampers with an Eccentric Gap
Young-Tai Choi; Norman M. Wereley
2014-01-01
This paper analyzes flow mode magnetorheological (MR) dampers with an eccentric annular gap (i.e., a nonuniform annular gap). To this end, an MR damper analysis for an eccentric annular gap is constructed based on approximating the eccentric annular gap using a rectangular duct with a variable gap, as well as a Bingham-plastic constitutive model of the MR fluid. Performance of flow mode MR dampers with an eccentric gap was assessed analytically using both field-dependent damping force and dam...
Eccentric pressurized tube for measuring creep rupture
International Nuclear Information System (INIS)
Schwab, P.R.
1981-01-01
Creep rupture is a long term failure mode in structural materials that occurs at high temperatures and moderate stress levels. The deterioration of the material preceding rupture, termed creep damage, manifests itself in the formation of small cavities on grain boundaries. To measure creep damage, sometimes uniaxial tests are performed, sometimes density measurements are made, and sometimes the grain boundary cavities are measured by microscopy techniques. The purpose of the present research is to explore a new method of measuring creep rupture, which involves measuring the curvature of eccentric pressurized tubes. Theoretical investigations as well as the design, construction, and operation of an experimental apparatus are included in this research
International Nuclear Information System (INIS)
D’Amore, L; Campagna, R; Murli, A; Galletti, A; Marcellino, L
2012-01-01
The scientific and application-oriented interest in the Laplace transform and its inversion is testified by more than 1000 publications in the last century. Most of the inversion algorithms available in the literature assume that the Laplace transform function is available everywhere. Unfortunately, such an assumption is not fulfilled in the applications of the Laplace transform. Very often, one only has a finite set of data and one wants to recover an estimate of the inverse Laplace function from that. We propose a fitting model of data. More precisely, given a finite set of measurements on the real axis, arising from an unknown Laplace transform function, we construct a dth degree generalized polynomial smoothing spline, where d = 2m − 1, such that internally to the data interval it is a dth degree polynomial complete smoothing spline minimizing a regularization functional, and outside the data interval, it mimics the Laplace transform asymptotic behavior, i.e. it is a rational or an exponential function (the end behavior model), and at the boundaries of the data set it joins with regularity up to order m − 1, with the end behavior model. We analyze in detail the generalized polynomial smoothing spline of degree d = 3. This choice was motivated by the (ill)conditioning of the numerical computation which strongly depends on the degree of the complete spline. We prove existence and uniqueness of this spline. We derive the approximation error and give a priori and computable bounds of it on the whole real axis. In such a way, the generalized polynomial smoothing spline may be used in any real inversion algorithm to compute an approximation of the inverse Laplace function. Experimental results concerning Laplace transform approximation, numerical inversion of the generalized polynomial smoothing spline and comparisons with the exponential smoothing spline conclude the work. (paper)
Knezevic, David; Patera, Anthony T.; Huynh, Dinh Bao Phuong
2010-01-01
We present a certified reduced basis (RB) method for the heat equation and wave equation. The critical ingredients are certified RB approximation of the Laplace transform; the inverse Laplace transform to develop the time-domain RB output approximation and rigorous error bound; a (Butterworth) filter in time to effect the necessary “modal” truncation; RB eigenfunction decomposition and contour integration for Offline–Online decomposition. We present numerical results to demonstrate the accura...
Lei Wang; Hongjun Yin; Xiaoshuang Yang; Chuncheng Yang; Jing Fu
2015-01-01
Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare wi...
Continuous Record Laplace-based Inference about the Break Date in Structural Change Models
Casini, Alessandro; Perron, Pierre
2018-01-01
Building upon the continuous record asymptotic framework recently introduced by Casini and Perron (2017a) for inference in structural change models, we propose a Laplace-based (Quasi-Bayes) procedure for the construction of the estimate and confidence set for the date of a structural change. The procedure relies on a Laplace-type estimator defined by an integration-based rather than an optimization-based method. A transformation of the leastsquares criterion function is evaluated in order to ...
Huerta, E. A.; Moore, C. J.; Kumar, Prayush; George, Daniel; Chua, Alvin J. K.; Haas, Roland; Wessel, Erik; Johnson, Daniel; Glennon, Derek; Rebei, Adam; Holgado, A. Miguel; Gair, Jonathan R.; Pfeiffer, Harald P.
2018-01-01
We present ENIGMA, a time domain, inspiral-merger-ringdown waveform model that describes nonspinning binary black holes systems that evolve on moderately eccentric orbits. The inspiral evolution is described using a consistent combination of post-Newtonian theory, self-force and black hole perturbation theory. Assuming eccentric binaries that circularize prior to coalescence, we smoothly match the eccentric inspiral with a stand-alone, quasicircular merger, which is constructed using machine learning algorithms that are trained with quasicircular numerical relativity waveforms. We show that ENIGMA reproduces with excellent accuracy the dynamics of quasicircular compact binaries. We validate ENIGMA using a set of Einstein Toolkit eccentric numerical relativity waveforms, which describe eccentric binary black hole mergers with mass-ratios between 1 ≤q ≤5.5 , and eccentricities e0≲0.2 ten orbits before merger. We use this model to explore in detail the physics that can be extracted with moderately eccentric, nonspinning binary black hole mergers. In particular, we use ENIGMA to show that the gravitational wave transients GW150914, GW151226, GW170104, GW170814 and GW170608 can be effectively recovered with spinning, quasicircular templates if the eccentricity of these events at a gravitational wave frequency of 10 Hz satisfies e0≤{0.175 ,0.125 ,0.175 ,0.175 ,0.125 }, respectively. We show that if these systems have eccentricities e0˜0.1 at a gravitational wave frequency of 10 Hz, they can be misclassified as quasicircular binaries due to parameter space degeneracies between eccentricity and spin corrections. Using our catalog of eccentric numerical relativity simulations, we discuss the importance of including higher-order waveform multipoles in gravitational wave searches of eccentric binary black hole mergers.
Moderate Load Eccentric Exercise; A Distinct Novel Training Modality
Hoppeler, Hans
2016-01-01
Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400–500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20–30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior
Eccentric exercise in treatment of Achilles tendinopathy.
Nørregaard, J; Larsen, C C; Bieler, T; Langberg, H
2007-04-01
Prognosis and treatment of Achilles tendon pain (achillodynia) has been insufficiently studied. The purpose of the present study was to examine the long-term effect of eccentric exercises compared with stretching exercises on patients with achillodynia. Patients with achillodynia for at least 3 months were randomly allocated to one of two exercise regimens. Exercise was performed daily for a 3-month period. Symptom severity was evaluated by tendon tenderness, ultrasonography, a questionnaire on pain and other symptoms, and a global assessment of improvement. Follow-up was performed at time points 3, 6, 9, 12 weeks and 1 year. Of 53 patients with achillodynia 45 patients were randomized to either eccentric exercises or stretching exercises. Symptoms gradually improved during the 1-year follow-up period and were significantly better assessed by pain and symptoms after 3 weeks and all later visits. However, no significant differences could be observed between the two groups. Women and patients with symptoms from the distal part of the tendon had significantly less improvement. Marked improvement in symptoms and findings could be gradually observed in both groups during the 1-year follow-up period. To that extent this is due to effect of both regimens or the spontaneous improvement is unsettled.
Laplace plane modifications arising from solar radiation pressure
Energy Technology Data Exchange (ETDEWEB)
Rosengren, Aaron J.; Scheeres, Daniel J., E-mail: aaron.rosengren@colorado.edu [ADepartment of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO 80309 (United States)
2014-05-01
The dynamical effects of solar radiation pressure (SRP) in the solar system have been rigorously studied since the early 1900s. This non-gravitational perturbation plays a significant role in the evolution of dust particles in circumplanetary orbits, as well as in the orbital motion about asteroids and comets. For gravitationally dominated orbits, SRP is negligible and the resulting motion is largely governed by the oblateness of the primary and the attraction of the Sun. The interplay between these gravitational perturbations gives rise to three mutually perpendicular planes of equilibrium for circular satellite orbits. The classical Laplace plane lies between the equatorial and orbital planes of the primary, and is the mean reference plane about whose axis the pole of a satellite's orbit precesses. From a previously derived solution for the secular motion of an orbiter about a small body in a SRP dominated environment, we find that SRP acting alone will cause an initially circular orbit to precess around the pole of the primary's heliocentric orbital plane. When the gravitational and non-gravitational perturbations act in concert, the resulting equilibrium planes turn out to be qualitatively different, in some cases, from those obtained without considering the radiation pressure. The warping of the surfaces swept out by the modified equilibria as the semi-major axis varies depends critically on the cross-sectional area of the body exposed. These results, together with an adiabatic invariance argument on Poynting-Robertson drag, provide a natural qualitative explanation for the initial albedo dichotomy of Saturn's moon, Iapetus.
Long, Quan
2013-06-01
Shannon-type expected information gain can be used to evaluate the relevance of a proposed experiment subjected to uncertainty. The estimation of such gain, however, relies on a double-loop integration. Moreover, its numerical integration in multi-dimensional cases, e.g., when using Monte Carlo sampling methods, is therefore computationally too expensive for realistic physical models, especially for those involving the solution of partial differential equations. In this work, we present a new methodology, based on the Laplace approximation for the integration of the posterior probability density function (pdf), to accelerate the estimation of the expected information gains in the model parameters and predictive quantities of interest. We obtain a closed-form approximation of the inner integral and the corresponding dominant error term in the cases where parameters are determined by the experiment, such that only a single-loop integration is needed to carry out the estimation of the expected information gain. To deal with the issue of dimensionality in a complex problem, we use a sparse quadrature for the integration over the prior pdf. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear numerical examples, including the designs of the scalar parameter in a one-dimensional cubic polynomial function, the design of the same scalar in a modified function with two indistinguishable parameters, the resolution width and measurement time for a blurred single peak spectrum, and the boundary source locations for impedance tomography in a square domain. © 2013 Elsevier B.V.
Long, Quan; Scavino, Marco; Tempone, Raul; Wang, Suojin
2013-01-01
Shannon-type expected information gain can be used to evaluate the relevance of a proposed experiment subjected to uncertainty. The estimation of such gain, however, relies on a double-loop integration. Moreover, its numerical integration in multi-dimensional cases, e.g., when using Monte Carlo sampling methods, is therefore computationally too expensive for realistic physical models, especially for those involving the solution of partial differential equations. In this work, we present a new methodology, based on the Laplace approximation for the integration of the posterior probability density function (pdf), to accelerate the estimation of the expected information gains in the model parameters and predictive quantities of interest. We obtain a closed-form approximation of the inner integral and the corresponding dominant error term in the cases where parameters are determined by the experiment, such that only a single-loop integration is needed to carry out the estimation of the expected information gain. To deal with the issue of dimensionality in a complex problem, we use a sparse quadrature for the integration over the prior pdf. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear numerical examples, including the designs of the scalar parameter in a one-dimensional cubic polynomial function, the design of the same scalar in a modified function with two indistinguishable parameters, the resolution width and measurement time for a blurred single peak spectrum, and the boundary source locations for impedance tomography in a square domain. © 2013 Elsevier B.V.
Ruin problems and tail asymptotics
DEFF Research Database (Denmark)
Rønn-Nielsen, Anders
The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...
THE ECCENTRIC KOZAI MECHANISM FOR A TEST PARTICLE
International Nuclear Information System (INIS)
Lithwick, Yoram; Naoz, Smadar
2011-01-01
We study the dynamical evolution of a test particle that orbits a star in the presence of an exterior massive planet, considering octupole-order secular interactions. In the standard Kozai mechanism (SKM), the planet's orbit is circular and so the particle conserves vertical angular momentum. As a result, the particle's orbit oscillates periodically, exchanging eccentricity for inclination. However, when the planet's orbit is eccentric, the particle's vertical angular momentum varies and its Kozai oscillations are modulated on longer timescales—we call this the eccentric Kozai mechanism (EKM). The EKM can lead to behavior that is dramatically different from the SKM. In particular, the particle's orbit can flip from prograde to retrograde and back again, and it can reach arbitrarily high eccentricities given enough time. We map out the conditions under which this dramatic behavior (flipping and extreme eccentricities) occurs and show that when the planet's eccentricity is sufficiently high, it occurs quite generically. For example, when the planet's eccentricity exceeds a few percent of the ratio of semimajor axes (outer to inner), around half of randomly oriented test particle orbits will flip and reach extreme eccentricities. The SKM has often been invoked for bringing pairs of astronomical bodies (star-star, planet-star, compact-object pairs) close together. Including the effect of the EKM will enhance the rate at which such matchmaking occurs.
Eccentric figure-eight coils for transcranial magnetic stimulation.
Sekino, Masaki; Ohsaki, Hiroyuki; Takiyama, Yoshihiro; Yamamoto, Keita; Matsuzaki, Taiga; Yasumuro, Yoshihiro; Nishikawa, Atsushi; Maruo, Tomoyuki; Hosomi, Koichi; Saitoh, Youichi
2015-01-01
Previously we proposed an eccentric figure-eight coil that can cause threshold stimulation in the brain at lower driving currents. In this study, we performed numerical simulations and magnetic stimulations to healthy subjects for evaluating the advantages of the eccentric coil. The simulations were performed using a simplified spherical brain model and a realistic human brain model. We found that the eccentric coil required a driving current intensity of approximately 18% less than that required by the concentric coil to cause comparable eddy current densities within the brain. The eddy current localization of the eccentric coil was slightly higher than that of the concentric coil. A prototype eccentric coil was designed and fabricated. Instead of winding a wire around a bobbin, we cut eccentric-spiral slits on the insulator cases, and a wire was woven through the slits. The coils were used to deliver magnetic stimulation to healthy subjects; among our results, we found that the current slew rate corresponding to motor threshold values for the concentric and eccentric coils were 86 and 78 A/µs, respectively. The results indicate that the eccentric coil consistently requires a lower driving current to reach the motor threshold than the concentric coil. Future development of compact magnetic stimulators will enable the treatment of some intractable neurological diseases at home. © 2014 Wiley Periodicals, Inc.
Eccentric exercise training in patients with chronic obstructive pulmonary disease.
Rooyackers, J.M.; Berkeljon, D.A.; Folgering, H.T.M.
2003-01-01
The oxygen cost of eccentric exercise is lower than that of concentric exercise at similar work-loads. In this study, the response to eccentric cycle exercise training (EET) in addition to general exercise training (GET) on exercise performance and quality of life was investigated in 24 patients
Response of electrostatic probes to eccentric charge distributions
DEFF Research Database (Denmark)
Johansson, Torben; McAllister, Iain Wilson
2001-01-01
The response of an electrostatic probe mounted in an electrode is examined with reference to eccentric charge distributions. The study involves using the probe λ function to derive a characteristic parameter. This parameter enables the response of the probe to different degrees of eccentricity...
Assessment of behavior factor of eccentrically braced frame with ...
African Journals Online (AJOL)
Assessment of behavior factor of eccentrically braced frame with vertical link in cyclic loading. ... Journal of Fundamental and Applied Sciences ... In order to understand the behavior of these structures using non-linear static and dynamic analysis of building's behavior factor, eccentric and exocentric systems were calculated ...
Reducing orbital eccentricity in binary black hole simulations
International Nuclear Information System (INIS)
Pfeiffer, Harald P; Brown, Duncan A; Kidder, Lawrence E; Lindblom, Lee; Lovelace, Geoffrey; Scheel, Mark A
2007-01-01
Binary black hole simulations starting from quasi-circular (i.e., zero radial velocity) initial data have orbits with small but nonzero orbital eccentricities. In this paper, the quasi-equilibrium initial-data method is extended to allow nonzero radial velocities to be specified in binary black hole initial data. New low-eccentricity initial data are obtained by adjusting the orbital frequency and radial velocities to minimize the orbital eccentricity, and the resulting (∼5 orbit) evolutions are compared with those of quasi-circular initial data. Evolutions of the quasi-circular data clearly show eccentric orbits, with eccentricity that decays over time. The precise decay rate depends on the definition of eccentricity; if defined in terms of variations in the orbital frequency, the decay rate agrees well with the prediction of Peters (1964 Phys. Rev. 136 1224-32). The gravitational waveforms, which contain ∼8 cycles in the dominant l = m = 2 mode, are largely unaffected by the eccentricity of the quasi-circular initial data. The overlap between the dominant mode in the quasi-circular evolution and the same mode in the low-eccentricity evolution is about 0.99
Normative values of eccentric hip abduction strength in novice runners
DEFF Research Database (Denmark)
Ramskov, D; Pedersen, M B; Kastrup, K
2014-01-01
normative values of maximal eccentric hip abduction strength in novice runners. METHODS: Novice healthy runners (n = 831) were recruited through advertisements at a hospital and a university. Maximal eccentric hip abduction strength was measured with a hand-held dynamometer. The demographic variables...... was found, p values were identified using a regression equation adjusting for age and gender. Based on this, the equation to calculate normative values for relative eccentric hip abduction strength became: (1.600 + (age * -0.005) + (gender (1 = male / 0 = female) * 0.215) ± 1 or 2 * 0......PURPOSE: Low eccentric strength of the hip abductors, might increase the risk of patellofemoral pain syndrome and iliotibial band syndrome in runners. No normative values for maximal eccentric hip abduction strength have been established. Therefore the purpose of this study was to establish...
Grinding Method and Error Analysis of Eccentric Shaft Parts
Wang, Zhiming; Han, Qiushi; Li, Qiguang; Peng, Baoying; Li, Weihua
2017-12-01
RV reducer and various mechanical transmission parts are widely used in eccentric shaft parts, The demand of precision grinding technology for eccentric shaft parts now, In this paper, the model of X-C linkage relation of eccentric shaft grinding is studied; By inversion method, the contour curve of the wheel envelope is deduced, and the distance from the center of eccentric circle is constant. The simulation software of eccentric shaft grinding is developed, the correctness of the model is proved, the influence of the X-axis feed error, the C-axis feed error and the wheel radius error on the grinding process is analyzed, and the corresponding error calculation model is proposed. The simulation analysis is carried out to provide the basis for the contour error compensation.
Flow Mode Magnetorheological Dampers with an Eccentric Gap
Directory of Open Access Journals (Sweden)
Young-Tai Choi
2014-07-01
Full Text Available This paper analyzes flow mode magnetorheological (MR dampers with an eccentric annular gap (i.e., a nonuniform annular gap. To this end, an MR damper analysis for an eccentric annular gap is constructed based on approximating the eccentric annular gap using a rectangular duct with a variable gap, as well as a Bingham-plastic constitutive model of the MR fluid. Performance of flow mode MR dampers with an eccentric gap was assessed analytically using both field-dependent damping force and damping coefficient, which is the ratio of equivalent viscous field-on damping to field-off damping. In addition, damper capabilities of flow mode MR dampers with an eccentric gap were compared to a concentric gap (i.e., uniform annular gap.
Biomechanical characteristics of the eccentric Achilles tendon exercise
DEFF Research Database (Denmark)
Henriksen, Marius; Aaboe, Jens; Bliddal, Henning
2009-01-01
that although the tendon loads are similar, the tendon is vibrated at higher frequencies during the eccentric phase than during the concentric phases. This study provides data that may explain the mechanisms behind the effectiveness of eccentric exercises used in the treatment of Achilles tendinopathies........ No differences in Achilles tendon loads were found. INTERPRETATION: This descriptive study demonstrates differences in the movement biomechanics between the eccentric and concentric phases of one-legged full weight bearing ankle dorsal and plantar flexion exercises. In particular, the findings imply......BACKGROUND: Eccentric exercise has been shown to provide good short-term clinical results in the treatment of painful mid-portion chronic Achilles tendinopathies. However, the mechanisms behind the positive effects of eccentric rehabilitation regimes are not known, and research...
Elliptical excisions: variations and the eccentric parallelogram.
Goldberg, Leonard H; Alam, Murad
2004-02-01
The elliptical (fusiform) excision is a basic tool of cutaneous surgery. To assess the design, functionality, ease of construction, and aesthetic outcomes of the ellipse. A systematic review of elliptical designs and their site-specific benefits and limitations. In particular, we consider the (1). context of prevailing relaxed skin tension lines and tissue laxity; and (2). removal of the smallest possible amount of tissue around the lesion and in the "dog-ears." Attention is focused on intuitive methods that can be reproducibly planned and executed. Elliptical variations are easily designed and can be adapted to many situations. The eccentric parallelogram excision is offered as a new technique that minimizes notching and focal tension in the center of an elliptical closure. Conclusion The elliptical (fusiform) excision is an efficient, elegant, and versatile technique that will remain a mainstay of the cutaneous surgical armamentarium.
International Nuclear Information System (INIS)
Elbakry, M.Y.; El-Helly, M.; Elbakry, M.Y.
2010-01-01
Neural networks are widely for solving many scientific linear and non-linear problems. In this work ,we used the artificial neural network (ANN) to simulate and predict the torque and force acting on the outer stationary sphere due to steady state motion of the second order fluid between two eccentric spheres by a rotating inner sphere with an angular velocity Ω. the (ANN) model has been trained based on the experimental data to produce the torque and force at different eccentricities. The experimental and trained torque and force are compared. The designed ANN shows a good match to the experimental data.
Cluster analysis of European Y-chromosomal STR haplotypes using the discrete Laplace method
DEFF Research Database (Denmark)
Andersen, Mikkel Meyer; Eriksen, Poul Svante; Morling, Niels
2014-01-01
The European Y-chromosomal short tandem repeat (STR) haplotype distribution has previously been analysed in various ways. Here, we introduce a new way of analysing population substructure using a new method based on clustering within the discrete Laplace exponential family that models the probabi......The European Y-chromosomal short tandem repeat (STR) haplotype distribution has previously been analysed in various ways. Here, we introduce a new way of analysing population substructure using a new method based on clustering within the discrete Laplace exponential family that models...... the probability distribution of the Y-STR haplotypes. Creating a consistent statistical model of the haplotypes enables us to perform a wide range of analyses. Previously, haplotype frequency estimation using the discrete Laplace method has been validated. In this paper we investigate how the discrete Laplace...... method can be used for cluster analysis to further validate the discrete Laplace method. A very important practical fact is that the calculations can be performed on a normal computer. We identified two sub-clusters of the Eastern and Western European Y-STR haplotypes similar to results of previous...
International Nuclear Information System (INIS)
Hodgkinson, D.P.; Lever, D.A.; England, T.H.
1984-01-01
A model for the transport of radionuclides through fractured rock has been developed and used to study a problem which forms part of Level 3 of the INTRACOIN project (the international exercise in which the results from various radionuclide-migration computer programs are compared). The model includes the effects of 1-D advection, dispersion, kinetic and/or equilibrium surface sorption, diffusion into the rock matrix with equilibrium bulk sorption and radioactive decay, and incorporates flexible input and output boundary conditions. It is evaluated by numerically inverting the analytical solution to the Laplace-transformed transport equations. Matrix diffusion was found to be the most important retardation mechanism for Np based on data reflecting the conditions at the Finnsjeeo site in east central Sweden. However, improved data and field testing are required to make the predictions of such models more reliable. (author)
Dynamic eccentricity fault diagnosis in round rotor synchronous motors
International Nuclear Information System (INIS)
Ebrahimi, Bashir Mahdi; Etemadrezaei, Mohammad; Faiz, Jawad
2011-01-01
Research highlights: → We have presented a novel approach to detect dynamic eccentricity in round rotor synchronous motors. → We have introduced an efficient index based on processing torque using time series data mining method. → The stator current spectrum of the motor under different levels of fault and load are computed. → Winding function method has been employed to model healthy and faulty synchronous motors. -- Abstract: In this paper, a novel approach is presented to detect dynamic eccentricity in round rotor synchronous motors. For this, an efficient index is introduced based on processing developed torque using time series data mining (TSDM) method. This index can be utilized to diagnose eccentricity fault and its degree. The capability of this index to predict dynamic eccentricity is illustrated by investigation of load variation impacts on the nominated index. Stator current spectrum of the faulty synchronous motor under different loads and dynamic eccentricity degrees are computed. Effects of the dynamic eccentricity and load variation simultaneously are scrutinized on the magnitude of 17th and 19th harmonic components as traditional indices for eccentricity fault diagnosis in synchronous motors. Necessity signals and parameters for processing and feature extraction are evaluated by winding function method which is employed to model healthy and faulty synchronous motors.
EXTRACTING PLANET MASS AND ECCENTRICITY FROM TTV DATA
International Nuclear Information System (INIS)
Lithwick, Yoram; Xie Jiwei; Wu Yanqin
2012-01-01
Most planet pairs in the Kepler data that have measured transit time variations (TTVs) are near first-order mean-motion resonances. We derive analytical formulae for their TTV signals. We separate planet eccentricity into free and forced parts, where the forced part is purely due to the planets' proximity to resonance. This separation yields simple analytical formulae. The phase of the TTV depends sensitively on the presence of free eccentricity: if the free eccentricity vanishes, the TTV will be in phase with the longitude of conjunctions. This effect is easily detectable in current TTV data. The amplitude of the TTV depends on planet mass and free eccentricity, and it determines planet mass uniquely only when the free eccentricity is sufficiently small. We analyze the TTV signals of six short-period Kepler pairs. We find that three of these pairs (Kepler 18, 24, 25) have a TTV phase consistent with zero. The other three (Kepler 23, 28, 32) have small TTV phases, but ones that are distinctly non-zero. We deduce that the free eccentricities of the planets are small, ∼< 0.01, but not always vanishing. Furthermore, as a consequence of this, we deduce that the true masses of the planets are fairly accurately determined by the TTV amplitudes, within a factor of ∼< 2. The smallness of the free eccentricities suggests that the planets have experienced substantial dissipation. This is consistent with the hypothesis that the observed pile-up of Kepler pairs near mean-motion resonances is caused by resonant repulsion. But the fact that some of the planets have non-vanishing free eccentricity suggests that after resonant repulsion occurred there was a subsequent phase in the planets' evolution when their eccentricities were modestly excited, perhaps by interplanetary interactions.
Heat-and-mass transfer during a laminar dissociating gas flow in eccentric annular channels
International Nuclear Information System (INIS)
Besedina, T.V.; Udot, A.V.; Yakushev, A.P.
1987-01-01
An algorithm to calculate heat-and-mass transfer processes during dissociating gas laminar flow in an eccentric annular channels is considered. Analytical solutions of the heat transfer equations for a rod clodding and gap with boundary conditions of conjugation of temperatures and heat fluxes have been used to determine temperature field. This has made it possible to proceed from slution of the conjugate problem to solution of the equation of energy only for the coolant. The results of calculation of temperature distribution along the cladding for different values of its eccentricity and thermal conductivity coefficient both for the case of frozen flow and in the presence of chemical reactions in the flow are given. When calculating temperatures with conjugation boundary conditions temperature gradients in azimuthal direction are far less and heat transfer in concentration diffusion is carried out mainly in radial direction
Directory of Open Access Journals (Sweden)
J. Prakash
2016-03-01
Full Text Available In this paper, a numerical algorithm based on a modified He-Laplace method (MHLM is proposed to solve space and time nonlinear fractional differential-difference equations (NFDDEs arising in physical phenomena such as wave phenomena in fluids, coupled nonlinear optical waveguides and nanotechnology fields. The modified He-Laplace method is a combined form of the fractional homotopy perturbation method and Laplace transforms method. The nonlinear terms can be easily decomposed by the use of He’s polynomials. This algorithm has been tested against time-fractional differential-difference equations such as the modified Lotka Volterra and discrete (modified KdV equations. The proposed scheme grants the solution in the form of a rapidly convergent series. Three examples have been employed to illustrate the preciseness and effectiveness of the proposed method. The achieved results expose that the MHLM is very accurate, efficient, simple and can be applied to other nonlinear FDDEs.
University teachers' perspectives on the role of the Laplace transform in engineering education
Holmberg née González Sampayo, Margarita; Bernhard, Jonte
2017-07-01
The Laplace transform is an important tool in many branches of engineering, for example, electric and control engineering, but is also regarded as a difficult topic for students to master. We have interviewed 22 university teachers from five universities in three countries (Mexico, Spain and Sweden) about their views on relationships among mathematics, physics and technology/application aspects in the process of learning the Laplace transform in engineering education. Strikingly, the teachers held a spectrum of qualitatively differing views, ranging from seeing virtually no connection (e.g. some thought the Laplace transform has no relevance in engineering), through to regarding the aspects as intimately, almost inseparably linked. The lack of awareness of the widely differing views among teachers might lead to a lack of constructive alignment among different courses that is detrimental to the quality of engineering education.
2D acoustic-elastic coupled waveform inversion in the Laplace domain
Bae, Hoseuk
2010-04-01
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth\\'s structures since the early 1980s, most of the time- and frequency-domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non-linear objective function and the unreliable low-frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace-domain waveform inversion has been proposed. The Laplace-domain waveform inversion has been known to provide a long-wavelength velocity model even for field data, which may be because it employs the zero-frequency component of the damped wavefield and a well-behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media.We extend the Laplace-domain waveform inversion algorithm to a 2D acoustic-elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic-elastic coupled media, the Laplace-domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic-elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid-solid interfaces.Our Laplace-domain waveform inversion algorithm is also based on the finite-element method and logarithmic wavefields. To compute gradient direction, we apply the back-propagation technique. Under the assumption that density is fixed, P- and S-wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace-domain waveform inversion
Application of a Laplace transform pair model for high-energy x-ray spectral reconstruction.
Archer, B R; Almond, P R; Wagner, L K
1985-01-01
A Laplace transform pair model, previously shown to accurately reconstruct x-ray spectra at diagnostic energies, has been applied to megavoltage energy beams. The inverse Laplace transforms of 2-, 6-, and 25-MV attenuation curves were evaluated to determine the energy spectra of these beams. The 2-MV data indicate that the model can reliably reconstruct spectra in the low megavoltage range. Experimental limitations in acquiring the 6-MV transmission data demonstrate the sensitivity of the model to systematic experimental error. The 25-MV data result in a physically realistic approximation of the present spectrum.
Application of Laplace transform to analysis of the excretory organs radionuclide study
International Nuclear Information System (INIS)
Knigavko, V.G.; Pilipenko, M.Yi.; Pakhomov, V.Yi.; Lyisovij, V.M.; Nesterov, V.G.; Bondarenko, M.A.
1993-01-01
The paper is devoted to application of Laplace transform to solving equations at performing stochastic mathematical modelling of radiopharmaceuticals (RP) transportation in the studied organs. Application of this method allows to derive a formula for transformation of the curves of RP excretion from the body at intravenous administration, i.e. provides the possibility to calculate traditional values at extravascular administration of the preparations. Application of Laplace transform with bioexponencial approximation of the blood clearance curve also allows to develop a new algorithm of radionephrogram deconvolution analysis
Robust isotropic super-resolution by maximizing a Laplace posterior for MRI volumes
Han, Xian-Hua; Iwamoto, Yutaro; Shiino, Akihiko; Chen, Yen-Wei
2014-03-01
Magnetic resonance imaging can only acquire volume data with finite resolution due to various factors. In particular, the resolution in one direction (such as the slice direction) is much lower than others (such as the in-plane direction), yielding un-realistic visualizations. This study explores to reconstruct MRI isotropic resolution volumes from three orthogonal scans. This proposed super- resolution reconstruction is formulated as a maximum a posterior (MAP) problem, which relies on the generation model of the acquired scans from the unknown high-resolution volumes. Generally, the deviation ensemble of the reconstructed high-resolution (HR) volume from the available LR ones in the MAP is represented as a Gaussian distribution, which usually results in some noise and artifacts in the reconstructed HR volume. Therefore, this paper investigates a robust super-resolution by formulating the deviation set as a Laplace distribution, which assumes sparsity in the deviation ensemble based on the possible insight of the appeared large values only around some unexpected regions. In addition, in order to achieve reliable HR MRI volume, we integrates the priors such as bilateral total variation (BTV) and non-local mean (NLM) into the proposed MAP framework for suppressing artifacts and enriching visual detail. We validate the proposed robust SR strategy using MRI mouse data with high-definition resolution in two direction and low-resolution in one direction, which are imaged in three orthogonal scans: axial, coronal and sagittal planes. Experiments verifies that the proposed strategy can achieve much better HR MRI volumes than the conventional MAP method even with very high-magnification factor: 10.
Pervasive orbital eccentricities dictate the habitability of extrasolar earths.
Kita, Ryosuke; Rasio, Frederic; Takeda, Genya
2010-09-01
The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.
The effect of orbital eccentricity on polarimetric binary diagnostics
International Nuclear Information System (INIS)
Aspin, C.; Brown, J.C.; Simmons, J.F.L.
1980-01-01
The polarimetric variation from a binary system with an eccentric orbit, thus non-corotating, are calculated and the effect on determining the system parameters is discussed, relative to the circular case. (Auth.)
Normative values of eccentric hip abduction strength in novice runners
DEFF Research Database (Denmark)
Jørgensen, Daniel Ramskov; Pedersen, Mette Broen; Kastrup, Kristrian
2014-01-01
.354) Nm/kg. CONCLUSION: Normative values for maximal eccentric hip abduction strength in novice runners can be calculated by taking into account the differences in strength across genders and the decline in strength that occurs with increasing age. Age and gender were associated with maximal eccentric hip...... associated with maximal eccentric hip abduction strength from a univariate analysis were included in a multivariate linear regression model. Based on the results from the regression model, a regression equation for normative hip abduction strength is presented. RESULTS: A SIGNIFICANT DIFFERENCE IN MAXIMAL...... was found, p gender. Based on this, the equation to calculate normative values for relative eccentric hip abduction strength became: (1.600 + (age * -0.005) + (gender (1 = male / 0 = female) * 0.215) ± 1 or 2 * 0...
Eccentric Mounting and Adjustment System for Belt Driven Devices
National Research Council Canada - National Science Library
Hansen, David N
2008-01-01
.... The system includes a housing fixed to the engine, a socket rotatable in pawl-and-ratchet fashion within the housing, and a socket aperture eccentrically disposed relative to the socket's axis...
Effects of concentric vs eccentric loading on cardiovascular ...
African Journals Online (AJOL)
Effects of concentric vs eccentric loading on cardiovascular variables and ECG. Madan Bhavna1*, Sarika, Sandhu J.S1. 1. Department of Sports Medicine and Physiotherapy Guru Nanak Dev University; ..... psychological and performance.
International Nuclear Information System (INIS)
Ahmedov, Anvarjon A; Nurullah bin Rasedee, Ahmad Fadly; Rakhimov, Abdumalik
2013-01-01
In this work we investigate the localization principle of the Fourier-Laplace series of the distribution. Here we prove the sufficient conditions of the localization of the Riesz means of the spectral expansions of the Laplace-Beltrami operator on the unit sphere.
Review of pump suction reducer selection: Eccentric or concentric reducers
Mahaffey, R M; van Vuuren, S J
2014-01-01
Eccentric reducers are traditionally recommended for the pump suction reducer fitting to allow for transportation of air through the fitting to the pump. The ability of a concentric reducer to provide an improved approach flow to the pump while still allowing air to be transported through the fitting is investigated. Computational fluid dynamics (CFD) were utilised to analyse six concentric and six eccentric reducer geometries at four different inlet velocities to determine the flow velocity ...
Exoplanet orbital eccentricity: multiplicity relation and the Solar System.
Limbach, Mary Anne; Turner, Edwin L
2015-01-06
The known population of exoplanets exhibits a much wider range of orbital eccentricities than Solar System planets and has a much higher average eccentricity. These facts have been widely interpreted to indicate that the Solar System is an atypical member of the overall population of planetary systems. We report here on a strong anticorrelation of orbital eccentricity with multiplicity (number of planets in the system) among cataloged radial velocity (RV) systems. The mean, median, and rough distribution of eccentricities of Solar System planets fits an extrapolation of this anticorrelation to the eight-planet case rather precisely despite the fact that no more than two Solar System planets would be detectable with RV data comparable to that in the exoplanet sample. Moreover, even if regarded as a single or double planetary system, the Solar System lies in a reasonably heavily populated region of eccentricity-multiplicity space. Thus, the Solar System is not anomalous among known exoplanetary systems with respect to eccentricities when its multiplicity is taken into account. Specifically, as the multiplicity of a system increases, the eccentricity decreases roughly as a power law of index -1.20. A simple and plausible but ad hoc and model-dependent interpretation of this relationship implies that ∼ 80% of the one-planet and 25% of the two-planet systems in our sample have additional, as yet undiscovered, members but that systems of higher observed multiplicity are largely complete (i.e., relatively rarely contain additional undiscovered planets). If low eccentricities indeed favor high multiplicities, habitability may be more common in systems with a larger number of planets.
Achilles tendinopathy modulates force frequency characteristics of eccentric exercise.
Grigg, Nicole L; Wearing, Scott C; O'Toole, John M; Smeathers, James E
2013-03-01
Previous research has demonstrated that ground reaction force (GRF) recorded during eccentric ankle exercise is characterized by greater power in the 8- to 12-Hz bandwidth when compared with that recorded during concentric ankle exercise. Subsequently, it was suggested that vibrations in this bandwidth may underpin the beneficial effect of eccentric loading in tendon repair. However, this observation has been made only in individuals without Achilles tendinopathy. This research compared the force frequency characteristics of eccentric and concentric exercises in individuals with and without Achilles tendinopathy. Eleven male adults with unilateral midportion Achilles tendinopathy and nine control male adults without tendinopathy participated in the research. Kinematics and GRF were recorded while the participants performed a common eccentric rehabilitation exercise protocol and a concentric equivalent. Ankle joint kinematics and the frequency power spectrum of the resultant GRF were calculated. Eccentric exercise was characterized by a significantly greater proportion of spectral power between 4.5 and 11.5 Hz when compared with concentric exercise. There were no significant differences between limbs in the force frequency characteristics of concentric exercise. Eccentric exercise, in contrast, was defined by a shift in the power spectrum of the symptomatic limb, resulting in a second spectral peak at 9 Hz, rather than 10 Hz in the control limb. Compared with healthy tendon, Achilles tendinopathy was characterized by lower frequency vibrations during eccentric rehabilitation exercises. This finding may be associated with changes in neuromuscular activation and tendon stiffness that have been shown to occur with tendinopathy and provides a possible rationale for the previous observation of a different biochemical response to eccentric exercise in healthy and injured Achilles tendons.
Solution of the Transmission Problem
Czech Academy of Sciences Publication Activity Database
Medková, Dagmar
2010-01-01
Roč. 110, č. 3 (2010), s. 1489-1500 ISSN 0167-8019 Institutional research plan: CEZ:AV0Z10190503 Keywords : Laplace equation * transmission problem * single layer potential * double layer potential Subject RIV: BA - General Mathematics Impact factor: 0.979, year: 2010 http://link.springer.com/article/10.1007%2Fs10440-009-9522-5
Electromyographic analysis of repeated bouts of eccentric exercise.
McHugh, M P; Connolly, D A; Eston, R G; Gartman, E J; Gleim, G W
2001-03-01
The repeated bout effect refers to the protective effect provided by a single bout of eccentric exercise against muscle damage from a similar subsequent bout. The aim of this study was to determine if the repeated bout was associated with an increase in motor unit activation relative to force production, an increased recruitment of slow-twitch motor units or increased motor unit synchronization. Surface electromyographic (EMG) signals were recorded from the hamstring muscles during two bouts of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions separated by 2 weeks. The EMG per unit torque and median frequency were analysed. The initial bout of eccentric exercise resulted in strength loss, pain and muscle tenderness, while the repeated eccentric bout resulted in a slight increase in strength, no pain and no muscle tenderness (bout x time effects, P exercise. The EMG per unit torque and median frequency were not different between the initial and repeated bouts of eccentric exercise. The EMG per unit torque and median frequency increased during both bouts of eccentric exercise (P < 0.01) but did not change during either concentric bout. In conclusion, there was no evidence that the repeated bout effect was due to a neural adaptation.
Fadly Nurullah Rasedee, Ahmad; Ahmedov, Anvarjon; Sathar, Mohammad Hasan Abdul
2017-09-01
The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.
Chen, Jing-Bo
2014-06-01
By using low-frequency components of the damped wavefield, Laplace-Fourier-domain full waveform inversion (FWI) can recover a long-wavelength velocity model from the original undamped seismic data lacking low-frequency information. Laplace-Fourier-domain modelling is an important foundation of Laplace-Fourier-domain FWI. Based on the numerical phase velocity and the numerical attenuation propagation velocity, a method for performing Laplace-Fourier-domain numerical dispersion analysis is developed in this paper. This method is applied to an average-derivative optimal scheme. The results show that within the relative error of 1 per cent, the Laplace-Fourier-domain average-derivative optimal scheme requires seven gridpoints per smallest wavelength and smallest pseudo-wavelength for both equal and unequal directional sampling intervals. In contrast, the classical five-point scheme requires 23 gridpoints per smallest wavelength and smallest pseudo-wavelength to achieve the same accuracy. Numerical experiments demonstrate the theoretical analysis.
Study on the optical properties of the off-axis parabolic collimator with eccentric pupil
Li, Gang; Gao, Xin; Duan, Jing; Zhang, Henjin
2017-02-01
The off-axis parabolic collimator with eccentric pupil has the advantages of wide spectrum, simple structure, easy assembly and adjustment, high performance price ratio. So, it is widely used for parameters testing and image quality calibration of ground-based and space-based cameras. In addition to the Strehl ratio, resolution, wavefront aberration, modulation transfer function, the general evaluation criteria on the imaging quality of the optical system, the beam parallelism characterize the collimator angle resolving capability and collimation condition of the collimator with the target board, can be measured easily ,quickly and operation process is simple, but the study mainly focus on how to measure it so far. In order to solve Quantitative calculation of this problem, firstly, the discussion of aberration condition of the off- axis parabolic is carried out based on the primary aberration theory. Secondly, analysis on the influencing factor on collimator optical properties is given, including the geometrical aberrations of spherical aberration, coma, astigmatism , the relation between the position of the eccentric pupil and the aberration and optical element surface wavefront aberration, after that, according to the basis of diffraction and wavefront aberration theory, the paper deduced calculation method of the beam parallelism, at last, an example of a 400mm diameter off-axis parabolic collimator with eccentric pupil is given to calculate, the practical results shows that calculation data is well in accordance with actual measurement data and results can meet the demand and has a guiding significance to the actual project manufacture and the theory analysis.
Pardo, David
2013-02-13
We describe a numerical study to quantify the influence of tool-eccentricity on wireline (WL) and logging-while-drilling (LWD) sonic logging measurements. Simulations are performed with a height-polynomial-adaptive (hp) Fourier finite-element method that delivers highly accurate solutions of linear visco-elasto-acoustic problems in the frequency domain. The analysis focuses on WL instruments equipped with monopole or dipole sources and LWD instruments with monopole excitation. Analysis of the main propagation modes obtained from frequency dispersion curves indicates that the additional high-order modes arising as a result of borehole-eccentricity interfere with the main modes (i.e., Stoneley, pseudo-Rayleigh and flexural). This often modifies (decreases) the estimation of shear and compressional formation velocities, which should be corrected (increased) to account for borehole-eccentricity effects. Undesired interferences between different modes can occur at different frequencies depending upon the properties of the formation and fluid annulus size, which may difficult the estimation of the formation velocities. © 2013 European Association of Geoscientists & Engineers.
3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS
Directory of Open Access Journals (Sweden)
FAROUK TAHROUR
2015-11-01
Full Text Available The use of 3-D computational fluid dynamics (CFD is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, this study analyzes the effects of fin spacing and fin tube diameter on heat transfer and flow characteristics for a range of Reynolds numbers, 4500≤Re≤22500. A satisfactory qualitative and quantitative agreement was obtained between the numerical predictions and the results published in the literature. For small fin spacings, the eccentric annular finned tube is more efficient than the concentric one. Among the cases examined, the average heat transfer coefficient of the eccentric annular-finned tube, for a tube shift St =12 mm and a Reynolds number Re = 9923, was 7.61% greater than that of the concentric one. This gain is associated with a 43.09% reduction in pressure drop.
Directory of Open Access Journals (Sweden)
R. C. Domingos
2014-01-01
Full Text Available The fuel consumption required by the orbital maneuvers when correcting perturbations on the orbit of a spacecraft due to a perturbing body was estimated. The main goals are the measurement of the influence of the eccentricity of the perturbing body on the fuel consumption required by the station keeping maneuvers and the validation of the averaged methods when applied to the problem of predicting orbital maneuvers. To study the evolution of the orbits, the restricted elliptic three-body problem and the single- and double-averaged models are used. Maneuvers are made by using impulsive and low thrust maneuvers. The results indicated that the averaged models are good to make predictions for the orbital maneuvers when the spacecraft is in a high inclined orbit. The eccentricity of the perturbing body plays an important role in increasing the effects of the perturbation and the fuel consumption required for the station keeping maneuvers. It is shown that the use of more frequent maneuvers decreases the annual cost of the station keeping to correct the orbit of a spacecraft. An example of an eccentric planetary system of importance to apply the present study is the dwarf planet Haumea and its moons, one of them in an eccentric orbit.
Analysis of errors in spectral reconstruction with a Laplace transform pair model
International Nuclear Information System (INIS)
Archer, B.R.; Bushong, S.C.
1985-01-01
The sensitivity of a Laplace transform pair model for spectral reconstruction to random errors in attenuation measurements of diagnostic x-ray units has been investigated. No spectral deformation or significant alteration resulted from the simulated attenuation errors. It is concluded that the range of spectral uncertainties to be expected from the application of this model is acceptable for most scientific applications. (author)
Directory of Open Access Journals (Sweden)
Sheng-Ping Yan
2014-01-01
Full Text Available We perform a comparison between the local fractional Adomian decomposition and local fractional function decomposition methods applied to the Laplace equation. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.
University Teachers' Perspectives on the Role of the Laplace Transform in Engineering Education
Holmberg, Margarita; Bernhard, Jonte
2017-01-01
The Laplace transform is an important tool in many branches of engineering, for example, electric and control engineering, but is also regarded as a difficult topic for students to master. We have interviewed 22 university teachers from five universities in three countries (Mexico, Spain and Sweden) about their views on relationships among…
The exact solutions of the Schroedinger equation with the Morse potential via Laplace transforms
International Nuclear Information System (INIS)
Chen Gang
2004-01-01
In this Letter, we reduce the second-order differential equation about the one-dimensional Schroedinger equation with the Morse potential reduced to the first-order differential equation in terms of Laplace transforms and then obtain the exact bound state solutions
Tangential boundary values of Laplace transforms. Applications to Muntz-Szasz type approximation
International Nuclear Information System (INIS)
Sedletskii, A M
2003-01-01
We consider the Laplace transforms (LT) of functions in L q (R + ), 1 p spaces on the half-line such that the Szasz condition is not necessary for the completeness of the system exp(-λ n t) in these spaces
Veestraeten, D.
2015-01-01
The Laplace transforms of the transition probability density and distribution functions for the Ornstein-Uhlenbeck process contain the product of two parabolic cylinder functions, namely Dv(x)Dv(y) and Dv(x)Dv−1(y), respectively. The inverse transforms of these products have as yet not been
On QCD sum rules of the Laplace transform type and light quark masses
International Nuclear Information System (INIS)
Narison, S.
1981-04-01
We discuss the relation between the usual dispersion relation sum rules and the Laplace transform type sum rules in quantum chromodynamics. Two specific examples corresponding to the S-coupling constant sum rule and the light quark masses sum rules are considered. An interpretation, within QCD, of Leutwyler's formula for the current algebra quark masses is also given
Directory of Open Access Journals (Sweden)
Wu Guo-Cheng
2012-01-01
Full Text Available This note presents a Laplace transform approach in the determination of the Lagrange multiplier when the variational iteration method is applied to time fractional heat diffusion equation. The presented approach is more straightforward and allows some simplification in application of the variational iteration method to fractional differential equations, thus improving the convergence of the successive iterations.
Fourier-Laplace transform of irreducible regular differential systems on the Riemann sphere
International Nuclear Information System (INIS)
Sabbah, C
2004-01-01
It is shown that the Fourier-Laplace transform of an irreducible regular differential system on the Riemann sphere underlies a polarizable regular twistor D-module if one considers only the part at finite distance. The associated holomorphic bundle defined away from the origin of the complex plane is therefore equipped with a natural harmonic metric having a tame behaviour near the origin
The Laplace series solution for local fractional Korteweg-de Vries equation
Directory of Open Access Journals (Sweden)
Ye Shan-Shan
2016-01-01
Full Text Available In this paper, we consider a new application of the local fractional Laplace series expansion method to handle the local fractional Korteweg-de Vries equation. The obtained solution with non-differentiable type shows that the technology is accurate and efficient.
International Nuclear Information System (INIS)
Tsang, David; Cumming, Andrew; Turner, Neal J.
2014-01-01
We show that the first order (non-co-orbital) corotation torques are significantly modified by entropy gradients in a non-barotropic protoplanetary disk. Such non-barotropic torques can dramatically alter the balance that, for barotropic cases, results in the net eccentricity damping for giant gap-clearing planets embedded in the disk. We demonstrate that stellar illumination can heat the gap enough for the planet's orbital eccentricity to instead be excited. We also discuss the 'Eccentricity Valley' noted in the known exoplanet population, where low-metallicity stars have a deficit of eccentric planets between ∼0.1 and ∼1 AU compared to metal-rich systems. We show that this feature in the planet distribution may be due to the self-shadowing of the disk by a rim located at the dust sublimation radius ∼0.1 AU, which is known to exist for several T Tauri systems. In the shadowed region between ∼0.1 and ∼1 AU, lack of gap insolation allows disk interactions to damp eccentricity. Outside such shadowed regions stellar illumination can heat the planetary gaps and drive eccentricity growth for giant planets. We suggest that the self-shadowing does not arise at higher metallicity due to the increased optical depth of the gas interior to the dust sublimation radius.
Energy Technology Data Exchange (ETDEWEB)
Tsang, David; Cumming, Andrew [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Turner, Neal J., E-mail: dtsang@physics.mcgill.ca [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)
2014-02-20
We show that the first order (non-co-orbital) corotation torques are significantly modified by entropy gradients in a non-barotropic protoplanetary disk. Such non-barotropic torques can dramatically alter the balance that, for barotropic cases, results in the net eccentricity damping for giant gap-clearing planets embedded in the disk. We demonstrate that stellar illumination can heat the gap enough for the planet's orbital eccentricity to instead be excited. We also discuss the 'Eccentricity Valley' noted in the known exoplanet population, where low-metallicity stars have a deficit of eccentric planets between ∼0.1 and ∼1 AU compared to metal-rich systems. We show that this feature in the planet distribution may be due to the self-shadowing of the disk by a rim located at the dust sublimation radius ∼0.1 AU, which is known to exist for several T Tauri systems. In the shadowed region between ∼0.1 and ∼1 AU, lack of gap insolation allows disk interactions to damp eccentricity. Outside such shadowed regions stellar illumination can heat the planetary gaps and drive eccentricity growth for giant planets. We suggest that the self-shadowing does not arise at higher metallicity due to the increased optical depth of the gas interior to the dust sublimation radius.
[Systematic review about eccentric training in chronic patella tendinopathy].
Lorenzen, J; Krämer, R; Vogt, P M; Knobloch, K
2010-12-01
Eccentric training has become a popular treatment for patellar tendinopathy. Aim of this review is to display different exercise prescriptions for patellar tendinopathy, to help clinicians make appropriate choices and identify areas needing further research. Is eccentric training as a conservative treatment in chronic patellar tendinopathy of beneficial effect versus other conservative treatments? According to the current scientific data, is it possible to recommend dosages and duration of training time of eccentric training? Systematic review of the current scientific literature on eccentric training as a conservative treatment in chronic Achilles tendinopathy according to the PRISMA-guidelines [Preferred Reporting Items for Systematic Reviews and Meta-Analyses]. National library of Medicine [NLM] between the years 1950 and 2010. Prospective randomised controlled trials (RCT). 7 articles with a total of 165 patients and in which eccentric training was one of the interventions, all published after 2000, were included. The median cohort study size was 20 subjects with a range from 15 to 35 subjects. Median follow-up duration was 12 weeks with a range from 4 to 12 weeks. Encouraging results, but variable study quality, with small numbers or short follow-up periods. The content of the different training programmes varied, but most were home-based programmes with twice daily training for 12 weeks. A number of potentially significant differences were identified in the eccentric programmes used: drop squats or slow eccentric movement, squatting on a 25° decline board or level ground, exercising into tendon pain or short of pain, loading the eccentric phase only or both phases, and progressing with speed then loading or simply loading. A pooled statistical evaluation of the included trials could not be performed due to different study designs as well as limited documentation of subjects' compliance. Most studies suggest that eccentric training may have a positive effect
An optimal iterative algorithm to solve Cauchy problem for Laplace equation
Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem
2015-01-01
iterative algorithm is developed that minimizes the mean square error in states. Finite difference discretization schemes are used to discretize first order system. After numerical discretization algorithm equations are derived taking inspiration from Kalman
Choosing of optimal start approximation for laplace equation ...
African Journals Online (AJOL)
We investigate Dirichlet problem for a case of two-dimensional area with lime border, numerical scheme for solving this equation is widely knowns it finite difference method. One of the major stages in the algorithm for that numerical solution is choosing of start approximation, usually as the initial values of the unknown ...
The effect of wheel eccentricity and run-out on grinding forces, waviness, wheel wear and chatter
O'DONNELL, GARRET; MURPHY, STUART
2011-01-01
PUBLISHED The effect of grinding-wheel eccentricity on grinding forces, wheel wear and final waviness height was studied. Eccentricity was evident in force oscillations and acceleration and audio measurements. A model was developed to predict final scallop-profile shape from grinding parameters and eccentricity. Recommendations are given on detecting eccentricity and determining when eccentricity is tolerable.
Analysis and optimization of dynamic model of eccentric shaft grinder
Gao, Yangjie; Han, Qiushi; Li, Qiguang; Peng, Baoying
2018-04-01
Eccentric shaft servo grinder is the core equipment in the process chain of machining eccentric shaft. The establishment of the movement model and the determination of the kinematic relation of the-axis in the grinding process directly affect the quality of the grinding process, and there are many error factors in grinding, and it is very important to analyze the influence of these factors on the work piece quality. The three-dimensional model of eccentric shaft grinder is drawn by Pro/E three-dimensional drawing software, the model is imported into ANSYS Workbench Finite element analysis software, and the finite element analysis is carried out, and then the variation and parameters of each component of the bed are obtained by the modal analysis result. The natural frequencies and formations of the first six steps of the eccentric shaft grinder are obtained by modal analysis, and the weak links of the parts of the grinder are found out, and a reference improvement method is proposed for the design of the eccentric shaft grinder in the future.
DEFF Research Database (Denmark)
Sorokin, Sergey; Holst-Jensen, Ole
2012-01-01
The paper addresses the power flow suppression in an elastic beam of the tubular cross section (a pipe) at relatively low excitation frequencies by deploying a small number of equally spaced inertial attachments. The methodology of boundary integral equations is used to obtain an exact solution...... of the problem in vibrations of this structure. The power flow analysis in a pipe with and without equally spaced eccentric inertial attachments is performed and the effect of suppression of the energy transmission is demonstrated theoretically. These results are put in the context of predictions from...
An Eccentrically Biased Rehabilitation Program Early after TKA Surgery
Directory of Open Access Journals (Sweden)
Robin L. Marcus
2011-01-01
Full Text Available Rehabilitation services are less-studied aspects of the management following total knee arthroplasty (TKA despite long-term suboptimal physical functioning and chronic deficits in muscle function. This paper describes the preliminary findings of a six-week (12 session eccentrically-biased rehabilitation program targeted at deficits in physical function and muscle function, initiated one month following surgery. A quasiexperimental, one group, pretest-posttest study with thirteen individuals (6 female, 7 male; mean age 57±7 years examined the effectiveness of an eccentrically-biased rehabilitation program. The program resulted in improvements in the primary physical function endpoints (SF-36 physical component summary and the six-minute walk test with increases of 59% and 47%, respectively. Muscle function endpoints (knee extension strength and power also increased 107% and 93%, respectively. Eccentrically-biased exercise used as an addition to rehabilitation may help amplify and accelerate physical function following TKA surgery.
Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames
Directory of Open Access Journals (Sweden)
Kamanli Mehmet
2017-01-01
Full Text Available After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.
Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames
Kamanli, Mehmet; Unal, Alptug
2017-10-01
After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.
Eccentric bracing of steel frames in seismic design
International Nuclear Information System (INIS)
Popov, E.P.; Manheim, D.
1981-01-01
The general concepts of designing eccentrically braced steel frames are discussed. A number of possible bracing configurations are pointed out which are suitable for this type of framing. The necessity for considering the collapse mechanism for the selected frame is brought out, and the need for considering the ductility demands for the critical elements is indicated. The need for web stiffness along the critical beam elements (links), and the necessity for lateral bracing at the potential plastic hinges is emphasized. Properly designed eccentrically braced frames provide good drift control for moderate earthquakes, and good ductility for extreme earthquakes. Experience gained in practice attests to the practicality and economy of this kind of framing. The major disadvantage of properly designed eccentrically braced frames lies in the fact that high local distortions may occur during a severe earthquake requiring repair. However, such severe distortions should attenuate rapidly from the damaged areas. (orig./HP)
A complete waveform model for compact binaries on eccentric orbits
George, Daniel; Huerta, Eliu; Kumar, Prayush; Agarwal, Bhanu; Schive, Hsi-Yu; Pfeiffer, Harald; Chu, Tony; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela
2017-01-01
We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model for black hole binaries with mass-ratios between 1 to 15 in the zero eccentricity limit over a wide range of the parameter space under consideration. We use this model to show that the gravitational wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational wave frequency of 14 Hz satisfies e0GW 150914 <= 0 . 15 and e0GW 151226 <= 0 . 1 .
A dimension decomposition approach based on iterative observer design for an elliptic Cauchy problem
Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem
2015-01-01
A state observer inspired iterative algorithm is presented to solve boundary estimation problem for Laplace equation using one of the space variables as a time-like variable. Three dimensional domain with two congruent parallel surfaces
Closed-Form Solutions for Gradient Elastic Beams with Geometric Discontinuities by Laplace Transform
Directory of Open Access Journals (Sweden)
Mustafa Özgür Yayli
2013-01-01
Full Text Available The static bending solution of a gradient elastic beam with external discontinuities is presented by Laplace transform. Its utility lies in the ability to switch differential equations to algebraic forms that are more easily solved. A Laplace transformation is applied to the governing equation which is then solved for the static deflection of the microbeam. The exact static response of the gradient elastic beam with external discontinuities is obtained by applying known initial conditions when the others are derived from boundary conditions. The results are given in a series of figures and compared with their classical counterparts. The main contribution of this paper is to provide a closed-form solution for the static deflection of microbeams under geometric discontinuities.
Performance of some numerical Laplace inversion methods on American put option formula
Octaviano, I.; Yuniar, A. R.; Anisa, L.; Surjanto, S. D.; Putri, E. R. M.
2018-03-01
Numerical inversion approaches of Laplace transform is used to obtain a semianalytic solution. Some of the mathematical inversion methods such as Durbin-Crump, Widder, and Papoulis can be used to calculate American put options through the optimal exercise price in the Laplace space. The comparison of methods on some simple functions is aimed to know the accuracy and parameters which used in the calculation of American put options. The result obtained is the performance of each method regarding accuracy and computational speed. The Durbin-Crump method has an average error relative of 2.006e-004 with computational speed of 0.04871 seconds, the Widder method has an average error relative of 0.0048 with computational speed of 3.100181 seconds, and the Papoulis method has an average error relative of 9.8558e-004 with computational speed of 0.020793 seconds.
The Eccentric-distance Sum of Some Graphs
P, Padmapriya; Mathad, Veena
2017-01-01
Let $G = (V,E)$ be a simple connected graph. Theeccentric-distance sum of $G$ is defined as$\\xi^{ds}(G) =\\ds\\sum_{\\{u,v\\}\\subseteq V(G)} [e(u)+e(v)] d(u,v)$, where $e(u)$ %\\dsis the eccentricity of the vertex $u$ in $G$ and $d(u,v)$ is thedistance between $u$ and $v$. In this paper, we establish formulaeto calculate the eccentric-distance sum for some graphs, namelywheel, star, broom, lollipop, double star, friendship, multi-stargraph and the join of $P_{n-2}$ and $P_2$.
The eccentric-distance sum of some graphs
Directory of Open Access Journals (Sweden)
Padmapriya P
2017-04-01
Full Text Available Let $G = (V,E$ be a simple connected graph. Theeccentric-distance sum of $G$ is defined as$\\xi^{ds}(G =\\ds\\sum_{\\{u,v\\}\\subseteq V(G} [e(u+e(v] d(u,v$, where $e(u$ %\\dsis the eccentricity of the vertex $u$ in $G$ and $d(u,v$ is thedistance between $u$ and $v$. In this paper, we establish formulaeto calculate the eccentric-distance sum for some graphs, namelywheel, star, broom, lollipop, double star, friendship, multi-stargraph and the join of $P_{n-2}$ and $P_2$.
Complete waveform model for compact binaries on eccentric orbits
Huerta, E. A.; Kumar, Prayush; Agarwal, Bhanu; George, Daniel; Schive, Hsi-Yu; Pfeiffer, Harald P.; Haas, Roland; Ren, Wei; Chu, Tony; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela
2017-01-01
We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are nonspinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third-order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to nonlinear memory. This framework reduces to the post-Newtonian approximant TaylorT4 at third post-Newtonian order in the zero-eccentricity limit. To improve phase accuracy, we also incorporate higher-order post-Newtonian corrections for the energy flux of quasicircular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced prescription for the inspiral evolution is combined with a fully analytical prescription for the merger-ringdown evolution constructed using a catalog of numerical relativity simulations. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model of Ref. [Y. Pan et al., Phys. Rev. D 89, 061501 (2014)., 10.1103/PhysRevD.89.061501] for quasicircular black hole binaries with mass ratios between 1 to 15 in the zero-eccentricity limit over a wide range of the parameter space under consideration. Using a set of eccentric numerical relativity simulations, not used during calibration, we show that our new eccentric model reproduces the true features of eccentric compact binary coalescence throughout merger. We use this model to show that the gravitational-wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational-wave frequency of 14 Hz satisfies e0GW 150914≤0.15 and e0GW 151226≤0.1 . We also find that varying the spin
Codomains for the Cauchy-Riemann and Laplace operators in ℝ2
Directory of Open Access Journals (Sweden)
Lloyd Edgar S. Moyo
2008-01-01
Full Text Available A codomain for a nonzero constant-coefficient linear partial differential operator P(∂ with fundamental solution E is a space of distributions T for which it is possible to define the convolution E*T and thus solving the equation P(∂S=T. We identify codomains for the Cauchy-Riemann operator in ℝ2 and Laplace operator in ℝ2 . The convolution is understood in the sense of the S′-convolution.
Center vortex properties in the Laplace center gauge of SU(2) Yang-Mills theory
Langfeld, K.; Reinhardt, H.; Schafke, A.
2001-01-01
Resorting to the the Laplace center gauge (LCG) and to the Maximal-center gauge (MCG), respectively, confining vortices are defined by center projection in either case. Vortex properties are investigated in the continuum limit of SU(2) lattice gauge theory. The vortex (area) density and the density of vortex crossing points are investigated. In the case of MCG, both densities are physical quantities in the continuum limit. By contrast, in the LCG the piercing as well as the crossing points li...
Laplace transforms of the Hulthén Green's function and their application to potential scattering
Laha, U.; Ray, S.; Panda, S.; Bhoi, J.
2017-10-01
We derive closed-form representations for the single and double Laplace transforms of the Hulthén Green's function of the outgoing wave multiplied by the Yamaguchi potential and write them in the maximally reduced form. We use the expression for the double transform to compute the low-energy phase shifts for the elastic scattering in the systems α-nucleon, α-He3, and α-H3. The calculation results agree well with the experimental data.
Directory of Open Access Journals (Sweden)
Tohru Morita
2016-03-01
Full Text Available In a series of papers, we discussed the solution of Laplace’s differential equation (DE by using fractional calculus, operational calculus in the framework of distribution theory, and Laplace transform. The solutions of Kummer’s DE, which are expressed by the confluent hypergeometric functions, are obtained with the aid of the analytic continuation (AC of Riemann–Liouville fractional derivative (fD and the distribution theory in the space D′R or the AC of Laplace transform. We now obtain the solutions of the hypergeometric DE, which are expressed by the hypergeometric functions, with the aid of the AC of Riemann–Liouville fD, and the distribution theory in the space D′r,R, which is introduced in this paper, or by the term-by-term inverse Laplace transform of AC of Laplace transform of the solution expressed by a series.
Directory of Open Access Journals (Sweden)
Sun Huan
2016-01-01
Full Text Available In this paper, we use the Laplace transform series expansion method to find the analytical solution for the local fractional heat-transfer equation defined on Cantor sets via local fractional calculus.
Liang, Yingjie; Chen, Wen; Magin, Richard L.
2016-07-01
Analytical solutions to the fractional diffusion equation are often obtained by using Laplace and Fourier transforms, which conveniently encode the order of the time and the space derivatives (α and β) as non-integer powers of the conjugate transform variables (s, and k) for the spectral and the spatial frequencies, respectively. This study presents a new solution to the fractional diffusion equation obtained using the Laplace transform and expressed as a Fox's H-function. This result clearly illustrates the kinetics of the underlying stochastic process in terms of the Laplace spectral frequency and entropy. The spectral entropy is numerically calculated by using the direct integration method and the adaptive Gauss-Kronrod quadrature algorithm. Here, the properties of spectral entropy are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall spectral entropy decreases with the increasing α and β, and that the normal or Gaussian case with α = 1 and β = 2, has the lowest spectral entropy (i.e., less information is needed to describe the state of a Gaussian process). In addition, as the neighborhood over which the entropy is calculated increases, the spectral entropy decreases, which implies a spatial averaging or coarse graining of the material properties. Consequently, the spectral entropy is shown to provide a new way to characterize the temporal correlation of anomalous diffusion. Future studies should be designed to examine changes of spectral entropy in physical, chemical and biological systems undergoing phase changes, chemical reactions and tissue regeneration.
Orbital Eccentricity and the Stability of Planets in the Alpha Centauri System
Lissauer, Jack
2016-01-01
Planets on initially circular orbits are typically more dynamically stable than planets initially having nonzero eccentricities. However, the presence of a major perturber that forces periodic oscillations of planetary eccentricity can alter this situation. We investigate the dependance of system lifetime on initial eccentricity for planets orbiting one star within the alpha Centauri system. Our results show that initial conditions chosen to minimize free eccentricity can substantially increase stability compared to planets on circular orbits.
Achilles tendon of wistar rats treated with laser therapy and eccentric exercise
Souza, Maria Verônica de; Silva, Carlos Henrique Osório; Silva, Micheline Ozana da; Costa, Marcela Bueno Martins da; Dornas, Raul Felipe; Borges, Andréa Pacheco Batista; Natali, Antônio José
2015-01-01
ABSTRACTIntroduction:Both laser therapy and eccentric exercises are used in tendon injuries. However, the association of these physiotherapeutic modalities is yet little investigated.Objective:To evaluate the effect of low-level laser therapy associated to eccentric exercise (downhill walking) on Achilles tendinopathy of Wistar rats.Method:Eighteen Achilles tendon from 15 adult male Wistar rats were used. Tendons were distributed in six groups (laser, eccentric exercise, laser and eccentric e...
Xanthine oxidase in human skeletal muscle following eccentric exercise
DEFF Research Database (Denmark)
Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.
1997-01-01
the increase in xanthine oxidase in the muscle there were no detectable changes in the levels of muscle malondialdehyde or in plasma antioxidant capacity up to 4 days post-exercise. 5. It is concluded that eccentric exercise leads to an increased level of xanthine oxidase in human muscle and that the increase...
Flow of viscoplastic fluids in eccentric annular geometries
DEFF Research Database (Denmark)
Szabo, Peter; Hassager, Ole
1992-01-01
A classification of flowfields for the flow of a Bingham fluid in general eccentric annular geometries is presented. Simple arguments show that a singularity can exist in the stress gradient on boundaries between zones with yielded and un-yielded fluid respectively. A Finite Element code is used...
On the orbital eccentricity of V477 Cygni
International Nuclear Information System (INIS)
Scarfe, C.D.; Barlow, D.J.; Niehaus, R.J.
1976-01-01
The eclipsing binary V477 Cygni (BD+31 0 3932) is a Main-Sequence system with unequal components, a substantial orbital eccentricity and clearly detectable apsidal rotation. Recent photoelectric times of minima support the value e=0.3 obtained by O'Connell (1970). The lower value obtained by Budding (1974) is ruled out. (Auth.)
Conformation radiotherapy with eccentric multi-leaves, (1)
International Nuclear Information System (INIS)
Obata, Yasunori; Sakuma, Sadayuki.
1986-01-01
In order to extend the application of the conformation radiotherapy, the eccentric multi-leaves are equipped with the linear accelerator. The information of the position of the collimators and the dose distribution of the eccentric conformation radiotherapy are calculated by the improved algorism of the treatment planning system. In simple cases, the dose distributions for the distant region from the rotational center are measured and compared with the calculated values. Both distributions are well coincided with the error of about 5 % in the high dose region and 10 % in the low dose region. In eccentric conformation radiotherapy, it is difficult to deliver the planned dose to the lesion. The dose increases with the distance of the target area from the rotational center. And the measured value and the calculated value are well coincided with 1 % error. So after getting the dose ratio of the rotational center to the target area, the calculated dose can be delivered to the rotational center. The advantages of the eccentric conformation radiotherapy are a good coincidence of target area and treated area, a partial shielding and a hollow out technique without absorber. The limitation of the movement of the collimator from center is 5 cm at 1 m SCD. (author)
Detection of Static Eccentricity Fault in Saturated Induction Motors by ...
African Journals Online (AJOL)
Unfortunately, motor current signature analysis (MCSA) cannot detect the small degrees of the purely static eccentricity (SE) defects, while the air-gap magnetic flux signature analysis (FSA) is applied successfully. The simulation results are obtained by using time stepping finite elements (TSFE) method. In order to show the ...
Zhan, X.
2005-01-01
A parallel Fortran-MPI (Message Passing Interface) software for numerical inversion of the Laplace transform based on a Fourier series method is developed to meet the need of solving intensive computational problems involving oscillatory water level's response to hydraulic tests in a groundwater environment. The software is a parallel version of ACM (The Association for Computing Machinery) Transactions on Mathematical Software (TOMS) Algorithm 796. Running 38 test examples indicated that implementation of MPI techniques with distributed memory architecture speedups the processing and improves the efficiency. Applications to oscillatory water levels in a well during aquifer tests are presented to illustrate how this package can be applied to solve complicated environmental problems involved in differential and integral equations. The package is free and is easy to use for people with little or no previous experience in using MPI but who wish to get off to a quick start in parallel computing. ?? 2004 Elsevier Ltd. All rights reserved.
Freundorfer, Katrin; Kats, Daniel; Korona, Tatiana; Schütz, Martin
2010-12-28
A new multistate local CC2 response method for calculating excitation energies and first-order properties of excited triplet states in extended molecular systems is presented. The Laplace transform technique is employed to partition the left/right local CC2 eigenvalue problems as well as the linear equations determining the Lagrange multipliers needed for the properties. The doubles part in the equations can then be inverted on-the-fly and only effective equations for the singles part must be solved iteratively. The local approximation presented here is adaptive and state-specific. The density-fitting method is utilized to approximate the electron-repulsion integrals. The accuracy of the new method is tested by comparison to canonical reference values for a set of 12 test molecules and 62 excited triplet states. As an illustrative application example, the lowest four triplet states of 3-(5-(5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophene-2-yl)thiophene-2-yl)-2-cyanoacrylic acid, an organic sensitizer for solar-cell applications, are computed in the present work. No triplet charge-transfer states are detected among these states. This situation contrasts with the singlet states of this molecule, where the lowest singlet state has been recently found to correspond to an excited state with a pronounced charge-transfer character having a large transition strength.
Applying KAM Theory to Highly Eccentric Orbits
2014-03-27
tingly committing a couple blunders, Kepler published Astronomia Nova ΑΙΤΙΟΛΟΓΣΤΟΣ seu physica coelestis, tradita commentariis de motibus stellae...to explain that this parameter is typically determined by the size of mass ratios, which for the solar system dynamics can be relatively big when... super efficient, refined code and lots of run time. Even in this particular test case, there may be problems/limitations with the larger orbits. It
Analytical procedure in aseismic design of eccentric structure using response spectrum
International Nuclear Information System (INIS)
Takemori, T.; Kuwabara, Y.; Suwabe, A.; Mitsunobu, S.
1977-01-01
In this paper, the response are evaluated by the following two methods by the use of the typical torsional analytical models in which masses, rigidities, eccentricities between the centers thereof and several actual earthquake waves are taken as the parameters: (1) the root mean square of responses by using the response spectra derived from the earthquake waves, (2) the time history analysis by using the earthquake wave. The earthquake waves used are chosen to present the different frequency content and magnitude of the response spectra. The typical results derived from the study are as follows: (a) the response accelerations of mass center in the input earthquake direction by the (1) method coincide comparatively well with those by the (2) method, (b) the response accelerations perpendicular to the input earthquake direction by (1) method are 2 to 3 times as much as those by the (2) method, (c) the amplification of the response accelerations at arbitrary points distributed on the spread mass to those of center of the lumped mass by the (1) method are remarkably large compared with those by the (2) method in both directions respectively. These problems on the response spectrum analysis for the above-mentioned eccentric structure are discussed, and an improved analytical method applying the amplification coefficients of responses derived from this parametric time history analysis is proposed to the actual seismic design by the using of the given design ground response spectrum with root mean square technique
Improvements on the minimax algorithm for the Laplace transformation of orbital energy denominators
Energy Technology Data Exchange (ETDEWEB)
Helmich-Paris, Benjamin, E-mail: b.helmichparis@vu.nl; Visscher, Lucas, E-mail: l.visscher@vu.nl
2016-09-15
We present a robust and non-heuristic algorithm that finds all extremum points of the error distribution function of numerically Laplace-transformed orbital energy denominators. The extremum point search is one of the two key steps for finding the minimax approximation. If pre-tabulation of initial guesses is supposed to be avoided, strategies for a sufficiently robust algorithm have not been discussed so far. We compare our non-heuristic approach with a bracketing and bisection algorithm and demonstrate that 3 times less function evaluations are required altogether when applying it to typical non-relativistic and relativistic quantum chemical systems.
Directory of Open Access Journals (Sweden)
Mishra Vinod
2016-01-01
Full Text Available Numerical Laplace transform method is applied to approximate the solution of nonlinear (quadratic Riccati differential equations mingled with Adomian decomposition method. A new technique is proposed in this work by reintroducing the unknown function in Adomian polynomial with that of well known Newton-Raphson formula. The solutions obtained by the iterative algorithm are exhibited in an infinite series. The simplicity and efficacy of method is manifested with some examples in which comparisons are made among the exact solutions, ADM (Adomian decomposition method, HPM (Homotopy perturbation method, Taylor series method and the proposed scheme.
Tangential boundary values of Laplace transforms. Applications to Muntz-Szasz type approximation
Sedletskii, A. M.
2003-02-01
We consider the Laplace transforms (LT) of functions in L^q(\\mathbb R_+), 1, with a slowly varying weight. We prove that if the weight satisfies certain conditions, then each LT of this class has tangential boundary values almost everywhere on the imaginary axis, and the structure of the corresponding neighbourhoods depends on the weight only. This result is applied to distinguish a wide class of weighted L^p spaces on the half-line such that the Szasz condition is not necessary for the completeness of the system \\exp(-\\lambda_n t) in these spaces.
Tangential boundary values of Laplace transforms. Applications to Muntz-Szasz type approximation
Energy Technology Data Exchange (ETDEWEB)
Sedletskii, A M [M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
2003-02-28
We consider the Laplace transforms (LT) of functions in L{sup q}(R{sub +}), 1
International Nuclear Information System (INIS)
Ganapol, B.D.; Sumini, M.
1990-01-01
The time dependent space second order discrete form of the monokinetic transport equation is given an analytical solution, within the Laplace transform domain. Th A n dynamic model is presented and the general resolution procedure is worked out. The solution in the time domain is then obtained through the application of a numerical transform inversion technique. The justification of the research relies in the need to produce reliable and physically meaningful transport benchmarks for dynamic calculations. The paper is concluded by a few results followed by some physical comments
The monotonicity rules for the ratio of two Laplace transforms with applications
Yang, Zhen-Hang; Tian, Jing-Feng
2018-01-01
Let $f$ and $g$ be both continuous functions on $\\left( 0,\\infty \\right) $ with $g\\left( t\\right) >0$ for $t\\in \\left( 0,\\infty \\right) $ and let $ F\\left( x\\right) =\\mathcal{L}\\left( f\\right) $, $G\\left( x\\right) =\\mathcal{L }\\left( g\\right) $ be respectively the Laplace transforms of $f$ and $g$ converging for $x>0$. We prove that if there is a $t^{\\ast }\\in \\left( 0,\\infty \\right) $ such that $f/g$ is strictly increasing on $\\left( 0,t^{\\ast }\\right) $ and strictly decreasing on $\\left( t^...
Eccentric exercise decreases maximal insulin action in humans
DEFF Research Database (Denmark)
Asp, Svend; Daugaard, J R; Kristiansen, S
1996-01-01
subjects participated in two euglycaemic clamps, performed in random order. One clamp was preceded 2 days earlier by one-legged eccentric exercise (post-eccentric exercise clamp (PEC)) and one was without the prior exercise (control clamp (CC)). 2. During PEC the maximal insulin-stimulated glucose uptake...... for all three clamp steps used (P maximal activity of glycogen synthase was identical in the two thighs for all clamp steps. 3. The glucose infusion rate (GIR......) necessary to maintain euglycaemia during maximal insulin stimulation was lower during PEC compared with CC (15.7%, 81.3 +/- 3.2 vs. 96.4 +/- 8.8 mumol kg-1 min-1, P maximal...
Patellar tendon load in different types of eccentric squats.
Frohm, A; Halvorsen, K; Thorstensson, A
2007-07-01
Differences in mechanical loading of the patellar tendon have been suggested as a reason for varying effects in rehabilitation of patellar tendinopathy using different eccentric squat exercises and devices. The aim was to characterize the magnitude and pattern of mechanical load at the knee and on the patellar tendon during four types of eccentric squat. Subjects performed squats with a submaximal free weight and with maximal effort in a device for eccentric overloading (Bromsman), on a decline board and horizontal surface. Kinematics was recorded with a motion-capture system, reaction forces with force plates, and electromyography from three leg muscles with surface electrodes. Inverse dynamics was used to calculate knee joint kinetics. Eccentric work, mean and peak patellar tendon force, and angle at peak force were greater (25-30%) for squats on decline board compared to horizontal surface with free weight, but not in Bromsman. Higher knee load forces (60-80%), but not work, were observed with Bromsman than free weight. Angular excursions at the knee and ankle were larger with decline board, particularly with free weight, and smaller in Bromsman than with free weight. Mean electromyography was greater on a decline board for gastrocnemius (13%) and vastus medialis (6%) with free weight, but in Bromsman only for gastrocnemius (7%). The results demonstrated clear differences in the biomechanical loading on the knee during different squat exercises. Quantification of such differences provides information that could be used to explain differences in rehabilitation effects as well as in designing more optimal rehabilitation exercises for patellar tendinopathy.
António Reis and Margarida Cordeiro, eccentric filmmakers
Directory of Open Access Journals (Sweden)
Lucas Tavares Neves
2016-02-01
Full Text Available The international symposium "António Reis and Margarida Cordeiro, eccentric filmmakers" took place in Paris between the 3rd and the 4th of June, 2015. Speakers exchanged on the political, social and poetical aspects of the duo's cinematography, as well as on the reverberations of titles such as Jaime (1974 and Trás-os-montes (1976 on the Portuguese filmic landscape of the decades that followed.
Experimental Investigations on Axially and Eccentrically Loaded Masonry Walls
Keshava, Mangala; Raghunath, Seshagiri Rao
2017-12-01
In India, un-reinforced masonry walls are often used as main structural components in load bearing structures. Indian code on masonry accounts the reduction in strength of walls by using stress reduction factors in its design philosophy. This code was introduced in 1987 and reaffirmed in 1995. The present study investigates the use of these factors for south Indian masonry. Also, with the gaining popularity in block work construction, the aim of this study was to find out the suitability of these factors given in the Indian code to block work masonry. Normally, the load carrying capacity of masonry walls can be assessed in three ways, namely, (1) tests on masonry constituents, (2) tests on masonry prisms and (3) tests on full-scale wall specimens. Tests on bricks/blocks, cement-sand mortar, brick/block masonry prisms and 14 full-scale brick/block masonry walls formed the experimental investigation. The behavior of the walls was investigated under varying slenderness and eccentricity ratios. Hollow concrete blocks normally used as in-fill masonry can be considered as load bearing elements as its load carrying capacity was found to be high when compared to conventional brick masonry. Higher slenderness and eccentricity ratios drastically reduced the strength capacity of south Indian brick masonry walls. The reduction in strength due to slenderness and eccentricity is presented in the form of stress reduction factors in the Indian code. These factors obtained through experiments on eccentrically loaded brick masonry walls was lower while that of brick/block masonry under axial loads was higher than the values indicated in the Indian code. Also the reduction in strength is different for brick and block work masonry thus indicating the need for separate stress reduction factors for these two masonry materials.
The Effects of Spatial Endogenous Pre-cueing across Eccentricities
Feng, Jing; Spence, Ian
2017-01-01
Frequently, we use expectations about likely locations of a target to guide the allocation of our attention. Despite the importance of this attentional process in everyday tasks, examination of pre-cueing effects on attention, particularly endogenous pre-cueing effects, has been relatively little explored outside an eccentricity of 20°. Given the visual field has functional subdivisions that attentional processes can differ significantly among the foveal, perifoveal, and more peripheral areas...
The Effects of Spatial Endogenous Pre-cueing across Eccentricities.
Feng, Jing; Spence, Ian
2017-01-01
Frequently, we use expectations about likely locations of a target to guide the allocation of our attention. Despite the importance of this attentional process in everyday tasks, examination of pre-cueing effects on attention, particularly endogenous pre-cueing effects, has been relatively little explored outside an eccentricity of 20°. Given the visual field has functional subdivisions that attentional processes can differ significantly among the foveal, perifoveal, and more peripheral areas, how endogenous pre-cues that carry spatial information of targets influence our allocation of attention across a large visual field (especially in the more peripheral areas) remains unclear. We present two experiments examining how the expectation of the location of the target shapes the distribution of attention across eccentricities in the visual field. We measured participants' ability to pick out a target among distractors in the visual field after the presentation of a highly valid cue indicating the size of the area in which the target was likely to occur, or the likely direction of the target (left or right side of the display). Our first experiment showed that participants had a higher target detection rate with faster responses, particularly at eccentricities of 20° and 30°. There was also a marginal advantage of pre-cueing effects when trials of the same size cue were blocked compared to when trials were mixed. Experiment 2 demonstrated a higher target detection rate when the target occurred at the cued direction. This pre-cueing effect was greater at larger eccentricities and with a longer cue-target interval. Our findings on the endogenous pre-cueing effects across a large visual area were summarized using a simple model to assist in conceptualizing the modifications of the distribution of attention over the visual field. We discuss our finding in light of cognitive penetration of perception, and highlight the importance of examining attentional process across
The Effects of Spatial Endogenous Pre-cueing across Eccentricities
Directory of Open Access Journals (Sweden)
Jing Feng
2017-06-01
Full Text Available Frequently, we use expectations about likely locations of a target to guide the allocation of our attention. Despite the importance of this attentional process in everyday tasks, examination of pre-cueing effects on attention, particularly endogenous pre-cueing effects, has been relatively little explored outside an eccentricity of 20°. Given the visual field has functional subdivisions that attentional processes can differ significantly among the foveal, perifoveal, and more peripheral areas, how endogenous pre-cues that carry spatial information of targets influence our allocation of attention across a large visual field (especially in the more peripheral areas remains unclear. We present two experiments examining how the expectation of the location of the target shapes the distribution of attention across eccentricities in the visual field. We measured participants’ ability to pick out a target among distractors in the visual field after the presentation of a highly valid cue indicating the size of the area in which the target was likely to occur, or the likely direction of the target (left or right side of the display. Our first experiment showed that participants had a higher target detection rate with faster responses, particularly at eccentricities of 20° and 30°. There was also a marginal advantage of pre-cueing effects when trials of the same size cue were blocked compared to when trials were mixed. Experiment 2 demonstrated a higher target detection rate when the target occurred at the cued direction. This pre-cueing effect was greater at larger eccentricities and with a longer cue-target interval. Our findings on the endogenous pre-cueing effects across a large visual area were summarized using a simple model to assist in conceptualizing the modifications of the distribution of attention over the visual field. We discuss our finding in light of cognitive penetration of perception, and highlight the importance of examining
Seismic analysis of a reactor building with eccentric layout
International Nuclear Information System (INIS)
Itoh, T.; Deng, D.Z.F.; Lui, K.
1987-01-01
Conventional design for a reactor building in a high seismic area has adopted an essentially concentric layout in response to fear of excessive torsional effect due to horizontal seismic load on an eccentric plant. This concentric layout requirement generally results in an inflexible arrangement of the plant facilities and thus increases the plant volume. This study is performed to investigate the effect of eccentricity on the overall seismic structural response and to provide technical information in this regard to substantiate the volume reduction of the overall power plant. The plant layout is evolved from the Bechtel standard plan of a PWR plant by integrating the reactor building and the auxiliary building into a combined building supported on a common basemat. This plant layout is optimized for volume utilization and to reduce the length of piping systems. The mass centers at various elevations of the combined building do not coincide with the rigidity center (RC) of the respective floor and the geometric center of the basemat, thus creating an eccentric response of the building in a seismic environment. Therefore, the torsional effects of the structure have to be taken into account in the seismic analysis
Quasinormal modes of Schwarzschild black holes: Defined and calculated via Laplace transformation
International Nuclear Information System (INIS)
Nollert, H.; Schmidt, B.G.
1992-01-01
Quasinormal modes play a prominent role in the literature when dealing with the propagation of linearized perturbations of the Schwarzschild geometry. We show that space-time properties of the solutions of the perturbation equation imply the existence of a unique Green's function of the Laplace-transformed wave equation. This Green's function may be constructed from solutions of the homogeneous time-independent equation, which are uniquely characterized by the boundary conditions they satisfy. These boundary conditions are identified as the boundary conditions usually imposed for quasinormal-mode solutions. It turns out that solutions of the homogeneous equation exist which satisfy these boundary conditions at the horizon and at spatial infinity simultaneously, leading to poles of the Green's function. We therefore propose to define quasinormal-mode frequencies as the poles of the Green's function for the Laplace-transformed equation. On the basis of this definition a new technique for the numerical calculation of quasinormal frequencies is developed. The results agree with computations of Leaver, but not with more recent results obtained by Guinn, Will, Kojima, and Schutz
Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method
Energy Technology Data Exchange (ETDEWEB)
Fatalov, Vadim R [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)
2011-08-31
We prove results on exact asymptotics as n{yields}{infinity} for the expectations E{sub a} exp{l_brace}-{theta}{Sigma}{sub k=0}{sup n-1}g(X{sub k}){r_brace} and probabilities P{sub a}{l_brace}(1/n {Sigma}{sub k=0}{sup n-1}g(X{sub k})
International Nuclear Information System (INIS)
Dimitrov, L.; Tzvetkova, A.; Nikolov, A.
1997-01-01
The compartmental models have a variety of applications in the analysis of the transport of radioactive and non-radioactive material in complex systems as atmosphere, hydrosphere, food chains, human body. The analysis of the biokinetic behaviour of the radioactive material into a human body gives a possibility for correct assessment of the dose from internal irradiation. Skrable has given a decision of non-cyclic linear compartmental models in case of a single intake of material in the compartments as an initial condition. The main purpose of our article is to write down a procedure for analysis of a general compartmental model in case of continuous intake of material into the compartments. This procedure is related to retain function concept and had developed on the base of Laplace transform. On the base on the proposed procedure a non-cyclic linear compartmental model decisions are given in case of both a single and a continuous intake. The Laplace images of cyclic and circular linear compartmental model decisions and their originals in some cases are given too. (author)
Directory of Open Access Journals (Sweden)
Masjed-Jamei Mohammad
2005-01-01
Full Text Available From the main equation ( a x 2 +bx+c y ″ n ( x +( dx+e y ′ n ( x −n( ( n−1 a+d y n ( x =0 , n∈ ℤ + , six finite and infinite classes of orthogonal polynomials can be extracted. In this work, first we have a survey on these classes, particularly on finite classes, and their corresponding rational orthogonal polynomials, which are generated by Mobius transform x=p z −1 +q , p≠0 , q∈ℝ . Some new integral relations are also given in this section for the Jacobi, Laguerre, and Bessel orthogonal polynomials. Then we show that the rational orthogonal polynomials can be a very suitable tool to compute the inverse Laplace transform directly, with no additional calculation for finding their roots. In this way, by applying infinite and finite rational classical orthogonal polynomials, we give three basic expansions of six ones as a sample for computation of inverse Laplace transform.
Criterio de Laplace: Premisa fundamental en inducción estadística
Directory of Open Access Journals (Sweden)
Emilio José Chaves
2015-01-01
Full Text Available Se discute el Criterio o Regla de Laplace y fundamenta su uso para construir la curva de Lorenz, CL, a partir de series de datos. Presenta ejemplos y gráficos de modelos de ajuste de la CL y de la FDA inferidas; comenta los límites del modelo. El método separa la media real, U, de la función de distribución adimensional (en medias, de modo que FDA(real = U(real*FDA(en medias. Busca fundamentar la inferencia estadística univariable de datos positivos a partir del criterio de Laplace, matemáticas clásicas y lógica de conjuntos.Este método no-paramétrico supone frecuencias 1/N idénticas para los N datos, sin usar funciones de distribución a-priori. Dada su sencillez, propone su empleo en educación estadística y su aplicación en investigación, como elemento teórico previo al manejo del análisis ultivariable.
Eccentric exercise: mechanisms and effects when used as training regime or training adjunct.
Vogt, Michael; Hoppeler, Hans H
2014-06-01
The aim of the current review is to discuss applications and mechanism of eccentric exercise in training regimes of competitive sports. Eccentric muscle work is important in most sports. Eccentric muscle contractions enhance the performance during the concentric phase of stretch-shortening cycles, which is important in disciplines like sprinting, jumping, throwing, and running. Muscles activated during lengthening movements can also function as shock absorbers, to decelerate during landing tasks or to precisely deal with high external loading in sports like alpine skiing. The few studies available on trained subjects reveal that eccentric training can further enhance maximal muscle strength and power. It can further optimize muscle length for maximal tension development at a greater degree of extension, and has potential to improve muscle coordination during eccentric tasks. In skeletal muscles, these functional adaptations are based on increases in muscle mass, fascicle length, number of sarcomeres, and cross-sectional area of type II fibers. Identified modalities for eccentric loading in athletic populations involve classical isotonic exercises, accentuated jumping exercises, eccentric overloading exercises, and eccentric cycle ergometry. We conclude that eccentric exercise offers a promising training modality to enhance performance and to prevent injuries in athletes. However, further research is necessary to better understand how the neuromuscular system adapts to eccentric loading in athletes. Copyright © 2014 the American Physiological Society.
Brain activation associated with eccentric movement: A narrative review of the literature.
Perrey, Stéphane
2018-02-01
The movement occurring when a muscle exerts tension while lengthening is known as eccentric muscle action. Literature contains limited evidence on how our brain controls eccentric movement. However, how the cortical regions in the motor network are activated during eccentric muscle actions may be critical for understanding the underlying control mechanism of eccentric movements encountered in daily tasks. This is a novel topic that has only recently begun to be investigated through advancements in neuroimaging methods (electroencephalography, EEG; functional magnetic resonance imaging, fMRI). This review summarizes a selection of seven studies indicating mainly: longer time and higher cortical signal amplitude (EEG) for eccentric movement preparation and execution, greater magnitude of cortical signals with wider activated brain area (EEG, fMRI), and weaker brain functional connectivity (fMRI) between primary motor cortex (M1) and other cortical areas involved in the motor network during eccentric muscle actions. Only some differences among studies due to the forms of movement with overload were observed in the contralateral (to the active hand) M1 activity during eccentric movement. Altogether, the findings indicate an important challenge to the brain for controlling the eccentric movement. However, our understanding remains limited regarding the acute effects of eccentric exercise on cortical regions and their cooperation as functional networks that support motor functions. Further analysis and standardized protocols will provide deeper insights into how different cortical regions of the underlying motor network interplay with each other in increasingly demanding muscle exertions in eccentric mode.
Roig, Marc; Macintyre, Donna L; Eng, Janice J; Narici, Marco V; Maganaris, Constantinos N; Reid, W Darlene
2010-06-01
Overall reductions in muscle strength typically accompany the aging process. However, older adults show a relatively preserved capacity of producing eccentric strength. The preservation of eccentric strength in older adults is a well-established phenomenon, occurring indiscriminately across different muscle groups, independent of age-related architectural changes in muscle structure and velocity of movement. The mechanisms for the preservation of eccentric strength appear to be mechanical and cellular in origin and include both passive and active elements regulating muscle stiffness. The age-related accumulation of non-contractile material in the muscle-tendon unit increases passive stiffness, which might offer mechanical advantage during eccentric contractions. In addition, the preserved muscle tension and increased instantaneous stiffness of old muscle fibers during stretch increase active stiffness, which might enhance eccentric strength. The fact that the preservation of eccentric strength is present in people with chronic conditions when compared to age-matched healthy controls indicates that the aging process per se does not exclusively mediate the preservation of eccentric strength. Physical inactivity, which is common in elderly and people with chronic conditions, is a potential factor regulating the preservation of eccentric strength. When compared to concentric strength, the magnitude of preservation of eccentric strength in older adults ranges from 2% to 48% with a mean value of 21.6% from all studies. This functional reserve of eccentric strength might be clinically relevant, especially to initiate resistance training and rehabilitation programs in individuals with low levels of strength. 2010 Elsevier Inc. All rights reserved.
Climate of an Earth-Like World with Changing Eccentricity
Kohler, Susanna
2017-02-01
Having a giant planet like Jupiter next door can really wreak havoc on your orbit! A new study examines what such a bad neighbor might mean for the long-term climate of an Earth-like planet.Influence of a Bad NeighborThe presence of a Jupiter-like giant planet in a nearby orbit can significantly affect how terrestrial planets evolve dynamically, causing elements like the planets orbital eccentricities and axial tilts to change over time. Earth is saved this inconvenience Jupiter isnt close enough to significantly influence us, and our large moon stabilizes our orbit against Jupiters tugs.Top panels: Authors simulationoutcomes for Case1, in which the planets eccentricity varies from 0 to 0.283 over 6500 years. Bottom panels: Outcomes for Case 2, in which the planets eccentricity varies from 0 to 0.066 over 4500 years. The highereccentricities reached in Case 1 causes the climate parameters to vary more widely. Click for a better look! [Way Georgakarakos 2017]Mars, on the other hand, isnt as lucky: its possible that Jupiters gravitational pull causes Marss axial tilt, for instance, to evolve through a range as large as 0 to 60 degrees on timescales of millions of years! Marss orbital eccentricity is similarly thought to vary due to Jupiters influence, and both of these factors play a major role in determining Marss climate.As exoplanet missions discover more planets many of which are Earth-like we must carefully consider which among these are most likely to be capable of sustaining life. If having a nearby neighbor like a Jupiter can tug an Earth-like world into an orbit with varying eccentricity, how does this affect the planets climate? Will the planet remain temperate? Or will it develop a runaway heating or cooling effect as it orbits, rendering it uninhabitable?Oceans and OrbitsTo examine these questions, two scientists have built the first ever 3D global climate model simulations of an Earth-like world using a fully coupled ocean (necessary for understanding
Energy Technology Data Exchange (ETDEWEB)
Massopust, P.R.
1997-08-01
All solutions of an in its angular coordinates continuously perturbed Laplace-Beltrami equation in the open unit ball IB{sup n+2} {contained_in} IR{sup n+2}, n {ge} 1, are characterized. Moreover, it is shown that such pertubations yield distributional boundary values which are different from, but algebraically and topologically equivalent to, the hyperfunctions of Lions & Magenes. This is different from the case of radially perturbed Laplace-Beltrami operators (cf. [7]) where one has stability of distributional boundary values under such perturbations.
Effect of load eccentricity on the buckling of thin-walled laminated C-columns
Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert
2018-01-01
The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.
Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise.
Hyldahl, Robert D; Hubal, Monica J
2014-02-01
The response of skeletal muscle to unaccustomed eccentric exercise has been studied widely, yet it is incompletely understood. This review is intended to provide an up-to-date overview of our understanding of how skeletal muscle responds to eccentric actions, with particular emphasis on the underlying molecular and cellular mechanisms of damage and recovery. This review begins by addressing the question of whether eccentric actions result in physical damage to muscle fibers and/or connective tissue. We next review the symptomatic manifestations of eccentric exercise (i.e., indirect damage markers, such as delayed onset muscle soreness), with emphasis on their relatively poorly understood molecular underpinnings. We then highlight factors that potentially modify the muscle damage response following eccentric exercise. Finally, we explore the utility of using eccentric training to improve muscle function in populations of healthy and aging individuals, as well as those living with neuromuscular disorders. Copyright © 2013 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Wang Jinchuan; Xi Hongfei; Guo Zhongyan; Zhan Wenlong; Zhu Yongtai; Zhou Jianqun; Liu Guanhua; Su Hong
1992-01-01
Laplace transform method is applied to investigate the effect of the choice of amplifier parameter on identification of the light charged particles emitted from 12 C(46.7 MeV/u) + 58 Ni reaction. The significance of application of Laplace transformation method in heavy ion experimental nuclear physics is discussed as well
Effect of eccentric exercise on the healing process of injured patellar tendon in rats
Nakamura, Kenichi; Kitaoka, Katsuhiko; Tomita, Katsuro
2008-01-01
Background. Earlier studies have reported positive results from eccentric training in patients with tendon disorders. The reasons for the beneficial clinical effects of eccentric training are not known. Vascularization followed by regression of the vasculature enhances the healing response of injured tendons. Eccentric exercise induces a more beneficial healing response than concentric exercise. Methods. Sixty rats with patellar tendon injuries were divided into three groups: nonexercise cont...
Murphy, J. P.
1972-01-01
Analytical prediction of expected eccentricity perturbations for the RAE 2 lunar orbit shows that the eccentricity will grow linearly in time. Parametric inclination studies and analysis of perturbation equations establish a critical retrograde inclination of 116.565 at which the positive perturbation slope vanishes for a circular orbit about 1100 m above the lunar surface with an eccentricity constraint of less than 0.005 during a period of about one year.
Leakage flow-induced vibration of an eccentric tube-in-tube slip joint
International Nuclear Information System (INIS)
Mulcahy, T.M.
1985-08-01
Eccentricity of a specific slip-joint design separating two cantilevered, telescoping tubes did not create any self-excited lateral vibrations that had not been observed previously for a concentric slip joint. In fact, the eccentricity made instabilities less likely to occur, but only marginally. Most important, design rules previously established to avoid instabilities for the concentric slip joint remain valid for the eccentric slip joint. 6 refs., 9 figs., 2 tabs
The gravitational-wave memory from eccentric binaries
International Nuclear Information System (INIS)
Favata, Marc
2011-01-01
The nonlinear gravitational-wave memory causes a time-varying but nonoscillatory correction to the gravitational-wave polarizations. It arises from gravitational-waves that are sourced by gravitational-waves. Previous considerations of the nonlinear memory effect have focused on quasicircular binaries. Here I consider the nonlinear memory from Newtonian orbits with arbitrary eccentricity. Expressions for the waveform polarizations and spin-weighted spherical-harmonic modes are derived for elliptic, hyperbolic, parabolic, and radial orbits. In the hyperbolic, parabolic, and radial cases the nonlinear memory provides a 2.5 post-Newtonian (PN) correction to the leading-order waveforms. This is in contrast to the elliptical and quasicircular cases, where the nonlinear memory corrects the waveform at leading (0PN) order. This difference in PN order arises from the fact that the memory builds up over a short ''scattering'' time scale in the hyperbolic case, as opposed to a much longer radiation-reaction time scale in the elliptical case. The nonlinear memory corrections presented here complete our knowledge of the leading-order (Peters-Mathews) waveforms for elliptical orbits. These calculations are also relevant for binaries with quasicircular orbits in the present epoch which had, in the past, large eccentricities. Because the nonlinear memory depends sensitively on the past evolution of a binary, I discuss the effect of this early-time eccentricity on the value of the late-time memory in nearly circularized binaries. I also discuss the observability of large ''memory jumps'' in a binary's past that could arise from its formation in a capture process. Lastly, I provide estimates of the signal-to-noise ratio of the linear and nonlinear memories from hyperbolic and parabolic binaries.
Eccentricity samples: Implications on the potential and the velocity distribution
Directory of Open Access Journals (Sweden)
Cubarsi R.
2017-01-01
Full Text Available Planar and vertical epicycle frequencies and local angular velocity are related to the derivatives up to the second order of the local potential and can be used to test the shape of the potential from stellar disc samples. These samples show a more complex velocity distribution than halo stars and should provide a more realistic test. We assume an axisymmetric potential allowing a mixture of independent ellipsoidal velocity distributions, of separable or Staeckel form in cylindrical or spherical coordinates. We prove that values of local constants are not consistent with a potential separable in addition in cylindrical coordinates and with a spherically symmetric potential. The simplest potential that fits the local constants is used to show that the harmonical and non-harmonical terms of the potential are equally important. The same analysis is used to estimate the local constants. Two families of nested subsamples selected for decreasing planar and vertical eccentricities are used to borne out the relation between the mean squared planar and vertical eccentricities and the velocity dispersions of the subsamples. According to the first-order epicycle model, the radial and vertical velocity components provide accurate information on the planar and vertical epicycle frequencies. However, it is impossible to account for the asymmetric drift which introduces a systematic bias in estimation of the third constant. Under a more general model, when the asymmetric drift is taken into account, the rotation velocity dispersions together with their asymmetric drift provide the correct fit for the local angular velocity. The consistency of the results shows that this new method based on the distribution of eccentricities is worth using for kinematic stellar samples. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. No 176011: Dynamics and Kinematics of Celestial Bodies and Systems
Comparison of concentric and eccentric bench press repetitions to failure.
Kelly, Stephen B; Brown, Lee E; Hooker, Steven P; Swan, Pamela D; Buman, Matthew P; Alvar, Brent A; Black, Laurie E
2015-04-01
Eccentric muscle actions (ECC) are characterized by muscle lengthening, despite actin-myosin crossbridge formation. Muscles acting eccentrically are capable of producing higher levels of force compared with muscles acting concentrically. The purpose of this study was to determine whether ECC bench press yields greater strength than concentric (CON) as determined by 1 repetition maximum (1RM). Additionally, a comparison was made examining differences in the number of repetitions to failure at different relative intensities of 1RM. Thirty healthy men (age = 24.63 ± 5.6 years) were tested for 1RM in CON and ECC bench press and the number of repetitions completed at 60, 70, 80, and 90% 1RM. For CON repetitions, the weight was mechanically lowered to the chest, and the participant pressed it up until the elbows were fully extended. The ECC bench press consisted of lowering a barbell from a fully extended elbow position to the chest in a continuous controlled manner for 3 seconds as determined by electronic metronome. Paired t-tests showed that ECC 1RM (115.99 ± 31.08 kg) was significantly (p ≤ 0.05) greater than CON 1RM (93.56 ± 26.56 kg), and the number of repetitions completed at 90% 1RM was significantly (p ≤ 0.05) greater in ECC (7.67 ± 3.24) as compared with CON (4.57 ± 2.21). There were no significant differences in number of completed repetitions during CON and ECC bench press at 60, 70, and 80% 1RM. These data indicate that ECC actions yield increased force capabilities (∼120%) as compared with CON in the bench press and may be less prone to fatigue, especially at higher intensities. These differences suggest a need to develop unique strategies for training eccentrically.
Directory of Open Access Journals (Sweden)
Nosratollah Hedayatpour
2015-01-01
Full Text Available Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered.
New binary pulsar in a highy eccentric orbit
International Nuclear Information System (INIS)
Stokes, G.H.; Taylor, J.H.; Dewey, R.J.
1985-01-01
We report the discovery of PSR 2303+46, the fifth radio pulsar known to be in a gravitationally bound orbit around another star. The pulsar period (1.066 s) and the orbital eccentricity (0.658) are the largest amount the five binary systems, while the orbital period (12./sup d/34) lies near the middle of the range. Evolutionary considerations suggest strongly that the companion is another neutron star. The general relativistic precession of periastron should be observable within 1 or 2 yr and, when measured, will specify the total mass of the two stars
Eccentric or Concentric Exercises for the Treatment of Tendinopathies?
DEFF Research Database (Denmark)
Couppé, Christian; Svensson, René B; Silbernagel, Karin Grävare
2015-01-01
with respect to parameters like load magnitude, speed of movement, and recovery period between exercise sessions. Future studies should control for these loading parameters, evaluate various exercise dosages, and also think beyond isolated eccentric exercises to arrive at firm recommendations regarding...... exercise has been promoted. In this review we cover the relevant evidence for different exercise regimes in tendinopathy rehabilitation with particular focus on the applied loads that are experienced by the tendon and how the exercise regime may affect these applied loads. There is no convincing clinical...
Bonito, Andrea
2012-09-01
We design and analyze variational and non-variational multigrid algorithms for the Laplace-Beltrami operator on a smooth and closed surface. In both cases, a uniform convergence for the V -cycle algorithm is obtained provided the surface geometry is captured well enough by the coarsest grid. The main argument hinges on a perturbation analysis from an auxiliary variational algorithm defined directly on the smooth surface. In addition, the vanishing mean value constraint is imposed on each level, thereby avoiding singular quadratic forms without adding additional computational cost. Numerical results supporting our analysis are reported. In particular, the algorithms perform well even when applied to surfaces with a large aspect ratio. © 2011 American Mathematical Society.
International Nuclear Information System (INIS)
Garratt, T.J.
1989-05-01
Safety assessments of radioactive waste disposal require efficient computer models for the important processes. The present paper is based on an efficient computational technique which can be used to solve a wide variety of safety assessment models. It involves the numerical inversion of analytical solutions to the Laplace-transformed differential equations using a method proposed by Talbot. This method has been implemented on a personal computer in a user-friendly manner. The steps required to implement a particular transform and run the program are outlined. Four examples are described which illustrate the flexibility, accuracy and efficiency of the program. The improvements in computational efficiency described in this paper have application to the probabilistic safety assessment codes ESCORT and MASCOT which are currently under development. Also, it is hoped that the present work will form the basis of software for personal computers which could be used to demonstrate safety assessment procedures to a wide audience. (author)
Directory of Open Access Journals (Sweden)
Shanshan Wang
2017-12-01
Full Text Available In cities’ policy-making, it is a hot issue to grasp the determinants of carbon dioxide emission in Chinese cities. And the common method is to use the STIRPAT model, where its coefficients represent the influence intensity of each determinants of carbon emission. However, less work discusses estimation accuracy, especially in the framework of non-normal distribution and heterogeneity among cities’ emission. To improve the estimation accuracy, this paper employs a new method to estimate the STIRPAT model. The method uses a mixture of Asymmetric Laplace distributions (ALDs to approximate the true distribution of the error term. Meantime, a designed two-layer EM algorithm is used to obtain estimators. We test the robustness via the comparison results of five different models. We find that the ALDs Mixture Model is more reliable the others. Further, a significant Kuznets curve relationship is identified in China.
International Nuclear Information System (INIS)
Scheithauer, M.; Schwedas, M.; Wiezorek, T.; Wendt, T.
2003-01-01
The present study focused on the reconstruction of the bremsstrahlung spectrum of a clinical linear accelerator from the measured transmission curve, with the aim of improving the accuracy of this method. The essence of the method was the analytic inverse Laplace transform of a parameter function fitted to the measured transmission curve. We tested known fitting functions, however they resulted in considerable fitting inaccuracy, leading to inaccuracies of the bremsstrahlung spectrum. In order to minimise the fitting errors, we employed a linear combination of n equations with 2n-1 parameters. The fitting errors are now considerably smaller. The measurement of the transmission function requires that the energy-dependent detector response is taken into account. We analysed the underlying physical context and developed a function that corrects for the energy-dependent detector response. The factors of this function were experimentally determined or calculated from tabulated values. (orig.) [de
Non-rigid registration of breast surfaces using the laplace and diffusion equations
Directory of Open Access Journals (Sweden)
Ou Jao J
2010-02-01
Full Text Available Abstract A semi-automated, non-rigid breast surface registration method is presented that involves solving the Laplace or diffusion equations over undeformed and deformed breast surfaces. The resulting potential energy fields and isocontours are used to establish surface correspondence. This novel surface-based method, which does not require intensity images, anatomical landmarks, or fiducials, is compared to a gold standard of thin-plate spline (TPS interpolation. Realistic finite element simulations of breast compression and further testing against a tissue-mimicking phantom demonstrate that this method is capable of registering surfaces experiencing 6 - 36 mm compression to within a mean error of 0.5 - 5.7 mm.
Renormalization group summation of Laplace QCD sum rules for scalar gluon currents
Directory of Open Access Journals (Sweden)
Farrukh Chishtie
2016-03-01
Full Text Available We employ renormalization group (RG summation techniques to obtain portions of Laplace QCD sum rules for scalar gluon currents beyond the order to which they have been explicitly calculated. The first two of these sum rules are considered in some detail, and it is shown that they have significantly less dependence on the renormalization scale parameter μ2 once the RG summation is used to extend the perturbative results. Using the sum rules, we then compute the bound on the scalar glueball mass and demonstrate that the 3 and 4-Loop perturbative results form lower and upper bounds to their RG summed counterparts. We further demonstrate improved convergence of the RG summed expressions with respect to perturbative results.
International Nuclear Information System (INIS)
Lu, Dingjie; Xie, Yi Min; Huang, Xiaodong; Zhou, Shiwei; Li, Qing
2015-01-01
Analytical studies on the size effects of a simply-shaped beam fixed at both ends have successfully explained the sudden changes of effective Young's modulus as its diameter decreases below 100 nm. Yet they are invalid for complex nanostructures ubiquitously existing in nature. In accordance with a generalized Young-Laplace equation, one of the representative size effects is transferred to non-uniformly distributed pressure against an external surface due to the imbalance of inward and outward loads. Because the magnitude of pressure depends on the principal curvatures, iterative steps have to be adopted to gradually stabilize the structure in finite element analysis. Computational results are in good agreement with both experiment data and theoretical prediction. Furthermore, the investigation on strengthened and softened Young's modulus for two complex nanostructures demonstrates that the proposed computational method provides a general and effective approach to analyze the size effects for nanostructures in arbitrary shape
LaPlace's law revisited: Cecal perforation as an unusual presentation of pancreatic carcinoma
Directory of Open Access Journals (Sweden)
Cason Frederick D
2007-02-01
Full Text Available Abstract Background Pancreatic cancer is often locally and distally aggressive, but initial presentation as cecal perforation is uncommon. Case presentation We describe a patient presenting with pneumoperitoneum, found at initial exploration to have a cecal perforation believed to be secondary to a large cecal adenoma, after palpation of the remainder of the colon revealed hard stool but no distal obstruction. Postoperatively, however, the patient progressed to large bowel obstruction and upon reexploration, a mass could now be delineated, encompassing the splenic flexure, splenic hilum, and distal pancreas. Histological evaluation determined this was locally invasive pancreatic adenocarcinoma, and therefore the true etiology of the original cecal perforation. Conclusion Any perforation localized to the cecum must be highly suspicious for a distal obstruction, as dictated by the law of LaPlace.
X-ray Beam Spectral Reconstruction Using Laplace Transform and Attenuation Curves
International Nuclear Information System (INIS)
Maeng, Seongjin; Lee, Sang Hoo; Kwon, Dahye; Seo, Jihye; Seo, Kyung Won
2015-01-01
As the use of X-ray tubes is widely spread mainly for medical diagnostic purposes or industrial applications, there is increasing demand for accurate and convenient way getting of X-ray beam spectral information. While measurement methods may provide quite accurate spectral information, these methods still require expensive detectors (example: HPGe, High Purity Germanium detector) and some conversion of measurement information into real spectrum. It is concluded that Laplace transform-based spectral reconstruction technique given in equations (1) and (2) works well for a 50-kV X-ray source. In this paper we obtained the attenuation curve by the use of MCNPX simulations. We were able to rebuild the X-ray spectrum of 50 kV through this research by Monte Carlo simulation (fitting parameters, a: 1.2921, b: 0.2342, ν: 0.6190, R-squared: 0.9930)
Beatrici, Anderson; Santos Baptista, Leandra; Mauro Granjeiro, José
2018-03-01
Regenerative Medicine comprises the Biotechnology, Tissue Engineering and Biometrology for stem cell therapy. Starting from stem cells extracted from the patient, autologous implant, these cells are cultured and differentiated into other tissues, for example, articular cartilage. These cells are reorganized into microspheres (cell spheroids). Such tissue units are recombined into functional tissues constructs that can be implanted in the injured region for regeneration. It is necessary the biomechanical characterization of these constructed to determine if their properties are similar to native tissue. In this study was carried out the modeling of the calculation of uncertainty of the surface tension of cellular spheroids with the use of the Young-Laplace equation. We obtained relative uncertainties about 10%.
Analytical modeling for fractional multi-dimensional diffusion equations by using Laplace transform
Directory of Open Access Journals (Sweden)
Devendra Kumar
2015-01-01
Full Text Available In this paper, we propose a simple numerical algorithm for solving multi-dimensional diffusion equations of fractional order which describes density dynamics in a material undergoing diffusion by using homotopy analysis transform method. The fractional derivative is described in the Caputo sense. This homotopy analysis transform method is an innovative adjustment in Laplace transform method and makes the calculation much simpler. The technique is not limited to the small parameter, such as in the classical perturbation method. The scheme gives an analytical solution in the form of a convergent series with easily computable components, requiring no linearization or small perturbation. The numerical solutions obtained by the proposed method indicate that the approach is easy to implement and computationally very attractive.
Helmich-Paris, B.; Knecht, Stefan
2017-01-01
In the present article, we show how to formulate the partially contracted n-electron valence second-order perturbation theory (NEVPT2) energies in the atomic and active molecular orbital basis by employing the Laplace transformation of orbital-energy denominators (OEDs). As atomic-orbital (AO) basis
Adib, Arash; Poorveis, Davood; Mehraban, Farid
2018-03-01
In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.
The production and measurement of sub-bandage pressure: Laplace's Law revisited.
Thomas, S
2014-05-01
The present study was undertaken to demonstrate that the pressures produced by multiple layers of compression bandages applied to artificial limbs of known circumference with predetermined levels of tension can be predicted accurately using the modified Laplace equation. Up to four layers of different bandage types were applied in a carefully controlled fashion to cylinders of known circumference, with tensions ranging from around 200-2000 grams/10cm width. The pressures generated were measured using pneumatic pressure sensors previously shown to possess the required degree of accuracy for this type of experimental system. Good correlation was observed between the mean and standard deviation of each pair of experimental and calculated pressure values for all combinations of bandage type, application tension and cylinder circumference. Over the clinically relevant range of pressures, the difference between data sets was generally less than 1.0mmHg. The results of this experimental study unequivocally prove that provided accurate values for all the relevant variables are known, it is possible to predict the pressure that will be developed by a compression bandage on a limb of known size. However, it is important to recognise that other factors such as the elastomeric properties of the fabric will have a major effect upon the ability of a bandage system to sustain initial compression values. Furthermore, the variation in radius of curvature around a limb will mean that point pressures readings recorded at individual locations around the circumference may vary dramatically from the average value predicted by the modified Laplace equation, calling into question the value of sub-bandage pressure measuring devices for this application.
International Nuclear Information System (INIS)
Li, Guo-Qing; Miao, Xing-Yuan; Hu, Yuan-Tai; Wang, Ji
2013-01-01
A comprehensive study on smart beams with piezoelectric elements using an impedance matrix and the inverse Laplace transform is presented. Based on the authors’ previous work, the dynamics of some elements in beam-like smart structures are represented by impedance matrix equations, including a piezoelectric stack, a piezoelectric bimorph, an elastic straight beam or a circular curved beam. A further transform is applied to the impedance matrix to obtain a set of implicit transfer function matrices. Apart from the analytical solutions to the matrices of smart beams, one computation procedure is proposed to obtained the impedance matrices and transfer function matrices using FEA. By these means the dynamic solution of the elements in the frequency domain is transformed to that in Laplacian s-domain and then inversely transformed to time domain. The connections between the elements and boundary conditions of the smart structures are investigated in detail, and one integrated system equation is finally obtained using the symbolic operation of TF matrices. A procedure is proposed for dynamic analysis and control analysis of the smart beam system using mode superposition and a numerical inverse Laplace transform. The first example is given to demonstrate building transfer function associated impedance matrices using both FEA and analytical solutions. The second example is to verify the ability of control analysis using a suspended beam with PZT patches under close-loop control. The third example is designed for dynamic analysis of beams with a piezoelectric stack and a piezoelectric bimorph under various excitations. The last example of one smart beam with a PPF controller shows the applicability to the control analysis of complex systems using the proposed method. All results show good agreement with the other results in the previous literature. The advantages of the proposed methods are also discussed at the end of this paper. (paper)
Thorborg, Kristian; Branci, Sonia; Nielsen, Martin Peter; Tang, Lars; Nielsen, Michael Bachmann; Hölmich, Per
2014-01-01
Background: Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been investigated. Purpose: To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction strength than players without adductor-related groin pain. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain (asymptomatic controls) were included in the study. In primary analysis, the dominant legs of 21 soccer players with adductor-related groin pain (≥4 weeks duration) were compared with the dominant legs of 16 asymptomatic controls using a cross-sectional design. The mean age of the symptomatic players was 24.5 ± 2.5 years, and the mean age of the asymptomatic controls was 22.9 ± 2.4 years. Isometric hip strength (adduction, abduction, and flexion) and eccentric hip strength (adduction) were assessed with a handheld dynamometer using reliable test procedures and a blinded assessor. Results: Eccentric hip adduction strength was lower in soccer players with adductor-related groin pain in the dominant leg (n = 21) compared with asymptomatic controls (n = 16), namely 2.47 ± 0.49 versus 3.12 ± 0.43 N·m/kg, respectively (P strength differences were observed between symptomatic players and asymptomatic controls for the dominant leg (P = .35-.84). Conclusion: Large eccentric hip adduction strength deficits were found in soccer players with adductor-related groin pain
Eccentric Exercise, Kinesiology Tape, and Balance in Healthy Men.
Hosp, Simona; Folie, Ramona; Csapo, Robert; Hasler, Michael; Nachbauer, Werner
2017-07-01
Deficits in balance have been identified as a possible risk factor for knee injuries in athletes. Despite a lack of evidence for its effectiveness, kinesiology tape (KT) is widely used to prevent knee injuries. To investigate the influence of KT at the knee joint on balance ability in healthy men after eccentric exercise. Crossover study. University laboratory. Twelve young men with no history of lower limb injury volunteered for the study (age = 23.3 ± 2.6 years). All participants were students enrolled in a sports science program. Participants performed the balance test with and without KT at the knee joint on 2 separate days. The ability to maintain balance was assessed during a single-legged-stance test using a computerized balance-stability test system. The test was performed before and after 30 minutes of downhill walking on a treadmill. Eccentric exercise resulted in a deterioration of balance ability, which was attenuated by the use of KT. Further analyses revealed that the effectiveness of KT depended on the participant's balance status, with the preventive effect being greater in participants presenting with poorer baseline balance ability. Applied to the knee joint, KT counteracted the exercise-related deterioration of balance ability observed when no tape was used. Participants presenting with below-average balance ability received more benefit from KT. By preventing exercise-related impairment of balance ability, KT might help to reduce the risk of sport-associated knee injuries.
Equatorial insolation: from precession harmonics to eccentricity frequencies
Directory of Open Access Journals (Sweden)
A. Berger
2006-01-01
Full Text Available Since the paper by Hays et al. (1976, spectral analyses of climate proxy records provide substantial evidence that a fraction of the climatic variance is driven by insolation changes in the frequency ranges of obliquity and precession variations. However, it is the variance components centered near 100 kyr which dominate most Upper Pleistocene climatic records, although the amount of insolation perturbation at the eccentricity driven periods close to 100-kyr (mainly the 95 kyr- and 123 kyr-periods is much too small to cause directly a climate change of ice-age amplitude. Many attempts to find an explanation to this 100-kyr cycle in climatic records have been made over the last decades. Here we show that the double maximum which characterizes the daily irradiation received in tropical latitudes over the course of the year is at the origin in equatorial insolation of not only strong 95 kyr and 123 kyr periods related to eccentricity, but also of a 11-kyr and a 5.5-kyr periods related to precession.
Eccentric muscle challenge shows osteopontin polymorphism modulation of muscle damage.
Barfield, Whitney L; Uaesoontrachoon, Kitipong; Wu, Chung-Sheih; Lin, Stephen; Chen, Yue; Wang, Paul C; Kanaan, Yasmine; Bond, Vernon; Hoffman, Eric P
2014-08-01
A promoter polymorphism of the osteopontin (OPN) gene (rs28357094) has been associated with multiple inflammatory states, severity of Duchenne muscular dystrophy (DMD) and muscle size in healthy young adults. We sought to define the mechanism of action of the polymorphism, using allele-specific in vitro reporter assays in muscle cells, and a genotype-stratified intervention in healthy controls. In vitro reporter constructs showed the G allele to respond to estrogen treatment, whereas the T allele showed no transcriptional response. Young adult volunteers (n = 187) were enrolled into a baseline study, and subjects with specific rs28357094 genotypes enrolled into an eccentric muscle challenge intervention [n = 3 TT; n = 3 GG/GT (dominant inheritance model)]. Female volunteers carrying the G allele showed significantly greater inflammation and increased muscle volume change as determined by magnetic resonance imaging T1- and T2-weighted images after eccentric challenge, as well as greater decrement in biceps muscle force. Our data suggest a model where the G allele enables enhanced activities of upstream enhancer elements due to loss of Sp1 binding at the polymorphic site. This results in significantly greater expression of the pro-inflammatory OPN cytokine during tissue remodeling in response to challenge in G allele carriers, promoting muscle hypertrophy in normal females, but increased damage in DMD patients. © The Author 2014. Published by Oxford University Press.
Estimation of the measurement error of eccentrically installed orifice plates
Energy Technology Data Exchange (ETDEWEB)
Barton, Neil; Hodgkinson, Edwin; Reader-Harris, Michael
2005-07-01
The presentation discusses methods for simulation and estimation of flow measurement errors. The main conclusions are: Computational Fluid Dynamics (CFD) simulation methods and published test measurements have been used to estimate the error of a metering system over a period when its orifice plates were eccentric and when leaking O-rings allowed some gas to bypass the meter. It was found that plate eccentricity effects would result in errors of between -2% and -3% for individual meters. Validation against test data suggests that these estimates of error should be within 1% of the actual error, but it is unclear whether the simulations over-estimate or under-estimate the error. Simulations were also run to assess how leakage at the periphery affects the metering error. Various alternative leakage scenarios were modelled and it was found that the leakage rate has an effect on the error, but that the leakage distribution does not. Correction factors, based on the CFD results, were then used to predict the system's mis-measurement over a three-year period (tk)
Effect of eccentric exercise program for early tibialis posterior tendinopathy.
Kulig, Kornelia; Lederhaus, Eric S; Reischl, Steve; Arya, Shruti; Bashford, Greg
2009-09-01
Morphology and vascularization of painful tibialis posterior (TP) tendons before and after an intervention targeting the degenerated tendon were examined. Functional status and pain level were also assessed. A10-week twice daily, progressive eccentric tendon loading, calf stretching program with orthoses was implemented with ten, early stage TP tendinopathy subjects. TP tendons were imaged by grayscale and Doppler ultrasound at INITIAL and POST evaluations to assess the tendon's morphology and signs of neovascularization. The Foot Functional Index (FFI), Physical Activity Scale (PAS), 5-Minute Walk Test, and single heel raise (SHR) test were completed at INITIAL and POST evaluations. The Global Rating Scale (GRS) was completed at 6 months followup. One-way ANOVA was used to compare the FFI at INITIAL, POST, and 6-MONTH time points. Paired t-tests were used to compare means between the remaining variables. The level of significance was p = 0.05. There was a significant difference in FFI total, pain, and disability at the three time-points. Post-hoc paired t-tests revealed that the FFI scores were lower for the total score and pain and disability subcategories when comparing from INITIAL to POST and INITIAL to 6-MONTH evaluations (p Tendon morphology and vascularization remained abnormal following the intervention. A 10-week tendon specific eccentric program resulted in improvements in symptoms and function without changes in tendon morphology or neovascularization.
Forging of eccentric co-extruded Al-Mg compounds and analysis of the interface strength
International Nuclear Information System (INIS)
Förster, W; Binotsch, C; Awiszus, B; Lehmann, T; Müller, J; Kirbach, C; Stockmann, M; Ihlemann, J
2016-01-01
Within the subproject B3 of the Collaborative Research Center 692 it has been shown that Al-Mg compounds with a good bonding quality can be produced by hydrostatic coextrusion. During processing by forging, the aluminum sleeve is thinned in areas of high strains depending on the component geometry. To solve this problem an eccentric core arrangement during co-extrusion was investigated. Based on the results of FE-simulations, the experimental validation is presented in this work. Rods with an offset of 0.25, 0.5 and 0.75 mm were produced by eccentric hydrostatic co-extrusion. Ultrasonic testing was used to evaluate the bonding quality across the entire rods. For the forging investigations the basic process Rising was chosen. The still good bonding quality after forging was examined by dye penetrant testing and optical microscopy. For an optimal stress transfer between the materials across the entire component, a sufficient bonding between the materials is essential. To evaluate the interface strength, a special bending test was developed. For the conception of the bending specimens it was required to analyze the Rising specimens geometry. These analyses were performed using a reconstruction of the geometrical data based on computer tomography (CT) investigations. The comparison with the numerically deter-mined Rising specimen geometry shows good correlation. Parametric Finite Element Analyses of the bending test were used to develop the load case and the specimen geometry. By means of iterative adaption of load application, bearing and specimen geometry parameters, an advantageous stress state and experimentally applicable configuration were found. Based on this conception, the experimental setup was configured and bending tests were performed. The interface strength was deter-mined by the calculation of the maximum interlaminar interfacial tension stress using the experimental interface failure force and the bending FE model. (paper)
Ojasto, Timo
2007-01-01
When accentuated load is applied during the eccentric (ECC) phase of eccentric-concentric (ECC-CON) contractions, it is defined as dynamic accentuated external resistance (DAER) exercise. This study monitored acute neuromuscular responses, growth hormone (GH) and blood lactate (La) concentrations to find out the most efficient ECC-CON loading strategy for muscle hypertrophy by employing various DAER resistances in the bench-press. Male subjects (age=32.4±4.3years, n=11) were assigned as subje...
Directory of Open Access Journals (Sweden)
Arunkumar Nedunchezhiyan
2016-12-01
Full Text Available Background: Hamstring injury is a common problem in many sports, especially those involving acceleration and maximal sprints. Hamstring strains are both common and painful. During sprinting the hip flexor and knee extensor torques are frequently produced and is opposed by the hamstring muscles, hence there are numerous studies done on the muscle strength training to prevent the hamstring strain injury as it is statistically stated as the highest rate involved injury in the contact sport. This study has been focused to evaluate the effectiveness of concentric and eccentric exercises in improving hamstring muscle strength and power among futsal players. Method: Thirty recreational futsal players were recruited for the study and were randomly divided into two groups. Each group received either hamstring curl exercise (concentric or Nordic hamstring exercise (eccentric twice a week for 4 weeks. The manual muscle test (MMT and 40-yard dash test was used to evaluate the muscle strength and power respectively by comparing the pretest and posttest values for both groups. Results: Wilcoxon signed rank test showed that there is no statistically significant difference between pre and post test values of MMT (Concentric (right side, z=.317; left side, z=.157, Eccentric (right side, z=.157; left side, z=.317 in both groups. Based on paired 't' test there is a significant difference between the pre and post test on improving muscle power [Concentric group, P=.020; Eccentric Group, P=.000]. Mann–Whitney U test and unpaired 't' test showed that there is no significant difference between both groups of MMT (z=.775 and 40-yard dash test (P=.707 respectively. Conclusion: The concentric strength training and eccentric strength training have a similar effect in improving hamstring muscle power in futsal players.
Van Laerhoven, Christa L.
2015-05-01
Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog of secular character, I will discuss the prevalence of dynamically grouped planets ('groupies') versus dynamically uncoupled planets ('loners') and how this relates to the exoplanets' long-term eccentricity and inclination behavior. I will also touch on the distribution of the secular eigenfreqiencies.
Is eccentric exercise an effective treatment for lateral epicondylitis? A systematic review.
Cullinane, Frances L; Boocock, Mark G; Trevelyan, Fiona C
2014-01-01
To establish the effectiveness of eccentric exercise as a treatment intervention for lateral epicondylitis. ProQuest, Medline via EBSCO, AMED, Scopus, Web of Science, CINAHL. A systematic review was undertaken to identify randomized and controlled clinical trials incorporating eccentric exercise as a treatment for patients diagnosed with lateral epicondylitis. Studies were included if: they incorporated eccentric exercise, either in isolation or as part of a multimodal treatment protocol; they assessed at least one functional or disability outcome measure; and the patients had undergone diagnostic testing. The methodological quality of each study was assessed using the Modified Cochrane Musculoskeletal Injuries Group score sheet. Twelve studies met the inclusion criteria. Three were deemed 'high' quality, seven were 'medium' quality, and two were 'low' quality. Eight of the studies were randomized trials investigating a total of 334 subjects. Following treatment, all groups inclusive of eccentric exercise reported decreased pain and improved function and grip strength from baseline. Seven studies reported improvements in pain, function, and/or grip strength for therapy treatments inclusive of eccentric exercise when compared with those excluding eccentric exercise. Only one low-quality study investigated the isolated effects of eccentric exercise for treating lateral epicondylitis and found no significant improvements in pain when compared with other treatments. The majority of consistent findings support the inclusion of eccentric exercise as part of a multimodal therapy programme for improved outcomes in patients with lateral epicondylitis.
Motor unit activity after eccentric exercise and muscle damage in humans.
Semmler, J G
2014-04-01
It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.
Estimates of the Hyperbolic Radius Gradient and Schwarz–Pick Inequalities for the Eccentric Annulus
Directory of Open Access Journals (Sweden)
D.Kh. Giniyatova
2016-06-01
Full Text Available Let Ω and Π be hyperbolic domains in the complex plane C. By A(Ω, Π we shall designate the class of functions f which are holomorphic or meromorphic in Ω and such that f(Ω ϲ Π. Estimates of the higher derivatives |f(n(z| of the analytic functions from the class A(Ω, Π with the punishing factor Cn(Ω, Π is one of the main problems of geometric theory of functions. These estimates are commonly referred to as Schwarz–Pick inequalities. Many results concerning this problem have been obtained for simply connected domains. Therefore, the research interest in such problems for finitely connected domains is natural. As known, the constant C2(Ω, Π for any pairs of hyperbolic domains depends only on the hyperbolic radius gradient of the corresponding domains. The main result of this paper is estimates of the hyperbolic radius gradient and the punishing factor in the Schwarz–Pick inequality for the eccentric annulus. We also consider the extreme case – the randomly punctured circle.
Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye
Roorda, Austin; Campbell, Melanie C. W.; Bobier, W. R.
1995-08-01
In eccentric photorefraction, light returning from the retina of the eye is photographed by a camera focused on the eye's pupil. We use a geometrical model of eccentric photorefraction to generate intensity profiles across the pupil image. The intensity profiles for three different monochromatic aberration functions induced in a single eye are predicted and show good agreement with the measured eccentric photorefraction intensity profiles. A directional reflection from the retina is incorporated into the calculation. Intensity profiles for symmetric and asymmetric aberrations are generated and measured. The latter profile shows a dependency on the source position and the meridian. The magnitude of the effect of thresholding on measured pattern extents is predicted. Monochromatic aberrations in human eyes will cause deviations in the eccentric photorefraction measurements from traditional crescents caused by defocus and may cause misdiagnoses of ametropia or anisometropia. Our results suggest that measuring refraction along the vertical meridian is preferred for screening studies with the eccentric photorefractor.
Li, De Z.; Wang, Wilson; Ismail, Fathy
2017-11-01
Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.
The Bearing Capacity of Strip Footings in Cohesionless Soil Subject to Eccentric and Inclined Loads
DEFF Research Database (Denmark)
Krabbenhøft, Sven; Damkilde, Lars; Krabbenhøft, Kristian
2014-01-01
Lower bound calculations based on the finite element method is used to determine the bearing capacity of a strip foundation subjected to an inclined, eccentric load on cohesionless soil with varying surcharges and with friction angles 25, 30 and 35°. The soil is assumed perfectly plastic following...... the Mohr-Coulomb failure criterion. The results are reported as graphs showing the bearing capacity as a function of the friction angle, the eccentricity, inclination and the surcharge. The results have been compared with the Eurocode 7 and for smaller eccentricities, except in the case of no surcharge......, the lower bound values are the greater, the discrepancy increasing with growing surcharge. Positive load inclinations has a negative effect for smaller eccentricities but may have a beneficial effect on the bearing capacity for greater eccentricities. Negative load inclinations have the opposite effect...
Eccentric exercise training as a countermeasure to non-weight-bearing soleus muscle atrophy
Kirby, Christopher R.; Ryan, Mirelle J.; Booth, Frank W.
1992-01-01
This investigation tested whether eccentric resistance training could prevent soleus muscle atrophy during non-weight bearing. Adult female rats were randomly assigned to either weight bearing +/- intramuscular electrodes or non-weight bearing +/- intramuscular electrodes groups. Electrically stimulated maximal eccentric contractions were performed on anesthetized animals at 48-h intervals during the 10-day experiment. Non-weight bearing significantly reduced soleus muscle wet weight (28-31 percent) and noncollagenous protein content (30-31 percent) compared with controls. Eccentric exercise training during non-weight bearing attenuated but did not prevent the loss of soleus muscle wet weight and noncollagenous protein by 77 and 44 percent, respectively. The potential of eccentric exercise training as an effective and highly efficient counter-measure to non-weight-bearing atrophy is demonstrated in the 44 percent attenuation of soleus muscle noncollagenous protein loss by eccentric exercise during only 0.035 percent of the total non-weight-bearing time period.
Thijs, Karin M; Zwerver, Johannes; Backx, Frank J G; Steeneken, Victor; Rayer, Stephan; Groenenboom, Petra; Moen, Maarten H
OBJECTIVE: To evaluate the effectiveness of a combined treatment of focused shockwave therapy (ESWT) and eccentric training compared with sham-shockwave therapy (placebo) and eccentric training in participants with patellar tendinopathy (PT) after 24 weeks. DESIGN: Randomized controlled trial.
Thijs, Karin M.; Zwerver, Johannes; Backx, Frank J. G.; Steeneken, Victor; Rayer, Stephan; Groenenboom, Petra; Moen, Maarten H.
2017-01-01
OBJECTIVE: To evaluate the effectiveness of a combined treatment of focused shockwave therapy (ESWT) and eccentric training compared with sham-shockwave therapy (placebo) and eccentric training in participants with patellar tendinopathy (PT) after 24 weeks. DESIGN: Randomized controlled trial.
Computing the Distribution of Pareto Sums Using Laplace Transformation and Stehfest Inversion
Harris, C. K.; Bourne, S. J.
2017-05-01
that is shared by the sum of an arbitrary number of such variables. The technique involves applying the Laplace transform to the normalized sum (which is simply the product of the Laplace transforms of the densities of the individual variables, with a suitable scaling of the Laplace variable), and then inverting it numerically using the Gaver-Stehfest algorithm. After validating the method using a number of test cases, it was applied to address the distribution of total seismic moment, and the quantiles computed for various numbers of seismic events were compared with those obtained in the literature using Monte Carlo simulation. Excellent agreement was obtained. As an application, the method was applied to the evolution of total seismic moment released by tremors due to gas production in the Groningen gas field in the northeastern Netherlands. The speed, accuracy and ease of implementation of the method allows the development of accurate correlations for constraining statistical seismological models using, for example, the maximum-likelihood method. It should also be of value in other natural processes governed by Pareto distributions with exponent less than unity.
On a problem of Berenstein-Gay and its generalizations
International Nuclear Information System (INIS)
Volchkov, Valerii V; Volchkov, Vitaly V
2010-01-01
We obtain a solution of the Berenstein-Gay problem on the local analogue of spectral analysis on Riemannian symmetric spaces X of rank 1. The proof is based on constructing transmutation maps connected with eigenfunction expansions of the Laplace-Beltrami operator on X.
Problems and solutions in thermoelasticity and magneto-thermoelasticity
Das, B
2017-01-01
This book presents problems and solutions of the mathematical theories of thermoelasticity and magnetothermoelasticity. The classical, coupled and generalized theories are solved using the eigenvalue methodology. Different methods of numerical inversion of the Laplace transform are presented and their direct applications are illustrated. The book is very useful to those interested in continuum mechanics.
The rolling motion of an eccentrically loaded wheel
Theron, W. F. D.
2000-09-01
This article discusses the rolling motion on a rough plane of a wheel whose center of mass does not coincide with the axis; for example, when a heavy particle is fixed to the rim of a rigid hoop. In cases with large eccentricity, the resulting motion is surprisingly complex, with four phases being identified, namely rolling (without slipping), spinning, skidding, and "hopping," by which is meant that the wheel actually leaves the plane. The main result of this analysis is the identification of the conditions that are required for hopping to occur. A second result is that faster than gravity accelerations occur when the mass of the particle is greater than the mass of the hoop. Massless hoops are briefly discussed as a special case of the general results.
What velocities and eccentricities tell us about radial migration
Directory of Open Access Journals (Sweden)
Schönrich R.
2012-02-01
Full Text Available This note attempts to interpret some of the recent findings about a downtrend in the mean azimuthal velocity of low [α/Fe] thin disc stars with increasing metallicity. The presence of such a trend was predicted in the model of [19], albeit with a slightly steeper slope. We show that in a simple picture a Galactic disc without mixing in angular momenta would display an exceedingly steep trend, while in the case of complete mixing of all stars the trend has to vanish. The difference between model and observational data can hence be interpreted as the consequence of the radial abundance gradient in the model being too high resulting in an underestimate of the migration strength. We shortly discuss the value of eccentricity distributions in constraining structure and history of the Galactic disc.
Investigation of Stress Indices and Directional Loading of Eccentric Reducers
International Nuclear Information System (INIS)
Carter, R.; Wais, E.A.; Rodabaugh, E.C.
2003-01-01
OAK- B135 Engineering for fatigue is an essential concern in piping systems. Addressing this concern, the ASME Section III and ANSI B31.1 Codes provide stress indices and stress intensification factors (SIFs) to be used in the design and evaluation of Class 1, 2 and 3 systems. In recent research cosponsored by EPRI and the U.S. DOE, new test data have been developed for comparison with the ASME stress indices and SIFs. This report presents the results of fatigue tests on eccentric reducers, taking into account the directionality of the loading. As detailed in the report, the results can help to improve the evaluation of reducers and can help to reduce unnecessary conservatism in piping system design
Protein hydrolysates and recovery of muscle damage following eccentric exercise
Directory of Open Access Journals (Sweden)
Dale M.J.
2015-01-01
Full Text Available Background: A whey protein hydrolysate (NatraBoost XR; WPHNB has been shown to speed repair muscle damage. We sought to determine whether this benefit is specific to this hydrolysate to evaluate a marker for quality control. Methods: Three hydrolysates of the same whey protein isolate (WPI were prepared (WPHNB, WPH1 and WPH2. Isometric knee extensor strength was measured in 39 sedentary male participants before and after 100 maximal eccentric contractions of the knee extensors to induce muscle damage. Participants were then randomised to consume 250 ml of flavoured water (FW, n=9, or 250 ml of FW containing 25 g of either NatraBoost XR (n=3, WPH1 (n=9, WPH2 (n=9 or WPI (n=9. Strength was reassessed over the next seven days while the supplements were consumed daily. Fibroblasts were cultured for 48 hr in the presence of the different hydrolysates, WPI, saline or fetal bovine serum to ascertain effects on cell proliferation. Results: Strength was reduced in all treatment groups after eccentric exercise (P<0.001. Strength recovered steadily over 7 days in the FW, WPI, WPH1 and WPH2 treatment groups (P<0.001, with no difference between treatments (P=0.87. WPHNB promoted faster strength recovery compared with the other treatments (P<0.001. Fibroblast proliferation was greater with WPHNB compared with saline, WPI or the other hydrolysates (P<0.001. Conclusions: Promoting recovery from muscle damage seems unique to WPHNB. In vitro fibroblast proliferation may be a useful marker for quality control. It is not clear whether effects on fibroblast proliferation contribute to the in vivo effect of WPHNB on muscle damage.
Transient heat conduction in multi-layer walls: An efficient strategy for Laplace's method
Energy Technology Data Exchange (ETDEWEB)
Maestre, Ismael R.; Cubillas, Paloma R. [Escuela Politecnica Superior de Algeciras, University of Cadiz, Algeciras (Spain); Perez-Lombard, Luis [Escuela Superior de Ingenieros, University of Seville (Spain)
2010-04-15
Enhancing load calculation tools into building simulation programs requires an in-depth revision and fine tuning of the load calculation assumptions prior to the addition of the HVAC system modelling routines. It is of special interest the analysis of transient heat conduction through multi-layer walls where, in order to improve the coupling between the passive elements of the building and the HVAC systems, an improvement of the time resolution in the calculation becomes critical. Several methods have been historically used, although recently Laplace's method has been displaced by the State Space method. This paper proposes a new strategy for fine time resolution on the calculation of the response factors through Laplace's method considering a comparison with the performance of the State Space method when used to calculate conduction transfer functions. Our analysis shows that in order to achieve similar accuracy with both approaches, the State Space method requires significant additional computational time. (author)
Tripathi, Rajnee; Mishra, Hradyesh Kumar
2016-01-01
In this communication, we describe the Homotopy Perturbation Method with Laplace Transform (LT-HPM), which is used to solve the Lane-Emden type differential equations. It's very difficult to solve numerically the Lane-Emden types of the differential equation. Here we implemented this method for two linear homogeneous, two linear nonhomogeneous, and four nonlinear homogeneous Lane-Emden type differential equations and use their appropriate comparisons with exact solutions. In the current study, some examples are better than other existing methods with their nearer results in the form of power series. The Laplace transform used to accelerate the convergence of power series and the results are shown in the tables and graphs which have good agreement with the other existing method in the literature. The results show that LT-HPM is very effective and easy to implement.
The determination of frequency response function of the RSG Gas by laplace transform analysis
International Nuclear Information System (INIS)
Tukiran, S.; Surian, P.; Jujuratisbela, U.
1997-01-01
The response function of the RSG-GAS reactor system to the reactivity perturbations is necessary to be analyzed due to the interrelation with reliability and safety of reactor operation. the response depends on the power frequency response function H(s), while H(s) depends on the zero power frequency response function Z(s) and dynamic power coefficient of reactivity Kp(s) determination of the frequency response function of the RSG-GAS reactor was done by Fourier transform analysis method. Z(s) was obtained by fourier transform of P(t) and Cj(t) became P(S) and Cj(s) in point kinetic equations. Second order of simpson rule was used for completion of its numerical integration. then. LYMPR (Laplace transform for multipurpose reactor) code was made with fortran 77 computer language in vax 8550 system. the LTMPR code is able to determine the frequency response function and period-reactivity relation of RSG-GAS reactor by rod drop method. Profile of power as rod drop, zero power (without reactivity feedback) was used for determination frequency response of RSG-GAS reactor. The results of calculations are in a good agreement with experiment result, so the LTMPR code can be used for analysis response frequency of the RSG-GAS reactor
Identifying the most likely contributors to a Y-STR mixture using the discrete Laplace method
DEFF Research Database (Denmark)
Andersen, Mikkel Meyer; Eriksen, Poul Svante; Mogensen, Helle Smidt
2015-01-01
In some crime cases, the male part of the DNA in a stain can only be analysed using Y chromosomal markers, e.g. Y-STRs. This may be the case in e.g. rape cases, where the male components can only be detected as Y-STR profiles, because the fraction of male DNA is much smaller than that of female DNA......, which can mask the male results when autosomal STRs are investigated. Sometimes, mixtures of Y-STRs are observed, e.g. in rape cases with multiple offenders. In such cases, Y-STR mixture analysis is required, e.g. by mixture deconvolution, to deduce the most likely DNA profiles from the contributors. We...... demonstrate how the discrete Laplace method can be used to separate a two person Y-STR mixture, where the Y-STR profiles of the true contributors are not present in the reference dataset, which is often the case for Y-STR profiles in real case work. We also briefly discuss how to calculate the weight...
Directory of Open Access Journals (Sweden)
Elhassan Eljaoui
2018-01-01
Full Text Available We introduce the Aumann fuzzy improper integral to define the convolution product of a fuzzy mapping and a crisp function in this paper. The Laplace convolution formula is proved in this case and used to solve fuzzy integro-differential equations with kernel of convolution type. Then, we report and correct an error in the article by Salahshour et al. dealing with the same topic.
Design and jump phenomenon analysis of an eccentric ring energy harvester
International Nuclear Information System (INIS)
Wang, Yu-Jen; Chen, Chung-De
2013-01-01
This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318–442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers. (paper)
Design and jump phenomenon analysis of an eccentric ring energy harvester
Wang, Yu-Jen; Chen, Chung-De
2013-10-01
This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318-442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers.
Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt
2018-03-01
Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high-velocity dispersion systems or through the secular Kozai–Lidov mechanism in triple systems. Gravitational waves carry information about the binaries’ orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO–VIRGO–KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and the component masses. For instance, compared to a 30 {M}ȯ –30 {M}ȯ non-spinning circular binary, the chirp mass and sky-localization accuracy can improve by a factor of ∼129 (38) and ∼2 (11) for an initially highly eccentric binary assuming an initial pericenter distance of 20 M tot (10 M tot).
International Nuclear Information System (INIS)
Block, Martin M.; Durand, Loyal
2011-01-01
We recently derived a very accurate and fast new algorithm for numerically inverting the Laplace transforms needed to obtain gluon distributions from the proton structure function F 2 γp (x,Q 2 ). We numerically inverted the function g(s), s being the variable in Laplace space, to G(v), where v is the variable in ordinary space. We have since discovered that the algorithm does not work if g(s)→0 less rapidly than 1/s as s→∞, e.g., as 1/s β for 0 β-1 and a polynomial in v. We test the algorithm numerically for very small positive β, β=10 -6 obtaining numerical results that imitate the Dirac delta function δ(v). We also devolve the published MSTW2008LO gluon distribution at virtuality Q 2 =5 GeV 2 down to the lower virtuality Q 2 =1.69 GeV 2 . For devolution, β is negative, giving rise to inverse Laplace transforms that are distributions and not proper functions. This requires us to introduce the concept of Hadamard Finite Part integrals, which we discuss in detail. (orig.)
Wienkers, A. F.; Ogilvie, G. I.
2018-04-01
Non-linear evolution of the parametric instability of inertial waves inherent to eccentric discs is studied by way of a new local numerical model. Mode coupling of tidal deformation with the disc eccentricity is known to produce exponentially growing eccentricities at certain mean-motion resonances. However, the details of an efficient saturation mechanism balancing this growth still are not fully understood. This paper develops a local numerical model for an eccentric quasi-axisymmetric shearing box which generalises the often-used cartesian shearing box model. The numerical method is an overall second order well-balanced finite volume method which maintains the stratified and oscillatory steady-state solution by construction. This implementation is employed to study the non-linear outcome of the parametric instability in eccentric discs with vertical structure. Stratification is found to constrain the perturbation energy near the mid-plane and localise the effective region of inertial wave breaking that sources turbulence. A saturated marginally sonic turbulent state results from the non-linear breaking of inertial waves and is subsequently unstable to large-scale axisymmetric zonal flow structures. This resulting limit-cycle behaviour reduces access to the eccentric energy source and prevents substantial transport of angular momentum radially through the disc. Still, the saturation of this parametric instability of inertial waves is shown to damp eccentricity on a time-scale of a thousand orbital periods. It may thus be a promising mechanism for intermittently regaining balance with the exponential growth of eccentricity from the eccentric Lindblad resonances and may also help explain the occurrence of "bursty" dynamics such as the superhump phenomenon.
The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males
Directory of Open Access Journals (Sweden)
Yanita McLeay
2017-10-01
Full Text Available Eccentric exercise is known to bring about microstructural damage to muscle, initiating an inflammatory cascade involving various reactive oxygen species. This, in turn, can significantly impair physical performance over subsequent days. Taurine, a powerful endogenous antioxidant, has previously been shown to have a beneficial effect on muscle damage markers and recovery when taken for a few days to several weeks prior to eccentric exercise. However, to date no studies have looked at the effects of supplementing over the days following eccentric exercise on performance recovery. Thus, this study aimed to determine whether supplementing with taurine over three days following eccentric exercise attenuated the rise in serum creatine kinase and improved performance recovery in males. In a blinded, randomized, crossover design, ten recreationally-fit male participants completed 60 eccentric contractions of the biceps brachii muscle at maximal effort. Following this, participants were supplemented with 0.1 g∙kg−1 body weight∙day−1 of either taurine or rice flour in capsules. Over the next three mornings participants underwent blood tests for the analysis of the muscle damage marker creatine kinase and carried out performance measures on the isokinetic dynamometer. They also continued to consume the capsules in the morning and evening. The entire protocol was repeated two weeks later on the alternate arm and supplement. Significant decreases were seen in all performance measures from pre- to 24-h post-eccentric exercise (p < 0.001 for both taurine and placebo, indicating the attainment of muscle damage. Significant treatment effects were observed only for peak eccentric torque (p < 0.05. No significant time × treatment effects were observed (all p > 0.05. Serum creatine kinase levels did not significantly differ over time for either treatments, nor between treatments (p > 0.05. These findings suggest that taurine supplementation taken twice
Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model.
Kaux, Jean-François; Libertiaux, Vincent; Leprince, Pierre; Fillet, Marianne; Denoel, Vincent; Wyss, Clémence; Lecut, Christelle; Gothot, André; Le Goff, Caroline; Croisier, Jean-Louis; Crielaard, Jean-Michel; Drion, Pierre
2017-05-01
The tendon is a dynamic entity that remodels permanently. Platelet-rich plasma (PRP) injection has been shown to have a beneficial effect on tendon healing after lesion in rats. Furthermore, eccentric exercise seems to improve the mechanical quality of the tendon. A combination of PRP injection and eccentric training might be more effective than either treatment alone. Controlled laboratory study. Adult male rats were anesthetized, an incision was performed in the middle of their left patellar tendon and an injection of physiological fluid (PF) or homologous PRP was randomly made at the lesion level. The rats were then divided into 2 groups: the eccentric group, undergoing eccentric training 3 times a week, and the untrained group, without any training. Thus, 4 groups were compared. After 5 weeks, the tendons were removed and their ultimate tensile strength and energy were measured. Tendons were frozen for proteomic analyses when all biomechanical tests were completed. Statistical analysis was performed with linear mixed effect models. No significant difference was found between the treatments using PF injection or PRP injection alone. However, the value of the ultimate tensile force at rupture was increased by 4.5 N (108% of control, P = .006) when eccentric training was performed. An intragroup analysis revealed that eccentric training significantly improved the ultimate force values for the PRP group. Proteomic analysis revealed that eccentric training led to an increase in abundance of several cytoskeletal proteins in the PF group, while a decrease in abundance of enzymes of the glycolytic pathway occurred in the PRP-treated groups, indicating that this treatment might redirect the exercise-driven metabolic plasticity of the tendon. Eccentric training altered the metabolic plasticity of tendon and led to an improvement of injured tendon resistance regardless of the treatment injected (PF or PRP). This study demonstrates the necessity of eccentric rehabilitation
DEFF Research Database (Denmark)
Thorborg, Kristian; Branci, Sonia; Nielsen, Peter Martin
2014-01-01
BACKGROUND: Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been...... investigated. PURPOSE: To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction...... strength than players without adductor-related groin pain. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain...
Chaabene, Helmi; Prieske, Olaf; Negra, Yassine; Granacher, Urs
2018-03-28
There is growing evidence that eccentric strength training appears to have benefits over traditional strength training (i.e., strength training with combined concentric and eccentric muscle actions) from muscular, neuromuscular, tendinous, and metabolic perspectives. Eccentric muscle strength is particularly needed to decelerate and stabilize the body during the braking phase of a jump exercise or during rapid changes of direction (CoD) tasks. However, surprisingly little research has been conducted to elucidate the effects of eccentric strength training or strength training with accentuated eccentric muscle actions on CoD speed performance. In this current opinion article, we present findings from cross-sectional studies on the relationship between measures of eccentric muscle strength and CoD speed performance. In addition, we summarize the few available studies on the effects of strength training with accentuated eccentric muscle actions on CoD speed performance in athletic populations. Finally, we propose strength training with accentuated eccentric muscle actions as a promising element in strength and conditioning programs of sports with high CoD speed demands. Our findings from five cross-sectional studies revealed statistically significant moderate- to large-sized correlations (r = 0.45-0.89) between measures of eccentric muscle strength and CoD speed performance in athletic populations. The identified three intervention studies were of limited methodological quality and reported small- to large-sized effects (d = 0.46-1.31) of strength training with accentuated eccentric muscle actions on CoD speed performance in athletes. With reference to the available but preliminary literature and from a performance-related point of view, we recommend strength and conditioning coaches to include strength training with accentuated eccentric muscle actions in training routines of sports with high CoD speed demands (e.g., soccer, handball, basketball, hockey) to
Development of online cable eccentricity detection system based on X-ray CCD
International Nuclear Information System (INIS)
Chen Jianzhen; Li Bin; Wei Kaixia; Guo Lanying; Qu Guopu
2008-01-01
An improved technology of online cable eccentricity detection, based on X-ray CCD, greatly improves the measuring precision and the responding speed. The theory of eccentricity measuring based on X-ray CCD, and the structure of an apparatus are described. The apparatus is composed of scanning drive subsystem, X-ray generation components, data acquiring subsystem and high performance computer system. The measuring results are also presented. The features of this cable eccentricity detection technology are compared with the features of other technologies. (authors)
Dimitrios, Stasinopoulos; Pantelis, Manias; Kalliopi, Stasinopoulou
2012-05-01
The aim of the present study was to investigate the effectiveness of eccentric training and eccentric training with static stretching exercises in the management of patellar tendinopathy. Controlled clinical trial. Rheumatology and rehabilitation centre. Forty-three patients who had patellar tendinopathy for at least three months. They were allocated to two groups by alternative allocation. Group A (n = 22) was treated with eccentric training of patellar tendon and static stretching exercises of quadriceps and hamstrings and Group B (n = 21) received eccentric training of patellar tendon. All patients received five treatments per week for four weeks. Pain and function were evaluated using the VISA-P score at baseline, at the end of treatment (week 4), and six months (week 24) after the end of treatment. At the end of treatment, there was a rise in VISA-P score in both groups compared with baseline (Peccentric training and static stretching exercises produced the largest effect (PEccentric training and static stretching exercises is superior to eccentric training alone to reduce pain and improve function in patients with patellar tendinopathy at the end of the treatment and at follow-up.
The Problem Patron: Is There One in Your Library?
Chattoo, Calmer D.
2002-01-01
Discusses the history of problem patrons in libraries and explains various types of problem patrons and their identifying behavior. Highlights include senior citizens; technology-created problems, such as users with cell phones; eccentric behavior; non-compliance with library rules; harassment; intentional bad behavior such as theft; and problems…
Numerical solutions of a three-point boundary value problem with an ...
African Journals Online (AJOL)
Numerical solutions of a three-point boundary value problem with an integral condition for a third-order partial differential equation by using Laplace transform method Solutions numeriques d'un probleme pour une classe d'equations differentielles d'ordr.
International Nuclear Information System (INIS)
Gaspar Junior, Joao Carlos Aguiar
2010-01-01
This work proposes the development of a method of solving equations of heat transfer applied in fuel rods using the finite element method, in order to evaluate the performance and safety of the nuclear system. Was prepared in a Fortran program to evaluate the equations governing the problem, the boundary conditions and apply the properties of materials on a steady state. This program uses the mesh generation input and graphical output generated by the program GID. The method was validated against the analytical solution found in the book Todreas and Kazimi with error less than 0.2% and with respect to the improved analytical solution of Nijsing for axisymmetry rod and eccentricity rod with error less than a 3.6%. Applications have been developed with the use of correlations for properties with the temperature dependence of resolution axisymmetry rod and the resolution of a rod with eccentricity. The method developed, should it be implemented, would allow the assessment of fuel rods in the given situations and other scenarios, as well as adding a tool of substantial value in the analysis of rods. (author)
The role of eccentric regime of leg muscle work in alpine skiing
Directory of Open Access Journals (Sweden)
Ropret Robert
2017-01-01
Full Text Available Alpine skiing is characterized by a great number of leg movements with muscle contractions in eccentric regime. The role of these movements is to absorb gravitation and inertial forces, manage skis more precisely and maintain balance. Recent studies have determined the volume, duration and intenisty of eccentric contractions as well as the basic characteristics of movement amplitudes and velocities. Based on the previous findings the experiments involving eccentric training using a bicycle ergometer confirmed a positive impact that this kind of training has on increasing maximum power, strength, endurance, coordination, injury prevention, metabolic work efficiency, more efficient work with longer muscle length and its role in miming skiers' movements. This paper is an review of the studies so far in the field of kinematics, skiing dynamics and the effect of eccentric training on the development of athletes' performances.
Effect of load eccentricity and stress level on monopile support for offshore wind turbines
DEFF Research Database (Denmark)
Klinkvort, Rasmus Tofte; Hededal, Ole
2014-01-01
on which load is applied with a large eccentricity. With centrifuge tests as the basis, this paper investigates the behaviour of a rigid pile loaded with a high eccentricity. A test series was carried out to simulate idealized monotonic load cases for monopiles supporting an offshore wind turbine....... Centrifuge tests were performed on model monopiles subjected to stress distributions equal to prototype monopiles with pile diameters ranging from 1–5 m and eccentricities ranging from 8.25–17.75 pile diameters. It was possible to identify a unified response of all of these tests by using dimensional...... analysis and Rankine’s passive earth pressure coefficient as a normalization parameter. The normalized ultimate soil resistance was unaffected by acceleration level and load eccentricity, indicating that the failure mechanism was the same for all tests. Based on the centrifuge tests, a reformulation...
Effects of fast-velocity eccentric resistance training on early and late rate of force development
DEFF Research Database (Denmark)
Oliveira, Anderson S.C.; Corvino, Rogério Bulhões; Caputo, Fabrizio
2016-01-01
This study examined whether short-term maximal resistance training employing fast-velocity eccentric knee extensor actions would induce improvements in maximal isometric torque and rate of force development (RFD) at early (phases (>100 ms) of rising torque. Twenty healthy men were......, no changes in the late phase of incremental RFD were observed in TG. No changes were found in the CG. In summary, we have demonstrated, in active individuals, that a short period of resistance training performed with eccentric fast-velocity isokinetic muscle contractions is able to enhance RFDINC and RFDREL...... assigned to two experimental groups: eccentric resistance training (TG) or control (CG). Participants on the TG trained three days a week for a total of eight weeks. Training consisted of maximal unilateral eccentric knee extensors actions performed at 180°s-1. Maximal isometric knee extensor torque (MVC...
Pardo, David; Matuszyk, Paweł Jerzy; Torres-Verdí n, Carlos; Mora Cordova, Angel; Muga, Ignacio; Calo, Victor M.
2013-01-01
We describe a numerical study to quantify the influence of tool-eccentricity on wireline (WL) and logging-while-drilling (LWD) sonic logging measurements. Simulations are performed with a height-polynomial-adaptive (hp) Fourier finite-element method
Directory of Open Access Journals (Sweden)
Guilherme Augusto Minozzo
Full Text Available ABSTRACT: This paper describes a case of congenital aortic stenosis with eccentric left ventricular hypertrophy associated with hypothyroidism in a 1-year-old Bourdeaux Mastiff dog. The dog had ascites, apathy, alopecic and erythematous skin lesions in different parts of the body. A two-dimensional echocardiogram revealed aortic valve stenosis, with poststenotic dilation in the ascending aorta. The same exam showed eccentric hypertrophy and dilation of the left ventricle during systole and diastole. Aortic stenosis usually results in concentric left ventricular hypertrophy instead of eccentric hypertrophy; and therefore, this finding was very unusual. Hypothyroidism, which is uncommon in young dogs, may be incriminated as the cause of ventricular dilation, making this report even more interesting. Because hypothyroidism would only result in dilatation, the eccentric hypertrophy was attributed to pressure overload caused by aortic stenosis. Thus, cardiac alterations of this case represent a paradoxical association of both diseases.
On the divergence of triangular and eccentric spherical sums of double Fourier series
Energy Technology Data Exchange (ETDEWEB)
Karagulyan, G A [Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan (Armenia)
2016-01-31
We construct a continuous function on the torus with almost everywhere divergent triangular sums of double Fourier series. We also prove an analogous theorem for eccentric spherical sums. Bibliography: 14 titles.
On the divergence of triangular and eccentric spherical sums of double Fourier series
International Nuclear Information System (INIS)
Karagulyan, G A
2016-01-01
We construct a continuous function on the torus with almost everywhere divergent triangular sums of double Fourier series. We also prove an analogous theorem for eccentric spherical sums. Bibliography: 14 titles
Effects of an eccentric training programme on hamstring strain injuries in women football players
Directory of Open Access Journals (Sweden)
del Ama Espinosa Gurutze
2015-09-01
Full Text Available Study aim: to test the hypothesis that an eccentric training programme applied on women football players would reduce the hamstring injury rate by improving thigh muscle balance and, particularly, hamstring strength.
Directory of Open Access Journals (Sweden)
Rodrigo de Azevedo Franke
2014-09-01
Full Text Available Vastus lateralis (VL and vastus medialis (VM are frequently targeted in conditioning/rehabilitation programs due to their role in patellar stabilization during knee extension. This study assessed neural and muscular adaptations in these two muscles after an isokinetic eccentric training program. Twenty healthy men underwent a four-week control period followed by a 12-week period of isokinetic eccentric training. Ultrasound evaluations of VL and VM muscle thickness at rest and electromyographic evaluations during maximal isometric tests were used to assess the morphological and neural properties, respectively. No morphological and neural changes were found throughout the control period, whereas both muscles showed significant increases in thickness (VL = 6.9%; p .05 post-training. Isokinetic eccentric training produces neural and greater morphological adaptations in VM compared to VL, which shows that synergistic muscles respond differently to an eccentric isokinetic strength training program
Dyadic Green's function of an eccentrically stratified sphere.
Moneda, Angela P; Chrissoulidis, Dimitrios P
2014-03-01
The electric dyadic Green's function (dGf) of an eccentrically stratified sphere is built by use of the superposition principle, dyadic algebra, and the addition theorem of vector spherical harmonics. The end result of the analytical formulation is a set of linear equations for the unknown vector wave amplitudes of the dGf. The unknowns are calculated by truncation of the infinite sums and matrix inversion. The theory is exact, as no simplifying assumptions are required in any one of the analytical steps leading to the dGf, and it is general in the sense that any number, position, size, and electrical properties can be considered for the layers of the sphere. The point source can be placed outside of or in any lossless part of the sphere. Energy conservation, reciprocity, and other checks verify that the dGf is correct. A numerical application is made to a stratified sphere made of gold and glass, which operates as a lens.
The Eccentric Kozai-Lidov Mechanism for Outer Test Particle
Naoz, Smadar; Li, Gongjie; Zanardi, Macarena; de Elía, Gonzalo Carlos; Di Sisto, Romina P.
2017-07-01
The secular approximation of the hierarchical three body systems has been proven to be very useful in addressing many astrophysical systems, from planets to stars to black holes. In such a system, two objects are on a tight orbit and the tertiary is on a much wider orbit. Here, we study the dynamics of a system by taking the tertiary mass to zero and solve the hierarchical three body system up to the octupole level of approximation. We find a rich dynamics that the outer orbit undergoes due to gravitational perturbations from the inner binary. The nominal result of the precession of the nodes is mostly limited for the lowest order of approximation; however, when the octupole level of approximation is introduced, the system becomes chaotic, as expected, and the tertiary oscillates below and above 90°, similarly to the non-test particle flip behavior. We provide the Hamiltonian of the system and investigate the dynamics of the system from the quadrupole to the octupole level of approximations. We also analyze the chaotic and quasi-periodic orbital evolution by studying the surfaces of sections. Furthermore, including general relativity, we showcase the long-term evolution of individual debris disk particles under the influence of a far-away interior eccentric planet. We show that this dynamics can naturally result in retrograde objects and a puffy disk after a long timescale evolution (a few Gyr) for initially aligned configuration.
Eccentric LVH healing after starting renal replacement therapy.
Vertolli, Ugo; Lupia, Mario; Naso, Agostino
2002-01-01
Hypertension and left ventricular hypertrophy (LVH) are commonly associated in patients with CRF starting RDT. We report a case of eccentric LVH with marked dilatation and subsequent mitral incompetence of +3/4 that disappeared after three months of standard hemodialysis. Mrs SN, 62 years old, starting HD, had an echocardiography because of dyspnoea; the echo showed: dilated left atrium (78 ml/m2), moderately dilated left ventricle with normal systolic function (TDV 81 ml/m2, EF 66%), an increased ventricular mass (120 gr/m2) and a high grade mitral incompetence +3/4. After three months standard RDT and a dry weight only 2 kg less, the patients was normotensive without therapy, a cardiac angiogram with a hemodynamic study was performed as a pre-transplant workout: a normal left ventricle was found with normal systolic function (TDV 66, TSV 17, GS 49, EF 75%), and a perfectly competent mitral valve (reflux disappeared). The coronary angiography did not reveal critical stenosis. A new echocardiography confinned the data of the hemodynamic study: hypertensive cardiomiopathy with normal systolic function. After one year the patient has been transplanted, with a good renal function and the cardiac echo unchanged. Relieving uremic toxicity ameliorated the cardiac performance in this particular patient.
The Eccentric Kozai–Lidov Mechanism for Outer Test Particle
Energy Technology Data Exchange (ETDEWEB)
Naoz, Smadar [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Li, Gongjie [Harvard Smithsonian Center for Astrophysics, Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); Zanardi, Macarena; De Elía, Gonzalo Carlos; Di Sisto, Romina P., E-mail: snaoz@astro.ucla.edu [Instituto de Astrofísica de La Plata, CCT La Plata-CONICET-UNLP Paseo del Bosque S/N (1900), La Plata (Argentina)
2017-07-01
The secular approximation of the hierarchical three body systems has been proven to be very useful in addressing many astrophysical systems, from planets to stars to black holes. In such a system, two objects are on a tight orbit and the tertiary is on a much wider orbit. Here, we study the dynamics of a system by taking the tertiary mass to zero and solve the hierarchical three body system up to the octupole level of approximation. We find a rich dynamics that the outer orbit undergoes due to gravitational perturbations from the inner binary. The nominal result of the precession of the nodes is mostly limited for the lowest order of approximation; however, when the octupole level of approximation is introduced, the system becomes chaotic, as expected, and the tertiary oscillates below and above 90°, similarly to the non-test particle flip behavior. We provide the Hamiltonian of the system and investigate the dynamics of the system from the quadrupole to the octupole level of approximations. We also analyze the chaotic and quasi-periodic orbital evolution by studying the surfaces of sections. Furthermore, including general relativity, we showcase the long-term evolution of individual debris disk particles under the influence of a far-away interior eccentric planet. We show that this dynamics can naturally result in retrograde objects and a puffy disk after a long timescale evolution (a few Gyr) for initially aligned configuration.
Sosa, Carlos; Lorenzo Calvo, Alberto; Jiménez, Sergio L.; Bonfanti, Noelia
2014-01-01
Chronic patellar tendinopathy is a common pathology in sporting population. To date, there is no agreed upon protocol as election treatment. Eccentric exercises have been used with satisfactory outcomes. The purpose of this trial is compare the effects of two eccentric exercise protocols. 0.146 SJR (2014) Q4, 199/231 Health (social science), 131/169 Physical therapy, sports therapy and rehabilitation, 119/128 Sports sciences UEM
Kaikai Lv; Kaiyun Wang; Zhihui Chen; Chengbiao Cai; Lirong Guo
2017-01-01
This paper investigates the influence of wheel eccentricity on vertical vibration of suspended monorail vehicle based on experiment and simulation. Two sets of tests are conducted in the first Chinese suspended monorail, and the tested acceleration is analyzed and exhibited. A multibody dynamic model of the suspended monorail vehicle is established to simulate the vertical vibration of car body excited by wheel eccentricity. The results show that there are three factors which may cause an abn...
The effect of eccentric exercise on injured patellar tendon healing in rats: a gene expression study
Yagishita, Masafumi
2011-01-01
Recently, clinical studies have suggested that eccentric exercise can be beneficial for patellar tendinopathy. It is known that loading induces collagen synthesis in tendon, but the mechanisms responsible for mediating this effect are still unclear. We hypothesized that loading-induced expression of collagen depends on a specific contraction type. Eccentric exercise induces a more beneficial healing response than concentric exercise. Two longitudinal incisions were made in rat patellar tendon...
Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements
Nishizawa, Atsushi; Sesana, Alberto; Berti, Emanuele; Klein, Antoine
2016-01-01
A space-based interferometer such as eLISA could observe few to few thousands progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where eLISA is most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black...
Funny walking : the rise, fall and rise of the Anglo-American comic eccentric dancer
Wilkie, I
2017-01-01
This article will attempt to reposition comic eccentric dance as a metamorphic form that still, surprisingly, exists, and is to be found with reasonable ubiquity, in renewed incarna-tions within twenty first century media. \\ud Tracing the origins of comic eccentric dance through examples of earlier comedy performance, and drawing from Bergson’s comic theory of body misalliance, this article will dis-cuss this particularly ludic fusion of music and comedy. Further changes to the form affected ...
Effect of eccentric training on the plantar flexor muscle-tendon tissue properties.
Mahieu, Nele Nathalie; McNair, Peter; Cools, Ann; D'Haen, Caroline; Vandermeulen, Katrien; Witvrouw, Erik
2008-01-01
It has been shown that eccentric training can be effective in the rehabilitation of patients with Achilles tendonopathy. The mechanism behind these results is not clear. However, there is evidence that tendons are able to respond to repeated forces by altering their structure and composition, and, thus, their mechanical properties change. In this regard, the objective of the present study was to investigate whether eccentric training affects the mechanical properties of the plantar flexor's muscle-tendon tissue properties. Seventy-four healthy subjects were randomized into two groups: an eccentric training group and a control group. The eccentric training group performed a 6-wk eccentric training program for the calf muscles. Before and after this period, all subjects were evaluated for dorsiflexion range of motion using universal goniometry, passive resistive torque of the plantar flexors, and stiffness of the Achilles tendon. Passive resistive torque was measured during ankle dorsiflexion on an isokinetic dynamometer. Stiffness of the Achilles tendon was assessed using a dynamometer, in combination with ultrasonography. The results of the study reveal that the dorsiflexion range of motion was significantly increased only in the eccentric training group. The eccentric heel drop program also resulted in a significant decrease of the passive resistive torque of the plantar flexors (from 16.423 +/- 0.827 to 12.651 +/- 0.617 N.m). The stiffness of the Achilles tendon did not change significantly as a result of training. These findings provide evidence that an eccentric training program results in changes to some of the mechanical properties of the plantar flexor muscles. These changes were thought to be associated with modifications to structure rather than to stretch tolerance.
International Nuclear Information System (INIS)
Dawson, Rebekah I.; Johnson, John Asher
2012-01-01
Exoplanet orbital eccentricities offer valuable clues about the history of planetary systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link the 'cold' Jupiters beyond the ice line to close-in hot Jupiters, which are unlikely to have formed in situ. To date, eccentricities of individual transiting planets primarily come from radial-velocity measurements. Kepler has discovered hundreds of transiting Jupiters spanning a range of periods, but the faintness of the host stars precludes radial-velocity follow-up of most. Here, we demonstrate a Bayesian method of measuring an individual planet's eccentricity solely from its transit light curve using prior knowledge of its host star's density. We show that eccentric Jupiters are readily identified by their short ingress/egress/total transit durations—part of the 'photoeccentric' light curve signature of a planet's eccentricity—even with long-cadence Kepler photometry and loosely constrained stellar parameters. A Markov Chain Monte Carlo exploration of parameter posteriors naturally marginalizes over the periapse angle and automatically accounts for the transit probability. To demonstrate, we use three published transit light curves of HD 17156 b to measure an eccentricity of e = 0.71 +0.16 –0.09 , in good agreement with the discovery value e = 0.67 ± 0.08 based on 33 radial-velocity measurements. We present two additional tests using Kepler data. In each case, the technique proves to be a viable method of measuring exoplanet eccentricities and their confidence intervals. Finally, we argue that this method is the most efficient, effective means of identifying the extremely eccentric, proto-hot Jupiters predicted by Socrates et al.
Hinnov, L.; Ogg, J. G.
2009-12-01
Mesozoic cyclostratigraphy from around the world is being assessed to construct a continuous Astronomical Time Scale (ATS) based on Earth’s cyclic orbital parameters. The recognition of a prevalent sedimentary cycling with a ~400-kyr period associated with forcing by the stable 405-kyr orbital eccentricity variation is an important development. Numerous formations spanning 10 to 20 myr (and longer) intervals in the Cretaceous, Jurassic and Triassic clearly express this dominant cycle and provide a robust basis for 405-kyr-scale calibration of the ATS. This 405-kyr metronome will enable extension of the well-defined Cenozoic ATS for scaling of the past quarter-billion years of Earth history. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS have already provided new insights into long-standing geologic problems of seafloor spreading, tectonics, eustasy, and paleoclimate change. Ongoing work is focused on closing gaps in coverage and on collecting duplicate cyclostratigraphic records for the entire Mesozoic Era.
Composite synchronization of three eccentric rotors driven by induction motors in a vibrating system
Kong, Xiangxi; Chen, Changzheng; Wen, Bangchun
2018-03-01
This paper addresses the problem of composite synchronization of three eccentric rotors (ERs) driven by induction motors in a vibrating system. The composite synchronous motion of three ERs is composed of the controlled synchronous motion of two ERs and the self-synchronous motion of the third ER. Combining an adaptive sliding mode control (ASMC) algorithm with a modified master-slave control structure, the controllers are designed to implement controlled synchronous motion of two ERs with zero phase difference. Based on Lyapunov stability theorem and Barbalat's lemma, the stability of the designed controllers is verified. On basis of controlled synchronization of two ERs, self-synchronization of the third ER is introduced to implement composite synchronous motion of three ERs. The feasibility of the proposed composite synchronization method is analyzed by numerical method. The effects of motor and structure parameters on composite synchronous motion are discussed. Experiments on a vibrating test bench driven by three ERs are operated to validate the effectiveness of the proposed composite synchronization method, including a comparison with self-synchronization method.
How to Make Eccentricity Cycles in Stratigraphy: the Role of Compaction
Liu, W.; Hinnov, L.; Wu, H.; Pas, D.
2017-12-01
Milankovitch cycles from astronomically driven climate variations have been demonstrated as preserved in cyclostratigraphy throughout geologic time. These stratigraphic cycles have been identified in many types of proxies, e.g., gamma ray, magnetic susceptibility, oxygen isotopes, carbonate content, grayscale, etc. However, the commonly prominent spectral power of orbital eccentricity cycles in stratigraphy is paradoxical to insolation, which is dominated by precession index power. How is the spectral power transferred from precession to eccentricity in stratigraphy? Nonlinear sedimentation and bioturbation have long been identified as players in this transference. Here, we propose that in the absence of bioturbation differential compaction can generate the transference. Using insolation time series, we trace the steps by which insolation is transformed into stratigraphy, and how differential compaction of lithology acts to transfer spectral power from precession to eccentricity. Differential compaction is applied to unique values of insolation, which is assumed to control the type of deposited sediment. High compaction is applied to muds, and progressively lower compaction is applied to silts and sands, or carbonate. Linear differential compaction promotes eccentricity spectral power, but nonlinear differential compaction elevates eccentricity spectral power to dominance and precession spectral power to near collapse as is often observed in real stratigraphy. Keywords: differential compaction, cyclostratigraphy, insolation, eccentricity
Directory of Open Access Journals (Sweden)
Kaikai Lv
2017-01-01
Full Text Available This paper investigates the influence of wheel eccentricity on vertical vibration of suspended monorail vehicle based on experiment and simulation. Two sets of tests are conducted in the first Chinese suspended monorail, and the tested acceleration is analyzed and exhibited. A multibody dynamic model of the suspended monorail vehicle is established to simulate the vertical vibration of car body excited by wheel eccentricity. The results show that there are three factors which may cause an abnormal vibration considering the track and the vehicle system. The influence of wheel eccentricity on the car body vibration was firstly analyzed. Simulated acceleration of car body has a great accordance with test. The wheel eccentricity could excite the resonance of car body at the speed of 21 km/h, and the vertical acceleration would increase considerably. Decreasing the secondary stiffness can effectively reduce the vertical vibration caused by wheel eccentricity, especially at the resonant speed. In the secondary test, the peak of car body acceleration at speed of 20 km/h is not appearing when only renewing the wheels, and the acceleration is decreasing obviously at the domain frequency. It is further determined that the abnormal vibration is mainly caused by the wheel eccentricity.
Directory of Open Access Journals (Sweden)
José L. Arias-Buría
2015-01-01
Full Text Available Objective. To compare effects of ultrasound- (US- guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n=17 group or exercise (n=19 group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous electrolysis group also received the application of galvanic current through acupuncture needle on each session once a week (total 4 sessions. Shoulder pain (NPRS and disability (DASH were assessed at baseline, after 2 sessions, and 1 week after the last session. Results. The ANOVA revealed significant Group∗Time interactions for shoulder pain and disability (all, P<0.01: individuals receiving US-guided percutaneous electrolysis combined with the eccentric exercises experienced greater improvement than those receiving eccentric exercise alone. Conclusions. US-guided percutaneous electrolysis combined with eccentric exercises resulted in small better outcomes at short term compared to when only eccentric exercises were applied in subacromial pain syndrome. The effect was statistically and clinically significant for shoulder pain but below minimal clinical difference for function. Future studies should investigate the long-term effects and potential placebo effect of this intervention.
Muscle damage and repeated bout effect induced by enhanced eccentric squats.
Coratella, Giuseppe; Chemello, Alessandro; Schena, Federico
2016-12-01
Muscle damage and repeated bout effect have been studied after pure eccentric-only exercise. The aim of this study was to evaluate muscle damage and repeated bout effect induced by enhanced eccentric squat exercise using flywheel device. Thirteen healthy males volunteered for this study. Creatine kinase blood activity (CK), quadriceps isometric peak torque and muscle soreness were used as markers of muscle damage. The dependent parameters were measured at baseline, immediately after and each day up to 96 hours after the exercise session. The intervention consisted of 100 repetitions of enhanced eccentric squat exercise using flywheel device. The same protocol was repeated after 4 weeks. After the first bout, CK and muscle soreness were significantly greater (P0.05), while isometric peak torque and muscle soreness returned to values similar to baseline after respectively 48 and 72 hours. All muscle damage markers were significantly lower after second compared to first bout. The enhanced eccentric exercise induced symptoms of muscle damage up to 96 hours. However, it provided muscle protection after the second bout, performed four weeks later. Although it was not eccentric-only exercise, the enhancement of eccentric phase provided muscle protection.
Directory of Open Access Journals (Sweden)
Norio Saga
2008-03-01
Full Text Available The purpose of this study was to clarify whether heat preconditioning results in less eccentric exercise-induced muscle damage and muscle soreness, and whether the repeated bout effect is enhanced by heat preconditioning prior to eccentric exercise. Nine untrained male volunteers aged 23 ± 3 years participated in this study. Heat preconditioning included treatment with a microwave hyperthermia unit (150 W, 20 min that was randomly applied to one of the subject's arms (MW; the other arm was used as a control (CON. One day after heat preconditioning, the subjects performed 24 maximal isokinetic eccentric contractions of the elbow flexors at 30°·s-1 (ECC1. One week after ECC1, the subjects repeated the procedure (ECC2. After each bout of exercise, maximal voluntary contraction (MVC, range of motion (ROM of the elbow joint, upper arm circumference, blood creatine kinase (CK activity and muscle soreness were measured. The subjects experienced both conditions at an interval of 3 weeks. MVC and ROM in the MW were significantly higher than those in the CON (p < 0.05 for ECC1; however, the heat preconditioning had no significant effect on upper arm circumference, blood CK activity, or muscle soreness following ECC1 and ECC2. Heat preconditioning may protect human skeletal muscle from eccentric exercise-induced muscle damage after a single bout of eccentric exercise but does not appear to promote the repeated bout effect after a second bout of eccentric exercise
Effect of eccentric exercise on the healing process of injured patellar tendon in rats.
Nakamura, Kenichi; Kitaoka, Katsuhiko; Tomita, Katsuro
2008-07-01
Earlier studies have reported positive results from eccentric training in patients with tendon disorders. The reasons for the beneficial clinical effects of eccentric training are not known. Vascularization followed by regression of the vasculature enhances the healing response of injured tendons. Eccentric exercise induces a more beneficial healing response than concentric exercise. Sixty rats with patellar tendon injuries were divided into three groups: nonexercise controls (group N; n = 20); concentric exercise group (group C; n = 20); eccentric exercise group (group E; n = 20). Each rat was taught to run uphill or downhill for 14 days. Patellar tendons were removed 1, 4, 7, 10, and 14 days following injury. Vascular endothelial growth factor (VEGF), angiopoietin-1, and angiopoietin-2 were measured by reverse transcription polymerase chain reaction. In group C, VEGF mRNA was increased 1 and 4 days following injury but was decreased on days 7, 10, and 14. In group E, VEGF mRNA was elevated only on day 1. In group N, VEGF mRNA remained at a low level throughout all 14 days. The angiopoietin-2/angiopoietin-1 ratio was higher for group C than for group E. In the presence of VEGF, angiopoietin-1 promotes vessel stability, whereas angiopoietin-2 has the opposite effect. Eccentric exercise contributes to stabilized angiogenesis during the early phase of tendon injury. Conversely, concentric exercise, which induces destabilized angiogenesis, leads to a delayed healing response. Initiation of eccentric exercise immediately after tendon injury may help improve healing by reducing vascularity.
DEFF Research Database (Denmark)
Langberg, Henning; Ellingsgaard, Helga; Madsen, Thomas
2007-01-01
It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime on...... in the healthy tendons. The clinical effect of the 12 weeks of eccentric training was determined by using a standardized loading procedure of the Achilles tendons showing a decrease in pain in all the chronic injured tendons (VAS before 44+/-9, after 13+/-9; P......It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime...... of heavy-resistance eccentric training apart from their regular training and soccer activity. Before and after the training period the tissue concentration of indicators of collagen turnover was measured by the use of the microdialysis technique. After training, collagen synthesis was increased...
Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.
Guilhem, G; Cornu, C; Guével, A
2010-06-01
To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings. An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise. The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies. 2010 Elsevier Masson SAS. All rights reserved.
Butterfield, Timothy A; Herzog, Walter
2006-02-01
It is generally accepted that eccentric exercise, when performed by a muscle that is unaccustomed to that type of contraction, results in a delayed onset of muscle soreness (DOMS). A prolonged exposure to eccentric exercise leads to the disappearance of the signs and symptoms associated with DOMS, which has been referred to as the repeated bout effect (RBE). Although the mechanisms underlying the RBE remain unclear, several mechanisms have been proposed, including the serial sarcomere number addition following exercise induced muscle damage. In the traditional DOMS and RBE protocols, muscle injury has been treated as a global parameter, with muscle force and strain assumed to be uniform throughout the muscle. To assess the effects of muscle-tendon unit strain, fiber strain, torque and injury on serial sarcomere number adaptations, three groups of New Zealand White (NZW) rabbits were subjected to chronic repetitive eccentric exercise bouts of the ankle dorsiflexors for 6 weeks. These eccentric exercise protocols consisted of identical muscle tendon unit (MTU) strain, but other mechanical factors were systematically altered. Following chronic eccentric exercise, serial sarcomere number adaptations were not identical between the three eccentric exercise protocols, and serial sarcomere number adaptations were not uniform across all regions of the muscle. Peak torque and relaxation fiber strain were the best predictors of serial sarcomere number across all three protocols. Therefore, MTU strain does not appear to be the primary cause for sarcomerogenesis, and differential adaptations within the muscle may be explained by the nonuniform architecture of the muscle, resulting in differential local fiber strains.
Calixto, RD; Verlengia, R; Crisp, AH; Carvalho, TB; Crepaldi, MD; Pereira, AA; Yamada, AK; da Mota, GR; Lopes, CR
2014-01-01
This study aimed to compare the effects of different velocities of eccentric muscle actions on acute blood lactate and serum growth hormone (GH) concentrations following free weight bench press exercises performed by resistance-trained men. Sixteen healthy men were divided into two groups: slow eccentric velocity (SEV; n = 8) and fast eccentric velocity (FEV; n = 8). Both groups performed four sets of eight eccentric repetitions at an intensity of 70% of their one repetition maximum eccentric...
Mike, Jonathan N; Cole, Nathan; Herrera, Chris; VanDusseldorp, Trisha; Kravitz, Len; Kerksick, Chad M
2017-03-01
Mike, JN, Cole, N, Herrera, C, VanDusseldorp, T, Kravitz, L, and Kerksick, CM. The effects of eccentric contraction duration on muscle strength, power production, vertical jump, and soreness. J Strength Cond Res 31(3): 773-786, 2017-Previous research has investigated the effects of either eccentric-only training or comparing eccentric and concentric exercise on changes related to strength and power expression, but no research to date has investigated the impact of altering the duration of either the concentric or the eccentric component on these parameters. Therefore, the purpose of this study was to assess the duration of eccentric (i.e., 2-second, 4-second vs. 6-second) muscle contractions and their effect on muscle strength, power production, vertical jump, and soreness using a plate-loaded barbell Smith squat exercise. Thirty college-aged men (23 ± 3.5 years, 178 ± 6.8 cm, 82 ± 12 kg, and 11.6 ± 5.1% fat) with 3.0 ± 1.0 years of resistance training experience and training frequency of 4.3 ± 0.9 days per week were randomized and assigned to 1 of 3 eccentric training groups that incorporated different patterns of contraction. For every repetition, all 3 groups used 2-second concentric contractions and paused for 1 second between the concentric and eccentric phases. The control group (2S) used 2-second eccentric contractions, whereas the 4S group performed 4-second eccentric contractions and the 6S group performed 6-second eccentric contractions. All repetitions were completed using the barbell Smith squat exercise. All participants completed a 4-week training protocol that required them to complete 2 workouts per week using their prescribed contraction routine for 4 sets of 6 repetitions at an intensity of 80-85% one repetition maximum (1RM). For all performance data, significant group × time (G × T) interaction effects were found for average power production across all 3 sets of a squat jump protocol (p = 0.04) while vertical jump did not reach
Cao, Zhoujian; Han, Wen-Biao
2017-08-01
Binary black hole systems are among the most important sources for gravitational wave detection. They are also good objects for theoretical research for general relativity. A gravitational waveform template is important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic assumption in the model construction is that the involved eccentricity is small. We have compared our eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our eccentric EOBNR model against another recently proposed eccentric binary waveform model; against numerical relativity simulation results; and against perturbation approximation results for extreme mass ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases, including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our eccentric model can be the starting point to develop a faithful template for future space-based gravitational wave detectors.
Energy Technology Data Exchange (ETDEWEB)
Block, Martin M. [Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Durand, Loyal [University of Wisconsin, Department of Physics, Madison, WI (United States)
2011-11-15
We recently derived a very accurate and fast new algorithm for numerically inverting the Laplace transforms needed to obtain gluon distributions from the proton structure function F{sub 2}{sup {gamma}}{sup p}(x,Q{sup 2}). We numerically inverted the function g(s), s being the variable in Laplace space, to G(v), where v is the variable in ordinary space. We have since discovered that the algorithm does not work if g(s){yields}0 less rapidly than 1/s as s{yields}{infinity}, e.g., as 1/s{sup {beta}} for 0 <{beta}<1. In this note, we derive a new numerical algorithm for such cases, which holds for all positive and non-integer negative values of {beta}. The new algorithm is exact if the original function G(v) is given by the product of a power v{sup {beta}}{sup -1} and a polynomial in v. We test the algorithm numerically for very small positive {beta}, {beta}=10{sup -6} obtaining numerical results that imitate the Dirac delta function {delta}(v). We also devolve the published MSTW2008LO gluon distribution at virtuality Q{sup 2}=5 GeV{sup 2} down to the lower virtuality Q{sup 2}=1.69 GeV{sup 2}. For devolution, {beta} is negative, giving rise to inverse Laplace transforms that are distributions and not proper functions. This requires us to introduce the concept of Hadamard Finite Part integrals, which we discuss in detail. (orig.)
Response of macrophages in rat skeletal muscle after eccentric exercise.
Zuo, Qun; Wang, Shu-Chen; Yu, Xin-Kai; Chao, Wei-Wei
2018-04-01
Macrophages are known to be important for healing numerous injured tissues depending on their functional phenotypes in response to different stimuli. The objective of this study was to reveal macrophage phenotypic changes involved in exercise-induced skeletal muscle injury and regeneration. Adult male Sprague-Dawley rats experienced one session of downhill running (16° decline, 16 m/min) for 90 min. After exercise the blood and soleus muscles were collected at 0 h, 6 h, 12 h, 1 d, 2 d, 3 d, 1 w and 2 w after exercise, separately. It was showed that CD68 + M1 macrophages mainly infiltrated into muscle necrotic sites at 1-3 d, while CD163 + M2 macrophages were present in muscles from 0 h to 2 weeks after exercise. Using transmission electron microscopy, we observed activated satellite cells 1 d after exercise. Th1-associated transcripts of iNOS and Ccl2 were inhibited post exercise, while COX-2 mRNA was dramatically increased 12 h after running (p < 0.01). M2 phenotype marker Arg-1 increased 12 h and 3 d (p < 0.05, p < 0.01) after exercise, and Clec10a and Mrc2 were up-regulated in muscles 12 h following exercise (p < 0.05, p < 0.05). The data demonstrate the dynamic patterns of macrophage phenotype in skeletal muscle upon eccentric exercise stimuli, and M1 and M2 phenotypes perform different functions during exercise-induced skeletal muscle injury and recovery. Copyright © 2018 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Eccentric utilization ratio: effect of sport and phase of training.
McGuigan, Michael R; Doyle, Timothy L A; Newton, Michael; Edwards, Dylan J; Nimphius, Sophia; Newton, Robert U
2006-11-01
The eccentric utilization ratio (EUR), which is the ratio of countermovement jump (CMJ) to static jump (SJ) performance, has been suggested as a useful indicator of power performance in athletes. The purpose of the study was to compare the EUR of athletes from a variety of different sports and during different phases of training. A total of 142 athletes from rugby union, Australian Rules Football, soccer, softball, and field hockey were tested. Subjects performed both CMJ and SJ on a force plate integrated with a position transducer. The EUR was measured as the ratio of CMJ to SJ for jump height and peak power. The rugby union, Australian Rules Football, and hockey athletes were tested during off-season and preseason to provide EUR data during different phases of training. For men, EUR for soccer, Australian Rules Football, and rugby was greater than softball (effect size range, 0.83-0.92). For women, EUR for soccer was greater than field hockey and softball (0.86- 1.0). There was a significant difference between the jump height and peak power method for the Australian Rules Football, rugby, and field hockey tests conducted preseason (p sports such as soccer, rugby union, and Australian Rules Football appear to have higher EUR values, which reflects the greater reliance on stretch shortening activities in these sports. It does appear that EUR can be used to track changes in training with the values significantly increasing from off-season to preseason. The EUR provides the practitioner with information about the performance of athletes and appears to be sensitive to changes in the type of training being undertaken.
International Nuclear Information System (INIS)
Roshanzamir-Nikou, M; Goudarzi, H
2014-01-01
The exact bound-state energy and the corresponding eigenfunctions of a relativistic spin 1/2 harmonic oscillator with a centripetal barrier, known as an isotonic oscillator including the tensor interaction term are obtained in D-dimensions. In particular, we use the Laplace transform method in the pseudospin symmetry limit. It is shown that our analytical results are consistent with those obtained by Agboola (2012 J. Math. Phys. 53 052302) and Ikhdair and Sever (2011 J. Math. Phys. 52 122108) in the absence of the tensor interaction using different methods. Further, we give some numerical results on the energy levels for different values of related quantum numbers. (paper)
Directory of Open Access Journals (Sweden)
Wu Zaixin
2016-01-01
Full Text Available High-speed motorized spindle is a multi-variable, non-linear and strong coupling system. The rotor static eccentricity is inevitable because of machining or assembling error. The rotor static eccentricities have an important effect on the electromechanical coupled characteristics of the motorized spindle. In this paper, the electromechanical coupled mathematical model of the motorized spindle was set up. The mathematical model includes mechanical and electrical equation. The mechanical and electrical equation is built up by the variational principle. Furthermore, the inductance parameters without the rotor static eccentricity and the inductance parameters with rotor static eccentricity have been calculated by the winding function method and the high speed motorized spindle was simulated. The result show that the rotor static eccentricity can delay the starting process of the motorized spindle, and at steady state, the rotor circuit currents are still large because of the rotor static eccentricity.
Intra-tester Reliability and Construct Validity of a Hip Abductor Eccentric Strength Test.
Brindle, Richard A; Ebaugh, D David; Milner, Clare E
2017-11-15
Side-lying hip abductor strength tests are commonly used to evaluate muscle strength. In a 'break' test the tester applies sufficient force to lower the limb to the table while the patient resists. The peak force is postulated to occur while the leg is lowering, thus representing the participant's eccentric muscle strength. However, it is unclear whether peak force occurs before or after the leg begins to lower. To determine intra-rater reliability and construct validity of a hip abductor eccentric strength test. Intra-rater reliability and construct validity study. Twenty healthy adults (26 ±6 years; 1.66 ±0.06 m; 62.2 ±8.0 kg) made two visits to the laboratory at least one week apart. During the hip abductor eccentric strength test, a hand-held dynamometer recorded peak force and time to peak force and limb position was recorded via a motion capture system. Intra-rater reliability was determined using intra-class correlation (ICC), standard error of measurement (SEM), and minimal detectable difference (MDD). Construct validity was assessed by determining if peak force occurred after the start of the lowering phase using a one-sample t-test. The hip abductor eccentric strength test had substantial intra-rater reliability (ICC( 3,3 ) = 0.88; 95% confidence interval: 0.65-0.95), SEM of 0.9%BWh, and a MDD of 2.5%BWh. Construct validity was established as peak force occurred 2.1s (±0.6s; range 0.7s to 3.7s) after the start of the lowering phase of the test (p ≤ 0.001). The hip abductor eccentric strength test is a valid and reliable measure of eccentric muscle strength. This test may be used clinically to assess changes in eccentric muscle strength over time.
Shadle, Ian B; Cacolice, Paul A
2017-11-01
Clinical Scenario: Hamstring strains are a common sport-related injury, which may limit athletic performance for an extended period of time. These injuries are common in the soccer setting. As such, it is important to determine an appropriate prevention program to minimize the risk of such an injury for these athletes. Eccentric hamstring training may be an effective and practical hamstring strain prevention strategy. What is the effect of eccentric exercises on hamstring strain prevention in adult male soccer players? Summary of Key Findings: Current literature was searched for studies of level 2 evidence or higher that investigated the effect of eccentric exercises in preventing hamstring strains in adult male soccer players. Three articles returned from the literature search met the inclusion criteria. A fourth article looked at differences in strength gains between eccentric and concentric hamstring strengthening exercises, but did not record hamstring strain incidence. A fifth article, a systematic review, met all the criteria except for the correct population. Of the 3 studies, 2 were randomized control trails and 1 was a cohort study. Clinical Bottom Line: There is robust supportive evidence that eccentric hamstring exercises can prevent a hamstring injury to an elite adult male soccer player. Therefore, it is recommended that athletic trainers and other sports medicine providers evaluate current practices relating to reducing hamstring strains and consider implementing eccentric exercise based prevention programs. Strength of Recommendation: All evidence was attained from articles with a level of evidence 2b or higher, based on the Center for Evidence-Based Medicine (CEBM) criteria, stating that eccentric exercises can decrease hamstring strains.
Purdam, C R; Jonsson, P; Alfredson, H; Lorentzon, R; Cook, J L; Khan, K M
2004-08-01
This non-randomised pilot study investigated the effect of eccentric quadriceps training on 17 patients (22 tendons) with painful chronic patellar tendinopathy. Two different eccentric exercise regimens were used by subjects with a long duration of pain with activity (more than six months). (a) Nine consecutive patients (10 tendons; eight men, one woman; mean age 22 years) performed eccentric exercise with the ankle joint in a standard (foot flat) position. (b) Eight patients (12 tendons; five men, three women; mean age 28 years) performed eccentric training standing on a 25 degrees decline board, designed to increase load on the knee extensor mechanism. The eccentric training was performed twice daily, with three sets of 15 repetitions, for 12 weeks. Primary outcome measures were (a) 100 mm visual analogue scale (VAS), where the subject recorded the amount of pain during activity, and (b) return to previous activity. Follow up was at 12 weeks, with a further limited follow up at 15 months. Good clinical results were obtained in the group who trained on the decline board, with six patients (nine tendons) returning to sport and showing a significantly reduced amount of pain over the 12 week period. Mean VAS scores fell from 74.2 to 28.5 (p = 0.004). At 15 months, four patients (five tendons) reported satisfactory results (mean VAS 26.2). In the standard squat group the results were poor, with only one athlete returning to previous activity. Mean VAS scores in this group were 79.0 at baseline and 72.3 at 12 weeks (p = 0.144). In a small group of patients with patellar tendinopathy, eccentric squats on a decline board produced encouraging results in terms of pain reduction and return to function in the short term. Eccentric exercise using standard single leg squats in a similar sized group appeared to be a less effective form of rehabilitation in reducing pain and returning subjects to previous levels of activity.
Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining
2018-06-01
The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Kazunori, NOSAKA; Kei, SAKAMOTO; Mike, NEWTON; Exercise and Sports Science, Graduate School of Integrated Science, Yokohama City University:School of Biomedical and Sports Science, Edith Cowan University; Exercise and Sports Science, Graduate School of Integrated Science, Yokohama City University; School of Biomedical and Sports Science, Edith Cowan University
2002-01-01
It was hypothesized that the time course of changes in plasma creatine kinase (CK) activity following eccentric exercise was influenced by rhythmical muscle contractions performed after eccentric exercise. This study examined whether arm-cranking (AC) alters the time course of changes in plasma creatine kinase (CK) activity after eccentric exercise of the elbow flexors (ECC). Six male students performed two bouts of ECC separated by 3 weeks, and AC (25watts, 2-hours) was performed immediately...
On rational approximation methods for inverse source problems
Rundell, William
2011-02-01
The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Such is the ubiquity of these problems, the underlying model can lead to a partial differential equation of any of the major types, but here we focus on the case of steady-state electrostatic or thermal imaging and consider boundary value problems for Laplace\\'s equation. Our inclusions are interior forces with compact support and our data consists of a single measurement of (say) voltage/current or temperature/heat flux on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler "equivalent point source" problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2011 American Institute of Mathematical Sciences.
Li, Zhiyuan; Yamamoto, Masahiro
2014-01-01
This article proves the uniqueness for two kinds of inverse problems of identifying fractional orders in diffusion equations with multiple time-fractional derivatives by pointwise observation. By means of eigenfunction expansion and Laplace transform, we reduce the uniqueness for our inverse problems to the uniqueness of expansions of some special function and complete the proof.
Schmitz, Gunnar; Hättig, Christof
2016-12-21
We present an implementation of pair natural orbital coupled cluster singles and doubles with perturbative triples, PNO-CCSD(T), which avoids the quasi-canonical triples approximation (T0) where couplings due to off-diagonal Fock matrix elements are neglected. A numerical Laplace transformation of the canonical expression for the perturbative (T) triples correction is used to avoid an I/O and storage bottleneck for the triples amplitudes. Results for a test set of reaction energies show that only very few Laplace grid points are needed to obtain converged energy differences and that PNO-CCSD(T) is a more robust approximation than PNO-CCSD(T0) with a reduced mean absolute deviation from canonical CCSD(T) results. We combine the PNO-based (T) triples correction with the explicitly correlated PNO-CCSD(F12*) method and investigate the use of specialized F12-PNOs in the conventional triples correction. We find that no significant additional errors are introduced and that PNO-CCSD(F12*)(T) can be applied in a black box manner.
Directory of Open Access Journals (Sweden)
Kenny Guex
2016-08-01
Full Text Available Most common preventive eccentric-based exercises, such as Nordic hamstring do not include any hip flexion. So, the elongation stress reached is lower than during the late swing phase of sprinting. The aim of this study was to assess the evolution of hamstring architectural (fascicle length and pennation angle and functional (concentric and eccentric optimum angles and concentric and eccentric peak torques parameters following a 3-week eccentric resistance program performed at long (LML versus short muscle length (SML. Both groups performed eight sessions of 3-5x8 slow maximal eccentric knee extensions on an isokinetic dynamometer: the SML group at 0° and the LML group at 80° of hip flexion. Architectural parameters were measured using ultrasound imaging and functional parameters using the isokinetic dynamometer. The fascicle length increased by 4.9% (p<0.01, medium effect size in the SML and by 9.3% (p<0.001, large effect size in the LML group. The pennation angle did not change (p=0.83 in the SML and tended to decrease by 0.7° (p=0.09, small effect size in the LML group. The concentric optimum angle tended to decrease by 8.8° (p=0.09, medium effect size in the SML and by 17.3° (p<0.01, large effect size in the LML group. The eccentric optimum angle did not change (p=0.19, small effect size in the SML and tended to decrease by 10.7° (p=0.06, medium effect size in the LML group. The concentric peak torque did not change in the SML (p=0.37 and the LML (p=0.23 groups, whereas eccentric peak torque increased by 12.9% (p<0.01, small effect size and 17.9% (p<0.001, small effect size in the SML and the LML group, respectively. No group-by-time interaction was found for any parameters. A correlation was found between the training-induced change in fascicle length and the change in concentric optimum angle (r=-0.57, p<0.01. These results suggest that performing eccentric exercises lead to several architectural and functional adaptations. However
Martynov, M. B.; Merkulov, P. V.; Lomakin, I. V.; Vyatlev, P. A.; Simonov, A. V.; Leun, E. V.; Barabanov, A. A.; Nasyrov, A. F.
2017-12-01
The advanced Russian project Laplace-P is aimed at developing and launching two scientific spacecraft (SC)— Laplace-P1 ( LP1 SC) and Laplace-P2 ( LP2 SC)—designed for remote and in-situ studies of the system of Jupiter and its moon Ganymede. The LP1 and LP2 spacecraft carry an orbiter and a lander onboard, respectively. One of the orbiter's objectives is to map the surface of Ganymede from the artificial satellite's orbit and to acquire the data for the landing site selection. The main objective of the lander is to carry out in-situ investigations of Ganymede's surface. The paper describes the scientific goals and objectives of the mission, its special features, and the LP1 and LP2 mission profiles during all of the phases—from the launch to the landing on the surface of Ganymede.
Densities and eccentricities of 139 Kepler planets from transit time variations
Energy Technology Data Exchange (ETDEWEB)
Hadden, Sam; Lithwick, Yoram [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States)
2014-05-20
We extract densities and eccentricities of 139 sub-Jovian planets by analyzing transit time variations (TTVs) obtained by the Kepler mission through Quarter 12. We partially circumvent the degeneracies that plague TTV inversion with the help of an analytical formula for the TTV. From the observed TTV phases, we find that most of these planets have eccentricities of the order of a few percent. More precisely, the rms eccentricity is 0.018{sub −0.004}{sup +0.005}, and planets smaller than 2.5 R {sub ⊕} are around twice as eccentric as those bigger than 2.5 R {sub ⊕}. We also find a best-fit density-radius relationship ρ ≈ 3 g cm{sup –3} × (R/3 R {sub ⊕}){sup –2.3} for the 56 planets that likely have small eccentricity and hence small statistical correction to their masses. Many planets larger than 2.5 R {sub ⊕} are less dense than water, implying that their radii are largely set by a massive hydrogen atmosphere.
International Nuclear Information System (INIS)
Nishi, Y.; Eguchi, Y.; Nishihara, T.; Kanai, T.; Kondo, M.
2012-01-01
In orifice flowmeters used in nuclear power plants, requirements for the inner surface roughness of upstream piping and eccentric installation exist depending on certain standards. If these cannot be satisfied based on the installation condition, an appropriate error margin must be considered, although this remains to be clarified. In this research, quantitative data concerning the relative error of orifice flowmeters were obtained during experiments with the parameters of the inner surface roughness of upstream piping and the installation eccentricity of the orifice hole. The maximum Reynolds number of the experimental facility is about 1.6x10 6 . In orifice flowmeters, the flow rate is calculated based on the differential pressure between upstream and downstream orifices and the peculiar discharge coefficient C. The latter value shows an upward trend with increasing roughness of piping, while change of 0.3% of C was observed in terms of roughness (case 2), which approaches the limits of the JIS standard. With significant roughness (Case 3) that exceeds five times the JIS standard, C is shown to have increased by about 1%. No influence was observed by varying the direction of eccentric installation, hence this was fixed and the amount of eccentricity was considered. Change in C of about 0.25% was observed when around twice the standard level of eccentricity was applied. The error margin data under conditions exceeding the JIS standard for the orifice flowmeter was obtained. (authors)
Energy Technology Data Exchange (ETDEWEB)
Jiang, Long; Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China); Dey, Jishnu; Dey, Mira, E-mail: lixd@nju.edu.cn [Department of Physics, Presidency University, 86/1, College Street, Kolkata 700 073 (India)
2015-07-01
According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X–1, which also possesses a low-field compact star in an eccentric orbit.
Development of a new universal machine device for eccentric shafts processing
Directory of Open Access Journals (Sweden)
Михайло Володимирович Маргуліс
2015-11-01
Full Text Available The analysis of the existing lathe devices for machining of eccentric details and the reasons for the development of a new universal machine device– a shifting lathe center-have been described in the article. The device design, its operating principle, the main parts functions and elements of the case were described and illustrated One of the most complicated cases of eccentric shaft turning, that is turning design and scheme of the eccentric shaft of precessional harmonic drive with intermediate rolling bodies when the proposed device was used was described in the article. The shifting lathe center can reduce the complexity of the machine tool for turning eccentric shafts configuration. The ability to install the shifting center in the tailstock and headstock of the lathe, and the availability of the leash makes it possible to turn various eccentric parts, conical surfaces, to apply the device to compensate for the emerging taper in cylindrical shafts processing. All the above mentioned makes the device universal. The specific feature of this device is the use of a ball center and the connection of the centering element with the adjusting screw by a fine thread screw, this increasing the precision machining. The protective cover of the device makes it possible to reduce the chance of possible injury from protruding parts of the device, namely the leash and the centering element
Optical properties of an elliptic quantum ring: Eccentricity and electric field effects
Bejan, Doina; Stan, Cristina; Niculescu, Ecaterina C.
2018-04-01
We have theoretically studied the electronic and optical properties of a GaAs/AlGaAs elliptic quantum ring under in-plane electric field. The effects of an eccentric internal barrier -placed along the electric field direction, chosen as x-axis- and incident light polarization are particularly taken into account. The one-electron energy spectrum and wave functions are found using the adiabatic approximation and the finite element method within the effective-mass model. We show that it is possible to repair the structural distortion by applying an appropriate in-plane electric field, and the compensation is almost complete for all electronic states under study. For both concentric and eccentric quantum ring the intraband optical properties are very sensitive to the electric field and probe laser polarization. As expected, in the systems with eccentricity distortions the energy spectrum, as well as the optical response, strongly depends on the direction of the externally applied electric field, an effect that can be used as a signature of ring eccentricity. We demonstrated the possibility of generating second harmonic response at double resonance condition for incident light polarized along the x-axis if the electric field or/and eccentric barrier break the inversion symmetry. Also, strong third harmonic signal can be generated at triple resonance condition for a specific interval of electric field values when using y-polarized light.
Reid, Duncan; McNair, Peter J; Johnson, Shelley; Potts, Geoff; Witvrouw, Erik; Mahieu, Nele
2012-08-01
To compare surface electromyographic (EMG) activity of the gastrocnemius and soleus muscles between persons with and without Achilles tendinopathy (AT) during an eccentric muscle exercise in different knee joint positions. Repeated measures design. Research laboratory. Participants (n = 18) diagnosed with AT and 18 control subjects were recruited. Gastrocnemius and soleus muscle activity was examined by surface (EMG) during extended and flexed knee joint conditions while performing the eccentric training technique. The EMG data were expressed as a percentage of a maximum voluntary contraction (MVC). EMG activity was notably higher (mean difference: 10%, effect size: 0.59) in those subjects with AT. Irrespective of the presence of AT, there was a significant interaction effect between muscle and joint position. The gastrocnemius muscle was significantly more active in the extended knee condition and soleus muscle activity was unchanged across joint positions. The results indicated that the presence of AT influenced calf muscle activity levels during performance of the eccentric exercise. There were differences in muscle activity during the extended and flexed knee conditions. This result does support performing Alfredson, Pietila, Jonsson, and Lorentzon (1998) eccentric exercise in an extended knee position but the specific effects of the knee flexed position on the Achilles tendon during eccentric exercise have yet to be determined, particularly in those with AT. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cholesky decomposed density matrices in Laplace transform Moeller-Plesset perturbation theory
International Nuclear Information System (INIS)
Clin, Lucien Cyril
2012-01-01
The evaluation of correlation energies in the canonical formulation of second order Moeller-Plesset Perturbation Theory (MP2) is limited to systems of about 100 atoms, due to the method's steep O(N 5 ) scaling. In order to extend the method's applicability to larger systems, it is therefore imperative to develop alternative formulations that allow for efficient scaling reduction. One such approach is the Laplace transform formalism introduced by Almloef and Haeser, with which MP2 can be expressed in the basis of atom-centered orbitals (AO-MP2), whose local character allows to take advantage of the short range of correlation effects. The overall scaling can thus be reduced through the application of integral pre-selection schemes to discard all numerically irrelevant contributions to the energy. This dissertation is concerned with the study of Cholesky decomposed pseudo-density (CDD) matrices within this AO-MP2 scheme. For technical reasons, namely, the AO-MP2 implementation of Doser et al. is restricted to the evaluation of the opposite spin component of MP2, and is thus bound to the empirical scaled opposite spin parametrization procedure. Applying a Cholesky decomposition to the occurring pseudo-density matrices, the same spin component required for full MP2 energies is naturally included in the resulting CDD-MP2 method, whereby the ab initio character is restored. The investigation of the CDD-approach was further motivated by the fact that the orbitals generated by the decomposition are localized (for electronically non-delocalized systems), and thus allow for the pre-selection of only numerically significant integrals. However, although it could be shown on simple systems that the method does in principle scale linearly, its application to even moderately sized systems with large basis sets is yet hampered by severe technical and numerical difficulties, which are analysed and discussed in detail. Another closely related project has been to extend the RI-CDD-MP2
Cholesky decomposed density matrices in Laplace transform Moeller-Plesset perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Clin, Lucien Cyril
2012-06-04
The evaluation of correlation energies in the canonical formulation of second order Moeller-Plesset Perturbation Theory (MP2) is limited to systems of about 100 atoms, due to the method's steep O(N{sup 5}) scaling. In order to extend the method's applicability to larger systems, it is therefore imperative to develop alternative formulations that allow for efficient scaling reduction. One such approach is the Laplace transform formalism introduced by Almloef and Haeser, with which MP2 can be expressed in the basis of atom-centered orbitals (AO-MP2), whose local character allows to take advantage of the short range of correlation effects. The overall scaling can thus be reduced through the application of integral pre-selection schemes to discard all numerically irrelevant contributions to the energy. This dissertation is concerned with the study of Cholesky decomposed pseudo-density (CDD) matrices within this AO-MP2 scheme. For technical reasons, namely, the AO-MP2 implementation of Doser et al. is restricted to the evaluation of the opposite spin component of MP2, and is thus bound to the empirical scaled opposite spin parametrization procedure. Applying a Cholesky decomposition to the occurring pseudo-density matrices, the same spin component required for full MP2 energies is naturally included in the resulting CDD-MP2 method, whereby the ab initio character is restored. The investigation of the CDD-approach was further motivated by the fact that the orbitals generated by the decomposition are localized (for electronically non-delocalized systems), and thus allow for the pre-selection of only numerically significant integrals. However, although it could be shown on simple systems that the method does in principle scale linearly, its application to even moderately sized systems with large basis sets is yet hampered by severe technical and numerical difficulties, which are analysed and discussed in detail. Another closely related project has been to extend
Thorborg, Kristian; Branci, Sonia; Nielsen, Martin Peter; Tang, Lars; Nielsen, Michael Bachmann; Hölmich, Per
2014-02-01
Adductor-related pain is the most common clinical finding in soccer players with groin pain and can be a long-standing problem affecting physical function and performance. Hip adductor weakness has been suggested to be associated with this clinical entity, although it has never been investigated. To investigate whether isometric and eccentric hip strength are decreased in soccer players with adductor-related groin pain compared with asymptomatic soccer controls. The hypothesis was that players with adductor-related groin pain would have lower isometric and eccentric hip adduction strength than players without adductor-related groin pain. Cross-sectional study; Level of evidence, 3. Male elite and subelite players from 40 teams were contacted. In total, 28 soccer players with adductor-related groin pain and 16 soccer players without adductor-related groin pain (asymptomatic controls) were included in the study. In primary analysis, the dominant legs of 21 soccer players with adductor-related groin pain (≥4 weeks duration) were compared with the dominant legs of 16 asymptomatic controls using a cross-sectional design. The mean age of the symptomatic players was 24.5 ± 2.5 years, and the mean age of the asymptomatic controls was 22.9 ± 2.4 years. Isometric hip strength (adduction, abduction, and flexion) and eccentric hip strength (adduction) were assessed with a handheld dynamometer using reliable test procedures and a blinded assessor. Eccentric hip adduction strength was lower in soccer players with adductor-related groin pain in the dominant leg (n = 21) compared with asymptomatic controls (n = 16), namely 2.47 ± 0.49 versus 3.12 ± 0.43 N·m/kg, respectively (P strength differences were observed between symptomatic players and asymptomatic controls for the dominant leg (P = .35-.84). Large eccentric hip adduction strength deficits were found in soccer players with adductor-related groin pain compared with asymptomatic soccer players, while no isometric
Energy Technology Data Exchange (ETDEWEB)
Cokelaer, T; Pathak, D, E-mail: Thomas.Cokelaer@astro.cf.ac.u, E-mail: Devanka.Pathak@astro.cf.ac.u [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom)
2009-02-21
Most of the inspiralling compact binaries are expected to be circularized by the time their gravitational-wave signals enter the frequency band of ground-based detectors such as LIGO or VIRGO. However, it is not excluded that some of these binaries might still possess a significant eccentricity at a few tens of hertz. Despite this possibility, current search pipelines-based on matched filtering techniques-consider only non-eccentric templates. The effect of such an approximation on the loss of signal-to-noise ratio (SNR) has been investigated by Martel and Poisson (1999 Phys. Rev. D 60 124008) in the context of initial LIGO detector. They ascertained that non-eccentric templates will be successful at detecting eccentric signals. We revisit their work by incorporating current and future ground-based detectors and precisely quantify the exact loss of SNR. In order to be more faithful to an actual search, we maximized the SNR over a template bank, whose minimal match is set to 95%. For initial LIGO detector, we claim that the initial eccentricity does not need to be taken into account in our searches for any system with total mass M element of [2-45]M{sub o-dot} if e{sub 0} approx< 0.05 because the loss of SNR (about 5%) is consistent with the discreteness of the template bank. Similarly, this statement is also true for systems with M element of [6-35]M{sub o-dot} and e{sub 0} approx< 0.10. However, by neglecting the eccentricity in our searches, significant loss of detection (larger than 10%) may arise as soon as e{sub 0} >= 0.05 for neutron-star binaries. We also provide exhaustive results for VIRGO, Advanced LIGO and Einstein Telescope detectors. It is worth noting that for Einstein Telescope, neutron star binaries with e{sub 0} >= 0.02 lead to a 10% loss of detection.
On the inverse problem of the calculus of variations in field theory
International Nuclear Information System (INIS)
Henneaux, M.
1984-01-01
The inverse problem of the calculus of variations is investigated in the case of field theory. Uniqueness of the action principle is demonstrated for the vector Laplace equation in a non-decomposable Riemannian space, as well as for the harmonic map equation. (author)
International Nuclear Information System (INIS)
Cardona, Augusto V.; Vilhena, Marco T. de; Segatto, Cynthia F.
2005-01-01
In this work we solve the radiative transfer problem without azimuthal symmetry with high degree of anisotropy using the LTAN method and the Laplace inverse transformation by the diagonalization of the large symbolic LTAN matrix. We report numerical simulations and comparisons with available results of the literature. (author)
Prolonged submaximal eccentric exercise is associated with increased levels of plasma IL-6
DEFF Research Database (Denmark)
Rohde, Thomas; MacLean, D A; Richter, Erik
1997-01-01
To study the relationship between exercise-related muscle proteolysis and the cytokine response, a prolonged eccentric exercise model of one leg was used. Subjects performed two trials [a branched-chain amino acid (BCAA) supplementation and a control trial]. The release of amino acids from muscle...... during and after the eccentric exercise was decreased in the BCAA trial, suggesting a suppression of net muscle protein degradation. The plasma concentrations of interleukin (IL)-6 increased from 0.75 +/- 0.19 (preexercise) to 5.02 +/- 0.96 pg/ml (2 h postexercise) in the control trial and in the BCAA...... supplementation trial from 1.07 +/- 0.41 to 4.15 +/- 1.21 pg/ml. Eccentric exercise had no effect on the concentrations of neutrophils, lymphocytes, CD16+/CD56+, CD4+, CD8+, CD14+/CD38+, lymphocyte proliferative response, or cytotoxic activities. BCAA supplementation reduced the concentration of CD14+/CD38+ cells...
Temporalis muscle hypertrophy and reduced skull eccentricity in Duchenne muscular dystrophy.
Straathof, C S M; Doorenweerd, N; Wokke, B H A; Dumas, E M; van den Bergen, J C; van Buchem, M A; Hendriksen, J G M; Verschuuren, J J G M; Kan, H E
2014-10-01
Muscle hypertrophy and muscle weakness are well known in Duchenne muscular dystrophy. Decreased muscle force can have secondary effects on skeletal growth and development such as facial and dental morphology changes. In this study, we quantified temporal muscle thickness, circumference, and eccentricity of the skull and the head on T1-weighted magnetic resonance imaging (MRI) scans of the head of 15 Duchenne muscular dystrophy patients and 15 controls. Average temporal muscle thickness was significantly increased in patients (12.9 ± 5.2 mm) compared to controls (6.8 ± 1.4 mm) (P muscle thickness and skull eccentricity were significantly negatively correlated in patients, and positively in controls. Hypertrophy of the temporal muscles and changes in skull eccentricity appear to occur early in the course of Duchenne muscular dystrophy. Further studies in younger patients are needed to confirm a causal relationship. © The Author(s) 2014.
Effect of Eccentricity of Load on Critical Force of Thin-Walled Columns CFRP
Directory of Open Access Journals (Sweden)
Pawel Wysmulski
2017-09-01
Full Text Available The subject of study was a thin-walled C-section made of carbon fiber reinforced polymer (CFRP. Column was subjected to eccentric compression in the established direction. In the computer simulation, the boundary conditions were assumed in the form of articulated support of the sections of the column. Particular studies included an analysis of the effects of eccentricity on the critical force value. The research was conducted using two independent research methods: numerical and experimental. Numerical simulations were done using the finite element method using the advanced system Abaqus®. The high sensitivity of the critical force value corresponding to the local buckling of the channel section to the load eccentricity was demonstrated.
International Nuclear Information System (INIS)
Ghafory-Ashtiany, M.
2001-01-01
In this paper, the effect of random eccentricity, mass and stiffness parameter on the dynamic characteristics of structure and story shear and torsional response has been comprehensively examined. Numerical results are obtained for a five-story torsional building excited by random excitation with various damping ration and frequency parameter values using both approaches of response calculations-a more accurate complex mode and an approximate normal mode have been used. The results show that the introduction of eccentricity in a direction introduces torsional moments in the system and reduces the direct story shear. For a safe design, eccentricity should be neglected in the calculations for shear, and a value of 0.05 of radius of gyration for calculation of torsional moment should be considered, even if a structure is intended to be symmetrical
Eccentric exercise: acute and chronic effects on healthy and diseased tendons.
Kjaer, Michael; Heinemeier, Katja M
2014-06-01
Eccentric exercise can influence tendon mechanical properties and matrix protein synthesis. mRNA for collagen and regulatory factors thereof are upregulated in animal tendons, independent of muscular contraction type, supporting the view that tendon, compared with skeletal muscle, is less sensitive to differences in type and/or amount of mechanical stimulus with regard to expression of collagen, regulatory factors for collagen, and cross-link regulators. In overused (tendinopathic) human tendon, eccentric exercise training has a beneficial effect, but the mechanism by which this is elicited is unknown, and slow concentric loading appears to have similar beneficial effects. It may be that tendinopathic regions, as long as they are subjected to a certain magnitude of load at a slow speed, independent of whether this is eccentric or concentric in nature, can reestablish their normal tendon fibril alignment and cell morphology. Copyright © 2014 the American Physiological Society.
Directory of Open Access Journals (Sweden)
Lucas de Francisco Carvalho
Full Text Available Abstract We aimed to review of the Eccentricity dimension of the Dimensional Clinical Personality Inventory (IDCP, through two steps. The first one focused on developing new items and the second on testing the psychometric properties in a sample of 225 subjects (70.1% females, aging between 18 and 66 years, mostly undergraduate students (58.9%. The subjects answered the IDCP, and the Brazilian versions of the NEO-PI-R, PID-5 and MIS. The first step resulted in 42 items, which 22 were new. The second step resulted in a composite of 18 items, pooled in six interpretable factors, as Interpersonal detachment, Eccentric style, Paranormality, Persecutory style, Depersonalization and Emotional inexpressiveness, with internal consistency coefficients of .85 for the total score, and between .60 and .82 for the factors. The correlations between instruments revealed consistent and expected relations. The data suggested adequacy of the new Eccentricity dimension of IDCP.
Faramaz, V.; Beust, H.; Thebault, P.; Augereau, J.-C.; Bonsor, A.; delBurgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.;
2014-01-01
Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions
Apsidal motion of the eccentric eclipsing binary DI Herculis: An apparent discrepancy with general relativity
International Nuclear Information System (INIS)
Guinan, E.F.; Maloney, F.P.
1985-01-01
In 1959, Rudkjobing called attention to the 8th magnitude, eccentric eclipsing binary DI Herculis as an important test case for studying relativistic apsidal motion, since the theoretical relativistic apsidal motion is greater than that expected from the classical effects (i.e., from the tidal and rotational deformation of the stellar components). Excellent determinations of the orbital and stellar parameters of the system have been made by Popper (1982) from the combined analysis of the system's radial-velocity data and UBV light curves of Martynov and Khaliullin (1980), which permit the theoretical relativistic and classical components of the apsidal motion to be determined with reasonable certainty: omega-dot/sup theor//sub GR/ = 2X34/100 yr and omega-dot/sup theor//sub CL/ = 1X93/100 yr. Least-squares solutions of the timings of primary and secondary minima, extending over an 84-yr interval, and including eclipse timings obtained as recently as 1984, yield a small advance of periastron omega-dot/sup obs/ = 0X65/100 yr +- 0X18/100 yr. The observed advance of the periastron is about one-seventh the theoretical value of omega-dot/sup theor//sub GR+CL/ = 4X27/100 yr that is expected from the combined relativistic and classical effects, and results in a discrepancy of -3X62/100 yr, a value which has a magnitude of approx.20 sigma. Classical mechanisms that can possibly explain this apparent discrepancy are discussed, along with the possibility that there may be problems with general relativity
Methods for determining the carrying capacity of eccentrically compressed concrete elements
Directory of Open Access Journals (Sweden)
Starishko Ivan Nikolaevich
2014-04-01
Full Text Available The author presents the results of calculations of eccentrically compressed elements in the ultimate limit state of bearing capacity, taking into account all possiblestresses in the longitudinal reinforcement from the R to the R , caused by different values of eccentricity longitudinal force. The method of calculation is based on the simultaneous solution of the equilibrium equations of the longitudinal forces and internal forces with the equilibrium equations of bending moments in the ultimate limit state of the normal sections. Simultaneous solution of these equations, as well as additional equations, reflecting the stress-strain limit state elements, leads to the solution of a cubic equation with respect to height of uncracked concrete, or with respect to the carrying capacity. According to the author it is a significant advantage over the existing methods, in which the equilibrium equations using longitudinal forces obtained one value of the height, and the equilibrium equations of bending moments - another. Theoretical studies of the author, in this article and the reasons to calculate specific examples showed that a decrease in the eccentricity of the longitudinal force in the limiting state of eccentrically compressed concrete elements height uncracked concrete height increases, the tension in the longitudinal reinforcement area gradually (not abruptly goes from a state of tension compression, and load-bearing capacity of elements it increases, which is also confirmed by the experimental results. Designed journalist calculations of eccentrically compressed elements for 4 cases of eccentric compression, instead of 2 - as set out in the regulations, fully cover the entire spectrum of possible cases of the stress-strain limit state elements that comply with the European standards for reinforced concrete, in particular Eurocode 2 (2003.
THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF HOT JUPITERS ON HIGHLY ECCENTRIC ORBITS
International Nuclear Information System (INIS)
Kataria, T.; Showman, A. P.; Lewis, N. K.; Fortney, J. J.; Marley, M. S.; Freedman, R. S.
2013-01-01
Of the over 800 exoplanets detected to date, over half are on non-circular orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable stellar heating, which has major implications for the planet's atmospheric dynamical regime. However, little is known about the fundamental dynamical regime of such planetary atmospheres, and how it may influence the observations of these planets. Therefore, we present a systematic study of hot Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which couples a three-dimensional general circulation model (the MITgcm) with a plane-parallel, two-stream, non-gray radiative transfer model. In our study, we vary the eccentricity and orbit-average stellar flux over a wide range. We demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits; the planets possess a superrotating equatorial jet and exhibit large day-night temperature variations. As in Showman and Polvani, we show that the day-night heating variations induce momentum fluxes equatorward to maintain the superrotating jet throughout its orbit. We find that as the eccentricity and/or stellar flux is increased (corresponding to shorter orbital periods), the superrotating jet strengthens and narrows, due to a smaller Rossby deformation radius. For a select number of model integrations, we generate full-orbit light curves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what we see in infrared (IR) light curves; the peak in IR flux can lead or lag secondary eclipse depending on the geometry. For those planets that have large temperature differences from dayside to nightside and rapid rotation rates, we find that the light curves can exhibit 'ringing' as the planet's hottest region rotates in and out of view from Earth. These results can be used to explain future observations of eccentric transiting exoplanets.
Directory of Open Access Journals (Sweden)
Martino V. Franchi
2017-07-01
Full Text Available Skeletal muscle contracts either by shortening or lengthening (concentrically or eccentrically, respectively; however, the two contractions substantially differ from one another in terms of mechanisms of force generation, maximum force production and energy cost. It is generally known that eccentric actions generate greater force than isometric and concentric contractions and at a lower metabolic cost. Hence, by virtue of the greater mechanical loading involved in active lengthening, eccentric resistance training (ECC RT is assumed to produce greater hypertrophy than concentric resistance training (CON RT. Nonetheless, prevalence of either ECC RT or CON RT in inducing gains in muscle mass is still an open issue, with some studies reporting greater hypertrophy with eccentric, some with concentric and some with similar hypertrophy within both training modes. Recent observations suggest that such hypertrophic responses to lengthening vs. shortening contractions are achieved by different adaptations in muscle architecture. Whilst the changes in muscle protein synthesis in response to acute and chronic concentric and eccentric exercise bouts seem very similar, the molecular mechanisms regulating the myogenic adaptations to the two distinct loading stimuli are still incompletely understood.Thus, the present review aims to, (a critically discuss the literature on the contribution of eccentric vs. concentric loading to muscular hypertrophy and structural remodeling, and, (b clarify the molecular mechanisms that may regulate such adaptations.We conclude that, when matched for either maximum load or work, similar increase in muscle size is found between ECC and CON RT. However, such hypertrophic changes appear to be achieved through distinct structural adaptations, which may be regulated by different myogenic and molecular responses observed between lengthening and shortening contractions.
Eccentric Torque-Producing Capacity is Influenced by Muscle Length in Older Healthy Adults.
Melo, Ruth C; Takahashi, Anielle C M; Quitério, Robison J; Salvini, Tânia F; Catai, Aparecida M
2016-01-01
Considering the importance of muscle strength to functional capacity in the elderly, the study investigated the effects of age on isokinetic performance and torque production as a function of muscle length. Eleven younger (24.2 ± 2.9 years) and 16 older men (62.7 ± 2.5 years) were subjected to concentric and eccentric isokinetic knee extension/flexion at 60 and 120° · s(-1) through a functional range of motion. The older group presented lower peak torque (in newton-meters) than the young group for both isokinetic contraction types (age effect, p torque deficits in the older group were near 30 and 29% for concentric and eccentric contraction, respectively. Concentric peak torque was lower at 120° · s(-1) than at 60° · s(-1) for both groups (angular velocity effect, p torque was the only exercise tested that showed an interaction effect between age and muscle length (p torque responses to the muscle length between groups. Compared with the young group, the eccentric knee extension torque was 22-56% lower in the older group, with the deficits being lower in the shortened muscle length (22-27%) and higher (33-56%) in the stretched muscle length. In older men, the production of eccentric knee strength seems to be dependent on the muscle length. At more stretched positions, older subjects lose the capacity to generate eccentric knee extension torque. More studies are needed to assess the mechanisms involved in eccentric strength preservation with aging and its relationship with muscle length.
The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness.
Morrissey, Dylan; Roskilly, Anna; Twycross-Lewis, Richard; Isinkaye, Tomide; Screen, Hazel; Woledge, Roger; Bader, Dan
2011-03-01
To compare in vivo effects of eccentric and concentric calf muscle training on Achilles tendon stiffness, in subjects without tendinopathy. Thirty-eight recreational athletes completed 6 weeks eccentric (6 males, 13 females, 21.6 ± 2.2 years) or concentric training (8 males, 11 females, 21.1 ± 2.0 years). Achilles tendon stiffness, tendon modulus and single-leg jump height were measured before and after intervention. Exercise adherence was recorded using a diary. All data are reported as mean ± SD. Groups were matched for height and weight but the eccentric training group were more active at baseline (P Tendon stiffness was higher in the eccentrically trained group at baseline compared to the concentrically trained group (20.9 ± 7.3 N/mm v 13.38 ± 4.66 N/mm; P = 0.001) and decreased significantly after eccentric training (to 17.2 ( ± 5.9) N/mm (P = 0.035)). There was no stiffness change in the concentric group (P = 0.405). Stiffness modulus showed similar changes to stiffness. An inverse correlation was found between initial, and subsequent, reduction in stiffness (r = -0.66). Jump height did not change and no correlation between stiffness change and adherence was observed in either group (r = 0.01). Six weeks of eccentric training can alter Achilles tendon stiffness while a matched concentric programme shows no similar effects. Studies in patients with Achilles tendinopathy are warranted.
Physiological comparison of concentric and eccentric arm cycling in males and females.
Directory of Open Access Journals (Sweden)
C Martyn Beaven
Full Text Available Lower body eccentric exercise is well known to elicit high levels of muscular force with relatively low cardiovascular and metabolic strain. As a result, eccentric exercise has been successfully utilised as an adaptive stressor to improve lower body muscle function in populations ranging from the frail and debilitated, to highly-trained individuals. Here we investigate the metabolic, cardiorespiratory, and energy costs of upper body eccentric exercise in a healthy population. Seven men and seven women performed 4-min efforts of eccentric (ECC or concentric (CON arm cycling on a novel arm ergometer at workloads corresponding to 40, 60, and 80% of their peak workload as assessed in an incremental concentric trial. The heart rate, ventilation, cardiac output, respiratory exchange ratio, and blood lactate concentrations were all clearly greater in CON condition at all of the relative workloads (all p0.05. In contrast, delta efficiency (ηΔ, as previously defined by Coyle and colleagues in 1992, demonstrated a sex difference (men>women; p<0.05. Sex differences were also apparent in arteriovenous oxygen difference and heart rate during CON. Here, we reinforce the high-force, low cost attributes of eccentric exercise which can be generalised to the muscles of the upper body. Upper body eccentric exercise is likely to form a useful adjunct in debilitative, rehabilitative, and adaptive clinical exercise programs; however, reports of a shift towards an oxidative phenotype should be taken into consideration by power athletes. We suggest delta efficiency as a sensitive measure of efficiency that allowed the identification of sex differences.
The relationships of eccentric strength and power with dynamic balance in male footballers.
Booysen, Marc Jon; Gradidge, Philippe Jean-Luc; Watson, Estelle
2015-01-01
Unilateral balance is critical to kicking accuracy in football. In order to design interventions to improve dynamic balance, knowledge of the relationships between dynamic balance and specific neuromuscular factors such as eccentric strength and power is essential. Therefore, the aim was to determine the relationships of eccentric strength and power with dynamic balance in male footballers. The Y-balance test, eccentric isokinetic strength testing (knee extensors and flexors) and the countermovement jump were assessed in fifty male footballers (university (n = 27, mean age = 20.7 ± 1.84 years) and professional (n = 23, mean age = 23.0 ± 3.08 years). Spearman Rank Order correlations were used to determine the relationships of eccentric strength and power with dynamic balance. Multiple linear regression, adjusting for age, mass, stature, playing experience and competitive level was performed on significant relationships. Normalised reach score in the Y-balance test using the non-dominant leg for stance correlated with (1) eccentric strength of the non-dominant leg knee extensors in the university group (r = 0.50, P = 0.008) and (2) countermovement jump height in the university (r = 0.40, P = 0.04) and professional (r = 0.56, P = 0.006) football groups, respectively. No relationships were observed between eccentric strength (knee flexors) and normalised reach scores. Despite the addition of potential confounders, the relationship of power and dynamic balance was significant (r = 0.52, P power correlates moderately with dynamic balance on the non-dominant leg in male footballers.
Langberg, H; Ellingsgaard, H; Madsen, T; Jansson, J; Magnusson, S P; Aagaard, P; Kjaer, M
2007-02-01
It has been shown that 12 weeks of eccentric heavy resistance training can reduce pain in runners suffering from chronic Achilles tendinosis, but the mechanism behind the effectiveness of this treatment is unknown. The present study investigates the local effect of an eccentric training regime on elite soccer players suffering from chronic Achilles tendinosis on the turnover of the peritendinous connective tissue. Twelve elite male soccer players, of whom six suffered from unilateral tendinosis and six were healthy controls, participated in this study. All participants performed 12 weeks of heavy-resistance eccentric training apart from their regular training and soccer activity. Before and after the training period the tissue concentration of indicators of collagen turnover was measured by the use of the microdialysis technique. After training, collagen synthesis was increased in the initially injured tendon (n=6; carboxyterminal propeptide of type I collagen (PICP): pre 3.9+/-2.5 microg/L to post 19.7+/-5.4 microg/L, Ptendons in response to training (n=6; PICP: pre 8.3+/-5.2 microg/L to post 11.5+/-5.0 microg/L, P>0.05). Collagen degradation, measured as carboxyterminal telopeptide region of type I collagen (ICTP), was not affected by training neither in the injured nor in the healthy tendons. The clinical effect of the 12 weeks of eccentric training was determined by using a standardized loading procedure of the Achilles tendons showing a decrease in pain in all the chronic injured tendons (VAS before 44+/-9, after 13+/-9; Peccentric training regime. The present study demonstrates that chronically injured Achilles tendons respond to 12 weeks of eccentric training by increasing collagen synthesis rate. In contrast, the collagen metabolism in healthy control tendons seems not to be affected by eccentric training. These findings could indicate a relation between collagen metabolism and recovery from injury in human tendons.
Achilles tendon of wistar rats treated with laser therapy and eccentric exercise
Directory of Open Access Journals (Sweden)
Maria Verônica de Souza
2015-10-01
Full Text Available ABSTRACTIntroduction:Both laser therapy and eccentric exercises are used in tendon injuries. However, the association of these physiotherapeutic modalities is yet little investigated.Objective:To evaluate the effect of low-level laser therapy associated to eccentric exercise (downhill walking on Achilles tendinopathy of Wistar rats.Method:Eighteen Achilles tendon from 15 adult male Wistar rats were used. Tendons were distributed in six groups (laser, eccentric exercise, laser and eccentric exercise, rest, contralateral tendon, and healthy tendon. Unilateral tendinopathy was surgically induced by transversal compression followed by scarification of tendon fibers. The treatments laser therapy (904 nm, 3J/cm² and/or eccentric exercise (downhill walking; 12 m/min; 50 min/day; 15o inclination treadmill began 24 hours after surgery and remained for 20 days. Clinical and biomechanical analyzes were conducted. Achilles tendon was macroscopically evaluated and the transversal diameter measured. Euthanasia was performed 21 days after lesion induction. Tendons of both limbs were collected and frozen at -20°C until biomechanical analysis, on which the characteristic of maximum load (N, stress at ultimate (MPa and maximum extension (mm were analyzed.Results:Swelling was observed within 72 hours postoperative. No fibrous adhesions were observed nor increase in transversal diameter of tendons. Animals with the exercised tendons, but not treated with laser therapy, presented lower (p=0.0000 locomotor capacity. No difference occurred be-tween groups for the biomechanical characteristics maximum load (p=0.4379, stress at ultimate (p=0.4605 and maximum extension (p=0.3820 evaluated, even considering healthy and contralateral tendons.Conclusion:The concomitant use of low-level laser and the eccentric exercise of downhill walking, starting 24 hours after surgically induced tendinopathy, do not result in a tendon with the same biomechanical resistance or elasticity
Postoperative eccentric macular holes after vitrectomy and internal limiting membrane peeling.
Brouzas, Dimitrios; Dettoraki, Maria; Lavaris, Anastasios; Kourvetaris, Dimitrios; Nomikarios, Nikolaos; Moschos, Marilita M
2017-06-01
The purpose of this study was to describe the incidence, clinical characteristics, and outcome of eccentric macular holes presenting after vitrectomy and internal limiting membrane (ILM) peeling for the treatment of macular pathology and discuss the pathogenesis of holes formation. A retrospective, noncomparative, interventional case-series study of five patients who developed eccentric macular holes postoperatively following vitrectomy in 198 consecutive patients who underwent ILM peeling for idiopathic macular hole and epiretinal membrane formation between 2008 and 2015. Five patients (2.5 %) developed full-thickness eccentric macular holes postoperatively. Three patients presented with a single eccentric macular hole, one patient had an eccentric hole after a failed idiopathic macular hole surgery and one patient developed four eccentric macular holes. The mean diameter of the holes was 584 μm (range 206-1317 μm) and the average time of holes formation after vitrectomy was 27.7 weeks (range 1-140 weeks). Postoperative best-corrected visual acuity ranged from "counting fingers" to 20/25. The eyes with the holes distant from the fovea had the best final visual acuity. No further intervention was attempted and no complications occurred. The mean follow-up time was 26.8 months. The postoperative macular holes after vitrectomy and ILM peeling were variable in number, size, and time of appearance but remained stable and were not associated with any complications. The pathogenesis of macular holes is most consistent with contraction of the residual ILM or secondary epimacular proliferation probably stimulated by ILM peeling.
Thermal shock problems in a plate
International Nuclear Information System (INIS)
Takeuti, Y.; Furukawa, T.
1981-01-01
The problems considered are coupled dynamic thermoelastic analysis in a plate. First we try to examine a problem of the coupled dynamic thermal stress problem with small time approximation for the finite region. Next, we treatise both effects individually by pursuing rigorous anaylsis without small time approximation. Finally we consider thermal shock problems in a plate against different values of heat transfer coefficient (Biot's number) for the time. In conclusion, for usual materials, the inertia effect may be disregarded in the pure thermal problems in contrast to the coupling effect which brings small lags in the temperature and thermal stress distributions. For the consideration of the maximum thermal stress problems, Manson's uncoupled quasi-static results give enough approximation to the thermal shock problems without significant error from our numerical results. The analysis is developed by the use of Laplace transforms and several useful graphical illustrations are given. (orig./HP)
The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b
Winn, Joshua N.; Howard, Andrew W.; Johnson, John A.; Marcy, Geoffrey W.; Gazak, J. Zachary; Starkey, Donn; Ford, Eric B.; Colon, Knicole D.; Reyes, Francisco; Nortmann, Lisa;
2009-01-01
We reported the first detection of the transit ingress, revealing the transit duration to be 11.64 plus or minus 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibited an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. Thus, the orbit of this planet is not only highly eccentric but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism.
Heat transfer in CO{sub 2} at supercritical pressures in an eccentric annular channel
Energy Technology Data Exchange (ETDEWEB)
Bae, Yoon-Yeong, E-mail: yybae@kaeri.re.kr
2013-12-15
Highlights: • Heat transfer under supercritical pressure in an eccentric annular channel pressure was studied. • The studied geometry was an eccentric annular channel with an eccentricity of 0.33. • The effect of spacer as a turbulence generator was investigated. • The effects of the mass flux, heat flux, and pressure were investigated. • The obtained data were evaluated against the correlation. - Abstract: An experimental investigation of a supercritical heat transfer in an eccentric annular channel was performed using a supercritical heat transfer test facility, SPHINX, at the Korea Atomic Energy Research Institute (KAERI). The eccentric channel was built by placing a 9.5 mm outer diameter heater rod in a 12.5 mm inner diameter tube with an eccentricity of 0.33. The narrowest gap was 1 mm, and the widest gap was 2 mm. The rod was heated indirectly by an imbedded Nickel Chrome heating wire made of NCHW1. Three simple spacers were installed to see their effect, if any, on the heat transfer. The mass fluxes were 400 and 1200 kg/m{sup 2} s, and the heat flux was varied between 30 and 150 kW/m{sup 2} such that the pseudo-critical point was located within the test section as long as possible. When this was not the case, several tests with stepwise increased inlet temperatures were performed so that at least one of them included the pseudo-critical point. The tests were performed at two different pressures of 7.75 and 8.12 MPa to check the pressure effect. The influence of the gap size was clearly seen with the eccentric channel, if not significant. The wall temperatures along the narrowest gap were higher than those along the widest gap as expected, while it was reversed at the end part of the test section. The test results for the eccentric channel were not much different from those for the concentric channel of a similar gap size. As we have seen from the plain tube test, the diameter effect on the heat transfer was also not significant in this test. On the
Orbital tidal variability in the eccentric early type binary Iota Orionis
International Nuclear Information System (INIS)
Stevens, I.R.
1988-01-01
Iota Orionis is a bright, highly eccentric, massive early type binary, which has been studied recently in UV wavelengths, for evidence of stellar wind variability caused by tidal interactions between the two stars. No gross variability was found, but small scale perturbations in the UV resonance line profiles were noted. Here, using a radiatively driven stellar wind model for eccentric binaries, the results of numerical modelling of the stellar wind of Iota Orionis are presented. These calculations suggest that increased mass-loss from the primary star will occur close to the periastron passage, but that the enhancements will be short lived, and observed probably as redshifted emission features. (author)
Croisier, J L; Camus, G; Deby-Dupont, G; Bertrand, F; Lhermerout, C; Crielaard, J M; Juchmès-Ferir, A; Deby, C; Albert, A; Lamy, M
1996-01-01
To address the question of whether delayed onset muscular soreness (DOMS) following intense eccentric muscle contraction could be due to increased production of the arachidonic acid derived product prostaglandin E2 (PGE2). 10 healthy male subjects were submitted to eccentric and concentric isokinetic exercises on a Kin Trex device at 60 degrees/s angular velocity. Exercise consisted of 8 stages of 5 maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases. There was an interval of at least 30 days between eccentric and concentric testing, and the order of the two exercise sessions was randomly assigned. The subjective presence and intensity of DOMS was evaluated using a visual analogue scale, immediately, following 24 h and 48 h after each test. Five blood samples were drawn from an antecubital vein: at rest before exercise, immediately after, after 30 min recovery, 24 h and 48 h after the tests. The magnitude of the acute inflammatory response to exercise was assessed by measuring plasma levels of polymorphonuclear elastase ([EL]), myeloperoxidase ([MPO]) and PGE2 ([PGE2]). Using two way analysis of variance, it appeared that only eccentric exercise significantly increased [EL] and DOMS, especially of the hamstring muscles. Furthermore, a significant decrease in eccentric peak torque of this muscle group only was observed on day 2 after eccentric work (- 21%; P < 0.002). Serum activity of creatine kinase and serum concentration of myoglobin increased significantly 24 and 48 h after both exercise tests. However, these variables reached significantly higher values following eccentric contractions 48 h after exercise. Mean [PGE2] in the two exercise modes remained unchanged over time and were practically equal at each time point. On the basis of these findings, we conclude that the magnitude of polymorphonuclear (PMN) activation, muscle damage, and DOMS are greater after eccentric than after concentric muscle
DEFF Research Database (Denmark)
Samani, Afshin; Holtermann, Andreas; Søgaard, Karen
2009-01-01
) and active (30% maximum voluntary contraction of shoulder elevation) pauses given every 40s over 2 days, before, immediately and 24h after eccentric exercise. Surface EMG signals were recorded from four parts of the trapezius during computer work. FINDINGS: EMG amplitude during computer work decreased......BACKGROUND: The aim of this laboratory study was to investigate the effects of eccentric exercises on the trapezius muscle spatial electromyographic (EMG) activity during computer work with active and passive pauses. METHODS: Twelve healthy male subjects performed computer work with passive (relax...... immediately after exercise (Pwork with active pauses compared with passive ones (P
eLISA eccentricity measurements as tracers of binary black hole formation
Nishizawa, Atsushi; Berti, Emanuele; Klein, Antoine; Sesana, Alberto
2016-01-01
Up to hundreds of black hole binaries individually resolvable by eLISA will coalesce in the Advanced LIGO/Virgo band within ten years, allowing for multi-band gravitational wave observations. Binaries formed via dynamical interactions in dense star clusters are expected to have eccentricities $e_0\\sim 10^{-3}$-$10^{-1}$ at the frequencies $f_0=10^{-2}$ Hz where eLISA is most sensitive, while binaries formed in the field should have negligible eccentricity in both frequency bands. We estimate ...
Heavy Slow Resistance Versus Eccentric Training as Treatment for Achilles Tendinopathy
DEFF Research Database (Denmark)
Beyer, Rikke; Kongsgaard, Mads; Hougs Kjær, Birgitte
2015-01-01
BACKGROUND: Previous studies have shown that eccentric training has a positive effect on Achilles tendinopathy, but few randomized controlled trials have compared it with other loading-based treatment regimens. PURPOSE: To evaluate the effectiveness of eccentric training (ECC) and heavy slow...... (Victorian Institute of Sports Assessment-Achilles), tendon pain during activity (visual analog scale), tendon swelling, tendon neovascularization, and treatment satisfaction were assessed at 0 and 12 weeks and at the 52-week follow-up. Analyses were performed on an intention-to-treat basis. RESULTS: Both...... groups showed significant (P tendon...
Directory of Open Access Journals (Sweden)
Mahdi Karami
2014-01-01
Full Text Available This paper is dedicated to investigating static eccentricity in a three-phase LSPMSM. The modeling of LSPMSM with static eccentricity between stator and rotor is developed using finite element method (FEM. The analytical expression for the permeance and flux components of nonuniform air-gap due to static eccentricity fault is discussed. Various indexes for static eccentricity detection using stator current signal of IM and permanent magnet synchronous motor (PMSM are presented. Since LSPMSM is composed of a rotor which is a combination of these two motors, the ability of these features is evaluated for static eccentricity diagnosis in LSPMSM. The simulated stator current signal of LSPMSM in the presence of static eccentricity is analyzed in frequency domain using power spectral density (PSD. It is demonstrated that static eccentricity fault generates a series of low frequency harmonic components in the form of sidebands around the fundamental frequency. Moreover, the amplitudes of these components increase in proportion to the fault severity. According to the mentioned observations, an accurate frequency pattern is specified for static eccentricity detection in three-phase LSPMSM.
DEFF Research Database (Denmark)
Andersen, P. S.; Jensen, A.; Mannov, G.
1974-01-01
Measurements of (1) burn-out, (2) circumferential film flow distribution, and (3) pressure drop in a 17 × 27.2 × 3500 mm concentric and eccentric annulus geometry are presented. The eccentric displacement was varied between 0 and 3 mm. The working fluid was water. Burn-out curves at 70 bar...... flow variation on burn-out is discussed....
DEFF Research Database (Denmark)
Souza-Silva, Eduardo; Wittrup Christensen, Steffan; Hirata, Rogerio Pessoto
2018-01-01
Purpose: Delayed onset muscle soreness (DOMS) occur within 1-2 days after eccentric exercise but the mechanism mediating hypersensitivity is unclear. This study hypothesized that eccentric exercise reduces the blood flow response following muscle contractions and cuff occlusion, which may result ...
Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo
2016-01-01
As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque
International Nuclear Information System (INIS)
Eshghi, M.; Ikhdair, S. M.
2014-01-01
A relativistic Mie-type potential for spin-1/2 particles is studied. The Dirac Hamiltonian contains a scalar S(r) and a vector V(r) Mie-type potential in the radial coordinates, as well as a tensor potential U(r) in the form of Coulomb potential. In the pseudospin (p-spin) symmetry setting Σ = C ps and Δ = V(r), an analytical solution for exact bound states of the corresponding Dirac equation is found. The eigenenergies and normalized wave functions are presented and particular cases are discussed with any arbitrary spin—orbit coupling number κ. Special attention is devoted to the case Σ = 0 for which p-spin symmetry is exact. The Laplace transform approach (LTA) is used in our calculations. Some numerical results are obtained and compared with those of other methods. (general)
International Nuclear Information System (INIS)
Xiaojing Zhu; Predecki, P.; Ballard, B.
1995-01-01
Two different inversion methods, the inverse Laplace method and the linear constrained numerical method, for retrieving the z-profiles of diffraction data from experimentally obtained i-profiles were compared using tests with a known function as the original z-profile. Two different real data situations were simulated to determine the effects of specimen thickness and missing τ-profile data at small τ-values on the retrieved z-profiles. The results indicate that although both methods are able to retrieve the z-profiles in the bulk specimens satisfactorily, the numerical method can be used for thin film samples as well. Missing τ-profile data at small τ values causes error in the retrieved z-profiles with both methods, particularly when the trend of the τ-profile at small τ is significantly changed because of the missing data. 6 refs., 3 figs
Directory of Open Access Journals (Sweden)
Mario Faliva
2017-03-01
Full Text Available The paper devises a family of leptokurtic bell-shaped distributions which is based on the hyperbolic secant raised to a positive power, and bridges the Laplace and Gaussian laws on asymptotic arguments. Moment and cumulant generating functions are then derived and represented in terms of polygamma functions. The behaviour of shape parameters, namely kurtosis and entropy, is investigated. In addition, Gram–Charlier-type (GCT expansions, based on the aforementioned distributions and their orthogonal polynomials, are specified, and an operational criterion is provided to meet modelling requirements in a possibly severe kurtosis and skewness environment. The role played by entropy within the kurtosis ranges of GCT expansions is also examined.
Directory of Open Access Journals (Sweden)
Mikulović Jovan Č.
2014-01-01
Full Text Available A methodology for calculation of overvoltages in transformer windings, based on a numerical method of inverse Laplace transform, is presented. Mathematical model of transformer windings is described by partial differential equations corresponding to distributed parameters electrical circuits. The procedure of calculating overvoltages is applied to windings having either isolated neutral point, or grounded neutral point, or neutral point grounded through impedance. A comparative analysis of the calculation results obtained by the proposed numerical method and by analytical method of calculation of overvoltages in transformer windings is presented. The results computed by the proposed method and measured voltage distributions, when a voltage surge is applied to a three-phase 30 kVA power transformer, are compared. [Projekat Ministartsva nauke Republike Srbije, br. TR-33037 i br. TR-33020
Berger, B. S.; Duangudom, S.
1973-01-01
A technique is introduced which extends the range of useful approximation of numerical inversion techniques to many cycles of an oscillatory function without requiring either the evaluation of the image function for many values of s or the computation of higher-order terms. The technique consists in reducing a given initial value problem defined over some interval into a sequence of initial value problems defined over a set of subintervals. Several numerical examples demonstrate the utility of the method.
Laurin, Jiří; Meyers, Stephen R.; Galeotti, Simone; Lanci, Luca
2016-05-01
Major advances in our understanding of paleoclimate change derive from a precise reconstruction of the periods, amplitudes and phases of the 'Milankovitch cycles' of precession, obliquity and eccentricity. While numerous quantitative approaches exist for the identification of these astronomical cycles in stratigraphic data, limitations in radioisotopic dating, and instability of the theoretical astronomical solutions beyond ∼50 Myr ago, can challenge identification of the phase relationships needed to constrain climate response and anchor floating astrochronologies. Here we demonstrate that interference patterns accompanying frequency modulation (FM) of short eccentricity provide a robust basis for identifying the phase of long eccentricity forcing in stratigraphic data. One- and two-dimensional models of sedimentary distortion of the astronomical signal are used to evaluate the veracity of the FM method, and indicate that pristine eccentricity FM can be readily distinguished in paleo-records. Apart from paleoclimatic implications, the FM approach provides a quantitative technique for testing and calibrating theoretical astronomical solutions, and for refining chronologies for the deep past. We present two case studies that use the FM approach to evaluate major carbon-cycle perturbations of the Eocene and Late Cretaceous. Interference patterns in the short-eccentricity band reveal that Eocene hyperthermals ETM2 ('Elmo'), H2, I1 and ETM3 (X; ∼52-54 Myr ago) were associated with maxima in the 405-kyr cycle of orbital eccentricity. The same eccentricity configuration favored regional anoxic episodes in the Mediterranean during the Middle and Late Cenomanian (∼94.5-97 Myr ago). The initial phase of the global Oceanic Anoxic Event II (OAE II; ∼93.9-94.5 Myr ago) coincides with maximum and falling 405-kyr eccentricity, and the recovery phase occurs during minimum and rising 405-kyr eccentricity. On a Myr scale, the event overlaps with a node in eccentricity
Wasielewski, Noah J; Kotsko, Kevin M
2007-01-01
Objective: To critically review evidence for the effectiveness of eccentric exercise to treat lower extremity tendinoses. Data Sources: Databases used to locate randomized controlled trials (RCTs) included PubMed (1980–2006), CINAHL (1982–2006), Web of Science (1995–2006), SPORT Discus (1980–2006), Physiotherapy Evidence Database (PEDro), and the Cochrane Collaboration Database. Key words included tendon, tendonitis, tendinosis, tendinopathy, exercise, eccentric, rehabilitation, and therapy. Study Selection: The criteria for trial selection were (1) the literature was written in English, (2) the research design was an RCT, (3) the study participants were adults with a clinical diagnosis of tendinosis, (4) the outcome measures included pain or strength, and (5) eccentric exercise was used to treat lower extremity tendinosis. Data Extraction: Specific data were abstracted from the RCTs, including eccentric exercise protocol, adjunctive treatments, concurrent physical activity, and treatment outcome. Data Synthesis: The calculated post hoc statistical power of the selected studies (n = 11) was low, and the average methodologic score was 5.3/10 based on PEDro criteria. Eccentric exercise was compared with no treatment (n = 1), concentric exercise (n = 5), an alternative eccentric exercise protocol (n = 1), stretching (n = 2), night splinting (n = 1), and physical agents (n = 1). In most trials, tendinosis-related pain was reduced with eccentric exercise over time, but only in 3 studies did eccentric exercise decrease pain relative to the control treatment. Similarly, the RCTs demonstrated that strength-related measures improved over time, but none revealed significant differences relative to the control treatment. Based on the best evidence available, it appears that eccentric exercise may reduce pain and improve strength in lower extremity tendinoses, but whether eccentric exercise is more effective than other forms of therapeutic exercise for the resolution
Numerical solution of electrostatic problems of the accelerator project VICKSI
International Nuclear Information System (INIS)
Janetzki, U.
1975-03-01
In this work, the numerical solution to a few of the electrostatic problems is dealt with which have occured within the framework of the heavy ion accelerator project VICKSI. By means of these selected examples, the versatile applicability of the numerical method is to be demonstrated, and simultaneously assistance is given for the solution of similar problems. The numerical process for solving ion-optics problems consists generally of two steps. In the first step, the potential distribution for a given boundary value problem is iteratively calculated for the Laplace equation, and then the image characteristics of the electostatic lense are investigated using the Raytrace method. (orig./LH) [de
DEFF Research Database (Denmark)
Krabbenhøft, Sven; Damkilde, Lars; Krabbenhøft, Kristian
2012-01-01
Lower-bound calculations based on the finite element method are used to determine the bearing capacity of a strip foundation subjected to a vertical, eccentric load on cohesionless soil with varying surcharges. The soil is assumed perfectly plastic following the Mohr-Coulomb failure criterion. Th...
Reduced firing rates of high threshold motor units in response to eccentric overload.
Balshaw, Tom G; Pahar, Madhu; Chesham, Ross; Macgregor, Lewis J; Hunter, Angus M
2017-01-01
Acute responses of motor units were investigated during submaximal voluntary isometric tasks following eccentric overload (EO) and constant load (CL) knee extension resistance exercise. Ten healthy resistance-trained participants performed four experimental test sessions separated by 5 days over a 20 day period. Two sessions involved constant load and the other two used eccentric overload. EO and CL used both sessions for different target knee eccentric extension phases; one at 2 sec and the other at 4 sec. Maximal voluntary contractions (MVC) and isometric trapezoid efforts for 10 sec at 70% MVC were completed before and after each intervention and decomposed electromyography was used to measure motor unit firing rate. The firing rate of later recruited, high-threshold motor units declined following the 2-sec EO but was maintained following 2sec CL (P motor units were maintained for both loading types following 4-sec extension phases. MVC and rate of force development where maintained following both EO and CL and 2 and 4 sec phases. This study demonstrates a slower firing rate of high-threshold motor units following fast eccentric overload while MVC was maintained. This suggests that there was a neuromuscular stimulus without cost to the force-generating capacity of the knee extensors. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Dynamical tides in highly eccentric binaries: chaos, dissipation, and quasi-steady state
Vick, Michelle; Lai, Dong
2018-05-01
Highly eccentric binary systems appear in many astrophysical contexts, ranging from tidal capture in dense star clusters, precursors of stellar disruption by massive black holes, to high-eccentricity migration of giant planets. In a highly eccentric binary, the tidal potential of one body can excite oscillatory modes in the other during a pericentre passage, resulting in energy exchange between the modes and the binary orbit. These modes exhibit one of three behaviours over multiple passages: low-amplitude oscillations, large-amplitude oscillations corresponding to a resonance between the orbital frequency and the mode frequency, and chaotic growth, with the mode energy reaching a level comparable to the orbital binding energy. We study these phenomena with an iterative map that includes mode dissipation, fully exploring how the mode evolution depends on the orbital and mode properties of the system. The dissipation of mode energy drives the system towards a quasi-steady state, with gradual orbital decay punctuated by resonances. We quantify the quasi-steady state and the long-term evolution of the system. A newly captured star around a black hole can experience significant orbital decay and heating due to the chaotic growth of the mode amplitude and dissipation. A giant planet pushed into a high-eccentricity orbit may experience a similar effect and become a hot or warm Jupiter.
DEFF Research Database (Denmark)
Kongsgaard, M.; Kovanen, V.; Aagaard, P.
2009-01-01
A randomized-controlled single-blind trial was conducted to investigate the clinical, structural and functional effects of peritendinous corticosteroid injections (CORT), eccentric decline squat training (ECC) and heavy slow resistance training (HSR) in patellar tendinopathy. Thirty-nine male...
International Nuclear Information System (INIS)
Mundra, G.; Jain, V.; Karmarkar, Mangesh; Kotaiah, S.
2006-01-01
Precision alignment mechanisms with long term stability are required for accelerator components. For some of the components motorised and remotely operable alignment mechanism are required. An eccentric wheel mechanism based alignment system is very much suitable for such application. One such alignment system is designed, a prototype is machined/fabricated for SFDTL type accelerating structure and preliminary trial experiments have been done. (author)
Directory of Open Access Journals (Sweden)
Thomas W. Kaminski
2003-06-01
Full Text Available Protocols for strengthening muscle are important for fitness, rehabilitation, and the prevention of myotendinous injuries. In trained individuals, the optimal method of increasing strength remains unclear. The purpose of this study was to compare the effects of a traditional method of strengthening with a method that allowed for enhanced-eccentric training, on changes in elbow flexor strength in trained subjects. Thirty-nine (8 male, 31 female trained subjects with normal elbow function participated in this study. Subjects were rank-ordered according to isometric force production and randomly assigned to one of three training groups: control (CONT, traditional concentric/eccentric (TRAD, and concentric/enhanced-eccentric (NEG. The training groups completed 24 training sessions. An evaluator blinded to training group performed all testing. Mixed model ANOVA techniques were used to determine if differences existed in concentric one repetition maximum strength, and isometric force production among groups. Changes in peak and average isokinetic force production were also compared. Type 1 error was maintained at 5%. While both groups improved concentric one repetition maximum (NEG = 15.5%, TRAD = 13.8% neither training group statistically differed from changes demonstrated by the CONT group. Nor did either training group show significant improvements in isometric or isokinetic force production over the CONT group. These results do not support the superiority of enhanced-eccentric training for increasing force production in trained subjects.
Age versus size determination of radial variation in wood specific gravity : lessons from eccentrics
G. Bruce Williamson; Michael C. Wiemann
2011-01-01
Radial increases in wood specific gravity have been shown to characterize early successional trees from tropical forests. Here, we develop and apply a novel method to test whether radial increases are determined by tree age or tree size. The method compares the slopes of specific gravity changes across a short radius and a long radius of trees with eccentric trunks. If...
Synthesis of eccentric titania-silica core-shell and composite particles
Demirors, A.F.; van Blaaderen, A.; Imhof, A.
2009-01-01
We describe a novel method to synthesize colloidal particles with an eccentric core-shell structure. Titania-silica core-shell particles were synthesized by silica coating of porous titania particles under Sto¨ber (Sto¨ber et al. J. Colloid Interface Sci. 1968, 26, 62) conditions. We can control
Muscle fascicle behavior during eccentric cycling and its relation to muscle soreness.
Peñailillo, Luis; Blazevich, Anthony J; Nosaka, Kazunori
2015-04-01
A single bout of eccentric exercise confers a protective effect against muscle damage and soreness in subsequent eccentric exercise bouts, but the mechanisms underpinning this effect are unclear. This study compared vastus lateralis (VL) muscle-tendon behavior between two eccentric cycling bouts to test the hypothesis that muscle-tendon behavior would be different between bouts and would be associated with the protective effect. Eleven untrained men (27.1 ± 7.0 yr) performed two bouts of eccentric cycling (ECC1 and ECC2) separated by 2 wk for 10 min at 65% of maximal concentric workload (191.9 ± 44.2 W) each. Muscle soreness (by visual analog scale) and maximal voluntary isometric contraction (MVC) torque of the knee extensors were assessed before and 1-2 d after exercise. Using ultrasonography, VL fascicle length and angle changes during cycling were assessed, and tendinous tissue (TT) length changes were estimated. VL EMG amplitude, crank torque, and knee joint angles were measured during cycling. Soreness was greater (P tendon behavior may be an important mechanism underpinning the protective effect.
Wandering saints : Chan eccentrics in the art and culture of Song and Yuan China
Paul, Paramita
2009-01-01
In Chinese history, few personalities compare to the Chan eccentrics. These legendary, exceptional monks, including the friends Hanshan and Shide, their teacher Fenggan, and Budai, supposedly dwelled in the mountains and cities of southeast China between the seventh and tenth centuries. Dressed in
Large eccentric strength increase using the Copenhagen Adduction exercise in football
DEFF Research Database (Denmark)
Ishøi, L; Sørensen, C N; Kaae, N M
2016-01-01
(control). EHAD, eccentric hip abduction strength (EHAB), and side-bridge endurance were measured using reliable test procedures at baseline and follow-up by a blinded tester. There was a significant interaction between group and time on EHAD, EHAB, and EHAD/EHAB ratio (P
Load eccentricity effects on behavior of circular footings reinforced with geogrid sheets
Directory of Open Access Journals (Sweden)
Ehsan Badakhshan
2015-12-01
Full Text Available In this paper, an experimental study for an eccentrically loaded circular footing, resting on a geogrid reinforced sand bed, is performed. To achieve this aim, the steel model footing of 120 mm in diameter and sand in relative density of 60% are used. Also, the effects of depth of first and second geogrid layers and number of reinforcement layers (1–4 on the settlement-load response and tilt of footing under various load eccentricities (0 cm, 0.75 cm, 1.5 cm, 2.25 cm and 3 cm are investigated. Test results indicate that ultimate bearing capacity increases in comparison with unreinforced condition. It is observed that when the reinforcements are placed in the optimum embedment depth (u/D = 0.42 and h/D = 0.42, the bearing capacity ratio (BCR increases with increasing load eccentricity to the core boundary of footing, and that with further increase of load eccentricity, the BCR decreases. Besides, the tilt of footing increases linearly with increasing settlement. Finally, by reinforcing the sand bed, the tilt of footing decreases at 2 layers of reinforcement and then increases by increasing the number of reinforcement layers.
DEFF Research Database (Denmark)
Thorsen, R. O.; Arslanagic, Samel
2015-01-01
We report on the influence of the layer eccentricity on the resonant properties of active coated nano-particles made of a silver core and gain impregnated silica shell illuminated by a near-by magnetic line source. For a fixed over-all size of the particle, designs with small and large cores...
Therapeutic potential of eccentric exercises for age-related muscle atrophy
Directory of Open Access Journals (Sweden)
Jae-Young Lim
2016-09-01
Full Text Available Recent studies have focused on evidence-based interventions to prevent mobility decline and enhance physical performance in older adults. Several modalities, in addition to traditional strengthening programs, have been designed to manage age-related functional decline more effectively. In this study, we reviewed the current relevant literatures to assess the therapeutic potential of eccentric exercises for age-related muscle atrophy (sarcopenia. Age-related changes in human skeletal muscle, and their relationship with physical performance, are discussed with reference to in vitro physiologic and human biomechanics studies. An overview of issues relevant to sarcopenia is provided in the context of the recent consensus on the diagnosis and management of the condition. A decline in mobility among the aging population is closely linked with changes in the muscle force–velocity relationship. Interventions based specifically on increasing velocity and eccentric strength can improve function more effectively compared with traditional strengthening programs. Eccentric strengthening programs are introduced as a specific method for improving both muscle force and velocity. To be more effective, exercise interventions for older adults should focus on enhancing the muscle force–velocity relationship. Exercises that can be performed easily, and that utilize eccentric strength (which is relatively spared during the aging process, are needed to improve both muscle force and velocity.
Analysis of an adhesively bonded single lap joint subjected to eccentric loading
DEFF Research Database (Denmark)
Anyfantis, Konstantinos; Tsouvalis, N. G.
2013-01-01
is benchmarking of computational tools. The test is based on a Single Lap Joint subjected to Eccentric Loading (SLJ-EL). The basic concept that lies behind this configuration is that the applied in-plane tensile load leads the adhesive layer to develop normal stresses, in-plane and out-of-plane shear stresses...