WorldWideScience

Sample records for ebola vaccines

  1. Ebola vaccine and treatment.

    Science.gov (United States)

    Takada, Ayato

    2015-01-01

    Filoviruses (Ebola and Marburg viruses) cause severe hemorrhagic fever in humans and nonhuman primates. No effective prophylaxis or treatment for filovirus diseases is yet commercially available. The recent outbreak of Ebola virus disease in West Africa has accelerated efforts to develop anti-Ebola virus prophylaxis and treatment, and unapproved drugs were indeed used for the treatment of patients during the outbreak. This article reviews previous researches and the latest topics on vaccine and therapy for Ebola virus disease.

  2. Clinical development of Ebola vaccines

    Science.gov (United States)

    Sridhar, Saranya

    2015-01-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  3. Current Ebola vaccines

    Science.gov (United States)

    Hoenen, Thomas; Groseth, Allison; Feldmann, Heinz

    2012-01-01

    Introduction Ebolaviruses cause severe viral hemorrhagic fever in humans and non-human primates, with case fatality rates of up to 90%. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. However, a number of vaccine candidates have been developed in the last decade that are highly protective in non-human primates, the gold standard animal model for Ebola hemorrhagic fever. Areas covered This review analyzes a number of scenarios for the use of ebolavirus vaccines, discusses the requirements for ebolavirus vaccines in these scenarios, and describes current ebolavirus vaccines. Among these vaccines are recombinant Adenoviruses, recombinant Vesicular Stomatitis viruses, recombinant Human Parainfluenza viruses and virus-like particles. Interestingly, one of these vaccine platforms, based on recombinant Vesicular Stomatitis viruses, has also demonstrated post-exposure protection in non-human primates. Expert opinion The most pressing remaining challenge is now to move these vaccine candidates forward into human trials and towards licensure. In order to achieve this, it will be necessary to establish the mechanisms and correlates of protection for these vaccines, and to continue to demonstrate their safety, particularly in potentially immunocompromised populations. However, already now there is sufficient evidence that, from a scientific perspective, a vaccine protective against ebolaviruses is possible. PMID:22559078

  4. Adenovirus-vectored Ebola vaccines.

    Science.gov (United States)

    Gilbert, Sarah C

    2015-01-01

    The 2014 outbreak of Ebola virus disease in West Africa has highlighted the need for the availability of effective vaccines against outbreak pathogens that are suitable for use in frontline workers who risk their own health in the course of caring for those with the disease, and also for members of the community in the affected area. Along with effective contact tracing and quarantine, use of a vaccine as soon as an outbreak is identified could greatly facilitate rapid control and prevent the outbreak from spreading. This review describes the progress that has been made in producing and testing adenovirus-based Ebola vaccines in both pre-clinical and clinical studies, and considers the likely future use of these vaccines.

  5. Chimpanzee Adenovirus Vector Ebola Vaccine.

    Science.gov (United States)

    Ledgerwood, Julie E; DeZure, Adam D; Stanley, Daphne A; Coates, Emily E; Novik, Laura; Enama, Mary E; Berkowitz, Nina M; Hu, Zonghui; Joshi, Gyan; Ploquin, Aurélie; Sitar, Sandra; Gordon, Ingelise J; Plummer, Sarah A; Holman, LaSonji A; Hendel, Cynthia S; Yamshchikov, Galina; Roman, Francois; Nicosia, Alfredo; Colloca, Stefano; Cortese, Riccardo; Bailer, Robert T; Schwartz, Richard M; Roederer, Mario; Mascola, John R; Koup, Richard A; Sullivan, Nancy J; Graham, Barney S

    2017-03-09

    The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×10 10 particle units or 2×10 11 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer-term vaccine durability was assessed at 48 weeks after vaccination. In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×10 11 particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×10 11 particle-unit dose than in the group that received the 2×10 10 particle-unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2×10 11 particle-unit dose than among those who received the 2×10 10 particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×10 11 particle-unit dose. Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At

  6. [Recent Advances in Vaccines and Drugs Against the Ebola Virus].

    Science.gov (United States)

    Zhu, Xiang; Yao, Chenguang; Wei, Yanhong; Kou, Zheng; Hu, Kanghong

    2015-05-01

    The Ebola virus belongs to the Filovirus family, which causes Ebola hemorrhagic fever (mortality, 25%-90%). An outbreak of infection by the Ebola virus is sweeping across West Africa, leading to high mortality and worldwide panic. The Ebola virus has caused a serious threat to public health, so intensive scientific studies have been carried out. Several vaccines (e.g., rVSV-ZEBOV, ChAd3-ZEBOV) have been put into clinical trials and antiviral drugs (e.g., TKM-Ebola, ZMAPP) have been administered in the emergency setting to patients infected by the Ebola virus. Here, recent advances in vaccines and drugs against the Ebola virus are reviewed.

  7. Recent advances in vaccine development against Ebola threat as bioweapon.

    Science.gov (United States)

    Gera, Prachi; Gupta, Ankit; Verma, Priyanka; Singh, Joginder; Gupta, Jeena

    2017-09-01

    With the increasing rate of Ebola virus appearance, with multiple natural outbreaks of Ebola hemorrhagic fever, it is worthy of consideration as bioweapon by anti-national groups. Further, with the non-availability of the vaccines against Ebola virus, concerns about the public health emerge. In this regard, this review summarizes the structure, genetics and potential of Ebola virus to be used as a bioweapon. We highlight the recent advances in the treatment strategies and vaccine development against Ebola virus. The understanding of these aspects might lead to effective treatment practices which can be applied during the future outbreaks of Ebola.

  8. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine.

    Science.gov (United States)

    Regules, Jason A; Beigel, John H; Paolino, Kristopher M; Voell, Jocelyn; Castellano, Amy R; Hu, Zonghui; Muñoz, Paula; Moon, James E; Ruck, Richard C; Bennett, Jason W; Twomey, Patrick S; Gutiérrez, Ramiro L; Remich, Shon A; Hack, Holly R; Wisniewski, Meagan L; Josleyn, Matthew D; Kwilas, Steven A; Van Deusen, Nicole; Mbaya, Olivier Tshiani; Zhou, Yan; Stanley, Daphne A; Jing, Wang; Smith, Kirsten S; Shi, Meng; Ledgerwood, Julie E; Graham, Barney S; Sullivan, Nancy J; Jagodzinski, Linda L; Peel, Sheila A; Alimonti, Judie B; Hooper, Jay W; Silvera, Peter M; Martin, Brian K; Monath, Thomas P; Ramsey, W Jay; Link, Charles J; Lane, H Clifford; Michael, Nelson L; Davey, Richard T; Thomas, Stephen J

    2017-01-26

    The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses

  9. Clinical Trials of an Experimental Ebola Vaccine: A Canadian ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This initiative supports phases 2 and 3 clinical trials of an experimental Ebola vaccine. The experimental vaccine is based on an attenuated recombinant Vesicular Stomatitis Virus vector (VSV-EBOV). The Public Health Agency of Canada developed the vaccine and licensed it to NewLink Genetics and Merck. Early vaccine ...

  10. Harnessing case isolation and ring vaccination to control Ebola.

    Directory of Open Access Journals (Sweden)

    Chad Wells

    2015-05-01

    Full Text Available As a devastating Ebola outbreak in West Africa continues, non-pharmaceutical control measures including contact tracing, quarantine, and case isolation are being implemented. In addition, public health agencies are scaling up efforts to test and deploy candidate vaccines. Given the experimental nature and limited initial supplies of vaccines, a mass vaccination campaign might not be feasible. However, ring vaccination of likely case contacts could provide an effective alternative in distributing the vaccine. To evaluate ring vaccination as a strategy for eliminating Ebola, we developed a pair approximation model of Ebola transmission, parameterized by confirmed incidence data from June 2014 to January 2015 in Liberia and Sierra Leone. Our results suggest that if a combined intervention of case isolation and ring vaccination had been initiated in the early fall of 2014, up to an additional 126 cases in Liberia and 560 cases in Sierra Leone could have been averted beyond case isolation alone. The marginal benefit of ring vaccination is predicted to be greatest in settings where there are more contacts per individual, greater clustering among individuals, when contact tracing has low efficacy or vaccination confers post-exposure protection. In such settings, ring vaccination can avert up to an additional 8% of Ebola cases. Accordingly, ring vaccination is predicted to offer a moderately beneficial supplement to ongoing non-pharmaceutical Ebola control efforts.

  11. Harnessing case isolation and ring vaccination to control Ebola.

    Science.gov (United States)

    Wells, Chad; Yamin, Dan; Ndeffo-Mbah, Martial L; Wenzel, Natasha; Gaffney, Stephen G; Townsend, Jeffrey P; Meyers, Lauren Ancel; Fallah, Mosoka; Nyenswah, Tolbert G; Altice, Frederick L; Atkins, Katherine E; Galvani, Alison P

    2015-05-01

    As a devastating Ebola outbreak in West Africa continues, non-pharmaceutical control measures including contact tracing, quarantine, and case isolation are being implemented. In addition, public health agencies are scaling up efforts to test and deploy candidate vaccines. Given the experimental nature and limited initial supplies of vaccines, a mass vaccination campaign might not be feasible. However, ring vaccination of likely case contacts could provide an effective alternative in distributing the vaccine. To evaluate ring vaccination as a strategy for eliminating Ebola, we developed a pair approximation model of Ebola transmission, parameterized by confirmed incidence data from June 2014 to January 2015 in Liberia and Sierra Leone. Our results suggest that if a combined intervention of case isolation and ring vaccination had been initiated in the early fall of 2014, up to an additional 126 cases in Liberia and 560 cases in Sierra Leone could have been averted beyond case isolation alone. The marginal benefit of ring vaccination is predicted to be greatest in settings where there are more contacts per individual, greater clustering among individuals, when contact tracing has low efficacy or vaccination confers post-exposure protection. In such settings, ring vaccination can avert up to an additional 8% of Ebola cases. Accordingly, ring vaccination is predicted to offer a moderately beneficial supplement to ongoing non-pharmaceutical Ebola control efforts.

  12. Ebola hemorrhagic Fever and the current state of vaccine development.

    Science.gov (United States)

    Hong, Joo Eun; Hong, Kee-Jong; Choi, Woo Young; Lee, Won-Ja; Choi, Yeon Hwa; Jeong, Chung-Hyeon; Cho, Kwang-Il

    2014-12-01

    Current Ebola virus outbreak in West Africa already reached the total number of 1,323 including 729 deaths by July 31st. the fatality is around 55% in the southeastern area of Guinea, Sierra Leone, Liberia, and Nigeria. The number of patients with Ebola Hemorrhagic Fever (EHF) was continuously increasing even though the any effective therapeutics or vaccines has not been developed yet. The Ebola virus in Guinea showed 98% homology with Zaire Ebola Virus. Study of the pathogenesis of Ebola virus infection and assess of the various candidates of vaccine have been tried for a long time, especially in United States and some European countries. Even though the attenuated live vaccine and DNA vaccine containing Ebola viral genes were tested and showed efficacy in chimpanzees, those candidates still need clinical tests requiring much longer time than the preclinical development to be approved for the practical treatment. It can be expected to eradicate Ebola virus by a safe and efficient vaccine development similar to the case of smallpox virus which was extinguished from the world by the variola vaccine.

  13. Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials

    Science.gov (United States)

    2016-06-02

    evidence that oral vaccines fail in populations with disturbed microbiota, poor nutrition , and high intestinal inflammation [102-104]. Additionally...countermeasure development against Ebola virus disease becoming a global public- health priority. This review summarizes the status quo of candidate...members of the mononegaviral family Filoviridae) cause two diseases recognized by the World Health Organization (WHO): Ebola virus disease (EVD) can be

  14. Ebola virus vaccines: an overview of current approaches

    Science.gov (United States)

    Marzi, Andrea; Feldmann, Heinz

    2016-01-01

    Ebola hemorrhagic fever is one of the most fatal viral diseases worldwide affecting humans and nonhuman primates. Although infections only occur frequently in Central Africa, the virus has the potential to spread globally and is classified as a category A pathogen that could be misused as a bioterrorism agent. As of today there is no vaccine or treatment licensed to counteract Ebola virus infections. DNA, subunit and several viral vector approaches, replicating and non-replicating, have been tested as potential vaccine platforms and their protective efficacy has been evaluated in nonhuman primate models for Ebola virus infections, which closely resemble disease progression in humans. Though these vaccine platforms seem to confer protection through different mechanisms, several of them are efficacious against lethal disease in nonhuman primates attesting that vaccination against Ebola virus infections is feasible. PMID:24575870

  15. Ebola Virus Vaccines – reality or fiction?

    Science.gov (United States)

    Mire, Chad E.; Geisbert, Thomas W.; Feldmann, Heinz

    2016-01-01

    For 40 years ebolaviruses have been responsible for sporadic outbreaks of severe and often fatal hemorrhagic fever in humans and nonhuman primates. In December 2013 an unprecedented Zaire ebolavirus epidemic began in West Africa. Although “patient zero” has finally been reached after 2 years, the virus is again causing disease in the region. Currently there are no licensed vaccines or therapeutic countermeasures against ebolaviruses; however, the epidemic in West Africa has focused attention on the potential vaccine platforms developed over the past 15 years. There has been remarkable progress using a variety of platforms including DNA, subunit, and several viral vector approaches, replicating and non-replicating, which have shown varying degrees of protective efficacy in the “gold-standard” nonhuman primate models for Ebolavirus infections. A number of these vaccine platforms have moved into clinical trials over the past year with the hope of finding an efficacious vaccine to prevent future outbreaks/epidemics of Ebola hemorrhagic fever on the scale of the West African epidemic. PMID:27078187

  16. Ebola Virus: Immune Mechanisms of Protection and Vaccine Development

    OpenAIRE

    Nyamathi, AM; Fahey, JL; Sands, H; Casillas, AM

    2003-01-01

    Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has already been transformed into weapongrade material, the potential exists f...

  17. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    Science.gov (United States)

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD. © 2015 The Author(s) Published by S. Karger AG, Basel.

  18. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Wu

    2015-11-01

    Full Text Available Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD in humans and non-human primates (NHPs. Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs, vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirus∆VP30, recombinant cytomegalovirus (CMV-based vaccines, recombinant rabies virus (RABV-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  19. Control of Ebola hemorrhagic fever: vaccine development and our Ebola project in Sierra Leone.

    Science.gov (United States)

    Watanabe, Tokiko; Kawaoka, Yoshihiro

    2016-01-01

    Since December 2013, West Africa has experienced the worst Ebola virus outbreak in recorded history. Of the 28,639 cases reported to the World Health Organization as of March 2016, nearly half (14,124) occurred in Sierra Leone. With a case fatality rate of approximately 40%, this outbreak has claimed the lives of 11,316 individuals. No FDA-approved vaccines or drugs are available to prevent or treat Ebola virus infection. Experimental vaccines and therapies are being developed; however, their safety and efficacy are still being evaluated. Therefore, there is an urgent need to develop control measures to prevent or limit future Ebola virus outbreaks.Previously, we developed a replication-defective Ebola virus that lacks the coding region for the essential viral transcription activator VP30 (Ebola ΔVP30 virus). Here, we evaluated the vaccine efficacy of Ebola ΔVP30 virus in a non-human primate model and describe our collaborative Ebola project in Sierra Leone.

  20. Containing Ebola at the Source with Ring Vaccination.

    Directory of Open Access Journals (Sweden)

    Stefano Merler

    2016-11-01

    Full Text Available Interim results from the Guinea Ebola ring vaccination trial suggest high efficacy of the rVSV-ZEBOV vaccine. These findings open the door to the use of ring vaccination strategies in which the contacts and contacts of contacts of each index case are promptly vaccinated to contain future Ebola virus disease outbreaks. To provide a numerical estimate of the effectiveness of ring vaccination strategies we introduce a spatially explicit agent-based model to simulate Ebola outbreaks in the Pujehun district, Sierra Leone, structurally similar to previous modelling approaches. We find that ring vaccination can successfully contain an outbreak for values of the effective reproduction number up to 1.6. Through an extensive sensitivity analysis of parameters characterising the readiness and capacity of the health care system, we identify interventions that, alongside ring vaccination, could increase the likelihood of containment. In particular, shortening the time from symptoms onset to hospitalisation to 2-3 days on average through improved contact tracing procedures, adding a 2km spatial component to the vaccination ring, and decreasing human mobility by quarantining affected areas might contribute increase our ability to contain outbreaks with effective reproduction number up to 2.6. These results have implications for future control of Ebola and other emerging infectious disease threats.

  1. Ebola virus: immune mechanisms of protection and vaccine development.

    Science.gov (United States)

    Nyamathi, Adeline M; Fahey, John L; Sands, Heather; Casillas, Adrian M

    2003-04-01

    Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has already been transformed into weapon-grade material, the potential exists for it to be used as a biological weapon with catastrophic consequences for any population vulnerable to attack. Ebola hemorrhagic fever (EHF) is a syndrome that can rapidly lead to death within days of symptom onset. The disease directly affects the immune system and vascular bed, with correspondingly high mortality rates. Patients with severe disease produce dangerously high levels of inflammatory cytokines, which destroy normal tissue and microcirculation, leading to profound capillary leakage, renal failure, and disseminated intravascular coagulation. Vaccine development has been fraught with obstacles, primarily of a biosafety nature. Case reports of acutely ill patients with EHF showing improvement with the transfusion of convalescent plasma are at odds with animal studies demonstrating further viral replication with the same treatment. Using mRNA extracted from bone marrow of Ebola survivors, human monoclonal antibodies against Ebola virus surface protein have been experimentally produced and now raise the hope for the development of a safe vaccine.

  2. [Overview of the Ebola vaccines in pre-clinical and clinical development].

    Science.gov (United States)

    Buchy, P

    2016-10-01

    The Ebola epidemic that occurred in West Africa between 2013-2016 significantly accelerated the research and development of Ebola vaccines. Few dozens of clinical trials have been recently conducted leading to opportunities to test several new vaccine candidates. Other vaccines are still in early development phases (table 1). This paper provides an overview of the new developments in that area.

  3. Ebola Vaccination Using a DNA Vaccine Coated on PLGA-PLL/γPGA Nanoparticles Administered Using a Microneedle Patch.

    Science.gov (United States)

    Yang, Hung-Wei; Ye, Ling; Guo, Xin Dong; Yang, Chinglai; Compans, Richard W; Prausnitz, Mark R

    2017-01-01

    Ebola DNA vaccine is incorporated into PLGA-PLL/γPGA nanoparticles and administered to skin using a microneedle (MN) patch. The nanoparticle delivery system increases vaccine thermostability and immunogenicity compared to free vaccine. Vaccination by MN patch produces stronger immune responses than intramuscular administration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Implementation of an Ebola virus disease vaccine clinical trial during the Ebola epidemic in Liberia: Design, procedures, and challenges.

    Science.gov (United States)

    Kennedy, Stephen B; Neaton, James D; Lane, H Clifford; Kieh, Mark W S; Massaquoi, Moses B F; Touchette, Nancy A; Nason, Martha C; Follmann, Dean A; Boley, Fatorma K; Johnson, Melvin P; Larson, Gregg; Kateh, Francis N; Nyenswah, Tolbert G

    2016-02-01

    The index case of the Ebola virus disease epidemic in West Africa is believed to have originated in Guinea. By June 2014, Guinea, Liberia, and Sierra Leone were in the midst of a full-blown and complex global health emergency. The devastating effects of this Ebola epidemic in West Africa put the global health response in acute focus for urgent international interventions. Accordingly, in October 2014, a World Health Organization high-level meeting endorsed the concept of a phase 2/3 clinical trial in Liberia to study Ebola vaccines. As a follow-up to the global response, in November 2014, the Government of Liberia and the US Government signed an agreement to form a research partnership to investigate Ebola and to assess intervention strategies for treating, controlling, and preventing the disease in Liberia. This agreement led to the establishment of the Joint Liberia-US Partnership for Research on Ebola Virus in Liberia as the beginning of a long-term collaborative partnership in clinical research between the two countries. In this article, we discuss the methodology and related challenges associated with the implementation of the Ebola vaccines clinical trial, based on a double-blinded randomized controlled trial, in Liberia. © The Author(s) 2016.

  5. Willingness to pay for an Ebola vaccine during the 2014-2016 ebola outbreak in West Africa: Results from a U.S. National sample.

    Science.gov (United States)

    Painter, Julia E; von Fricken, Michael E; Viana de O Mesquita, Suyane; DiClemente, Ralph J

    2018-01-15

    The 2014-2016 Ebola virus outbreak in West Africa led to advances in the development of vaccines against Ebola. This study examined factors associated with willingness to pay for an Ebola vaccine among a U.S. national sample during the recent Ebola outbreak. From April 30-May 8, 2015, a national survey was conducted using the GfK Group's KnowlegePanel®. Main outcome measures included willingness to pay at least $1; more than $50; and more than $100 for an Ebola vaccine. Analyses were conducted using weighted multivariable logistic regression. Among participants (N = 1,447), 583 (40.3%) would not pay for an Ebola vaccine; 864 (59.7%) would pay at least $1. Among those willing to pay at least $1: 570 (66.0%) would pay $1-50; 174 (20.1%) would pay $51-100; and 120 (13.9%) would pay more than $100. Willingness to pay at least $1 for an Ebola vaccine was associated with international travel; interest in getting an Ebola vaccine; and beliefs that the U.S. government should spend money to control Ebola and assume worldwide leadership in confronting emerging epidemics. Willingness to pay more than $50 was associated with similar variables. Willingness to pay more than $100 was associated with international travel; interest in getting an Ebola vaccine; information seeking; and beliefs that the U.S. government should assume worldwide leadership in confronting emerging epidemics. International travel and interest in an Ebola vaccine were key predictors of willingness to pay across all price points. Understanding willingness to pay for vaccines against emerging infectious diseases remains critical.

  6. Live Attenuated Recombinant Vaccine Protects Nonhuman Primates Against Ebola and Marburg Viruses

    National Research Council Canada - National Science Library

    Jones, Steven M; Feldmann, Heinz; Stroher, Ute; Geisbert, Joan B; Fernando, Lisa; Grolla, Allen; Klenk, Hans-Dieter; Sullivan, Nancy J; Volchkov, Viktor E; Fritz, Elizabeth A; Daddario, Kathleen M; Hensley, Lisa E; Jahrling, Peter B; Geisbert, Thomas W

    2005-01-01

    Vaccines and therapies are urgently needed to address public health needs stemming from emerging pathogens and biological threat agents such as the filoviruses Ebola virus (EBOV) and Marburg virus (MARV...

  7. In silico-based vaccine design against Ebola virus glycoprotein

    Directory of Open Access Journals (Sweden)

    Dash R

    2017-03-01

    Full Text Available Raju Dash,1 Rasel Das,2 Md Junaid,3 Md Forhad Chowdhury Akash,4 Ashekul Islam,5 SM Zahid Hosen1 1Molecular Modeling and Drug Design Laboratory (MMDDL, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR, Chittagong, Bangladesh; 2Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur, Malaysia; 3Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; 4Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh; 5Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh Abstract: Ebola virus (EBOV is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154–162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV. Keywords: Ebola virus, epitope, glycoprotein, vaccine design

  8. Vaccines. An Ebola whole-virus vaccine is protective in nonhuman primates.

    Science.gov (United States)

    Marzi, Andrea; Halfmann, Peter; Hill-Batorski, Lindsay; Feldmann, Friederike; Shupert, W Lesley; Neumann, Gabriele; Feldmann, Heinz; Kawaoka, Yoshihiro

    2015-04-24

    Zaire ebolavirus is the causative agent of the current outbreak of hemorrhagic fever disease in West Africa. Previously, we showed that a whole Ebola virus (EBOV) vaccine based on a replication-defective EBOV (EBOVΔVP30) protects immunized mice and guinea pigs against lethal challenge with rodent-adapted EBOV. Here, we demonstrate that EBOVΔVP30 protects nonhuman primates against lethal infection with EBOV. Although EBOVΔVP30 is replication-incompetent, we additionally inactivated the vaccine with hydrogen peroxide; the chemically inactivated vaccine remained antigenic and protective in nonhuman primates. EBOVΔVP30 thus represents a safe, efficacious, whole-EBOV vaccine candidate that differs from other EBOV vaccine platforms in that it presents all viral proteins and the viral RNA to the host immune system, which might contribute to protective immune responses. Copyright © 2015, American Association for the Advancement of Science.

  9. Ebola

    Science.gov (United States)

    ... If an outbreak happens, it can spread quickly. People all over the world are concerned about Ebola and are taking steps to stop it and to treat those who are sick. Ebola symptoms can start with fever and ... important that infected people get treatment right away. People who have Ebola ...

  10. Nubia's mother: being pregnant in the time of experimental vaccines and therapeutics for Ebola.

    Science.gov (United States)

    Caluwaerts, Séverine

    2017-12-14

    During the 2014-2016 Ebola epidemic, Médecins Sans Frontières (MSF) treated Ebola-positive pregnant women in its Ebola Treatment Centers (ETCs). For pregnant women with confirmed Ebola virus disease, inclusion in clinical vaccine/drug/therapeutic trials was complicated. Despite their extremely high Ebola-related mortality in previous epidemics (89-93%) and a neonatal mortality of 100%, theoretical concerns about safety of vaccines and therapeutics in pregnancy were invoked, limiting pregnant women's access to an experimental live attenuated vaccine and brincidofovir, an experimental antiviral. Favipiravir, another experimental antiviral, was made available to pregnant women only after extensive negotiations and under a 'Monitored Emergency Use of Unregistered and Experimental Interventions' (MEURI) protocol. This paper describes the case of a pregnant woman who presented to the ETCs near the end of the Ebola epidemic in Guinea. The pregnant patient was admitted with confirmed Ebola disease. She was previously denied access to potentially protective vaccination due to pregnancy, and access to experimental ZMapp was only possible through a randomized clinical trial (presenting a 50% chance of not receiving ZMapp). She received favipiravir, but died of Ebola-related complications. The infant, born in the ETC, tested positive for Ebola at birth. The infant received ZMapp (under MEURI access outside of the clinical trial), an experimental drug GS5734, and a buffy coat of an Ebola survivor, and survived. Though the infant did have access to experimental therapeutics within 24 h of birth, access to other experimental compounds for her mother was denied, raising serious ethical concerns.

  11. Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine.

    Science.gov (United States)

    Zhou, Yan; Sullivan, Nancy J

    2015-08-01

    The 2014 Ebola virus outbreak caused an order of magnitude more deaths in a single outbreak than all previous known outbreaks combined, affecting both local and international public health, and threatening the security and economic stability of the countries in West Africa directly confronting the outbreak. The severity of the epidemic lead to a global response to assist with patient care, outbreak control, and deployment of vaccines. The latter was possible due to the long history of basic and clinical research aimed at identifying a safe and effective vaccine to protect against Ebola virus infection. This review highlights the immunology, development, and progress of vaccines based on replication-defective adenovirus vectors, culminating in the successful launch of the first Phase III trial of an Ebola virus vaccine. Published by Elsevier Ltd.

  12. Mechanisms of immunity in post-exposure vaccination against Ebola virus infection.

    Directory of Open Access Journals (Sweden)

    Steven B Bradfute

    Full Text Available Ebolaviruses can cause severe hemorrhagic fever that is characterized by rapid viral replication, coagulopathy, inflammation, and high lethality rates. Although there is no clinically proven vaccine or treatment for Ebola virus infection, a virus-like particle (VLP vaccine is effective in mice, guinea pigs, and non-human primates when given pre-infection. In this work, we report that VLPs protect Ebola virus-infected mice when given 24 hours post-infection. Analysis of cytokine expression in serum revealed a decrease in pro-inflammatory cytokine and chemokine levels in mice given VLPs post-exposure compared to infected, untreated mice. Using knockout mice, we show that VLP-mediated post-exposure protection requires perforin, B cells, macrophages, conventional dendritic cells (cDCs, and either CD4+ or CD8+ T cells. Protection was Ebola virus-specific, as marburgvirus VLPs did not protect Ebola virus-infected mice. Increased antibody production in VLP-treated mice correlated with protection, and macrophages were required for this increased production. However, NK cells, IFN-gamma, and TNF-alpha were not required for post-exposure-mediated protection. These data suggest that a non-replicating Ebola virus vaccine can provide post-exposure protection and that the mechanisms of immune protection in this setting require both increased antibody production and generation of cytotoxic T cells.

  13. Mechanisms of immunity in post-exposure vaccination against Ebola virus infection.

    Science.gov (United States)

    Bradfute, Steven B; Anthony, Scott M; Stuthman, Kelly S; Ayithan, Natarajan; Tailor, Prafullakumar; Shaia, Carl I; Bray, Mike; Ozato, Keiko; Bavari, Sina

    2015-01-01

    Ebolaviruses can cause severe hemorrhagic fever that is characterized by rapid viral replication, coagulopathy, inflammation, and high lethality rates. Although there is no clinically proven vaccine or treatment for Ebola virus infection, a virus-like particle (VLP) vaccine is effective in mice, guinea pigs, and non-human primates when given pre-infection. In this work, we report that VLPs protect Ebola virus-infected mice when given 24 hours post-infection. Analysis of cytokine expression in serum revealed a decrease in pro-inflammatory cytokine and chemokine levels in mice given VLPs post-exposure compared to infected, untreated mice. Using knockout mice, we show that VLP-mediated post-exposure protection requires perforin, B cells, macrophages, conventional dendritic cells (cDCs), and either CD4+ or CD8+ T cells. Protection was Ebola virus-specific, as marburgvirus VLPs did not protect Ebola virus-infected mice. Increased antibody production in VLP-treated mice correlated with protection, and macrophages were required for this increased production. However, NK cells, IFN-gamma, and TNF-alpha were not required for post-exposure-mediated protection. These data suggest that a non-replicating Ebola virus vaccine can provide post-exposure protection and that the mechanisms of immune protection in this setting require both increased antibody production and generation of cytotoxic T cells.

  14. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    Science.gov (United States)

    Richardson, Jason S; Yao, Michel K; Tran, Kaylie N; Croyle, Maria A; Strong, James E; Feldmann, Heinz; Kobinger, Gary P

    2009-01-01

    The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the

  15. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    Directory of Open Access Journals (Sweden)

    Jason S Richardson

    Full Text Available BACKGROUND: The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP. The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. METHODOLOGY/PRINCIPAL FINDINGS: Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP. Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. CONCLUSIONS/SIGNIFICANCE: We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the

  16. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults

    NARCIS (Netherlands)

    Ledgerwood, J. E.; Costner, P.; Desai, N.; Holman, L.; Enama, M. E.; Yamshchikov, G.; Mulangu, S.; Hu, Z.; Andrews, C. A.; Sheets, R. A.; Koup, R. A.; Roederer, M.; Bailer, R.; Mascola, J. R.; Pau, M. G.; Sullivan, N. J.; Goudsmit, J.; Nabel, G. J.; Graham, B. S.

    2010-01-01

    Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of

  17. A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus.

    Directory of Open Access Journals (Sweden)

    Yoshimi Tsuda

    2011-08-01

    Full Text Available Human outbreaks of Ebola virus (EBOV are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes.We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a 'proof-of-concept' for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV vector expressing a CD8+ T cell epitope from the nucleoprotein (NP of Zaire ebolavirus (ZEBOV (MCMV/ZEBOV-NP(CTL. MCMV/ZEBOV-NP(CTL induced high levels of long-lasting (>8 months CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection.This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for 'disseminating' CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.

  18. Recent advances in the development of vaccines for Ebola virus disease.

    Science.gov (United States)

    Ohimain, Elijah Ige

    2016-01-04

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Controversial Ebola vaccine trials in Ghana: a thematic analysis of critiques and rebuttals in digital news

    Directory of Open Access Journals (Sweden)

    Per Egil Kummervold

    2017-08-01

    Full Text Available Abstract Background Communication is of paramount importance in responding to health crises. We studied the media messages put forth by different stakeholders in two Ebola vaccine trials that became controversial in Ghana. These interactions between health authorities, political actors, and public citizens can offer key lessons for future research. Through an analysis of online media, we analyse stakeholder concerns and incentives, and the phases of the dispute, to understand how the dispute evolved to the point of the trials being suspended, and analyse what steps might have been taken to avert this outcome. Methods A web-based system was developed to download and analyse news reports relevant to Ebola vaccine trials. This included monitoring major online newspapers in each country with planned clinical trials, including Ghana. All news articles were downloaded, selecting out those containing variants of the words “Ebola,” and “vaccine,” which were analysed thematically by a team of three coders. Two types of themes were defined: critiques of the trials and rebuttals in favour of the trials. After reconciling differences between coders’ results, the data were visualised and reviewed to describe and interpret the debate. Results A total of 27,460 articles, published between 1 May and 30 July 2015, were collected from nine different newspapers in Ghana, of which 139 articles contained the keywords and met the inclusion criteria. The final codebook included 27 themes, comprising 16 critiques and 11 rebuttals. After coding and reconciliation, the main critiques (and their associated rebuttals were selected for in-depth analysis, including statements about the trials being secret (mentioned in 21% of articles, claims that the vaccine trials would cause an Ebola outbreak in Ghana (33%, and the alleged impropriety of the incentives offered to participants (35%. Discussion Perceptions that the trials were “secret” arose from a combination

  20. Controversial Ebola vaccine trials in Ghana: a thematic analysis of critiques and rebuttals in digital news.

    Science.gov (United States)

    Kummervold, Per Egil; Schulz, William S; Smout, Elizabeth; Fernandez-Luque, Luis; Larson, Heidi J

    2017-08-07

    Communication is of paramount importance in responding to health crises. We studied the media messages put forth by different stakeholders in two Ebola vaccine trials that became controversial in Ghana. These interactions between health authorities, political actors, and public citizens can offer key lessons for future research. Through an analysis of online media, we analyse stakeholder concerns and incentives, and the phases of the dispute, to understand how the dispute evolved to the point of the trials being suspended, and analyse what steps might have been taken to avert this outcome. A web-based system was developed to download and analyse news reports relevant to Ebola vaccine trials. This included monitoring major online newspapers in each country with planned clinical trials, including Ghana. All news articles were downloaded, selecting out those containing variants of the words "Ebola," and "vaccine," which were analysed thematically by a team of three coders. Two types of themes were defined: critiques of the trials and rebuttals in favour of the trials. After reconciling differences between coders' results, the data were visualised and reviewed to describe and interpret the debate. A total of 27,460 articles, published between 1 May and 30 July 2015, were collected from nine different newspapers in Ghana, of which 139 articles contained the keywords and met the inclusion criteria. The final codebook included 27 themes, comprising 16 critiques and 11 rebuttals. After coding and reconciliation, the main critiques (and their associated rebuttals) were selected for in-depth analysis, including statements about the trials being secret (mentioned in 21% of articles), claims that the vaccine trials would cause an Ebola outbreak in Ghana (33%), and the alleged impropriety of the incentives offered to participants (35%). Perceptions that the trials were "secret" arose from a combination of premature news reporting and the fact that the trials were prohibited

  1. DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs

    Science.gov (United States)

    Cashman, Kathleen A.; Wilkinson, Eric R.; Wollen, Suzanne E.; Shamblin, Joshua D.; Zelko, Justine M.; Bearss, Jeremy J.; Zeng, Xiankun; Broderick, Kate E.; Schmaljohn, Connie S.

    2017-01-01

    ABSTRACT We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment. PMID:29135337

  2. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults.

    Science.gov (United States)

    Ledgerwood, J E; Costner, P; Desai, N; Holman, L; Enama, M E; Yamshchikov, G; Mulangu, S; Hu, Z; Andrews, C A; Sheets, R A; Koup, R A; Roederer, M; Bailer, R; Mascola, J R; Pau, M G; Sullivan, N J; Goudsmit, J; Nabel, G J; Graham, B S

    2010-12-16

    Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of protective immunity is possible and safety and human immunogenicity has been demonstrated in a previous Phase I clinical trial of a 1st generation Ebola DNA vaccine. We now report the safety and immunogenicity of a recombinant adenovirus serotype 5 (rAd5) vaccine encoding the envelope glycoprotein (GP) from the Zaire and Sudan Ebola virus species, in a randomized, placebo-controlled, double-blinded, dose escalation, Phase I human study. Thirty-one healthy adults received vaccine at 2×10(9) (n=12), or 2×10(10) (n=11) viral particles or placebo (n=8) as an intramuscular injection. Antibody responses were assessed by ELISA and neutralizing assays; and T cell responses were assessed by ELISpot and intracellular cytokine staining assays. This recombinant Ebola virus vaccine was safe and subjects developed antigen specific humoral and cellular immune responses. Published by Elsevier Ltd.

  3. A Perspective on the Development of Plant-Made Vaccines in the Fight against Ebola Virus

    Science.gov (United States)

    Rosales-Mendoza, Sergio; Nieto-Gómez, Ricardo; Angulo, Carlos

    2017-01-01

    The Ebola virus (EBOV) epidemic indicated a great need for prophylactic and therapeutic strategies. The use of plants for the production of biopharmaceuticals is a concept being adopted by the pharmaceutical industry, with an enzyme for human use currently commercialized since 2012 and some plant-based vaccines close to being commercialized. Although plant-based antibodies against EBOV are under clinical evaluation, the development of plant-based vaccines against EBOV essentially remains an unexplored area. The current technologies for the production of plant-based vaccines include stable nuclear expression, transient expression mediated by viral vectors, and chloroplast expression. Specific perspectives on how these technologies can be applied for developing anti-EBOV vaccines are provided, including possibilities for the design of immunogens as well as the potential of the distinct expression modalities to produce the most relevant EBOV antigens in plants considering yields, posttranslational modifications, production time, and downstream processing. PMID:28344580

  4. Lessons learned from Ebola Vaccine R&D during a public health emergency.

    Science.gov (United States)

    Kieny, Marie-Paule

    2018-02-16

    In spite of a complete lack of Research and Development (R&D) preparedness, the 2013-2016 West-Africa Ebola experience demonstrated that it is possible to compress R&D timelines to less than a single year, from a more usual decade or longer. This is mostly to be credited to an unprecedented collaborative effort building on the availability of a small number of candidate diagnostic tests, drugs and vaccines that could be moved rapidly into the clinical phase evaluation. The World Health Organization (WHO) led international consultations and activities - including the organization of a successful Ebola vaccine efficacy trial in Guinea - as a contribution to the unprecedented global efforts to control the Ebola epidemic. Since 2015, WHO expert teams and partners are implementing a novel R&D model for emerging infectious pathogens which are the most likely to cause severe outbreaks in the future, and for which no or only few medical countermeasures are available: the WHO R&D Blueprint. The objective for the Blueprint is the fostering of a R&D environment which is prepared for quickly and effectively responding to outbreaks due to emerging infectious disease.

  5. Public acceptance of a hypothetical Ebola virus vaccine in Aceh, Indonesia: A hospital-based survey

    Directory of Open Access Journals (Sweden)

    Harapan Harapan

    2017-04-01

    Full Text Available Objective: To determine the acceptance towards a hypothetical Ebola virus vaccine (EVV and associated factors in a non-affected country, Indonesia. Methods: A hospital-based, cross-sectional study was conducted in four regencies of Aceh, Indonesia. A set of pre-tested questionnaires was used to obtain information on acceptance towards EVV and a range of explanatory variables. Associations between EVV acceptance and explanatory variables were tested using multi-steps logistic regression analysis and the Spearman's rank correlation. Results: Participants who had knowledge on Ebola virus disease (EVD were 45.3% (192/424 and none of the participants achieved 80% correct answers on the knowledge regarding to EVD. About 73% of participants expressed their willingness to receive the EVV. Education attainment, occupation, monthly income, have heard regarding to EVD previously, socioeconomic level, attitude towards vaccination practice and knowledge regarding to EVD were associated significantly with acceptance towards EVV in univariate analysis (P < 0.05. In the final multivariate model, socio-economic level, attitude towards vaccination practice and knowledge regarding to EVD were the independent explanatory variables for EVV acceptance. Conclusions: The knowledge of EVD was low, but this minimally affected the acceptance towards EVV. However, to facilitate optimal uptake of EVV, dissemination of vaccine-related information prior to its introduction is required.

  6. Epitope-based peptide vaccine design and target site depiction against Ebola viruses: an immunoinformatics study.

    Science.gov (United States)

    Khan, M A; Hossain, M U; Rakib-Uz-Zaman, S M; Morshed, M N

    2015-07-01

    Ebola viruses (EBOVs) have been identified as an emerging threat in recent year as it causes severe haemorrhagic fever in human. Epitope-based vaccine design for EBOVs remains a top priority because a mere progress has been made in this regard. Another reason is the lack of antiviral drug and licensed vaccine although there is a severe outbreak in Central Africa. In this study, we aimed to design an epitope-based vaccine that can trigger a significant immune response as well as to prognosticate inhibitor that can bind with potential drug target sites using various immunoinformatics and docking simulation tools. The capacity to induce both humoral and cell-mediated immunity by T cell and B cell was checked for the selected protein. The peptide region spanning 9 amino acids from 42 to 50 and the sequence TLASIGTAF were found as the most potential B and T cell epitopes, respectively. This peptide could interact with 12 HLAs and showed high population coverage up to 80.99%. Using molecular docking, the epitope was further appraised for binding against HLA molecules to verify the binding cleft interaction. In addition with this, the allergenicity of the epitopes was also evaluated. In the post-therapeutic strategy, docking study of predicted 3D structure identified suitable therapeutic inhibitor against targeted protein. However, this computational epitope-based peptide vaccine designing and target site prediction against EBOVs open up a new horizon which may be the prospective way in Ebola viruses research; the results require validation by in vitro and in vivo experiments. © 2015 John Wiley & Sons Ltd.

  7. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    International Nuclear Information System (INIS)

    Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-01-01

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RVΔG-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RVΔG-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RVΔG-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RVΔG-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  8. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    Energy Technology Data Exchange (ETDEWEB)

    Papaneri, Amy B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Wirblich, Christoph [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Cann, Jennifer A.; Cooper, Kurt [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Jahrling, Peter B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Schnell, Matthias J., E-mail: matthias.schnell@jefferson.edu [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Blaney, Joseph E., E-mail: jblaney@niaid.nih.gov [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States)

    2012-12-05

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  9. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!).

    Science.gov (United States)

    Henao-Restrepo, Ana Maria; Camacho, Anton; Longini, Ira M; Watson, Conall H; Edmunds, W John; Egger, Matthias; Carroll, Miles W; Dean, Natalie E; Diatta, Ibrahima; Doumbia, Moussa; Draguez, Bertrand; Duraffour, Sophie; Enwere, Godwin; Grais, Rebecca; Gunther, Stephan; Gsell, Pierre-Stéphane; Hossmann, Stefanie; Watle, Sara Viksmoen; Kondé, Mandy Kader; Kéïta, Sakoba; Kone, Souleymane; Kuisma, Eewa; Levine, Myron M; Mandal, Sema; Mauget, Thomas; Norheim, Gunnstein; Riveros, Ximena; Soumah, Aboubacar; Trelle, Sven; Vicari, Andrea S; Røttingen, John-Arne; Kieny, Marie-Paule

    2017-02-04

    rVSV-ZEBOV is a recombinant, replication competent vesicular stomatitis virus-based candidate vaccine expressing a surface glycoprotein of Zaire Ebolavirus. We tested the effect of rVSV-ZEBOV in preventing Ebola virus disease in contacts and contacts of contacts of recently confirmed cases in Guinea, west Africa. We did an open-label, cluster-randomised ring vaccination trial (Ebola ça Suffit!) in the communities of Conakry and eight surrounding prefectures in the Basse-Guinée region of Guinea, and in Tomkolili and Bombali in Sierra Leone. We assessed the efficacy of a single intramuscular dose of rVSV-ZEBOV (2×10 7 plaque-forming units administered in the deltoid muscle) in the prevention of laboratory confirmed Ebola virus disease. After confirmation of a case of Ebola virus disease, we definitively enumerated on a list a ring (cluster) of all their contacts and contacts of contacts including named contacts and contacts of contacts who were absent at the time of the trial team visit. The list was archived, then we randomly assigned clusters (1:1) to either immediate vaccination or delayed vaccination (21 days later) of all eligible individuals (eg, those aged ≥18 years and not pregnant, breastfeeding, or severely ill). An independent statistician generated the assignment sequence using block randomisation with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 individuals vs >20 individuals). Ebola response teams and laboratory workers were unaware of assignments. After a recommendation by an independent data and safety monitoring board, randomisation was stopped and immediate vaccination was also offered to children aged 6-17 years and all identified rings. The prespecified primary outcome was a laboratory confirmed case of Ebola virus disease with onset 10 days or more from randomisation. The primary analysis compared the incidence of Ebola virus disease in eligible and vaccinated individuals assigned to immediate

  10. Phase 2 Placebo-Controlled Trial of Two Vaccines to Prevent Ebola in Liberia.

    Science.gov (United States)

    Kennedy, Stephen B; Bolay, Fatorma; Kieh, Mark; Grandits, Greg; Badio, Moses; Ballou, Ripley; Eckes, Risa; Feinberg, Mark; Follmann, Dean; Grund, Birgit; Gupta, Swati; Hensley, Lisa; Higgs, Elizabeth; Janosko, Krisztina; Johnson, Melvin; Kateh, Francis; Logue, James; Marchand, Jonathan; Monath, Thomas; Nason, Martha; Nyenswah, Tolbert; Roman, François; Stavale, Eric; Wolfson, Julian; Neaton, James D; Lane, H Clifford

    2017-10-12

    The safety and efficacy of vaccines to prevent Ebola virus disease (EVD) were unknown when the incidence of EVD was peaking in Liberia. We initiated a randomized, placebo-controlled, phase 3 trial of the chimpanzee adenovirus 3 vaccine (ChAd3-EBO-Z) and the recombinant vesicular stomatitis virus vaccine (rVSV∆G-ZEBOV-GP) in Liberia. A phase 2 subtrial was embedded to evaluate safety and immunogenicity. Because the incidence of EVD declined in Liberia, the phase 2 component was expanded and the phase 3 component was eliminated. A total of 1500 adults underwent randomization and were followed for 12 months. The median age of the participants was 30 years; 36.6% of the participants were women. During the week after the administration of vaccine or placebo, adverse events occurred significantly more often with the active vaccines than with placebo; these events included injection-site reactions (in 28.5% of the patients in the ChAd3-EBO-Z group and 30.9% of those in the rVSV∆G-ZEBOV-GP group, as compared with 6.8% of those in the placebo group), headache (in 25.1% and 31.9%, vs. 16.9%), muscle pain (in 22.3% and 26.9%, vs. 13.3%), feverishness (in 23.9% and 30.5%, vs. 9.0%), and fatigue (in 14.0% and 15.4%, vs. 8.8%) (PLiberia showed the capability of conducting rigorous research during an outbreak. By 1 month after vaccination, the vaccines had elicited immune responses that were largely maintained through 12 months. (Funded by the National Institutes of Allergy and Infectious Diseases and the Liberian Ministry of Health; PREVAIL I ClinicalTrials.gov number, NCT02344407 .).

  11. Vesicular stomatitis virus-based ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Thomas W Geisbert

    2008-11-01

    Full Text Available Ebola virus (EBOV is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVDeltaG/ZEBOVGP in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV. All six animals showed no evidence of illness associated with the VSVDeltaG/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV.

  12. Rethinking the Response to Emerging Microbes: Vaccines and Therapeutics in the Ebola Era--a Conference at Harvard Medical School.

    Science.gov (United States)

    Knipe, David M; Whelan, Sean P

    2015-08-01

    Harvard Medical School convened a meeting of biomedical and clinical experts on 5 March 2015 on the topic of "Rethinking the Response to Emerging Microbes: Vaccines and Therapeutics in the Ebola Era," with the goals of discussing the lessons from the recent Ebola outbreak and using those lessons as a case study to aid preparations for future emerging infections. The speakers and audience discussed the special challenges in combatting an infectious agent that causes sporadic outbreaks in resource-poor countries. The meeting led to a call for improved basic medical care for all and continued support of basic discovery research to provide the foundation for preparedness for future outbreaks in addition to the targeted emergency response to outbreaks and targeted research programs against Ebola virus and other specific emerging pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. The Ebola Outbreak of 2014-2015: From Coordinated Multilateral Action to Effective Disease Containment, Vaccine Development, and Beyond.

    Science.gov (United States)

    Wojda, Thomas R; Valenza, Pamela L; Cornejo, Kristine; McGinley, Thomas; Galwankar, Sagar C; Kelkar, Dhanashree; Sharpe, Richard P; Papadimos, Thomas J; Stawicki, Stanislaw P

    2015-01-01

    The Ebola outbreak of 2014-2015 exacted a terrible toll on major countries of West Africa. Latest estimates from the World Health Organization indicate that over 11,000 lives were lost to the deadly virus since the first documented case was officially recorded. However, significant progress in the fight against Ebola was made thanks to a combination of globally-supported containment efforts, dissemination of key information to the public, the use of modern information technology resources to better track the spread of the outbreak, as well as more effective use of active surveillance, targeted travel restrictions, and quarantine procedures. This article will outline the progress made by the global public health community toward containing and eventually extinguishing this latest outbreak of Ebola. Economic consequences of the outbreak will be discussed. The authors will emphasize policies and procedures thought to be effective in containing the outbreak. In addition, we will outline selected episodes that threatened inter-continental spread of the disease. The emerging topic of post-Ebola syndrome will also be presented. Finally, we will touch on some of the diagnostic (e.g., point-of-care [POC] testing) and therapeutic (e.g., new vaccines and pharmaceuticals) developments in the fight against Ebola, and how these developments may help the global public health community fight future epidemics.

  14. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial.

    Science.gov (United States)

    Henao-Restrepo, Ana Maria; Longini, Ira M; Egger, Matthias; Dean, Natalie E; Edmunds, W John; Camacho, Anton; Carroll, Miles W; Doumbia, Moussa; Draguez, Bertrand; Duraffour, Sophie; Enwere, Godwin; Grais, Rebecca; Gunther, Stephan; Hossmann, Stefanie; Kondé, Mandy Kader; Kone, Souleymane; Kuisma, Eeva; Levine, Myron M; Mandal, Sema; Norheim, Gunnstein; Riveros, Ximena; Soumah, Aboubacar; Trelle, Sven; Vicari, Andrea S; Watson, Conall H; Kéïta, Sakoba; Kieny, Marie Paule; Røttingen, John-Arne

    2015-08-29

    A recombinant, replication-competent vesicular stomatitis virus-based vaccine expressing a surface glycoprotein of Zaire Ebolavirus (rVSV-ZEBOV) is a promising Ebola vaccine candidate. We report the results of an interim analysis of a trial of rVSV-ZEBOV in Guinea, west Africa. For this open-label, cluster-randomised ring vaccination trial, suspected cases of Ebola virus disease in Basse-Guinée (Guinea, west Africa) were independently ascertained by Ebola response teams as part of a national surveillance system. After laboratory confirmation of a new case, clusters of all contacts and contacts of contacts were defined and randomly allocated 1:1 to immediate vaccination or delayed (21 days later) vaccination with rVSV-ZEBOV (one dose of 2 × 10(7) plaque-forming units, administered intramuscularly in the deltoid muscle). Adults (age ≥18 years) who were not pregnant or breastfeeding were eligible for vaccination. Block randomisation was used, with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 vs >20 individuals). The study is open label and masking of participants and field teams to the time of vaccination is not possible, but Ebola response teams and laboratory workers were unaware of allocation to immediate or delayed vaccination. Taking into account the incubation period of the virus of about 10 days, the prespecified primary outcome was laboratory-confirmed Ebola virus disease with onset of symptoms at least 10 days after randomisation. The primary analysis was per protocol and compared the incidence of Ebola virus disease in eligible and vaccinated individuals in immediate vaccination clusters with the incidence in eligible individuals in delayed vaccination clusters. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. Between April 1, 2015, and July 20, 2015, 90 clusters, with a total population of 7651 people were included in the planned interim analysis. 48 of

  15. Safety and immunogenicity of rVSVΔG-ZEBOV-GP Ebola vaccine in adults and children in Lambaréné, Gabon: A phase I randomised trial

    NARCIS (Netherlands)

    Agnandji, Selidji T.; Fernandes, José F.; Bache, Emmanuel B.; Obiang Mba, Régis M.; Brosnahan, Jessica S.; Kabwende, Lumeka; Pitzinger, Paul; Staarink, Pieter; Massinga-Loembe, Marguerite; Krähling, Verena; Biedenkopf, Nadine; Fehling, Sarah Katharina; Strecker, Thomas; Clark, David J.; Staines, Henry M.; Hooper, Jay W.; Silvera, Peter; Moorthy, Vasee; Kieny, Marie-Paule; Adegnika, Akim A.; Grobusch, Martin P.; Becker, Stephan; Ramharter, Michael; Mordmüller, Benjamin; Lell, Bertrand; Krishna, Sanjeev; Kremsner, Peter G.

    2017-01-01

    The rVSVΔG-ZEBOV-GP vaccine prevented Ebola virus disease when used at 2 × 107 plaque-forming units (PFU) in a trial in Guinea. This study provides further safety and immunogenicity data. A randomised, open-label phase I trial in Lambaréné, Gabon, studied 5 single intramuscular vaccine doses of 3 ×

  16. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice.

    Science.gov (United States)

    Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong

    2017-09-01

    Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A paramyxovirus-vectored intranasal vaccine against Ebola virus is immunogenic in vector-immune animals.

    Science.gov (United States)

    Yang, Lijuan; Sanchez, Anthony; Ward, Jerrold M; Murphy, Brian R; Collins, Peter L; Bukreyev, Alexander

    2008-08-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans. The virus can be transmitted by direct contact as well as by aerosol and is considered a potential bioweapon. Because direct immunization of the respiratory tract should be particularly effective against infection of mucosal surfaces, we previously developed an intranasal vaccine based on replication-competent human parainfluenza virus type 3 (HPIV3) expressing EBOV glycoprotein GP (HPIV3/EboGP) and showed that it is immunogenic and protective against a high dose parenteral EBOV challenge. However, because the adult human population has considerable immunity to HPIV3, which is a common human pathogen, replication and immunogenicity of the vaccine in this population might be greatly restricted. Indeed, in the present study, replication of the vaccine in the respiratory tract of HPIV3-immune guinea pigs was found to be restricted to undetectable levels. This restriction appeared to be based on both neutralizing antibodies and cellular or other components of the immunity to HPIV3. Surprisingly, even though replication of HPIV3/EboGP was highly restricted in HPIV3-immune animals, it induced a high level of EBOV-specific antibodies that nearly equaled that obtained in HPIV3-naive animals. We also show that the previously demonstrated presence of functional GP in the vector particle was not associated with increased replication in the respiratory tract nor with spread beyond the respiratory tract of HPIV3-naive guinea pigs, indicating that expression and functional incorporation of the attachment/penetration glycoprotein of this systemic virus did not mediate a change in tissue tropism.

  18. Ebola (Ebola Virus Disease)

    Science.gov (United States)

    ... Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is not ... gov . Recommend on Facebook Tweet Share Compartir Ebola Virus Disease (EVD) is a rare and deadly disease ...

  19. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks.

    Science.gov (United States)

    Shukarev, Georgi; Callendret, Benoit; Luhn, Kerstin; Douoguih, Macaya

    2017-02-01

    The consequences of the 2013-16 Ebola Zaire virus disease epidemic in West Africa were grave. The economies, healthcare systems and communities of Guinea, Sierra Leone and Liberia were devastated by over 18 months of active Ebola virus transmission, followed by sporadic resurgences potentially related to sexual transmission by survivors with viral persistence in body fluids following recovery. The need to develop and implement strategies to prevent and mitigate future outbreaks is now beyond dispute. The potential for unpredictable outbreaks of indeterminate duration, and control challenges posed by the possibility of sporadic re-emergence, mean that implementation of an effective vaccination program for outbreak containment necessitates a vaccine providing durable immunity. Heterologous prime-boost vaccine regimens deliver the same or similar antigens through different vaccine types, the first to prime and the second to boost the immune system. Ad26.ZEBOV/MVA-BN-Filo is an investigational Ebola Zaire vaccine regimen that uses this heterologous prime-boost approach. Preliminary Phase 1 data suggest that Ad26.ZEBOV/MVA-BN-Filo confers durable immunity for at least 240 d and is well-tolerated with a good safety profile. This regimen may therefore be suitable for prophylactic use in a regional or targeted population vaccination strategy, and could potentially aid prevention and control of future Ebola outbreaks.

  20. Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine.

    Science.gov (United States)

    Blaney, Joseph E; Marzi, Andrea; Willet, Mallory; Papaneri, Amy B; Wirblich, Christoph; Feldmann, Friederike; Holbrook, Michael; Jahrling, Peter; Feldmann, Heinz; Schnell, Matthias J

    2013-01-01

    We have previously described the generation of a novel Ebola virus (EBOV) vaccine platform based on (a) replication-competent rabies virus (RABV), (b) replication-deficient RABV, or (c) chemically inactivated RABV expressing EBOV glycoprotein (GP). Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine.

  1. Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine.

    Directory of Open Access Journals (Sweden)

    Joseph E Blaney

    Full Text Available We have previously described the generation of a novel Ebola virus (EBOV vaccine platform based on (a replication-competent rabies virus (RABV, (b replication-deficient RABV, or (c chemically inactivated RABV expressing EBOV glycoprotein (GP. Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine.

  2. Public Perception of the Risks Associated with Infectious Diseases in Poland: Ebola and Influenza and Their Impact on the Attitude to Vaccination.

    Science.gov (United States)

    Kuchar, Ernest; Ludwikowska, Kamila; Marciniak, Dominik; Szenborn, Leszek; Nitsch-Osuch, Aneta

    2017-01-01

    While the Ebola outbreak in 2014 was strongly highlighted in mainstream media and perceived as a threat to public health in Poland, influenza was regarded as a triviality and the vaccination coverage was low. In the present study, by analyzing feedback from an on-line questionnaire (from November 2014 to January 2015) we assessed the knowledge concerning Ebola and influenza together with attitudes to immunization of 544 respondents (45% medical staff). The findings were that 92.6% of respondents declared readiness to vaccination before traveling to endemic regions if a vaccine against Ebola would have existed, but adverse reactions, high costs, and low effectiveness would adversely affect that decision. While 84.2% of respondents declared awareness of influenza attributing significantly to the cause of death, only 65.4% considered influenza as an actual danger for people in Poland and 46.7% thought that Poland was not an endemic region for influenza. Nearly 23% declared that they were already vaccinated against influenza. The majority of respondents (67.5%) were not going to be vaccinated. We conclude that awareness of risk related to infectious diseases is an important determinant when deciding whether to vaccinate. However, negative information about the vaccine has some bearing on the decision to get vaccinated.

  3. Ebola (Ebola Virus Disease): Diagnosis

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) What is Ebola Virus Disease? ...

  4. Ebola (Ebola Virus Disease): Transmission

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) What is Ebola Virus Disease? ...

  5. Ebola (Ebola Virus Disease): Treatment

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) What is Ebola Virus Disease? ...

  6. Ebola (Ebola Virus Disease): Prevention

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014- ...

  7. Role of healthcare workers in early epidemic spread of Ebola: policy implications of prophylactic compared to reactive vaccination policy in outbreak prevention and control.

    Science.gov (United States)

    Coltart, Cordelia E M; Johnson, Anne M; Whitty, Christopher J M

    2015-10-19

    Ebola causes severe illness in humans and has epidemic potential. How to deploy vaccines most effectively is a central policy question since different strategies have implications for ideal vaccine profile. More than one vaccine may be needed. A vaccine optimised for prophylactic vaccination in high-risk areas but when the virus is not actively circulating should be safe, well tolerated, and provide long-lasting protection; a two- or three-dose strategy would be realistic. Conversely, a reactive vaccine deployed in an outbreak context for ring-vaccination strategies should have rapid onset of protection with one dose, but longevity of protection is less important. In initial cases, before an outbreak is recognised, healthcare workers (HCWs) are at particular risk of acquiring and transmitting infection, thus potentially augmenting early epidemics. We hypothesise that many early outbreak cases could be averted, or epidemics aborted, by prophylactic vaccination of HCWs. This paper explores the potential impact of prophylactic versus reactive vaccination strategies of HCWs in preventing early epidemic transmissions. To do this, we use the limited data available from Ebola epidemics (current and historic) to reconstruct transmission trees and illustrate the theoretical impact of these vaccination strategies. Our data suggest a substantial potential benefit of prophylactic versus reactive vaccination of HCWs in preventing early transmissions. We estimate that prophylactic vaccination with a coverage >99% and theoretical 100% efficacy could avert nearly two-thirds of cases studied; 75% coverage would still confer clear benefit (40% cases averted), but reactive vaccination would be of less value in the early epidemic. A prophylactic vaccination campaign for front-line HCWs is not a trivial undertaking; whether to prioritise long-lasting vaccines and provide prophylaxis to HCWs is a live policy question. Prophylactic vaccination is likely to have a greater impact on the

  8. Novel Ordered Stepped-Wedge Cluster Trial Designs for Detecting Ebola Vaccine Efficacy Using a Spatially Structured Mathematical Model.

    Directory of Open Access Journals (Sweden)

    Ibrahim Diakite

    2016-08-01

    Full Text Available During the 2014 Ebola virus disease (EVD outbreak, policy-makers were confronted with difficult decisions on how best to test the efficacy of EVD vaccines. On one hand, many were reluctant to withhold a vaccine that might prevent a fatal disease from study participants randomized to a control arm. On the other, regulatory bodies called for rigorous placebo-controlled trials to permit direct measurement of vaccine efficacy prior to approval of the products. A stepped-wedge cluster study (SWCT was proposed as an alternative to a more traditional randomized controlled vaccine trial to address these concerns. Here, we propose novel "ordered stepped-wedge cluster trial" (OSWCT designs to further mitigate tradeoffs between ethical concerns, logistics, and statistical rigor.We constructed a spatially structured mathematical model of the EVD outbreak in Sierra Leone. We used the output of this model to simulate and compare a series of stepped-wedge cluster vaccine studies. Our model reproduced the observed order of first case occurrence within districts of Sierra Leone. Depending on the infection risk within the trial population and the trial start dates, the statistical power to detect a vaccine efficacy of 90% varied from 14% to 32% for standard SWCT, and from 67% to 91% for OSWCTs for an alpha error of 5%. The model's projection of first case occurrence was robust to changes in disease natural history parameters.Ordering clusters in a step-wedge trial based on the cluster's underlying risk of infection as predicted by a spatial model can increase the statistical power of a SWCT. In the event of another hemorrhagic fever outbreak, implementation of our proposed OSWCT designs could improve statistical power when a step-wedge study is desirable based on either ethical concerns or logistical constraints.

  9. Volunteer feedback and perceptions after participation in a phase I, first-in-human Ebola vaccine trial: An anonymous survey.

    Directory of Open Access Journals (Sweden)

    Julie-Anne Dayer

    Full Text Available The continued participation of volunteers in clinical trials is crucial to advances in healthcare. Few data are available regarding the satisfaction and impressions of healthy volunteers after participation in phase I trials, many of which lead to unexpected adverse events. We report feedback from over 100 adult volunteers who took part in a first-in-human trial conducted in a high-income country testing an experimental Ebola vaccine causing significant reactogenicity, as well as unexpected arthritis in one fifth of participants. The anonymous, internet-based satisfaction survey was sent by email to all participants upon their completion of this one-year trial; it asked 24 questions concerning volunteers' motivations, impressions of the trial experience, and overall satisfaction. Answers were summarized using descriptive statistics. Of the 115 trial participants, 103 (90% filled out the survey. Fifty-five respondents (53% were male. Thirty-five respondents (34% were healthcare workers, many of whom would deploy to Ebola-affected countries. All respondents cited scientific advancement as their chief motivation for participation, while 100/103 (97% and 61/103 (59% reported additional "humanitarian reasons" and potential protection from Ebolavirus, respectively. Although investigators had documented adverse events in 97% of trial participants, only 74 of 103 respondents (72% recalled experiencing an adverse event. All reported an overall positive experience, and 93/103 (90% a willingness to participate in future trials. Given the high level of satisfaction, no significant associations could be detected between trial experiences and satisfaction, even among respondents reporting adverse events lasting weeks or months. Despite considerable reactogenicity and unexpected vaccine-related arthritis, all survey respondents reported overall satisfaction. While this trial's context was unique, the positive feedback is likely due at least in part to the

  10. Recent advances on Ebola virus

    Directory of Open Access Journals (Sweden)

    Yasir Waheed

    2017-02-01

    Full Text Available The 2014–2015 Ebola epidemic in West Africa was the largest of its kind, with more than 11 000 deaths and 28 637 cases. The epidemic mobilized a coalition of countries from US to China, European Union, and African countries. The international community was not prepared to face this unprecedented epidemic. Numbers of research groups are working to find a potent vaccine against Ebola. Ebola virus has the ability to dodge the immune system either by blocking interferon production or by glycoprotein-based immune diversion. Individuals who survived from the Ebola virus are facing different health issues after the infection. The rate of miscarriage is also high in Ebola survivors while there are variable reports of the presence of Ebola virus in semen of Ebola survivors. There are many asymptomatic Ebola patients under consideration. West African countries lack the basic healthcare system, for which the actual number of deaths by the Ebola outbreak are much more than the deaths caused by the direct viral infection. The hospitals were empty due to fear and death of nurses and doctors. Millions of children missed the vaccine against measles. Hundreds of thousands of people could not get food. The Ebola epidemic also affected the mental health of people living in endemic countries. The families affected by Ebola are facing discrimination in the society. There is a dire need to adopt United Nations Sustainable Development Goal 3, which stresses to prepare ourselves to face any national or global health risk.

  11. Recent advances on Ebola virus

    OpenAIRE

    Yasir Waheed; Mehreen Tahir; Hasnain Waheed; Sher Zaman Safi

    2017-01-01

    The 2014–2015 Ebola epidemic in West Africa was the largest of its kind, with more than 11 000 deaths and 28 637 cases. The epidemic mobilized a coalition of countries from US to China, European Union, and African countries. The international community was not prepared to face this unprecedented epidemic. Numbers of research groups are working to find a potent vaccine against Ebola. Ebola virus has the ability to dodge the immune system either by blocking interferon production ...

  12. Live Attenuated Recombinant Vaccine Protects Nonhuman Primates Against Ebola and Marburg Viruses

    National Research Council Canada - National Science Library

    Jones, Steven M; Feldmann, Heinz; Stroher, Ute; Geisbert, Joan B; Fernando, Lisa; Grolla, Allen; Klenk, Hans-Dieter; Sullivan, Nancy J; Volchkov, Viktor E; Fritz, Elizabeth A; Daddario, Kathleen M; Hensley, Lisa E; Jahrling, Peter B; Geisbert, Thomas W

    2005-01-01

    ...). Here, we developed replication-competent vaccines against EBOV and MARV based on attenuated recombinant vesicular stomatitis virus vectors expressing either the EBOV glycoprotein or MARV glycoprotein...

  13. [Ebola hemorrhagic fever: Properties of the pathogen and development of vaccines and chemotherapeutic agents].

    Science.gov (United States)

    Kiselev, O I; Vasin, A V; Shevyryova, M P; Deeva, E G; Sivak, K V; Egorov, V V; Tsvetkov, V B; Egorov, A Yu; Romanovskaya-Romanko, E A; Stepanova, L A; Komissarov, A B; Tsybalova, L M; Ignatjev, G M

    2015-01-01

    Ebola hemorrhagic fever (EHF) epidemic currently ongoing in West Africa is not the first among numerous epidemics in the continent. Yet it seems to be the worst EHF epidemic outbreak caused by Ebola virus Zaire since 1976 as regards its extremely large scale and rapid spread in the population. Experiments to study the agent have continued for more than 20 years. The EHF virus has a relatively simple genome with seven genes and additional reading frame resulting from RNA editing. While being of a relatively low genetic capacity, the virus can be ranked as a standard for pathogenicity with the ability to evade the host immune response in uttermost perfection. The EHF virus has similarities with retroviruses, but belongs to (-)RNA viruses of a nonretroviral origin. Genetic elements of the virus, NIRV, were detected in animal and human genomes. EHF virus glycoprotein (GP) is a class I fusion protein and shows more similarities than distinctions in tertiary structure with SIV and HIV gp41 proteins and even influenza virus hemagglutinin. EHF is an unusual infectious disease, and studying the molecular basis of its pathogenesis may contribute to new findings in therapy of severe conditions leading to a fatal outcome.

  14. Ebola (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Ebola KidsHealth / For Parents / Ebola What's in this article? ... take precautions to avoid becoming infected. What Is Ebola? Ebola, or Ebola hemorrhagic fever ( Ebola HF) , is ...

  15. Phase 1 Trials of rVSV Ebola Vaccine in Africa and Europe

    NARCIS (Netherlands)

    Agnandji, Selidji T.; Huttner, Angela; Zinser, Madeleine E.; Njuguna, Patricia; Dahlke, Christine; Fernandes, José F.; Yerly, Sabine; Dayer, Julie-Anne; Kraehling, Verena; Kasonta, Rahel; Adegnika, Akim A.; Altfeld, Marcus; Auderset, Floriane; Bache, Emmanuel B.; Biedenkopf, Nadine; Borregaard, Saskia; Brosnahan, Jessica S.; Burrow, Rebekah; Combescure, Christophe; Desmeules, Jules; Eickmann, Markus; Fehling, Sarah K.; Finckh, Axel; Goncalves, Ana Rita; Grobusch, Martin P.; Hooper, Jay; Jambrecina, Alen; Kabwende, Anita L.; Kaya, Gürkan; Kimani, Domtila; Lell, Bertrand; Lemaître, Barbara; Lohse, Ansgar W.; Massinga-Loembe, Marguerite; Matthey, Alain; Mordmüller, Benjamin; Nolting, Anne; Ogwang, Caroline; Ramharter, Michael; Schmidt-Chanasit, Jonas; Schmiedel, Stefan; Silvera, Peter; Stahl, Felix R.; Staines, Henry M.; Strecker, Thomas; Stubbe, Hans C.; Tsofa, Benjamin; Zaki, Sherif; Fast, Patricia; Moorthy, Vasee; Kaiser, Laurent; Krishna, Sanjeev; Becker, Stephan; Kieny, Marie-Paule; Bejon, Philip; Kremsner, Peter G.; Addo, Marylyn M.; Siegrist, Claire-Anne

    2016-01-01

    BACKGROUND The replication-competent recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing a Zaire ebolavirus (ZEBOV) glycoprotein was selected for rapid safety and immunogenicity testing before its use in West Africa. METHODS We performed three open-label, dose-escalation phase 1

  16. The pathogenesis of Ebola hemorrhagic fever.

    Science.gov (United States)

    Takada, A; Kawaoka, Y

    2001-10-01

    Ebola virus causes lethal hemorrhagic disease in humans, yet there are still no satisfactory biological explanations to account for its extreme virulence. This review focuses on recent findings relevant to understanding the pathogenesis of Ebola virus infection and developing vaccines and effective therapy. The available data suggest that the envelope glycoprotein and the interaction of some viral proteins with the immune system are likely to play important roles in the extraordinary pathogenicity of this virus. There are also indications that genetically engineered vaccines, including plasmid DNA and viral vectors expressing Ebola virus proteins, and passive transfer of neutralizing antibodies could be feasible options for the control of Ebola virus-associated disease.

  17. Ebola: translational science considerations.

    Science.gov (United States)

    Chiappelli, Francesco; Bakhordarian, Andre; Thames, April D; Du, Angela M; Jan, Allison L; Nahcivan, Melissa; Nguyen, Mia T; Sama, Nateli; Manfrini, Ercolano; Piva, Francesco; Rocha, Rafael Malagoli; Maida, Carl A

    2015-01-16

    We are currently in the midst of the most aggressive and fulminating outbreak of Ebola-related disease, commonly referred to as "Ebola", ever recorded. In less than a year, the Ebola virus (EBOV, Zaire ebolavirus species) has infected over 10,000 people, indiscriminately of gender or age, with a fatality rate of about 50%. Whereas at its onset this Ebola outbreak was limited to three countries in West Africa (Guinea, where it was first reported in late March 2014, Liberia, where it has been most rampant in its capital city, Monrovia and other metropolitan cities, and Sierra Leone), cases were later reported in Nigeria, Mali and Senegal, as well as in Western Europe (i.e., Madrid, Spain) and the US (i.e., Dallas, Texas; New York City) by late October 2014. World and US health agencies declared that the current Ebola virus disease (EVD) outbreak has a strong likelihood of growing exponentially across the world before an effective vaccine, treatment or cure can be developed, tested, validated and distributed widely. In the meantime, the spread of the disease may rapidly evolve from an epidemics to a full-blown pandemic. The scientific and healthcare communities actively research and define an emerging kaleidoscope of knowledge about critical translational research parameters, including the virology of EBOV, the molecular biomarkers of the pathological manifestations of EVD, putative central nervous system involvement in EVD, and the cellular immune surveillance to EBOV, patient-centered anthropological and societal parameters of EVD, as well as translational effectiveness about novel putative patient-targeted vaccine and pharmaceutical interventions, which hold strong promise, if not hope, to curb this and future Ebola outbreaks. This work reviews and discusses the principal known facts about EBOV and EVD, and certain among the most interesting ongoing or future avenues of research in the field, including vaccination programs for the wild animal vectors of the virus

  18. Phase 1 Trials of rVSV Ebola Vaccine in Africa and Europe.

    Science.gov (United States)

    Agnandji, Selidji T; Huttner, Angela; Zinser, Madeleine E; Njuguna, Patricia; Dahlke, Christine; Fernandes, José F; Yerly, Sabine; Dayer, Julie-Anne; Kraehling, Verena; Kasonta, Rahel; Adegnika, Akim A; Altfeld, Marcus; Auderset, Floriane; Bache, Emmanuel B; Biedenkopf, Nadine; Borregaard, Saskia; Brosnahan, Jessica S; Burrow, Rebekah; Combescure, Christophe; Desmeules, Jules; Eickmann, Markus; Fehling, Sarah K; Finckh, Axel; Goncalves, Ana Rita; Grobusch, Martin P; Hooper, Jay; Jambrecina, Alen; Kabwende, Anita L; Kaya, Gürkan; Kimani, Domtila; Lell, Bertrand; Lemaître, Barbara; Lohse, Ansgar W; Massinga-Loembe, Marguerite; Matthey, Alain; Mordmüller, Benjamin; Nolting, Anne; Ogwang, Caroline; Ramharter, Michael; Schmidt-Chanasit, Jonas; Schmiedel, Stefan; Silvera, Peter; Stahl, Felix R; Staines, Henry M; Strecker, Thomas; Stubbe, Hans C; Tsofa, Benjamin; Zaki, Sherif; Fast, Patricia; Moorthy, Vasee; Kaiser, Laurent; Krishna, Sanjeev; Becker, Stephan; Kieny, Marie-Paule; Bejon, Philip; Kremsner, Peter G; Addo, Marylyn M; Siegrist, Claire-Anne

    2016-04-28

    The replication-competent recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing a Zaire ebolavirus (ZEBOV) glycoprotein was selected for rapid safety and immunogenicity testing before its use in West Africa. We performed three open-label, dose-escalation phase 1 trials and one randomized, double-blind, controlled phase 1 trial to assess the safety, side-effect profile, and immunogenicity of rVSV-ZEBOV at various doses in 158 healthy adults in Europe and Africa. All participants were injected with doses of vaccine ranging from 300,000 to 50 million plaque-forming units (PFU) or placebo. No serious vaccine-related adverse events were reported. Mild-to-moderate early-onset reactogenicity was frequent but transient (median, 1 day). Fever was observed in up to 30% of vaccinees. Vaccine viremia was detected within 3 days in 123 of the 130 participants (95%) receiving 3 million PFU or more; rVSV was not detected in saliva or urine. In the second week after injection, arthritis affecting one to four joints developed in 11 of 51 participants (22%) in Geneva, with pain lasting a median of 8 days (interquartile range, 4 to 87); 2 self-limited cases occurred in 60 participants (3%) in Hamburg, Germany, and Kilifi, Kenya. The virus was identified in one synovial-fluid aspirate and in skin vesicles of 2 other vaccinees, showing peripheral viral replication in the second week after immunization. ZEBOV-glycoprotein-specific antibody responses were detected in all the participants, with similar glycoprotein-binding antibody titers but significantly higher neutralizing antibody titers at higher doses. Glycoprotein-binding antibody titers were sustained through 180 days in all participants. In these studies, rVSV-ZEBOV was reactogenic but immunogenic after a single dose and warrants further evaluation for safety and efficacy. (Funded by the Wellcome Trust and others; ClinicalTrials.gov numbers, NCT02283099, NCT02287480, and NCT02296983; Pan African Clinical Trials

  19. Measles Cases during Ebola Outbreak, West Africa, 2013-2106.

    Science.gov (United States)

    Colavita, Francesca; Biava, Mirella; Castilletti, Concetta; Quartu, Serena; Vairo, Francesco; Caglioti, Claudia; Agrati, Chiara; Lalle, Eleonora; Bordi, Licia; Lanini, Simone; Guanti, Michela Delli; Miccio, Rossella; Ippolito, Giuseppe; Capobianchi, Maria R; Di Caro, Antonino

    2017-06-01

    The recent Ebola outbreak in West Africa caused breakdowns in public health systems, which might have caused outbreaks of vaccine-preventable diseases. We tested 80 patients admitted to an Ebola treatment center in Freetown, Sierra Leone, for measles. These patients were negative for Ebola virus. Measles virus IgM was detected in 13 (16%) of the patients.

  20. Ebola images emerge from the cave.

    Science.gov (United States)

    Diamond, Michael S; Fremont, Daved H

    2008-08-14

    Ebola virus causes a lethal hemorrhagic disease for which no therapy or vaccine is currently approved. Recently, the crystal structure of the Ebola virus glycoprotein in complex with a human neutralizing antibody was illuminated, providing a path from the shadows toward understanding cellular attachment, viral fusion, and immune evasion.

  1. Safety and immunogenicity of GamEvac-Combi, a heterologous VSV- and Ad5-vectored Ebola vaccine: An open phase I/II trial in healthy adults in Russia.

    Science.gov (United States)

    Dolzhikova, I V; Zubkova, O V; Tukhvatulin, A I; Dzharullaeva, A S; Tukhvatulina, N M; Shcheblyakov, D V; Shmarov, M M; Tokarskaya, E A; Simakova, Y V; Egorova, D A; Scherbinin, D N; Tutykhina, I L; Lysenko, A A; Kostarnoy, A V; Gancheva, P G; Ozharovskaya, T A; Belugin, B V; Kolobukhina, L V; Pantyukhov, V B; Syromyatnikova, S I; Shatokhina, I V; Sizikova, T V; Rumyantseva, I G; Andrus, A F; Boyarskaya, N V; Voytyuk, A N; Babira, V F; Volchikhina, S V; Kutaev, D A; Bel'skih, A N; Zhdanov, K V; Zakharenko, S M; Borisevich, S V; Logunov, D Y; Naroditsky, B S; Gintsburg, A L

    2017-03-04

    Ebola hemorrhagic fever, also known as Ebola virus disease or EVD, is one of the most dangerous viral diseases in humans and animals. In this open-label, dose-escalation clinical trial, we assessed the safety, side effects, and immunogenicity of a novel, heterologous prime-boost vaccine against Ebola, which was administered in 2 doses to 84 healthy adults of both sexes between 18 and 55 years. The vaccine consists of live-attenuated recombinant vesicular stomatitis virus (VSV) and adenovirus serotype-5 (Ad5) expressing Ebola envelope glycoprotein. The most common adverse event was pain at the injection site, although no serious adverse events were reported. The vaccine did not significantly impact blood, urine, and immune indices. Seroconversion rate was 100 %. Antigen-specific IgG geometric mean titer at day 42 was 3,277 (95 % confidence interval 2,401-4,473) in volunteers immunized at full dose. Neutralizing antibodies were detected in 93.1 % of volunteers immunized at full dose, with geometric mean titer 20. Antigen-specific response in peripheral blood mononuclear cells was also detected in 100 % of participants, as well as in CD4+ and CD8+ T cells in 82.8 % and 58.6 % of participants vaccinated at full dose, respectively. The data indicate that the vaccine is safe and induces strong humoral and cellular immune response in up to 100 % of healthy adult volunteers, and provide a rationale for testing efficacy in Phase III trials. Indeed, the strong immune response to the vaccine may elicit long-term protection. This trial was registered with grls.rosminzdrav.ru (No. 495*), and with zakupki.gov.ru (No. 0373100043215000055).

  2. Conventional Wisdom versus Actual Outcomes: Challenges in the Conduct of an Ebola Vaccine Trial in Liberia during the International Public Health Emergency.

    Science.gov (United States)

    Larson, Gregg S; Baseler, Beth R; Hoover, Marie L; Pierson, Jerome F; Tegli, Jemee K; Johnson, Melvin P; Kieh, Mark W S; McNay, Laura A; Njoh, Wissedi Sio

    2017-07-01

    Clinical trials are challenging endeavors. Planning and implementing an investigational vaccine trial in Liberia, in the midst of an Ebola virus disease (EVD) epidemic that World Health Organization classified a public health emergency of international concern, presented extraordinary challenges. Normally, years of preparation and a litany of tasks lay the groundwork for a successful, randomized, blinded, placebo-controlled trial focused on safety and efficacy. Difficult research settings, unpredictable events, and other unique circumstances can add complexity. The setting in Liberia was especially problematic due to an infrastructure still badly damaged following a lengthy civil war and a very fragile health-care system that was further devastated by the EVD outbreak. The Partnership for Research on Vaccines in Liberia I EVD vaccine trial was planned and implemented in less than 3 months by a Liberian and U.S. research partnership, and its Phase II substudy was fully enrolled 3 months later. Contrasting conventional wisdom with trial outcomes offers an opportunity to compare early assumptions, barriers encountered, and adaptive strategies used, with end results. Understanding what was learned can inform future trial responses when disease outbreaks, especially in resource-poor locations with minimal infrastructure, pose a significant threat to public health.

  3. B and T Cell Epitope-Based Peptides Predicted from Evolutionarily Conserved and Whole Protein Sequences of Ebola Virus as Vaccine Targets.

    Science.gov (United States)

    Yasmin, T; Nabi, A H M Nurun

    2016-05-01

    Ebola virus (EBV) has become a serious threat to public health. Different approaches were applied to predict continuous and discontinuous B cell epitopes as well as T cell epitopes from the sequence-based and available three-dimensional structural analyses of each protein of EBV. Peptides '(79) VPSATKRWGFRSGVPP(94) ' from GP1 and '(515) LHYWTTQDEGAAIGLA(530) ' from GP2 of Ebola were found to be the consensus peptidic sequences predicted as linear B cell epitope of which the latter contains a region (519) TTQDEG(524) that fulfilled all the criteria of accessibility, hydrophilicity, flexibility and beta turn region for becoming an ideal B cell epitope. Different nonamers as T cell epitopes were obtained that interacted with different numbers of MHC class I and class II alleles with a binding affinity of <100 nm. Interestingly, these alleles also bound to the MHC class I alleles mostly prevalent in African and South Asian regions. Of these, 'LANETTQAL' and 'FLYDRLAST' nonamers were predicted to be the most potent T cell epitopes and they, respectively, interacted with eight and twelve class I alleles that covered 63.79% and 54.16% of world population, respectively. These nonamers were found to be the core sequences of 15mer peptides that interacted with the most common class II allele, HLA-DRB1*01:01. They were further validated for their binding to specific class I alleles using docking technique. Thus, these predicted epitopes may be used as vaccine targets against EBV and can be validated in model hosts to verify their efficacy as vaccine. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  4. Safety and immunogenicity of rVSVΔG-ZEBOV-GP Ebola vaccine in adults and children in Lambaréné, Gabon: A phase I randomised trial.

    Science.gov (United States)

    Agnandji, Selidji T; Fernandes, José F; Bache, Emmanuel B; Obiang Mba, Régis M; Brosnahan, Jessica S; Kabwende, Lumeka; Pitzinger, Paul; Staarink, Pieter; Massinga-Loembe, Marguerite; Krähling, Verena; Biedenkopf, Nadine; Fehling, Sarah Katharina; Strecker, Thomas; Clark, David J; Staines, Henry M; Hooper, Jay W; Silvera, Peter; Moorthy, Vasee; Kieny, Marie-Paule; Adegnika, Akim A; Grobusch, Martin P; Becker, Stephan; Ramharter, Michael; Mordmüller, Benjamin; Lell, Bertrand; Krishna, Sanjeev; Kremsner, Peter G

    2017-10-01

    The rVSVΔG-ZEBOV-GP vaccine prevented Ebola virus disease when used at 2 × 107 plaque-forming units (PFU) in a trial in Guinea. This study provides further safety and immunogenicity data. A randomised, open-label phase I trial in Lambaréné, Gabon, studied 5 single intramuscular vaccine doses of 3 × 103, 3 × 104, 3 × 105, 3 × 106, or 2 × 107 PFU in 115 adults and a dose of 2 × 107 PFU in 20 adolescents and 20 children. The primary objective was safety and tolerability 28 days post-injection. Immunogenicity, viraemia, and shedding post-vaccination were evaluated as secondary objectives. In adults, mild-to-moderate adverse events were frequent, but there were no serious or severe adverse events related to vaccination. Before vaccination, Zaire Ebola virus (ZEBOV)-glycoprotein (GP)-specific and ZEBOV antibodies were detected in 11% and 27% of adults, respectively. In adults, 74%-100% of individuals who received a dose 3 × 104, 3 × 105, 3 × 106, or 2 × 107 PFU had a ≥4.0-fold increase in geometric mean titres (GMTs) of ZEBOV-GP-specific antibodies at day 28, reaching GMTs of 489 (95% CI: 264-908), 556 (95% CI: 280-1,101), 1,245 (95% CI: 899-1,724), and 1,503 (95% CI: 931-2,426), respectively. Twenty-two percent of adults had a ≥4-fold increase of ZEBOV antibodies, with GMTs at day 28 of 1,015 (647-1,591), 1,887 (1,154-3,085), 1,445 (1,013-2,062), and 3,958 (2,249-6,967) for the same doses, respectively. These antibodies persisted up to day 180 for doses ≥3 × 105 PFU. Adults with antibodies before vaccination had higher GMTs throughout. Neutralising antibodies were detected in more than 50% of participants at doses ≥3 × 105 PFU. As in adults, no serious or severe adverse events related to vaccine occurred in adolescents or children. At day 2, vaccine RNA titres were higher for adolescents and children than adults. At day 7, 78% of adolescents and 35% of children had recombinant vesicular stomatitis virus RNA detectable in saliva. The vaccine

  5. Safety and immunogenicity of rVSVΔG-ZEBOV-GP Ebola vaccine in adults and children in Lambaréné, Gabon: A phase I randomised trial.

    Directory of Open Access Journals (Sweden)

    Selidji T Agnandji

    2017-10-01

    Full Text Available The rVSVΔG-ZEBOV-GP vaccine prevented Ebola virus disease when used at 2 × 107 plaque-forming units (PFU in a trial in Guinea. This study provides further safety and immunogenicity data.A randomised, open-label phase I trial in Lambaréné, Gabon, studied 5 single intramuscular vaccine doses of 3 × 103, 3 × 104, 3 × 105, 3 × 106, or 2 × 107 PFU in 115 adults and a dose of 2 × 107 PFU in 20 adolescents and 20 children. The primary objective was safety and tolerability 28 days post-injection. Immunogenicity, viraemia, and shedding post-vaccination were evaluated as secondary objectives. In adults, mild-to-moderate adverse events were frequent, but there were no serious or severe adverse events related to vaccination. Before vaccination, Zaire Ebola virus (ZEBOV-glycoprotein (GP-specific and ZEBOV antibodies were detected in 11% and 27% of adults, respectively. In adults, 74%-100% of individuals who received a dose 3 × 104, 3 × 105, 3 × 106, or 2 × 107 PFU had a ≥4.0-fold increase in geometric mean titres (GMTs of ZEBOV-GP-specific antibodies at day 28, reaching GMTs of 489 (95% CI: 264-908, 556 (95% CI: 280-1,101, 1,245 (95% CI: 899-1,724, and 1,503 (95% CI: 931-2,426, respectively. Twenty-two percent of adults had a ≥4-fold increase of ZEBOV antibodies, with GMTs at day 28 of 1,015 (647-1,591, 1,887 (1,154-3,085, 1,445 (1,013-2,062, and 3,958 (2,249-6,967 for the same doses, respectively. These antibodies persisted up to day 180 for doses ≥3 × 105 PFU. Adults with antibodies before vaccination had higher GMTs throughout. Neutralising antibodies were detected in more than 50% of participants at doses ≥3 × 105 PFU. As in adults, no serious or severe adverse events related to vaccine occurred in adolescents or children. At day 2, vaccine RNA titres were higher for adolescents and children than adults. At day 7, 78% of adolescents and 35% of children had recombinant vesicular stomatitis virus RNA detectable in saliva. The

  6. Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Highly Protective, Non-infectious Vaccine Against Ebola Virus Challenge

    Science.gov (United States)

    2016-07-01

    Single-Injection Trivalent Filovirus 428 Vaccine: Proof of Concept Study in Outbred Guinea Pigs . J Infect Dis. 429 29. Murin, C. D., M. L. Fusco, Z...Jahrling, and J. F. Smith. 2000. Recombinant RNA replicons derived from attenuated 442 Venezuelan equine encephalitis virus protect guinea pigs and...platform, 65 including ease of production and characterization, absence of virus replication concerns and the 66 robust immune stimulatory activity

  7. Ebola Virus

    Directory of Open Access Journals (Sweden)

    Anusha Rangare Lakshman

    2015-09-01

    Full Text Available The disease Ebola takes its name from the Ebola River situated near a village in the Democratic Republic of Congo, where the disease first appeared in 1976. It is caused by a virus from the Filoviridae family (filovirus. The present outbreak of Ebola Virus Disease (EVD concerns four countries in West Africa, namely Guinea, Liberia, Sierra Leone and Nigeria till date. Further to widespread transmission of the disease, it has been declared as a Public Health Emergency of International Concern by the World Health Organisation on 8 August 2014. As of 4 August 2014, countries have reported 1,711 cases (1,070 confirmed, 436 probable, 205 suspect, including 932 deaths. This review paper enlightens about the awareness of Ebola virus and its preventive measures. [Archives Medical Review Journal 2015; 24(3.000: 296-305

  8. Ebola in West Africa: an international medical emergency

    Directory of Open Access Journals (Sweden)

    Yasir Waheed

    2014-09-01

    Full Text Available West Africa is facing the worst Ebola outbreak with 3 685 cases and 1 841 deaths reported from Liberia, Guinea, Senegal, Sierra Leona and Nigeria. There is no vaccine or direct treatment available to treat the patients with Ebola. World Health Organization (WHO has approved the use of experimental drugs for Ebola patients. Health workers are at high risk. The governments and WHO are responsible to provide necessary protective equipment to health workers dealing with Ebola. There is a strong need to identify the invisible chains of virus transmission. World Bank pledges $200 million to fight against Ebola, while WHO said $430 million are needed to control the Ebola outbreak. Ebola can be contained by early detection and isolation of case, contact tracing, monitoring of contacts and adaptation of rigorous procedures for virus control.

  9. Determinants of antibody persistence across doses and continents after single-dose rVSV-ZEBOV vaccination for Ebola virus disease: an observational cohort study.

    Science.gov (United States)

    Huttner, Angela; Agnandji, Selidji Todagbe; Combescure, Christophe; Fernandes, José F; Bache, Emmanuel Bache; Kabwende, Lumeka; Ndungu, Francis Maina; Brosnahan, Jessica; Monath, Thomas P; Lemaître, Barbara; Grillet, Stéphane; Botto, Miriam; Engler, Olivier; Portmann, Jasmine; Siegrist, Denise; Bejon, Philip; Silvera, Peter; Kremsner, Peter; Siegrist, Claire-Anne

    2018-04-04

    The recombinant vesicular stomatitis virus (rVSV) vaccine expressing the Zaire Ebola virus (ZEBOV) glycoprotein is efficacious in the weeks following single-dose injection, but duration of immunity is unknown. We aimed to assess antibody persistence at 1 and 2 years in volunteers who received single-dose rVSV-ZEBOV in three previous trials. In this observational cohort study, we prospectively followed-up participants from the African and European phase 1 rVSV-ZEBOV trials, who were vaccinated once in 2014-15 with 300 000 (low dose) or 10-50 million (high dose) plaque-forming units (pfu) of rVSV-ZEBOV vaccine to assess ZEBOV glycoprotein (IgG) antibody persistence. The primary outcome was ZEBOV glycoprotein-specific IgG geometric mean concentrations (GMCs) measured yearly by ELISA compared with 1 month (ie, 28 days) after immunisation. We report GMCs up to 2 years (Geneva, Switzerland, including neutralising antibodies up to 6 months) and 1 year (Lambaréné, Gabon; Kilifi, Kenya) after vaccination and factors associated with higher antibody persistence beyond 6 months, according to multivariable analyses. Trials and the observational study were registered at ClinicalTrials.gov (Geneva: NCT02287480 and NCT02933931; Kilifi: NCT02296983) and the Pan-African Clinical Trials Registry (Lambaréné PACTR201411000919191). Of 217 vaccinees from the original studies (102 from the Geneva study, 75 from the Lambaréné study, and 40 from the Kilifi study), 197 returned and provided samples at 1 year (95 from the Geneva study, 63 from the Lambaréné, and 39 from the Kilifi study) and 90 at 2 years (all from the Geneva study). In the Geneva group, 44 (100%) of 44 participants who had been given a high dose (ie, 10-50 million pfu) of vaccine and who were seropositive at day 28 remained seropositive at 2 years, whereas 33 (89%) of 37 who had been given the low dose (ie, 300 000 pfu) remained seropositive for 2 years (p=0·042). In participants who had received a high dose

  10. Comparison of the Protective Efficacy of DNA and Baculovirus-Derived Protein Vaccines for EBOLA Virus in Guinea Pigs

    National Research Council Canada - National Science Library

    Mellquist-Riemenschneider, Jenny L; Garrison, Aura R; Geisbert, Joan B; Saikh, Kamal U; Heidebrink, Kelli D

    2003-01-01

    .... Previously, a priming dose of a DNA vaccine expressing the glycoprotein (GP) gene of MARV followed by boosting with recombinant baculovirus-derived GP protein was found to confer protective immunity to guinea pigs (Hevey et al., 2001...

  11. [Ebola virus disease: Update].

    Science.gov (United States)

    de la Calle-Prieto, Fernando; Arsuaga-Vicente, Marta; Mora-Rillo, Marta; Arnalich-Fernandez, Francisco; Arribas, Jose Ramon

    2016-01-01

    The first known Ebola outbreak occurred in 1976. Since then, 24 limited outbreaks had been reported in Central Africa, but never affecting more than 425 persons. The current outbreak in Western Africa is the largest in history with 28,220 reported cases and 11,291 deaths. The magnitude of the epidemic has caused worldwide alarm. For the first time, evacuated patients were treated outside Africa, and secondary cases have occurred in Spain and the United States. Since the start of the current epidemic, our knowledge about the epidemiology, clinical picture, laboratory findings, and virology of Ebola virus disease has considerably expanded. For the first time, experimental treatment has been tried, and there have been spectacular advances in vaccine development. A review is presented of these advances in the knowledge of Ebola virus disease. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  12. Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China: preliminary report of a randomised, double-blind, placebo-controlled, phase 1 trial.

    Science.gov (United States)

    Zhu, Feng-Cai; Hou, Li-Hua; Li, Jing-Xin; Wu, Shi-Po; Liu, Pei; Zhang, Gui-Rong; Hu, Yue-Mei; Meng, Fan-Yue; Xu, Jun-Jie; Tang, Rong; Zhang, Jin-Long; Wang, Wen-Juan; Duan, Lei; Chu, Kai; Liang, Qi; Hu, Jia-Lei; Luo, Li; Zhu, Tao; Wang, Jun-Zhi; Chen, Wei

    2015-06-06

    Up to now, all tested Ebola virus vaccines have been based on the virus strain from the Zaire outbreak in 1976. We aimed to assess the safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine expressing the glycoprotein of the 2014 epidemic strain. We did this randomised, double-blind, placebo-controlled, phase 1 clinical trial at one site in Taizhou County, Jiangsu Province, China. Healthy adults (aged 18-60 years) were sequentially enrolled and randomly assigned (2:1), by computer-generated block randomisation (block size of six), to receive placebo, low-dose adenovirus type-5 vector-based Ebola vaccine, or high-dose vaccine. Randomisation was pre-stratified by dose group. All participants, investigators, and laboratory staff were masked to treatment allocation. The primary safety endpoint was occurrence of solicited adverse reactions within 7 days of vaccination. The primary immunogenicity endpoints were glycoprotein-specific antibody titres and T-cell responses at day 28 after the vaccination. Analysis was by intention to treat. The study is registered with ClinicalTrials.gov, number NCT02326194. Between Dec 28, 2014, and Jan 9, 2015, 120 participants were enrolled and randomly assigned to receive placebo (n=40), low-dose vaccine (n=40), or high-dose vaccine. Participants were followed up for 28 days. Overall, 82 (68%) participants reported at least one solicited adverse reaction within 7 days of vaccination (n=19 in the placebo group vs n=27 in the low-dose group vs n=36 in the high-dose group; p=0·0002). The most common reaction was mild pain at the injection site, which was reported in eight (20%) participants in the placebo group, 14 (35%) participants in the low-dose group, and 29 (73%) participants in the high-dose vaccine group (pvaccine groups at both day 14 (geometric mean titre 421·4 [95% CI 249·7-711·3] and 820·5 [598·9-1124·0], respectively; pday 28 (682·7 [424·3-1098·5] and 1305·7 [970·1-1757·2

  13. The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomised double-blind, placebo-controlled phase 1/2 trial.

    Science.gov (United States)

    Huttner, Angela; Dayer, Julie-Anne; Yerly, Sabine; Combescure, Christophe; Auderset, Floriane; Desmeules, Jules; Eickmann, Markus; Finckh, Axel; Goncalves, Ana Rita; Hooper, Jay W; Kaya, Gürkan; Krähling, Verena; Kwilas, Steve; Lemaître, Barbara; Matthey, Alain; Silvera, Peter; Becker, Stephan; Fast, Patricia E; Moorthy, Vasee; Kieny, Marie Paule; Kaiser, Laurent; Siegrist, Claire-Anne

    2015-10-01

    Safe and effective vaccines against Ebola could prevent or control outbreaks. The safe use of replication-competent vaccines requires a careful dose-selection process. We report the first safety and immunogenicity results in volunteers receiving 3 × 10(5) plaque-forming units (pfu) of the recombinant vesicular stomatitis virus-based candidate vaccine expressing the Zaire Ebola virus glycoprotein (rVSV-ZEBOV; low-dose vaccinees) compared with 59 volunteers who had received 1 ×10(7) pfu (n=35) or 5 × 10(7) pfu (n=16) of rVSV-ZEBOV (high-dose vaccinees) or placebo (n=8) before a safety-driven study hold. The Geneva rVSV-ZEBOV study, an investigator-initiated phase 1/2, dose-finding, placebo-controlled, double-blind trial conducted at the University Hospitals of Geneva, Switzerland, enrolled non-pregnant, immunocompetent, and otherwise healthy adults aged 18-65 years. Participants from the low-dose group with no plans to deploy to Ebola-aff5cted regions (non-deployable) were randomised 9:1 in a double-blind fashion using randomly permuted blocks of varying sizes to a single injection of 3 × 10(5) pfu or placebo, whereas deployable participants received single-injection 3 × 10(5) pfu open-label. Primary safety and immunogenicity outcomes were the incidence of adverse events within 14 days of vaccination and day-28 antibody titres, respectively, analysed by intention to treat. After viral oligoarthritis was observed in 11 of the first 51 vaccinees (22%) receiving 10(7) or 5 × 10(7) pfu, 56 participants were given a lower dose (3 × 10(5) pfu, n=51) or placebo (n=5) to assess the effect of dose reduction on safety and immunogenicity. This trial is ongoing with a follow-up period of 12 months; all reported results are from interim databases. This study is registered with ClinicalTrials.gov, number NCT02287480. Between Jan 5 and Jan 26, 2015, 43 non-deployable participants received low-dose rVSV-ZEBOV (3 × 10(5) pfu) or placebo in a

  14. Ebola/Marburg

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Ebola & Marburg Ebola and Marburg hemorrhagic fevers are acute ... to-person contact. Why Is the Study of Ebola & Marburg a Priority for NIAID? Marburg hemorrhagic fever ...

  15. What do we really fear? The epidemiological characteristics of Ebola and our preparedness

    OpenAIRE

    Ki, Moran

    2014-01-01

    Ebola virus disease (hereafter Ebola) has a high fatality rate; currently lacks a treatment or vaccine with proven safety and efficacy, and thus many people fear this infection. As of August 13, 2014, 2,127 patients across four West African countries have been infected with the Ebola virus over the past nine months. Among these patients, approximately 1 in 2 has subsequently died from the disease. In response, the World Health Organization has declared the Ebola outbreak in West Africa to be ...

  16. Ebola disease: an international public health emergency

    Directory of Open Access Journals (Sweden)

    Saurabh RamBihariLal Shrivastava

    2015-04-01

    Full Text Available Ebola virus disease (EVD, previously known as Ebola hemorrhagic fever, is a severe illness caused by Ebola filovirus, and is often fatal if left untreated. The first case of the current EVD was diagnosed in Guinea in March 2014, and since then it has spread to Sierra Leone, Liberia, Nigeria, and Senegal. The current review has been performed with an objective to explore the magnitude of the current Ebola virus epidemic and identify the multiple determinants that have resulted in the exponential growth of the epidemic. An extensive search of all materials related to the topic was done for almost two months (August-October in Pubmed, Medline, World Health Organization website and Google Scholar search engines. Relevant documents, reports, recommendations, guidelines and research articles focusing on the different aspects of Ebola virus and its current outbreak, published in the period 2002-2014 were included in the review. Keywords used in the search include Ebola virus, Ebola virus disease, Ebola hemorrhagic fever, Ebola vaccine, and Ebola treatment. The current EVD epidemic has turned out to be extensive, severe, and uncontrollable because of a delayed response and ineffective public health care delivery system. In fact, multiple challenges have also been identified and thus a range of interventions have been proposed to control the epidemic. In conclusion, the 2014 epidemic of EVD has shown to the world that in absence of a strong public health care delivery system even a rare disease can risk the lives of millions of people. The crux of this epidemic is that a large scale and coordinated international response is the need of the hour to support affected and at-risk nations in intensifying their response activities and strengthening of national capacities.

  17. Tech Transfer Award Hails FNL's Role in Ebola Response | FNLCR

    Science.gov (United States)

    For speeding the delivery of an effective candidate vaccine during the largest Ebola outbreak in history, the Frederick National Lab (as Leidos Biomed) was cited along with National Institute of Allergy and Infectious Diseases and GlaxoSmithKline in

  18. Mitigating measles outbreaks in West Africa post-Ebola.

    Science.gov (United States)

    Truelove, Shaun A; Moss, William J; Lessler, Justin

    2015-01-01

    The Ebola outbreak in 2014-2015 devastated the populations, economies and healthcare systems of Guinea, Liberia and Sierra Leone. With this devastation comes the impending threat of outbreaks of other infectious diseases like measles. Strategies for mitigating these risks must include both prevention, through vaccination, and case detection and management, focused on surveillance, diagnosis and appropriate clinical care and case management. With the high transmissibility of measles virus, small-scale reactive vaccinations will be essential to extinguish focal outbreaks, while national vaccination campaigns are needed to guarantee vaccination coverage targets are reached in the long term. Rapid and multifaceted strategies should carefully navigate challenges present in the wake of Ebola, while also taking advantage of current Ebola-related activities and international attention. Above all, resources and focus currently aimed at these countries must be utilized to build up the deficit in infrastructure and healthcare systems that contributed to the extent of the Ebola outbreak.

  19. Successful topical respiratory tract immunization of primates against Ebola virus.

    Science.gov (United States)

    Bukreyev, Alexander; Rollin, Pierre E; Tate, Mallory K; Yang, Lijuan; Zaki, Sherif R; Shieh, Wun-Ju; Murphy, Brian R; Collins, Peter L; Sanchez, Anthony

    2007-06-01

    Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.

  20. Ebola virus disease: past, present and future

    Directory of Open Access Journals (Sweden)

    Harish Rajak

    2015-05-01

    Full Text Available Ebola virus disease is one of the most deadly ailments known to mankind due to its high mortality rate (up to 90% accompanying with the disease. Ebola haemorrhagic fever (EHF is an infectious disease of animal that can be transmitted to both human and non-human primates. The first epidemic of EHF occurred in 1976 in the Democratic Republic of the Congo. The incubation period of ebola is less than 21 days. Ebola virus infections are depicted by immune suppression and a systemic inflammatory response that leads to damage of the vascular, coagulation and immune systems, causing multi-organ failure and shock. Five genetically distinct members of the Filoviridae family responsible for EHF are as follows: Zaire ebolavirus, Sudan ebolavirus, Côte d’Ivoire ebolavirus, Bundibugyo ebolavirus and Reston ebolavirus. The ongoing 2014 West Africa ebola epidemic has been considered as the most serious panic in the medical field with respect to both the number of human cases and death toll. The natural host for ebola virus is unknown, thus it is not possible to carry out programs to regulate or abolish virus from transmission to people. The ebola virus infection provides little chance to develop acquired immunity causing rapid progression of the disease. It is pertinent to mention that at present, there is no antiviral therapy or vaccine that is helpful against ebola virus infection in humans. The impediment of EHF necessitates much better understanding of the epidemiology of the disease, particularly the role of wildlife, as well as bats, in the spread of ebola virus to humans.

  1. Effective treatment strategies against Ebola virus

    Directory of Open Access Journals (Sweden)

    Amina Yaqoob

    2015-08-01

    Full Text Available Ebola virus (EBOV, a member of order Mononegavirales is most famous for causing the endemics of hemorrhagic fever in different countries of the world. Various effective treatment for EBOV are available presently but different clinical trials and experimental studies on animal models are ongoing for this purpose. Results from different studies showed that selective vaccines and therapeutic drugs have potential to interfere the viral life events within host cell in order to inhibit its replication. Various pre-clinical trials in this regard are proved successful on non-human primates (NHPs and found to be significant in inhibiting EBOV infections. It is the need of hour to develop effective vaccines against Ebola virus to combat this problem as soon as possible. The present article is a brief review on potential treatment strategies against Ebola virus.

  2. Ebola virus: A gap in drug design and discovery - experimental and computational perspective.

    Science.gov (United States)

    Balmith, Marissa; Faya, Mbuso; Soliman, Mahmoud E S

    2017-03-01

    The Ebola virus, formally known as the Ebola hemorrhagic fever, is an acute viral syndrome causing sporadic outbreaks that have ravaged West Africa. Due to its extreme virulence and highly transmissible nature, Ebola has been classified as a category A bioweapon organism. Only recently have vaccine or drug regimens for the Ebola virus been developed, including Zmapp and peptides. In addition, existing drugs which have been repurposed toward anti-Ebola virus activity have been re-examined and are seen to be promising candidates toward combating Ebola. Drug development involving computational tools has been widely employed toward target-based drug design. Screening large libraries have greatly stimulated research toward effective anti-Ebola virus drug regimens. Current emphasis has been placed on the investigation of host proteins and druggable viral targets. There is a huge gap in the literature regarding guidelines in the discovery of Ebola virus inhibitors, which may be due to the lack of information on the Ebola drug targets, binding sites, and mechanism of action of the virus. This review focuses on Ebola virus inhibitors, drugs which could be repurposed to combat the Ebola virus, computational methods which study drug-target interactions as well as providing further insight into the mode of action of the Ebola virus. © 2016 John Wiley & Sons A/S.

  3. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  4. Using efficacy cues in persuasive health communication is more effective than employing threats - An experimental study of a vaccination intervention against Ebola.

    Science.gov (United States)

    Ort, Alexander; Fahr, Andreas

    2018-04-10

    Although much effort has been made to study fear appeals in persuasive health communication, there is still mixed support for the effectiveness of this approach. Therefore, this research investigated the effect of invoked fear via health communication messages on crucial components of the Extended Parallel Process Model (EPPM) by focusing on the rarely examined interaction between perceptions of threat and efficacy and their effects on fear control and danger control processes as well as health-relevant outcomes. We recruited 447 participants (M age  = 32.00 years; 64% female) for a 2 × 2 between-subjects experimental study via quota sampling. While completing an online questionnaire, subjects were randomly assigned to view one of four versions of a mock website containing information about vaccinations against Ebola virus disease (EVD), which varied in threat and efficacy. After seeing the stimulus, participants completed assessments of their perceptions of threat and efficacy, evoked fear, adaptive and defensive responses to the presented message, attitudes, and intentions. Structure equation modelling (SEM) was used to analyse the relationships within the model (EPPM). Promoting efficacy with respect to EVD was more effective than emphasizing threat, resulting in danger control rather than fear control processes. Although threat may be effective in attracting peoples' attention, there is a comparatively small effect of evoked fear on attitudes and intentions. The data support the assumption that there is an important association between threat and coping appraisals facilitating behaviour change. Moreover, the widely held notion that people have to be scared or threatened to encourage attitude and behaviour changes should be treated with caution. Communication should instead focus on efficacy to foster adaptive responses. Statement of contribution What is already known on this subject? There is mixed support for the effectiveness of fear appeals in

  5. [EBOLA HEMORRHAGIC FEVER: DIAGNOSTICS, ETIOTROPIC AND PATHOGENETIC THERAPY, PREVENTION].

    Science.gov (United States)

    Zhdanov, K V; Zakharenko, S M; Kovalenko, A N; Semenov, A V; Fisun, A Ya

    2015-01-01

    The data on diagnostics, etiotropic and pathogenetic therapy, prevention of Ebola hemorrhagic fever are presented including diagnostic algorithms for different clinical situations. Fundamentals of pathogenetic therapy are described. Various groups of medications used for antiviral therapy of conditions caused by Ebola virus are characterized. Experimental drugs at different stages of clinical studies are considered along with candidate vaccines being developed for the prevention of the disease.

  6. Understanding Ebola Virus Transmission

    Directory of Open Access Journals (Sweden)

    Seth Judson

    2015-02-01

    Full Text Available An unprecedented number of Ebola virus infections among healthcare workers and patients have raised questions about our understanding of Ebola virus transmission. Here, we explore different routes of Ebola virus transmission between people, summarizing the known epidemiological and experimental data. From this data, we expose important gaps in Ebola virus research pertinent to outbreak situations. We further propose experiments and methods of data collection that will enable scientists to fill these voids in our knowledge about the transmission of Ebola virus.

  7. Development of a Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS) Method for the Quantitation of Viral Envelope Glycoprotein in Ebola Virus-Like Particle Vaccine Preparations

    Science.gov (United States)

    2016-09-05

    distribution is unlimited. UNCLASSIFIED Background: 92 Ebola is an extremely pathogenic virus that causes hemorrhagic fever and can result in 93... animals . 155 156 Materials and Methods: 157 Generation and Characterization of eVLPs. 158 TR-16-141 DISTRIBUTION STATEMENT A...measuring the optical density (OD) at 280 nm in 186 a spectrophotometer and assuming an extinction coefficient at 1% equal to 10 (under this 187

  8. The Pathogenesis of Ebola Virus Disease.

    Science.gov (United States)

    Baseler, Laura; Chertow, Daniel S; Johnson, Karl M; Feldmann, Heinz; Morens, David M

    2017-01-24

    For almost 50 years, ebolaviruses and related filoviruses have been repeatedly reemerging across the vast equatorial belt of the African continent to cause epidemics of highly fatal hemorrhagic fever. The 2013-2015 West African epidemic, by far the most geographically extensive, most fatal, and longest lasting epidemic in Ebola's history, presented an enormous international public health challenge, but it also provided insights into Ebola's pathogenesis and natural history, clinical expression, treatment, prevention, and control. Growing understanding of ebolavirus pathogenetic mechanisms and important new clinical observations of the disease course provide fresh clues about prevention and treatment approaches. Although viral cytopathology and immune-mediated cell damage in ebolavirus disease often result in severe compromise of multiple organs, tissue repair and organ function recovery can be expected if patients receive supportive care with fluids and electrolytes; maintenance of oxygenation and tissue perfusion; and respiratory, renal, and cardiovascular support. Major challenges for managing future Ebola epidemics include establishment of early and aggressive epidemic control and earlier and better patient care and treatment in remote, resource-poor areas where Ebola typically reemerges. In addition, it will be important to further develop Ebola vaccines and to adopt policies for their use in epidemic and pre-epidemic situations.

  9. Design of Fusion Proteins for Efficient and Soluble Production of Immunogenic Ebola Virus Glycoprotein in Escherichia coli.

    Science.gov (United States)

    Ji, Yang; Lu, Yuan; Yan, Yishu; Liu, Xinxin; Su, Nan; Zhang, Chong; Bi, Shengli; Xing, Xin-Hui

    2018-03-03

    The Ebola hemorrhagic fever caused by Ebola virus is an extremely dangerous disease, and effective therapeutic agents are still lacking. Platforms for the efficient production of vaccines are crucial to ensure quick response against an Ebola virus outbreak. Ebola virus glycoprotein (EbolaGP) on the virion surface is responsible for membrane binding and virus entry, thus becoming the key target for vaccine development. However, heterologous expression of this protein still faces engineering challenges such as low production levels and insoluble aggregation. Here, the authors design and compare various fusion strategies, attaching great importance to the solubility-enhancing effect, and tag removal process. It is found that a C-terminal intein-based tag greatly enhances the solubility of EbolaGP and allows one-step chromatographic purification of the untagged EbolaGP through thiol-catalyzed self-cleavage. The purified untagged EbolaGP alone or with Freund's adjuvant are highly immunogenic, as confirmed in a mouse model. Consequently, the present study puts forward a new strategy for the efficient and soluble expression of untagged immunogenic EbolaGP. The intein-based protein fusion approach may be of importance for the large-scale production of Ebola virus subunit vaccine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ebola haemorrhagic fever

    Science.gov (United States)

    Feldmann, Heinz; Geisbert, Thomas W

    2012-01-01

    Ebola viruses are the causative agents of a severe form of viral haemorrhagic fever in man, designated Ebola haemorrhagic fever, and are endemic in regions of central Africa. The exception is the species Reston Ebola virus, which has not been associated with human disease and is found in the Philippines. Ebola virus constitutes an important local public health threat in Africa, with a worldwide effect through imported infections and through the fear of misuse for biological terrorism. Ebola virus is thought to also have a detrimental effect on the great ape population in Africa. Case-fatality rates of the African species in man are as high as 90%, with no prophylaxis or treatment available. Ebola virus infections are characterised by immune suppression and a systemic inflammatory response that causes impairment of the vascular, coagulation, and immune systems, leading to multiorgan failure and shock, and thus, in some ways, resembling septic shock. PMID:21084112

  11. Ebola--haemoragisk feber

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Kronborg, Gitte; Thybo, Søren

    2008-01-01

    This review presents the latest findings on ebola. Ebola presents one of the highest case-fatality rates of all infectious diseases, and in 2007 outbreaks were observed first in the Democratic Republic of Congo and later in Uganda with a new subtype. Accumulating evidence suggests that fruit bats...... are a likely reservoir for the ebola virus. The frequency of filovirus outbreaks in Central Africa is increasing and the potential for introduction and patient care in Denmark is evaluated. Udgivelsesdato: 2008-Nov-24...

  12. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana

    OpenAIRE

    Bhoo, Seong Hee; Lai, Huafang; Ma, Julian; Arntzen, Charles J.; Chen, Qiang; Mason, Hugh S.

    2011-01-01

    Filoviruses (Ebola and Marburg viruses) cause severe and often fatal hemorrhagic fever in humans and non-human primates. The US Centers for Disease Control identify Ebola and Marburg viruses as “category A” pathogens (defined as posing a risk to national security as bioterrorism agents), which has lead to a search for vaccines that could prevent the disease. Because the use of such vaccines would be in the service of public health, the cost of production is an important component of their dev...

  13. Zika Vaccine Development: Flavivirus Foils

    Science.gov (United States)

    2016-09-01

    Martins, Bavari, Zika Vaccine Development 1 Zika Vaccine Development: Flavivirus Foils Martins KAO, Bavari S. The current Zika virus...States government. The rapid response to Zika is perhaps the first of its kind, and it undoubtedly has been made possible by the lessons learned from...the response to the 2014 Ebola virus outbreak in West Africa. However, Zika virus is not Ebola virus. As of February 2016 there were only 296

  14. Safety and immunogenicity of the rVSV∆G-ZEBOV-GP Ebola virus vaccine candidate in healthy adults: a phase 1b randomised, multicentre, double-blind, placebo-controlled, dose-response study.

    Science.gov (United States)

    Heppner, D Gray; Kemp, Tracy L; Martin, Brian K; Ramsey, William J; Nichols, Richard; Dasen, Emily J; Link, Charles J; Das, Rituparna; Xu, Zhi Jin; Sheldon, Eric A; Nowak, Teresa A; Monath, Thomas P

    2017-08-01

    The 2014 Zaire Ebola virus outbreak highlighted the need for a safe, effective vaccine with a rapid onset of protection. We report the safety and immunogenicity of the recombinant vesicular stomatitis virus-Zaire Ebola virus envelope glycoprotein vaccine (rVSV∆G-ZEBOV-GP) across a 6 log 10 dose range in two sequential cohorts. In this phase 1b double-blind, placebo-controlled, dose-response study we enrolled and randomly assigned healthy adults (aged 18-61 years) at eight study sites in the USA to receive a single injection of vaccine or placebo, administered by intramuscular injection. In cohort 1, participants were assigned to receive 3 × 10 3 , 3 × 10 4 , 3 × 10 5 , or 3 × 10 6 PFU doses of rVSV∆G-ZEBOV-GP or placebo. In cohort 2, participants were assigned to receive 3 × 10 6 , 9 × 10 6 , 2 × 10 7 , or 1 × 10 8 PFU doses of rVSV∆G-ZEBOV-GP or placebo. Participants were centrally allocated by the study statistician to vaccine groups or placebo through computer-generated randomisation lists. The primary safety outcome was incidence of adverse events within 14 days in the modified intention-to-treat population (all randomly assigned participants who received vaccine or placebo), and the primary outcome for immunogenicity was IgG ELISA antibody titres at day 28 in the per-protocol population. Surveillance was enhanced for arthritis and dermatitis through to day 56. This study is registered with ClinicalTrials.gov, number NCT02314923. Between Dec 26, 2014, and June 8, 2015, 513 participants were enrolled and randomly assigned; one was not immunised because of unsuccessful phlebotomy. In cohort 1, 256 participants received vaccine (3 × 10 3 [n=64], 3 × 10 4 [n=64], 3 × 10 5 [n=64], or 3 × 10 6 PFU [n=64]) and 74 received placebo. In cohort 2, 162 participants received vaccine (3 × 10 6 [n=20], 9 × 10 6 [n=47], 2 × 10 7 [n=47], or 1 × 10 8 PFU [n=48]) and 20 received placebo. Most

  15. Ebola--haemorrhagic fever

    DEFF Research Database (Denmark)

    Fabiansen, C.; Kronborg, G.; Thybo, S.

    2008-01-01

    This review presents the latest findings on ebola. Ebola presents one of the highest case-fatality rates of all infectious diseases, and in 2007 outbreaks were observed first in the Democratic Republic of Congo and later in Uganda with a new subtype. Accumulating evidence suggests that fruit bats...

  16. Ebola--haemoragisk feber

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Kronborg, Gitte; Thybo, Søren

    2008-01-01

    This review presents the latest findings on ebola. Ebola presents one of the highest case-fatality rates of all infectious diseases, and in 2007 outbreaks were observed first in the Democratic Republic of Congo and later in Uganda with a new subtype. Accumulating evidence suggests that fruit bats...

  17. [Ebola haemorrhagic fever.

    DEFF Research Database (Denmark)

    Fabiansen, C.; Kronborg, G.; Thybo, S.

    2008-01-01

    This review presents the latest findings on ebola. Ebola presents one of the highest case-fatality rates of all infectious diseases, and in 2007 outbreaks were observed first in the Democratic Republic of Congo and later in Uganda with a new subtype. Accumulating evidence suggests that fruit bats...

  18. Ebola--haemoragisk feber

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Kronborg, Gitte; Thybo, Søren

    2008-01-01

    This review presents the latest findings on ebola. Ebola presents one of the highest case-fatality rates of all infectious diseases, and in 2007 outbreaks were observed first in the Democratic Republic of Congo and later in Uganda with a new subtype. Accumulating evidence suggests that fruit bats...... are a likely reservoir for the ebola virus. The frequency of filovirus outbreaks in Central Africa is increasing and the potential for introduction and patient care in Denmark is evaluated. Udgivelsesdato: 2008-Nov-24......This review presents the latest findings on ebola. Ebola presents one of the highest case-fatality rates of all infectious diseases, and in 2007 outbreaks were observed first in the Democratic Republic of Congo and later in Uganda with a new subtype. Accumulating evidence suggests that fruit bats...

  19. Mathematical Modelling, Simulation, and Optimal Control of the 2014 Ebola Outbreak in West Africa

    Directory of Open Access Journals (Sweden)

    Amira Rachah

    2015-01-01

    it is crucial to modelize the virus and simulate it. In this paper, we begin by studying a simple mathematical model that describes the 2014 Ebola outbreak in Liberia. Then, we use numerical simulations and available data provided by the World Health Organization to validate the obtained mathematical model. Moreover, we develop a new mathematical model including vaccination of individuals. We discuss different cases of vaccination in order to predict the effect of vaccination on the infected individuals over time. Finally, we apply optimal control to study the impact of vaccination on the spread of the Ebola virus. The optimal control problem is solved numerically by using a direct multiple shooting method.

  20. Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs

    NARCIS (Netherlands)

    Sullivan, Nancy J.; Geisbert, Thomas W.; Geisbert, Joan B.; Shedlock, Devon J.; Xu, Ling; Lamoreaux, Laurie; Custers, Jerome H. H. V.; Popernack, Paul M.; Yang, Zhi-Yong; Pau, Maria G.; Roederer, Mario; Koup, Richard A.; Goudsmit, Jaap; Jahrling, Peter B.; Nabel, Gary J.

    2006-01-01

    BACKGROUND: Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or

  1. Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks.

    Science.gov (United States)

    Haque, Azizul; Hober, Didier; Blondiaux, Joel

    2015-10-01

    Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. [Ebola haemorrhagic fever.

    DEFF Research Database (Denmark)

    Fabiansen, C.; Kronborg, G.; Thybo, S.

    2008-01-01

    This review presents the latest findings on ebola. Ebola presents one of the highest case-fatality rates of all infectious diseases, and in 2007 outbreaks were observed first in the Democratic Republic of Congo and later in Uganda with a new subtype. Accumulating evidence suggests that fruit bats...... are a likely reservoir for the ebola virus. The frequency of filovirus outbreaks in Central Africa is increasing and the potential for introduction and patient care in Denmark is evaluated Udgivelsesdato: 2008/11/24...

  3. [VACCINES].

    Science.gov (United States)

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs.

  4. Ebola Virus Disease

    Centers for Disease Control (CDC) Podcasts

    This podcast provides general information about Ebola virus disease and the outbreak in West Africa. The program contains remarks from CDC Director Dr. Tom Frieden, as well as a brief description of CDC’s response efforts.

  5. Ebola in West Africa

    OpenAIRE

    Raka, Lul; Guardo, Monica

    2015-01-01

    Ebola viral disease (EVD) is a severe and life-threatening disease. The current Ebola outbreak in West Africa entered its second year and is unprecedented because it is the largest one in history, involved urban centers and affected a large number of health care workers. It quickly escalated from medical into a humanitarian, social, economic, and security crisis. The primary pillars to prevent EVD are: early diagnosis, isolation of patients, contact tracing and monitoring, safe burials, infec...

  6. Ebola Virus and Marburg Virus

    Science.gov (United States)

    Ebola virus and Marburg virus Overview Ebola virus and Marburg virus are related viruses that cause hemorrhagic fevers — illnesses marked by severe bleeding (hemorrhage), organ failure and, in many ...

  7. NGA Ebola Support Data Services

    Data.gov (United States)

    National Geospatial Intelligence Agency — In support of the ongoing Ebola crisis in Africa, NGA is providing to the public and humanitarian disaster response community these Ebola support data services. They...

  8. Ebola Virus Disease – Global Scenario & Bangladesh

    Directory of Open Access Journals (Sweden)

    Md Rezwanur Rahman

    2015-03-01

    include careful screening of the people coming back home from Ebola affected countries and also giving adequate safety training on the threat of Ebola exposure to the people going to those countries.11 It is a matter of relief and contentment that the Institute of Epidemiology, Disease Control and Research (IEDCR laboratory of Bangladesh has the capacity to primarily identify an Ebola patient but the identified samples need to be sent to the US Centers for Disease Control and Prevention (CDC headquarters in Atlanta for a confirmed result which could take a couple of days.11 Moreover the WHO has promised all necessary technical support to Bangladesh and requested the government to increase vigilance and screening at ports. As part of an ongoing countrywide 90 day Ebola alert from October 2014, screening centres and health desks have been set up at 25 ports, including three international airports and two seaports of the country. Health directorate officials said 15 isolation wards at district hospitals near the ports have been kept ready to provide treatment if any suspected Ebola patient was found. A 20 bed specialized ward is also set to be opened soon at the Kurmitola General Hospital in Dhaka. Officials said 3,167 personnel - doctors, nurses and sanitary inspectors who work at the health desks at the ports - have been provided specialized training on Ebola detection, management and handling.12 Till date there is no effective treatment or no vaccine could be invented to fight against this lethal virus. Rather we have to surrender to the old dictum - ‘prevention is better than cure’. The only tools at our hands are public awareness and strict maintenance of universal precaution and avoiding handling of remains of infected animals or persons.

  9. THE STRENGTHS, WEAKNESSES, OPPORTUNITIES, AND THREATS (SWOTs) ANALYSES OF THE EBOLA VIRUS – PAPER RETRACTED

    Science.gov (United States)

    Babalola, Michael Oluyemi

    2016-01-01

    Background: Owing to the extreme virulence and case fatality rate of ebola virus disease (EVD), there had been so much furore, panic and public health emergency about the possible pandemic from the recent West African outbreak of the disease, with attendant handful research, both in the past and most recently. The magnitude of the epidemic of ebola virus disease has prompted global interest and urgency in the discovery of measures to mitigate the impact of the disease. Researchers in the academia and the industry were pressured to only focus on the development of effective and safe ebola virus vaccines, without consideration of the other aspects to this virus, which may influence the success or otherwise of a potential vaccine. The objective of this review was to adopt the SWOT concept to elucidate the biological Strengths, Weaknesses, Opportunities, and Threats to Ebola virus as a pathogen, with a view to understanding and devising holistic strategies at combating and overcoming the scourge of EVD. Method: This systematic review and narrative synthesis utilized Medline, PubMed, Google and other databases to select about 150 publications on ebola and ebola virus disease using text word searches to generate the specific terms. Relevant publications were reviewed and compared, findings were synthesized using a narrative method and summarized qualitatively. Results: Some of the identified strengths of ebola virus include: Ebola virus is an RNA virus with inherent capability to mutate, reassort and recombine to generate mutant or reassortant virulent strains; Ebola virus has a broad cellular tropism; Natural Reservoir of ebola virus is unconfirmed but fruit bats, arthropods, and plants are hypothesized; Ebola virus primarily targets and selectively destroys the immune system; Ebola viruses possess accessory proteins that inhibits the host’ immune responses; Secreted glycoprotein (sGP), a truncated soluble protein that triggers immune activation and increased vascular

  10. THE STRENGTHS, WEAKNESSES, OPPORTUNITIES, AND THREATS (SWOTs) ANALYSES OF THE EBOLA VIRUS - PAPER RETRACTED.

    Science.gov (United States)

    Babalola, Michael Oluyemi

    2016-01-01

    Owing to the extreme virulence and case fatality rate of ebola virus disease (EVD), there had been so much furore, panic and public health emergency about the possible pandemic from the recent West African outbreak of the disease, with attendant handful research, both in the past and most recently. The magnitude of the epidemic of ebola virus disease has prompted global interest and urgency in the discovery of measures to mitigate the impact of the disease. Researchers in the academia and the industry were pressured to only focus on the development of effective and safe ebola virus vaccines, without consideration of the other aspects to this virus, which may influence the success or otherwise of a potential vaccine. The objective of this review was to adopt the SWOT concept to elucidate the biological Strengths, Weaknesses, Opportunities, and Threats to Ebola virus as a pathogen, with a view to understanding and devising holistic strategies at combating and overcoming the scourge of EVD. This systematic review and narrative synthesis utilized Medline, PubMed, Google and other databases to select about 150 publications on ebola and ebola virus disease using text word searches to generate the specific terms. Relevant publications were reviewed and compared, findings were synthesized using a narrative method and summarized qualitatively. Some of the identified strengths of ebola virus include: Ebola virus is an RNA virus with inherent capability to mutate, reassort and recombine to generate mutant or reassortant virulent strains; Ebola virus has a broad cellular tropism; Natural Reservoir of ebola virus is unconfirmed but fruit bats, arthropods, and plants are hypothesized; Ebola virus primarily targets and selectively destroys the immune system; Ebola viruses possess accessory proteins that inhibits the host' immune responses; Secreted glycoprotein (sGP), a truncated soluble protein that triggers immune activation and increased vascular permeability is uniquely

  11. Postmortem stability of Ebola virus.

    Science.gov (United States)

    Prescott, Joseph; Bushmaker, Trenton; Fischer, Robert; Miazgowicz, Kerri; Judson, Seth; Munster, Vincent J

    2015-05-01

    The ongoing Ebola virus outbreak in West Africa has highlighted questions regarding stability of the virus and detection of RNA from corpses. We used Ebola virus-infected macaques to model humans who died of Ebola virus disease. Viable virus was isolated <7 days posteuthanasia; viral RNA was detectable for 10 weeks.

  12. Hegemonic structure of basic, clinical and patented knowledge on Ebola research: a US army reductionist initiative.

    Science.gov (United States)

    Fajardo-Ortiz, David; Ortega-Sánchez-de-Tagle, José; Castaño, Victor M

    2015-04-19

    Ebola hemorrhagic fever (Ebola) is still a highly lethal infectious disease long affecting mainly neglected populations in sub-Saharan Africa. Moreover, this disease is now considered a potential worldwide threat. In this paper, we present an approach to understand how the basic, clinical and patent knowledge on Ebola is organized and intercommunicated and what leading factor could be shaping the evolution of the knowledge translation process for this disease. A combination of citation network analysis; analysis of Medical heading Subject (MeSH) and Gene Ontology (GO) terms, and quantitative content analysis for patents and scientific literature, aimed to map the organization of Ebola research was carried out. We found six putative research fronts (i.e. clusters of high interconnected papers). Three research fronts are basic research on Ebola virus structural proteins: glycoprotein, VP40 and VP35, respectively. There is a fourth research front of basic research papers on pathogenesis, which is the organizing hub of Ebola research. A fifth research front is pre-clinical research focused on vaccines and glycoproteins. Finally, a clinical-epidemiology research front related to the disease outbreaks was identified. The network structure of patent families shows that the dominant design is the use of Ebola virus proteins as targets of vaccines and other immunological treatments. Therefore, patents network organization resembles the organization of the scientific literature. Specifically, the knowledge on Ebola would flow from higher (clinical-epidemiology) to intermediated (cellular-tissular pathogenesis) to lower (molecular interactions) levels of organization. Our results suggest a strong reductionist approach for Ebola research probably influenced by the lethality of the disease. On the other hand, the ownership profile of the patent families network and the main researches relationship with the United State Army suggest a strong involvement of this military

  13. A Syrian golden hamster model recapitulating ebola hemorrhagic fever.

    Science.gov (United States)

    Ebihara, Hideki; Zivcec, Marko; Gardner, Donald; Falzarano, Darryl; LaCasse, Rachel; Rosenke, Rebecca; Long, Dan; Haddock, Elaine; Fischer, Elizabeth; Kawaoka, Yoshihiro; Feldmann, Heinz

    2013-01-15

    Ebola hemorrhagic fever (EHF) is a severe viral infection for which no effective treatment or vaccine is currently available. While the nonhuman primate (NHP) model is used for final evaluation of experimental vaccines and therapeutic efficacy, rodent models have been widely used in ebolavirus research because of their convenience. However, the validity of rodent models has been questioned given their low predictive value for efficacy testing of vaccines and therapeutics, a result of the inconsistent manifestation of coagulopathy seen in EHF. Here, we describe a lethal Syrian hamster model of EHF using mouse-adapted Ebola virus. Infected hamsters displayed most clinical hallmarks of EHF, including severe coagulopathy and uncontrolled host immune responses. Thus, the hamster seems to be superior to the existing rodent models, offering a better tool for understanding the critical processes in pathogenesis and providing a new model for evaluating prophylactic and postexposure interventions prior to testing in NHPs.

  14. Identification of murine T-cell epitopes in Ebola virus nucleoprotein

    International Nuclear Information System (INIS)

    Simmons, Graham; Lee, Anee; Rennekamp, Andrew J.; Fan Xin; Bates, Paul; Shen Hao

    2004-01-01

    CD8 T cells play an important role in controlling Ebola infection and in mediating vaccine-induced protective immunity, yet little is known about antigenic targets in Ebola that are recognized by CD8 T cells. Overlapping peptides were used to identify major histocompatibility complex class I-restricted epitopes in mice immunized with vectors encoding Ebola nucleoprotein (NP). CD8 T-cell responses were mapped to a H-2 d -restricted epitope (NP279-288) and two H-2 b -restricted epitopes (NP44-52 and NP288-296). The identification of these epitopes will facilitate studies of immune correlates of protection and the evaluation of vaccine strategies in murine models of Ebola infection

  15. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana.

    Science.gov (United States)

    Phoolcharoen, Waranyoo; Bhoo, Seong H; Lai, Huafang; Ma, Julian; Arntzen, Charles J; Chen, Qiang; Mason, Hugh S

    2011-09-01

    Filoviruses (Ebola and Marburg viruses) cause severe and often fatal haemorrhagic fever in humans and non-human primates. The US Centers for Disease Control identifies Ebola and Marburg viruses as 'category A' pathogens (defined as posing a risk to national security as bioterrorism agents), which has lead to a search for vaccines that could prevent the disease. Because the use of such vaccines would be in the service of public health, the cost of production is an important component of their development. The use of plant biotechnology is one possible way to cost-effectively produce subunit vaccines. In this work, a geminiviral replicon system was used to produce an Ebola immune complex (EIC) in Nicotiana benthamiana. Ebola glycoprotein (GP1) was fused at the C-terminus of the heavy chain of humanized 6D8 IgG monoclonal antibody, which specifically binds to a linear epitope on GP1. Co-expression of the GP1-heavy chain fusion and the 6D8 light chain using a geminiviral vector in leaves of N. benthamiana produced assembled immunoglobulin, which was purified by ammonium sulphate precipitation and protein G affinity chromatography. Immune complex formation was confirmed by assays to show that the recombinant protein bound the complement factor C1q. Size measurements of purified recombinant protein by dynamic light scattering and size-exclusion chromatography also indicated complex formation. Subcutaneous immunization of BALB/C mice with purified EIC resulted in anti-Ebola virus antibody production at levels comparable to those obtained with a GP1 virus-like particle. These results show excellent potential for a plant-expressed EIC as a human vaccine. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  16. DNA Vaccine Electroporation and Molecular Adjuvants

    Science.gov (United States)

    2016-03-16

    Suschak and Schmaljohn DNA Vaccine Electroporation and Molecular Adjuvants 1 Abstract To date, there is no protective vaccine for Ebola virus...the formulation of DNA launched virus-like particles (VLP). In this case, the antigen is encoded in one DNA plasmid, while structural proteins are...Virol, 2010. 155(12): p. 2083-103. 2. Feldmann, H. and T.W. Geisbert, Ebola haemorrhagic fever. Lancet, 2011. 377(9768): p. 849-62. 3. Hart, M.K

  17. Emerging Targets and Novel Approaches to Ebola Virus Prophylaxis and Treatment

    Science.gov (United States)

    Choi, Jin Huk; Croyle, Maria A.

    2013-01-01

    Ebola is a highly virulent pathogen causing severe hemorrhagic fever with a high case fatality rate in humans and non-human primates (NHPs). Although safe and effective vaccines or other medicinal agents to block Ebola infection are currently unavailable, a significant effort has been put forth to identify several promising candidates for the treatment and prevention of Ebola hemorrhagic fever. Among these, recombinant-virus based vectors have been identified as potent vaccine candidates with some affording both pre- and post-exposure protection from the virus. Recently, Investigational New Drug (IND) applications have been approved by the United States (U.S.) Food and Drug Administration (FDA) and Phase I clinical trials initiated for two small molecule therapeutics, 1) anti-sense phosphorodiamidate morphino oligomers (PMOs: AVI-6002, AVI-6003), and 2) lipid-nanoparticle/small interfering RNA (LNP/siRNA: TKM-Ebola). These potential alternatives to vector-based vaccines require multiple doses to achieve therapeutic efficacy which is not ideal with regard to patient compliance and outbreak scenarios. These concerns have fueled a quest for even better vaccination and treatment strategies. Here, we summarize recent advances in vaccines or post-exposure therapeutics for prevention of Ebola hemorrhagic fever. The utility of novel pharmaceutical approaches to refine and overcome barriers associated with the most promising therapeutic platforms will also be discussed. PMID:23813435

  18. A review on the antagonist Ebola: A prophylactic approach.

    Science.gov (United States)

    Khan, Fatima Nazish; Qazi, Sahar; Tanveer, Khushnuma; Raza, Khalid

    2017-12-01

    Ebola virus (EBOV), a member of Filoviridae virus family under the genus Ebolavirus, has emerged as a dangerous and potential threat to human health globally. It causes a severe and deadly hemorrhagic fever in humans and other mammals, called Ebola Virus Disease (EVD). In recent outbreaks of EVD, there has been loss of large numbers of individual's life. Therefore, EBOV has attracted researchers and increased interests in developing new models for virus evolution, and therapies. The EBOV interacts with the immune system of the host which led to understand how the virus functions and effects immune system behaviour. This article presents an exhaustive review on Ebola research which includes EVD illness, symptoms, transmission patterns, patho-physiology conditions, development of antiviral agents and vaccines, resilient health system, dynamics and mathematical model of EBOV, challenges and prospects for future studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. [Marburg and Ebola hemorrhagic fevers--pathogens, epidemiology and therapy].

    Science.gov (United States)

    Stock, Ingo

    2014-09-01

    Marburg and Ebola hemorrhagic fevers are severe, systemic viral diseases affecting humans and non-human primates. They are characterized by multiple symptoms such as hemorrhages, fever, headache, muscle and abdominal pain, chills, sore throat, nausea, vomiting and diarrhea. Elevated liver-associated enzyme levels and coagulopathy are also associated with these diseases. Marburg and Ebola hemorrhagic fevers are caused by (Lake victoria) Marburg virus and different species of Ebola viruses, respectively. They are enveloped, single-stranded RNA viruses and belong to the family of filoviridae. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, ranging from 25 to 90% or more. Outbreaks of Marburg and Ebola hemorrhagic fever occur in certain regions of equatorial Africa at irregular intervals. Since 2000, the number of outbreaks has increased. In 2014, the biggest outbreak of a filovirus-induced hemorrhagic fever that has been documented so far occurred from March to July 2014 in Guinea, Sierra Leone, Liberia and Nigeria. The outbreak was caused by a new variant of Zaire Ebola-Virus, affected more than 2600 people (stated 20 August) and was associated with case-fatality rates of up to 67% (Guinea). Treatment of Marburg and Ebola hemorrhagic fevers is symptomatic and supportive, licensed antiviral agents are currently not available. Recently, BCX4430, a promising synthetic adenosine analogue with high in vitro and in vivo activity against filoviruses and other RNA viruses, has been described. BCX4430 inhibits viral RNA polymerase activity and protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. Nucleic acid-based products, recombinant vaccines and antibodies appear to be less suitable for the treatment of Marburg and Ebola hemorrhagic fevers.

  20. Human Ebola virus infection results in substantial immune activation.

    Science.gov (United States)

    McElroy, Anita K; Akondy, Rama S; Davis, Carl W; Ellebedy, Ali H; Mehta, Aneesh K; Kraft, Colleen S; Lyon, G Marshall; Ribner, Bruce S; Varkey, Jay; Sidney, John; Sette, Alessandro; Campbell, Shelley; Ströher, Ute; Damon, Inger; Nichol, Stuart T; Spiropoulou, Christina F; Ahmed, Rafi

    2015-04-14

    Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10-50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1-2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients' discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.

  1. Ebola in West Africa.

    Science.gov (United States)

    Raka, Lul; Guardo, Monica

    2015-03-15

    Ebola viral disease (EVD) is a severe and life-threatening disease. The current Ebola outbreak in West Africa entered its second year and is unprecedented because it is the largest one in history, involved urban centers and affected a large number of health care workers. It quickly escalated from medical into a humanitarian, social, economic, and security crisis. The primary pillars to prevent EVD are: early diagnosis, isolation of patients, contact tracing and monitoring, safe burials, infection prevention and control and social mobilization. The implementation of all these components was challenged in the field. Key lessons from this Ebola outbreak are that countries with weak health care systems can't withstand the major outbreaks; preparedness to treat the first confirmed cases is a national emergency; all control measures must be coordinated together and community engagement is the great factor to combat this disease.

  2. Ebola in West Africa

    Directory of Open Access Journals (Sweden)

    Lul Raka

    2015-02-01

    Full Text Available Ebola viral disease (EVD is a severe and life-threatening disease. The current Ebola outbreak in West Africa entered its second year and is unprecedented because it is the largest one in history, involved urban centers and affected a large number of health care workers. It quickly escalated from medical into a humanitarian, social, economic, and security crisis. The primary pillars to prevent EVD are: early diagnosis, isolation of patients, contact tracing and monitoring, safe burials, infection prevention and control and social mobilization. The implementation of all these components was challenged in the field. Key lessons from this Ebola outbreak are that countries with weak health care systems can’t withstand the major outbreaks; preparedness to treat the first confirmed cases is a national emergency; all control measures must be coordinated together and community engagement is the great factor to combat this disease.

  3. What is Ebola?

    Science.gov (United States)

    Stein, R A

    2015-01-01

    On 23 March 2014, the World Health Organization first announced a new Ebola virus outbreak that started in December 2013 in the eastern part of the Republic of Guinea. Human infections shortly emerged in Liberia, Sierra Leone, and Nigeria. On 30 September 2014, the Centers for Disease Control and Prevention confirmed through laboratory testing the first Ebola virus infection diagnosed in the USA, in a patient who travelled from West Africa to Texas. On 6 October 2014, the first human infection occurring outside of Africa was reported, in a Spanish nurse who treated two priests, both of whom died, and on 23 October 2014, the first human infection was reported in New York City. To date, the 2014 Ebola virus outbreak is the longest, largest, and most persistent one since 1976, when the virus was first identified in humans, and the number of human cases exceeded, as of mid-September 2014, the cumulative number of infections from all the previous outbreaks. The early clinical presentation overlaps with other infectious diseases, opening differential diagnosis difficulties. Understanding the transmission routes and identifying the natural reservoir of the virus are additional challenges in studying Ebola hemorrhagic fever outbreaks. Ebola virus is as much a public health challenge for developing countries as it is for the developed world, and previous outbreaks underscored that the relative contribution of the risk factors may differ among outbreaks. The implementation of effective preparedness plans is contingent on integrating teachings from previous Ebola virus outbreaks with those from the current outbreak and with lessons provided by other infectious diseases, along with developing a multifaceted inter-disciplinary and cross-disciplinary framework that should be established and shaped by biomedical as well as sociopolitical sciences. © 2014 John Wiley & Sons Ltd.

  4. Frequently Asked Questions on Ebola Virus Disease

    Science.gov (United States)

    ... and should follow recommended precautions strictly. Health worker Ebola infections in Guinea, Liberia and Sierra Leone How to put on and how to remove personal protective equipment - posters 6. Can Ebola be transmitted sexually? Sexual transmission of the Ebola ...

  5. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies

    International Nuclear Information System (INIS)

    Ye Ling; Lin Jianguo; Sun Yuliang; Bennouna, Soumaya; Lo, Michael; Wu Qingyang; Bu Zhigao; Pulendran, Bali; Compans, Richard W.; Yang Chinglai

    2006-01-01

    Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity of Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection

  6. Mathematical modeling, analysis and Markov Chain Monte Carlo simulation of Ebola epidemics

    Science.gov (United States)

    Tulu, Thomas Wetere; Tian, Boping; Wu, Zunyou

    Ebola virus infection is a severe infectious disease with the highest case fatality rate which become the global public health treat now. What makes the disease the worst of all is no specific effective treatment available, its dynamics is not much researched and understood. In this article a new mathematical model incorporating both vaccination and quarantine to study the dynamics of Ebola epidemic has been developed and comprehensively analyzed. The existence as well as uniqueness of the solution to the model is also verified and the basic reproduction number is calculated. Besides, stability conditions are also checked and finally simulation is done using both Euler method and one of the top ten most influential algorithm known as Markov Chain Monte Carlo (MCMC) method. Different rates of vaccination to predict the effect of vaccination on the infected individual over time and that of quarantine are discussed. The results show that quarantine and vaccination are very effective ways to control Ebola epidemic. From our study it was also seen that there is less possibility of an individual for getting Ebola virus for the second time if they survived his/her first infection. Last but not least real data has been fitted to the model, showing that it can used to predict the dynamic of Ebola epidemic.

  7. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry.

    Science.gov (United States)

    Henß, Lisa; Beck, Simon; Weidner, Tatjana; Biedenkopf, Nadine; Sliva, Katja; Weber, Christopher; Becker, Stephan; Schnierle, Barbara S

    2016-08-31

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity. We tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus. Suramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection. Suramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.

  8. Ebola: Lessons learned

    African Journals Online (AJOL)

    pains.[19] Viable virus seems capable of surviving in protected sites including aqueous humor, the testes and the fetoplacental unit.[20-22]. The implications for further transmission and the ongoing health needs of survivors are therefore of great concern. Ebola will not be eradicated by science alone. Finally, this outbreak ...

  9. Ebola viral disease: a review literature

    Directory of Open Access Journals (Sweden)

    Saeed Reza Jamali Moghadam

    2015-04-01

    Full Text Available Ebola virus is transmitted to people as a result of direct contact with body fluids containing virus of an infected patient. The incubation period usually lasts 5 to 7 d and approximately 95% of the patients appear signs within 21 d after exposure. Typical features include fever, profound weakness, diarrhea, abdominal pain, cramping, nausea and vomiting for 3-5 days and maybe persisting for up to a week. Laboratory complications including elevated aminotransferase levels, marked lymphocytopenia, and thrombocytopenia may have occurred. Hemorrhagic fever occurs in less than half of patients and it takes place most commonly in the gastrointestinal tract. The symptoms progress over the time and patients suffer from dehydration, stupor, confusion, hypotension, multi-organ failure, leading to fulminant shock and eventually death. The most general assays used for antibody detection are direct IgG and IgM ELISAs and IgM capture ELISA. An IgM or rising IgG titer (four-fold contributes to strong presumptive diagnosis. Currently neither a licensed vaccine nor an approved treatment is available for human use. Passive transfer of serum collected from survivors of Junin virus or Lassa virus, equine IgG product from horses hypervaccinated with Ebola virus, a “cocktail” of humanized-mouse antibodies (ZMapp, recombinant inhibitor of factor VIIa/tissue factor, activated protein C, RNA-polymerase inhibitors and small interfering RNA nano particles are among the therapies in development. Preclinical evaluation is also underway for various vaccine candidates. One is a chimpanzee adenovirus vector vaccine; other vaccines involve replication-defective adenovirus serotype 5 and recombinant vesicular stomatitis virus.

  10. Ebola in Antiquity?

    Science.gov (United States)

    Kazanjian, Powel

    2015-09-15

    This article addresses whether Ebola may have been present in an urban setting in Athens in 430 bce and explores the historical importance of the ancient outbreak. New knowledge from today's West African epidemic allows a more accurate assessment of whether Ebola may have caused the Athenian outbreak than was once possible. The Athenian disease, whose etiology remains unknown, developed abruptly with fevers, abdominal pain, vomiting, diarrhea, dehydration, and hemorrhage. It originated in sub-Saharan Africa and was especially contagious to doctors and caregivers. No remedies were effective. But the few survivors who were reexposed to diseased patients were not attacked a second time, suggesting protective immunity. What lessons can we learn from the ancient outbreak that bears a clinical and epidemiologic resemblance to Ebola? The historian Thucydides, an eyewitness and disease sufferer, described how the unsuspecting city panicked as it struggled to handle the rapidly spreading, devastating disease. Moreover, he stressed a theme that has relevance today-namely, that fear and panic intensified the disruption of society and damage to the individual that was directly caused by the disease. Moreover, fear amplified the spread of disease. The destructive nature of fear has remained a signature feature of pestilences that have subsequently caught ill-prepared societies off-guard-Bubonic plague in medieval times, AIDS in the 1980s, and Ebola today. The ancient Athenian epidemic is relevant for today's West African Ebola outbreak because it shows how fear and panic can endanger the individual, our society, and our efforts to handle the disease. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Ebola research funding: a systematic analysis, 1997-2015.

    Science.gov (United States)

    Fitchett, Joseph Ra; Lichtman, Amos; Soyode, Damilola T; Low, Ariel; Villar de Onis, Jimena; Head, Michael G; Atun, Rifat

    2016-12-01

    The latest outbreak of Ebola in West Africa overwhelmed the affected countries, with the impact on health extending far beyond Ebola-related deaths that have exceeded 11 000. The need to promptly mobilise resources to control emerging infections is widely recognized. Yet, data on research funding for emerging infections remains inadequately documented. We defined research investment as all funding flows for Ebola and/or Marburg virus from 1997 to April 2015 whose primary purpose was to advance knowledge and new technologies to prevent or cure disease. We sourced data directly from funding organizations and estimated the investment in 2015 US dollars (US$). Funding for Ebola and Marburg virus research in 1997 to 2015 amounted to US$ 1.035 billion, including US$ 435.4 million (42.0%) awarded in 2014 and 2015. Public sources of funding invested US$ 758.8 million (73.1%), philanthropic sources US$ 65.1 million (6.3%), and joint public/private/philanthropic ventures accounted for US$ 213.8 million (20.6%). Prior to the Ebola outbreak in 2014, pre-clinical research dominated research with US$ 443.6 million (73.9%) investment. After the outbreak, however, investment for new product development increased 942.7-fold and that for clinical trials rose 23.5-fold. Investment in new tools to control Ebola and Marburg virus amounted to US$ 399.1 million, with 61.3% awarded for vaccine research, 29.2% for novel therapeutics research such as antivirals and convalescent blood products, and 9.5% for diagnostics research. Research funding and bibliometric output were moderately associated (Spearman's ρ  = 0.5232, P  = 0.0259), however number of Ebola cases in previous outbreaks and research funding (ρ = 0.1706, P  = 0.4985) and Ebola cases in previous outbreaks and research output (ρ = 0.3020, P  = 0.0616) were poorly correlated. Significant public and philanthropic funds have been invested in Ebola and Marburg virus research in 2014 and 2015, following

  12. Initiating a watch list for Ebola virus antibody escape mutations

    OpenAIRE

    Craig R. Miller; Erin L. Johnson; Aran Z. Burke; Kyle P. Martin; Tanya A. Miura; Holly A. Wichman; Celeste J. Brown; F. Marty Ytreberg

    2016-01-01

    The 2014 Ebola virus (EBOV) outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP) of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiat...

  13. Ebola and Immune System

    OpenAIRE

    KOMENAN, Alexis

    2016-01-01

    Ebola hemorrhagic fever is a formidable disease whose surges always result in a high number of victims in sub-Saharan Africa. There is no official treatment against the virus, which makes the task of containment extremely delicate. However, the existence of survivors to the virus demonstrates curable nature of the disease and suggests the existence of favorable factors of immunity. The author examines these factors and their challenges and perspectives in the cure of the disease.

  14. Ebola Virus Disease

    Centers for Disease Control (CDC) Podcasts

    2014-08-08

    This podcast provides general information about Ebola virus disease and the outbreak in West Africa. The program contains remarks from CDC Director Dr. Tom Frieden, as well as a brief description of CDC’s response efforts.  Created: 8/8/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/8/2014.

  15. Current trends in the management of Ebola virus disease-an updated systematic review

    Directory of Open Access Journals (Sweden)

    Palanisamy Sivanandy

    2016-08-01

    Full Text Available The Ebola virus created a ripple of fear when its number of cases rose rapidly and drastically in recent years. Ebola infection is transmitted in humans when contact closely with blood, organs or other body fluids of infected animals or secretions. It is often mortal as it affects vascular system of the body, results in organ failure and serious internal bleeding. Hence, this review was aimed to summarize various essential aspects of Ebola virus disease and its management. A systematic review was carried out by collecting various literatures, published research articles, notes and other published date related to Ebola virus disease. Standard supporting care in a hospital setting such as replenishment of fluid and electrolytes, ventilation support, pain control and nutritional support is initiated to the patients to manage the symptoms and prevent any complications of Ebola disease since there are no Food and Drug Administrationapproved medications available. In terms of pharmacological drug therapy, favipiravir has been shown to be efficacious and safe in treating the Ebola virus disease. Nevertheless, there are some preventive measures as well to decrease the risk of getting the disease. Further, the review suggests the efficient control and prevention of Ebola epidemic require adequate political support from the government as well as the establishment of a robust public health infrastructure and medical reserve. Strengthening of contact tracing and quarantine policies are also important for the prevention of Ebola virus disease. There should be a well-designed disease surveillance system when a suspected case is reported. Given the elevated case-fatality rate and the absence of effective treatment, it is sensible to evade research ethics and develop the promising future of experimental vaccines. The collection of clinical and epidemiological information of Ebola should be vigorous and systematic in the endemic affected areas.

  16. Persistent infection with ebola virus under conditions of partial immunity.

    Science.gov (United States)

    Gupta, Manisha; Mahanty, Siddhartha; Greer, Patricia; Towner, Jonathan S; Shieh, Wun-Ju; Zaki, Sherif R; Ahmed, Rafi; Rollin, Pierre E

    2004-01-01

    Ebola hemorrhagic fever in humans is associated with high mortality; however, some infected hosts clear the virus and recover. The mechanisms by which this occurs and the correlates of protective immunity are not well defined. Using a mouse model, we determined the role of the immune system in clearance of and protection against Ebola virus. All CD8 T-cell-deficient mice succumbed to subcutaneous infection and had high viral antigen titers in tissues, whereas mice deficient in B cells or CD4 T cells cleared infection and survived, suggesting that CD8 T cells, independent of CD4 T cells and antibodies, are critical to protection against subcutaneous Ebola virus infection. B-cell-deficient mice that survived the primary subcutaneous infection (vaccinated mice) transiently depleted or not depleted of CD4 T cells also survived lethal intraperitoneal rechallenge for >/==" BORDER="0">25 days. However, all vaccinated B-cell-deficient mice depleted of CD8 T cells had high viral antigen titers in tissues following intraperitoneal rechallenge and died within 6 days, suggesting that memory CD8 T cells by themselves can protect mice from early death. Surprisingly, vaccinated B-cell-deficient mice, after initially clearing the infection, were found to have viral antigens in tissues later (day 120 to 150 post-intraperitoneal infection). Furthermore, following intraperitoneal rechallenge, vaccinated B-cell-deficient mice that were transiently depleted of CD4 T cells had high levels of viral antigen in tissues earlier (days 50 to 70) than vaccinated undepleted mice. This demonstrates that under certain immunodeficiency conditions, Ebola virus can persist and that loss of primed CD4 T cells accelerates the course of persistent infections. These data show that CD8 T cells play an important role in protection against acute disease, while both CD4 T cells and antibodies are required for long-term protection, and they provide evidence of persistent infection by Ebola virus suggesting

  17. Ebola research funding: a systematic analysis, 1997–2015

    Science.gov (United States)

    Fitchett, Joseph RA; Lichtman, Amos; Soyode, Damilola T; Low, Ariel; Villar de Onis, Jimena; Head, Michael G; Atun, Rifat

    2016-01-01

    Background The latest outbreak of Ebola in West Africa overwhelmed the affected countries, with the impact on health extending far beyond Ebola–related deaths that have exceeded 11 000. The need to promptly mobilise resources to control emerging infections is widely recognized. Yet, data on research funding for emerging infections remains inadequately documented. Methods We defined research investment as all funding flows for Ebola and/or Marburg virus from 1997 to April 2015 whose primary purpose was to advance knowledge and new technologies to prevent or cure disease. We sourced data directly from funding organizations and estimated the investment in 2015 US dollars (US$). Results Funding for Ebola and Marburg virus research in 1997 to 2015 amounted to US$ 1.035 billion, including US$ 435.4 million (42.0%) awarded in 2014 and 2015. Public sources of funding invested US$ 758.8 million (73.1%), philanthropic sources US$ 65.1 million (6.3%), and joint public/private/philanthropic ventures accounted for US$ 213.8 million (20.6%). Prior to the Ebola outbreak in 2014, pre–clinical research dominated research with US$ 443.6 million (73.9%) investment. After the outbreak, however, investment for new product development increased 942.7–fold and that for clinical trials rose 23.5–fold. Investment in new tools to control Ebola and Marburg virus amounted to US$ 399.1 million, with 61.3% awarded for vaccine research, 29.2% for novel therapeutics research such as antivirals and convalescent blood products, and 9.5% for diagnostics research. Research funding and bibliometric output were moderately associated (Spearman’s ρ = 0.5232, P = 0.0259), however number of Ebola cases in previous outbreaks and research funding (ρ = 0.1706, P = 0.4985) and Ebola cases in previous outbreaks and research output (ρ = 0.3020, P = 0.0616) were poorly correlated. Conclusion Significant public and philanthropic funds have been invested in Ebola and Marburg

  18. Tactics and Strategies for Managing Ebola Outbreaks and the Salience of Immunization

    Directory of Open Access Journals (Sweden)

    Wayne M. Getz

    2015-01-01

    Full Text Available We present a stochastic transmission chain simulation model for Ebola viral disease (EVD in West Africa, with the salutary result that the virus may be more controllable than previously suspected. The ongoing tactics to detect cases as rapidly as possible and isolate individuals as safely as practicable is essential to saving lives in the current outbreaks in Guinea, Liberia, and Sierra Leone. Equally important are educational campaigns that reduce contact rates between susceptible and infectious individuals in the community once an outbreak occurs. However, due to the relatively low R0 of Ebola (around 1.5 to 2.5 next generation cases are produced per current generation case in naïve populations, rapid isolation of infectious individuals proves to be highly efficacious in containing outbreaks in new areas, while vaccination programs, even with low efficacy vaccines, can be decisive in curbing future outbreaks in areas where the Ebola virus is maintained in reservoir populations.

  19. Tactics and strategies for managing Ebola outbreaks and the salience of immunization.

    Science.gov (United States)

    Getz, Wayne M; Gonzalez, Jean-Paul; Salter, Richard; Bangura, James; Carlson, Colin; Coomber, Moinya; Dougherty, Eric; Kargbo, David; Wolfe, Nathan D; Wauquier, Nadia

    2015-01-01

    We present a stochastic transmission chain simulation model for Ebola viral disease (EVD) in West Africa, with the salutary result that the virus may be more controllable than previously suspected. The ongoing tactics to detect cases as rapidly as possible and isolate individuals as safely as practicable is essential to saving lives in the current outbreaks in Guinea, Liberia, and Sierra Leone. Equally important are educational campaigns that reduce contact rates between susceptible and infectious individuals in the community once an outbreak occurs. However, due to the relatively low R 0 of Ebola (around 1.5 to 2.5 next generation cases are produced per current generation case in naïve populations), rapid isolation of infectious individuals proves to be highly efficacious in containing outbreaks in new areas, while vaccination programs, even with low efficacy vaccines, can be decisive in curbing future outbreaks in areas where the Ebola virus is maintained in reservoir populations.

  20. Development of Potential Small Molecule Therapeutics for Treatment of Ebola Virus.

    Science.gov (United States)

    Schafer, Adam Michael; Cheng, Han; Lee, Charles; Du, Ruikun; Han, Julianna; Perez, Jasmine; Peet, Norton; Manicassamy, Balaji; Rong, Lijun

    2017-10-10

    Ebola virus has caused 26 outbreaks in 10 different countries since its identification in 1976, making it one of the deadliest emerging viral pathogens. The most recent outbreak in West Africa from 2014-16 was the deadliest yet and culminated in 11,310 deaths out of 28,616 confirmed cases. Currently there are no FDA-approved therapeutics or vaccines to treat Ebola virus infections. The slow development of effective vaccines combined with the severity of past outbreaks emphasizes the need to accelerate research into understanding the virus lifecycle and the development of therapeutics for post exposure treatment. Here we present a summary of the major findings on the Ebola virus replication cycle and the therapeutic approaches explored to treat this devastating disease. The major focus of this review is on small molecule inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Ebola virus disease: preparedness in Japan.

    Science.gov (United States)

    Ashino, Yugo; Chagan-Yasutan, Haorile; Egawa, Shinichi; Hattori, Toshio

    2015-02-01

    The current outbreak of Ebola virus disease (EVD) is due to a lack of resources, untrained medical personnel, and the specific contact-mediated type of infection of this virus. In Japan's history, education and mass vaccination of the native Ainu people successfully eradicated epidemics of smallpox. Even though a zoonotic virus is hard to control, appropriate precautions and personal protection, as well as anti-symptomatic treatment, will control the outbreak of EVD. Ebola virus utilizes the antibody-dependent enhancement of infection to seed the cells of various organs. The pathogenesis of EVD is due to the cytokine storm of pro-inflammatory cytokines and the lack of antiviral interferon-α2. Matricellular proteins of galectin-9 and osteopontin might also be involved in the edema and abnormality of the coagulation system in EVD. Anti-fibrinolytic treatment will be effective. In the era of globalization, interviews of travelers with fever within 3 weeks of departure from the affected areas will be necessary. Not only the hospitals designated for specific biohazards but every hospital should be aware of the biology of biohazards and establish measures to protect both patients and the community.

  2. Emergence of ebola virus disease and its devastating impact in poor ...

    African Journals Online (AJOL)

    There is the urgent need by stakeholders to device appropriate preventive / control measures including development of effective drugs and vaccines to checkmate the spread of EVD and associated severe morbidity, high mortality and devastating socio-economic impact. Key Words: Ebola virus disease, severe morbidity, ...

  3. Post-Ebola Measles Outbreak in Lola, Guinea, January-June 2015(1).

    Science.gov (United States)

    Suk, Jonathan E; Paez Jimenez, Adela; Kourouma, Mamadou; Derrough, Tarik; Baldé, Mamadou; Honomou, Patric; Kolie, Nestor; Mamadi, Oularé; Tamba, Kaduono; Lamah, Kalaya; Loua, Angelo; Mollet, Thomas; Lamah, Molou; Camara, Amara Nana; Prikazsky, Vladimir

    2016-06-01

    During public health crises such as the recent outbreaks of Ebola virus disease in West Africa, breakdowns in public health systems can lead to epidemics of vaccine-preventable diseases. We report here on an outbreak of measles in the prefecture of Lola, Guinea, which started in January 2015.

  4. Computational elucidation of potential antigenic CTL epitopes in Ebola virus.

    Science.gov (United States)

    Dikhit, Manas R; Kumar, Santosh; Vijaymahantesh; Sahoo, Bikash R; Mansuri, Rani; Amit, Ajay; Yousuf Ansari, Md; Sahoo, Ganesh C; Bimal, Sanjiva; Das, Pradeep

    2015-12-01

    Cell-mediated immunity is important for the control of Ebola virus infection. We hypothesized that those HLA A0201 and HLA B40 restricted epitopes derived from Ebola virus proteins, would mount a good antigenic response. Here we employed an immunoinformatics approach to identify specific 9mer amino acid which may be capable of inducing a robust cell-mediated immune response in humans. We identified a set of 28 epitopes that had no homologs in humans. Specifically, the epitopes derived from NP, RdRp, GP and VP40 share population coverage of 93.40%, 84.15%, 74.94% and 77.12%, respectively. Based on the other HLA binding specificity and population coverage, seven novel promiscuous epitopes were identified. These 7 promiscuous epitopes from NP, RdRp and GP were found to have world-wide population coverage of more than 95% indicating their potential significance as useful candidates for vaccine design. Epitope conservancy analysis also suggested that most of the peptides are highly conserved (100%) in other virulent Ebola strain (Mayinga-76, Kikwit-95 and Makona-G3816- 2014) and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ebola hemorrhagic Fever.

    Science.gov (United States)

    Burnett, Mark W

    2014-01-01

    Ebola hemorrhagic fever is an often-fatal disease caused by a virus of the Filoviridae family, genus Ebolavirus. Initial signs and symptoms of the disease are nonspecific, often progressing on to a severe hemorrhagic illness. Special Operations Forces Medical Providers should be aware of this disease, which occurs in sporadic outbreaks throughout Africa. Treatment at the present time is mainly supportive. Special care should be taken to prevent contact with bodily fluids of those infected, which can transmit the virus to caregivers. 2014.

  6. Prophylactic Efficacy of Quercetin 3-β-O-d-Glucoside against Ebola Virus Infection.

    Science.gov (United States)

    Qiu, Xiangguo; Kroeker, Andrea; He, Shihua; Kozak, Robert; Audet, Jonathan; Mbikay, Majambu; Chrétien, Michel

    2016-09-01

    Ebola outbreaks occur on a frequent basis, with the 2014-2015 outbreak in West Africa being the largest one ever recorded. This outbreak has resulted in over 11,000 deaths in four African countries and has received international attention and intervention. Although there are currently no approved therapies or vaccines, many promising candidates are undergoing clinical trials, and several have had success in promoting recovery from Ebola. However, these prophylactics and therapeutics have been designed and tested only against the same species of Ebola virus as the one causing the current outbreak. Future outbreaks involving other species would require reformulation and possibly redevelopment. Therefore, a broad-spectrum alternative is highly desirable. We have found that a flavonoid derivative called quercetin 3-β-O-d-glucoside (Q3G) has the ability to protect mice from Ebola even when given as little as 30 min prior to infection. Furthermore, we have demonstrated that this compound targets the early steps of viral entry. Most promisingly, antiviral activity against two distinct species of Ebola virus was seen. This study serves as a proof of principle that Q3G has potential as a prophylactic against Ebola virus infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Ebola (Ebola Virus Disease): Q&As on Transmission

    Science.gov (United States)

    ... in these fluids, but CDC and partners are working together to study how long the virus persists in ... Health, CDC, and the World Health Organization are working together to determine how long Ebola virus persists or ...

  8. Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Suchita

    2011-01-01

    Full Text Available Abstract The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1. However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER, Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP, it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property.

  9. Ebola Virus Altered Innate and Adaptive Immune Response Signalling Pathways: Implications for Novel Therapeutic Approaches.

    Science.gov (United States)

    Kumar, Anoop

    2016-01-01

    Ebola virus (EBOV) arise attention for their impressive lethality by the poor immune response and high inflammatory reaction in the patients. It causes a severe hemorrhagic fever with case fatality rates of up to 90%. The mechanism underlying this lethal outcome is poorly understood. In 2014, a major outbreak of Ebola virus spread amongst several African countries, including Leone, Sierra, and Guinea. Although infections only occur frequently in Central Africa, but the virus has the potential to spread globally. Presently, there is no vaccine or treatment is available to counteract Ebola virus infections due to poor understanding of its interaction with the immune system. Accumulating evidence indicates that the virus actively alters both innate and adaptive immune responses and triggers harmful inflammatory responses. In the literature, some reports have shown that alteration of immune signaling pathways could be due to the ability of EBOV to interfere with dendritic cells (DCs), which link innate and adaptive immune responses. On the other hand, some reports have demonstrated that EBOV, VP35 proteins act as interferon antagonists. So, how the Ebola virus altered the innate and adaptive immune response signaling pathways is still an open question for the researcher to be explored. Thus, in this review, I try to summarize the mechanisms of the alteration of innate and adaptive immune response signaling pathways by Ebola virus which will be helpful for designing effective drugs or vaccines against this lethal infection. Further, potential targets, current treatment and novel therapeutic approaches have also been discussed.

  10. Transmission, Human Population, and Pathogenicity: the Ebola Case in Point.

    Science.gov (United States)

    Delgado, Rafael; Simón, Fernando

    2018-03-01

    The 2013-2016 Ebola outbreak in West Africa has been the largest ever of a known disease in a new context that produced an unprecedented impact and is changing the international approach to responding to public health emergencies. The unprecedented scale of the outbreak, the use of advanced technology for detecting and characterizing the infectious agent, along with the opportunity to treat patients in modern facilities have greatly increased our knowledge of the disease and its transmission. Also, for the first time, an important international effort has been deployed to control the spread of the epidemic by providing care to patients and by adopting basic measures of public health control. Apart from supportive treatment and intensive therapy with fluids and electrolytes, no new compounds have been proved to be clinically effective to treat Ebola virus disease; however, a specific vaccine has shown significant protection in clinical trials in Guinea, opening an expectation for controlling future outbreaks.

  11. Characterization of host immune responses in Ebola virus infections.

    Science.gov (United States)

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  12. Human immune system mouse models of Ebola virus infection.

    Science.gov (United States)

    Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F

    2017-08-01

    Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.

  13. Ebola Virus Epidemic in West Africa: Global Health Economic Challenges, Lessons Learned, and Policy Recommendations.

    Science.gov (United States)

    Elmahdawy, Mahmoud; Elsisi, Gihan H; Carapinha, Joao; Lamorde, Mohamed; Habib, Abdulrazaq; Agyie-Baffour, Peter; Soualmi, Redouane; Ragab, Samah; Udezi, Anthony W; Usifoh, Cyril; Usifoh, Stella

    2017-09-01

    The Ebola virus has spread across several Western Africa countries, adding a significant financial burden to their health systems and economies. In this article the experience with Ebola is reviewed, and economic challenges and policy recommendations are discussed to help curb the impact of other diseases in the future. The West African Ebola virus disease epidemic started in resource-constrained settings and caused thousands of fatalities during the last epidemic. Nevertheless, given population mobility, international travel, and an increasingly globalized economy, it has the potential to re-occur and evolve into a global pandemic. Struggling health systems in West African countries hinder the ability to reduce the causes and effects of the Ebola epidemic. The lessons learned include the need for strengthening health systems, mainly primary care systems, expedited access to treatments and vaccines to treat the Ebola virus disease, guidance on safety, efficacy, and regulatory standards for such treatments, and ensuring that research and development efforts are directed toward existing needs. Other lessons include adopting policies that allow for better flow of relief, averting the adverse impact of strong quarantine policy that includes exaggerating the aversion behavior by alarming trade and business partners providing financial support to strengthen growth in the affected fragile economies by the Ebola outbreak. Curbing the impact of future Ebola epidemics, or comparable diseases, requires increased long-term investments in health system strengthening, better collaboration between different international organizations, more funding for research and development efforts aimed at developing vaccines and treatments, and tools to detect, treat, and prevent future epidemics. Copyright © 2017. Published by Elsevier Inc.

  14. Ebola virus: recommendations

    CERN Multimedia

    CERN Medical Service

    2014-01-01

    The CERN Medical Service has been closely following, in particular via the WHO, the development of the Ebola virus outbreak currently affecting some African countries. This infectious disease may be passed on through direct contact with the bodily fluids of a sick person.   Based on the recommendations of the WHO and the two Host States, Switzerland and France, as updated on their respective websites, so far there has been no ban on travel to the countries concerned. However, unless it is absolutely essential, you are advised not to visit any of the countries affected by Ebola (Guinea, Republic of Sierra Leone, Liberia, Nigeria). The two Host States have established an alert system, and a check is carried out on departure from the airports of those countries. It is strongly recommended that you contact the Medical Service if you are travelling to those countries. We remind you to observe the basic rules of hygiene such as frequent hand washing, whatever your destination. The Medical Service is...

  15. ISCB Ebola Award for Important Future Research on the Computational Biology of Ebola Virus

    OpenAIRE

    Karp, P.D.; Berger, B.; Kovats, D.; Lengauer, T.; Linial, M.; Sabeti, P.; Hide, W.; Rost, B.

    2015-01-01

    Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains as well as 3-D protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computati...

  16. Nutritional management in Ebola haemorrhagic fever

    Directory of Open Access Journals (Sweden)

    Kamon Chaiyasit

    2015-06-01

    Full Text Available Ebola haemorrhagic fever is a viral infection causing a major health problem worldwide. In this short article, the authors briefly review and discuss on the nutritional management (energy, protein, fat and micronutrient in management of Ebola infection.

  17. Establishment of a research pharmacy to support Ebola clinical research in Liberia.

    Science.gov (United States)

    Pierson, Jerome F; Kirchoff, Matthew Carl; Tyee, Rev Tijli; Montello, Michael J; Rhie, Julie K

    This article describes the establishment of a research pharmacy to support the Partnership for Research on Ebola Vaccines in Liberia (PREVAIL) vaccine study for Ebola virus disease. This article describes the establishment of the pharmacy element to support the overall research program during an Ebola outbreak in Monrovia, Liberia, in 2014 and 2015. The need for the rapid establishment of infrastructure to support the Liberia-United States joint clinical research partnership in response to the emerging Ebola virus disease provided the opportunity for collaboration among Liberian and U.S. pharmacists. Resource austere and research naïve. Research pharmacy prepared and randomized 1500 vaccinations in support of PREVAIL. Experiences of the Liberian and U.S. pharmacists involved in the program are described. The partnership was successful in the conduct of the study. More importantly, the capacity for Liberian pharmacists to support clinical research was established. In addition, the U.S. team learned several important lessons that will help prepare them for responding to research needs in future infectious disease outbreaks. Published by Elsevier Inc.

  18. Ebola Virus Persistence in Semen Ex Vivo.

    Science.gov (United States)

    Fischer, Robert J; Judson, Seth; Miazgowicz, Kerri; Bushmaker, Trent; Munster, Vincent J

    2016-02-01

    On March 20, 2015, a case of Ebola virus disease was identified in Liberia that most likely was transmitted through sexual contact. We assessed the efficiency of detecting Ebola virus in semen samples by molecular diagnostics and the stability of Ebola virus in ex vivo semen under simulated tropical conditions.

  19. Treatment of ebola virus disease.

    Science.gov (United States)

    Kilgore, Paul E; Grabenstein, John D; Salim, Abdulbaset M; Rybak, Michael

    2015-01-01

    In March 2014, the largest Ebola outbreak in history exploded across West Africa. As of November 14, 2014, the World Health Organization has reported a total of 21,296 Ebola virus disease (EVD) cases, including 13,427 laboratory-confirmed EVD cases reported from the three most affected countries (Guinea, Liberia, and Sierra Leone). As the outbreak of EVD has spread, clinical disease severity and national EVD case-fatality rates have remained high (21.2-60.8%). Prior to 2013, several EVD outbreaks were controlled by using routine public health interventions; however, the widespread nature of the current EVD outbreak as well as cultural practices in the affected countries have challenged even the most active case identification efforts. In addition, although treatment centers provide supportive care, no effective therapeutic agents are available for EVD-endemic countries. The ongoing EVD outbreak has stimulated investigation of several different therapeutic strategies that target specific viral structures and mechanisms of Ebola viruses. Six to eight putative pharmacotherapies or immunologically based treatments have demonstrated promising results in animal studies. In addition, agents composed of small interfering RNAs targeting specific proteins of Ebola viruses, traditional hyperimmune globulin isolated from Ebola animal models, monoclonal antibodies, and morpholino oligomers (small molecules used to block viral gene expression). A number of EVD therapeutic agents are now entering accelerated human trials in EVD-endemic countries. The goal of therapeutic agent development includes postexposure prevention and EVD cure. As knowledge of Ebola virus virology and pathogenesis grows, it is likely that new therapeutic tools will be developed. Deployment of novel Ebola therapies will require unprecedented cooperation as well as investment to ensure that therapeutic tools become available to populations at greatest risk for EVD and its complications. In this article, we

  20. [Ebola hemorrhagic fever: its extension reflects the African sanitary disaster].

    Science.gov (United States)

    Bourée, Patrice

    2014-09-01

    Ebola virus, described in 1976 in Zaire, causes severe hemorrhagic fever with a high mortality rate in humans and nonhuman primates. Epidemics occurred since this time to nowadays in Sudan, Gabon, Congo and currently in Guinea, Liberia, Sierra-Leone, Nigeria and Senegal. Specific treatment and vaccine are not available. So, to prevent the virus transmission with live and dead patients, we must use strict individual and collective measures which are not always understood by local populations and make contact tracing; it is the only way to curb the epidemic.

  1. Epidemiology and Management of the 2013-16 West African Ebola Outbreak.

    Science.gov (United States)

    Boisen, M L; Hartnett, J N; Goba, A; Vandi, M A; Grant, D S; Schieffelin, J S; Garry, R F; Branco, L M

    2016-09-29

    The 2013-16 West African Ebola outbreak is the largest, most geographically dispersed, and deadliest on record, with 28,616 suspected cases and 11,310 deaths recorded to date in Guinea, Liberia, and Sierra Leone. We provide a review of the epidemiology and management of the 2013-16 Ebola outbreak in West Africa aimed at stimulating reflection on lessons learned that may improve the response to the next international health crisis caused by a pathogen that emerges in a region of the world with a severely limited health care infrastructure. Surveillance efforts employing rapid and effective point-of-care diagnostics designed for environments that lack advanced laboratory infrastructure will greatly aid in early detection and containment efforts during future outbreaks. Introduction of effective therapeutics and vaccines against Ebola into the public health system and the biodefense armamentarium is of the highest priority if future outbreaks are to be adequately managed and contained in a timely manner.

  2. Computational Modelling and Optimal Control of Ebola Virus Disease with non-Linear Incidence Rate

    Science.gov (United States)

    Takaidza, I.; Makinde, O. D.; Okosun, O. K.

    2017-03-01

    The 2014 Ebola outbreak in West Africa has exposed the need to connect modellers and those with relevant data as pivotal to better understanding of how the disease spreads and quantifying the effects of possible interventions. In this paper, we model and analyse the Ebola virus disease with non-linear incidence rate. The epidemic model created is used to describe how the Ebola virus could potentially evolve in a population. We perform an uncertainty analysis of the basic reproductive number R 0 to quantify its sensitivity to other disease-related parameters. We also analyse the sensitivity of the final epidemic size to the time control interventions (education, vaccination, quarantine and safe handling) and provide the cost effective combination of the interventions.

  3. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model.

    Science.gov (United States)

    Oestereich, Lisa; Lüdtke, Anja; Wurr, Stephanie; Rieger, Toni; Muñoz-Fontela, César; Günther, Stephan

    2014-05-01

    Outbreaks of Ebola hemorrhagic fever in sub-Saharan Africa are associated with case fatality rates of up to 90%. Currently, neither a vaccine nor an effective antiviral treatment is available for use in humans. Here, we evaluated the efficacy of the pyrazinecarboxamide derivative T-705 (favipiravir) against Zaire Ebola virus (EBOV) in vitro and in vivo. T-705 suppressed replication of Zaire EBOV in cell culture by 4log units with an IC90 of 110μM. Mice lacking the type I interferon receptor (IFNAR(-)(/)(-)) were used as in vivo model for Zaire EBOV-induced disease. Initiation of T-705 administration at day 6 post infection induced rapid virus clearance, reduced biochemical parameters of disease severity, and prevented a lethal outcome in 100% of the animals. The findings suggest that T-705 is a candidate for treatment of Ebola hemorrhagic fever. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. [Ebola and Marburg hemorrhagic fever viruses: update on filoviruses].

    Science.gov (United States)

    Leroy, E; Baize, S; Gonzalez, J P

    2011-04-01

    The Ebola and Marburg viruses are the sole members of the Filoviridae family of viruses. They are characterized by a long filamentous form that is unique in the viral world. Filoviruses are among the most virulent pathogens currently known to infect humans. They cause fulminating disease characterized by acute fever followed by generalized hemorrhagic syndrome that is associated with 90% mortality in the most severe forms. Epidemic outbreaks of Marburg and Ebola viruses have taken a heavy toll on human life in Central Africa and devastated large ape populations in Gabon and Republic of Congo. Since their discovery in 1967 (Marburg) and 1976 (Ebola), more than 2,300 cases and 1,670 deaths have been reported. These numbers pale in comparison with the burden caused by malnutrition or other infectious disease scourges in Africa such as malaria, cholera, AIDS, dengue or tuberculosis. However, due to their extremely high lethality, association with multifocal hemorrhaging and specificity to the African continent, these hemorrhagic fever viruses have given rise to great interest on the part not only of the international scientific community but also of the general public because of their perceived potential as biological weapons. Much research has been performed on these viruses and major progress has been made in knowledge of their ecology, epidemiology and physiopathology and in development of vaccine candidates and therapeutic schemes. The purpose of this review is to present the main developments in these particular fields in the last decade.

  5. [Development of new vaccines].

    Science.gov (United States)

    González-Romo, Fernando; Picazo, Juan J

    2015-10-01

    Recent and important advances in the fields of immunology, genomics, functional genomics, immunogenetics, immunogenomics, bioinformatics, microbiology, genetic engineering, systems biology, synthetic biochemistry, proteomics, metabolomics and nanotechnology, among others, have led to new approaches in the development of vaccines. The better identification of ideal epitopes, the strengthening of the immune response due to new adjuvants, and the search of new routes of vaccine administration, are good examples of advances that are already a reality and that will favour the development of more vaccines, their use in indicated population groups, or its production at a lower cost. There are currently more than 130 vaccines are under development against the more wished (malaria or HIV), difficult to get (CMV or RSV), severe re-emerging (Dengue or Ebola), increasing importance (Chagas disease or Leishmania), and nosocomial emerging (Clostridium difficile or Staphylococcus aureus) infectious diseases. Copyright © 2015. Published by Elsevier España, S.L.U.

  6. Vaccines: Shaping global health.

    Science.gov (United States)

    Pagliusi, Sonia; Ting, Ching-Chia; Lobos, Fernando

    2017-03-14

    The Developing Countries Vaccine Manufacturers' Network (DCVMN) gathered leaders in immunization programs, vaccine manufacturing, representatives of the Argentinean Health Authorities and Pan American Health Organization, among other global health stakeholders, for its 17th Annual General Meeting in Buenos Aires, to reflect on how vaccines are shaping global health. Polio eradication and elimination of measles and rubella from the Americas is a result of successful collaboration, made possible by timely supply of affordable vaccines. After decades of intense competition for high-value markets, collaboration with developing countries has become critical, and involvement of multiple manufacturers as well as public- and private-sector investments are essential, for developing new vaccines against emerging infectious diseases. The recent Zika virus outbreak and the accelerated Ebola vaccine development exemplify the need for international partnerships to combat infectious diseases. A new player, Coalition for Epidemic Preparedness Innovations (CEPI) has made its entrance in the global health community, aiming to stimulate research preparedness against emerging infections. Face-to-face panel discussions facilitated the dialogue around challenges, such as risks of viability to vaccine development and regulatory convergence, to improve access to sustainable vaccine supply. It was discussed that joint efforts to optimizing regulatory pathways in developing countries, reducing registration time by up to 50%, are required. Outbreaks of emerging infections and the global Polio eradication and containment challenges are reminders of the importance of vaccines' access, and of the importance of new public-private partnerships. Copyright © 2017.

  7. Longitudinal peripheral blood transcriptional analysis of a patient with severe Ebola virus disease.

    Science.gov (United States)

    Kash, John C; Walters, Kathie-Anne; Kindrachuk, Jason; Baxter, David; Scherler, Kelsey; Janosko, Krisztina B; Adams, Rick D; Herbert, Andrew S; James, Rebekah M; Stonier, Spencer W; Memoli, Matthew J; Dye, John M; Davey, Richard T; Chertow, Daniel S; Taubenberger, Jeffery K

    2017-04-12

    The 2013-2015 outbreak of Ebola virus disease in Guinea, Liberia, and Sierra Leone was unprecedented in the number of documented cases, but there have been few published reports on immune responses in clinical cases and their relationships with the course of illness and severity of Ebola virus disease. Symptoms of Ebola virus disease can include severe headache, myalgia, asthenia, fever, fatigue, diarrhea, vomiting, abdominal pain, and hemorrhage. Although experimental treatments are in development, there are no current U.S. Food and Drug Administration-approved vaccines or therapies. We report a detailed study of host gene expression as measured by microarray in daily peripheral blood samples collected from a patient with severe Ebola virus disease. This individual was provided with supportive care without experimental therapies at the National Institutes of Health Clinical Center from before onset of critical illness to recovery. Pearson analysis of daily gene expression signatures revealed marked gene expression changes in peripheral blood leukocytes that correlated with changes in serum and peripheral blood leukocytes, viral load, antibody responses, coagulopathy, multiple organ dysfunction, and then recovery. This study revealed marked shifts in immune and antiviral responses that preceded changes in medical condition, indicating that clearance of replicating Ebola virus from peripheral blood leukocytes is likely important for systemic viral clearance. Copyright © 2017, American Association for the Advancement of Science.

  8. Ebola virus: bioterrorism for humans

    Directory of Open Access Journals (Sweden)

    Pramodkumar Pyarelal Gupta

    2015-01-01

    Full Text Available Ebola virus disease is a severe, often fatal, zoonotic infection caused by a virus of the Filoviridae family (genus Ebolavirus. Ebola virus (EBOV spreads by human to human transmission through contacts with body fluids from infected patients. Initial stages of EBOV are non-specific which makes the differential diagnosis broad. Here in this review article we focused on to show the details of EBOV, from its first case right up to the possible targets to cure this lethal disease. In this study we have shown the statistical survey, epidemiology, disease ontology, different genes coding for different proteins in EBOV and future aspects of it.

  9. Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Tapia, Milagritos D; Sow, Samba O; Lyke, Kirsten E; Haidara, Fadima Cheick; Diallo, Fatoumata; Doumbia, Moussa; Traore, Awa; Coulibaly, Flanon; Kodio, Mamoudou; Onwuchekwa, Uma; Sztein, Marcelo B; Wahid, Rezwanul; Campbell, James D; Kieny, Marie-Paule; Moorthy, Vasee; Imoukhuede, Egeruan B; Rampling, Tommy; Roman, Francois; De Ryck, Iris; Bellamy, Abbie R; Dally, Len; Mbaya, Olivier Tshiani; Ploquin, Aurélie; Zhou, Yan; Stanley, Daphne A; Bailer, Robert; Koup, Richard A; Roederer, Mario; Ledgerwood, Julie; Hill, Adrian V S; Ballou, W Ripley; Sullivan, Nancy; Graham, Barney; Levine, Myron M

    2016-01-01

    The 2014 west African Zaire Ebola virus epidemic prompted worldwide partners to accelerate clinical development of replication-defective chimpanzee adenovirus 3 vector vaccine expressing Zaire Ebola virus glycoprotein (ChAd3-EBO-Z). We aimed to investigate the safety, tolerability, and immunogenicity of ChAd3-EBO-Z in Malian and US adults, and assess the effect of boosting of Malians with modified vaccinia Ankara expressing Zaire Ebola virus glycoprotein and other filovirus antigens (MVA-BN-Filo). In the phase 1, single-blind, randomised trial of ChAd3-EBO-Z in the USA, we recruited adults aged 18-65 years from the University of Maryland medical community and the Baltimore community. In the phase 1b, open-label and double-blind, dose-escalation trial of ChAd3-EBO-Z in Mali, we recruited adults 18-50 years of age from six hospitals and health centres in Bamako (Mali), some of whom were also eligible for a nested, randomised, double-blind, placebo-controlled trial of MVA-BN-Filo. For randomised segments of the Malian trial and for the US trial, we randomly allocated participants (1:1; block size of six [Malian] or four [US]; ARB produced computer-generated randomisation lists; clinical staff did randomisation) to different single doses of intramuscular immunisation with ChAd3-EBO-Z: Malians received 1 × 10(10) viral particle units (pu), 2·5 × 10(10) pu, 5 × 10(10) pu, or 1 × 10(11) pu; US participants received 1 × 10(10) pu or 1 × 10(11) pu. We randomly allocated Malians in the nested trial (1:1) to receive a single dose of 2 × 10(8) plaque-forming units of MVA-BN-Filo or saline placebo. In the double-blind segments of the Malian trial, investigators, clinical staff, participants, and immunology laboratory staff were masked, but the study pharmacist (MK), vaccine administrator, and study statistician (ARB) were unmasked. In the US trial, investigators were not masked, but participants were. Analyses were per protocol. The primary outcome was safety, measured

  10. Ebola: werknemers in de frontlijn

    NARCIS (Netherlands)

    Maas, Jaap

    2015-01-01

    Ebola is de zoveelste zoönose die de Nederlandse samenleving treft binnen een paar jaar tijd. Denk maar aan de Mexicaanse griep, het Schmallenbergvirus, H5N8 aviaire influenza, MERS-CoV16, Q-koorts en de ziekte van Lyme. De schaal waarop Nederlandse UMC’s en andere ketenpartners zich voorbereiden op

  11. A Case of Ebola Virus

    Centers for Disease Control (CDC) Podcasts

    2012-10-01

    Dr. Adam MacNeil, an epidemiologist at CDC, discusses Ebola virus.  Created: 10/1/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID); National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 10/1/2012.

  12. Ebola virus host cell entry.

    Science.gov (United States)

    Sakurai, Yasuteru

    2015-01-01

    Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.

  13. Ebola Virus RNA in Semen from an HIV-Positive Survivor of Ebola.

    Science.gov (United States)

    Purpura, Lawrence J; Rogers, Emerson; Baller, April; White, Stephen; Soka, Moses; Choi, Mary J; Mahmoud, Nuha; Wasunna, Christine; Massaquoi, Moses; Kollie, Jomah; Dweh, Straker; Bemah, Philip; Ladele, Victor; Kpaka, Jonathan; Jawara, Mary; Mugisha, Margaret; Subah, Onyekachi; Faikai, Mylene; Bailey, Jeff A; Rollin, Pierre; Marston, Barbara; Nyenswah, Tolbert; Gasasira, Alex; Knust, Barbara; Nichol, Stuart; Williams, Desmond

    2017-04-01

    Ebola virus is known to persist in semen of male survivors of Ebola virus disease (EVD). However, maximum duration of, or risk factors for, virus persistence are unknown. We report an EVD survivor with preexisting HIV infection, whose semen was positive for Ebola virus RNA 565 days after recovery from EVD.

  14. NCI at Frederick Ebola Response Team | Poster

    Science.gov (United States)

    Editor’s note: This article was adapted from the Employee Diversity Team’s display case exhibit “Recognizing the NCI at Frederick Ebola Response Team,” in the lobby of Building 549. The Poster staff recognizes that this article does not include everyone who was involved in the response to the Ebola crisis, both at NCI at Frederick and in Africa. When the Ebola crisis broke out

  15. Ebola and Its Global Research Architecture—Need for an Improvement

    OpenAIRE

    Quarcoo, David; Brüggmann, Dörthe; Klingelhöfer, Doris; Groneberg, David A.

    2015-01-01

    Abstract: The current Ebola outbreak poses a threat to individual and global public health. Although the disease has been of interest to the scientific community since 1976, an effective vaccination approach is still lacking. This fact questions past global public health strategies, which have not foreseen the possible impact of this infectious disease. To quantify the global research activity in this field, a scientometric investigation was conducted. We analyzed the research output of count...

  16. Efficacy of Vesicular Stomatitis Virus-Ebola Virus Postexposure Treatment in Rhesus Macaques Infected With Ebola Virus Makona.

    Science.gov (United States)

    Marzi, Andrea; Hanley, Patrick W; Haddock, Elaine; Martellaro, Cynthia; Kobinger, Gary; Feldmann, Heinz

    2016-10-15

    The Ebola virus (EBOV) epidemic in West Africa increased the focus on vaccine development against this hemorrhagic fever-causing pathogen, and as a consequence human clinical trials for a few selected platforms were accelerated. One of these vaccines is vesicular stomatitis virus (VSV)-EBOV, also known as rVSV-ZEBOV, a fast-acting vaccine against EBOV and so far the only vaccine with reported efficacy against EBOV infections in humans in phase III clinical trials. In this study, we analyzed the potential of VSV-EBOV for postexposure treatment of rhesus macaques infected with EBOV-Makona. We treated groups of animals with 1 dose of VSV-EBOV either in a single injection at 1 or 24 hours after EBOV exposure or with 2 injections, half the dose at each time point; 1 control group received the same dose of the VSV-based Marburg virus vaccine at both time points; another group remained untreated. Although all untreated animals succumbed to EBOV infection, 33%-67% of the animals in each treatment group survived the infection, including the group treated with the VSV-based Marburg virus vaccine. This result suggests that protection from postexposure vaccination may be antigen unspecific and due rather to an early activation of the innate immune system. In conclusion, VSV-EBOV remains a potent and fast-acting prophylactic vaccine but demonstrates only limited efficacy in postexposure treatment. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Ebola virus: current and future perspectives.

    Science.gov (United States)

    Jadav, Surender Singh; Kumar, Anoop; Ahsan, Mohamed Jawed; Jayaprakash, Venkatesan

    2015-01-01

    The present outbreak associated with Ebola disease in Western countries of the African continent which is believed to be one of the massive eruptions caused by the Ebola viral infections. In the present scenario ebola has been transmitted to the European and American regions through the travelers from wide spread countries like Guinea, Liberia, Sierra Leone and Nigeria. The viral disease is spreading through the contact in any form by the infected persons or patients and creating huge risks to the mortals. The symptoms related to ebola virus are often highly pathogenic; about 70-80% of death cases are reported due to critical hemorrhagic fever. Early in infection, ebola virus infects macrophages and endothelial cells. It mainly produces a Viral Protein 24 (eVP24) which prevents interferon-based signals which are important for destruction of viruses. How ebola virus manipulates the function of the immune system is still unclear. Due to lack of this knowledge, no approved treatment is available. In this review, we have tried to compile the epidemiology, pathogenesis and treatment of ebola virus infection. The promising ligands against ebola virus have been also discussed which will be helpful for researchers to design drugs for the treatment of ebola virus disease.

  18. Ebola virus (EBOV) infection: Therapeutic strategies.

    Science.gov (United States)

    De Clercq, Erik

    2015-01-01

    Within less than a year after its epidemic started (in December 2013) in Guinea, Ebola virus (EBOV), a member of the filoviridae, has spread over a number of West-African countries (Guinea, Sierra Leone and Liberia) and gained allures that have been unprecedented except by human immunodeficiency virus (HIV). Although EBOV is highly contagious and transmitted by direct contact with body fluids, it could be counteracted by the adequate chemoprophylactic and -therapeutic interventions: vaccines, antibodies, siRNAs (small interfering RNAs), interferons and chemical substances, i.e. neplanocin A derivatives (i.e. 3-deazaneplanocin A), BCX4430, favipiravir (T-705), endoplasmic reticulum (ER) α-glucosidase inhibitors and a variety of compounds that have been found to inhibit EBOV infection blocking viral entry or by a mode of action that still has to be resolved. Much has to be learned from the mechanism of action of the compounds active against VSV (vesicular stomatitis virus), a virus belonging to the rhabdoviridae, that in its mode of replication could be exemplary for the replication of filoviridae. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. How Ebola virus counters the interferon system.

    Science.gov (United States)

    Kühl, A; Pöhlmann, S

    2012-09-01

    Zoonotic transmission of Ebola virus (EBOV) to humans causes a severe haemorrhagic fever in afflicted individuals with high case-fatality rates. Neither vaccines nor therapeutics are at present available to combat EBOV infection, making the virus a potential threat to public health. To devise antiviral strategies, it is important to understand which components of the immune system could be effective against EBOV infection. The interferon (IFN) system constitutes a key innate defence against viral infections and prevents development of lethal disease in mice infected with EBOV strains not adapted to this host. Recent research revealed that expression of the host cell IFN-inducible transmembrane proteins 1-3 (IFITM1-3) and tetherin is induced by IFN and restricts EBOV infection, at least in cell culture model systems. IFITMs, tetherin and other effector molecules of the IFN system could thus pose a potent barrier against EBOV spread in humans. However, EBOV interferes with signalling events required for human cells to express these proteins. Here, we will review the strategies employed by EBOV to fight the IFN system, and we will discuss how IFITM proteins and tetherin inhibit EBOV infection. © 2012 Blackwell Verlag GmbH.

  20. Prediction and identification of mouse cytotoxic T lymphocyte epitopes in Ebola virus glycoproteins

    Directory of Open Access Journals (Sweden)

    Wu Shipo

    2012-06-01

    Full Text Available Abstract Background Ebola viruses (EBOVs cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs. Results Computer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV, GPCAGDFAF and LYDRLASTV (Zaire EBOV could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma. Conclusion Three peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.

  1. Ebola hemorrhagic fever outbreaks: strategies for effective epidemic management, containment and control.

    Science.gov (United States)

    Matua, Gerald Amandu; Van der Wal, Dirk Mostert; Locsin, Rozzano C

    2015-01-01

    Ebola hemorrhagic fever, caused by the highly virulent RNA virus of the filoviridae family, has become one of the world's most feared pathogens. The virus induces acute fever and death, often associated with hemorrhagic symptoms in up to 90% of infected patients. The known sub-types of the virus are Zaire, Sudan, Taï Forest, Bundibugyo and Reston Ebola viruses. In the past, outbreaks were limited to the East and Central African tropical belt with the exception of Ebola Reston outbreaks that occurred in animal facilities in the Philippines, USA and Italy. The on-going outbreak in West Africa that is causing numerous deaths and severe socio-economic challenges has resulted in widespread anxiety globally. This panic may be attributed to the intense media interest, the rapid spread of the virus to other countries like United States and Spain, and moreover, to the absence of an approved treatment or vaccine. Informed by this widespread fear and anxiety, we analyzed the commonly used strategies to manage and control Ebola outbreaks and proposed new approaches that could improve epidemic management and control during future outbreaks. We based our recommendations on epidemic management practices employed during recent outbreaks in East, Central and West Africa, and synthesis of peer-reviewed publications as well as published "field" information from individuals and organizations recently involved in the management of Ebola epidemics. The current epidemic management approaches are largely "reactive", with containment efforts aimed at halting spread of existing outbreaks. We recommend that for better outcomes, in addition to "reactive" interventions, "pre-emptive" strategies also need to be instituted. We conclude that emphasizing both "reactive" and "pre-emptive" strategies is more likely to lead to better epidemic preparedness and response at individual, community, institutional, and government levels, resulting in timely containment of future Ebola outbreaks. Copyright

  2. Ebola: Where Are the Facts? | Poster

    Science.gov (United States)

    Since the first outbreak of Ebola in western Africa and the subsequent cases in the United States, a lot of information has been circulating about the virus. To keep NCI at Frederick employees informed, the Poster staff has compiled the following list of reputable websites that provide accurate and up-to-date information about Ebola: Global

  3. Prioritising Healthcare Workers for Ebola Treatment: Treating Those at Greatest Risk to Confer Greatest Benefit.

    Science.gov (United States)

    Satalkar, Priya; Elger, Bernice E; Shaw, David M

    2015-08-01

    The Ebola epidemic in Western Africa has highlighted issues related to weak health systems, the politics of drug and vaccine development and the need for transparent and ethical criteria for use of scarce local and global resources during public health emergency. In this paper we explore two key themes. First, we argue that independent of any use of experimental drugs or vaccine interventions, simultaneous implementation of proven public health principles, community engagement and culturally sensitive communication are critical as these measures represent the most cost-effective and fair utilization of available resources. Second, we attempt to clarify the ethical issues related to use of scarce experimental drugs or vaccines and explore in detail the most critical ethical question related to Ebola drug or vaccine distribution in the current outbreak: who among those infected or at risk should be prioritized to receive any new experimental drugs or vaccines? We conclude that healthcare workers should be prioritised for these experimental interventions, for a variety of reasons. © 2015 John Wiley & Sons Ltd.

  4. A Short Overview of Ebola Outbreak

    Directory of Open Access Journals (Sweden)

    Masumeh Saeidi

    2014-10-01

    Full Text Available   Ebola virus disease (formerly known as Ebola haemorrhagic fever is a severe, often fatal illness, with a death rate of up to 90%. The illness affects humans and nonhuman primates (monkeys, gorillas, and chimpanzees. Ebola first appeared in 1976 in two simultaneous outbreaks, one in a village near the Ebola River in the Democratic Republic of Congo, and the other in a remote area of Sudan. The origin of the virus is unknown but fruit bats (Pteropodidae are considered the likely host of the Ebola virus, based on available evidence. In the current outbreak in West Africa, the majority of cases in humans have occurred as a result of human-to-human transmission. Infection occurs from direct contact through broken skin or mucous membranes with the blood, or other bodily fluids or secretions (stool, urine, saliva, semen of infected people.

  5. Vaccine development for emerging virulent infectious diseases.

    Science.gov (United States)

    Maslow, Joel N

    2017-10-04

    The recent outbreak of Zaire Ebola virus in West Africa altered the classical paradigm of vaccine development and that for emerging infectious diseases (EIDs) in general. In this paper, the precepts of vaccine discovery and advancement through pre-clinical and clinical assessment are discussed in the context of the recent Ebola virus, Middle East Respiratory Syndrome coronavirus (MERS-CoV), and Zika virus outbreaks. Clinical trial design for diseases with high mortality rates and/or high morbidity in the face of a global perception of immediate need and the factors that drive design in the face of a changing epidemiology are presented. Vaccines for EIDs thus present a unique paradigm to standard development precepts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ebola virus outbreak, updates on current therapeutic strategies.

    Science.gov (United States)

    Elshabrawy, Hatem A; Erickson, Timothy B; Prabhakar, Bellur S

    2015-07-01

    Filoviruses are enveloped negative-sense single-stranded RNA viruses, which include Ebola and Marburg viruses, known to cause hemorrhagic fever in humans with a case fatality of up to 90%. There have been several Ebola virus outbreaks since the first outbreak in the Democratic Republic of Congo in 1976 of which, the recent 2013-2015 epidemic in Guinea, Liberia, and Sierra Leone is the largest in recorded history. Within a few months of the start of the outbreak in December 2013, thousands of infected cases were reported with a significant number of deaths. As of March 2015, according to the Centers for Disease Control and Prevention, there have been nearly 25,000 suspected cases, with 15,000 confirmed by laboratory testing, and over 10,000 deaths. The large number of cases and the high mortality rate, combined with the lack of effective Food and Drug Administration-approved treatments, necessitate the development of potent and safe therapeutic measures to combat the current and future outbreaks. Since the beginning of the outbreak, there have been considerable efforts to develop and characterize protective measures including vaccines and antiviral small molecules, and some have proven effective in vitro and in animal models. Most recently, a cocktail of monoclonal antibodies has been shown to be highly effective in protecting non-human primates from Ebola virus infection. In this review, we will discuss what is known about the nature of the virus, phylogenetic classification, genomic organization and replication, disease transmission, and viral entry and highlight the current approaches and efforts, in the development of therapeutics, to control the outbreak. Copyright © 2015 John Wiley & Sons, Ltd.

  7. ISCB Ebola Award for Important Future Research on the Computational Biology of Ebola Virus.

    Directory of Open Access Journals (Sweden)

    Peter D. Karp

    2015-01-01

    Full Text Available Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains as well as 3-D protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature, and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2,000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology [ISMB] 2016, Orlando, Florida.

  8. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    Science.gov (United States)

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  9. Viral bioterrorism: Learning the lesson of Ebola virus in West Africa 2013-2015.

    Science.gov (United States)

    Cenciarelli, Orlando; Gabbarini, Valentina; Pietropaoli, Stefano; Malizia, Andrea; Tamburrini, Annalaura; Ludovici, Gian Marco; Carestia, Mariachiara; Di Giovanni, Daniele; Sassolini, Alessandro; Palombi, Leonardo; Bellecci, Carlo; Gaudio, Pasquale

    2015-12-02

    Among the potential biological agents suitable as a weapon, Ebola virus represents a major concern. Classified by the CDC as a category A biological agent, Ebola virus causes severe hemorrhagic fever, characterized by high case-fatality rate; to date, no vaccine or approved therapy is available. The EVD epidemic, which broke out in West Africa since the late 2013, has got the issue of the possible use of Ebola virus as biological warfare agent (BWA) to come to the fore once again. In fact, due to its high case-fatality rate, population currently associates this pathogen to a real and tangible threat. Therefore, its use as biological agent by terrorist groups with offensive purpose could have serious repercussions from a psychosocial point of view as well as on closely sanitary level. In this paper, after an initial study of the main characteristics of Ebola virus, its potential as a BWA was evaluated. Furthermore, given the spread of the epidemic in West Africa in 2014 and 2015, the potential dissemination of the virus from an urban setting was evaluated. Finally, it was considered the actual possibility to use this agent as BWA in different scenarios, and the potential effects on one or more nation's stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus.

    Science.gov (United States)

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A; Fraser, Mark E; Scott, Jordan L; Soni, Smita P; Jones, Keaton R; Digman, Michelle A; Gratton, Enrico; Tessier, Charles R; Stahelin, Robert V

    2015-09-01

    Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. Copyright © 2015, American

  11. Macrocyclic peptide inhibitors for the protein-protein interaction of Zaire Ebola virus protein 24 and karyopherin alpha 5.

    Science.gov (United States)

    Song, Xiao; Lu, Lu-Yi; Passioura, Toby; Suga, Hiroaki

    2017-06-21

    Ebola virus infection leads to severe hemorrhagic fever in human and non-human primates with an average case fatality rate of 50%. To date, numerous potential therapies are in development, but FDA-approved drugs or vaccines are yet unavailable. Ebola viral protein 24 (VP24) is a multifunctional protein that plays critical roles in the pathogenesis of Ebola virus infection, e.g. innate immune suppression by blocking the interaction between KPNA and PY-STAT1. Here we report macrocyclic peptide inhibitors of the VP24-KPNA5 protein-protein interaction (PPI) by means of the RaPID (Random non-standard Peptides Integrated Discovery) system. These macrocyclic peptides showed remarkably high affinity to recombinant Zaire Ebola virus VP24 (eVP24), with a dissociation constant in the single digit nanomolar range, and could also successfully disrupt the eVP24-KPNA interaction. This work provides for the first time a chemical probe capable of modulating this PPI interaction and is the starting point for the development of unique anti-viral drugs against the Ebola virus.

  12. Similarity is not enough: Tipping points of Ebola Zaire mortalities

    Science.gov (United States)

    Phillips, J. C.

    2015-06-01

    In early 2014 an outbreak of a slightly mutated Zaire Ebola subtype appeared in West Africa which is less virulent than 1976 and 1994 strains. The numbers of cases per year appear to be ∼1000 times larger than the earlier strains, suggesting a greatly enhanced transmissibility. Although the fraction of the 2014 spike glycoprotein mutations is very small (∼3%), the mortality is significantly reduced, while the transmission appears to have increased strongly. Bioinformatic scaling had previously shown similar inversely correlated trends in virulence and transmission in N1 (H1N1) and N2 (H3N2) influenza spike glycoprotein mutations. These trends appear to be related to various external factors (migration, availability of pure water, and vaccination programs). The molecular mechanisms for Ebola's mutational response involve mainly changes in the disordered mucin-like domain (MLD) of its spike glycoprotein amino acids. The MLD has been observed to form the tip of an oligomeric amphiphilic wedge that selectively pries apart cell-cell interfaces via an oxidative mechanism.

  13. Ebola virus disease: Effects of respiratory protection on healthcare workers

    Directory of Open Access Journals (Sweden)

    Hanan Mohammed Mohammed

    2015-07-01

    Full Text Available Ebola virus disease outbreak in West Africa sends an alarming message to all countries in the world, to increase the level of coordination and application of preventive measures globally to avoid a disastrous epidemic in the World, as the current situation in West Africa is critical especially after the World Health Organization increased the alarming level to an emergency in public health all over the world. Viral hemorrhagic fevers are important because they can readily spread within a hospital or mortuary setting, there is no effective cure or vaccine, they have a high mortality rate and they are difficult to recognize and diagnose rapidly. WHO has recommended respiratory protection for HCWs performing certain tasks such as aerosol-generating procedures, laboratory procedures, and autopsies. Particulate respirators are designed to help reduce the wearer’s exposure to certain airborne particles. The most effective way to block aerosolized particles is to use either a half-face or a full-face respirator. HCWs still need shoe covers, a full face respirator and latex or nitrile gloves to decrease the risk of Ebola virus contamination.

  14. Immune Protection of Nonhuman Primates against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    Science.gov (United States)

    Geisbert, Joan B; Shedlock, Devon J; Xu, Ling; Lamoreaux, Laurie; Custers, Jerome H. H. V; Popernack, Paul M; Yang, Zhi-Yong; Pau, Maria G; Roederer, Mario; Koup, Richard A; Goudsmit, Jaap; Jahrling, Peter B; Nabel, Gary J

    2006-01-01

    Background Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. Methods and Findings To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 1010 particles, two logs lower than that used previously. Conclusions Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 1010 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate. PMID:16683867

  15. Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs.

    Directory of Open Access Journals (Sweden)

    Nancy J Sullivan

    2006-06-01

    Full Text Available Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd encoding the Ebola glycoprotein (GP and nucleoprotein (NP has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine.To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 10(10 particles, two logs lower than that used previously.Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 10(10 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate.

  16. An Ebola virus-centered knowledge base

    Science.gov (United States)

    Kamdar, Maulik R.; Dumontier, Michel

    2015-01-01

    Ebola virus (EBOV), of the family Filoviridae viruses, is a NIAID category A, lethal human pathogen. It is responsible for causing Ebola virus disease (EVD) that is a severe hemorrhagic fever and has a cumulative death rate of 41% in the ongoing epidemic in West Africa. There is an ever-increasing need to consolidate and make available all the knowledge that we possess on EBOV, even if it is conflicting or incomplete. This would enable biomedical researchers to understand the molecular mechanisms underlying this disease and help develop tools for efficient diagnosis and effective treatment. In this article, we present our approach for the development of an Ebola virus-centered Knowledge Base (Ebola-KB) using Linked Data and Semantic Web Technologies. We retrieve and aggregate knowledge from several open data sources, web services and biomedical ontologies. This knowledge is transformed to RDF, linked to the Bio2RDF datasets and made available through a SPARQL 1.1 Endpoint. Ebola-KB can also be explored using an interactive Dashboard visualizing the different perspectives of this integrated knowledge. We showcase how different competency questions, asked by domain users researching the druggability of EBOV, can be formulated as SPARQL Queries or answered using the Ebola-KB Dashboard. Database URL: http://ebola.semanticscience.org. PMID:26055098

  17. Ebola and Marburg Hemorrhagic Fevers: Neglected Tropical Diseases?

    Science.gov (United States)

    MacNeil, Adam; Rollin, Pierre E.

    2012-01-01

    Ebola hemorrhagic fever (EHF) and Marburg hemorrhagic fever (MHF) are rare viral diseases, endemic to central Africa. The overall burden of EHF and MHF is small in comparison to the more common protozoan, helminth, and bacterial diseases typically referred to as neglected tropical diseases (NTDs). However, EHF and MHF outbreaks typically occur in resource-limited settings, and many aspects of these outbreaks are a direct consequence of impoverished conditions. We will discuss aspects of EHF and MHF disease, in comparison to the “classic” NTDs, and examine potential ways forward in the prevention and control of EHF and MHF in sub-Saharan Africa, as well as examine the potential for application of novel vaccines or antiviral drugs for prevention or control of EHF and MHF among populations at highest risk for disease. PMID:22761967

  18. A network model for Ebola spreading.

    Science.gov (United States)

    Rizzo, Alessandro; Pedalino, Biagio; Porfiri, Maurizio

    2016-04-07

    The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    Directory of Open Access Journals (Sweden)

    Chih-Yun Lai

    2017-08-01

    Full Text Available Ebola virus (EBOV, a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD is currently available, Ebola virus glycoprotein (GP is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs. Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4

  20. Forecasting Ebola with a regression transmission model

    Directory of Open Access Journals (Sweden)

    Jason Asher

    2018-03-01

    Full Text Available We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes traditional Susceptible-Infected-Recovered (SIR disease modeling approaches and allows for the flexible consideration of outbreaks with complex trajectories of disease dynamics. Keywords: Ebola, Forecasting, Mathematical modeling, Bayesian inference

  1. Ebola virus disease: radiology preparedness.

    Science.gov (United States)

    Bluemke, David A; Meltzer, Carolyn C

    2015-02-01

    At present, there is a major emphasis on Ebola virus disease (EVD) preparedness training at medical facilities throughout the United States. Failure to have proper EVD procedures in place was cited as a major reason for infection of medical personnel in the United States. Medical imaging does not provide diagnosis of EVD, but patient assessment in the emergency department and treatment isolation care unit is likely to require imaging services. The purpose of this article is to present an overview of relevant aspects of EVD disease and preparedness relevant to the radiologic community. © RSNA, 2014.

  2. Host Factors in Ebola Infection.

    Science.gov (United States)

    Rasmussen, Angela L

    2016-08-31

    Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.

  3. Evaluation of Ebola Virus Countermeasures in Guinea Pigs.

    Science.gov (United States)

    Marzi, Andrea

    2017-01-01

    Ebola virus (EBOV) pathology in humans remains incompletely understood; therefore, a number of rodent and nonhuman primate (NHP) models have been established to study the disease caused by this virus. While the macaque model most accurately recapitulates human disease, rodent models, which display only certain aspects of human disease but are more cost-effective, are widely used for initial screens during EBOV countermeasure development. In particular, mice and guinea pigs were among the first species used for the efficacy testing of EBOV vaccines and therapeutics. While mice have low predictive value, guinea pigs have proven to be a more reliable predictor for the evaluation of countermeasures in NHPs. In addition, guinea pigs are larger in size compared to mice, allowing for more frequent collection of blood samples at larger volumes. However, guinea pigs have the disadvantage that there is only a limited pool of immunological tools available to characterize host responses to vaccination, treatment and infection. In this chapter, the efficacy testing of an EBOV vaccine and a therapeutic in the guinea pig model are described.

  4. Initiating a watch list for Ebola virus antibody escape mutations

    Directory of Open Access Journals (Sweden)

    Craig R. Miller

    2016-02-01

    Full Text Available The 2014 Ebola virus (EBOV outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiated a watch list of potential antibody escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list was generated using molecular modeling to estimate stability changes due to mutation. Every possible mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list contains 34 mutations (one of which has already been seen in humans at six sites in the GP2 subunit. Should mutations from the watch list appear and spread during an epidemic, it warrants attention as these mutations may reflect an evolutionary response from the virus that could reduce the effectiveness of interventions such as vaccination. However, this watch list is incomplete and emphasizes the need for more experimental structures of EBOV interacting with antibodies in order to expand the watch list to other epitopes. We hope that this work provokes experimental research on evolutionary escape in both Ebola and other viral pathogens.

  5. Initiating a watch list for Ebola virus antibody escape mutations.

    Science.gov (United States)

    Miller, Craig R; Johnson, Erin L; Burke, Aran Z; Martin, Kyle P; Miura, Tanya A; Wichman, Holly A; Brown, Celeste J; Ytreberg, F Marty

    2016-01-01

    The 2014 Ebola virus (EBOV) outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP) of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiated a watch list of potential antibody escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list was generated using molecular modeling to estimate stability changes due to mutation. Every possible mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list contains 34 mutations (one of which has already been seen in humans) at six sites in the GP2 subunit. Should mutations from the watch list appear and spread during an epidemic, it warrants attention as these mutations may reflect an evolutionary response from the virus that could reduce the effectiveness of interventions such as vaccination. However, this watch list is incomplete and emphasizes the need for more experimental structures of EBOV interacting with antibodies in order to expand the watch list to other epitopes. We hope that this work provokes experimental research on evolutionary escape in both Ebola and other viral pathogens.

  6. In vivo Ebola virus infection leads to a strong innate response in circulating immune cells.

    Science.gov (United States)

    Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K; Winnicki, Sarah M; Melé, Marta; Gerhardinger, Chiara; Lin, Aaron E; Rinn, John L; Sabeti, Pardis C; Hensley, Lisa E; Connor, John H

    2016-09-05

    Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.

  7. Ebola and Its Global Research Architecture--Need for an Improvement.

    Science.gov (United States)

    Quarcoo, David; Brüggmann, Dörthe; Klingelhöfer, Doris; Groneberg, David A

    2015-09-01

    The current Ebola outbreak poses a threat to individual and global public health. Although the disease has been of interest to the scientific community since 1976, an effective vaccination approach is still lacking. This fact questions past global public health strategies, which have not foreseen the possible impact of this infectious disease. To quantify the global research activity in this field, a scientometric investigation was conducted. We analyzed the research output of countries, individual institutions and their collaborative networks. The resulting research architecture indicated that American and European countries played a leading role regarding output activity, citations and multi- and bilateral cooperations. When related to population numbers, African countries, which usually do not dominate the global research in other medical fields, were among the most prolific nations. We conclude that the field of Ebola research is constantly progressing, and the research landscape is influenced by economical and infrastructural factors as well as historical relations between countries and outbreak events.

  8. Ebola and Its Global Research Architecture--Need for an Improvement.

    Directory of Open Access Journals (Sweden)

    David Quarcoo

    2015-09-01

    Full Text Available The current Ebola outbreak poses a threat to individual and global public health. Although the disease has been of interest to the scientific community since 1976, an effective vaccination approach is still lacking. This fact questions past global public health strategies, which have not foreseen the possible impact of this infectious disease. To quantify the global research activity in this field, a scientometric investigation was conducted. We analyzed the research output of countries, individual institutions and their collaborative networks. The resulting research architecture indicated that American and European countries played a leading role regarding output activity, citations and multi- and bilateral cooperations. When related to population numbers, African countries, which usually do not dominate the global research in other medical fields, were among the most prolific nations. We conclude that the field of Ebola research is constantly progressing, and the research landscape is influenced by economical and infrastructural factors as well as historical relations between countries and outbreak events.

  9. Alphavirus Replicon DNA Vectors Expressing Ebola GP and VP40 Antigens Induce Humoral and Cellular Immune Responses in Mice

    Directory of Open Access Journals (Sweden)

    Shoufeng Ren

    2018-01-01

    Full Text Available Ebola virus (EBOV causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP is the major protective antigen of EBOV, and can generate virus-like particles (VLPs by co-expression with matrix protein (VP40. In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV replicon vector DREP to express EBOV GP and matrix viral protein (VP40. EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40. Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention.

  10. Effects of the West Africa Ebola Virus Disease on Healthcare Utilization – a Systematic Review

    Directory of Open Access Journals (Sweden)

    Kim Johanna Brolin Ribacke

    2016-10-01

    Full Text Available Significant efforts were invested in halting the recent Ebola virus disease outbreak in West Africa. Now, studies are emerging on the magnitude of the indirect health effects of the outbreak in the affected countries and the aim of this study is to systematically assess the results of these publications. The methodology for this review adhered to the Prisma guidelines for systematic reveiws. A total of 3354 articles were identified for screening and while 117 articles were read in full, 22 studies were included in the final review.Utilization of maternal health services decreased during the outbreak. The number of Caesarean sections and facility-based deliveries declined and followed a similar pattern in Guinea, Liberia and Sierra Leone. A change in the utilization of antenatal and postnatal care and family planning services was also seen, as well as a drop in utilization of children’s health services, especially in terms of vaccination coverage. In addition, the uptake of HIV/AIDS and malaria services, general hospital admissions and major surgeries decreased as well.Interestingly, it was the uptake of health service provision by the population that decreased, rather than the volume of Health service provision. Estimates from the various studies suggest that non-Ebola morbidity and mortality have increased after the onset of the outbreak in Sierra Leone, Guinea and Liberia. Reproductive, maternal and child health services was especially affected, and the decrease in facility deliveries, Caesarean sections and volume of antenatal and postnatal care visits might have significant adverse effects on maternal and newborn health. The impact of Ebola stretches far beyond Ebola cases and deaths. This review indicates that indirect health service effects are substantial and both short and long-term, and highlights the importance of support to maintain routine health service delivery and the maintenance of vaccination programs as well as preventative

  11. Operational Research during the Ebola Emergency.

    LENUS (Irish Health Repository)

    Fitzpatrick, Gabriel

    2017-07-01

    Operational research aims to identify interventions, strategies, or tools that can enhance the quality, effectiveness, or coverage of programs where the research is taking place. Médecins Sans Frontières admitted ≈5,200 patients with confirmed Ebola virus disease during the Ebola outbreak in West Africa and from the beginning nested operational research within its emergency response. This research covered critical areas, such as understanding how the virus spreads, clinical trials, community perceptions, challenges within Ebola treatment centers, and negative effects on non-Ebola healthcare. Importantly, operational research questions were decided to a large extent by returning volunteers who had first-hand knowledge of the immediate issues facing teams in the field. Such a method is appropriate for an emergency medical organization. Many challenges were also identified while carrying out operational research across 3 different countries, including the basic need for collecting data in standardized format to enable comparison of findings among treatment centers.

  12. UNOSAT joins the fight against Ebola

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Hosted at CERN, UNITAR’s UNOSAT programme examines global satellite imagery for humanitarian use. Whether they're providing maps for disaster response teams or assessing conflict damage to help reconstruction, their detailed reports are vital tools for aid workers. But how can satellite imagery help during a health crisis like the Ebola outbreak?   UNOSAT maps Liberia for potential Ebola Treatment Centre locations. Image copyright: Airbus Defence and Space 2014. Source: Space Charter. Image analysis: UNITAR-UNOSAT. UNOSAT unites satellite data from space agencies and commercial operators worldwide in order to provide unbiased, objective maps and reports. Be it a natural disaster in Pakistan or a refugee crisis in Sudan, UNOSAT is - quite literally - an impartial observer of world events. The Ebola outbreak, however, was a special case: "The World Health Organization is mounting a substantial campaign in West Africa, building Ebola Treatment Centres and distributing...

  13. Characteristics of Filoviridae: Marburg and Ebola Viruses

    Science.gov (United States)

    Beer, Brigitte; Kurth, Reinhard; Bukreyev, Alexander

    Filoviruses are enveloped, nonsegmented negative-stranded RNA viruses. The two species, Marburg and Ebola virus, are serologically, biochemically, and genetically distinct. Marburg virus was first isolated during an outbreak in Europe in 1967, and Ebola virus emerged in 1976 as the causative agent of two simultaneous outbreaks in southern Sudan and northern Zaire. Although the main route of infection is known to be person-to-person transmission by intimate contact, the natural reservoir for filoviruses still remains a mystery.

  14. Forecasting Ebola with a regression transmission model

    OpenAIRE

    Asher, Jason

    2017-01-01

    We describe a relatively simple stochastic model of Ebola transmission that was used to produce forecasts with the lowest mean absolute error among Ebola Forecasting Challenge participants. The model enabled prediction of peak incidence, the timing of this peak, and final size of the outbreak. The underlying discrete-time compartmental model used a time-varying reproductive rate modeled as a multiplicative random walk driven by the number of infectious individuals. This structure generalizes ...

  15. Thermostable Subunit Vaccines for Pulmonary Delivery: How Close Are We?

    DEFF Research Database (Denmark)

    Foged, Camilla

    2016-01-01

    , such as influenza, tuberculosis, and Ebola, for which no good universal vaccines exist. At least two pharmaceutical improvements are expected to help filling this gap: i) The development of thermostable vaccine dosage forms, and ii) the full exploitation of the adjuvant technology for subunit vaccines to potentiate...... strong immune responses. This review highlights the status and recent advances in formulation and pulmonary delivery of thermostable human subunit vaccines. Such vaccines are very appealing from compliance, distribution and immunological point of view: Being non-invasive, inhalable vaccines are self...... immunity. Here, I review state of the art and perspectives in formulation design and processing methods for powder-based subunit vaccines intended for pulmonary administration, and present dry powder inhaler technologies suitable for translating these vaccines into clinical trials....

  16. Occupational Exposures to Ebola Virus in Ebola Treatment Center, Conakry, Guinea.

    Science.gov (United States)

    Savini, Hélène; Janvier, Frédéric; Karkowski, Ludovic; Billhot, Magali; Aletti, Marc; Bordes, Julien; Koulibaly, Fassou; Cordier, Pierre-Yves; Cournac, Jean-Marie; Maugey, Nancy; Gagnon, Nicolas; Cotte, Jean; Cambon, Audrey; Mac Nab, Christine; Moroge, Sophie; Rousseau, Claire; Foissaud, Vincent; De Greslan, Thierry; Granier, Hervé; Cellarier, Gilles; Valade, Eric; Kraemer, Philippe; Alla, Philippe; Mérens, Audrey; Sagui, Emmanuel; Carmoi, Thierry; Rapp, Christophe

    2017-08-01

    We report 77 cases of occupational exposures for 57 healthcare workers at the Ebola Treatment Center in Conakry, Guinea, during the Ebola virus disease outbreak in 2014-2015. Despite the high incidence of 3.5 occupational exposures/healthcare worker/year, only 18% of workers were at high risk for transmission, and no infections occurred.

  17. An Ebola virus-centered knowledge base.

    Science.gov (United States)

    Kamdar, Maulik R; Dumontier, Michel

    2015-01-01

    Ebola virus (EBOV), of the family Filoviridae viruses, is a NIAID category A, lethal human pathogen. It is responsible for causing Ebola virus disease (EVD) that is a severe hemorrhagic fever and has a cumulative death rate of 41% in the ongoing epidemic in West Africa. There is an ever-increasing need to consolidate and make available all the knowledge that we possess on EBOV, even if it is conflicting or incomplete. This would enable biomedical researchers to understand the molecular mechanisms underlying this disease and help develop tools for efficient diagnosis and effective treatment. In this article, we present our approach for the development of an Ebola virus-centered Knowledge Base (Ebola-KB) using Linked Data and Semantic Web Technologies. We retrieve and aggregate knowledge from several open data sources, web services and biomedical ontologies. This knowledge is transformed to RDF, linked to the Bio2RDF datasets and made available through a SPARQL 1.1 Endpoint. Ebola-KB can also be explored using an interactive Dashboard visualizing the different perspectives of this integrated knowledge. We showcase how different competency questions, asked by domain users researching the druggability of EBOV, can be formulated as SPARQL Queries or answered using the Ebola-KB Dashboard. © The Author(s) 2015. Published by Oxford University Press.

  18. Ebola outbreak in Conakry, Guinea: Epidemiological, clinical, and outcome features

    OpenAIRE

    Barry, M; Traoré, F A; Sako, F B; Kpamy, D O; Bah, E I; Poncin, M; Keita, S; Cisse, M; Touré, A

    2014-01-01

    The authors studied the epidemiological, clinical, and outcome features of the Ebola virus disease in patients hospitalized at the Ebola treatment center (ETC) in Conakry to identify clinical factors associated with death.

  19. The Ebola Virus and Human Rights Concerns in Africa

    African Journals Online (AJOL)

    AJRH Managing Editor

    2015-09-03

    Sep 3, 2015 ... Keywords: Ebola, Public Health, human right. Résumé ... Mots clé : Ebola, de santé publique, droit humain. Introduction ... public health and human rights. This article .... Political Rights (ICCPR)21 and the International.

  20. Ebola Viral Hemorrhagic Disease Outbreak in West Africa- Lessons ...

    African Journals Online (AJOL)

    ... to contain the Ebola epidemic. Key words: Ebola, viral hemorrhagic fever, West Africa, lessons, Uganda .... the corresponding surveillance systems for detecting priority diseases. ... A major outbreak of Yellow Fe- ver was reported in five ...

  1. Detection and classification of ebola on microfluidic chips

    Science.gov (United States)

    Lin, Xue; Jin, Xiangyu; Fan, Yunqian; Huang, Qin; Kou, Yue; Zu, Guo; Huang, Shiguang; Liu, Xiaosheng; Huang, Guoliang

    2016-10-01

    Point-of-care testing (POCT) for an infectious diseases is the prerequisite to control of the disease and limitation of its spread. A microfluidic chip for detection and classification of four strains of Ebola virus was developed and evaluated. This assay was based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) and specific primers for Ebola Zaire virus, Ebola Sudan virus, Ebola Tai Forest virus and Ebola Bundibugyo virus were designed. The sensitivity of the microfluidic chip was under 103 copies per milliliter, as determined by ten repeated tests. This assay is unique in its ability to enable diagnosis of the Ebola infections and simultaneous typing of Ebola virus on a single chip. It offers short reaction time, ease of use and high specificity. These features should enable POCT in remote area during outbreaks of Ebola virus.

  2. Changes associated with Ebola virus adaptation to novel species.

    OpenAIRE

    Pappalardo, Morena; Reddin, Ian; Cantoni, Diego; Rossman, Jeremy S.; Michaelis, Martin; Wass, Mark N.

    2017-01-01

    Motivation: Ebola viruses are not pathogenic but can be adapted to replicate and cause disease in rodents. Here, we used a structural bioinformatics approach to analyze the mutations associated with Ebola virus adaptation to rodents to elucidate the determinants of host-specific Ebola virus pathogenicity.\\ud Results: We identified 33 different mutations associated with Ebola virus adaptation to rodents in the proteins GP, NP, L, VP24, and VP35. Only VP24, GP and NP were consistently found mut...

  3. Homologous and Heterologous Protection of Nonhuman Primates by Ebola and Sudan Virus-Like Particles

    Science.gov (United States)

    Warfield, Kelly L.; Dye, John M.; Wells, Jay B.; Unfer, Robert C.; Holtsberg, Frederick W.; Shulenin, Sergey; Vu, Hong; Swenson, Dana L.; Bavari, Sina; Aman, M. Javad

    2015-01-01

    Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs) have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV) and Marburg virus (MARV) following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV) following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system) and then demonstrate protection against Sudan virus (SUDV) and Taï Forest virus (TAFV). Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components. PMID:25793502

  4. Homologous and heterologous protection of nonhuman primates by Ebola and Sudan virus-like particles.

    Directory of Open Access Journals (Sweden)

    Kelly L Warfield

    Full Text Available Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV and Marburg virus (MARV following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system and then demonstrate protection against Sudan virus (SUDV and Taï Forest virus (TAFV. Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components.

  5. Cluster of Ebola Virus Disease, Bong and Montserrado Counties, Liberia.

    Science.gov (United States)

    Nyenswah, Tolbert G; Fallah, Mosaka; Calvert, Geoffrey M; Duwor, Stanley; Hamilton, E Dutch; Mokashi, Vishwesh; Arzoaquoi, Sampson; Dweh, Emmanuel; Burbach, Ryan; Dlouhy, Diane; Oeltmann, John E; Moonan, Patrick K

    2015-07-01

    Lack of trust in government-supported services after the death of a health care worker with symptoms of Ebola resulted in ongoing Ebola transmission in 2 Liberia counties. Ebola transmission was facilitated by attempts to avoid cremation of the deceased patient and delays in identifying and monitoring contacts.

  6. Cluster of Ebola Virus Disease, Bong and Montserrado Counties, Liberia

    OpenAIRE

    Nyenswah, Tolbert G.; Fallah, Mosaka; Calvert, Geoffrey M.; Duwor, Stanley; Hamilton, E. Dutch; Mokashi, Vishwesh; Arzoaquoi, Sampson; Dweh, Emmanuel; Burbach, Ryan; Dlouhy, Diane; Oeltmann, John E.; Moonan, Patrick K.

    2015-01-01

    Lack of trust in government-supported services after the death of a health care worker with symptoms of Ebola resulted in ongoing Ebola transmission in 2 Liberia counties. Ebola transmission was facilitated by attempts to avoid cremation of the deceased patient and delays in identifying and monitoring contacts.

  7. Understanding Ebola: the 2014 epidemic.

    Science.gov (United States)

    Kaner, Jolie; Schaack, Sarah

    2016-09-13

    Near the end of 2013, an outbreak of Zaire ebolavirus (EBOV) began in Guinea, subsequently spreading to neighboring Liberia and Sierra Leone. As this epidemic grew, important public health questions emerged about how and why this outbreak was so different from previous episodes. This review provides a synthetic synopsis of the 2014-15 outbreak, with the aim of understanding its unprecedented spread. We present a summary of the history of previous epidemics, describe the structure and genetics of the ebolavirus, and review our current understanding of viral vectors and the latest treatment practices. We conclude with an analysis of the public health challenges epidemic responders faced and some of the lessons that could be applied to future outbreaks of Ebola or other viruses.

  8. Did Neoliberalizing West African Forests Produce a New Niche for Ebola?

    Science.gov (United States)

    Wallace, Robert G; Kock, Richard; Bergmann, Luke; Gilbert, Marius; Hogerwerf, Lenny; Pittiglio, Claudia; Mattioli, Raffaele; Wallace, Rodrick

    2016-01-01

    A recent study introduced a vaccine that controls Ebola Makona, the Zaire ebolavirus variant that has infected 28,000 people in West Africa. We propose that even such successful advances are insufficient for many emergent diseases. We review work hypothesizing that Makona, phenotypically similar to much smaller outbreaks, emerged out of shifts in land use brought about by neoliberal economics. The epidemiological consequences demand a new science that explicitly addresses the foundational processes underlying multispecies health, including the deep-time histories, cultural infrastructure, and global economic geographies driving disease emergence. The approach, for instance, reverses the standard public health practice of segregating emergency responses and the structural context from which outbreaks originate. In Ebola's case, regional neoliberalism may affix the stochastic "friction" of ecological relationships imposed by the forest across populations, which, when above a threshold, keeps the virus from lining up transmission above replacement. Export-led logging, mining, and intensive agriculture may depress such functional noise, permitting novel spillovers larger forces of infection. Mature outbreaks, meanwhile, can continue to circulate even in the face of efficient vaccines. More research on these integral explanations is required, but the narrow albeit welcome success of the vaccine may be used to limit support of such a program. © The European Society of Cardiology 2015.

  9. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  10. Ebola Surveillance - Guinea, Liberia, and Sierra Leone.

    Science.gov (United States)

    McNamara, Lucy A; Schafer, Ilana J; Nolen, Leisha D; Gorina, Yelena; Redd, John T; Lo, Terrence; Ervin, Elizabeth; Henao, Olga; Dahl, Benjamin A; Morgan, Oliver; Hersey, Sara; Knust, Barbara

    2016-07-08

    Developing a surveillance system during a public health emergency is always challenging but is especially so in countries with limited public health infrastructure. Surveillance for Ebola virus disease (Ebola) in the West African countries heavily affected by Ebola (Guinea, Liberia, and Sierra Leone) faced numerous impediments, including insufficient numbers of trained staff, community reticence to report cases and contacts, limited information technology resources, limited telephone and Internet service, and overwhelming numbers of infected persons. Through the work of CDC and numerous partners, including the countries' ministries of health, the World Health Organization, and other government and nongovernment organizations, functional Ebola surveillance was established and maintained in these countries. CDC staff were heavily involved in implementing case-based surveillance systems, sustaining case surveillance and contact tracing, and interpreting surveillance data. In addition to helping the ministries of health and other partners understand and manage the epidemic, CDC's activities strengthened epidemiologic and data management capacity to improve routine surveillance in the countries affected, even after the Ebola epidemic ended, and enhanced local capacity to respond quickly to future public health emergencies. However, the many obstacles overcome during development of these Ebola surveillance systems highlight the need to have strong public health, surveillance, and information technology infrastructure in place before a public health emergency occurs. Intense, long-term focus on strengthening public health surveillance systems in developing countries, as described in the Global Health Security Agenda, is needed.The activities summarized in this report would not have been possible without collaboration with many U.S and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html).

  11. Interferon-γ Inhibits Ebola Virus Infection.

    Science.gov (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  12. Ebola Virus Disease: A Review of Its Past and Present.

    Science.gov (United States)

    Murray, Michael J

    2015-09-01

    Ebola virus, the virus responsible for Ebola virus disease, has spawned several epidemics during the past 38 years. In 2014, an Ebola epidemic spread from Africa to other continents, becoming a pandemic. The virus's relatively unique structure, its infectivity and lethality, the difficulty in stopping its spread, and the lack of an effective treatment captured the world's attention. This article provides a brief review of the known history of Ebola virus disease, its etiology, epidemiology, and pathophysiology and a review of the limited information on managing patients with Ebola virus disease.

  13. A web-based resource for designing therapeutics against Ebola Virus

    Science.gov (United States)

    Dhanda, Sandeep Kumar; Chaudhary, Kumardeep; Gupta, Sudheer; Brahmachari, Samir Kumar; Raghava, Gajendra P. S.

    2016-04-01

    In this study, we describe a web-based resource, developed for assisting the scientific community in designing an effective therapeutics against the Ebola virus. Firstly, we predicted and identified experimentally validated epitopes in each of the antigens/proteins of the five known ebolaviruses. Secondly, we generated all the possible overlapping 9mer peptides from the proteins of ebolaviruses. Thirdly, conserved peptides across all the five ebolaviruses (four human pathogenic species) with no identical sequence in the human proteome, based on 1000 Genomes project, were identified. Finally, we identified peptide or epitope-based vaccine candidates that could activate both the B- and T-cell arms of the immune system. In addition, we also identified efficacious siRNAs against the mRNA transcriptome (absent in human transcriptome) of all the five ebolaviruses. It was observed that three species can potentially be targeted by a single siRNA (19mer) and 75 siRNAs can potentially target at least two species. A web server, EbolaVCR, has been developed that incorporates all the above information and useful computational tools (http://crdd.osdd.net/oscadd/ebola/).

  14. Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of ebola virus.

    Science.gov (United States)

    Hartman, Amy L; Bird, Brian H; Towner, Jonathan S; Antoniadou, Zoi-Anna; Zaki, Sherif R; Nichol, Stuart T

    2008-03-01

    Zaire ebolavirus causes a rapidly progressing hemorrhagic disease with high mortality. Identification of the viral virulence factors that contribute to the severity of disease induced by Ebola virus is critical for the design of therapeutics and vaccines against the disease. Given the rapidity of disease progression, virus interaction with the innate immune system early in the course of infection likely plays an important role in determining the outcome of the disease. The Ebola virus VP35 protein inhibits the activation of IRF-3, a critical transcription factor for the induction of early antiviral immunity. Previous studies revealed that a single amino acid change (R312A) in VP35 renders the protein unable to inhibit IRF-3 activation. A reverse-genetics-generated, mouse-adapted, recombinant Ebola virus that encodes the R312A mutation in VP35 was produced. We found that relative to the case for wild-type virus containing the authentic VP35 sequence, this single amino acid change in VP35 renders the virus completely attenuated in mice. Given that these viruses differ by only a single amino acid in the IRF-3 inhibitory domain of VP35, the level of alteration of virulence is remarkable and highlights the importance of VP35 for the pathogenesis of Ebola virus.

  15. Possible sexual transmission of Ebola virus - Liberia, 2015.

    Science.gov (United States)

    Christie, Athalia; Davies-Wayne, Gloria J; Cordier-Lassalle, Thierry; Cordier-Lasalle, Thierry; Blackley, David J; Laney, A Scott; Williams, Desmond E; Shinde, Shivam A; Badio, Moses; Lo, Terrence; Mate, Suzanne E; Ladner, Jason T; Wiley, Michael R; Kugelman, Jeffrey R; Palacios, Gustavo; Holbrook, Michael R; Janosko, Krisztina B; de Wit, Emmie; van Doremalen, Neeltje; Munster, Vincent J; Pettitt, James; Schoepp, Randal J; Verhenne, Leen; Evlampidou, Iro; Kollie, Karsor K; Sieh, Sonpon B; Gasasira, Alex; Bolay, Fatorma; Kateh, Francis N; Nyenswah, Tolbert G; De Cock, Kevin M

    2015-05-08

    On March 20, 2015, 30 days after the most recent confirmed Ebola Virus Disease (Ebola) patient in Liberia was isolated, Ebola was laboratory confirmed in a woman in Monrovia. The investigation identified only one epidemiologic link to Ebola: unprotected vaginal intercourse with a survivor. Published reports from previous outbreaks have demonstrated Ebola survivors can continue to harbor virus in immunologically privileged sites for a period of time after convalescence. Ebola virus has been isolated from semen as long as 82 days after symptom onset and viral RNA has been detected in semen up to 101 days after symptom onset. One instance of possible sexual transmission of Ebola has been reported, although the accompanying evidence was inconclusive. In addition, possible sexual transmission of Marburg virus, a filovirus related to Ebola, was documented in 1968. This report describes the investigation by the Government of Liberia and international response partners of the source of Liberia's latest Ebola case and discusses the public health implications of possible sexual transmission of Ebola virus. Based on information gathered in this investigation, CDC now recommends that contact with semen from male Ebola survivors be avoided until more information regarding the duration and infectiousness of viral shedding in body fluids is known. If male survivors have sex (oral, vaginal, or anal), a condom should be used correctly and consistently every time.

  16. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses.

    Science.gov (United States)

    Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Howell, Katie A; Patel, Sonal J; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R; Frei, Julia C; Nyakatura, Elisabeth K; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L; Froude, Jeffrey W; Saphire, Erica Ollmann; Herbert, Andrew S; Wirchnianski, Ariel S; Lear-Rooney, Calli M; Alter, Galit; Dye, John M; Glass, Pamela J; Warfield, Kelly L; Aman, M Javad

    2016-01-01

    -protective immunotherapeutics are urgently needed. Here, we describe monoclonal antibodies with cross-reactivity to several filoviruses, including the first report of a cross-neutralizing antibody that exhibits protection against Ebola virus and Sudan virus in mice. Our results further describe a novel combination of antibodies with enhanced protective efficacy. These results form a basis for further development of effective immunotherapeutics against filoviruses for human use. Understanding the cross-protective epitopes are also important for rational design of pan-ebolavirus and pan-filovirus vaccines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Elimination of Ebola Virus Transmission in Liberia - September 3, 2015.

    Science.gov (United States)

    Bawo, Luke; Fallah, Mosoka; Kateh, Francis; Nagbe, Thomas; Clement, Peter; Gasasira, Alex; Mahmoud, Nuha; Musa, Emmanuel; Lo, Terrence Q; Pillai, Satish K; Seeman, Sara; Sunshine, Brittany J; Weidle, Paul J; Nyensweh, Tolbert

    2015-09-11

    Following 42 days since the last Ebola virus disease (Ebola) patient was discharged from a Liberian Ebola treatment unit (ETU), September 3, 2015, marks the second time in a 4-month period that the World Health Organization (WHO) has declared Liberia free of Ebola virus transmission (1). The first confirmed Ebola cases in West Africa were identified in southeastern Guinea on March 23, 2014, and within 1 week, cases were identified and confirmed in Liberia (1). Since then, Liberia has reported 5,036 confirmed and probable Ebola cases and 4,808 Ebola-related deaths. The epidemic in Liberia peaked in late summer and early fall of 2014, when more than 200 confirmed and probable cases were reported each week .

  18. Delivering vaccines to the people who need them most.

    Science.gov (United States)

    Barocchi, Michèle Anne; Rappuoli, Rino

    2015-06-19

    Thanks to the Global Alliance for Vaccines and Immunization (GAVI), the Vaccine Fund and the Bill & Melinda Gates Foundation, the global health community has made enormous progress in providing already existing vaccines to developing countries. However, there still exists a gap to develop vaccines for which there is no market in the Western world, owing to low economic incentives for the private sector to justify the investments necessary for vaccine development. In many cases, industry has the technologies, but lacks the impetus to direct resources to develop these vaccine products. The present emergency with the Ebola vaccine provides us an excellent example where a vaccine was feasible several years ago, but the global health community waited for a humanitarian disaster to direct efforts and resources to develop this vaccine. In the beginning of 2015, the first large-scale trials of two experimental vaccines against Ebola virus disease have begun in West Africa. During the past few years, several institutions have dedicated efforts to the development of vaccines against diseases present only in low-income countries. These include the International Vaccine Institute, the Novartis Vaccines Institute for Global Health, the Hilleman Institute, the Sabin Vaccine Institute and the Infectious Disease Research Institute. Nevertheless, solving this problem requires a more significant global effort than that currently invested. These efforts include a clear policy, global coordination of funds dedicated to the development of neglected disease and an agreement on regulatory strategies and incentives for the private sector. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. [Epidemiological aspects of Ebola virus disease in Guinea (december 2013-april 2016)].

    Science.gov (United States)

    Migliani, R; Keïta, S; Diallo, B; Mesfin, S; Perea, W; Dahl, B; Rodier, G

    2016-10-01

    Ebola Zaire species variant Makona between its emergence in December 2013 and April 2016, resulted in an epidemic of Guinea importance and unprecedented gravity with 3814 reported cases of which 3358 were confirmed (88.0%) and 2544 were died (66.7%). The epidemic has evolved in phases: a silent phase without identification of all fatal cases until February 2014; a first outbreak from March 2014, when the alarm is raised and the virus detected, which lasted until July 2014; a second increase, which was the most intense, from August 2014 to January 2015 focused primarily on the forest Guinea; and a final increase from February 2015 centered on lower Guinea and the capital Conakry. Adapting strategies in 2015 (initiative "Zero Ebola in 60 days" active case search and suspicious deaths and awareness of active prefectures, microbanding the last affected communities and raking around these localities) and ring vaccination of contacts around confirmed cases has allowed to gradually control the main outbreak in October 2015. But a survivor was originally resurgence in forest areas between March and April 2016 with 10 cases including 8 deaths. The epidemic has particularly affected the forest Guinea region (44% and 48% of Guinean cases and deaths), elderly women (≥ 50 years), and health professionals (211 cases including 115 deaths); however, almost one-third of the patients (32.6%) was not provided supportive care in the Ebola centers. The epidemic is currently marked by the resurgence of small foci, from excreting subjects cured of the virus who have been controlled so far successfully. The survivors are the subject of special attention. It is necessary to learn lessons from the response to better prepare for the future, to improve knowledge about the natural history of the Ebola virus disease, and to rethink communication in this regard with the public and its leaders.

  20. Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Mirza

    2016-10-01

    Full Text Available The Ebola virus (EBOV has been recognised for nearly 40 years, with the most recent EBOV outbreak being in West Africa, where it created a humanitarian crisis. Mortalities reported up to 30 March 2016 totalled 11,307. However, up until now, EBOV drugs have been far from achieving regulatory (FDA approval. It is therefore essential to identify parent compounds that have the potential to be developed into effective drugs. Studies on Ebola viral proteins have shown that some can elicit an immunological response in mice, and these are now considered essential components of a vaccine designed to protect against Ebola haemorrhagic fever. The current study focuses on chemoinformatic approaches to identify virtual hits against Ebola viral proteins (VP35 and VP40, including protein binding site prediction, drug-likeness, pharmacokinetic and pharmacodynamic properties, metabolic site prediction, and molecular docking. Retrospective validation was performed using a database of non-active compounds, and early enrichment of EBOV actives at different false positive rates was calculated. Homology modelling and subsequent superimposition of binding site residues on other strains of EBOV were carried out to check residual conformations, and hence to confirm the efficacy of potential compounds. As a mechanism for artefactual inhibition of proteins through non-specific compounds, virtual hits were assessed for their aggregator potential compared with previously reported aggregators. These systematic studies have indicated that a few compounds may be effective inhibitors of EBOV replication and therefore might have the potential to be developed as anti-EBOV drugs after subsequent testing and validation in experiments in vivo.

  1. Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40.

    Science.gov (United States)

    Mirza, Muhammad Usman; Ikram, Nazia

    2016-10-26

    The Ebola virus (EBOV) has been recognised for nearly 40 years, with the most recent EBOV outbreak being in West Africa, where it created a humanitarian crisis. Mortalities reported up to 30 March 2016 totalled 11,307. However, up until now, EBOV drugs have been far from achieving regulatory (FDA) approval. It is therefore essential to identify parent compounds that have the potential to be developed into effective drugs. Studies on Ebola viral proteins have shown that some can elicit an immunological response in mice, and these are now considered essential components of a vaccine designed to protect against Ebola haemorrhagic fever. The current study focuses on chemoinformatic approaches to identify virtual hits against Ebola viral proteins (VP35 and VP40), including protein binding site prediction, drug-likeness, pharmacokinetic and pharmacodynamic properties, metabolic site prediction, and molecular docking. Retrospective validation was performed using a database of non-active compounds, and early enrichment of EBOV actives at different false positive rates was calculated. Homology modelling and subsequent superimposition of binding site residues on other strains of EBOV were carried out to check residual conformations, and hence to confirm the efficacy of potential compounds. As a mechanism for artefactual inhibition of proteins through non-specific compounds, virtual hits were assessed for their aggregator potential compared with previously reported aggregators. These systematic studies have indicated that a few compounds may be effective inhibitors of EBOV replication and therefore might have the potential to be developed as anti-EBOV drugs after subsequent testing and validation in experiments in vivo.

  2. Animal models for Ebola and Marburg virus infections

    Science.gov (United States)

    Nakayama, Eri; Saijo, Masayuki

    2013-01-01

    Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics. PMID:24046765

  3. Animal models for Ebola and Marburg virus infections

    Directory of Open Access Journals (Sweden)

    Eri eNakayama

    2013-09-01

    Full Text Available Ebola and Marburg hemorrhagic fevers (EHF and MHF are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus, respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4 pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using nonhuman primates (NHPs and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.

  4. Two approaches to forecast Ebola synthetic epidemics.

    Science.gov (United States)

    Champredon, David; Li, Michael; Bolker, Benjamin M; Dushoff, Jonathan

    2018-03-01

    We use two modelling approaches to forecast synthetic Ebola epidemics in the context of the RAPIDD Ebola Forecasting Challenge. The first approach is a standard stochastic compartmental model that aims to forecast incidence, hospitalization and deaths among both the general population and health care workers. The second is a model based on the renewal equation with latent variables that forecasts incidence in the whole population only. We describe fitting and forecasting procedures for each model and discuss their advantages and drawbacks. We did not find that one model was consistently better in forecasting than the other. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Rhabdoviruses as vaccine platforms for infectious disease and cancer.

    Science.gov (United States)

    Zemp, Franz; Rajwani, Jahanara; Mahoney, Douglas J

    2018-05-21

    The family Rhabdoviridae (RV) comprises a large, genetically diverse collection of single-stranded, negative sense RNA viruses from the order Mononegavirales. Several RV members are being developed as live-attenuated vaccine vectors for the prevention or treatment of infectious disease and cancer. These include the prototype recombinant Vesicular Stomatitis Virus (rVSV) and the more recently developed recombinant Maraba Virus, both species within the genus Vesiculoviridae. A relatively strong safety profile in humans, robust immunogenicity and genetic malleability are key features that make the RV family attractive vaccine platforms. Currently, the rVSV vector is in preclinical development for vaccination against numerous high-priority infectious diseases, with clinical evaluation underway for HIV/AIDS and Ebola virus disease. Indeed, the success of the rVSV-ZEBOV vaccine during the 2014-15 Ebola virus outbreak in West Africa highlights the therapeutic potential of rVSV as a vaccine vector for acute, life-threatening viral illnesses. The rVSV and rMaraba platforms are also being tested as 'oncolytic' cancer vaccines in a series of phase 1-2 clinical trials, after being proven effective at eliciting immune-mediated tumour regression in preclinical mouse models. In this review, we discuss the biological and genetic features that make RVs attractive vaccine platforms and the development and ongoing testing of rVSV and rMaraba strains as vaccine vectors for infectious disease and cancer.

  6. Study of the pathogenesis of Ebola fever in laboratory animals with different sensitivity to this virus.

    Science.gov (United States)

    Chepurnov, A A; Dadaeva, A A; Kolesnikov, S I

    2001-12-01

    Pathophysiological parameters were compared in animals with different sensitivity to Ebola virus infected with this virus. Analysis of the results showed the differences in immune reactions underlying the difference between Ebola-sensitive and Ebola-resistant animals. No neutrophil activation in response to Ebola virus injection was noted in Ebola-sensitive animal. Phagocytic activity of neutrophils in these animals inversely correlated with animal sensitivity to Ebola virus. Animal susceptibility to Ebola virus directly correlated with the decrease in the number of circulating T and B cells. We conclude that the immune system plays the key role in animal susceptibility and resistance to Ebola virus.

  7. Enhancing preparation for large Nipah outbreaks beyond Bangladesh: Preventing a tragedy like Ebola in West Africa

    Directory of Open Access Journals (Sweden)

    Halsie Donaldson

    2018-07-01

    Full Text Available The Nipah virus has been transmitted from person-to-person via close contact in non-urban parts of India (including Kerala May 2018, Bangladesh, and the Philippines. It can cause encephalitis and pneumonia, and has a high case fatality rate. Nipah is a One Health zoonotic infectious disease linked to fruit bats, and sometimes pigs or horses. We advocate anticipating and preparing for urban and larger rural outbreaks of Nipah. Immediate enhanced preparations would include standardized guidance on infection prevention and control, and personal protective equipment, from the World Health Organization (WHO on their OpenWHO website and 2018 “Managing Epidemics” handbook, along with adding best clinical practices by experts in countries with multiple outbreaks such as Bangladesh and India. Longer-term enhanced preparations include accelerating development of field diagnostics, antiviral drugs, immune-based therapies, and vaccines. WHO-coordinated multi-partner protocols to test investigational treatments, diagnostics, and vaccines are needed, by analogy to such protocols for Ebola during the unanticipated pan-epidemic in Guinea, Liberia, and Sierra Leone. Anticipating and preparing now for urban and rural Nipah outbreaks in nations with no experience with Nipah will help avoid the potential for what the United Nations 2016 report on Ebola in West Africa called a “preventable tragedy”. Keywords: Nipah epidemics beyond Bangladesh, Nipah countermeasures, Nipah, One Health

  8. Beyond Ebola treatment units: severe infection temporary treatment units as an essential element of Ebola case management during an outbreak.

    Science.gov (United States)

    Janke, Christian; Heim, Katrin Moira; Steiner, Florian; Massaquoi, Moses; Gbanya, Miatta Zenabu; Frey, Claudia; Froeschl, Guenter

    2017-02-06

    In the course of the Ebola outbreak in West Africa that was witnessed since early 2014, the response mechanisms showed deficits in terms of timeliness, volume and adequacy. The authors were deployed in the Ebola campaign in the West African country Liberia, where by September 2014 the changing epidemiological pattern made reconsiderations of guidelines and adopted procedures necessary. A temporary facility set up as a conventional Ebola Treatment Unit in the Liberian capital Monrovia was re-dedicated into a Severe Infections Temporary Treatment Unit. This facility allowed for stratification based on the nosocomial risk of exposure to Ebola virus for a growing subgroup of admitted patients that in the end would turn out as Ebola negative cases. At the same time, adequate diagnostic measures and treatment for the non-Ebola conditions of these patients could be provided without compromising work safety of the employed staff. The key elements of the new unit comprised a Suspect Cases Area similar to that of conventional Ebola treatment units for newly arriving patients, an Unlikely Cases Area for patients with a first negative Ebola PCR result, and a Confirmed Negative Cases Area for patients in whom Ebola could be ruled out. The authors, comprising representatives of the Liberian Ministry of Health and Social Welfare, as well as infectious disease specialists from the German Ebola Task Force are presenting key features of the adapted concept, and are highlighting its relevance in raising acceptance for outbreak counter-measures within the population at stake.

  9. Ebola - What You Need to Know app.

    Science.gov (United States)

    Evans, Roger

    2015-02-03

    This app is the pocket companion to the Ebola in Africa section of the International SOS website. With headquarters in London and Singapore, International SOS is a company that provides medical, clinical and security services in 81 countries for organisations with international operations.

  10. Ebola Survivor and Her Pregnancy Outcome

    Centers for Disease Control (CDC) Podcasts

    2016-12-14

    Dr. Moon Kim, a medical epidemiologist at the Los Angeles County Department of Public Health, discusses an Ebola virus disease survivor and the delivery of her baby.  Created: 12/14/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/14/2016.

  11. Ebola Virus Disease in Children, Sierra Leone, 2014–2015

    Science.gov (United States)

    Naveed, Asad; Wing, Kevin; Gbessay, Musa; Ross, J.C.G.; Checchi, Francesco; Youkee, Daniel; Jalloh, Mohammed Boie; Baion, David; Mustapha, Ayeshatu; Jah, Hawanatu; Lako, Sandra; Oza, Shefali; Boufkhed, Sabah; Feury, Reynold; Bielicki, Julia A.; Gibb, Diana M.; Klein, Nigel; Sahr, Foday; Yeung, Shunmay

    2016-01-01

    Little is known about potentially modifiable factors in Ebola virus disease in children. We undertook a retrospective cohort study of children <13 years old admitted to 11 Ebola holding units in the Western Area, Sierra Leone, during 2014–2015 to identify factors affecting outcome. Primary outcome was death or discharge after transfer to Ebola treatment centers. All 309 Ebola virus–positive children 2 days–12 years old were included; outcomes were available for 282 (91%). Case-fatality was 57%, and 55% of deaths occurred in Ebola holding units. Blood test results showed hypoglycemia and hepatic/renal dysfunction. Death occurred swiftly (median 3 days after admission) and was associated with younger age and diarrhea. Despite triangulation of information from multiple sources, data availability was limited, and we identified no modifiable factors substantially affecting death. In future Ebola virus disease epidemics, robust, rapid data collection is vital to determine effectiveness of interventions for children. PMID:27649367

  12. Vaccines (immunizations) - overview

    Science.gov (United States)

    Vaccinations; Immunizations; Immunize; Vaccine shots; Prevention - vaccine ... of the vaccine. VACCINE SCHEDULE The recommended vaccination (immunization) schedule is updated every 12 months by the ...

  13. Ebola, jobs and economic activity in Liberia.

    Science.gov (United States)

    Bowles, Jeremy; Hjort, Jonas; Melvin, Timothy; Werker, Eric

    2016-03-01

    The 2014 Ebola virus disease (EVD) outbreak in the neighbouring West African countries of Guinea, Liberia and Sierra Leone represents the most significant setback to the region's development in over a decade. This study provides evidence on the extent to which economic activity declined and jobs disappeared in Liberia during the outbreak. To estimate how the level of activity and number of jobs in a given set of firms changed during the outbreak, we use a unique panel data set of registered firms surveyed by the business-development non-profit organisation, Building Markets. We also compare the change in economic activity during the outbreak, across regions of the country that had more versus fewer Ebola cases in a difference-in-differences approach. We find a large decrease in economic activity and jobs in all of Liberia during the Ebola outbreak, and an especially large decline in Monrovia. Outside of Monrovia, the restaurants, and food and beverages sectors have suffered the most among the surveyed sectors, and in Monrovia, the construction and restaurant sectors have shed the most employees, while the food and beverages sectors experienced the largest drop in new contracts. We find little association between the incidence of Ebola cases and declines in economic activity outside of Monrovia. If the large decline in economic activity that occurred during the Ebola outbreak persists, a focus on economic recovery may need to be added to the efforts to rebuild and support the healthcare system in order for Liberia to regain its footing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. A phase I safety and immunogenicity trial of rVSVG ZEBOV GP vaccine in adults and children in Lambarn, Gabon.

    Science.gov (United States)

    2017-05-10

    Defense (DoD Page 40 of 41 References 1. WHO. WHO declares the end of the most recent Ebola virus disease outbreak in Liberia 2016 [01 March, 2017...Ramharter1,2,4, Benjamin Mordmüller1,2,3, Bertrand Lell1,2,3, the VSV- Ebola Consortium (VEBCON)10, Sanjeev Krishna1,2,6# and Peter G. Kremsner1,2,3...s.krishna@sgul.ac.uk Page 2 of 41 Summary Background The rVSV∆G-ZEBOV-GP vaccine prevented Ebola virus disease when used at 2x107 plaque

  15. Seroprevalence of Ebola virus infection in Bombali District, Sierra Leone

    Directory of Open Access Journals (Sweden)

    Nadege Goumkwa Mafopa

    2017-12-01

    Full Text Available A serosurvey of anti-Ebola Zaire virus nucleoprotein IgG prevalence was carried out among Ebola virus disease survivors and their Community Contacts in Bombali District, Sierra Leone. Our data suggest that the specie of Ebola virus (Zaire responsible of the 2013-2016 epidemic in West Africa may cause mild or asymptomatic infection in a proportion of cases, possibly due to an efficient immune response.

  16. Candidate Medical Countermeasures Targeting Ebola Virus Cell Entry

    Science.gov (United States)

    2017-03-31

    ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO. Structure of the 405 Ebola virus glycoprotein bound to an antibody from a human survivor. Nature...virus cell-entry inhibitors 21 17. Gallaher WR. Similar structural models of the transmembrane proteins of Ebola and 408 avian sarcoma viruses. Cell...85(4), 477-478 (1996). 409 18. Weissenhorn W, Carfí A, Lee K-H, Skehel JJ, Wiley DC. Crystal structure of the Ebola 410 virus membrane fusion

  17. The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.

    Science.gov (United States)

    Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro

    2013-12-01

    Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.

  18. Herd Immunity to Ebolaviruses Is Not a Realistic Target for Current Vaccination Strategies

    Directory of Open Access Journals (Sweden)

    Stuart G. Masterson

    2018-05-01

    Full Text Available The recent West African Ebola virus pandemic, which affected >28,000 individuals increased interest in anti-Ebolavirus vaccination programs. Here, we systematically analyzed the requirements for a prophylactic vaccination program based on the basic reproductive number (R0, i.e., the number of secondary cases that result from an individual infection. Published R0 values were determined by systematic literature research and ranged from 0.37 to 20. R0s ≥ 4 realistically reflected the critical early outbreak phases and superspreading events. Based on the R0, the herd immunity threshold (Ic was calculated using the equation Ic = 1 − (1/R0. The critical vaccination coverage (Vc needed to provide herd immunity was determined by including the vaccine effectiveness (E using the equation Vc = Ic/E. At an R0 of 4, the Ic is 75% and at an E of 90%, more than 80% of a population need to be vaccinated to establish herd immunity. Such vaccination rates are currently unrealistic because of resistance against vaccinations, financial/logistical challenges, and a lack of vaccines that provide long-term protection against all human-pathogenic Ebolaviruses. Hence, outbreak management will for the foreseeable future depend on surveillance and case isolation. Clinical vaccine candidates are only available for Ebola viruses. Their use will need to be focused on health-care workers, potentially in combination with ring vaccination approaches.

  19. Control of Ebola virus disease - firestone district, liberia, 2014.

    Science.gov (United States)

    Reaves, Erik J; Mabande, Lyndon G; Thoroughman, Douglas A; Arwady, M Allison; Montgomery, Joel M

    2014-10-24

    On March 30, 2014, the Ministry of Health and Social Welfare (MOHSW) of Liberia alerted health officials at Firestone Liberia, Inc. (Firestone) of the first known case of Ebola virus disease (Ebola) inside the Firestone rubber tree plantation of Liberia. The patient, who was the wife of a Firestone employee, had cared for a family member with confirmed Ebola in Lofa County, the epicenter of the Ebola outbreak in Liberia during March-April 2014. To prevent a large outbreak among Firestone's 8,500 employees, their dependents, and the surrounding population, the company responded by 1) establishing an incident management system, 2) instituting procedures for the early recognition and isolation of Ebola patients, 3) enforcing adherence to standard Ebola infection control guidelines, and 4) providing differing levels of management for contacts depending on their exposure, including options for voluntary quarantine in the home or in dedicated facilities. In addition, Firestone created multidisciplinary teams to oversee the outbreak response, address case detection, manage cases in a dedicated unit, and reintegrate convalescent patients into the community. The company also created a robust risk communication, prevention, and social mobilization campaign to boost community awareness of Ebola and how to prevent transmission. During August 1-September 23, a period of intense Ebola transmission in the surrounding areas, 71 cases of Ebola were diagnosed among the approximately 80,000 Liberians for whom Firestone provides health care (cumulative incidence = 0.09%). Fifty-seven (80%) of the cases were laboratory confirmed; 39 (68%) of these cases were fatal. Aspects of Firestone's response appear to have minimized the spread of Ebola in the local population and might be successfully implemented elsewhere to limit the spread of Ebola and prevent transmission to health care workers (HCWs).

  20. Ebola Virus Disease – An Update

    Directory of Open Access Journals (Sweden)

    Surekha Kishore

    2014-12-01

    Full Text Available Ebola Virus Disease (EVD is a severe, haemorrhagic febrile disease, often fatal in humans, caused by a non segmented, negative sense RNA virus of the family Filoviridae and genus Ebolavirus. It is also known as Ebola Haemorrhagic fever. There are five species of Ebolavirus, namely Bundibugyo ebolavirus, Zaire ebolavirus, Reston ebolavirus, Sudan ebolavirus and Tai Forest ebolavirus. The Zaire species has caused multiple large outbreaks with mortality rates of 55 to 88 percent since first appearance of the disease whereas the Sudan virus has been associated with an approximate 50 percent case-fatality rate in four known epidemics: two in Sudan in the 1970s, one in Uganda in 2000, and another in Sudan in 2004 [1-5].

  1. Immune barriers of Ebola virus infection.

    Science.gov (United States)

    McElroy, Anita K; Mühlberger, Elke; Muñoz-Fontela, César

    2018-02-01

    Since its initial emergence in 1976 in northern Democratic Republic of Congo (DRC), Ebola virus (EBOV) has been a global health concern due to its virulence in humans, the mystery surrounding the identity of its host reservoir and the unpredictable nature of Ebola virus disease (EVD) outbreaks. Early after the first clinical descriptions of a disease resembling a 'septic-shock-like syndrome', with coagulation abnormalities and multi-system organ failure, researchers began to evaluate the role of the host immune response in EVD pathophysiology. In this review, we summarize how data gathered during the last 40 years in the laboratory as well as in the field have provided insight into EBOV immunity. From molecular mechanisms involved in EBOV recognition in infected cells, to antigen processing and adaptive immune responses, we discuss current knowledge on the main immune barriers of infection as well as outstanding research questions. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Comparison of Current Regulatory Status for Gene-Based Vaccines in the U.S., Europe and Japan

    Directory of Open Access Journals (Sweden)

    Yoshikazu Nakayama

    2015-03-01

    Full Text Available Gene-based vaccines as typified by plasmid DNA vaccines and recombinant viral-vectored vaccines are expected as promising solutions against infectious diseases for which no effective prophylactic vaccines exist such as HIV, dengue virus, Ebola virus and malaria, and for which more improved vaccines are needed such as tuberculosis and influenza virus. Although many preclinical and clinical trials have been conducted to date, no DNA vaccines or recombinant viral-vectored vaccines expressing heterologous antigens for human use have yet been licensed in the U.S., Europe or Japan. In this research, we describe the current regulatory context for gene-based prophylactic vaccines against infectious disease in the U.S., Europe, and Japan. We identify the important considerations, in particular, on the preclinical assessments that would allow these vaccines to proceed to clinical trials, and the differences on the regulatory pathway for the marketing authorization in each region.

  3. April 28, 2015 CDC Ebola Response Update

    Centers for Disease Control (CDC) Podcasts

    In any disease outbreak, misinformation, a lack of understanding, and fear can lead to unfortunate side effects, like stigma. Stigma presents a challenge for communities during a time when they need to be strong to fight the disease. In this podcast, Molly Gaines-McCollom, CDC Health Communication Specialist, discusses the impact of stigma in the current Ebola outbreak and why it’s so important to fight it.

  4. Ebola Crisis in the United States

    Directory of Open Access Journals (Sweden)

    Avinash Raghunath Patwardhan M.D.

    2014-12-01

    Full Text Available This article is about readiness of the U.S. health care system to deal with crises. Using the Ebola crisis as a reference, first it examines the response to the current challenge. However, that is the smaller objective of the article. Lately, we are also being challenged to deal with other kinds of epidemics like obesity, mental health diseases, and violence. These crises are not dramatic like the Ebola crisis. However, these are no less insidious than Ebola. If we are not ready for them, then these crises have the potential to undermine the long-term health and prosperity of our society. In this context, and therefore mainly, this article is about two major long-standing systemic problems in the U.S. health care system that the unfolding of the Ebola crisis has bared. One is about how the inherent problem in the design of American federalist system regarding state autonomy on health matters is creating a dysfunctional health care system. The other is about the inertia of the research industry in the health care system in clinging to an archaic outdated inefficient mind-set and methodology that fails to generate the right information required for an appropriate decision making in matters of health care delivery, including crises. These problems are not small, nor their solutions easy. However, no matter how uncomfortable and tedious, facing them is necessary and inevitable. The discussions and arguments in this article are to outline their nature broadly and to make a call to further a dialogue.

  5. Investigating Ebola virus pathogenicity using molecular dynamics.

    Science.gov (United States)

    Pappalardo, Morena; Collu, Francesca; Macpherson, James; Michaelis, Martin; Fraternali, Franca; Wass, Mark N

    2017-08-11

    Ebolaviruses have been known to cause deadly disease in humans for 40 years and have recently been demonstrated in West Africa to be able to cause large outbreaks. Four Ebolavirus species cause severe disease associated with high mortality in humans. Reston viruses are the only Ebolaviruses that do not cause disease in humans. Conserved amino acid changes in the Reston virus protein VP24 compared to VP24 of other Ebolaviruses have been suggested to alter VP24 binding to host cell karyopherins resulting in impaired inhibition of interferon signalling, which may explain the difference in human pathogenicity. Here we used protein structural analysis and molecular dynamics to further elucidate the interaction between VP24 and KPNA5. As a control experiment, we compared the interaction of wild-type and R137A-mutant (known to affect KPNA5 binding) Ebola virus VP24 with KPNA5. Results confirmed that the R137A mutation weakens direct VP24-KPNA5 binding and enables water molecules to penetrate at the interface. Similarly, Reston virus VP24 displayed a weaker interaction with KPNA5 than Ebola virus VP24, which is likely to reduce the ability of Reston virus VP24 to prevent host cell interferon signalling. Our results provide novel molecular detail on the interaction of Reston virus VP24 and Ebola virus VP24 with human KPNA5. The results indicate a weaker interaction of Reston virus VP24 with KPNA5 than Ebola virus VP24, which is probably associated with a decreased ability to interfere with the host cell interferon response. Hence, our study provides further evidence that VP24 is a key player in determining Ebolavirus pathogenicity.

  6. Green revolution vaccines, edible vaccines

    African Journals Online (AJOL)

    Admin

    of development. Food vaccines may also help to suppress autoimmunity disorders such as Type-1. Diabetes. Key words: Edible vaccines, oral vaccines, antigen expression, food vaccines. INTRODUCTION. Vaccination involves the stimulation of the immune system to prepare it for the event of an invasion from a particular ...

  7. Viral Vectors for Use in the Development of Biodefense Vaccines

    Science.gov (United States)

    2005-06-17

    Shigella species Dengue Salmonella Filoviruses Listeria monocytogenes Ebola Campylobacter jejuni Marburg Yersinia entercolitica Viruses (Caliciviruses...Orthopoxvirus genus containing the monkey - J.S. Lee et al. / Advanced Drug Delivery Reviews 57 (2005) 1293–1314 1297 Approved for public release. Distribution...four monkeys vaccinated with V-LSGPC produced antibodies specific for LSV. After challenge, the four monkeys developed a febrile illness with low

  8. Reemerging Sudan Ebola Virus Disease in Uganda, 2011

    Science.gov (United States)

    Shoemaker, Trevor; Balinandi, Stephen; Campbell, Shelley; Wamala, Joseph Francis; McMullan, Laura K.; Downing, Robert; Lutwama, Julius; Mbidde, Edward; Ströher, Ute; Rollin, Pierre E.; Nichol, Stuart T.

    2012-01-01

    Two large outbreaks of Ebola hemorrhagic fever occurred in Uganda in 2000 and 2007. In May 2011, we identified a single case of Sudan Ebola virus disease in Luwero District. The establishment of a permanent in-country laboratory and cooperation between international public health entities facilitated rapid outbreak response and control activities. PMID:22931687

  9. Lessons learned during active epidemiological surveillance of Ebola ...

    African Journals Online (AJOL)

    Objective: To review epidemiological surveillance approaches used during Ebola and Marburg hemorrhagic fever epidemics in Africa in the past fifteen years. Overall, 26 hemorrhagic epidemic outbreaks have been registered in 12 countries; 18 caused by the Ebola virus and eight by the Marburg virus. About 2551 cases ...

  10. West Africa Ebola Virus Disease Epidemic: The Africa Experience ...

    African Journals Online (AJOL)

    Ebola Virus Disease (EVD), formerly known as Ebola haemorrhagic fever, is a severe acute viral illness characterized by sudden onset of fever, myalgia, malaise, and severe headache, followed by vomiting and diarrhea and, in some instances, bleeding. The 2014 West Africa outbreak is the largest in history, affecting ...

  11. Hand hygiene practices post ebola virus disease outbreak in a ...

    African Journals Online (AJOL)

    Introduction: Ebola virus disease (EVD) is a highly contagious viral infection that requires a high risk perception and practice of good hand hygiene by regular hand washing or use of hand sanitizers for infection control at all time. The declaration of Nigeria as an Ebola-free country by the World Health Organization on the ...

  12. hand hygiene practices post ebola virus disease outbreak

    African Journals Online (AJOL)

    2014-10-20

    Oct 20, 2014 ... INTRODUCTION. Ebola virus disease (EVD) is an infectious viral disease characterized by a high case-fatality rate which may be as high as 90%.1,2 Ebola virus may be acquired during contact with blood or body fluids of an infected animal, commonly monkeys or fruit bats.2 Once human infection occurs ...

  13. Ebola global response: 'not in my back yard' | Bateman | South ...

    African Journals Online (AJOL)

    As the 8-month West African Ebola outbreak death tally accelerated beyond 4 500 (of 9 000 people infected) by mid-October, Spain and the USA became the first non- African countries to record secondary dom estic infections after entry by Ebola infected people.

  14. Vaccine Safety

    Science.gov (United States)

    ... During Pregnancy Frequently Asked Questions about Vaccine Recalls Historical Vaccine Safety Concerns FAQs about GBS and Menactra ... CISA Resources for Healthcare Professionals Evaluation Current Studies Historical Background 2001-12 Publications Technical Reports Vaccine Safety ...

  15. Ebola virus disease. Short history, long impact

    Directory of Open Access Journals (Sweden)

    Mª Teófila Vicente-Herrero

    2015-07-01

    Full Text Available Ebola Virus infection is at present times a growing worldwide concern, although its history goes back to 1967, with subsequent outbreaks in 1979, 1980 and 1987, all of them by contact in workers in affected areas. The concern of the scientific community about this issue is partially reflected in publications included in MEDLINE (PUBMED database and in which, taking as a keyword in the search box “Ebola virus”, 2.151 publications are found, belonging 984 of them to the last 5 years (45.7% and 527 of these publications (53.5% to the years 2014-2015. The earliest publication dates back to 1977, attaching no listed authors either reference abstract, and the most recent to January of current year 2015. This means Ebola infection is a global problem and that concern the international scientific community. A review of some of the studies published in this matter, considered of interest and discussed by the authors, is performed in this work.

  16. The contribution of biological, mathematical, clinical, engineering and social sciences to combatting the West African Ebola epidemic.

    Science.gov (United States)

    Whitty, Christopher J M

    2017-05-26

    The tragic West African Ebola epidemic claimed many lives, but would have been worse still if scientific insights from many disciplines had not been integrated to create a strong technical response. Epidemiology and modelling triggered the international response and guided where response efforts were directed; virology, engineering and clinical science helped reduce deaths and transmission in and from hospitals and treatment centres; social sciences were key to reducing deaths from funerals and in the community; diagnostic and operational research made the response more efficient; immunology and vaccine research contributed to the final stages of the epidemic and will help prevent future epidemics. These varied scientific contributions had to be integrated into a combined narrative, communicated to policymakers to inform decisions, and used by courageous local and international responders in the field in real time. Not every area of science was optimal, and in particular, clinical trials of simple interventions such as fluid management were slow to be adopted and sharing of data was initially poor. This Ebola epidemic demonstrated how science can respond to a major emergency, but also has lessons for better responses in future infectious emergencies.This article is part of the themed issue 'The 2013-2016 West African Ebola epidemic: data, decision-making and disease control'. © 2017 The Author(s).

  17. Intramuscular Adeno-Associated Virus-Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice.

    Science.gov (United States)

    van Lieshout, Laura P; Soule, Geoff; Sorensen, Debra; Frost, Kathy L; He, Shihua; Tierney, Kevin; Safronetz, David; Booth, Stephanie A; Kobinger, Gary P; Qiu, Xiangguo; Wootton, Sarah K

    2018-03-05

    The 2013-2016 West Africa outbreak demonstrated the epidemic potential of Ebola virus and highlighted the need for counter strategies. Monoclonal antibody (mAb)-based therapies hold promise as treatment options for Ebola virus infections. However, production of clinical-grade mAbs is labor intensive, and immunity is short lived. Conversely, adeno-associated virus (AAV)-mediated mAb gene transfer provides the host with a genetic blueprint to manufacture mAbs in vivo, leading to steady release of antibody over many months. Here we demonstrate that AAV-mediated expression of nonneutralizing mAb 5D2 or 7C9 confers 100% protection against mouse-adapted Ebola virus infection, while neutralizing mAb 2G4 was 83% protective. A 2-component cocktail, AAV-2G4/AAV-5D2, provided complete protection when administered 7 days prior to challenge and was partially protective with a 3-day lead time. Finally, AAV-mAb therapies provided sustained protection from challenge 5 months following AAV administration. AAV-mAb may be a viable alternative strategy for vaccination against emerging infectious diseases.

  18. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease.

    Science.gov (United States)

    Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P; Qiu, Xiangguo

    2016-10-15

    Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is

  19. Vaccines.gov

    Science.gov (United States)

    ... Vaccine Safety Vaccines Work Vaccine Types Vaccine Ingredients Vaccines by Disease Chickenpox ... Typhoid Fever Whooping Cough (Pertussis) Yellow Fever Who and When Infants, Children, and Teens ...

  20. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment.

    Science.gov (United States)

    Sakurai, Yasuteru; Kolokoltsov, Andrey A; Chen, Cheng-Chang; Tidwell, Michael W; Bauta, William E; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A

    2015-02-27

    Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy. Copyright © 2015, American Association for the Advancement of Science.

  1. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans.

    Science.gov (United States)

    Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C; Warfield, Kelly L; Aman, M Javad; Holtsberg, Frederick W

    2016-02-01

    The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Community Knowledge, Attitudes, and Practices Regarding Ebola Virus Disease - Five Counties, Liberia, September-October, 2014.

    Science.gov (United States)

    Kobayashi, Miwako; Beer, Karlyn D; Bjork, Adam; Chatham-Stephens, Kevin; Cherry, Cara C; Arzoaquoi, Sampson; Frank, Wilmot; Kumeh, Odell; Sieka, Joseph; Yeiah, Adolphus; Painter, Julia E; Yoder, Jonathan S; Flannery, Brendan; Mahoney, Frank; Nyenswah, Tolbert G

    2015-07-10

    As of July 1, 2015, Guinea, Liberia, and Sierra Leone have reported a total of 27,443 confirmed, probable, and suspected Ebola virus disease (Ebola) cases and 11,220 deaths. Guinea and Sierra Leone have yet to interrupt transmission of Ebola virus. In January, 2016, Liberia successfully achieved Ebola transmission-free status, with no new Ebola cases occurring during a 42-day period; however, new Ebola cases were reported beginning June 29, 2015. Local cultural practices and beliefs have posed challenges to disease control, and therefore, targeted, timely health messages are needed to address practices and misperceptions that might hinder efforts to stop the spread of Ebola. As early as September 2014, Ebola spread to most counties in Liberia. To assess Ebola-related knowledge, attitudes, and practices (KAP) in the community, CDC epidemiologists who were deployed to the counties (field team), carried out a survey conducted by local trained interviewers. The survey was conducted in September and October 2014 in five counties in Liberia with varying cumulative incidence of Ebola cases. Survey results indicated several findings. First, basic awareness of Ebola was high across all surveyed populations (median correct responses = 16 of 17 questions on knowledge of Ebola transmission; range = 2-17). Second, knowledge and understanding of Ebola symptoms were incomplete (e.g., 61% of respondents said they would know if they had Ebola symptoms). Finally, certain fears about the disease were present: >90% of respondents indicated a fear of Ebola patients, >40% a fear of cured patients, and >50% a fear of treatment units (expressions of this last fear were greater in counties with lower Ebola incidence). This survey, which was conducted at a time when case counts were rapidly increasing in Liberia, indicated limited knowledge of Ebola symptoms and widespread fear of Ebola treatment units despite awareness of communication messages. Continued efforts are needed to address

  3. Measuring the strength of interaction between the Ebola fusion peptide and lipid rafts: implications for membrane fusion and virus infection.

    Directory of Open Access Journals (Sweden)

    Mônica S Freitas

    Full Text Available The Ebola fusion peptide (EBO₁₆ is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently, several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO₁₆ and its mutant W8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM, a good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of EBO₁₆ to induce lipid mixing. On the other hand, EBO₁₆ was structurally sensitive to interaction with lipid rafts (DRMs, but the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote membrane aggregation in comparison to EBO₁₆. Single molecule AFM experiments showed a high affinity force pattern for the interaction of EBO₁₆ and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases.

  4. Measuring the strength of interaction between the Ebola fusion peptide and lipid rafts: implications for membrane fusion and virus infection.

    Science.gov (United States)

    Freitas, Mônica S; Follmer, Cristian; Costa, Lilian T; Vilani, Cecília; Bianconi, M Lucia; Achete, Carlos Alberto; Silva, Jerson L

    2011-01-13

    The Ebola fusion peptide (EBO₁₆) is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently, several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO₁₆ and its mutant W8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM), a good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of EBO₁₆ to induce lipid mixing. On the other hand, EBO₁₆ was structurally sensitive to interaction with lipid rafts (DRMs), but the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote membrane aggregation in comparison to EBO₁₆. Single molecule AFM experiments showed a high affinity force pattern for the interaction of EBO₁₆ and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases.

  5. Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever.

    Science.gov (United States)

    Marzi, Andrea; Yoshida, Reiko; Miyamoto, Hiroko; Ishijima, Mari; Suzuki, Yasuhiko; Higuchi, Megumi; Matsuyama, Yukie; Igarashi, Manabu; Nakayama, Eri; Kuroda, Makoto; Saijo, Masayuki; Feldmann, Friederike; Brining, Douglas; Feldmann, Heinz; Takada, Ayato

    2012-01-01

    Ebola virus (EBOV) is the causative agent of severe hemorrhagic fever in primates, with human case fatality rates up to 90%. Today, there is neither a licensed vaccine nor a treatment available for Ebola hemorrhagic fever (EHF). Single monoclonal antibodies (MAbs) specific for Zaire ebolavirus (ZEBOV) have been successfully used in passive immunization experiments in rodent models, but have failed to protect nonhuman primates from lethal disease. In this study, we used two clones of human-mouse chimeric MAbs (ch133 and ch226) with strong neutralizing activity against ZEBOV and evaluated their protective potential in a rhesus macaque model of EHF. Reduced viral loads and partial protection were observed in animals given MAbs ch133 and ch226 combined intravenously at 24 hours before and 24 and 72 hours after challenge. MAbs circulated in the blood of a surviving animal until virus-induced IgG responses were detected. In contrast, serum MAb concentrations decreased to undetectable levels at terminal stages of disease in animals that succumbed to infection, indicating substantial consumption of these antibodies due to virus replication. Accordingly, the rapid decrease of serum MAbs was clearly associated with increased viremia in non-survivors. Our results indicate that EBOV neutralizing antibodies, particularly in combination with other therapeutic strategies, might be beneficial in reducing viral loads and prolonging disease progression during EHF.

  6. Newly Discovered Ebola Virus Associated with Hemorrhagic Fever Outbreak in Uganda

    Science.gov (United States)

    Towner, Jonathan S.; Sealy, Tara K.; Khristova, Marina L.; Albariño, César G.; Conlan, Sean; Reeder, Serena A.; Quan, Phenix-Lan; Lipkin, W. Ian; Downing, Robert; Tappero, Jordan W.; Okware, Samuel; Lutwama, Julius; Bakamutumaho, Barnabas; Kayiwa, John; Comer, James A.; Rollin, Pierre E.; Ksiazek, Thomas G.; Nichol, Stuart T.

    2008-01-01

    Over the past 30 years, Zaire and Sudan ebolaviruses have been responsible for large hemorrhagic fever (HF) outbreaks with case fatalities ranging from 53% to 90%, while a third species, Côte d'Ivoire ebolavirus, caused a single non-fatal HF case. In November 2007, HF cases were reported in Bundibugyo District, Western Uganda. Laboratory investigation of the initial 29 suspect-case blood specimens by classic methods (antigen capture, IgM and IgG ELISA) and a recently developed random-primed pyrosequencing approach quickly identified this to be an Ebola HF outbreak associated with a newly discovered ebolavirus species (Bundibugyo ebolavirus) distantly related to the Côte d'Ivoire ebolavirus found in western Africa. Due to the sequence divergence of this new virus relative to all previously recognized ebolaviruses, these findings have important implications for design of future diagnostic assays to monitor Ebola HF disease in humans and animals, and ongoing efforts to develop effective antivirals and vaccines. PMID:19023410

  7. Development of a Lethal Intranasal Exposure Model of Ebola Virus in the Cynomolgus Macaque

    Directory of Open Access Journals (Sweden)

    Kendra J. Alfson

    2017-10-01

    Full Text Available Ebola virus (EBOV is a filovirus that can cause Ebola virus disease (EVD. No approved vaccines or therapies exist for filovirus infections, despite an urgent need. The development and testing of effective countermeasures against EBOV requires use of animal models and a thorough understanding of how the model aligns with EVD in humans. The majority of published studies report outcomes of parenteral exposures for emulating needle stick transmission. However, based on data from EVD outbreaks, close contact exposures to infected bodily fluid seems to be one of the primary routes of EBOV transmission. Thus, further work is needed to develop models that represent mucosal exposure. To characterize the outcome of mucosal exposure to EBOV, cynomolgus macaques were exposed to EBOV via intranasal (IN route using the LMA® mucosal atomization device (LMA® MAD. For comparison, four non-human primates (NHPs were exposed to EBOV via intramuscular (IM route. This IN exposure model was uniformly lethal and correlated with a statistically significant delay in time to death when compared to exposure via the IM route. This more closely reflects the timeframes observed in human infections. An IN model of exposure offers an attractive alternative to other models as it can offer insight into the consequences of exposure via a mucosal surface and allows for screening countermeasures via a different exposure route.

  8. Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever.

    Directory of Open Access Journals (Sweden)

    Andrea Marzi

    Full Text Available Ebola virus (EBOV is the causative agent of severe hemorrhagic fever in primates, with human case fatality rates up to 90%. Today, there is neither a licensed vaccine nor a treatment available for Ebola hemorrhagic fever (EHF. Single monoclonal antibodies (MAbs specific for Zaire ebolavirus (ZEBOV have been successfully used in passive immunization experiments in rodent models, but have failed to protect nonhuman primates from lethal disease. In this study, we used two clones of human-mouse chimeric MAbs (ch133 and ch226 with strong neutralizing activity against ZEBOV and evaluated their protective potential in a rhesus macaque model of EHF. Reduced viral loads and partial protection were observed in animals given MAbs ch133 and ch226 combined intravenously at 24 hours before and 24 and 72 hours after challenge. MAbs circulated in the blood of a surviving animal until virus-induced IgG responses were detected. In contrast, serum MAb concentrations decreased to undetectable levels at terminal stages of disease in animals that succumbed to infection, indicating substantial consumption of these antibodies due to virus replication. Accordingly, the rapid decrease of serum MAbs was clearly associated with increased viremia in non-survivors. Our results indicate that EBOV neutralizing antibodies, particularly in combination with other therapeutic strategies, might be beneficial in reducing viral loads and prolonging disease progression during EHF.

  9. Lessons from the Ebola Outbreak: Action Items for Emerging Infectious Disease Preparedness and Response.

    Science.gov (United States)

    Jacobsen, Kathryn H; Aguirre, A Alonso; Bailey, Charles L; Baranova, Ancha V; Crooks, Andrew T; Croitoru, Arie; Delamater, Paul L; Gupta, Jhumka; Kehn-Hall, Kylene; Narayanan, Aarthi; Pierobon, Mariaelena; Rowan, Katherine E; Schwebach, J Reid; Seshaiyer, Padmanabhan; Sklarew, Dann M; Stefanidis, Anthony; Agouris, Peggy

    2016-03-01

    As the Ebola outbreak in West Africa wanes, it is time for the international scientific community to reflect on how to improve the detection of and coordinated response to future epidemics. Our interdisciplinary team identified key lessons learned from the Ebola outbreak that can be clustered into three areas: environmental conditions related to early warning systems, host characteristics related to public health, and agent issues that can be addressed through the laboratory sciences. In particular, we need to increase zoonotic surveillance activities, implement more effective ecological health interventions, expand prediction modeling, support medical and public health systems in order to improve local and international responses to epidemics, improve risk communication, better understand the role of social media in outbreak awareness and response, produce better diagnostic tools, create better therapeutic medications, and design better vaccines. This list highlights research priorities and policy actions the global community can take now to be better prepared for future emerging infectious disease outbreaks that threaten global public health and security.

  10. Deglycosylated Filovirus Glycoproteins as Effective Vaccine Immunogens

    Science.gov (United States)

    2015-11-01

    protective, non-infectious vaccine against Ebola virus challenge 2 Nicholas J. Lennemann1, #, Andrew S. Herbert2, Rachel Brouillette1, Bethany Rhein1...for GP1 N-481 linked glycans. RBD is shown in red, glycan cap is shown in teal, GP2 is shown in tan , N-linked 482 glycans are shown in orange, and...glycans. RBD is shown in red, glycan cap is shown in teal, GP2 is shown in tan , N-linked glycans are shown in orange, and the MLD (not included in

  11. Production of Novel Ebola Virus-Like Particles from cDNAs: an Alternative to Ebola Virus Generation by Reverse Genetics

    OpenAIRE

    Watanabe, Shinji; Watanabe, Tokiko; Noda, Takeshi; Takada, Ayato; Feldmann, Heinz; Jasenosky, Luke D.; Kawaoka, Yoshihiro

    2004-01-01

    We established a plasmid-based system for generating infectious Ebola virus-like particles (VLPs), which contain an Ebola virus-like minigenome consisting of a negative-sense copy of the green fluorescent protein gene. This system produced nearly 103 infectious particles per ml of supernatant, equivalent to the titer of Ebola virus generated by a reverse genetics system. Interestingly, infectious Ebola VLPs were generated, even without expression of VP24. Transmission and scanning electron mi...

  12. Ebola Virus Infections in Nonhuman Primates Are Temporally Influenced by Glycoprotein Poly-U Editing Site Populations in the Exposure Material

    Science.gov (United States)

    Trefry, John C.; Wollen, Suzanne E.; Nasar, Farooq; Shamblin, Joshua D.; Kern, Steven J.; Bearss, Jeremy J.; Jefferson, Michelle A.; Chance, Taylor B.; Kugelman, Jeffery R.; Ladner, Jason T.; Honko, Anna N.; Kobs, Dean J.; Wending, Morgan Q.S.; Sabourin, Carol L.; Pratt, William D.; Palacios, Gustavo F.; Pitt, M. Louise M.

    2015-01-01

    Recent experimentation with the variants of the Ebola virus that differ in the glycoprotein’s poly-uridine site, which dictates the form of glycoprotein produced through a transcriptional stutter, has resulted in questions regarding the pathogenicity and lethality of the stocks used to develop products currently undergoing human clinical trials to combat the disease. In order to address these concerns and prevent the delay of these critical research programs, we designed an experiment that permitted us to intramuscularly challenge statistically significant numbers of naïve and vaccinated cynomolgus macaques with either a 7U or 8U variant of the Ebola virus, Kikwit isolate. In naïve animals, no difference in survivorship was observed; however, there was a significant delay in the disease course between the two groups. Significant differences were also observed in time-of-fever, serum chemistry, and hematology. In vaccinated animals, there was no statistical difference in survivorship between either challenge groups, with two succumbing in the 7U group compared to 1 in the 8U challenge group. In summary, survivorship was not affected, but the Ebola virus disease course in nonhuman primates is temporally influenced by glycoprotein poly-U editing site populations. PMID:26703716

  13. Ebola Virus Infections in Nonhuman Primates Are Temporally Influenced by Glycoprotein Poly-U Editing Site Populations in the Exposure Material

    Directory of Open Access Journals (Sweden)

    John C. Trefry

    2015-12-01

    Full Text Available Recent experimentation with the variants of the Ebola virus that differ in the glycoprotein’s poly-uridine site, which dictates the form of glycoprotein produced through a transcriptional stutter, has resulted in questions regarding the pathogenicity and lethality of the stocks used to develop products currently undergoing human clinical trials to combat the disease. In order to address these concerns and prevent the delay of these critical research programs, we designed an experiment that permitted us to intramuscularly challenge statistically significant numbers of naïve and vaccinated cynomolgus macaques with either a 7U or 8U variant of the Ebola virus, Kikwit isolate. In naïve animals, no difference in survivorship was observed; however, there was a significant delay in the disease course between the two groups. Significant differences were also observed in time-of-fever, serum chemistry, and hematology. In vaccinated animals, there was no statistical difference in survivorship between either challenge groups, with two succumbing in the 7U group compared to 1 in the 8U challenge group. In summary, survivorship was not affected, but the Ebola virus disease course in nonhuman primates is temporally influenced by glycoprotein poly-U editing site populations.

  14. Rotavirus vaccines

    Directory of Open Access Journals (Sweden)

    Kang G

    2006-01-01

    Full Text Available Rotavirus, the most common cause of severe diarrhea and a leading cause of mortality in children, has been a priority target for vaccine development for the past several years. The first rotavirus vaccine licensed in the United States was withdrawn because of an association of the vaccine with intussusception. However, the need for a vaccine is greatest in the developing world, because the benefits of preventing deaths due to rotavirus disease are substantially greater than the risk of intussusception. Early vaccines were based on animal strains. More recently developed and licenced vaccines are either animal-human reassortants or are based on human strains. In India, two candidate vaccines are in the development process, but have not yet reached efficacy trials. Many challenges regarding vaccine efficacy and safety remain. In addition to completing clinical evaluations of vaccines in development in settings with the highest disease burden and virus diversity, there is also a need to consider alternative vaccine development strategies.

  15. Ebola Viral Disease in West Africa: A Threat to Global Health, Economy and Political Stability

    Science.gov (United States)

    Mohammed, Ibrahim; Saidu, Yauba

    2016-01-01

    The West African sub-continent is currently experiencing its first, and ironically, the largest and longest Ebola viral diseases (EVD) outbreak ever documented in modern medical history. The current outbreak is significant in several ways, including longevity, magnitude of morbidity and mortality, occurrence outside the traditional niches, rapid spread and potential of becoming a global health tragedy. The authors provided explicit insights into the current and historical background, drivers of the epidemic, societal impacts, status of vaccines and drugs development and proffered recommendations to halt and prevent future occurrences. The authors reviewed mainly five databases and a hand search of key relevant literature. We reviewed 51 articles that were relevant up until the 18th of August 2014. The authors supplemented the search with reference list of relevant articles and grey literature as well as relevant Internet websites. Article searches were limited to those published either in English or French. There are strong indications that the EVD may have been triggered by increased human activities and encroachment into the forest ecosystem spurred by increasing population and poverty-driven forest-dependent local economy. Containment efforts are being hampered by weak and fragile health systems, including public health surveillance and weak governance, certain socio-anthropological factors, fast travels (improved transport systems) and globalization. The societal impacts of the EBV outbreak are grave, including economic shutdown, weakening of socio-political systems, psychological distress, and unprecedented consumption of scarce health resources. The research and development (R&D) pipeline for product against EBV seems grossly insufficient. The outbreak of Ebola and the seeming difficulty to contain the epidemic is simply a reflection of the weak health system, poor surveillance and emergency preparedness/response, poverty and disconnect between the government

  16. Ebola viral disease in West Africa: a threat to global health, economy and political stability

    Directory of Open Access Journals (Sweden)

    Semeeh Akinwale Omoleke

    2016-08-01

    Full Text Available The West African sub-continent is currently experiencing its first, and ironically, the largest and longest Ebola viral diseases (EVD outbreak ever documented in modern medical history. The current outbreak is significant in several ways, including longevity, magnitude of morbidity and mortality, occurrence outside the traditional niches, rapid spread and potential of becoming a global health tragedy. The authors provided explicit insights into the current and historical background, drivers of the epidemic, societal impacts, status of vaccines and drugs development and proffered recommendations to halt and prevent future occurrences. The authors reviewed mainly five databases and a hand search of key relevant literature. We reviewed 51 articles that were relevant up until the 18th of August 2014. The authors supplemented the search with reference list of relevant articles and grey literature as well as relevant Internet websites. Article searches were limited to those published either in English or French. There are strong indications that the EVD may have been triggered by increased human activities and encroachment into the forest ecosystem spurred by increasing population and povertydriven forest-dependent local economy. Containment efforts are being hampered by weak and fragile health systems, including public health surveillance and weak governance, certain socio-anthropological factors, fast travels (improved transport systems and globalization. The societal impacts of the EBV outbreak are grave, including economic shutdown, weakening of socio-political systems, psychological distress, and unprecedented consumption of scarce health resources. The research and development (R&D pipeline for product against EBV seems grossly insufficient. The outbreak of Ebola and the seeming difficulty to contain the epidemic is simply a reflection of the weak health system, poor surveillance and emergency preparedness/ response, poverty and disconnect

  17. Ebola Viral Disease in West Africa: A Threat to Global Health, Economy and Political Stability.

    Science.gov (United States)

    Omoleke, Semeeh Akinwale; Mohammed, Ibrahim; Saidu, Yauba

    2016-08-17

    The West African sub-continent is currently experiencing its first, and ironically, the largest and longest Ebola viral diseases (EVD) outbreak ever documented in modern medical history. The current outbreak is significant in several ways, including longevity, magnitude of morbidity and mortality, occurrence outside the traditional niches, rapid spread and potential of becoming a global health tragedy. The authors provided explicit insights into the current and historical background, drivers of the epidemic, societal impacts, status of vaccines and drugs development and proffered recommendations to halt and prevent future occurrences. The authors reviewed mainly five databases and a hand search of key relevant literature. We reviewed 51 articles that were relevant up until the 18 th of August 2014. The authors supplemented the search with reference list of relevant articles and grey literature as well as relevant Internet websites. Article searches were limited to those published either in English or French. There are strong indications that the EVD may have been triggered by increased human activities and encroachment into the forest ecosystem spurred by increasing population and poverty-driven forest-dependent local economy. Containment efforts are being hampered by weak and fragile health systems, including public health surveillance and weak governance, certain socio-anthropological factors, fast travels (improved transport systems) and globalization. The societal impacts of the EBV outbreak are grave, including economic shutdown, weakening of socio-political systems, psychological distress, and unprecedented consumption of scarce health resources. The research and development (R&D) pipeline for product against EBV seems grossly insufficient. The outbreak of Ebola and the seeming difficulty to contain the epidemic is simply a reflection of the weak health system, poor surveillance and emergency preparedness/response, poverty and disconnect between the

  18. Hepatitis Vaccines

    OpenAIRE

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B ...

  19. Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model.

    Science.gov (United States)

    Cheresiz, S V; Semenova, E A; Chepurnov, A A

    2016-01-01

    Establishment of small animal models of Ebola virus (EBOV) infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV) variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups.

  20. Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model

    Directory of Open Access Journals (Sweden)

    S. V. Cheresiz

    2016-01-01

    Full Text Available Establishment of small animal models of Ebola virus (EBOV infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups.

  1. Influence of Ebola on tuberculosis case finding and treatment outcomes in Liberia

    Science.gov (United States)

    Cambell, C. L.; Ade, S.; Bhat, P.; Harries, A. D; Wilkinson, E.; Cooper, C. T.

    2017-01-01

    Setting: National Leprosy and Tuberculosis (TB) Control Programme, Liberia. Objectives: To assess TB case finding, including human immunodeficiency virus (HIV) associated interventions and treatment outcomes, before (January 2013–March 2014), during (April 2014–June 2015) and after (July–December 2015) the Ebola virus disease outbreak. Design: A cross-sectional study and retrospective cohort analysis of outcomes. Results: The mean quarterly numbers of individuals with presumptive TB and the proportion diagnosed as smear-positive were: pre-Ebola (n = 7032, 12%), Ebola (n = 6147, 10%) and post-Ebola (n = 6795, 8%). For all forms of TB, stratified by category and age group, there was a non-significant decrease in the number of cases from the pre-Ebola to the Ebola and post-Ebola periods. There were significant decreases in numbers of cases with smear-positive pulmonary TB (PTB) from the pre-Ebola period (n = 855), to the Ebola (n = 640, P < 0.001) and post-Ebola (n = 568, P < 0.001) periods. The proportions of patients tested for HIV, found to be HIV-positive and started on antiretroviral therapy decreased as follows: pre-Ebola (respectively 72%, 15% and 34%), Ebola (69%, 14% and 30%) and post-Ebola (68%, 12% and 26%). Treatment success rates among TB patients were: 80% pre-Ebola, 69% Ebola (P < 0.001) and 73% post-Ebola (P < 0.001). Loss to follow-up was the main contributing adverse outcome. Conclusion: The principal negative effects of Ebola were the significant decreases in diagnoses of smear-positive PTB, the declines in HIV testing and antiretroviral therapy uptake and poor treatment success. Ways to prevent these adverse effects from recurring in the event of another Ebola outbreak need to be found. PMID:28744441

  2. Influence of Ebola on tuberculosis case finding and treatment outcomes in Liberia.

    Science.gov (United States)

    Konwloh, P K; Cambell, C L; Ade, S; Bhat, P; Harries, A D; Wilkinson, E; Cooper, C T

    2017-06-21

    Setting: National Leprosy and Tuberculosis (TB) Control Programme, Liberia. Objectives: To assess TB case finding, including human immunodeficiency virus (HIV) associated interventions and treatment outcomes, before (January 2013-March 2014), during (April 2014-June 2015) and after (July-December 2015) the Ebola virus disease outbreak. Design: A cross-sectional study and retrospective cohort analysis of outcomes. Results: The mean quarterly numbers of individuals with presumptive TB and the proportion diagnosed as smear-positive were: pre-Ebola ( n = 7032, 12%), Ebola ( n = 6147, 10%) and post-Ebola ( n = 6795, 8%). For all forms of TB, stratified by category and age group, there was a non-significant decrease in the number of cases from the pre-Ebola to the Ebola and post-Ebola periods. There were significant decreases in numbers of cases with smear-positive pulmonary TB (PTB) from the pre-Ebola period ( n = 855), to the Ebola ( n = 640, P < 0.001) and post-Ebola ( n = 568, P < 0.001) periods. The proportions of patients tested for HIV, found to be HIV-positive and started on antiretroviral therapy decreased as follows: pre-Ebola (respectively 72%, 15% and 34%), Ebola (69%, 14% and 30%) and post-Ebola (68%, 12% and 26%). Treatment success rates among TB patients were: 80% pre-Ebola, 69% Ebola ( P < 0.001) and 73% post-Ebola ( P < 0.001). Loss to follow-up was the main contributing adverse outcome. Conclusion: The principal negative effects of Ebola were the significant decreases in diagnoses of smear-positive PTB, the declines in HIV testing and antiretroviral therapy uptake and poor treatment success. Ways to prevent these adverse effects from recurring in the event of another Ebola outbreak need to be found.

  3. Impact of the Ebola outbreak on routine immunization in western area, Sierra Leone - a field survey from an Ebola epidemic area

    Directory of Open Access Journals (Sweden)

    Xiaojin Sun

    2017-04-01

    Full Text Available Abstract Background Since March 2014, the Ebola Virus Disease (EVD outbreak in West Africa disrupted health care systems - especially in Guinea, Liberia and Sierra Leone – with a consequential stress on the area’s routine immunization programs. To address perceived decreased vaccination coverage, Sierra Leone conducted a catch-up vaccination campaign during 24–27 April 2015. We conducted a vaccination coverage survey and report coverage estimates surrounding the time of the EVD outbreak and the catch-up campaign. Methods We selected 3 villages from each of 3 communities and obtained dates of birth and dates of vaccination with measles vaccine (MV and the 3rd dose of Pentavalent vaccine (Pentavalent3 of all children under 4 years of age in the 9 selected villages. Vaccination data were obtained from parent-held health cards. We calculated the children’s MV and Pentavalent3 coverage rates at 3 time points, 1 August 2014, 1 April 2015, and 1 May 2015, representing coverage rates before the EVD outbreak, during the EVD outbreak, and after the Maternal and Child Health Week (MCHW catch-up campaign. Results The final sample size was 168 children. MV coverage among age-eligible children was 71.3% (95% confidence interval [CI]: 62.1% - 80.4% and 45.7% (95% CI: 29.2% - 62.2% before and during the outbreak of EVD, respectively, and was 56.8% (95% CI: 40.8% - 72.7% after the campaign. Pentavalent3 coverage among age-eligible children was 79.8% (95% CI: 72.6% - 87.0% and 40.0% (95% CI: 22.5% - 57.5% before and during the outbreak of EVD, and was 56.4% (95% CI: 39.1% - 73.4% after the campaign. Conclusions Coverage levels of MV and Pentavalent3 were low before the EVD outbreak and decreased further during the outbreak. Although the MCHW catch-up campaign increased coverage levels, coverage remained below pre-outbreak levels. High-quality supplementary immunization activities should be conducted and routine immunization should be strengthened to

  4. Preparedness for ongoing Ebola virus infection: how to welcome it?

    Directory of Open Access Journals (Sweden)

    Sora Yasri

    2015-06-01

    Full Text Available The problem of Ebola virus infection is the big global concern. Preparedness for ongoing Ebola virus infection is the topic that should be discussed. In fact, it is necessary to set up a biosecurity system to protect against the present Ebola outbreak. The medical personnel have to prepare for fighting the problem. The management of the present outbreak requires international collaboration and control of cross-border disease transmission is also the big challenge. The good case study is the Hajj scenario.

  5. Overview of Ebola virus disease in 2014

    Directory of Open Access Journals (Sweden)

    Chih-Peng Tseng

    2015-01-01

    Full Text Available In late December 2013, a deadly infectious epidemic, Ebola virus disease (EVD, emerged from West Africa and resulted in a formidable outbreak in areas including Guinea, Liberia, Sierra Leone and Nigeria. EVD is a zoonotic disease with a high mortality rate. Person-to-person transmission occurs through blood or body fluid exposure, which can jeopardize first-line healthcare workers if there is a lack of stringent infection control or no proper personal protective equipment available. Currently, there is no standard treatment for EVD. To promptly identify patients and prevent further spreading, physicians should be aware of travel or contact history for patients with constitutional symptoms.

  6. [Research progress on ebola virus glycoprotein].

    Science.gov (United States)

    Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa

    2013-03-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.

  7. Ebola virus - epidemiology, diagnosis, and control: threat to humans, lessons learnt, and preparedness plans - an update on its 40 year's journey.

    Science.gov (United States)

    Singh, Raj Kumar; Dhama, Kuldeep; Malik, Yashpal Singh; Ramakrishnan, Muthannan Andavar; Karthik, Kumaragurubaran; Khandia, Rekha; Tiwari, Ruchi; Munjal, Ashok; Saminathan, Mani; Sachan, Swati; Desingu, Perumal Arumugam; Kattoor, Jobin Jose; Iqbal, Hafiz M N; Joshi, Sunil Kumar

    2017-12-01

    Ebola virus (EBOV) is an extremely contagious pathogen and causes lethal hemorrhagic fever disease in man and animals. The recently occurred Ebola virus disease (EVD) outbreaks in the West African countries have categorized it as an international health concern. For the virus maintenance and transmission, the non-human primates and reservoir hosts like fruit bats have played a vital role. For curbing the disease timely, we need effective therapeutics/prophylactics, however, in the absence of any approved vaccine, timely diagnosis and monitoring of EBOV remains of utmost importance. The technologically advanced vaccines like a viral-vectored vaccine, DNA vaccine and virus-like particles are underway for testing against EBOV. In the absence of any effective control measure, the adaptation of high standards of biosecurity measures, strict sanitary and hygienic practices, strengthening of surveillance and monitoring systems, imposing appropriate quarantine checks and vigilance on trade, transport, and movement of visitors from EVD endemic countries remains the answer of choice for tackling the EBOV spread. Herein, we converse with the current scenario of EBOV giving due emphasis on animal and veterinary perspectives along with advances in diagnosis and control strategies to be adopted, lessons learned from the recent outbreaks and the global preparedness plans. To retrieve the evolutionary information, we have analyzed a total of 56 genome sequences of various EBOV species submitted between 1976 and 2016 in public databases.

  8. Induction of ebolavirus cross-species immunity using retrovirus-like particles bearing the Ebola virus glycoprotein lacking the mucin-like domain.

    Science.gov (United States)

    Ou, Wu; Delisle, Josie; Jacques, Jerome; Shih, Joanna; Price, Graeme; Kuhn, Jens H; Wang, Vivian; Verthelyi, Daniela; Kaplan, Gerardo; Wilson, Carolyn A

    2012-01-25

    The genus Ebolavirus includes five distinct viruses. Four of these viruses cause hemorrhagic fever in humans. Currently there are no licensed vaccines for any of them; however, several vaccines are under development. Ebola virus envelope glycoprotein (GP1,2) is highly immunogenic, but antibodies frequently arise against its least conserved mucin-like domain (MLD). We hypothesized that immunization with MLD-deleted GP1,2 (GPΔMLD) would induce cross-species immunity by making more conserved regions accessible to the immune system. To test this hypothesis, mice were immunized with retrovirus-like particles (retroVLPs) bearing Ebola virus GPΔMLD, DNA plasmids (plasmo-retroVLP) that can produce such retroVLPs in vivo, or plasmo-retroVLP followed by retroVLPs. Cross-species neutralizing antibody and GP1,2-specific cellular immune responses were successfully induced. Our findings suggest that GPΔMLD presented through retroVLPs may provide a strategy for development of a vaccine against multiple ebolaviruses. Similar vaccination strategies may be adopted for other viruses whose envelope proteins contain highly variable regions that may mask more conserved domains from the immune system.

  9. Induction of ebolavirus cross-species immunity using retrovirus-like particles bearing the Ebola virus glycoprotein lacking the mucin-like domain

    Directory of Open Access Journals (Sweden)

    Ou Wu

    2012-01-01

    Full Text Available Abstract Background The genus Ebolavirus includes five distinct viruses. Four of these viruses cause hemorrhagic fever in humans. Currently there are no licensed vaccines for any of them; however, several vaccines are under development. Ebola virus envelope glycoprotein (GP1,2 is highly immunogenic, but antibodies frequently arise against its least conserved mucin-like domain (MLD. We hypothesized that immunization with MLD-deleted GP1,2 (GPΔMLD would induce cross-species immunity by making more conserved regions accessible to the immune system. Methods To test this hypothesis, mice were immunized with retrovirus-like particles (retroVLPs bearing Ebola virus GPΔMLD, DNA plasmids (plasmo-retroVLP that can produce such retroVLPs in vivo, or plasmo-retroVLP followed by retroVLPs. Results Cross-species neutralizing antibody and GP1,2-specific cellular immune responses were successfully induced. Conclusion Our findings suggest that GPΔMLD presented through retroVLPs may provide a strategy for development of a vaccine against multiple ebolaviruses. Similar vaccination strategies may be adopted for other viruses whose envelope proteins contain highly variable regions that may mask more conserved domains from the immune system.

  10. Ad35 and ad26 vaccine vectors induce potent and cross-reactive antibody and T-cell responses to multiple filovirus species.

    Directory of Open Access Journals (Sweden)

    Roland Zahn

    Full Text Available Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35 was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,, two Marburg strains (Marburg Angola and Marburg Ravn and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26-Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years.

  11. Ethnomedical and ethnobotanical investigations on the response capacities of Guinean traditional health practioners in the management of outbreaks of infectious diseases: The case of the Ebola virus epidemic.

    Science.gov (United States)

    Baldé, A M; Traoré, M S; Baldé, M A; Barry, M S; Diallo, A; Camara, M; Traoré, S; Kouyaté, M; Traoré, S; Ouo-Ouo, S; Myanthé, A L; Keita, N; Haba, N L; Goumou, K; Bah, F; Camara, A; Diallo, M S T; Sylla, M; Baldé, E S; Diané, S; Pieters, L; Oularé, K

    2016-04-22

    The recent outbreak of Ebola virus infections has mostly remained confined to the West African countries Guinea-Conakry, Sierra-Leone and Liberia. Due to intense national and international mobilizations, a significant reduction in Ebola virus transmission has been recorded. While international efforts focus on new vaccines, medicines and diagnostics, no coherent national or international approach exists to integrate the potential of the traditional health practitioners (THPs) in the management of infectious diseases epidemics. Nevertheless, the first contact of most of the Ebola infected patients is with the THPs since the symptoms are similar to those of common traditionally treated diseases or symptoms such as malaria, hemorrhagic syndrome, typhoid or other gastrointestinal diseases, fever and vomiting. In an ethnomedical survey conducted in the 4 main Guinean regions contacts were established with a total of 113 THPs. The socio-demographic characteristics, the professional status and the traditional perception of Ebola Virus Disease (EVD) were recorded. The traditional treatment of the main symptoms was based on 47 vegetal recipes which were focused on the treatment of diarrhea (22 recipes), fever (22 recipes), vomiting (2 recipes), external antiseptic (2 recipes), hemorrhagic syndrome (2 recipes), convulsion and dysentery (one recipe each). An ethnobotanical survey led to the collection of 54 plant species from which 44 identified belonging to 26 families. The most represented families were Euphorbiaceae, Caesalpiniaceae and Rubiaceae. Literature data on the twelve most cited plant species tends to corroborate their traditional use and to highlight their pharmacological potential. It is worth to document all available knowledge on the traditional management of EVD-like symptoms in order to evaluate systematically the anti-Ebola potential of Guinean plant species. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors - Final Report.

    Science.gov (United States)

    Deen, Gibrilla F; Broutet, Nathalie; Xu, Wenbo; Knust, Barbara; Sesay, Foday R; McDonald, Suzanna L R; Ervin, Elizabeth; Marrinan, Jaclyn E; Gaillard, Philippe; Habib, Ndema; Liu, Hongtu; Liu, William; Thorson, Anna E; Yamba, Francis; Massaquoi, Thomas A; James, Faustin; Ariyarajah, Archchun; Ross, Christine; Bernstein, Kyle; Coursier, Antoine; Klena, John; Carino, Marylin; Wurie, Alie H; Zhang, Yong; Dumbuya, Marion S; Abad, Neetu; Idriss, Baimba; Wi, Teodora; Bennett, Sarah D; Davies, Tina; Ebrahim, Faiqa K; Meites, Elissa; Naidoo, Dhamari; Smith, Samuel J; Ongpin, Patricia; Malik, Tasneem; Banerjee, Anshu; Erickson, Bobbie R; Liu, Yongjian; Liu, Yang; Xu, Ke; Brault, Aaron; Durski, Kara N; Winter, Jörn; Sealy, Tara; Nichol, Stuart T; Lamunu, Margaret; Bangura, James; Landoulsi, Sihem; Jambai, Amara; Morgan, Oliver; Wu, Guizhen; Liang, Mifang; Su, Qiudong; Lan, Yu; Hao, Yanzhe; Formenty, Pierre; Ströher, Ute; Sahr, Foday

    2017-10-12

    Ebola virus has been detected in the semen of men after their recovery from Ebola virus disease (EVD). We report the presence of Ebola virus RNA in semen in a cohort of survivors of EVD in Sierra Leone. We enrolled a convenience sample of 220 adult male survivors of EVD in Sierra Leone, at various times after discharge from an Ebola treatment unit (ETU), in two phases (100 participants were in phase 1, and 120 in phase 2). Semen specimens obtained at baseline were tested by means of a quantitative reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay with the use of the target sequences of NP and VP40 (in phase 1) or NP and GP (in phase 2). This study did not evaluate directly the risk of sexual transmission of EVD. Of 210 participants who provided an initial semen specimen for analysis, 57 (27%) had positive results on quantitative RT-PCR. Ebola virus RNA was detected in the semen of all 7 men with a specimen obtained within 3 months after ETU discharge, in 26 of 42 (62%) with a specimen obtained at 4 to 6 months, in 15 of 60 (25%) with a specimen obtained at 7 to 9 months, in 4 of 26 (15%) with a specimen obtained at 10 to 12 months, in 4 of 38 (11%) with a specimen obtained at 13 to 15 months, in 1 of 25 (4%) with a specimen obtained at 16 to 18 months, and in no men with a specimen obtained at 19 months or later. Among the 46 participants with a positive result in phase 1, the median baseline cycle-threshold values (higher values indicate lower RNA values) for the NP and VP40 targets were lower within 3 months after ETU discharge (32.4 and 31.3, respectively; in 7 men) than at 4 to 6 months (34.3 and 33.1; in 25), at 7 to 9 months (37.4 and 36.6; in 13), and at 10 to 12 months (37.7 and 36.9; in 1). In phase 2, a total of 11 participants had positive results for NP and GP targets (samples obtained at 4.1 to 15.7 months after ETU discharge); cycle-threshold values ranged from 32.7 to 38.0 for NP and from 31.1 to 37.7 for GP. These data showed the long

  13. Rotavirus vaccines

    Science.gov (United States)

    Yen, Catherine; Tate, Jacqueline E; Hyde, Terri B; Cortese, Margaret M; Lopman, Benjamin A; Jiang, Baoming; Glass, Roger I; Parashar, Umesh D

    2014-01-01

    Rotavirus is the leading cause of severe diarrhea among children rotavirus vaccines have been efficacious and effective, with many countries reporting substantial declines in diarrheal and rotavirus-specific morbidity and mortality. However, the full public health impact of these vaccines has not been realized. Most countries, including those with the highest disease burden, have not yet introduced rotavirus vaccines into their national immunization programs. Research activities that may help inform vaccine introduction decisions include (1) establishing effectiveness, impact, and safety for rotavirus vaccines in low-income settings; (2) identifying potential strategies to improve performance of oral rotavirus vaccines in developing countries, such as zinc supplementation; and (3) pursuing alternate approaches to oral vaccines, such as parenteral immunization. Policy- and program-level barriers, such as financial implications of new vaccine introductions, should be addressed to ensure that countries are able to make informed decisions regarding rotavirus vaccine introduction. PMID:24755452

  14. Viraemia and Ebola virus secretion in survivors of Ebola virus disease in Sierra Leone: a cross-sectional cohort study.

    Science.gov (United States)

    Green, Edward; Hunt, Luke; Ross, J C Gareth; Nissen, Nina Marie; Curran, Tanya; Badhan, Anjna; Sutherland, Katherine A; Richards, Jade; Lee, James S; Allen, Samuel H; Laird, Steven; Blackman, Mandy; Collacott, Ian; Parker, Paul A; Walbridge, Andrew; Phillips, Rebecca; Sellu, Sia Jammie; Dama, Agnes; Sheriff, Alpha Karim; Zombo, Joseph; Ngegba, Doris; Wurie, Alieh H; Checchi, Francesco; Brooks, Timothy J

    2016-09-01

    In survivors of Ebola virus disease, clinical sequelae including uveitis, arthralgia, and fatigue are common and necessitate systematic follow-up. However, the infection risk to health-care providers is poorly defined. Here we report Ebola virus RT-PCR data for body site and fluid samples from a large cohort of Ebola virus survivors at clinic follow-up. In this cross-sectional cohort study, consecutive survivors of Ebola virus disease attending Kerry Town survivor clinic (Freetown, Sierra Leone), who had been discharged from the Kerry Town Ebola treatment unit, were invited to participate. We collected and tested axillary, blood, conjunctival, forehead, mouth, rectal, semen, urine, and vaginal specimens for presence of Ebola virus using RT-PCR. We regarded samples to be positive for Ebola virus disease if the cycle threshold was 40 or lower. We collected demographic data from survivors of their age, sex, time since discharge from the treatment unit, and length of acute admission in the Ebola treatment unit using anonymised standard forms. Between April 2, and June 16, 2015, of 151 survivors of Ebola virus disease invited to participate, 112 (74%) provided consent. The median age of participants was 21·5 years (IQR 14-31·5) with 34 (30%) participants younger than 16 years. 50 (45%) of 112 participants were male. We tested a total of 555 specimens: 103 from the axilla, 93 from blood, 92 from conjunctiva, 54 from forehead, 105 from mouth, 17 from the rectum, one from semen, 69 from urine, and 21 from the vagina. The median time from Ebola treatment unit discharge to specimen collection was 142 days (IQR 127-159). 15 participants had a total of 74 swabs taken less than 100 days from discharge. The semen sample from one participant tested positive for Ebola virus at 114 days after discharge from the treatment unit; specimens taken from the axilla, blood, conjunctiva, forehead, mouth, rectum, and urine of the same participant tested negative. All specimens from the

  15. Exosomes Enter Vaccine Development: Strategies Meeting Global Challenges of Emerging Infections.

    Science.gov (United States)

    Jungbauer, Alois

    2018-04-01

    New approaches for vaccination must be developed in order to meet the grand challenges for emerging infectious diseases. Exosomes now enter vaccine development and these are strategies are meeting these global challenges, as demonstrated by Anticoli et al., in this issue of Biotechnology Journal. Using exosome vaccines has been now been demonstrated in vivo for several viruses such as Ebola Virus VP24, VP40, and NP, Influenza Virus NP, Crimean-Congo Hemorrhagic Fever NP, West Nile Virus NS3, and Hepatitis C Virus NS3. Now this technology must be tested in clinics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Vaccine Hesitancy.

    Science.gov (United States)

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  17. In the midst of a 'perfect storm': Unpacking the causes and consequences of Ebola-related stigma for children orphaned by Ebola in Sierra Leone

    DEFF Research Database (Denmark)

    Denis-Ramirez, Elise; Holmegaard Sørensen, Katrine; Skovdal, Morten

    2017-01-01

    The West African Ebola virus epidemic resulted in the deaths of more than 11,000 people and caused significant social disruption. Little is known about how the world's worst Ebola outbreak has affected the thousands of children left orphaned as their parents or caregivers succumbed to the virus....... Given the infectious nature of Ebola, and numerous anecdotal accounts of stigmatisation, we set out to examine children's social representations of peers orphaned by Ebola, unpacking the causes and consequences of Ebola-related stigma. The study was conducted in 2015 in Freetown, Sierra Leone. Data...

  18. Modelling Ebola virus dynamics: Implications for therapy.

    Science.gov (United States)

    Martyushev, Alexey; Nakaoka, Shinji; Sato, Kei; Noda, Takeshi; Iwami, Shingo

    2016-11-01

    Ebola virus (EBOV) causes a severe, often fatal Ebola virus disease (EVD), for which no approved antivirals exist. Recently, some promising anti-EBOV drugs, which are experimentally potent in animal models, have been developed. However, because the quantitative dynamics of EBOV replication in humans is uncertain, it remains unclear how much antiviral suppression of viral replication affects EVD outcome in patients. Here, we developed a novel mathematical model to quantitatively analyse human viral load data obtained during the 2000/01 Uganda EBOV outbreak and evaluated the effects of different antivirals. We found that nucleoside analogue- and siRNA-based therapies are effective if a therapy with a >50% inhibition rate is initiated within a few days post-symptom-onset. In contrast, antibody-based therapy requires not only a higher inhibition rate but also an earlier administration, especially for otherwise fatal cases. Our results demonstrate that an appropriate choice of EBOV-specific drugs is required for effective EVD treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Wave-like spread of Ebola Zaire.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available In the past decade the Zaire strain of Ebola virus (ZEBOV has emerged repeatedly into human populations in central Africa and caused massive die-offs of gorillas and chimpanzees. We tested the view that emergence events are independent and caused by ZEBOV variants that have been long resident at each locality. Phylogenetic analyses place the earliest known outbreak at Yambuku, Democratic Republic of Congo, very near to the root of the ZEBOV tree, suggesting that viruses causing all other known outbreaks evolved from a Yambuku-like virus after 1976. The tendency for earlier outbreaks to be directly ancestral to later outbreaks suggests that outbreaks are epidemiologically linked and may have occurred at the front of an advancing wave. While the ladder-like phylogenetic structure could also bear the signature of positive selection, our statistical power is too weak to reach a conclusion in this regard. Distances among outbreaks indicate a spread rate of about 50 km per year that remains consistent across spatial scales. Viral evolution is clocklike, and sequences show a high level of small-scale spatial structure. Genetic similarity decays with distance at roughly the same rate at all spatial scales. Our analyses suggest that ZEBOV has recently spread across the region rather than being long persistent at each outbreak locality. Controlling the impact of Ebola on wild apes and human populations may be more feasible than previously recognized.

  20. Household demographic determinants of Ebola epidemic risk.

    Science.gov (United States)

    Adams, Ben

    2016-03-07

    A salient characteristic of Ebola, and some other infectious diseases such as Tuberculosis, is intense transmission among small groups of cohabitants and relatively limited indiscriminate transmission in the wider population. Here we consider a mathematical model for an Ebola epidemic in a population structured into households of equal size. We show that household size, a fundamental demographic unit, is a critical factor that determines the vulnerability of a community to epidemics, and the effort required to control them. Our analysis is based on the household reproduction number, but we also consider the basic reproduction number, intrinsic growth rate and final epidemic size. We show that, when other epidemiological parameters are kept the same, all of these quantifications of epidemic growth and size are increased by larger households and more intense within-household transmission. We go on to model epidemic control by case detection and isolation followed by household quarantine. We show that, if household quarantine is ineffective, the critical probability with which cases must be detected to halt an epidemic increases significantly with each increment in household size and may be a very challenging target for communities composed of large households. Effective quarantine may, however, mitigate the detrimental impact of large household sizes. We conclude that communities composed of large households are fundamentally more vulnerable to epidemics of infectious diseases primarily transmitted by close contact, and any assessment of control strategies for these epidemics should take into account the demographic structure of the population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ebola Virus Infection Modelling and Identifiability Problems

    Directory of Open Access Journals (Sweden)

    Van-Kinh eNguyen

    2015-04-01

    Full Text Available The recent outbreaks of Ebola virus (EBOV infections have underlined the impact of the virus as a major threat for human health. Due to the high biosafety classification of EBOV (level 4, basic research is very limited. Therefore, the development of new avenues of thinking to advance quantitative comprehension of the virus and its interaction with the host cells is urgently neededto tackle this lethal disease. Mathematical modelling of the EBOV dynamics can be instrumental to interpret Ebola infection kinetics on quantitative grounds. To the best of our knowledge, a mathematical modelling approach to unravel the interaction between EBOV and the host cells isstill missing. In this paper, a mathematical model based on differential equations is used to represent the basic interactions between EBOV and wild-type Vero cells in vitro. Parameter sets that represent infectivity of pathogens are estimated for EBOV infection and compared with influenza virus infection kinetics. The average infecting time of wild-type Vero cells in EBOV is slower than in influenza infection. Simulation results suggest that the slow infecting time of EBOV could be compensated by its efficient replication. This study reveals several identifiability problems and what kind of experiments are necessary to advance the quantification of EBOV infection. A first mathematical approach of EBOV dynamics and the estimation of standard parametersin viral infections kinetics is the key contribution of this work, paving the way for future modelling work on EBOV infection.

  2. Evaluating Subcriticality during the Ebola Epidemic in West Africa.

    Directory of Open Access Journals (Sweden)

    Wayne T A Enanoria

    Full Text Available The 2014-2015 Ebola outbreak is the largest and most widespread to date. In order to estimate ongoing transmission in the affected countries, we estimated the weekly average number of secondary cases caused by one individual infected with Ebola throughout the infectious period for each affected West African country using a stochastic hidden Markov model fitted to case data from the World Health Organization. If the average number of infections caused by one Ebola infection is less than 1.0, the epidemic is subcritical and cannot sustain itself. The epidemics in Liberia and Sierra Leone have approached subcriticality at some point during the epidemic; the epidemic in Guinea is ongoing with no evidence that it is subcritical. Response efforts to control the epidemic should continue in order to eliminate Ebola cases in West Africa.

  3. Parachuting plasmapheresis into the Ebola crisis | Zacharias | Africa ...

    African Journals Online (AJOL)

    Parachuting plasmapheresis into the Ebola crisis. ... A vehicle was pre-fitted with sophisticated equipment and airlifted to the study site (ELWA). ... Training included plasmapheresis, donor management, testing and pathogen inactivation.

  4. Biosecurity and Biodefense: Lessons from Ebola Virus Outbreak

    CSIR Research Space (South Africa)

    Lebea, Phiyani J

    2014-01-01

    Full Text Available , should a contagious outbreak be suspected. Such a policy would be adopted by regional member states since diseases such as Ebola respect no national boundaries. Secondly, research infrastructure including BSL 4 laboratories that address research on animal...

  5. Spatiotemporal Fluctuations and Triggers of Ebola Virus Spillover.

    Science.gov (United States)

    Schmidt, John Paul; Park, Andrew W; Kramer, Andrew M; Han, Barbara A; Alexander, Laura W; Drake, John M

    2017-03-01

    Because the natural reservoir of Ebola virus remains unclear and disease outbreaks in humans have occurred only sporadically over a large region, forecasting when and where Ebola spillovers are most likely to occur constitutes a continuing and urgent public health challenge. We developed a statistical modeling approach that associates 37 human or great ape Ebola spillovers since 1982 with spatiotemporally dynamic covariates including vegetative cover, human population size, and absolute and relative rainfall over 3 decades across sub-Saharan Africa. Our model (area under the curve 0.80 on test data) shows that spillover intensity is highest during transitions between wet and dry seasons; overall, high seasonal intensity occurs over much of tropical Africa; and spillover intensity is greatest at high (>1,000/km 2 ) and very low (Ebola spillover from wild reservoirs and indicate particular times and regions for targeted surveillance.

  6. Development of Small-Molecule Antivirals for Ebola

    Czech Academy of Sciences Publication Activity Database

    Janeba, Zlatko

    2015-01-01

    Roč. 35, č. 6 (2015), s. 1175-1194 ISSN 0198-6325 Institutional support: RVO:61388963 Keywords : antiviral * filovirus * Ebola virus * Marburg virus * hemorrhagic fever Subject RIV: CC - Organic Chemistry Impact factor: 9.135, year: 2015

  7. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance.

    Science.gov (United States)

    Rasmussen, Angela L; Okumura, Atsushi; Ferris, Martin T; Green, Richard; Feldmann, Friederike; Kelly, Sara M; Scott, Dana P; Safronetz, David; Haddock, Elaine; LaCasse, Rachel; Thomas, Matthew J; Sova, Pavel; Carter, Victoria S; Weiss, Jeffrey M; Miller, Darla R; Shaw, Ginger D; Korth, Marcus J; Heise, Mark T; Baric, Ralph S; de Villena, Fernando Pardo-Manuel; Feldmann, Heinz; Katze, Michael G

    2014-11-21

    Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever. Copyright © 2014, American Association for the Advancement of Science.

  8. Late Ebola virus relapse causing meningoencephalitis: a case report.

    Science.gov (United States)

    Jacobs, Michael; Rodger, Alison; Bell, David J; Bhagani, Sanjay; Cropley, Ian; Filipe, Ana; Gifford, Robert J; Hopkins, Susan; Hughes, Joseph; Jabeen, Farrah; Johannessen, Ingolfur; Karageorgopoulos, Drosos; Lackenby, Angie; Lester, Rebecca; Liu, Rebecca S N; MacConnachie, Alisdair; Mahungu, Tabitha; Martin, Daniel; Marshall, Neal; Mepham, Stephen; Orton, Richard; Palmarini, Massimo; Patel, Monika; Perry, Colin; Peters, S Erica; Porter, Duncan; Ritchie, David; Ritchie, Neil D; Seaton, R Andrew; Sreenu, Vattipally B; Templeton, Kate; Warren, Simon; Wilkie, Gavin S; Zambon, Maria; Gopal, Robin; Thomson, Emma C

    2016-07-30

    There are thousands of survivors of the 2014 Ebola outbreak in west Africa. Ebola virus can persist in survivors for months in immune-privileged sites; however, viral relapse causing life-threatening and potentially transmissible disease has not been described. We report a case of late relapse in a patient who had been treated for severe Ebola virus disease with high viral load (peak cycle threshold value 13.2). A 39-year-old female nurse from Scotland, who had assisted the humanitarian effort in Sierra Leone, had received intensive supportive treatment and experimental antiviral therapies, and had been discharged with undetectable Ebola virus RNA in peripheral blood. The patient was readmitted to hospital 9 months after discharge with symptoms of acute meningitis, and was found to have Ebola virus in cerebrospinal fluid (CSF). She was treated with supportive therapy and experimental antiviral drug GS-5734 (Gilead Sciences, San Francisco, Foster City, CA, USA). We monitored Ebola virus RNA in CSF and plasma, and sequenced the viral genome using an unbiased metagenomic approach. On admission, reverse transcriptase PCR identified Ebola virus RNA at a higher level in CSF (cycle threshold value 23.7) than plasma (31.3); infectious virus was only recovered from CSF. The patient developed progressive meningoencephalitis with cranial neuropathies and radiculopathy. Clinical recovery was associated with addition of high-dose corticosteroids during GS-5734 treatment. CSF Ebola virus RNA slowly declined and was undetectable following 14 days of treatment with GS-5734. Sequencing of plasma and CSF viral genome revealed only two non-coding changes compared with the original infecting virus. Our report shows that previously unanticipated, late, severe relapses of Ebola virus can occur, in this case in the CNS. This finding fundamentally redefines what is known about the natural history of Ebola virus infection. Vigilance should be maintained in the thousands of Ebola survivors

  9. Ebola Policies That Hinder Epidemic Response by Limiting Scientific Discourse

    OpenAIRE

    Asgary, Ramin; Pavlin, Julie A.; Ripp, Jonathan A.; Reithinger, Richard; Polyak, Christina S.

    2015-01-01

    There is an unprecedented epidemic of Ebola virus disease (EVD) in west Africa. There has been a strong response from dedicated health professionals. However, there have also been irrational and fear-based responses that have contributed to misallocation of resources, stigma, and deincentivizing volunteers to combat Ebola at its source. Recently, the State of Louisiana Department of Health and Hospitals issued a ban on those coming from affected countries wishing to attend the annual meetings...

  10. U.S. Ebola Treatment Center Clinical Laboratory Support

    OpenAIRE

    Jelden, Katelyn C.; Iwen, Peter C.; Herstein, Jocelyn J.; Biddinger, Paul D.; Kraft, Colleen S.; Saiman, Lisa; Smith, Philip W.; Hewlett, Angela L.; Gibbs, Shawn G.; Lowe, John J.

    2016-01-01

    Fifty-five hospitals in the United States have been designated Ebola treatment centers (ETCs) by their state and local health authorities. Designated ETCs must have appropriate plans to manage a patient with confirmed Ebola virus disease (EVD) for the full duration of illness and must have these plans assessed through a CDC site visit conducted by an interdisciplinary team of subject matter experts. This study determined the clinical laboratory capabilities of these ETCs. ETCs were electronic...

  11. Laboratory diagnosis of Ebola virus disease and corresponding biosafety considerations in the China Ebola Treatment Center.

    Science.gov (United States)

    Huang, Qing; Fu, Wei-Ling; You, Jian-Ping; Mao, Qing

    2016-10-01

    Ebola virus disease (EVD), caused by Ebola virus (EBOV), is a potent acute infectious disease with a high case-fatality rate. Etiological and serological EBOV detection methods, including techniques that involve the detection of the viral genome, virus-specific antigens and anti-virus antibodies, are standard laboratory diagnostic tests that facilitate confirmation or exclusion of EBOV infection. In addition, routine blood tests, liver and kidney function tests, electrolytes and coagulation tests and other diagnostic examinations are important for the clinical diagnosis and treatment of EVD. Because of the viral load in body fluids and secretions from EVD patients, all body fluids are highly contagious. As a result, biosafety control measures during the collection, transport and testing of clinical specimens obtained from individuals scheduled to undergo EBOV infection testing (including suspected, probable and confirmed cases) are crucial. This report has been generated following extensive work experience in the China Ebola Treatment Center (ETC) in Liberia and incorporates important information pertaining to relevant diagnostic standards, clinical significance, operational procedures, safety controls and other issues related to laboratory testing of EVD. Relevant opinions and suggestions are presented in this report to provide contextual awareness associated with the development of standards and/or guidelines related to EVD laboratory testing.

  12. Ebola Virus Shedding and Transmission: Review of Current Evidence.

    Science.gov (United States)

    Vetter, Pauline; Fischer, William A; Schibler, Manuel; Jacobs, Michael; Bausch, Daniel G; Kaiser, Laurent

    2016-10-15

     The magnitude of the 2013-2016 Ebola virus disease outbreak in West Africa was unprecedented, with >28 500 reported cases and >11 000 deaths. Understanding the key elements of Ebola virus transmission is necessary to implement adequate infection prevention and control measures to protect healthcare workers and halt transmission in the community.  We performed an extensive PubMed literature review encompassing the period from discovery of Ebola virus, in 1976, until 1 June 2016 to evaluate the evidence on modes of Ebola virus shedding and transmission.  Ebola virus has been isolated by cell culture from blood, saliva, urine, aqueous humor, semen, and breast milk from infected or convalescent patients. Ebola virus RNA has been noted in the following body fluids days or months after onset of illness: saliva (22 days), conjunctiva/tears (28 days), stool (29 days), vaginal fluid (33 days), sweat (44 days), urine (64 days), amniotic fluid (38 days), aqueous humor (101 days), cerebrospinal fluid (9 months), breast milk (16 months [preliminary data]), and semen (18 months). Nevertheless, the only documented cases of secondary transmission from recovered patients have been through sexual transmission. We did not find strong evidence supporting respiratory or fomite-associated transmission. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. How Ebola impacts genetics of Western lowland gorilla populations.

    Science.gov (United States)

    Le Gouar, Pascaline J; Vallet, Dominique; David, Laetitia; Bermejo, Magdalena; Gatti, Sylvain; Levréro, Florence; Petit, Eric J; Ménard, Nelly

    2009-12-18

    Emerging infectious diseases in wildlife are major threats for both human health and biodiversity conservation. Infectious diseases can have serious consequences for the genetic diversity of populations, which could enhance the species' extinction probability. The Ebola epizootic in western and central Africa induced more than 90% mortality in Western lowland gorilla population. Although mortality rates are very high, the impacts of Ebola on genetic diversity of Western lowland gorilla have never been assessed. We carried out long term studies of three populations of Western lowland gorilla in the Republic of the Congo (Odzala-Kokoua National Park, Lossi gorilla sanctuary both affected by Ebola and Lossi's periphery not affected). Using 17 microsatellite loci, we compared genetic diversity and structure of the populations and estimate their effective size before and after Ebola outbreaks. Despite the effective size decline in both populations, we did not detect loss in genetic diversity after the epizootic. We revealed temporal changes in allele frequencies in the smallest population. Immigration and short time elapsed since outbreaks could explain the conservation of genetic diversity after the demographic crash. Temporal changes in allele frequencies could not be explained by genetic drift or random sampling. Immigration from genetically differentiated populations and a non random mortality induced by Ebola, i.e., selective pressure and cost of sociality, are alternative hypotheses. Understanding the influence of Ebola on gorilla genetic dynamics is of paramount importance for human health, primate evolution and conservation biology.

  14. How Ebola impacts genetics of Western lowland gorilla populations.

    Directory of Open Access Journals (Sweden)

    Pascaline J Le Gouar

    2009-12-01

    Full Text Available Emerging infectious diseases in wildlife are major threats for both human health and biodiversity conservation. Infectious diseases can have serious consequences for the genetic diversity of populations, which could enhance the species' extinction probability. The Ebola epizootic in western and central Africa induced more than 90% mortality in Western lowland gorilla population. Although mortality rates are very high, the impacts of Ebola on genetic diversity of Western lowland gorilla have never been assessed.We carried out long term studies of three populations of Western lowland gorilla in the Republic of the Congo (Odzala-Kokoua National Park, Lossi gorilla sanctuary both affected by Ebola and Lossi's periphery not affected. Using 17 microsatellite loci, we compared genetic diversity and structure of the populations and estimate their effective size before and after Ebola outbreaks. Despite the effective size decline in both populations, we did not detect loss in genetic diversity after the epizootic. We revealed temporal changes in allele frequencies in the smallest population.Immigration and short time elapsed since outbreaks could explain the conservation of genetic diversity after the demographic crash. Temporal changes in allele frequencies could not be explained by genetic drift or random sampling. Immigration from genetically differentiated populations and a non random mortality induced by Ebola, i.e., selective pressure and cost of sociality, are alternative hypotheses. Understanding the influence of Ebola on gorilla genetic dynamics is of paramount importance for human health, primate evolution and conservation biology.

  15. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses

    DEFF Research Database (Denmark)

    Schandock, Franziska; Riber, Camilla Frich; Röcker, Annika

    2017-01-01

    . This work performs selection of synthetic polymers as novel broadly active agents and demonstrates activity of these polymers against Zika, Ebola, Lassa, Lyssa, Rabies, Marburg, Ebola, influenza, herpes simplex, and human immunodeficiency viruses. Results presented herein offer structure...

  16. Knowledge, perceptions and media use of the Dutch general public and healthcare workers regarding Ebola, 2014.

    NARCIS (Netherlands)

    Schol, Lianne G C; Mollers, Madelief; Swaan, Corien M; Beaujean, Desirée J M A; Wong, Albert; Timen, Aura

    2018-01-01

    The Ebola outbreak in West-Africa triggered risk communication activities to promote adequate preventive behaviour in the Netherlands. Our study investigated the level of knowledge, perceptions, and media use regarding Ebola.

  17. Reidentification of Ebola Virus E718 and ME as Ebola Virus/H.sapiens-tc/COD/1976/Yambuku-Ecran.

    Science.gov (United States)

    Kuhn, Jens H; Lofts, Loreen L; Kugelman, Jeffrey R; Smither, Sophie J; Lever, Mark S; van der Groen, Guido; Johnson, Karl M; Radoshitzky, Sheli R; Bavari, Sina; Jahrling, Peter B; Towner, Jonathan S; Nichol, Stuart T; Palacios, Gustavo

    2014-11-20

    Ebola virus (EBOV) was discovered in 1976 around Yambuku, Zaire. A lack of nomenclature standards resulted in a variety of designations for each isolate, leading to confusion in the literature and databases. We sequenced the genome of isolate E718/ME/Ecran and unified the various designations under Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Ecran. Copyright © 2014 Kuhn et al.

  18. Role of Natural Killer Cells in Innate Protection against Lethal Ebola Virus Infection

    OpenAIRE

    Warfield, Kelly L.; Perkins, Jeremy G.; Swenson, Dana L.; Deal, Emily M.; Bosio, Catharine M.; Aman, M. Javad; Yokoyama, Wayne M.; Young, Howard A.; Bavari, Sina

    2004-01-01

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1–3 d before Ebola virus infection rapidly induced protective immunity. VLP injectio...

  19. DHEC: Vaccinations

    Science.gov (United States)

    Data, Maps - SC Public Health Diseases and Conditions Flu Tuberculosis STD/HIV and Viral Hepatitis Zika Illnesses E. coli Listeriosis Salmonella Hepatitis A Shellfish Monitoring and Regulation Certified Shippers Vaccines Teen and Preteen Vaccines Vaccines Needed for School Admission Related Topics Perinatal Hepatitis

  20. Vaccines 'on demand': science fiction or a future reality.

    Science.gov (United States)

    Ulmer, Jeffrey B; Mansoura, Monique K; Geall, Andrew J

    2015-02-01

    Self-amplifying mRNA vaccines are being developed as a platform technology with potential to be used for a broad range of targets. The synthetic production methods for their manufacture, combined with the modern tools of bioinformatics and synthetic biology, enable these vaccines to be produced rapidly from an electronic gene sequence. Preclinical proof of concept has so far been achieved for influenza, respiratory syncytial virus, rabies, Ebola, cytomegalovirus, human immunodeficiency virus and malaria. This editorial highlights the key milestones in the discovery and development of self-amplifying mRNA vaccines, and reviews how they might be used as a rapid response platform. The paper points out how future improvements in RNA vector design and non-viral delivery may lead to decreases in effective dose and increases in production capacity. The prospects for non-viral delivery of self-amplifying mRNA vaccines are very promising. Like other types of nucleic acid vaccines, these vaccines have the potential to draw on the positive attributes of live-attenuated vaccines while obviating many potential safety limitations. Hence, this approach could enable the concept of vaccines on demand as a rapid response to a real threat rather than the deployment of strategic stockpiles based on epidemiological predictions for possible threats.

  1. Unusual Ebola Virus Chain of Transmission, Conakry, Guinea, 2014–2015

    Science.gov (United States)

    Keita, Mory; Duraffour, Sophie; Loman, Nicholas J.; Rambaut, Andrew; Diallo, Boubacar; Magassouba, Nfaly; Carroll, Miles W.; Quick, Joshua; Sall, Amadou A.; Glynn, Judith R.; Formenty, Pierre; Faye, Ousmane

    2016-01-01

    In October 2015, a new case of Ebola virus disease in Guinea was detected. Case investigation, serology, and whole-genome sequencing indicated possible transmission of the virus from an Ebola virus disease survivor to another person and then to the case-patient reported here. This transmission chain over 11 months suggests slow Ebola virus evolution. PMID:27869596

  2. Unusual Ebola Virus Chain of Transmission, Conakry, Guinea, 2014-2015.

    Science.gov (United States)

    Keita, Mory; Duraffour, Sophie; Loman, Nicholas J; Rambaut, Andrew; Diallo, Boubacar; Magassouba, Nfaly; Carroll, Miles W; Quick, Joshua; Sall, Amadou A; Glynn, Judith R; Formenty, Pierre; Subissi, Lorenzo; Faye, Ousmane

    2016-12-01

    In October 2015, a new case of Ebola virus disease in Guinea was detected. Case investigation, serology, and whole-genome sequencing indicated possible transmission of the virus from an Ebola virus disease survivor to another person and then to the case-patient reported here. This transmission chain over 11 months suggests slow Ebola virus evolution.

  3. Clinical Features and Outcome of Ebola Virus Disease in Pediatric Patients

    DEFF Research Database (Denmark)

    Damkjær, Mads; Rudolf, Frauke; Mishra, Sharmistha

    2016-01-01

    Clinical and outcome data on pediatric Ebola virus disease are limited. We report a case-series of 33 pediatric patients with Ebola virus disease in a single Ebola Treatment Center in 2014-2015. The case-fatality rate was 42%, with the majority of deaths occurring within 10 days of admission....

  4. Virus genomes reveal factors that spread and sustained the Ebola epidemic

    DEFF Research Database (Denmark)

    Dudas, Gytis; Carvalho, Luiz Max; Bedford, Trevor

    2017-01-01

    The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. ...

  5. Uveitis and Systemic Inflammatory Markers in Convalescent Phase of Ebola Virus Disease.

    Science.gov (United States)

    Chancellor, John R; Padmanabhan, Sriranjani P; Greenough, Thomas C; Sacra, Richard; Ellison, Richard T; Madoff, Lawrence C; Droms, Rebecca J; Hinkle, David M; Asdourian, George K; Finberg, Robert W; Stroher, Ute; Uyeki, Timothy M; Cerón, Olga M

    2016-02-01

    We report a case of probable Zaire Ebola virus-related ophthalmologic complications in a physician from the United States who contracted Ebola virus disease in Liberia. Uveitis, immune activation, and nonspecific increase in antibody titers developed during convalescence. This case highlights immune phenomena that could complicate management of Ebola virus disease-related uveitis during convalescence.

  6. A model for mapping of Ebola and Marburg RNA integration sites in ...

    African Journals Online (AJOL)

    ... nucleotide database were 6,451,736 compared to 4,012,901 for Ebola. Marburg GP genomic RNA had 18 alignments located on undefined scaffolds compared to 7 of Ebola located on chromosomes 4, 6, 7, 8, 9, 14 and 15. We also found an efficiency of 66.6% within Marburg GP alignments compared to 100% for Ebola.

  7. Virus genomes reveal factors that spread and sustained the Ebola epidemic

    DEFF Research Database (Denmark)

    Dudas, Gytis; Carvalho, Luiz Max; Bedford, Trevor

    2017-01-01

    The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We...

  8. Ebinformatics: Ebola fuzzy informatics systems on the diagnosis, prediction and recommendation of appropriate treatments for Ebola virus disease (EVD

    Directory of Open Access Journals (Sweden)

    Olugbenga Oluwagbemi

    Full Text Available Ebola Virus Disease (EVD also known as the Ebola hemorrhagic fever is a very deadly infectious disease to humankind. Therefore, a safer and complementary method of diagnosis is to employ the use of an expert system in order to initiate a platform for pre-clinical treatments, thus acting as a precursor to comprehensive medical diagnosis and treatments. This work presents a design and implementation of informatics software and a knowledge-based expert system for the diagnosis, and provision of recommendations on the appropriate type of recommended treatment to the Ebola Virus Disease (EVD.In this research an Ebola fuzzy informatics system was developed for the purpose of diagnosing and providing useful recommendations to the management of the EVD in West Africa and other affected regions of the world. It also acts as a supplementary resource in providing medical advice to individuals in Ebola – ravaged countries. This aim was achieved through the following objectives: (i gathering of facts through the conduct of a comprehensive continental survey to determine the knowledge and perception level of the public about factors responsible for the transmission of the Ebola Virus Disease (ii develop an informatics software based on information collated from health institutions on basic diagnosis of the Ebola Virus Disease-related symptoms (iii adopting and marrying the knowledge of fuzzy logic and expert systems in developing the informatics software. Necessary requirements were collated from the review of existing expert systems, consultation of journals and articles, and internet sources. Online survey was conducted to determine the level at which individuals are aware of the factors responsible for the transmission of the Ebola Virus Disease (EVD. The expert system developed, was designed to use fuzzy logic as its inference mechanism along with a set of rules. A knowledge base was created to help provide diagnosis on the Ebola Virus Disease (EVD

  9. EBOLA THREAT: WHEN NIGHTMARE BECOMES REALITY

    Directory of Open Access Journals (Sweden)

    Maja Jovanović

    2015-09-01

    Full Text Available The Ebola virus is a cause of the serious disease that causes hemorrhagic fevers — illnesses marked by severe bleeding (hemorrhage, organ failure and, in many cases, death. The virus is native to Africa, where sporadic outbreaks have occurred for decades. The current outbreak is the largest and there have been more cases of deaths in this outbreak than all others combined. Various degrees of hepatocellular necrosis have been reported in infected people and non-human primates; however, the hepatocellular lesions are generally not serious enough to explain the cause of death. Importantly, hemorrhagic tendencies could be related to decreased synthesis of coagulation and other plasma proteins because of severe hepatocellular necrosis. Supportive carerehydration with oral or intravenous fluids - and treatment of specific the symptoms improves the survival. There is as yet no proven treatment available for EVD.

  10. Ebola Virus Epidemiology and Evolution in Nigeria.

    Science.gov (United States)

    Folarin, Onikepe A; Ehichioya, Deborah; Schaffner, Stephen F; Winnicki, Sarah M; Wohl, Shirlee; Eromon, Philomena; West, Kendra L; Gladden-Young, Adrianne; Oyejide, Nicholas E; Matranga, Christian B; Deme, Awa Bineta; James, Ayorinde; Tomkins-Tinch, Christopher; Onyewurunwa, Kenneth; Ladner, Jason T; Palacios, Gustavo; Nosamiefan, Iguosadolo; Andersen, Kristian G; Omilabu, Sunday; Park, Daniel J; Yozwiak, Nathan L; Nasidi, Abdusallam; Garry, Robert F; Tomori, Oyewale; Sabeti, Pardis C; Happi, Christian T

    2016-10-15

    Containment limited the 2014 Nigerian Ebola virus (EBOV) disease outbreak to 20 reported cases and 8 fatalities. We present here clinical data and contact information for at least 19 case patients, and full-length EBOV genome sequences for 12 of the 20. The detailed contact data permits nearly complete reconstruction of the transmission tree for the outbreak. The EBOV genomic data are consistent with that tree. It confirms that there was a single source for the Nigerian infections, shows that the Nigerian EBOV lineage nests within a lineage previously seen in Liberia but is genetically distinct from it, and supports the conclusion that transmission from Nigeria to elsewhere did not occur. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  11. Ebola virus disease: a literature review

    Directory of Open Access Journals (Sweden)

    Hirokazu Kimura

    2015-02-01

    Full Text Available Ebola virus disease (EVD is a life-threatening viral disease with a fatality rate ranging from around 30% to 90%. The first EVD outbreak was reported in the 1970s in Zaire (now the Democratic Republic of the Congo. Until 2013, most outbreaks occurred in the Central Africa region, including Zaire, Sudan and Uganda. However, between March and October 2014, over 10 000 cases of EVD have been recorded in West Africa, such as in Guinea, Liberia, Sierra Leone, and Nigeria, and a few hospital or secondary infections of EVD have occurred in Spain and the United States of America. EVD is presently one of the world's most feared diseases. In this literature review, we describe the epidemiology, clinical features, diagnosis, and treatment of EVD.

  12. Os Desafios da Epidemia do Ebola

    Directory of Open Access Journals (Sweden)

    Manoel Dias da Fonsêca Neto

    2014-09-01

    Full Text Available Desde que se criaram as condições para a existência de aglomerados populacionais, os grandes flagelos sanitários da humanidade sempre estiveram presentes. As condições de vida, os desastres naturais ou provocados, podem agravar consideravelmente o risco de epidemias. Ao largo da história da humanidade, se viu populações de todo o mundo afetadas esporadicamente por surtos devastadores de doenças infecciosas, com destaque para cólera, peste e varíola. Hipocrates (460-377 AC e Galeno (129-216 DC já descreveram em suas épocas um doença que provavelmente era a cólera(1.A relação entre doença e civilização tem raízes mais antigas que a historia escrita. Os males sofridos durante os primeiros estágios da evolução humana foram identificados através de estudos arqueológicos(2.A atualidade é marcada por erupções recorrentes de doenças recém- descobertas, como o hantavirus, a AIDS, o ebola e gripes provocadas por vírus de diversas estruturas, entre outras epidemias de doenças que migraram para novas áreas, moléstias que adquiriram importância através de tecnologias humanas, como as síndromes de choques tóxicos, a doença dos legionários e zoonoses, em decorrência da destruição dos habitats naturais dos animais pelo homem. Algumas dessas doenças são potencialmente epidêmicas, e poderão gerar epidemias em grande escala, até mundial, a exemplo da epidemia global do vírus da imunodeficiência humana, a AIDS, considerada a primeira doença infecciosa epidêmica moderna(2,3.O grande aumento da movimentação de pessoas e mercadorias pelo mundo é força motriz por trás da globalização das doenças, tornando o mundo mais rapidamente vulnerável às mesmas e à sua propagação, tanto de antigas como de novas enfermidades. As pessoas e as mercadorias passaram a viajar e circular mais, muito mais rápido e a mais lugares e com elas, transportam-se micro-organismos a locais onde antes inexistiam. A nova epidemia

  13. New Perspectives on Ebola Virus Evolution.

    Directory of Open Access Journals (Sweden)

    Celeste J Brown

    Full Text Available Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP because one of its products, the spike glycoprotein (GP1,2, is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1 the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2 the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3 although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.

  14. New Perspectives on Ebola Virus Evolution.

    Science.gov (United States)

    Brown, Celeste J; Quates, Caleb J; Mirabzadeh, Christopher A; Miller, Craig R; Wichman, Holly A; Miura, Tanya A; Ytreberg, F Marty

    2016-01-01

    Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV) isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP) because one of its products, the spike glycoprotein (GP1,2), is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1) the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2) the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3) although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.

  15. FLU VACCINATION

    CERN Multimedia

    2007-01-01

    People working on the CERN site who wish to be vaccinated may go to the Infirmary (ground-floor, bldg. 57), with their vaccine, without a prior appointment. The vaccine can be reimbursed directly by Uniqa providing you attach the receipt and the prescription that you will receive from the Medical Service the day of your injection at the infirmary. Ideally, the vaccination should take place between 1st October and 30th November 2007 (preferably between 14:00 and 16:00). CERN staff aged 50 or over are recommended to have influenza vaccinations. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and those convalescing from serious medical problems or after serious surgical operations. The Medical Service will not administer vaccines for family members or retired staff members, who must contact their normal family doctor. Medical Service

  16. Beating the odds: Successful establishment of a Phase II/III clinical research trial in resource-poor Liberia during the largest-ever Ebola outbreak

    Directory of Open Access Journals (Sweden)

    J. Doe-Anderson

    2016-12-01

    Full Text Available It has been argued that a country such as Liberia, not fully recovered from the devastation of decades of civil unrest, lacked the appropriate ethical and regulatory framework, basic human and health care services, and infrastructure to carry out clinical trials according to international standards of quality during a public health emergency. However, as Liberia, Sierra Leone, and Guinea were being ravaged by the largest and most devastating Ebola Virus Disease (EVD outbreak ever recorded, the topic of conducting clinical trials of experimental vaccine and treatment candidates in these resource-poor countries generated the keen interest and concern of scientists, researchers, physicians, bioethicists, philanthropists, and even politicians. Decisive action on behalf of the Liberian government, and a timely positive and supportive response from the United States (U.S. government, led to the formation of PREVAIL (Partnership for Research on Ebola Vaccines in Liberia – a clinical research partnership between the two governments. Within a span of 12 weeks, this partnership accomplished the unimaginable: the successful initiation of a Phase II/III vaccine clinical trial for EVD in Liberia. This paper will discuss the dynamics of the research collaboration, barriers encountered, breakthroughs realized, key elements of success, and lessons learned in the process.

  17. Using simulation to aid trial design: Ring-vaccination trials.

    Directory of Open Access Journals (Sweden)

    Matt David Thomas Hitchings

    2017-03-01

    Full Text Available The 2014-6 West African Ebola epidemic highlights the need for rigorous, rapid clinical trial methods for vaccines. A challenge for trial design is making sample size calculations based on incidence within the trial, total vaccine effect, and intracluster correlation, when these parameters are uncertain in the presence of indirect effects of vaccination.We present a stochastic, compartmental model for a ring vaccination trial. After identification of an index case, a ring of contacts is recruited and either vaccinated immediately or after 21 days. The primary outcome of the trial is total vaccine effect, counting cases only from a pre-specified window in which the immediate arm is assumed to be fully protected and the delayed arm is not protected. Simulation results are used to calculate necessary sample size and estimated vaccine effect. Under baseline assumptions about vaccine properties, monthly incidence in unvaccinated rings and trial design, a standard sample-size calculation neglecting dynamic effects estimated that 7,100 participants would be needed to achieve 80% power to detect a difference in attack rate between arms, while incorporating dynamic considerations in the model increased the estimate to 8,900. This approach replaces assumptions about parameters at the ring level with assumptions about disease dynamics and vaccine characteristics at the individual level, so within this framework we were able to describe the sensitivity of the trial power and estimated effect to various parameters. We found that both of these quantities are sensitive to properties of the vaccine, to setting-specific parameters over which investigators have little control, and to parameters that are determined by the study design.Incorporating simulation into the trial design process can improve robustness of sample size calculations. For this specific trial design, vaccine effectiveness depends on properties of the ring vaccination design and on the

  18. Living Under the Constant Threat of Ebola: A Phenomenological Study of Survivors and Family Caregivers During an Ebola Outbreak.

    Science.gov (United States)

    Matua, Gerald Amandu; Wal, Dirk Mostert Van der

    2015-09-01

    Ebola is a highly infectious disease that is caused by viruses of the family Filoviridae and transmitted to humans by direct contact with animals infected from unknown natural reservoirs. Ebola virus infection induces acute fever and death within a few days in up to 90% of symptomatic individuals, causing widespread fear, panic, and antisocial behavior. Uganda is vulnerable to future Ebola outbreaks. Therefore, the survivors of Ebola and their family caregivers are likely to continue experiencing related antisocial overtones, leading to negative health outcomes. This study articulated the lived experiences of survivors and their family caregivers after an Ebola outbreak in Kibale District, Western Uganda. Eliciting a deeper understanding of these devastating lifetime experiences provides opportunities for developing and implementing more compassionate and competent nursing care for affected persons. Ebola survivors and their family caregivers were recruited using a purposive sampling method. Twelve (12) adult survivors and their family caregivers were recruited and were interviewed individually between May and July 2013 in Kibale, a rural district in Western Uganda close to the border of the Democratic Republic of the Congo, where Ebola virus was first discovered in 1976. Oral and written informed consent was obtained before all in-depth interviews, and the researchers adhered to principles of anonymity and confidentiality. The interviews were recorded digitally, and data analysis employed Wertz's Empirical Psychological Reflection method, which is grounded in descriptive phenomenology. Living under the constant threat of Ebola is experienced through two main categories: (a) defining features of the experience and (b) responding to the traumatizing experience. Five themes emerged in the first category: (a) fear, ostracism, and stigmatization; (b) annihilation of sufferer's actualities and possibilities; (c) the lingering nature of the traumatic experience; (d

  19. Ebola outbreak in West Africa: a neglected tropical disease

    Directory of Open Access Journals (Sweden)

    Alcides Troncoso

    2015-04-01

    Full Text Available Neglected tropical diseases (NTDs are remediable injustices of our times. Poverty is the starting point, and the ultimate outcome, of NTD. Ebola is just one of many NTDs that badly need attention. Ebola exacerbates West Africa's poverty crisis. The virus spreading in Guinea, Liberia and Sierra Leone has led to food shortages and neglect of other devastating tropical illnesses. A health crisis that was ignored for months until it was out of control is now beginning to get the attention required, if not the resources. So far, the world´s nations have contributed far less than the $ 1 billion. The U.N. estimates would need to control the epidemic before it becomes endemic. Past outbreaks of Ebola have flared up in remote, forested communities, disconnected from much of the outside world. But the outbreak in West Africa has not slowed yet, and it worsens there the chances of it spreading to other countries. Ebola draws attention to NTD. Ebola is not only a health emergency, but also it´s a poverty crisis. The current Global Ebola crisis presents a multitude of challenges in terms of our capacity to respond; the future is even less predictable. Ebola outbreak represents inequity in health as the occurrence of health differences considered unnecessary, avoidable, unfair, and unjust, thus adding a moral and ethical dimension to health inequalities. Health equity does not refer only to the fairness in the distribution of health or the provision of health care; rather, it is linked with the larger issues of fairness and justice in social arrangements.

  20. Quality vaccines for all people: Report on the 16th annual general meeting of the Developing Countries Vaccine Manufacturers' Network, 05-07th October 2015, Bangkok, Thailand.

    Science.gov (United States)

    Pagliusi, Sonia; Ting, Ching-Chia; Khomvilai, Sumana

    2016-06-30

    The Developing Countries Vaccine Manufacturers Network (DCVMN) assembled high-profile leaders from global health organisations and vaccine manufactures for its 16th Annual General Meeting to work towards a common goal: providing quality vaccines for all people. Vaccines contribute to a healthy community and robust health system; the Ebola outbreak has raised awareness of the threat and damage one single infectious disease can make, and it is clear that the world was not prepared. However, more research to better understand emerging infectious agents might lead to suitable vaccines which help prevent future outbreaks. DCVMN members presented their progress in developing novel vaccines against Dengue, HPV, Chikungunya, Cholera, cell-based influenza and other vaccines, demonstrating the commitment towards eliminating and eradicating preventable diseases worldwide through global collaboration and technology transfer. The successful introduction of novel Sabin-IPV and Oral Cholera vaccine in China and Korea respectively in 2015 was highlighted. In order to achieve global immunisation, local authorities and community leaders play an important role in the decision-making in vaccine introduction and uptake, based on the ability of vaccines to protect vaccinated people and protect non-vaccinated in the community through herd immunity. Reducing the risk of vaccine shortages can also be achieved by increasing regulatory convergence at regional and international levels. Combatting preventable diseases remains challenging, and collective efforts for improving multi-centre clinical trials, creating regional vaccine security strategies, fostering developing vaccine markets and procurement, and building trust in vaccines were discussed. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Plasmodium Parasitemia Associated With Increased Survival in Ebola Virus-Infected Patients.

    Science.gov (United States)

    Rosenke, Kyle; Adjemian, Jennifer; Munster, Vincent J; Marzi, Andrea; Falzarano, Darryl; Onyango, Clayton O; Ochieng, Melvin; Juma, Bonventure; Fischer, Robert J; Prescott, Joseph B; Safronetz, David; Omballa, Victor; Owuor, Collins; Hoenen, Thomas; Groseth, Allison; Martellaro, Cynthia; van Doremalen, Neeltje; Zemtsova, Galina; Self, Joshua; Bushmaker, Trenton; McNally, Kristin; Rowe, Thomas; Emery, Shannon L; Feldmann, Friederike; Williamson, Brandi N; Best, Sonja M; Nyenswah, Tolbert G; Grolla, Allen; Strong, James E; Kobinger, Gary; Bolay, Fatorma K; Zoon, Kathryn C; Stassijns, Jorgen; Giuliani, Ruggero; de Smet, Martin; Nichol, Stuart T; Fields, Barry; Sprecher, Armand; Massaquoi, Moses; Feldmann, Heinz; de Wit, Emmie

    2016-10-15

    The ongoing Ebola outbreak in West Africa has resulted in 28 646 suspected, probable, and confirmed Ebola virus infections. Nevertheless, malaria remains a large public health burden in the region affected by the outbreak. A joint Centers for Disease Control and Prevention/National Institutes of Health diagnostic laboratory was established in Monrovia, Liberia, in August 2014, to provide laboratory diagnostics for Ebola virus. All blood samples from suspected Ebola virus-infected patients admitted to the Médecins Sans Frontières ELWA3 Ebola treatment unit in Monrovia were tested by quantitative real-time polymerase chain reaction for the presence of Ebola virus and Plasmodium species RNA. Clinical outcome in laboratory-confirmed Ebola virus-infected patients was analyzed as a function of age, sex, Ebola viremia, and Plasmodium species parasitemia. The case fatality rate of 1182 patients with laboratory-confirmed Ebola virus infections was 52%. The probability of surviving decreased with increasing age and decreased with increasing Ebola viral load. Ebola virus-infected patients were 20% more likely to survive when Plasmodium species parasitemia was detected, even after controlling for Ebola viral load and age; those with the highest levels of parasitemia had a survival rate of 83%. This effect was independent of treatment with antimalarials, as this was provided to all patients. Moreover, treatment with antimalarials did not affect survival in the Ebola virus mouse model. Plasmodium species parasitemia is associated with an increase in the probability of surviving Ebola virus infection. More research is needed to understand the molecular mechanism underlying this remarkable phenomenon and translate it into treatment options for Ebola virus infection. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. Plasmodium Parasitemia Associated With Increased Survival in Ebola Virus–Infected Patients

    Science.gov (United States)

    Rosenke, Kyle; Adjemian, Jennifer; Munster, Vincent J.; Marzi, Andrea; Falzarano, Darryl; Onyango, Clayton O.; Ochieng, Melvin; Juma, Bonventure; Fischer, Robert J.; Prescott, Joseph B.; Safronetz, David; Omballa, Victor; Owuor, Collins; Hoenen, Thomas; Groseth, Allison; Martellaro, Cynthia; van Doremalen, Neeltje; Zemtsova, Galina; Self, Joshua; Bushmaker, Trenton; McNally, Kristin; Rowe, Thomas; Emery, Shannon L.; Feldmann, Friederike; Williamson, Brandi N.; Best, Sonja M.; Nyenswah, Tolbert G.; Grolla, Allen; Strong, James E.; Kobinger, Gary; Bolay, Fatorma K.; Zoon, Kathryn C.; Stassijns, Jorgen; Giuliani, Ruggero; de Smet, Martin; Nichol, Stuart T.; Fields, Barry; Sprecher, Armand; Massaquoi, Moses; Feldmann, Heinz; de Wit, Emmie

    2016-01-01

    Background. The ongoing Ebola outbreak in West Africa has resulted in 28 646 suspected, probable, and confirmed Ebola virus infections. Nevertheless, malaria remains a large public health burden in the region affected by the outbreak. A joint Centers for Disease Control and Prevention/National Institutes of Health diagnostic laboratory was established in Monrovia, Liberia, in August 2014, to provide laboratory diagnostics for Ebola virus. Methods. All blood samples from suspected Ebola virus–infected patients admitted to the Médecins Sans Frontières ELWA3 Ebola treatment unit in Monrovia were tested by quantitative real-time polymerase chain reaction for the presence of Ebola virus and Plasmodium species RNA. Clinical outcome in laboratory-confirmed Ebola virus–infected patients was analyzed as a function of age, sex, Ebola viremia, and Plasmodium species parasitemia. Results. The case fatality rate of 1182 patients with laboratory-confirmed Ebola virus infections was 52%. The probability of surviving decreased with increasing age and decreased with increasing Ebola viral load. Ebola virus–infected patients were 20% more likely to survive when Plasmodium species parasitemia was detected, even after controlling for Ebola viral load and age; those with the highest levels of parasitemia had a survival rate of 83%. This effect was independent of treatment with antimalarials, as this was provided to all patients. Moreover, treatment with antimalarials did not affect survival in the Ebola virus mouse model. Conclusions. Plasmodium species parasitemia is associated with an increase in the probability of surviving Ebola virus infection. More research is needed to understand the molecular mechanism underlying this remarkable phenomenon and translate it into treatment options for Ebola virus infection. PMID:27531847

  3. Hepatitis Vaccines

    Directory of Open Access Journals (Sweden)

    Sina Ogholikhan

    2016-03-01

    Full Text Available Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver.

  4. Hepatitis Vaccines

    Science.gov (United States)

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  5. When free healthcare is not free. Corruption and mistrust in Sierra Leone's primary healthcare system immediately prior to the Ebola outbreak.

    Science.gov (United States)

    Pieterse, Pieternella; Lodge, Tom

    2015-11-01

    Sierra Leone is one of three countries recently affected by Ebola. In debates surrounding the circumstances that contributed to the initial failure to contain the outbreak, the word 'trust' is often used: In December 2014, WHO director Margret Chan used 'lack of trust in governments'; The Lancet's Editor-in-Chief, wrote how Ebola has exposed the '… breakdown of trust between communities and their governments.' This article explores the lack of trust in public healthcare providers in Sierra Leone, predating the Ebola outbreak, apparently linked to widespread petty corruption in primary healthcare facilities. It compares four NGO-supported accountability interventions targeting Sierra Leone's primary health sector. Field research was conducted in Kailahun, Kono and Tonkolili Districts, based on interviews with health workers and focus group discussions with primary healthcare users. Field research showed that in most clinics, women and children entitled to free care routinely paid for health services. A lack of accountability in Sierra Leone's health sector appears pervasive at all levels. Petty corruption is rife. Understaffing leads to charging for free care in order to pay clinic-based 'volunteers' who function as vaccinators, health workers and birth attendants. Accountability interventions were found to have little impact on healthworker (mis)behaviour. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. A Synthetic Serine Protease Inhibitor, Nafamostat Mesilate, Is a Drug Potentially Applicable to the Treatment of Ebola Virus Disease.

    Science.gov (United States)

    Nishimura, Hidekazu; Yamaya, Mutsuo

    2015-09-01

    Ebola virus disease (EVD) has been a great concern worldwide because of its high mortality. EVD usually manifests with fever, diarrhea and vomiting, as well as disseminated intravascular coagulation (DIC). To date, there is neither a licensed Ebola vaccine nor a promising therapeutic agent, although clinical trials are ongoing. For replication inside the cell, Ebola virus (EBOV) must undergo the proteolytic processing of its surface glycoprotein in the endosome by proteases including cathepsin B (CatB), followed by the fusion of the viral membrane and host endosome. Thus, the proteases have been considered as potential targets for drugs against EVD. However, no protease inhibitor has been presented as effective clinical drug against it. A synthetic serine protease inhibitor, nafamostat mesilate (NM), reduced the release of CatB from the rat pancreas. Furthermore, it has anticoagulant activities, such as inhibition of the factor VIIa complex, and has been used for treating DIC in Japan. Thus, NM could be considered as a drug candidate for the treatment of DIC induced by EBOV infection, as well as for the possible CatB-related antiviral action. Moreover, the drug has a history of large-scale production and clinical use, and the issues of safety and logistics might have been cleared. We advocate in vitro and in vivo experiments using active EBOV to examine the activities of NM against the infection and the DIC induced by the infection. In addition, we suggest trials for comparison among anti-DIC drugs including the NM in EVD patients, in parallel with the experiments.

  7. Engaging 'communities': anthropological insights from the West African Ebola epidemic.

    Science.gov (United States)

    Wilkinson, A; Parker, M; Martineau, F; Leach, M

    2017-05-26

    The recent Ebola epidemic in West Africa highlights how engaging with the sociocultural dimensions of epidemics is critical to mounting an effective outbreak response. Community engagement was pivotal to ending the epidemic and will be to post-Ebola recovery, health system strengthening and future epidemic preparedness and response. Extensive literatures in the social sciences have emphasized how simple notions of community, which project solidarity onto complex hierarchies and politics, can lead to ineffective policies and unintended consequences at the local level, including doing harm to vulnerable populations. This article reflects on the nature of community engagement during the Ebola epidemic and demonstrates a disjuncture between local realities and what is being imagined in post-Ebola reports about the lessons that need to be learned for the future. We argue that to achieve stated aims of building trust and strengthening outbreak response and health systems, public health institutions need to reorientate their conceptualization of 'the community' and develop ways of working which take complex social and political relationships into account.This article is part of the themed issue 'The 2013-2016 West African Ebola epidemic: data, decision-making and disease control'. © 2017 The Authors.

  8. Clinical Chemistry of Patients With Ebola in Monrovia, Liberia.

    Science.gov (United States)

    de Wit, Emmie; Kramer, Shelby; Prescott, Joseph; Rosenke, Kyle; Falzarano, Darryl; Marzi, Andrea; Fischer, Robert J; Safronetz, David; Hoenen, Thomas; Groseth, Allison; van Doremalen, Neeltje; Bushmaker, Trenton; McNally, Kristin L; Feldmann, Friederike; Williamson, Brandi N; Best, Sonja M; Ebihara, Hideki; Damiani, Igor A C; Adamson, Brett; Zoon, Kathryn C; Nyenswah, Tolbert G; Bolay, Fatorma K; Massaquoi, Moses; Sprecher, Armand; Feldmann, Heinz; Munster, Vincent J

    2016-10-15

    The development of point-of-care clinical chemistry analyzers has enabled the implementation of these ancillary tests in field laboratories in resource-limited outbreak areas. The Eternal Love Winning Africa (ELWA) outbreak diagnostic laboratory, established in Monrovia, Liberia, to provide Ebola virus and Plasmodium spp. diagnostics during the Ebola epidemic, implemented clinical chemistry analyzers in December 2014. Clinical chemistry testing was performed for 68 patients in triage, including 12 patients infected with Ebola virus and 18 infected with Plasmodium spp. The main distinguishing feature in clinical chemistry of Ebola virus-infected patients was the elevation in alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and γ-glutamyltransferase levels and the decrease in calcium. The implementation of clinical chemistry is probably most helpful when the medical supportive care implemented at the Ebola treatment unit allows for correction of biochemistry derangements and on-site clinical chemistry analyzers can be used to monitor electrolyte balance. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Cannabidiol: a potential treatment for post Ebola syndrome?

    Science.gov (United States)

    Reznik, Sandra E; Gardner, Eliot L; Ashby, Charles R

    2016-11-01

    Patients recovered from Ebola virus infection may experience short- and long-term physical, neuropsychological and social sequelae, including arthralgia, musculoskeletal pain, ophthalmic inflammation, auditory problems, fatigue, confusion, insomnia, short-term memory impairment, anxiety, depression and anorexia, all lasting from two weeks to more than two years. Currently there are no treatments for post Ebola sequelae. We hypothesize that cannabidiol (CBD) may attenuate some of these post Ebola sequelae, several of which have been postulated to result from inflammation and/or an autoimmune response. CBD has anti-inflammatory actions in various animal models. Clinical studies have shown that oral administration of CBD, compared to placebo, significantly reduces anxiety, has antinociceptive and anticonvulsant actions, and may be therapeutic for insomnia. Overall, CBD has a number of pharmacological effects that may significantly improve the mental and somatic health of patients suffering from post Ebola sequelae. In humans, CBD, at therapeutic doses, does not: 1) elicit dependence or tolerance; 2) significantly alter heart rate or blood pressure; 3) affect gastrointestinal transit; 4) produce significant cognitive or psychomotor impairments. Mild sedation and nausea are the most commonly reported adverse effects associated with CBD.CBD, based on its pharmacological effects and favorable safety profile, should be considered as a treatment for individuals with post Ebola sequelae. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The 2014–2015 Ebola outbreak in West Africa: Hands On

    Directory of Open Access Journals (Sweden)

    Pauline Vetter

    2016-05-01

    Full Text Available Abstract The International Consortium for Prevention and Infection Control (ICPIC organises a biannual conference (ICPIC on various subjects related to infection prevention, treatment and control. During ICPIC 2015, held in Geneva in June 2015, a full one-day session focused on the 2014–2015 Ebola virus disease (EVD outbreak in West Africa. This article is a non-exhaustive compilation of these discussions. It concentrates on lessons learned and imagining a way forward for the communities most affected by the epidemic. The reader can access video recordings of all lectures delivered during this one-day session, as referenced. Topics include the timeline of the international response, linkages between the dynamics of the epidemic and infection prevention and control, the importance of community engagement, and updates on virology, diagnosis, treatment and vaccination issues. The paper also includes discussions from public health, infectious diseases, critical care and infection control experts who cared for patients with EVD in Africa, in Europe, and in the United Sates and were involved in Ebola preparedness in both high- and low-resource settings and countries. This review concludes that too little is known about the pathogenesis and treatment of EVD, therefore basic and applied research in this area are urgently required. Furthermore, it is clear that epidemic preparedness needs to improve globally, in particular through the strengthening of health systems at local and national levels. There is a strong need for culturally sensitive approaches to public health which could be designed and delivered by social scientists and medical professionals working together. As of December 2015, this epidemic killed more than 11,000 people and infected more than 28,000; it has also generated more than 17,000 survivors and orphans, many of whom face somatic and psychological complications. The continued treatment and rehabilitation of these people is a

  11. Implementation of broad screening with Ebola rapid diagnostic tests in Forécariah, Guinea

    Directory of Open Access Journals (Sweden)

    Frantz Jean Louis

    2017-03-01

    Full Text Available Background: Laboratory-enhanced surveillance is critical for rapidly detecting the potential re-emergence of Ebola virus disease. Rapid diagnostic tests (RDT for Ebola antigens could expand diagnostic capacity for Ebola virus disease. Objectives: The Guinean National Coordination for Ebola Response conducted a pilot implementation to determine the feasibility of broad screening of patients and corpses with the OraQuick® Ebola RDT. Methods: The implementation team developed protocols and trained healthcare workers to screen patients and corpses in Forécariah prefecture, Guinea, from 15 October to 30 November 2015. Data collected included number of consultations, number of fevers reported or measured, number of tests performed for patients or corpses and results of confirmatory RT-PCR testing. Data on malaria RDT results were collected for comparison. Feedback from Ebola RDT users was collected informally during supervision visits and forums. Results: There were 3738 consultations at the 15 selected healthcare facilities; 74.6% of consultations were for febrile illness. Among 2787 eligible febrile patients, 2633 were tested for malaria and 1628 OraQuick® Ebola RDTs were performed. A total of 322 OraQuick® Ebola RDTs were conducted on corpses. All Ebola tests on eligible patients were negative. Conclusions: Access to Ebola testing was expanded by the implementation of RDTs in an emergency situation. Feedback from Ebola RDT users and lessons learned will contribute to improving quality for RDT expansion.

  12. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice.

    Directory of Open Access Journals (Sweden)

    Maria A Croyle

    Full Text Available Pre-existing immunity to human adenovirus serotype 5 (Ad5 is common in the general population. Bypassing pre-existing immunity could maximize Ad5 vaccine efficacy. Vaccination by the intramuscular (I.M., nasal (I.N. or oral (P.O. route with Ad5 expressing Ebola Zaire glycoprotein (Ad5-ZGP fully protected naïve mice against lethal challenge with Ebola. In the presence of pre-existing immunity, only mice vaccinated I.N. survived. The frequency of IFN-gamma+ CD8+ T cells was reduced by 80% and by 15% in animals vaccinated by the I.M. and P.O. routes respectively. Neutralizing antibodies could not be detected in serum from either treatment group. Pre-existing immunity did not compromise the frequency of IFN-gamma+ CD8+ T cells (3.9+/-1% naïve vs. 3.6+/-1% pre-existing immunity, PEI nor anti-Ebola neutralizing antibody (NAB, 40+/-10 reciprocal dilution, both groups. The number of INF-gamma+ CD8+ cells detected in bronchioalveolar lavage fluid (BAL after I.N. immunization was not compromised by pre-existing immunity to Ad5 (146+/-14, naïve vs. 120+/-16 SFC/million MNCs, PEI. However, pre-existing immunity reduced NAB levels in BAL by approximately 25% in this group. To improve the immune response after oral vaccination, the Ad5-based vaccine was PEGylated. Mice given the modified vaccine did not survive challenge and had reduced levels of IFN-gamma+ CD8+ T cells 10 days after administration (0.3+/-0.3% PEG vs. 1.7+/-0.5% unmodified. PEGylation did increase NAB levels 2-fold. These results provide some insight about the degree of T and B cell mediated immunity necessary for protection against Ebola virus and suggest that modification of the virus capsid can influence the type of immune response elicited by an Ad5-based vaccine.

  13. Pathology of experimental Ebola virus infection in African green monkeys. Involvement of fibroblastic reticular cells.

    Science.gov (United States)

    Davis, K J; Anderson, A O; Geisbert, T W; Steele, K E; Geisbert, J B; Vogel, P; Connolly, B M; Huggins, J W; Jahrling, P B; Jaax, N K

    1997-08-01

    Ebola virus has been responsible for explosive lethal outbreaks of hemorrhagic fever in both humans and nonhuman primates. Previous studies showed a predilection of Ebola virus for cells of the mononuclear phagocyte system and endothelial cells. To examine the distribution of lesions and Ebola virus antigen in the tissues of six adult male African green monkeys (Cercopithecus aethiops) that died 6 to 7 days after intraperitoneal inoculation of Ebola-Zaire (Mayinga) virus. Tissues were examined histologically, immunohistochemically, and ultrastructurally. A major novel finding of this study was that fibroblastic reticular cells were immunohistochemically and ultrastructurally identified as targets of Ebola virus infection. The role of Ebola virus-infected fibroblastic reticular cells in the pathogenesis of Ebola hemorrhagic fever warrants further investigation. This is especially important because of recent observations indicating that fibroblastic reticular cells, along with the reticular fibers they produce, maximize the efficiency of the immune response.

  14. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  15. Flu vaccination

    CERN Multimedia

    CERN Medical Service

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor.CERN Medical Service

  16. FLU VACCINATION

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  17. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical service

  18. Zero Health Worker Infection: Experiences From the China Ebola Treatment Unit During the Ebola Epidemic in Liberia.

    Science.gov (United States)

    Liu, Lei; Yin, Huahua; Liu, Ding

    2017-04-01

    In November 2014, a total of 164 health care workers were dispatched by the Chinese government as the first medical assistance team to Liberia. The tasks of this team were to establish a China Ebola treatment unit (ETU), to commence the initial admission and treatment of suspected and confirmed Ebola patients, and to provide public health and infection control training for relevant local personnel. Overall, during the 2-month stay of this first medical assistance team in Liberia, 112 Ebola-suspected patients presented to the ETU, 65 patients were admitted, including 5 confirmed cases, and 3 confirmed cases were cured. Furthermore, 1520 local people were trained, including health care workers, military health care workers, staff members employed by the ETU, and community residents. Most importantly, as the first Chinese medical assistance team deployed to Liberia fighting the Ebola virus on the frontline, not a single member of this team or the hired local staff were infected by Ebola virus. This highly successful outcome was due to the meticulous infection control initiatives developed by the team, thereby making a significant contribution to China's ETU "zero infection" of health workers in Liberia. The major infection control initiatives conducted in the China ETU that contributed to achieving "zero infection" of all health workers in the ETU are introduced in this report. (Disaster Med Public Health Preparedness. 2017;11:262-266).

  19. An outbreak of Ebola in Uganda.

    Science.gov (United States)

    Okware, S I; Omaswa, F G; Zaramba, S; Opio, A; Lutwama, J J; Kamugisha, J; Rwaguma, E B; Kagwa, P; Lamunu, M

    2002-12-01

    An outbreak of Ebola disease was reported from Gulu district, Uganda, on 8 October 2000. The outbreak was characterized by fever and haemorrhagic manifestations, and affected health workers and the general population of Rwot-Obillo, a village 14 km north of Gulu town. Later, the outbreak spread to other parts of the country including Mbarara and Masindi districts. Response measures included surveillance, community mobilization, case and logistics management. Three coordination committees were formed: National Task Force (NTF), a District Task Force (DTF) and an Interministerial Task Force (IMTF). The NTF and DTF were responsible for coordination and follow-up of implementation of activities at the national and district levels, respectively, while the IMTF provided political direction and handled sensitive issues related to stigma, trade, tourism and international relations. The international response was coordinated by the World Health Organization (WHO) under the umbrella organization of the Global Outbreak and Alert Response Network. A WHO/CDC case definition for Ebola was adapted and used to capture four categories of cases, namely, the 'alert', 'suspected', 'probable' and 'confirmed cases'. Guidelines for identification and management of cases were developed and disseminated to all persons responsible for surveillance, case management, contact tracing and Information Education Communication (IEC). For the duration of the epidemic that lasted up to 16 January 2001, a total of 425 cases with 224 deaths were reported countrywide. The case fatality rate was 53%. The attack rate (AR) was highest in women. The average AR for Gulu district was 12.6 cases/10 000 inhabitants when the contacts of all cases were considered and was 4.5 cases/10 000 if limited only to contacts of laboratory confirmed cases. The secondary AR was 2.5% when nearly 5000 contacts were followed up for 21 days. Uganda was finally declared Ebola free on 27 February 2001, 42 days after the last case

  20. Monitoring Exposure to Ebola and Health of U.S. Military Personnel Deployed in Support of Ebola Control Efforts - Liberia, October 25, 2014-February 27, 2015.

    Science.gov (United States)

    Cardile, Anthony P; Murray, Clinton K; Littell, Christopher T; Shah, Neel J; Fandre, Matthew N; Drinkwater, Dennis C; Markelz, Brian P; Vento, Todd J

    2015-07-03

    In response to the unprecedented Ebola virus disease (Ebola) outbreak in West Africa, the U.S. government deployed approximately 2,500 military personnel to support the government of Liberia. Their primary missions were to construct Ebola treatment units (ETUs), train health care workers to staff ETUs, and provide laboratory testing capacity for Ebola. Service members were explicitly prohibited from engaging in activities that could result in close contact with an Ebola-infected patient or coming in contact with the remains of persons who had died from unknown causes. Military units performed twice-daily monitoring of temperature and review of exposures and symptoms ("unit monitoring") on all persons throughout deployment, exit screening at the time of departure from Liberia, and post-deployment monitoring for 21 days at segregated, controlled monitoring areas on U.S. military installations. A total of 32 persons developed a fever during deployment from October 25, 2014, through February 27, 2015; none had a known Ebola exposure or developed Ebola infection. Monitoring of all deployed service members revealed no Ebola exposures or infections. Given their activity restrictions and comprehensive monitoring while deployed to Liberia, U.S. military personnel constitute a unique population with a lower risk for Ebola exposure compared with those working in the country without such measures.

  1. Nurses leading the fight against Ebola virus disease.

    Science.gov (United States)

    Sagar, Priscilla L

    2015-05-01

    The current Ebola crisis has sparked worldwide reaction of panic and disbelief in its wake as it decimated communities in West Africa, particularly in Guinea, Liberia, and Sierra Leone, including its health care workers. This article affirms the crucial role nurses play in maintaining health and preventing diseases, connects the devastating havoc of the Ebola virus disease to another issue of nursing shortage in underdeveloped countries, and asserts the key leadership nurses play in protecting the communities they serve while maintaining their safety and those of other health care workers. Nurses must actively seek a place at the table, as echoed by the American Academy of Nursing and American Nurses Association and the American Nurses Association, when decisions are being made regarding Ebola virus disease: at care settings, in the board room, and at federal, state, and local levels. © The Author(s) 2015.

  2. Ebola Virus Disease, Democratic Republic of the Congo, 2014.

    Science.gov (United States)

    Nanclares, Carolina; Kapetshi, Jimmy; Lionetto, Fanshen; de la Rosa, Olimpia; Tamfun, Jean-Jacques Muyembe; Alia, Miriam; Kobinger, Gary; Bernasconi, Andrea

    2016-09-01

    During July-November 2014, the Democratic Republic of the Congo underwent its seventh Ebola virus disease (EVD) outbreak. The etiologic agent was Zaire Ebola virus; 66 cases were reported (overall case-fatality rate 74.2%). Through a retrospective observational study of confirmed EVD in 25 patients admitted to either of 2 Ebola treatment centers, we described clinical features and investigated correlates associated with death. Clinical features were mainly generic. At admission, 76% of patients had >1 gastrointestinal symptom and 28% >1 hemorrhagic symptom. The case-fatality rate in this group was 48% and was higher for female patients (67%). Cox regression analysis correlated death with initial low cycle threshold, indicating high viral load. Cycle threshold was a robust predictor of death, as were fever, hiccups, diarrhea, dyspnea, dehydration, disorientation, hematemesis, bloody feces during hospitalization, and anorexia in recent medical history. Differences from other outbreaks could suggest guidance for optimizing clinical management and disease control.

  3. Immunopathology of highly virulent pathogens: insights from Ebola virus.

    Science.gov (United States)

    Zampieri, Carisa A; Sullivan, Nancy J; Nabel, Gary J

    2007-11-01

    Ebola virus is a highly virulent pathogen capable of inducing a frequently lethal hemorrhagic fever syndrome. Accumulating evidence indicates that the virus actively subverts both innate and adaptive immune responses and triggers harmful inflammatory responses as it inflicts direct tissue damage. The host immune system is ultimately overwhelmed by a combination of inflammatory factors and virus-induced cell damage, particularly in the liver and vasculature, often leading to death from septic shock. We summarize the mechanisms of immune dysregulation and virus-mediated cell damage in Ebola virus-infected patients. Future approaches to prevention and treatment of infection will be guided by answers to unresolved questions about interspecies transmission, molecular mechanisms of pathogenesis, and protective adaptive and innate immune responses to Ebola virus.

  4. Ebola virus disease contact tracing activities, lessons learned and best practices during the Duport Road outbreak in Monrovia, Liberia, November 2015.

    Directory of Open Access Journals (Sweden)

    Caitlin M Wolfe

    2017-06-01

    Full Text Available Contact tracing is one of the key response activities necessary for halting Ebola Virus Disease (EVD transmission. Key elements of contact tracing include identification of persons who have been in contact with confirmed EVD cases and careful monitoring for EVD symptoms, but the details of implementation likely influence their effectiveness. In November 2015, several months after a major Ebola outbreak was controlled in Liberia, three members of a family were confirmed positive for EVD in the Duport Road area of Monrovia. The cluster provided an opportunity to implement and evaluate modified approaches to contact tracing.The approaches employed for improved contact tracing included classification and risk-based management of identified contacts (including facility based isolation of some high risk contacts, provision of support to persons being monitored, and school-based surveillance for some persons with potential exposure but not listed as contacts, use of phone records to help locate missing contacts, and modifications to data management tools. We recorded details about the implementation of these approaches, report the overall outcomes of the contact tracing efforts and the challenges encountered, and provide recommendations for management of future outbreaks.165 contacts were identified (with over 150 identified within 48 hours of confirmation of the EVD cases and all initially missing contacts were located. Contacts were closely monitored and promptly tested if symptomatic; no contacts developed disease. Encountered challenges related to knowledge gaps among contact tracing staff, data management, and coordination of contact tracing activities with efforts to offer Ebola vaccine.The Duport Road EVD cluster was promptly controlled. Missing contacts were effectively identified, and identified contacts were effectively monitored and rapidly tested. There is a persistent risk of EVD reemergence in Liberia; the experience controlling each

  5. Ebola virus disease contact tracing activities, lessons learned and best practices during the Duport Road outbreak in Monrovia, Liberia, November 2015.

    Science.gov (United States)

    Wolfe, Caitlin M; Hamblion, Esther L; Schulte, Jacqueline; Williams, Parker; Koryon, Augustine; Enders, Jonathan; Sanor, Varlee; Wapoe, Yatta; Kwayon, Dash; Blackley, David J; Laney, Anthony S; Weston, Emily J; Dokubo, Emily K; Davies-Wayne, Gloria; Wendland, Annika; Daw, Valerie T S; Badini, Mehboob; Clement, Peter; Mahmoud, Nuha; Williams, Desmond; Gasasira, Alex; Nyenswah, Tolbert G; Fallah, Mosoka

    2017-06-01

    Contact tracing is one of the key response activities necessary for halting Ebola Virus Disease (EVD) transmission. Key elements of contact tracing include identification of persons who have been in contact with confirmed EVD cases and careful monitoring for EVD symptoms, but the details of implementation likely influence their effectiveness. In November 2015, several months after a major Ebola outbreak was controlled in Liberia, three members of a family were confirmed positive for EVD in the Duport Road area of Monrovia. The cluster provided an opportunity to implement and evaluate modified approaches to contact tracing. The approaches employed for improved contact tracing included classification and risk-based management of identified contacts (including facility based isolation of some high risk contacts, provision of support to persons being monitored, and school-based surveillance for some persons with potential exposure but not listed as contacts), use of phone records to help locate missing contacts, and modifications to data management tools. We recorded details about the implementation of these approaches, report the overall outcomes of the contact tracing efforts and the challenges encountered, and provide recommendations for management of future outbreaks. 165 contacts were identified (with over 150 identified within 48 hours of confirmation of the EVD cases) and all initially missing contacts were located. Contacts were closely monitored and promptly tested if symptomatic; no contacts developed disease. Encountered challenges related to knowledge gaps among contact tracing staff, data management, and coordination of contact tracing activities with efforts to offer Ebola vaccine. The Duport Road EVD cluster was promptly controlled. Missing contacts were effectively identified, and identified contacts were effectively monitored and rapidly tested. There is a persistent risk of EVD reemergence in Liberia; the experience controlling each cluster can help

  6. A Highly Conserved GEQYQQLR Epitope Has Been Identified in the Nucleoprotein of Ebola Virus by Using an In Silico Approach

    Directory of Open Access Journals (Sweden)

    Mohammad Tuhin Ali

    2015-01-01

    Full Text Available Ebola virus (EBOV is a deadly virus that has caused several fatal outbreaks. Recently it caused another outbreak and resulted in thousands afflicted cases. Effective and approved vaccine or therapeutic treatment against this virus is still absent. In this study, we aimed to predict B-cell epitopes from several EBOV encoded proteins which may aid in developing new antibody-based therapeutics or viral antigen detection method against this virus. Multiple sequence alignment (MSA was performed for the identification of conserved region among glycoprotein (GP, nucleoprotein (NP, and viral structural proteins (VP40, VP35, and VP24 of EBOV. Next, different consensus immunogenic and conserved sites were predicted from the conserved region(s using various computational tools which are available in Immune Epitope Database (IEDB. Among GP, NP, VP40, VP35, and VP30 protein, only NP gave a 100% conserved GEQYQQLR B-cell epitope that fulfills the ideal features of an effective B-cell epitope and could lead a way in the milieu of Ebola treatment. However, successful in vivo and in vitro studies are prerequisite to determine the actual potency of our predicted epitope and establishing it as a preventing medication against all the fatal strains of EBOV.

  7. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    International Nuclear Information System (INIS)

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike; Zhang Liqun; Yang Lijuan; Ward, Jerrold M.; Dorward, David W.; Pickles, Raymond J.; Murphy, Brian R.; Feldmann, Heinz; Collins, Peter L.

    2009-01-01

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/ΔF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/ΔF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/ΔF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV

  8. Ocular Complications in Survivors of the Ebola Outbreak in Guinea.

    Science.gov (United States)

    Hereth-Hebert, Esther; Bah, Mamadou Oury; Etard, Jean François; Sow, Mamadou Saliou; Resnikoff, Serge; Fardeau, Christine; Toure, Abdoulaye; Ouendeno, Alexis Niouma; Sagno, Isaac Ceougna; March, Laura; Izard, Suzanne; Lama, Pierre Louis; Barry, Moumié; Delaporte, Eric

    2017-03-01

    The Ebola outbreak of 2013-2016 severely affected West Africa and resulted in 2544 deaths and 1270 survivors in Guinea, the country where it began. This Ebola virus was the Zaire strain of the virus family Filoviridae. In this outbreak the case fatality rate was about 67%. The survivors, declared cured after 2 negative blood polymerase chain reaction (PCR) results, face psychosocial disorders and rheumatic, ear-nose-throat, neurocognitive, and ophthalmologic complications. The goal of this study was to detect and describe ocular complications afflicting these survivors and to observe their occurrence and recurrences. Prospective observational cohort study. This prospective observational multicenter cohort study was initiated in March 2015. The cohort study included 341 survivors followed up in the infectious disease ward of Conakry, Forecariah, and Nzérékoré as of May 2016. The patients received multidisciplinary medical follow-up expected to last at least 1 year that included an eye examination as part of complete, free treatment. Systematic examination of 341 patients revealed 46 cases of uveitis (13.5%), 6 cases of episcleritis (1.8%), and 3 cases of interstitial keratitis (0.9%). Uveitis was most frequently unilateral (78.3%) and anterior (47.8%) and occurred within the 2 months after discharge from the Ebola treatment center. Moreover, uveitis relapses were found up to 13 months after the negative PCR result for Ebola in the blood. Nearly 1 out of 6 survivors presented ocular disorders after discharge from the Ebola treatment center. An ophthalmologic follow-up for Ebola-infected patients should start, if possible, during the acute phase of the disease and last more than 1 year. Treatment guidelines need to be urgently developed and implemented. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. [Ebola in Guinea: experience of stigma among health professional survivors].

    Science.gov (United States)

    Sow, S; Desclaux, A; Taverne, B

    2016-10-01

    This article aims to describe the various forms of stigma faced by Ebola health professional survivors. A study based on in-depth interviews with 20 survivors was conducted in Conakry as part of PostEboGui multidisciplinary cohort research Program (Life after Ebola) in July-August 2015. Participants were health professionals, male and female, mostly with precarious positions in the health system. The results show that stigmatization is mainly expressed through avoidance, rejection, or being refused to be reinstated in the position at work and non-acceptance of the disease by third parties. This stigmatization appears to be rooted in fear of contagion and in diverging conceptions of the disease aetiology that may engender conflict. Being health workers did not protect them against stigma and some of them faced rejection in their own health care facility. This stigmatization was not based on moral grounds, contrary to the one experienced by people living with HIV, and attitudes of solidarity were encountered in family and confessional networks. Responders found support within an association of survivors (Association des personnes guéries et affectées d'Ebola en Guinée, APEGUAEG) that was created in early 2015. Stigmatization was temporary and disappeared for most responders owing to strategies implemented by survivors and because the fear of contagion had vanished: interviews were conducted when the notion of persistence of Ebola virus in the semen was not spread in the population. This research study shows that stigma is perpetuated among health agents, towards workers who were exposed by their professional role. This observation should be considered for specific measures towards behavioural change. Finally, the very notion of "stigmatization", widely used by public health institutions, is challenged by the diversity of individual experiences that are particular to Ebola virus disease regarding their expression and evolution. Studies on stigma related to Ebola

  10. Accepted monitoring or endured quarantine? Ebola contacts' perceptions in Senegal.

    Science.gov (United States)

    Desclaux, Alice; Badji, Dioumel; Ndione, Albert Gautier; Sow, Khoudia

    2017-04-01

    During the 2014-2016 West Africa Ebola epidemic, transmission chains were controlled through contact tracing, i.e., identification and follow-up of people exposed to Ebola cases. WHO recommendations for daily check-ups of physical symptoms with social distancing for 21 days were unevenly applied and sometimes interpreted as quarantine. Criticisms arose regarding the use of coercion and questioned contact tracing on ethical grounds. This article aims to analyze contact cases' perceptions and acceptance of contact monitoring at the field level. In Senegal, an imported case of Ebola virus disease in September 2014 resulted in placing 74 contact cases in home containment with daily visits by volunteers. An ethnographic study based on in-depth interviews with all stakeholders performed in September-October 2014 showed four main perceptions of monitoring: a biosecurity preventive measure, suspension of professional activity, stigma attached to Ebola, and a social obligation. Contacts demonstrated diverse attitudes. Initially, most contacts agreed to comply because they feared being infected. They adhered to the national Ebola response measures and appreciated the empathy shown by volunteers. Later, acceptance was improved by the provision of moral, economic, and social support, and by the final lack of any new contamination. But it was limited by the socio-economic impact on fulfilling basic needs, the fear of being infected, how contacts' family members interpreted monitoring, conflation of contacts as Ebola cases, and challenging the rationale for containment. Acceptance was also related to individual aspects, such as the professional status of women and health workers who had been exposed, and contextual aspects, such as the media's role in the social production of stigma. Ethnographic results show that, even when contacts adhere rather than comply to containment through coercion, contact monitoring raises several ethical issues. These insights should contribute to

  11. The etiology of Ebola virus disease-like illnesses in Ebola virusnegative patients from Sierra Leone.

    Science.gov (United States)

    Li, Wen-Gang; Chen, Wei-Wei; Li, Lei; Ji, Dong; Ji, Ying-Jie; Li, Chen; Gao, Xu-Dong; Wang, Li-Fu; Zhao, Min; Duan, Xue-Zhang; Duan, Hui-Juan

    2016-05-10

    During the 2014 Ebola virus disease (EVD) outbreak, less than half of EVD-suspected cases were laboratory tested as Ebola virus (EBOV)-negative, but disease identity remained unknown. In this study we investigated the etiology of EVD-like illnesses in EBOV-negative cases. From November 13, 2014 to March 16, 2015, EVD-suspected patients were admitted to Jui Government Hospital and assessed for EBOV infection by real-time PCR. Of 278 EBOV negative patients, 223 (80.21%), 142 (51.08%), 123 (44.24%), 114 (41.01%), 59 (21.22%), 35 (12.59%), and 12 (4.32%) reported fever, headache, joint pain, fatigue, nausea/vomiting, diarrhea, hemorrhage, respectively. Furthermore, 121 (43.52%), 44 (15.83%), 36 (12.95%), 33 (11.87%), 23 (8.27%), 10 (3.60%) patients were diagnosed as infection with malaria, HIV, Lassa fever, tuberculosis, yellow fever, and pneumonia, respectively. No significant differences in clinical features and symptoms were found between non-EVD and EVD patients. To the best of our knowledge, the present study is the first to explore the etiology of EVD-like illnesses in uninfected patients in Sierra Leone, highlighting the importance of accurate diagnosis to EVD confirmation.

  12. Novel Retinal Lesion in Ebola Survivors, Sierra Leone, 2016.

    Science.gov (United States)

    Steptoe, Paul J; Scott, Janet T; Baxter, Julia M; Parkes, Craig K; Dwivedi, Rahul; Czanner, Gabriela; Vandy, Matthew J; Momorie, Fayiah; Fornah, Alimamy D; Komba, Patrick; Richards, Jade; Sahr, Foday; Beare, Nicholas A V; Semple, Malcolm G

    2017-07-01

    We conducted a case-control study in Freetown, Sierra Leone, to investigate ocular signs in Ebola virus disease (EVD) survivors. A total of 82 EVD survivors with ocular symptoms and 105 controls from asymptomatic civilian and military personnel and symptomatic eye clinic attendees underwent ophthalmic examination, including widefield retinal imaging. Snellen visual acuity was Ebola virus, permitting cataract surgery. A novel retinal lesion following the anatomic distribution of the optic nerve axons occurred in 14.6% (97.5% CI 7.1%-25.6%) of EVD survivors and no controls, suggesting neuronal transmission as a route of ocular entry.

  13. [Intensive care for emerging infectious diseases--Ebola and Dengue].

    Science.gov (United States)

    Ohmagari, Norio

    2016-02-01

    Although significant effort has been made for the development of treatment and prevention of Ebola hemorrhagic fever, one has to keep in mind that basic supportive therapy, including sufficient hydration to the patients, would be a standard of care for Ebola hemorrhagic fever and other antiviral therapy would be an adjunct to this standard of care. Also, effective antiviral drug to dengue virus is not known, and a basic supportive therapy, including fluid therapy, would be a standard of care and prevent serious type of dengue virus infections. Aspirin and other non-steroidal anti-inflammatory drug must not be used, because they promote bleeding and acidosis.

  14. DNA Vaccines

    Indian Academy of Sciences (India)

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  15. Vaccination Policies

    NARCIS (Netherlands)

    Verweij, M.F.

    2013-01-01

    Vaccination involves priming the immune system with an antigenic agent that mimics a virus or bacterium, which results in immunity against the “real” microorganism. Collective vaccination policies have played an important role in the control of infectious disease worldwide. They can serve the

  16. TUMOUR VACCINE

    NARCIS (Netherlands)

    Wagner, Ernst; Kircheis, Ralf; Crommelin, D.; Van Slooten, Maaike; Storm, Gert

    1999-01-01

    The invention relates to a tumour vaccine with a tumour antigen base. In addition to a source of tumour antigens, the vaccine contains a release system for the delayed release of the active agent IFN- gamma , the active dose of IFN- gamma being 50 ng to 5 mu g. The IFN- gamma is released over a

  17. Rotavirus Vaccine

    Science.gov (United States)

    Why get vaccinated?Rotavirus is a virus that causes diarrhea, mostly in babies and young children. The diarrhea can be severe, and lead ... and fever are also common in babies with rotavirus.Before rotavirus vaccine, rotavirus disease was a common ...

  18. DENGUE, CHIKUNGUNYA E EBOLA: VIROSES AMBIENTAIS

    Directory of Open Access Journals (Sweden)

    Thereza Cristina Ferreira Camello

    2014-12-01

    Full Text Available DOI: 10.12957/sustinere.2014.14122Várias viroses emergentes ou reemergentes podem ser veiculadas por mosquitos. Aedes aegypti e Aedes albopictus, os mesmos que transmitem o vírus da dengue e da febre amarela, podem disseminar o vírus Chikungunya que este ano no Brasil já fez cerca de 1000 casos confirmados. A doença tem parâmetros semelhantes aos da Dengue, e embora a taxa de letalidade seja muito baixa, sequelas podem permanecer no individuo por um ano. Em 2014 a partir de setembro o mundo observou perplexo a ressurgência de um vírus hemorrágico letal, em uma das piores epidemias já ocorridas no continente africano. O vírus Ebola atingiu mais de 6000 pessoas. Estudos no sentido de melhorar as estratégias de contenção da disseminação de vetores e dos vírus devem ser estabelecidas, enquanto aguardamos a produção de vacinas eficazes. O mundo não é imune a uma infecção endêmica, localizada no interior de um continente e não estamos preparados para atender uma demanda deste porte.

  19. Effect of Ebola virus disease on maternal and child health services in Guinea: a retrospective observational cohort study.

    Science.gov (United States)

    Delamou, Alexandre; El Ayadi, Alison M; Sidibe, Sidikiba; Delvaux, Therese; Camara, Bienvenu S; Sandouno, Sah D; Beavogui, Abdoul H; Rutherford, Georges W; Okumura, Junko; Zhang, Wei-Hong; De Brouwere, Vincent

    2017-04-01

    The 2014 west African epidemic of Ebola virus disease posed a major threat to the health systems of the countries affected. We sought to quantify the consequences of Ebola virus disease on maternal and child health services in the highly-affected Forest region of Guinea. We did a retrospective, observational cohort study of women and children attending public health facilities for antenatal care, institutional delivery, and immunisation services in six of seven health districts in the Forest region (Beyla, Guéckédou, Kissidougou, Lola, Macenta, and N'Zérékoré). We examined monthly service use data for eight maternal and child health services indicators: antenatal care (≥1 antenatal care visit and ≥3 antenatal care visits), institutional delivery, and receipt of five infant vaccines: polio, pentavalent (diphtheria, tetanus, pertussis, hepatitis B virus, and Haemophilus influenzae type b), yellow fever, measles, and tuberculosis. We used interrupted time series models to estimate trends in each indicator across three time periods: pre-Ebola virus disease epidemic (January, 2013, to February, 2014), during-epidemic (March, 2014, to February, 2015) and post-epidemic (March, 2015, to Feb, 2016). We used segmented ordinary least-squares (OLS) regression using Newey-West standard errors to accommodate for serial autocorrelation, and adjusted for any potential effect of birth seasonality on our outcomes. In the months before the Ebola virus disease outbreak, all three maternal indicators showed a significantly positive change in trend, ranging from a monthly average increase of 61 (95% CI 38-84) institutional deliveries to 119 (95% CI 79-158) women achieving at least three antenatal care visits. These increasing trends were reversed during the epidemic: fewer institutional deliveries occurred (-240, 95% CI -293 to -187), and fewer women achieved at least one antenatal care visit (-418, 95% CI -535 to -300) or at least three antenatal care visits (-363, 95% CI -485

  20. Self-disseminating vaccines for emerging infectious diseases.

    Science.gov (United States)

    Murphy, Aisling A; Redwood, Alec J; Jarvis, Michael A

    2016-01-01

    Modern human activity fueled by economic development is profoundly altering our relationship with microorganisms. This altered interaction with microbes is believed to be the major driving force behind the increased rate of emerging infectious diseases from animals. The spate of recent infectious disease outbreaks, including Ebola virus disease and Middle East respiratory syndrome, emphasize the need for development of new innovative tools to manage these emerging diseases. Disseminating vaccines are one such novel approach to potentially interrupt animal to human (zoonotic) transmission of these pathogens.

  1. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges

    International Nuclear Information System (INIS)

    Wang Danher; Hevey, Michael; Juompan, Laure Y.; Trubey, Charles M.; Raja, Nicholas U.; Deitz, Stephen B.; Woraratanadharm, Jan; Luo Min; Yu Hong; Swain, Benjamin M.; Moore, Kevin M.; Dong, John Y.

    2006-01-01

    The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 10 7 pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV

  2. Ebola viral hemorrhagic disease outbreak in West Africa- lessons from Uganda.

    Science.gov (United States)

    Mbonye, Anthony K; Wamala, Joseph F; Nanyunja, Miriam; Opio, Alex; Makumbi, Issa; Aceng, Jane Ruth

    2014-09-01

    There has been a rapid spread of Ebola Viral Hemorrhagic disease in Guinea, Liberia and Sierra Leone since March 2014. Since this is the first time of a major Ebola outbreak in West Africa; it is possible there is lack of understanding of the epidemic in the communities, lack of experience among the health workers to manage the cases and limited capacities for rapid response. The main objective of this article is to share Uganda's experience in controlling similar Ebola outbreaks and to suggest some lessons that could inform the control of the Ebola outbreak in West Africa. The article is based on published papers, reports of previous Ebola outbreaks, response plans and experiences of individuals who have participated in the control of Ebola epidemics in Uganda. Lessons learnt: The success in the control of Ebola epidemics in Uganda has been due to high political support, effective coordination through national and district task forces. In addition there has been active surveillance, strong community mobilization using village health teams and other community resources persons, an efficient laboratory system that has capacity to provide timely results. These have coupled with effective case management and infection control and the involvement of development partners who commit resources with shared responsibility. Several factors have contributed to the successful quick containment of Ebola outbreaks in Uganda. West African countries experiencing Ebola outbreaks could draw some lessons from the Uganda experience and adapt them to contain the Ebola epidemic.

  3. Ebola-related stigma in Ghana: Individual and community level determinants.

    Science.gov (United States)

    Tenkorang, Eric Y

    2017-06-01

    Although Ebola-related stigmatization continues to undermine efforts to re-integrate survivors, few studies have examined what influences such stigmatizing attitudes. This paper explores the effects of both individual- and community-level factors on Ebola-related stigma in Ghana. Data were collected from a cross-section of 800 respondents, nested within 40 communities in the Greater Accra Region of Ghana. Multi-level modelling was employed for analysis. Both individual- and community-level factors were significant determinants of stigma. Respondents who endorsed myths about Ebola were significantly more likely to also endorse Ebola-related stigma. Similarly, those who were worried about a potential outbreak of Ebola in the future, had moderate risk perceptions of contracting Ebola, had primary and secondary education, and were not confident of the quality of health care in the event of an outbreak, were more likely to endorse Ebola-related stigma. Knowledge of Ebola was significant at the community level, but not at the individual level. Communities with more knowledge were less likely to endorse Ebola-related stigma. These findings underscore the need to increase the knowledge base while countering myths that undermine preventive behaviours to fight Ebola-related stigma. It is equally important to adopt multi-level interventions that emphasize community-based strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Role of natural killer cells in innate protection against lethal ebola virus infection.

    Science.gov (United States)

    Warfield, Kelly L; Perkins, Jeremy G; Swenson, Dana L; Deal, Emily M; Bosio, Catharine M; Aman, M Javad; Yokoyama, Wayne M; Young, Howard A; Bavari, Sina

    2004-07-19

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1-3 d before Ebola virus infection rapidly induced protective immunity. VLP injection enhanced the numbers of natural killer (NK) cells in lymphoid tissues. In contrast to live Ebola virus, VLP treatment of NK cells enhanced cytokine secretion and cytolytic activity against NK-sensitive targets. Unlike wild-type mice, treatment of NK-deficient or -depleted mice with VLPs had no protective effect against Ebola virus infection and NK cells treated with VLPs protected against Ebola virus infection when adoptively transferred to naive mice. The mechanism of NK cell-mediated protection clearly depended on perforin, but not interferon-gamma secretion. Particles containing only VP40 were sufficient to induce NK cell responses and provide protection from infection in the absence of the viral GP. These findings revealed a decisive role for NK cells during lethal Ebola virus infection. This work should open new doors for better understanding of Ebola virus pathogenesis and direct the development of immunotherapeutics, which target the innate immune system, for treatment of Ebola virus infection.

  5. Effectiveness of Ebola treatment units and community care centers - Liberia, September 23-October 31, 2014.

    Science.gov (United States)

    Washington, Michael L; Meltzer, Martin L

    2015-01-30

    Previous reports have shown that an Ebola outbreak can be slowed, and eventually stopped, by placing Ebola patients into settings where there is reduced risk for onward Ebola transmission, such as Ebola treatment units (ETUs) and community care centers (CCCs) or equivalent community settings that encourage changes in human behaviors to reduce transmission risk, such as making burials safe and reducing contact with Ebola patients. Using cumulative case count data from Liberia up to August 28, 2014, the EbolaResponse model previously estimated that without any additional interventions or further changes in human behavior, there would have been approximately 23,000 reported Ebola cases by October 31, 2014. In actuality, there were 6,525 reported cases by that date. To estimate the effectiveness of ETUs and CCCs or equivalent community settings in preventing greater Ebola transmission, CDC applied the EbolaResponse model to the period September 23-October 31, 2014, in Liberia. The results showed that admitting Ebola patients to ETUs alone prevented an estimated 2,244 Ebola cases. Having patients receive care in CCCs or equivalent community settings with a reduced risk for Ebola transmission prevented an estimated 4,487 cases. Having patients receive care in either ETUs or CCCs or in equivalent community settings, prevented an estimated 9,100 cases, apparently as the result of a synergistic effect in which the impact of the combined interventions was greater than the sum of the two interventions. Caring for patients in ETUs, CCCs, or in equivalent community settings with reduced risk for transmission can be important components of a successful public health response to an Ebola epidemic.

  6. Particle-to-PFU ratio of Ebola virus influences disease course and survival in cynomolgus macaques.

    Science.gov (United States)

    Alfson, Kendra J; Avena, Laura E; Beadles, Michael W; Staples, Hilary; Nunneley, Jerritt W; Ticer, Anysha; Dick, Edward J; Owston, Michael A; Reed, Christopher; Patterson, Jean L; Carrion, Ricardo; Griffiths, Anthony

    2015-07-01

    This study addresses the role of Ebola virus (EBOV) specific infectivity in virulence. Filoviruses are highly lethal, enveloped, single-stranded negative-sense RNA viruses that can cause hemorrhagic fever. No approved vaccines or therapies exist for filovirus infections, and infectious virus must be handled in maximum containment. Efficacy testing of countermeasures, in addition to investigations of pathogenicity and immune response, often requires a well-characterized animal model. For EBOV, an obstacle in performing accurate disease modeling is a poor understanding of what constitutes an infectious dose in animal models. One well-recognized consequence of viral passage in cell culture is a change in specific infectivity, often measured as a particle-to-PFU ratio. Here, we report that serial passages of EBOV in cell culture resulted in a decrease in particle-to-PFU ratio. Notably, this correlated with decreased potency in a lethal cynomolgus macaque (Macaca fascicularis) model of infection; animals were infected with the same viral dose as determined by plaque assay, but animals that received more virus particles exhibited increased disease. This suggests that some particles are unable to form a plaque in a cell culture assay but are able to result in lethal disease in vivo. These results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures. Ebola virus (EBOV) can cause severe hemorrhagic disease with a high case-fatality rate, and there are no approved vaccines or therapies. Specific infectivity can be considered the total number of viral particles per PFU, and its impact on disease is poorly understood. In stocks of most mammalian viruses, there are particles that are unable to complete an infectious cycle or unable to cause cell pathology in cultured cells. We asked if these particles cause disease in nonhuman primates by infecting monkeys with equal infectious doses of genetically identical stocks

  7. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists.

    Science.gov (United States)

    Cheng, Han; Lear-Rooney, Calli M; Johansen, Lisa; Varhegyi, Elizabeth; Chen, Zheng W; Olinger, Gene G; Rong, Lijun

    2015-10-01

    Filoviruses, consisting of Ebola virus (EBOV) and Marburg virus (MARV), are among the most lethal infectious threats to mankind. Infections by these viruses can cause severe hemorrhagic fevers in humans and nonhuman primates with high mortality rates. Since there is currently no vaccine or antiviral therapy approved for humans, there is an urgent need to develop prophylactic and therapeutic options for use during filoviral outbreaks and bioterrorist attacks. One of the ideal targets against filoviral infection and diseases is at the entry step, which is mediated by the filoviral glycoprotein (GP). In this report, we screened a chemical library of small molecules and identified numerous inhibitors, which are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs, including histamine receptors, 5-HT (serotonin) receptors, muscarinic acetylcholine receptor, and adrenergic receptor. These inhibitors can effectively block replication of both infectious EBOV and MARV, indicating a broad antiviral activity of the GPCR antagonists. The time-of-addition experiment and microscopic studies suggest that GPCR antagonists block filoviral entry at a step following the initial attachment but prior to viral/cell membrane fusion. These results strongly suggest that GPCRs play a critical role in filoviral entry and GPCR antagonists can be developed as an effective anti-EBOV/MARV therapy. Infection of Ebola virus and Marburg virus can cause severe illness in humans with a high mortality rate, and currently there is no FDA-approved vaccine or therapeutic treatment available. The 2013-2015 epidemic in West Africa underscores a lack of our understanding in the infection and pathogenesis of these viruses and the urgency of drug discovery and development. In this study, we have identified numerous inhibitors that are known G protein-coupled receptor (GPCR) antagonists targeting different GPCRs. These inhibitors can effectively block replication of both infectious

  8. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available Ebola virus (EBOV causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs. Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV or Zaire ebolavirus (ZEBOV challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV, or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine

  9. Disinfection of Ebola Virus in Sterilized Municipal Wastewater.

    Directory of Open Access Journals (Sweden)

    Kyle Bibby

    2017-02-01

    Full Text Available Concerns have been raised regarding handling of Ebola virus contaminated wastewater, as well as the adequacy of proposed disinfection approaches. In the current study, we investigate the inactivation of Ebola virus in sterilized domestic wastewater utilizing sodium hypochlorite addition and pH adjustment. No viral inactivation was observed in the one-hour tests without sodium hypochlorite addition or pH adjustment. No virus was recovered after 20 seconds (i.e. 4.2 log10 unit inactivation to detection limit following the addition of 5 and 10 mg L-1 sodium hypochlorite, which resulted in immediate free chlorine residuals of 0.52 and 1.11 mg L-1, respectively. The addition of 1 mg L-1 sodium hypochlorite resulted in an immediate free chlorine residual of 0.16 mg L-1, which inactivated 3.5 log10 units of Ebola virus in 20 seconds. Further inactivation was not evident due to the rapid consumption of the chlorine residual. Elevating the pH to 11.2 was found to significantly increase viral decay over ambient conditions. These results indicate the high susceptibility of the enveloped Ebola virus to disinfection in the presence of free chlorine in municipal wastewater; however, we caution that extension to more complex matrices (e.g. bodily fluids will require additional verification.

  10. Ebola outbreak in Conakry, Guinea: epidemiological, clinical, and outcome features.

    Science.gov (United States)

    Barry, M; Traoré, F A; Sako, F B; Kpamy, D O; Bah, E I; Poncin, M; Keita, S; Cisse, M; Touré, A

    2014-12-01

    The authors studied the epidemiological, clinical, and outcome features of the Ebola virus disease in patients hospitalized at the Ebola treatment center (ETC) in Conakry to identify clinical factors associated with death. A prospective study was conducted from March 25 to August 20, 2014. The diagnosis of Ebola virus infection was made on real-time PCR. Ninety patients, with a positive test result, were hospitalized. Their mean age was 34.12±14.29 years and 63% were male patients. Most worked in the informal sector (38%) and in the medical and paramedical staff (physicians 12%, nurses 6%, and laboratory technicians 1%). Most patients lived in the Conakry suburbs (74%) and in Boffa (11%). The main clinical signs were physical asthenia (80%) and fever (72%). Hemorrhagic signs were observed in 26% of patients. The comparison of clinical manifestations showed that hiccups (P=0.04), respiratory distress (P=0.04), and hemorrhagic symptoms (P=0.01) were more frequent among patients who died. Malaria (72%) and diabetes (2%) were the most frequent co-morbidities. The crude case fatality rate was 44% [95% confidence interval (33-54%)]. The average hospital stay was 7.96±5.81 days. The first Ebola outbreak in Conakry was characterized by the young age of patients, discrete hemorrhagic signs related to lethality. Its control relies on a strict use of preventive measures. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. The ebola crisis : challenges for global health law

    NARCIS (Netherlands)

    Toebes, Brigit

    2015-01-01

    he recent Ebola crisis has caused approximately 20.000 deaths so far. Compared to other global health crises, including the deaths caused by armed conflicts and chronic diseases, this is still a small amount. Yet, from a global and domestic health law and governance perspective, this crisis raises a

  12. Nye lovende behandlinger mod ebola er på vej

    DEFF Research Database (Denmark)

    Jespersen, Sanne; Thomsen, Cecilie Norup; Wejse, Christian

    2016-01-01

    The largest Ebola epidemic ever is about to end. No major breakthrough in terms of specific treatment has been seen, but a number of valuable lessons have been learned, including the potential of intensive supportive care. New products are under development, but clinical trials were initiated late...

  13. Diagnosis of Ebola Virus Disease: Past, Present, and Future

    Science.gov (United States)

    Brooks, Tim J. G.

    2016-01-01

    SUMMARY Laboratory diagnosis of Ebola virus disease plays a critical role in outbreak response efforts; however, establishing safe and expeditious testing strategies for this high-biosafety-level pathogen in resource-poor environments remains extremely challenging. Since the discovery of Ebola virus in 1976 via traditional viral culture techniques and electron microscopy, diagnostic methodologies have trended toward faster, more accurate molecular assays. Importantly, technological advances have been paired with increasing efforts to support decentralized diagnostic testing capacity that can be deployed at or near the point of patient care. The unprecedented scope of the 2014-2015 West Africa Ebola epidemic spurred tremendous innovation in this arena, and a variety of new diagnostic platforms that have the potential both to immediately improve ongoing surveillance efforts in West Africa and to transform future outbreak responses have reached the field. In this review, we describe the evolution of Ebola virus disease diagnostic testing and efforts to deploy field diagnostic laboratories in prior outbreaks. We then explore the diagnostic challenges pervading the 2014-2015 epidemic and provide a comprehensive examination of novel diagnostic tests that are likely to address some of these challenges moving forward. PMID:27413095

  14. Ebola virus – new threat to global health

    Directory of Open Access Journals (Sweden)

    Rina K. Kusumaratna

    2015-12-01

        The Ebola virus outbreak constitutes a serious warning that epidemics may occur anywhere and places every afflicted nation at risk. Therefore it is essential to institute measures to stop its spread and its future threat, which is a moral obligation of members of the health profession, whether academicians, researchers, or health ministry officials.

  15. Ebola epidemic--Liberia, March-October 2014.

    Science.gov (United States)

    Nyenswah, Tolbert; Fahnbulleh, Miatta; Massaquoi, Moses; Nagbe, Thomas; Bawo, Luke; Falla, James Dorbor; Kohar, Henry; Gasasira, Alex; Nabeth, Pierre; Yett, Sheldon; Gergonne, Bernadette; Casey, Sean; Espinosa, Benjamin; McCoy, Andrea; Feldman, Heinz; Hensley, Lisa; Baily, Mark; Fields, Barry; Lo, Terrence; Lindblade, Kim; Mott, Josh; Boulanger, Lucy; Christie, Athalia; Wang, Susan; Montgomery, Joel; Mahoney, Frank

    2014-11-21

    On March 21, 2014, the Guinea Ministry of Health reported the outbreak of an illness characterized by fever, severe diarrhea, vomiting and a high fatality rate (59%), leading to the first known epidemic of Ebola virus disease (Ebola) in West Africa and the largest and longest Ebola epidemic in history. As of November 2, Liberia had reported the largest number of cases (6,525) and deaths (2,697) among the three affected countries of West Africa with ongoing transmission (Guinea, Liberia, and Sierra Leone). The response strategy in Liberia has included management of the epidemic through an incident management system (IMS) in which the activities of all partners are coordinated. Within the IMS, key strategies for epidemic control include surveillance, case investigation, laboratory confirmation, contact tracing, safe transportation of persons with suspected Ebola, isolation, infection control within the health care system, community engagement, and safe burial. This report provides a brief overview of the progression of the epidemic in Liberia and summarizes the interventions implemented.

  16. Ebola and Its Control in Liberia, 2014-2015.

    Science.gov (United States)

    Nyenswah, Tolbert G; Kateh, Francis; Bawo, Luke; Massaquoi, Moses; Gbanyan, Miatta; Fallah, Mosoka; Nagbe, Thomas K; Karsor, Kollie K; Wesseh, C Sanford; Sieh, Sonpon; Gasasira, Alex; Graaff, Peter; Hensley, Lisa; Rosling, Hans; Lo, Terrence; Pillai, Satish K; Gupta, Neil; Montgomery, Joel M; Ransom, Ray L; Williams, Desmond; Laney, A Scott; Lindblade, Kim A; Slutsker, Laurence; Telfer, Jana L; Christie, Athalia; Mahoney, Frank; De Cock, Kevin M

    2016-02-01

    The severe epidemic of Ebola virus disease in Liberia started in March 2014. On May 9, 2015, the World Health Organization declared Liberia free of Ebola, 42 days after safe burial of the last known case-patient. However, another 6 cases occurred during June-July; on September 3, 2015, the country was again declared free of Ebola. Liberia had by then reported 10,672 cases of Ebola and 4,808 deaths, 37.0% and 42.6%, respectively, of the 28,103 cases and 11,290 deaths reported from the 3 countries that were heavily affected at that time. Essential components of the response included government leadership and sense of urgency, coordinated international assistance, sound technical work, flexibility guided by epidemiologic data, transparency and effective communication, and efforts by communities themselves. Priorities after the epidemic include surveillance in case of resurgence, restoration of health services, infection control in healthcare settings, and strengthening of basic public health systems.

  17. Ebola and Its Control in Liberia, 2014–2015

    Science.gov (United States)

    Nyenswah, Tolbert G.; Kateh, Francis; Bawo, Luke; Massaquoi, Moses; Gbanyan, Miatta; Fallah, Mosoka; Nagbe, Thomas K.; Karsor, Kollie K.; Wesseh, C. Sanford; Sieh, Sonpon; Gasasira, Alex; Graaff, Peter; Hensley, Lisa; Rosling, Hans; Lo, Terrence; Pillai, Satish K.; Gupta, Neil; Montgomery, Joel M.; Ransom, Ray L.; Williams, Desmond; Laney, A. Scott; Lindblade, Kim A.; Slutsker, Laurence; Telfer, Jana L.; Christie, Athalia; Mahoney, Frank

    2016-01-01

    The severe epidemic of Ebola virus disease in Liberia started in March 2014. On May 9, 2015, the World Health Organization declared Liberia free of Ebola, 42 days after safe burial of the last known case-patient. However, another 6 cases occurred during June–July; on September 3, 2015, the country was again declared free of Ebola. Liberia had by then reported 10,672 cases of Ebola and 4,808 deaths, 37.0% and 42.6%, respectively, of the 28,103 cases and 11,290 deaths reported from the 3 countries that were heavily affected at that time. Essential components of the response included government leadership and sense of urgency, coordinated international assistance, sound technical work, flexibility guided by epidemiologic data, transparency and effective communication, and efforts by communities themselves. Priorities after the epidemic include surveillance in case of resurgence, restoration of health services, infection control in healthcare settings, and strengthening of basic public health systems. PMID:26811980

  18. CE: Inside an Ebola Treatment Unit: A Nurse's Report.

    Science.gov (United States)

    Wilson, Deborah

    2015-12-01

    In December 2013, the first cases of the most recent outbreak of Ebola virus disease (formerly known as Ebola hemorrhagic fever) emerged in the West African nation of Guinea. Within months the disease had spread to the neighboring countries of Liberia and Sierra Leone. The international humanitarian aid organization Médecins Sans Frontières (MSF; known in English as Doctors Without Borders) soon responded by sending staff to set up treatment centers and outreach triage teams in all three countries. In August 2014, the World Health Organization declared the outbreak an international public health emergency.In September 2014, the author was sent by MSF to work as a nurse in an Ebola treatment unit in Liberia for five weeks. This article describes her experiences there. It provides some background, outlines the practices and teams involved, and aims to convey a sense of what it's like to work during an Ebola outbreak and to put a human face on this devastating epidemic.

  19. Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool.

    Science.gov (United States)

    Hoenen, Thomas; Groseth, Allison; Rosenke, Kyle; Fischer, Robert J; Hoenen, Andreas; Judson, Seth D; Martellaro, Cynthia; Falzarano, Darryl; Marzi, Andrea; Squires, R Burke; Wollenberg, Kurt R; de Wit, Emmie; Prescott, Joseph; Safronetz, David; van Doremalen, Neeltje; Bushmaker, Trenton; Feldmann, Friederike; McNally, Kristin; Bolay, Fatorma K; Fields, Barry; Sealy, Tara; Rayfield, Mark; Nichol, Stuart T; Zoon, Kathryn C; Massaquoi, Moses; Munster, Vincent J; Feldmann, Heinz

    2016-02-01

    Rapid sequencing of RNA/DNA from pathogen samples obtained during disease outbreaks provides critical scientific and public health information. However, challenges exist for exporting samples to laboratories or establishing conventional sequencers in remote outbreak regions. We successfully used a novel, pocket-sized nanopore sequencer at a field diagnostic laboratory in Liberia during the current Ebola virus outbreak.

  20. Ebola and other issues in the health sector in Africa

    African Journals Online (AJOL)

    In this September issue of African Health Sciences we bring you diverse articles with wide ranging themes. In general, they encompass infectious disease, glucose me- tabolism, newborn care, non communicable diseases and health systems. We have added a special article[1] on viral hemorrhagic fevers especially Ebola ...

  1. Effectively Communicating the Uncertainties Surrounding Ebola Virus Transmission.

    Directory of Open Access Journals (Sweden)

    Andy Kilianski

    2015-10-01

    Full Text Available The current Ebola virus outbreak has highlighted the uncertainties surrounding many aspects of Ebola virus virology, including routes of transmission. The scientific community played a leading role during the outbreak-potentially, the largest of its kind-as many of the questions surrounding ebolaviruses have only been interrogated in the laboratory. Scientists provided an invaluable resource for clinicians, public health officials, policy makers, and the lay public in understanding the progress of Ebola virus disease and the continuing outbreak. Not all of the scientific communication, however, was accurate or effective. There were multiple instances of published articles during the height of the outbreak containing potentially misleading scientific language that spurred media overreaction and potentially jeopardized preparedness and policy decisions at critical points. Here, we use articles declaring the potential for airborne transmission of Ebola virus as a case study in the inaccurate reporting of basic science, and we provide recommendations for improving the communication about unknown aspects of disease during public health crises.

  2. Effectively Communicating the Uncertainties Surrounding Ebola Virus Transmission.

    Science.gov (United States)

    Kilianski, Andy; Evans, Nicholas G

    2015-10-01

    The current Ebola virus outbreak has highlighted the uncertainties surrounding many aspects of Ebola virus virology, including routes of transmission. The scientific community played a leading role during the outbreak-potentially, the largest of its kind-as many of the questions surrounding ebolaviruses have only been interrogated in the laboratory. Scientists provided an invaluable resource for clinicians, public health officials, policy makers, and the lay public in understanding the progress of Ebola virus disease and the continuing outbreak. Not all of the scientific communication, however, was accurate or effective. There were multiple instances of published articles during the height of the outbreak containing potentially misleading scientific language that spurred media overreaction and potentially jeopardized preparedness and policy decisions at critical points. Here, we use articles declaring the potential for airborne transmission of Ebola virus as a case study in the inaccurate reporting of basic science, and we provide recommendations for improving the communication about unknown aspects of disease during public health crises.

  3. Ebola Virus Imported from Guinea to Senegal, 2014.

    Science.gov (United States)

    Ka, Daye; Fall, Gamou; Diallo, Viviane Cissé; Faye, Ousmane; Fortes, Louise Deguenonvo; Faye, Oumar; Bah, Elhadji Ibrahim; Diallo, Kadia Mbaye; Balique, Fanny; Ndour, Cheikh Tidiane; Seydi, Moussa; Sall, Amadou Alpha

    2017-06-01

    In March 2014, the World Health Organization declared an outbreak of Ebola virus disease in Guinea. In August 2014, a case caused by virus imported from Guinea occurred in Senegal, most likely resulting from nonsecure funerals and travel. Preparedness and surveillance in Senegal probably prevented secondary cases.

  4. Editoria: EBOLA: Fear of the unknown | Comoro | Tanzania Journal ...

    African Journals Online (AJOL)

    Tanzania Journal of Health Research. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 2 (2001) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Editoria: EBOLA: Fear of the unknown. C. Comoro, J.

  5. Modeling Ebola Virus Genome Replication and Transcription with Minigenome Systems.

    Science.gov (United States)

    Cressey, Tessa; Brauburger, Kristina; Mühlberger, Elke

    2017-01-01

    In this chapter, we describe the minigenome system for Ebola virus (EBOV), which reconstitutes EBOV polymerase activity in cells and can be used to model viral genome replication and transcription. This protocol comprises all steps including cell culture, plasmid preparation, transfection, and luciferase reporter assay readout.

  6. Regional spread of Ebola virus, West Africa, 2014.

    Science.gov (United States)

    Rainisch, Gabriel; Shankar, Manjunath; Wellman, Michael; Merlin, Toby; Meltzer, Martin I

    2015-03-01

    To explain the spread of the 2014 Ebola epidemic in West Africa, and thus help with response planning, we analyzed publicly available data. We found that the risk for infection in an area can be predicted by case counts, population data, and distances between affected and nonaffected areas.

  7. Regional Spread of Ebola Virus, West Africa, 2014

    OpenAIRE

    Rainisch, Gabriel; Shankar, Manjunath; Wellman, Michael; Merlin, Toby; Meltzer, Martin I.

    2015-01-01

    To explain the spread of the 2014 Ebola epidemic in West Africa, and thus help with response planning, we analyzed publicly available data. We found that the risk for infection in an area can be predicted by case counts, population data, and distances between affected and nonaffected areas.

  8. Representations of Ebola and its victims in liberal American newspapers

    Directory of Open Access Journals (Sweden)

    Trčková Dita

    2015-12-01

    Full Text Available Combining critical discourse analysis and the cognitive theory of metaphor, the study analyses hard news on Ebola from two American newspapers of a liberal political orientation, The New York Times and The New York Daily News, to investigate metaphoric representations of the disease and portrayals of its victims. It is revealed that both newspapers heavily rely on a single conceptual metaphor of EBOLA AS WAR, with only two alternative metaphors of EBOLA AS AN ANIMATE/HUMAN BEING and EBOLA AS A NATURAL CATASTROPHE employed. All three metaphoric themes assign the role of a culprit solely to the virus, which stands in contrast to non-metaphoric discursive allocations of blame for the situation in Africa, assigning responsibility mainly to man-made factors. African victims tend to be impersonalized and portrayed as voiceless and agentless, rarely occupying the role of a “fighter” in the military metaphoric representation of the disease, which runs counter to the findings of recent studies detecting a change towards a more positive image of Africa in the media. Both newspapers fail to represent infected ordinary Africans as sovereign agents, hindering readers from reflexively identifying with them.

  9. Social vulnerability and Ebola virus disease in rural Liberia

    Science.gov (United States)

    John A. Stanturf; Scott L. Goodrick; Melvin L. Warren; Susan Charnley; Christie M. Stegall

    2015-01-01

    The Ebola virus disease (EVD) epidemic that has stricken thousands of people in the three West African countries of Liberia, Sierra Leone, and Guinea highlights the lack of adaptive capacity in post-conflict countries. The scarcity of health services in particular renders these populations vulnerable to multiple interacting stressors including food insecurity, climate...

  10. Disinfection of Ebola Virus in Sterilized Municipal Wastewater.

    Science.gov (United States)

    Bibby, Kyle; Fischer, Robert J; Casson, Leonard W; de Carvalho, Nathalia Aquino; Haas, Charles N; Munster, Vincent J

    2017-02-01

    Concerns have been raised regarding handling of Ebola virus contaminated wastewater, as well as the adequacy of proposed disinfection approaches. In the current study, we investigate the inactivation of Ebola virus in sterilized domestic wastewater utilizing sodium hypochlorite addition and pH adjustment. No viral inactivation was observed in the one-hour tests without sodium hypochlorite addition or pH adjustment. No virus was recovered after 20 seconds (i.e. 4.2 log10 unit inactivation to detection limit) following the addition of 5 and 10 mg L-1 sodium hypochlorite, which resulted in immediate free chlorine residuals of 0.52 and 1.11 mg L-1, respectively. The addition of 1 mg L-1 sodium hypochlorite resulted in an immediate free chlorine residual of 0.16 mg L-1, which inactivated 3.5 log10 units of Ebola virus in 20 seconds. Further inactivation was not evident due to the rapid consumption of the chlorine residual. Elevating the pH to 11.2 was found to significantly increase viral decay over ambient conditions. These results indicate the high susceptibility of the enveloped Ebola virus to disinfection in the presence of free chlorine in municipal wastewater; however, we caution that extension to more complex matrices (e.g. bodily fluids) will require additional verification.

  11. Whither vaccines?

    Science.gov (United States)

    Rodrigues, Charlene M C; Pinto, Marta V; Sadarangani, Manish; Plotkin, Stanley A

    2017-06-01

    Currently used vaccines have had major effects on eliminating common infections, largely by duplicating the immune responses induced by natural infections. Now vaccinology faces more complex problems, such as waning antibody, immunosenescence, evasion of immunity by the pathogen, deviation of immunity by the microbiome, induction of inhibitory responses, and complexity of the antigens required for protection. Fortunately, vaccine development is now incorporating knowledge from immunology, structural biology, systems biology and synthetic chemistry to meet these challenges. In addition, international organisations are developing new funding and licensing pathways for vaccines aimed at pathogens with epidemic potential that emerge from tropical areas. © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  12. Prevention of sexual transmission of Ebola in Liberia through a national semen testing and counselling programme for survivors: an analysis of Ebola virus RNA results and behavioural data.

    Science.gov (United States)

    Soka, Moses J; Choi, Mary J; Baller, April; White, Stephen; Rogers, Emerson; Purpura, Lawrence J; Mahmoud, Nuha; Wasunna, Christine; Massaquoi, Moses; Abad, Neetu; Kollie, Jomah; Dweh, Straker; Bemah, Philip K; Christie, Athalia; Ladele, Victor; Subah, Oneykachi C; Pillai, Satish; Mugisha, Margaret; Kpaka, Jonathan; Kowalewski, Stephen; German, Emilio; Stenger, Mark; Nichol, Stuart; Ströher, Ute; Vanderende, Kristin E; Zarecki, Shauna Mettee; Green, Hugh Henry W; Bailey, Jeffrey A; Rollin, Pierre; Marston, Barbara; Nyenswah, Tolbert G; Gasasira, Alex; Knust, Barbara; Williams, Desmond

    2016-10-01

    Ebola virus has been detected in semen of Ebola virus disease survivors after recovery. Liberia's Men's Health Screening Program (MHSP) offers Ebola virus disease survivors semen testing for Ebola virus. We present preliminary results and behavioural outcomes from the first national semen testing programme for Ebola virus. The MHSP operates out of three locations in Liberia: Redemption Hospital in Montserrado County, Phebe Hospital in Bong County, and Tellewoyan Hospital in Lofa County. Men aged 15 years and older who had an Ebola treatment unit discharge certificate are eligible for inclusion. Participants' semen samples were tested for Ebola virus RNA by real-time RT-PCR and participants received counselling on safe sexual practices. Participants graduated after receiving two consecutive negative semen tests. Counsellors collected information on sociodemographics and sexual behaviours using questionnaires administered at enrolment, follow up, and graduation visits. Because the programme is ongoing, data analysis was restricted to data obtained from July 7, 2015, to May 6, 2016. As of May 6, 2016, 466 Ebola virus disease survivors had enrolled in the programme; real-time RT-PCR results were available from 429 participants. 38 participants (9%) produced at least one semen specimen that tested positive for Ebola virus RNA. Of these, 24 (63%) provided semen specimens that tested positive 12 months or longer after Ebola virus disease recovery. The longest interval between discharge from an Ebola treatment unit and collection of a positive semen sample was 565 days. Among participants who enrolled and provided specimens more than 90 days since their Ebola treatment unit discharge, men older than 40 years were more likely to have a semen sample test positive than were men aged 40 years or younger (p=0·0004). 84 (74%) of 113 participants who reported not using a condom at enrolment reported using condoms at their first follow-up visit (pEbola virus RNA by real-time RT

  13. Ebola Hemorrhagic Fever as a Public Health Emergency of International Concern; a Review Article.

    Science.gov (United States)

    Safari, Saeed; Baratloo, Alireza; Rouhipour, Alaleh; Ghelichkhani, Parisa; Yousefifard, Mahmood

    2015-01-01

    Ebola hemorrhagic fever (EHF) was first reported in 1976 with two concurrent outbreaks of acute viral hemorrhagic fever centered in Yambuku (near the Ebola river), Democratic Republic of Congo, and in Nzara, Sudan. The current outbreak of the Ebola virus was started by reporting the first case in March 2014 in the forest regions of southeastern Guinea. Due to infection rates raising over 13,000% within a 6-month period, Ebola is now considered as a global public health emergency and on August 8(th), 2014 the World Health Organization (WHO) declared the epidemic to be a Public Health Emergency of International Concern. With more than 5000 involved cases and nearly 3000 deaths, this event has turned into the largest and most dangerous Ebola virus outbreak in the world. Based on the above-mentioned, the present article aimed to review the virologic characteristics, transmission, clinical manifestation, diagnosis, treatment, and prevention of Ebola virus disease.

  14. Ebola virus: the role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever.

    Science.gov (United States)

    Bray, Mike; Geisbert, Thomas W

    2005-08-01

    Ebola hemorrhagic fever is a severe viral infection characterized by fever, shock and coagulation defects. Recent studies in macaques show that major features of illness are caused by effects of viral replication on macrophages and dendritic cells. Infected macrophages produce proinflammatory cytokines, chemokines and tissue factor, attracting additional target cells and inducing vasodilatation, increased vascular permeability and disseminated intravascular coagulation. However, they cannot restrict viral replication, possibly because of suppression of interferon responses. Infected dendritic cells also secrete proinflammatory mediators, but cannot initiate antigen-specific responses. In consequence, virus disseminates to these and other cell types throughout the body, causing multifocal necrosis and a syndrome resembling septic shock. Massive "bystander" apoptosis of natural killer and T cells further impairs immunity. These findings suggest that modifying host responses would be an effective therapeutic strategy, and treatment of infected macaques with a tissue-factor inhibitor reduced both inflammation and viral replication and improved survival.

  15. Knowledge, Attitudes, and Practices Related to Ebola Virus Disease at the End of a National Epidemic - Guinea, August 2015.

    Science.gov (United States)

    Jalloh, Mohamed F; Robinson, Susan J; Corker, Jamaica; Li, Wenshu; Irwin, Kathleen; Barry, Alpha M; Ntuba, Paulyne Ngalame; Diallo, Alpha A; Jalloh, Mohammad B; Nyuma, James; Sellu, Musa; VanSteelandt, Amanda; Ramsden, Megan; Tracy, LaRee; Raghunathan, Pratima L; Redd, John T; Martel, Lise; Marston, Barbara; Bunnell, Rebecca

    2017-10-20

    Health communication and social mobilization efforts to improve the public's knowledge, attitudes, and practices (KAP) regarding Ebola virus disease (Ebola) were important in controlling the 2014-2016 Ebola epidemic in Guinea (1), which resulted in 3,814 reported Ebola cases and 2,544 deaths.* Most Ebola cases in Guinea resulted from the washing and touching of persons and corpses infected with Ebola without adequate infection control precautions at home, at funerals, and in health facilities (2,3). As the 18-month epidemic waned in August 2015, Ebola KAP were assessed in a survey among residents of Guinea recruited through multistage cluster sampling procedures in the nation's eight administrative regions (Boké, Conakry, Faranah, Kankan, Kindia, Labé, Mamou, and Nzérékoré). Nearly all participants (92%) were aware of Ebola prevention measures, but 27% believed that Ebola could be transmitted by ambient air, and 49% believed they could protect themselves from Ebola by avoiding mosquito bites. Of the participants, 95% reported taking actions to avoid getting Ebola, especially more frequent handwashing (93%). Nearly all participants (91%) indicated they would send relatives with suspected Ebola to Ebola treatment centers, and 89% said they would engage special Ebola burial teams to remove corpses with suspected Ebola from homes. Of the participants, 66% said they would prefer to observe an Ebola-affected corpse from a safe distance at burials rather than practice traditional funeral rites involving corpse contact. The findings were used to guide the ongoing epidemic response and recovery efforts, including health communication, social mobilization, and planning, to prevent and respond to future outbreaks or sporadic cases of Ebola.

  16. Effect of Ebola progression on transmission and control in Liberia.

    Science.gov (United States)

    Yamin, Dan; Gertler, Shai; Ndeffo-Mbah, Martial L; Skrip, Laura A; Fallah, Mosoka; Nyenswah, Tolbert G; Altice, Frederick L; Galvani, Alison P

    2015-01-06

    The Ebola outbreak that is sweeping across West Africa is the largest, most volatile, and deadliest Ebola epidemic ever recorded. Liberia is the most profoundly affected country, with more than 3500 infections and 2000 deaths recorded in the past 3 months. To evaluate the contribution of disease progression and case fatality on transmission and to examine the potential for targeted interventions to eliminate the disease. Stochastic transmission model that integrates epidemiologic and clinical data on incidence and case fatality, daily viral load among survivors and nonsurvivors evaluated on the basis of the 2000-2001 outbreak in Uganda, and primary data on contacts of patients with Ebola in Liberia. Montserrado County, Liberia, July to September 2014. Ebola incidence and case-fatality records from 2014 Liberian Ministry of Health and Social Welfare. The average number of secondary infections generated throughout the entire infectious period of a single infected case, R, was estimated as 1.73 (95% CI, 1.66 to 1.83). There was substantial stratification between survivors (RSurvivors), for whom the estimate was 0.66 (CI, 0.10 to 1.69), and nonsurvivors (RNonsurvivors), for whom the estimate was 2.36 (CI, 1.72 to 2.80). The nonsurvivors had the highest risk for transmitting the virus later in the course of disease progression. Consequently, the isolation of 75% of infected individuals in critical condition within 4 days from symptom onset has a high chance of eliminating the disease. Projections are based on the initial dynamics of the epidemic, which may change as the outbreak and interventions evolve. These results underscore the importance of isolating the most severely ill patients with Ebola within the first few days of their symptomatic phase. National Institutes of Health.

  17. Combating Ebola with Repurposed Therapeutics Using the CANDO Platform

    Directory of Open Access Journals (Sweden)

    Gaurav Chopra

    2016-11-01

    Full Text Available Ebola virus disease (EVD is extremely virulent with an estimated mortality rate of up to 90%. However, the state-of-the-art treatment for EVD is limited to quarantine and supportive care. The 2014 Ebola epidemic in West Africa, the largest in history, is believed to have caused more than 11,000 fatalities. The countries worst affected are also among the poorest in the world. Given the complexities, time, and resources required for a novel drug development, finding efficient drug discovery pathways is going to be crucial in the fight against future outbreaks. We have developed a Computational Analysis of Novel Drug Opportunities (CANDO platform based on the hypothesis that drugs function by interacting with multiple protein targets to create a molecular interaction signature that can be exploited for rapid therapeutic repurposing and discovery. We used the CANDO platform to identify and rank FDA-approved drug candidates that bind and inhibit all proteins encoded by the genomes of five different Ebola virus strains. Top ranking drug candidates for EVD treatment generated by CANDO were compared to in vitro screening studies against Ebola virus-like particles (VLPs by Kouznetsova et al. and genetically engineered Ebola virus and cell viability studies by Johansen et al. to identify drug overlaps between the in virtuale and in vitro studies as putative treatments for future EVD outbreaks. Our results indicate that integrating computational docking predictions on a proteomic scale with results from in vitro screening studies may be used to select and prioritize compounds for further in vivo and clinical testing. This approach will significantly reduce the lead time, risk, cost, and resources required to determine efficacious therapies against future EVD outbreaks.

  18. Laboratory Response to Ebola - West Africa and United States.

    Science.gov (United States)

    Sealy, Tara K; Erickson, Bobbie R; Taboy, Céline H; Ströher, Ute; Towner, Jonathan S; Andrews, Sharon E; Rose, Laura E; Weirich, Elizabeth; Lowe, Luis; Klena, John D; Spiropoulou, Christina F; Rayfield, Mark A; Bird, Brian H

    2016-07-08

    The 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa highlighted the need to maintain organized laboratory systems or networks that can be effectively reorganized to implement new diagnostic strategies and laboratory services in response to large-scale events. Although previous Ebola outbreaks enabled establishment of critical laboratory practice safeguards and diagnostic procedures, this Ebola outbreak in West Africa highlighted the need for planning and preparedness activities that are better adapted to emerging pathogens or to pathogens that have attracted little commercial interest. The crisis underscored the need for better mechanisms to streamline development and evaluation of new diagnostic assays, transfer of material and specimens between countries and organizations, and improved processes for rapidly deploying health workers with specific laboratory expertise. The challenges and events of the outbreak forced laboratorians to examine not only the comprehensive capacities of existing national laboratory systems to recognize and respond to events, but also their sustainability over time and the mechanisms that need to be pre-established to ensure effective response. Critical to this assessment was the recognition of how response activities (i.e., infrastructure support, logistics, and workforce supplementation) can be used or repurposed to support the strengthening of national laboratory systems during the postevent transition to capacity building and recovery. This report compares CDC's domestic and international laboratory response engagements and lessons learned that can improve future responses in support of the International Health Regulations and Global Health Security Agenda initiatives.The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html).

  19. Ebola Response Impact on Public Health Programs, West Africa, 2014–2017

    OpenAIRE

    Marston, Barbara J.; Dokubo, E. Kainne; van Steelandt, Amanda; Martel, Lise; Williams, Desmond; Hersey, Sara; Jambai, Amara; Keita, Sakoba; Nyenswah, Tolbert G.; Redd, John T.

    2017-01-01

    Events such as the 2014–2015 West Africa epidemic of Ebola virus disease highlight the importance of the capacity to detect and respond to public health threats. We describe capacity-building efforts during and after the Ebola epidemic in Liberia, Sierra Leone, and Guinea and public health progress that was made as a result of the Ebola response in 4 key areas: emergency response, laboratory capacity, surveillance, and workforce development. We further highlight ways in which capacity-buildin...

  20. Hegemonic structure of basic, clinical and patented knowledge on Ebola research: a US army reductionist initiative

    OpenAIRE

    Fajardo-Ortiz, David; Ortega-S?nchez-de-Tagle, Jos?; Casta?o, Victor M

    2015-01-01

    Background Ebola hemorrhagic fever (Ebola) is still a highly lethal infectious disease long affecting mainly neglected populations in sub-Saharan Africa. Moreover, this disease is now considered a potential worldwide threat. In this paper, we present an approach to understand how the basic, clinical and patent knowledge on Ebola is organized and intercommunicated and what leading factor could be shaping the evolution of the knowledge translation process for this disease. Methodology A combina...

  1. Characterization of Ebola Virus Entry by Using Pseudotyped Viruses: Identification of Receptor-Deficient Cell Lines

    OpenAIRE

    Wool-Lewis, Rouven J.; Bates, Paul

    1998-01-01

    Studies analyzing Ebola virus replication have been severely hampered by the extreme pathogenicity of this virus. To permit analysis of the host range and function of the Ebola virus glycoprotein (Ebo-GP), we have developed a system for pseudotyping these glycoproteins into murine leukemia virus (MLV). This pseudotyped virus, MLV(Ebola), can be readily concentrated to titers which exceed 5 × 106 infectious units/ml and is effectively neutralized by antibodies specific for Ebo-GP. Analysis of ...

  2. Influenza vaccination

    DEFF Research Database (Denmark)

    Østerhus, Sven Frederick

    2015-01-01

    The Cochrane Library was systematically searched for meta-analyses regarding influenza vaccination of various populations, both healthy and sick. An effect in reducing the number of cases of influenza, influenza-like illness or complications to influenza was found in some studies, but, generally......, the quality of the studies was low, and several studies lacked hard clinical endpoints. Data on adverse effects were scarce. More randomised controlled trials investigating the effects of influenza vaccination are warranted....

  3. Flu Vaccine Safety Information

    Science.gov (United States)

    ... Influenza Types Seasonal Avian Swine Variant Pandemic Other Flu Vaccine Safety Information Questions & Answers Language: English (US) ... safety of flu vaccines monitored? Egg Allergy Are flu vaccines safe? Flu vaccines have good safety record. ...

  4. Thimerosal in Flu Vaccine

    Science.gov (United States)

    ... Seasonal Avian Swine Variant Pandemic Other Thimerosal in Flu Vaccine Questions & Answers Language: English (US) Español Recommend ... and/or fungi from contaminating the vaccine. Do flu vaccines contain thimerosal? Flu vaccines in multi-dose ...

  5. Ear Infection and Vaccines

    Science.gov (United States)

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  6. Antipneumococcal vaccination

    Directory of Open Access Journals (Sweden)

    Gian Vincenzo Zuccotti

    2013-06-01

    Full Text Available Streptococcus pneumoniae (SP is a gram-positive bacterium with more than 90 known serotypes causing around 11% of all deaths worldwide in children aged 1-59 months. A new era in prevention of SP-related diseases started in at the beginning of 2000s when a 7-valent pneumococcal conjugate vaccine (PCV7 was recommended as the vaccine of choice in pediatric age. PCV7 dramatically reduced invasive pneumococcal diseases (IPD among children with indirect effects noted among other age groups as well. However, thanks to a strict surveillance network, an increase in non-vaccine serotypes (NVTs causing IPD was noted worldwide and in late 2000s a new second generation vaccine (13-valent pneumococcal conjugate vaccine-PCV13 with an expanded serotype coverage was licensed. Due to the lack of solid effectiveness data, up to know it is difficult to predict how the composition of NVTs will change after the large-scale introduction of PCV13 or whether the characteristics of the serotypes will change. Long-term surveillance of both IPD, pneumonia, acute otitis media and carriage will be crucial to ascertain whether these second generation vaccines are having the desired effect of reducing the incidence of diseases in the long term. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  7. Antibody-mediated neutralization of Ebola virus can occur by two distinct mechanisms

    International Nuclear Information System (INIS)

    Shedlock, Devon J.; Bailey, Michael A.; Popernack, Paul M.; Cunningham, James M.; Burton, Dennis R.; Sullivan, Nancy J.

    2010-01-01

    Human Ebola virus causes severe hemorrhagic fever disease with high mortality and there is no vaccine or treatment. Antibodies in survivors occur early, are sustained, and can delay infection when transferred into nonhuman primates. Monoclonal antibodies (mAbs) from survivors exhibit potent neutralizing activity in vitro and are protective in rodents. To better understand targets and mechanisms of neutralization, we investigated a panel of mAbs shown previously to react with the envelope glycoprotein (GP). While one non-neutralizing mAb recognized a GP epitope in the nonessential mucin-like domain, the rest were specific for GP1, were neutralizing, and could be further distinguished by reactivity with secreted GP. We show that survivor antibodies, human KZ52 and monkey JP3K11, were specific for conformation-dependent epitopes comprising residues in GP1 and GP2 and that neutralization occurred by two distinct mechanisms; KZ52 inhibited cathepsin cleavage of GP whereas JP3K11 recognized the cleaved, fusion-active form of GP.

  8. Experimental Respiratory Infection of Marmosets (Callithrix jacchus) With Ebola Virus Kikwit.

    Science.gov (United States)

    Smither, Sophie J; Nelson, Michelle; Eastaugh, Lin; Nunez, Alejandro; Salguero, Francisco J; Lever, Mark S

    2015-10-01

    Ebola virus (EBOV) causes a highly infectious and lethal hemorrhagic fever in primates with high fatality rates during outbreaks and EBOV may be exploited as a potential biothreat pathogen. There is therefore a need to develop and license appropriate medical countermeasures against this virus. To determine whether the common marmoset (Callithrix jacchus) would be an appropriate model to assess vaccines or therapies against EBOV disease (EVD), initial susceptibility, lethality and pathogenesis studies were performed. Low doses of EBOV-Kikwit, between 4 and 27 times the 50% tissue culture infectious dose, were sufficient to cause a lethal, reproducible infection. Animals became febrile between days 5 and 6, maintaining a high fever before succumbing to EVD between 6 and 8 days after challenge. Typical signs of EVD were observed. Pathogenesis studies revealed that virus was isolated from the lungs of animals beginning on day 3 after challenge and from the liver, spleen and blood beginning on day 5. The most striking features were observed in animals that succumbed to infection, including high viral titers in all organs, increased levels of liver function enzymes and blood clotting times, decreased levels of platelets, multifocal moderate to severe hepatitis, and perivascular edema. © Crown copyright 2015.

  9. An Outbreak of Ebola Virus Disease in the Lassa Fever Zone.

    Science.gov (United States)

    Goba, Augustine; Khan, S Humarr; Fonnie, Mbalu; Fullah, Mohamed; Moigboi, Alex; Kovoma, Alice; Sinnah, Vandi; Yoko, Nancy; Rogers, Hawa; Safai, Siddiki; Momoh, Mambu; Koroma, Veronica; Kamara, Fatima K; Konowu, Edwin; Yillah, Mohamed; French, Issa; Mustapha, Ibraham; Kanneh, Franklyn; Foday, Momoh; McCarthy, Helena; Kallon, Tiangay; Kallon, Mustupha; Naiebu, Jenneh; Sellu, Josephine; Jalloh, Abdul A; Gbakie, Michael; Kanneh, Lansana; Massaly, James L B; Kargbo, David; Kargbo, Brima; Vandi, Mohamed; Gbetuwa, Momoh; Gevao, Sahr M; Sandi, John D; Jalloh, Simbirie C; Grant, Donald S; Blyden, Sylvia O; Crozier, Ian; Schieffelin, John S; McLellan, Susan L; Jacob, Shevin T; Boisen, Matt L; Hartnett, Jessica N; Cross, Robert W; Branco, Luis M; Andersen, Kristian G; Yozwiak, Nathan L; Gire, Stephen K; Tariyal, Ridhi; Park, Daniel J; Haislip, Allyson M; Bishop, Christopher M; Melnik, Lilia I; Gallaher, William R; Wimley, William C; He, Jing; Shaffer, Jeffrey G; Sullivan, Brian M; Grillo, Sonia; Oman, Scott; Garry, Courtney E; Edwards, Donna R; McCormick, Stephanie J; Elliott, Deborah H; Rouelle, Julie A; Kannadka, Chandrika B; Reyna, Ashley A; Bradley, Benjamin T; Yu, Haini; Yenni, Rachael E; Hastie, Kathryn M; Geisbert, Joan B; Kulakosky, Peter C; Wilson, Russell B; Oldstone, Michael B A; Pitts, Kelly R; Henderson, Lee A; Robinson, James E; Geisbert, Thomas W; Saphire, Erica Ollmann; Happi, Christian T; Asogun, Danny A; Sabeti, Pardis C; Garry, Robert F

    2016-10-15

     Kenema Government Hospital (KGH) has developed an advanced clinical and laboratory research capacity to manage the threat of Lassa fever, a viral hemorrhagic fever (VHF). The 2013-2016 Ebola virus (EBOV) disease (EVD) outbreak is the first to have occurred in an area close to a facility with established clinical and laboratory capacity for study of VHFs.  Because of its proximity to the epicenter of the EVD outbreak, which began in Guinea in March 2014, the KGH Lassa fever Team mobilized to establish EBOV surveillance and diagnostic capabilities.  Augustine Goba, director of the KGH Lassa laboratory, diagnosed the first documented case of EVD in Sierra Leone, on 25 May 2014. Thereafter, KGH received and cared for numbers of patients with EVD that quickly overwhelmed the capacity for safe management. Numerous healthcare workers contracted and lost their lives to EVD. The vast majority of subsequent EVD cases in West Africa can be traced back to a single transmission chain that includes this first diagnosed case.  Responding to the challenges of confronting 2 hemorrhagic fever viruses will require continued investments in the development of countermeasures (vaccines, therapeutic agents, and diagnostic assays), infrastructure, and human resources. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  10. BoHV-4-based vector delivering Ebola virus surface glycoprotein

    Directory of Open Access Journals (Sweden)

    Alfonso Rosamilia

    2016-11-01

    Full Text Available Abstract Background Ebola virus (EBOV is a Category A pathogen that is a member of Filoviridae family that causes hemorrhagic fever in humans and non-human primates. Unpredictable and devastating outbreaks of disease have recently occurred in Africa and current immunoprophylaxis and therapies are limited. The main limitation of working with pathogens like EBOV is the need for costly containment. To potentiate further and wider opportunity for EBOV prophylactics and therapies development, innovative approaches are necessary. Methods In the present study, an antigen delivery platform based on a recombinant bovine herpesvirus 4 (BoHV-4, delivering a synthetic EBOV glycoprotein (GP gene sequence, BoHV-4-syEBOVgD106ΔTK, was generated. Results EBOV GP was abundantly expressed by BoHV-4-syEBOVgD106ΔTK transduced cells without decreasing viral replication. BoHV-4-syEBOVgD106ΔTK immunized goats produced high titers of anti-EBOV GP antibodies and conferred a long lasting (up to 6 months, detectable antibody response. Furthermore, no evidence of BoHV-4-syEBOVgD106ΔTK viremia and secondary localization was detected in any of the immunized animals. Conclusions The BoHV-4-based vector approach described here, represents: an alternative antigen delivery system for vaccination and a proof of principle study for anti-EBOV antibodies generation in goats for potential immunotherapy applications.

  11. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection.

    Science.gov (United States)

    Côté, Marceline; Misasi, John; Ren, Tao; Bruchez, Anna; Lee, Kyungae; Filone, Claire Marie; Hensley, Lisa; Li, Qi; Ory, Daniel; Chandran, Kartik; Cunningham, James

    2011-08-24

    Ebola virus (EboV) is a highly pathogenic enveloped virus that causes outbreaks of zoonotic infection in Africa. The clinical symptoms are manifestations of the massive production of pro-inflammatory cytokines in response to infection and in many outbreaks, mortality exceeds 75%. The unpredictable onset, ease of transmission, rapid progression of disease, high mortality and lack of effective vaccine or therapy have created a high level of public concern about EboV. Here we report the identification of a novel benzylpiperazine adamantane diamide-derived compound that inhibits EboV infection. Using mutant cell lines and informative derivatives of the lead compound, we show that the target of the inhibitor is the endosomal membrane protein Niemann-Pick C1 (NPC1). We find that NPC1 is essential for infection, that it binds to the virus glycoprotein (GP), and that antiviral compounds interfere with GP binding to NPC1. Combined with the results of previous studies of GP structure and function, our findings support a model of EboV infection in which cleavage of the GP1 subunit by endosomal cathepsin proteases removes heavily glycosylated domains to expose the amino-terminal domain, which is a ligand for NPC1 and regulates membrane fusion by the GP2 subunit. Thus, NPC1 is essential for EboV entry and a target for antiviral therapy.

  12. Surveillance Training for Ebola Preparedness in Côte d’Ivoire, Guinea-Bissau, Senegal, and Mali

    OpenAIRE

    Cáceres, Victor M.; Sidibe, Sekou; Andre, McKenzie; Traicoff, Denise; Lambert, Stephanie; King, Melanie; Kazambu, Ditu; Lopez, Augusto; Pedalino, Biagio; Guibert, Dionisio J. Herrera; Wassawa, Peter; Cardoso, Placido; Assi, Bernard; Ly, Alioune; Traore, Bouyagui

    2017-01-01

    The 2014–2015 epidemic of Ebola virus disease in West Africa primarily affected Guinea, Liberia, and Sierra Leone. Several countries, including Mali, Nigeria, and Senegal, experienced Ebola importations. Realizing the importance of a trained field epidemiology workforce in neighboring countries to respond to Ebola importations, the Centers for Disease Control and Prevention Field Epidemiology Training Program unit implemented the Surveillance Training for Ebola Preparedness (STEP) initiative....

  13. Different features of V?2 T and NK cells in fatal and non-fatal human Ebola infections

    OpenAIRE

    Cimini, Eleonora; Viola, Domenico; Cabeza-Cabrerizo, Mar; Romanelli, Antonella; Tumino, Nicola; Sacchi, Alessandra; Bordoni, Veronica; Casetti, Rita; Turchi, Federica; Martini, Federico; Bore, Joseph A.; Koundouno, Fara Raymond; Duraffour, Sophie; Michel, Janine; Holm, Tobias

    2017-01-01

    Background Human Ebola infection is characterized by a paralysis of the immune system. A signature of ?? T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze ?? T and NK cells in patients from the Ebola outbreak of 2014?2015 occurred in West Africa, and to assess their association with the clinical outcome. Methodology/Principal findings Nineteen ...

  14. The Temporal Program of Peripheral Blood Gene Expression in the Response of Nonhuman Primates to Ebola Hemorrhagic Fever

    Science.gov (United States)

    2007-08-28

    the family Filoviridae. The EBOV genus consists of four distinct species: Ivory Coast Ebola virus, Reston Ebola virus, Sudan Ebola virus, and Zaire...S, Liu CL, Belcher CE, Botstein D, Staudt LM, Brown PO, Relman DA: Stereotyped and specific gene expression programs in human innate immune responses

  15. Development of replication-deficient adenovirus malaria vaccines.

    Science.gov (United States)

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  16. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys.

    Science.gov (United States)

    Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin

    2017-05-15

    The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect

  17. Analytical Performance Characteristics of the Cepheid GeneXpert Ebola Assay for the Detection of Ebola Virus

    Science.gov (United States)

    Pinsky, Benjamin A.; Sahoo, Malaya K.; Sandlund, Johanna; Kleman, Marika; Kulkarni, Medha; Grufman, Per; Nygren, Malin; Kwiatkowski, Robert; Baron, Ellen Jo; Tenover, Fred; Denison, Blake; Higuchi, Russell; Van Atta, Reuel; Beer, Neil Reginald; Carrillo, Alda Celena; Naraghi-Arani, Pejman; Mire, Chad E.; Ranadheera, Charlene; Grolla, Allen; Lagerqvist, Nina; Persing, David H.

    2015-01-01

    Background The recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples. Methods and Findings This study evaluated the assay’s analytical sensitivity, analytical specificity, inclusivity and exclusivity performance in whole blood specimens. EBOV RNA, inactivated EBOV, and infectious EBOV were used as targets. The dynamic range of the assay, the inactivation of virus, and specimen stability were also evaluated. The lower limit of detection (LoD) for the assay using inactivated virus was estimated to be 73 copies/mL (95% CI: 51–97 copies/mL). The LoD for infectious virus was estimated to be 1 plaque-forming unit/mL, and for RNA to be 232 copies/mL (95% CI 163–302 copies/mL). The assay correctly identified five different Ebola viruses, Yambuku-Mayinga, Makona-C07, Yambuku-Ecran, Gabon-Ilembe, and Kikwit-956210, and correctly excluded all non-EBOV isolates tested. The conditions used by Xpert® Ebola for inactivation of infectious virus reduced EBOV titer by ≥6 logs. Conclusion In summary, we found the Xpert® Ebola Assay to have high analytical sensitivity and specificity for the detection of EBOV in whole blood. It offers ease of use, fast turnaround time, and remote monitoring. The test has an efficient viral inactivation protocol, fulfills inclusivity and exclusivity criteria, and has specimen stability characteristics consistent with the need for decentralized testing. The simplicity of the assay should enable testing in a wide variety of laboratory settings, including remote laboratories that are not capable of performing highly complex nucleic acid amplification tests, and during outbreaks where time to detection

  18. Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus.

    Science.gov (United States)

    Herbert, Andrew S; Kuehne, Ana I; Barth, James F; Ortiz, Ramon A; Nichols, Donald K; Zak, Samantha E; Stonier, Spencer W; Muhammad, Majidat A; Bakken, Russell R; Prugar, Laura I; Olinger, Gene G; Groebner, Jennifer L; Lee, John S; Pratt, William D; Custer, Max; Kamrud, Kurt I; Smith, Jonathan F; Hart, Mary Kate; Dye, John M

    2013-05-01

    There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.

  19. Reduced evolutionary rate in reemerged Ebola virus transmission chains.

    Science.gov (United States)

    Blackley, David J; Wiley, Michael R; Ladner, Jason T; Fallah, Mosoka; Lo, Terrence; Gilbert, Merle L; Gregory, Christopher; D'ambrozio, Jonathan; Coulter, Stewart; Mate, Suzanne; Balogun, Zephaniah; Kugelman, Jeffrey; Nwachukwu, William; Prieto, Karla; Yeiah, Adolphus; Amegashie, Fred; Kearney, Brian; Wisniewski, Meagan; Saindon, John; Schroth, Gary; Fakoli, Lawrence; Diclaro, Joseph W; Kuhn, Jens H; Hensley, Lisa E; Jahrling, Peter B; Ströher, Ute; Nichol, Stuart T; Massaquoi, Moses; Kateh, Francis; Clement, Peter; Gasasira, Alex; Bolay, Fatorma; Monroe, Stephan S; Rambaut, Andrew; Sanchez-Lockhart, Mariano; Scott Laney, A; Nyenswah, Tolbert; Christie, Athalia; Palacios, Gustavo

    2016-04-01

    On 29 June 2015, Liberia's respite from Ebola virus disease (EVD) was interrupted for the second time by a renewed outbreak ("flare-up") of seven confirmed cases. We demonstrate that, similar to the March 2015 flare-up associated with sexual transmission, this new flare-up was a reemergence of a Liberian transmission chain originating from a persistently infected source rather than a reintroduction from a reservoir or a neighboring country with active transmission. Although distinct, Ebola virus (EBOV) genomes from both flare-ups exhibit significantly low genetic divergence, indicating a reduced rate of EBOV evolution during persistent infection. Using this rate of change as a signature, we identified two additional EVD clusters that possibly arose from persistently infected sources. These findings highlight the risk of EVD flare-ups even after an outbreak is declared over.

  20. Public Health Intelligence: Learning From the Ebola Crisis

    Science.gov (United States)

    Weber, David Jay

    2015-01-01

    Today’s public health crises, as exemplified by the Ebola outbreak, lead to dramatic calls to action that typically include improved electronic monitoring systems to better prepare for, and respond to, similar occurrences in the future. Even a preliminary public health informatics evaluation of the current Ebola crisis exposes the need for enhanced coordination and sharing of trustworthy public health intelligence. We call for a consumer-centric model of public health intelligence and the formation of a national center to guide public health intelligence gathering and synthesis. Sharing accurate and actionable information with government agencies, health care practitioners, policymakers, and, critically, the general public, will mark a shift from doing public health surveillance on people to doing public health surveillance for people. PMID:26180978

  1. Development of a Pediatric Ebola Predictive Score, Sierra Leone1

    Science.gov (United States)

    Wing, Kevin; Naveed, Asad; Gbessay, Musa; Ross, J.C.G.; Checchi, Francesco; Youkee, Daniel; Jalloh, Mohamed Boie; Baion, David E.; Mustapha, Ayeshatu; Jah, Hawanatu; Lako, Sandra; Oza, Shefali; Boufkhed, Sabah; Feury, Reynold; Bielicki, Julia; Williamson, Elizabeth; Gibb, Diana M.; Klein, Nigel; Sahr, Foday; Yeung, Shunmay

    2018-01-01

    We compared children who were positive for Ebola virus disease (EVD) with those who were negative to derive a pediatric EVD predictor (PEP) score. We collected data on all children <13 years of age admitted to 11 Ebola holding units in Sierra Leone during August 2014–March 2015 and performed multivariable logistic regression. Among 1,054 children, 309 (29%) were EVD positive and 697 (66%) EVD negative, with 48 (5%) missing. Contact history, conjunctivitis, and age were the strongest positive predictors for EVD. The PEP score had an area under receiver operating characteristics curve of 0.80. A PEP score of 7/10 was 92% specific and 44% sensitive; 3/10 was 30% specific, 94% sensitive. The PEP score could correctly classify 79%–90% of children and could be used to facilitate triage into risk categories, depending on the sensitivity or specificity required. PMID:29350145

  2. Progress towards the treatment of Ebola haemorrhagic fever.

    Science.gov (United States)

    Ströher, Ute; Feldmann, Heinz

    2006-12-01

    Being highly pathogenic for human and nonhuman primates and the subject of former weapon programmes makes Ebola virus one of the most feared pathogens worldwide today. Due to a lack of licensed pre- and postexposure intervention, the current response depends on rapid diagnostics, proper isolation procedures and supportive care of case patients. Consequently, the development of more specific countermeasures is of high priority for the preparedness of many nations. Over the past years, enhanced research efforts directed to better understand virus replication and pathogenesis have identified potential new targets for intervention strategies. The authors discuss the most promising therapeutic approaches for Ebola haemorrhagic fever as judged by their efficacy in animal models. The current development in this field encourages discussions on how to move some of the experimental approaches towards clinical application.

  3. A modified anthrax toxin-based enzyme-linked immunospot assay reveals robust T cell responses in symptomatic and asymptomatic Ebola virus exposed individuals.

    Science.gov (United States)

    Herrera, Bobby Brooke; Hamel, Donald J; Oshun, Philip; Akinsola, Rolake; Akanmu, Alani S; Chang, Charlotte A; Eromon, Philomena; Folarin, Onikepe; Adeyemi, Kayode T; Happi, Christian T; Lu, Yichen; Ogunsola, Folasade; Kanki, Phyllis J

    2018-05-01

    Ebola virus (EBOV) caused more than 11,000 deaths during the 2013-2016 epidemic in West Africa without approved vaccines or immunotherapeutics. Despite its high lethality in some individuals, EBOV infection can produce little to no symptoms in others. A better understanding of the immune responses in individuals who experienced minimally symptomatic and asymptomatic infection could aid the development of more effective vaccines and antivirals against EBOV and related filoviruses. Between August and November 2017, blood samples were collected from 19 study participants in Lagos, Nigeria, including 3 Ebola virus disease (EVD) survivors, 10 individuals with documented close contact with symptomatic EVD patients, and 6 control healthcare workers for a cross-sectional serosurvey and T cell analysis. The Lagos samples, as well as archived serum collected from healthy individuals living in surrounding areas of the 1976 Democratic Republic of Congo (DRC) epidemic, were tested for EBOV IgG using commercial enzyme-linked immunosorbent assays (ELISAs) and Western blots. We detected antibodies in 3 out of 3 Lagos survivors and identified 2 seropositive individuals not known to have ever been infected. Of the DRC samples tested, we detected antibodies in 9 out of 71 (12.7%). To characterize the T cell responses in the Lagos samples, we developed an anthrax toxin-based enzyme-linked immunospot (ELISPOT) assay. The seropositive asymptomatic individuals had T cell responses against EBOV nucleoprotein, matrix protein, and glycoprotein 1 that were stronger in magnitude compared to the survivors. Our data provide further evidence of EBOV exposure in individuals without EVD-like illness and, for the first time, demonstrate that these individuals have T cell responses that are stronger in magnitude compared to severe cases. These findings suggest that T cell immunity may protect against severe EVD, which has important implications for vaccine development.

  4. Critiquing the response to the Ebola epidemic through a Primary Health Care Approach

    Directory of Open Access Journals (Sweden)

    Vera Scott

    2016-05-01

    Full Text Available Abstract Background The 2014/2015 West Africa Ebola epidemic has caused the global public health community to engage in difficult self-reflection. First, it must consider the part it played in relation to an important public health question: why did this epidemic take hold and spread in this unprecedented manner? Second, it must use the lessons learnt to answer the subsequent question: what can be done now to prevent further such outbreaks in the future? These questions remain relevant, even as scientists announce that the Guinea Phase III efficacy vaccine trial shows that rVSV-EBOV (Merck, Sharp & Dohme is highly efficacious in individuals. This is a major breakthrough in the fight against Ebola virus disease (EVD. It does not replace but may be a powerful adjunct to current strategies of EVD management and control. Discussion We contribute to the current self-reflection by presenting an analysis using a Primary Health Care (PHC approach. This approach is appropriate as African countries in the region affected by EVD have recommitted themselves to PHC as a framework for organising health systems and the delivery of health services. The approach suggests that, in an epidemic made complex by weak pre-existing health systems, lack of trust in authorities and mobile populations, a broader approach is required to engage affected communities. In the medium-term health system development with attention to primary level services and community-based programmes to address the major disease burden of malaria, diarrhoeal disease, meningitis, tuberculosis and malnutrition is needed. This requires the development of local management and an investment in human resources for health. Crucially this has to be developed ahead of, and not in parallel with, future outbreaks. In the longer-term a commitment is required to address the underlying social determinants which make these countries so vulnerable, and limit their capacity to respond effectively to, epidemics

  5. Critiquing the response to the Ebola epidemic through a Primary Health Care Approach.

    Science.gov (United States)

    Scott, Vera; Crawford-Browne, Sarah; Sanders, David

    2016-05-17

    The 2014/2015 West Africa Ebola epidemic has caused the global public health community to engage in difficult self-reflection. First, it must consider the part it played in relation to an important public health question: why did this epidemic take hold and spread in this unprecedented manner? Second, it must use the lessons learnt to answer the subsequent question: what can be done now to prevent further such outbreaks in the future? These questions remain relevant, even as scientists announce that the Guinea Phase III efficacy vaccine trial shows that rVSV-EBOV (Merck, Sharp & Dohme) is highly efficacious in individuals. This is a major breakthrough in the fight against Ebola virus disease (EVD). It does not replace but may be a powerful adjunct to current strategies of EVD management and control. We contribute to the current self-reflection by presenting an analysis using a Primary Health Care (PHC) approach. This approach is appropriate as African countries in the region affected by EVD have recommitted themselves to PHC as a framework for organising health systems and the delivery of health services. The approach suggests that, in an epidemic made complex by weak pre-existing health systems, lack of trust in authorities and mobile populations, a broader approach is required to engage affected communities. In the medium-term health system development with attention to primary level services and community-based programmes to address the major disease burden of malaria, diarrhoeal disease, meningitis, tuberculosis and malnutrition is needed. This requires the development of local management and an investment in human resources for health. Crucially this has to be developed ahead of, and not in parallel with, future outbreaks. In the longer-term a commitment is required to address the underlying social determinants which make these countries so vulnerable, and limit their capacity to respond effectively to, epidemics such as EVD. The PHC approach offers an

  6. Comprehensive functional analysis of N-linked glycans on Ebola virus GP1.

    Science.gov (United States)

    Lennemann, Nicholas J; Rhein, Bethany A; Ndungo, Esther; Chandran, Kartik; Qiu, Xiangguo; Maury, Wendy

    2014-01-28

    Ebola virus (EBOV) entry requires the virion surface-associated glycoprotein (GP) that is composed of a trimer of heterodimers (GP1/GP2). The GP1 subunit contains two heavily glycosylated domains, the glycan cap and the mucin-like domain (MLD). The glycan cap contains only N-linked glycans, whereas the MLD contains both N- and O-linked glycans. Site-directed mutagenesis was performed on EBOV GP1 to systematically disrupt N-linked glycan sites to gain an understanding of their role in GP structure and function. All 15 N-glycosylation sites of EBOV GP1 could be removed without compromising the expression of GP. The loss of these 15 glycosylation sites significantly enhanced pseudovirion transduction in Vero cells, which correlated with an increase in protease sensitivity. Interestingly, exposing the receptor-binding domain (RBD) by removing the glycan shield did not allow interaction with the endosomal receptor, NPC1, indicating that the glycan cap/MLD domains mask RBD residues required for binding. The effects of the loss of GP1 N-linked glycans on Ca(2+)-dependent (C-type) lectin (CLEC)-dependent transduction were complex, and the effect was unique for each of the CLECs tested. Surprisingly, EBOV entry into murine peritoneal macrophages was independent of GP1 N-glycans, suggesting that CLEC-GP1 N-glycan interactions are not required for entry into this important primary cell. Finally, the removal of all GP1 N-glycans outside the MLD enhanced antiserum and antibody sensitivity. In total, our results provide evidence that the conserved N-linked glycans on the EBOV GP1 core protect GP from antibody neutralization despite the negative impact the glycans have on viral entry efficiency. Filovirus outbreaks occur sporadically throughout central Africa, causing high fatality rates among the general public and health care workers. These unpredictable hemorrhagic fever outbreaks are caused by multiple species of Ebola viruses, as well as Marburg virus. While filovirus

  7. Ebola virus disease surveillance and response preparedness in northern Ghana

    OpenAIRE

    Adokiya, Martin N.; Awoonor-Williams, John K.

    2016-01-01

    Background: The recent Ebola virus disease (EVD) outbreak has been described as unprecedented in terms of morbidity, mortality, and geographical extension. It also revealed many weaknesses and inadequacies for disease surveillance and response systems in Africa due to underqualified staff, cultural beliefs, and lack of trust for the formal health care sector. In 2014, Ghana had high risk of importation of EVD cases.Objective: The objective of this study was to assess the EVD surveillance and ...

  8. The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt

    Directory of Open Access Journals (Sweden)

    Cécile Viboud

    2018-03-01

    Full Text Available Infectious disease forecasting is gaining traction in the public health community; however, limited systematic comparisons of model performance exist. Here we present the results of a synthetic forecasting challenge inspired by the West African Ebola crisis in 2014–2015 and involving 16 international academic teams and US government agencies, and compare the predictive performance of 8 independent modeling approaches. Challenge participants were invited to predict 140 epidemiological targets across 5 different time points of 4 synthetic Ebola outbreaks, each involving different levels of interventions and “fog of war” in outbreak data made available for predictions. Prediction targets included 1–4 week-ahead case incidences, outbreak size, peak timing, and several natural history parameters. With respect to weekly case incidence targets, ensemble predictions based on a Bayesian average of the 8 participating models outperformed any individual model and did substantially better than a null auto-regressive model. There was no relationship between model complexity and prediction accuracy; however, the top performing models for short-term weekly incidence were reactive models with few parameters, fitted to a short and recent part of the outbreak. Individual model outputs and ensemble predictions improved with data accuracy and availability; by the second time point, just before the peak of the epidemic, estimates of final size were within 20% of the target. The 4th challenge scenario − mirroring an uncontrolled Ebola outbreak with substantial data reporting noise − was poorly predicted by all modeling teams. Overall, this synthetic forecasting challenge provided a deep understanding of model performance under controlled data and epidemiological conditions. We recommend such “peace time” forecasting challenges as key elements to improve coordination and inspire collaboration between modeling groups ahead of the next pandemic threat

  9. [EBOLA HEMORRHAGIC FEVER; ETIOLOGY, EPIDEMIOLOGY, PATHOGENESIS, AND CLINICAL SYMPTOMS].

    Science.gov (United States)

    Zhdanov, K W; Zakharenko, S M; Kovalenko, A N; Semenov, A V; Fusin, A Ya

    2015-01-01

    The data on the prevalence of disease caused by Ebola virus, biological features of its pathogen, character of the epidemiological process, pathogenesis and clinical symptoms are presented. The disease is characterized by suppression of protective immunological mechanisms and systemic inflammatory reaction accounting for the lesions of vascular endothelium, hemostatic and immune systems. It eventually leads to polyorgan insufficiency and severe shock. Lethality amounts to 50%.

  10. Learning from Ebola Virus: How to Prevent Future Epidemics

    Directory of Open Access Journals (Sweden)

    Alexander S. Kekulé

    2015-07-01

    Full Text Available The recent Ebola virus disease (EVD epidemic in Guinea, Liberia and Sierra Leone demonstrated that the World Health Organization (WHO is incapable to control outbreaks of infectious diseases in less developed regions of the world. This essay analyses the causes for the failure of the international response and proposes four measures to improve resilience, early detection and response to future outbreaks of infectious diseases.

  11. Ebola et autres crises : le Canada soutient les solutionneurs africains

    International Development Research Centre (IDRC) Digital Library (Canada)

    10 oct. 2014 ... Photo : AIMS Dans la lutte contre le virus Ebola, les mathématiques sont l'arme de Martial Ndeffo. Cet épidémiologiste camerounais aide le ministère de la Santé du Liberia, engagé dans une course contre la montre pour mettre un frein à la propagation du virus, à prendre des décisions qui auront des ...

  12. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.

    Science.gov (United States)

    Shrivastava-Ranjan, Punya; Flint, Mike; Bergeron, Éric; McElroy, Anita K; Chatterjee, Payel; Albariño, César G; Nichol, Stuart T; Spiropoulou, Christina F

    2018-05-01

    Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD. IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune

  13. Novel vaccination approach for dengue infection based on recombinant immune complex universal platform.

    Science.gov (United States)

    Kim, Mi-Young; Reljic, Rajko; Kilbourne, Jacquelyn; Ceballos-Olvera, Ivonne; Yang, Moon-Sik; Reyes-del Valle, Jorge; Mason, Hugh S

    2015-04-08

    Dengue infection is on the rise in many endemic areas of the tropics. Vaccination remains the most realistic strategy for prevention of this potentially fatal viral disease but there is currently no effective vaccine that could protect against all four known serotypes of the dengue virus. This study describes the generation and testing of a novel vaccination approach against dengue based on recombinant immune complexes (RIC). We modelled the dengue RIC on the existing Ebola RIC (Phoolcharoen, et al. Proc Natl Acad Sci USA 2011;108(Dec (51)):20695) but with a key modification that allowed formation of a universal RIC platform that can be easily adapted for use for other pathogens. This was achieved by retaining only the binding epitope of the 6D8 ant-Ebola mAb, which was then fused to the consensus dengue E3 domain (cEDIII), resulting in a hybrid dengue-Ebola RIC (DERIC). We expressed human and mouse versions of these molecules in tobacco plants using a geminivirus-based expression system. Following purification from the plant extracts by protein G affinity chromatography, DERIC bound to C1q component of complement, thus confirming functionality. Importantly, following immunization of mice, DERIC induced a potent, virus-neutralizing anti-cEDIII humoral immune response without exogenous adjuvants. We conclude that these self-adjuvanting immunogens have the potential to be developed as a novel vaccine candidate for dengue infection, and provide the basis for a universal RIC platform for use with other antigens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Secondary Infections with Ebola Virus in Rural Communities, Liberia and Guinea, 2014–2015

    Science.gov (United States)

    Nyenswah, Tolbert; Keita, Sakoba; Diallo, Boubakar; Kateh, Francis; Amoah, Aurora; Nagbe, Thomas K.; Raghunathan, Pratima; Neatherlin, John C.; Kinzer, Mike; Pillai, Satish K.; Attfield, Kathleen R.; Hajjeh, Rana; Dweh, Emmanuel; Painter, John; Barradas, Danielle T.; Williams, Seymour G.; Blackley, David J.; Kirking, Hannah L.; Patel, Monita R.; Dea, Monica; Massoudi, Mehran S.; Barskey, Albert E.; Zarecki, Shauna L. Mettee; Fomba, Moses; Grube, Steven; Belcher, Lisa; Broyles, Laura N.; Maxwell, T. Nikki; Hagan, Jose E.; Yeoman, Kristin; Westercamp, Matthew; Mott, Joshua; Mahoney, Frank; Slutsker, Laurence; DeCock, Kevin M.; Marston, Barbara; Dahl, Benjamin

    2016-01-01

    Persons who died of Ebola virus disease at home in rural communities in Liberia and Guinea resulted in more secondary infections than persons admitted to Ebola treatment units. Intensified monitoring of contacts of persons who died of this disease in the community is an evidence-based approach to reduce virus transmission in rural communities. PMID:27268508

  15. Epidemiological features and trends of Ebola virus disease in West Africa

    Directory of Open Access Journals (Sweden)

    Ligui Wang

    2015-09-01

    Full Text Available According to a World Health Organization report, the epidemiological features of Ebola virus disease (EVD have changed significantly in West Africa. In this study, the new epidemiological features and prevalence trends for EVD in Guinea, Liberia, and Sierra Leone are described. It was predicted that the Ebola outbreak would end in June 2015.

  16. Secondary Infections with Ebola Virus in Rural Communities, Liberia and Guinea, 2014-2015.

    Science.gov (United States)

    Lindblade, Kim A; Nyenswah, Tolbert; Keita, Sakoba; Diallo, Boubakar; Kateh, Francis; Amoah, Aurora; Nagbe, Thomas K; Raghunathan, Pratima; Neatherlin, John C; Kinzer, Mike; Pillai, Satish K; Attfield, Kathleen R; Hajjeh, Rana; Dweh, Emmanuel; Painter, John; Barradas, Danielle T; Williams, Seymour G; Blackley, David J; Kirking, Hannah L; Patel, Monita R; Dea, Monica; Massoudi, Mehran S; Barskey, Albert E; Zarecki, Shauna L Mettee; Fomba, Moses; Grube, Steven; Belcher, Lisa; Broyles, Laura N; Maxwell, T Nikki; Hagan, Jose E; Yeoman, Kristin; Westercamp, Matthew; Mott, Joshua; Mahoney, Frank; Slutsker, Laurence; DeCock, Kevin M; Marston, Barbara; Dahl, Benjamin

    2016-09-01

    Persons who died of Ebola virus disease at home in rural communities in Liberia and Guinea resulted in more secondary infections than persons admitted to Ebola treatment units. Intensified monitoring of contacts of persons who died of this disease in the community is an evidence-based approach to reduce virus transmission in rural communities.

  17. Too Far to Care? Measuring Public Attention and Fear for Ebola Using Twitter

    NARCIS (Netherlands)

    van Lent, L.G.G.; Sungur, H.; Kunneman, F.A.; van de Velde, B.; Das, E.

    Background: In 2014, the world was startled by a sudden outbreak of Ebola. Although Ebola infections and deaths occurred almost exclusively in Guinea, Sierra Leone, and Liberia, few potential Western cases, in particular, caused a great stir among the public in Western countries. Objective: This

  18. In silico analysis suggests repurposing of ibuprofen for prevention and treatment of EBOLA virus disease

    NARCIS (Netherlands)

    V. Veljkovic (Veljko); M. Goeijenbier (Marco); S. Glisic (Sanja); N. Veljkovic (Nevena); V.R. Perovic (Vladimir R.); M. Sencanski (Milan); D.R. Branch (Donald R.); S. Paessler (Slobodan)

    2015-01-01

    textabstractThe large 2014/2015 Ebola virus outbreak in West Africa points out the urgent need to develop new preventive and therapeutic approaches that are effective against Ebola viruses and can be rapidly utilized. Recently, a simple theoretical criterion for the virtual screening of molecular

  19. Role of contact tracing in containing the 2014 Ebola outbreak: a review

    African Journals Online (AJOL)

    Background: The 2014 outbreak of Ebola virus disease which emerged in the month of March in the year 2014 in Guinea has been declared as a public health emergency of international concern. Objectives: The objectives of the review article are to assess the role of contact tracing in the Ebola outbreak and to identify the ...

  20. A systems view and lessons from the ongoing Ebola Virus disease ...

    African Journals Online (AJOL)

    This article analyses the on-going (2014) Ebola Virus Disease (EVD) outbreak in West Africa from a systems perspective; and draws out lessons for West Africa in general and Ghana in particular. Keywords: Ebola Virus Disease, West Africa , Ghana , Systems , Prevention and Control ...