WorldWideScience

Sample records for ebic

  1. EBIC AND DLTS MEASUREMENTS OF SI-AND POLYCRYSTALLINE SILICON

    OpenAIRE

    Bary, A.; Hamet, J.; Ihlal, A.; Chermant, J.; Nouet, G.

    1988-01-01

    Influence of grain boundaries on the electronic properties of silicon has been studied by electron-beam induced current (EBIC), thermally stimulated capacitance (TSCAP) and deep-level transient spectroscopy (DLTS). Low-angle grain boundaries taken from as-grown polycrystalline wafers for solar cells have been analyzed by EBIC and their behaviors have been compared after the junction diffusion treatment. This treatment gives a decrease of the local diffusion length and recombination velocity o...

  2. EBIC and DLTS characterization of pure Si crystals

    Indian Academy of Sciences (India)

    E B Yakimov

    2005-07-01

    Possibilities of measurements of low defect concentration in Si by the electrical methods are discussed. The problems arising in such measurements are illustrated by measurements of iron concentration in Si. It is demonstrated that gold diffusion experiments can be used for revealing and study of some electrically inactive defects. Possibility of nondestructive reconstruction of defect depth profiles by DLTS and using the profile obtained for understanding the defect nature is illustrated by the results of hydrogen and hydrogen related defect investigations. EBIC investigations of dislocations are shown to be a rather sensitive method for revealing recombination defects.

  3. Ebic and Dlts measurements of Si-and polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bary, A.; Hamet, J.F.; Ihlal, A.; Chermant, J.L.; Nouet, G.

    1988-10-01

    Influence of grain boundaries on the electronic properties of silicon has been studied by electron-beam induced current (EBIC), thermally stimulated capacitance (TSCAP) and deep-level transient spectroscopy (DLTS). Low-angle grain boundaries taken from as-grown polycrystalline wafers for solar cells have been analyzed by EBIC and their behaviors have been compared after the junction diffusion treatment. This treatment gives a decrease of the local diffusion length and recombination velocity of the minority carriers. TSCAP and DLTS methods have been applied to a coincidence orientation grain boundary ..sigma..13. These measurements have been made on a gold diffused bicrystal. These results are then compared with those of a bicrystal without gold diffusion. After annealing a narrow interface state continuum appears. On the contrary the gold diffusion prevents the formation of this continuum and only the donor level of gold is detected in the space charge region of the grain boundary (0 - 0.5 ..mu..m). This diffusion of phosphorus or gold can be interpreted as a grain boundary passivation.

  4. TEM and SEM (EBIC) investigations of silicon bicrystals

    Science.gov (United States)

    Gleichmann, R.; Ast, D. G.

    1983-01-01

    The electrical and structural properties of low and medium angle tilt grain boundaries in silicon bicrystals were studied in order to obtain insight into the mechanisms determining the recombination activity. The electrical behavior of these grain boundaries was studied with the EBIC technique. Schottky barriers rather than p-n junctions were used to avoid annealing induced changes of the structure and impurity content of the as-grown crystals. Transmission electron spectroscopy reveals that the 20 deg boundary is straight, homogeneous, and free of extrinsic dislocations. It is concluded that, in the samples studied, the electrical effect of grain boundaries appears to be independent of the boundary misorientation. The dominant influence appears to be impurity segregation effects to the boundary. Cleaner bicrystals are required to study intrinsic differences in the electrical activity of the two boundaries.

  5. High-resolution scanning near-field EBIC microscopy: Application to the characterisation of a shallow ion implanted p{sup +}-n silicon junction

    Energy Technology Data Exchange (ETDEWEB)

    Smaali, K. [Laboratoire de Microscopies et d' Etude de Nanostructures, EA 3799, Universite de Reims, 21 Rue Clement Ader, 51685 Reims Cedex 2 (France); Faure, J. [Laboratoire de Microscopie Electronique Analytique, ERM 0203, Universite de Reims, 21 Rue Clement Ader, 51685 Reims Cedex 2 (France); El Hdiy, A. [Laboratoire de Microscopies et d' Etude de Nanostructures, EA 3799, Universite de Reims, 21 Rue Clement Ader, 51685 Reims Cedex 2 (France); Troyon, M. [Laboratoire de Microscopies et d' Etude de Nanostructures, EA 3799, Universite de Reims, 21 Rue Clement Ader, 51685 Reims Cedex 2 (France)], E-mail: michel.troyon@univ-reims.fr

    2008-05-15

    High-resolution electron beam induced current (EBIC) analyses were carried out on a shallow ion implanted p{sup +}-n silicon junction in a scanning electron microscope (SEM) and a scanning probe microscope (SPM) hybrid system. With this scanning near-field EBIC microscope, a sample can be conventionally imaged by SEM, its local topography investigated by SPM and high-resolution EBIC image simultaneously obtained. It is shown that the EBIC imaging capabilities of this combined instrument allows the study of p-n junctions with a resolution of about 20 nm.

  6. Tournament screening cum EBIC for feature selection with high-dimensional feature spaces

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The feature selection characterized by relatively small sample size and extremely high-dimensional feature space is common in many areas of contemporary statistics.The high dimensionality of the feature space causes serious diffculties:(i) the sample correlations between features become high even if the features are stochastically independent;(ii) the computation becomes intractable.These diffculties make conventional approaches either inapplicable or ine?cient.The reduction of dimensionality of the feature space followed by low dimensional approaches appears the only feasible way to tackle the problem.Along this line,we develop in this article a tournament screening cum EBIC approach for feature selection with high dimensional feature space.The procedure of tournament screening mimics that of a tournament.It is shown theoretically that the tournament screening has the sure screening property,a necessary property which should be satisfied by any valid screening procedure.It is demonstrated by numerical studies that the tournament screening cum EBIC approach enjoys desirable properties such as having higher positive selection rate and lower false discovery rate than other approaches.

  7. Measurement of Minority Charge Carrier Diffusion Length in Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC)

    Science.gov (United States)

    2009-12-01

    column consists of a thermionic emission electron gun, several magnetic lenses that control the path and focus of the electron beam and an...barrier is affected by the magnitude of the bias as illustrated in Figure 6. The reduced barrier under forward bias is the mechanism for switching in...connected to the amplifier. Figure 66 shows the expected symmetry of the EBIC signals when the contact connected to the amplifier is switched . In

  8. Correlation of EBIC and SWBXT Imaged Defects and Epilayer Growth Pits in 6H-SiC Schottky Diodes

    Science.gov (United States)

    Schnable, C. M.; Tabib-Azar, M.; Neudeck, P. G.; Bailey, S. G.; Su, H. B.; Dudley, M.; Raffaelle, R. P.

    2000-01-01

    We show the first direct experimental correlation between the presence of closed core screw dislocations in 6H-SiC epilayers with recombination centers, as well as with some of the small growth pits on the epilayer surface in lightly-doped 6H-SiC Schottky diodes. At every Synchrotron White-Beam X-ray Topography (SWBXT)-identified closed core screw dislocation, an Electron Beam Induced Current (EBIC) image showed a dark spot indicating a recombination center, and Nomarski optical microscope and Atomic Force Microscope (AFM) images showed a corresponding small growth pit with a sharp apex on the surface of the epilayer.

  9. EBIC investigations of junction activity and the role of oxygen in CdS/CuInSe/sub 2/ devices

    Energy Technology Data Exchange (ETDEWEB)

    Matson, R.J.; Noufi, R.; Ahrenkiel, R.K.; Powell, R.C.; Cahen, D.

    1986-01-15

    EBIC characterization of CdS/CuInSe/sub 2/ device cross sections has been used to investigate junction activity as a function of post-deposition oxidation treatments. It was determined that the deposition of CdS onto single-crystal p-CuInSe/sub 2/ results in type conversion and the formation of a CuInSe/sub 2/ homojunction, rather than the expected heterojunction. Homojunctions have also been observed in as-deposited CdS/CuInSe/sub 2/ thin film devices. Post-deposition oxygen treatments of thin film devices serve to move the device junction nearer, if not up to, the heteroface and to largely remove both large (mm) and small (..mu..m) scale spatial variations in the I/sub sc/, thereby contributing to device performance improvement. This appears to occur by type converting the unintended CuInSe/sub 2/ n-layer via the elimination of deep level donor states. These processes are reversible by chemical reduction. They are quite temperature sensitive and are active even at room temperatures. Both hydrazine and an electron beam act to remove ''loosely bound'' oxygen and thereby prepare the system for a more optimal and stable incorporation of oxygen. The CuInSe/sub 2/ film stoichiometry appears to determine the concentration and kinds of defects. The resulting defect chemistry, in concert with oxygen, determines the electrical properties of the material.

  10. Iron-oxygen interaction in silicon: A combined XBIC/XRF-EBIC-DLTS study of precipitation and complex building

    Energy Technology Data Exchange (ETDEWEB)

    Trushin, M., E-mail: trushmax@tu-cottbus.d [IHP/BTU Jointlab, Konrad-Wachsmann Allee 1, 03046 Cottbus (Germany); Vyvenko, O. [V.A.Fok Institute of Physics, St. Petersburg State University, Ulyanovskaya 1, 108594 St. Petersburg (Russian Federation); Seifert, W. [IHP/BTU Jointlab, Konrad-Wachsmann Allee 1, 03046 Cottbus (Germany); IHP microelectronics, Im Technologiepark 25, D-15236 Frankfurt (Oder) (Germany); Jia, G. [IHP/BTU Jointlab, Konrad-Wachsmann Allee 1, 03046 Cottbus (Germany); Kittler, M. [IHP/BTU Jointlab, Konrad-Wachsmann Allee 1, 03046 Cottbus (Germany); IHP microelectronics, Im Technologiepark 25, D-15236 Frankfurt (Oder) (Germany)

    2009-12-15

    Iron-oxygen interaction in the Czochralski-grown silicon (CZ-Si) giving rise to their final precipitated state was investigated by means of a combination of electrical and element-sensitive techniques. The samples studied were intentionally contaminated with iron at 1150 deg. C and then they were annealed at temperatures of 850 and 950 deg. C to stimulate precipitate formation. Fe-related defect levels in silicon band gap and spatial distributions of iron-related precipitates were monitored after each annealing step. It was found that FeB-pairs being the dominant defects in as-contaminated sample transformed completely to the stable FeO-related complexes that served as precursors for further iron-oxygen co-precipitation.

  11. Iron-oxygen interaction in silicon: A combined XBIC/XRF-EBIC-DLTS study of precipitation and complex building

    Science.gov (United States)

    Trushin, M.; Vyvenko, O.; Seifert, W.; Jia, G.; Kittler, M.

    2009-12-01

    Iron-oxygen interaction in the Czochralski-grown silicon (CZ-Si) giving rise to their final precipitated state was investigated by means of a combination of electrical and element-sensitive techniques. The samples studied were intentionally contaminated with iron at 1150 °C and then they were annealed at temperatures of 850 and 950 °C to stimulate precipitate formation. Fe-related defect levels in silicon band gap and spatial distributions of iron-related precipitates were monitored after each annealing step. It was found that FeB-pairs being the dominant defects in as-contaminated sample transformed completely to the stable FeO-related complexes that served as precursors for further iron-oxygen co-precipitation.

  12. Study of Low Voltage Prebreakdown Sites in Multicrystalline Si Based Cells by the LBIC, EL, and EDS Methods

    Directory of Open Access Journals (Sweden)

    V. I. Orlov

    2017-01-01

    Full Text Available Breakdown sites in multicrystalline Si solar cells have been studied by reverse-bias electroluminescence, electron beam induced current (EBIC and laser beam induced current (LBIC, and Energy Dispersive X-Ray Spectroscopy methods. In the breakdown sites revealed by EL at small reverse bias (~5 V, the enhanced aluminum and oxygen concentration is revealed. Such breakdowns can be located inside the depletion region because they are not revealed by the EBIC or LBIC methods. Breakdowns revealed by EL at larger bias correlate well with extended defects in the EBIC and LBIC images.

  13. Solar cell evaluation using electron beam induced current with the large chamber scanning electron microscope

    Science.gov (United States)

    Wink, Tara; Kintzel, Edward; Marienhoff, Peter; Klein, Martin

    2012-02-01

    An initial study using electron beam induced current (EBIC) to evaluate solar cells has been carried out with the large chamber scanning electron microscope (LC-SEM) at the Western Kentucky University Nondestructive Analysis Center. EBIC is a scanning electron microscope technique used for the characterization of semiconductors. To facilitate our studies, we developed a Solar Amplification System (SASY) for analyzing current distribution and defects within a solar cell module. Preliminary qualitative results will be shown for a solar cell module that demonstrates the viability of the technique using the LC-SEM. Quantitative EBIC experiments will be carried out to analyze defects and minority carrier properties. Additionally, a well-focused spot of light from an LED mounted at the side of the SEM column will scan the same area of the solar cell using the LC-SEM positioning system. SASY will then output the solar efficiency to be compared with the minority carrier properties found using EBIC.

  14. Core-shell InGaN/GaN nanowire light emitting diodes analyzed by electron beam induced current microscopy and cathodoluminescence mapping.

    Science.gov (United States)

    Tchernycheva, M; Neplokh, V; Zhang, H; Lavenus, P; Rigutti, L; Bayle, F; Julien, F H; Babichev, A; Jacopin, G; Largeau, L; Ciechonski, R; Vescovi, G; Kryliouk, O

    2015-07-21

    We report on the electron beam induced current (EBIC) microscopy and cathodoluminescence (CL) characterization correlated with compositional analysis of light emitting diodes based on core/shell InGaN/GaN nanowire arrays. The EBIC mapping of cleaved fully operational devices allows to probe the electrical properties of the active region with a nanoscale resolution. In particular, the electrical activity of the p-n junction on the m-planes and on the semi-polar planes of individual nanowires is assessed in top view and cross-sectional geometries. The EBIC maps combined with CL characterization demonstrate the impact of the compositional gradients along the wire axis on the electrical and optical signals: the reduction of the EBIC signal toward the nanowire top is accompanied by an increase of the CL intensity. This effect is interpreted as a consequence of the In and Al gradients in the quantum well and in the electron blocking layer, which influence the carrier extraction efficiency. The interface between the nanowire core and the radially grown layer is shown to produce in some cases a transitory EBIC signal. This observation is explained by the presence of charged traps at this interface, which can be saturated by electron irradiation.

  15. Electron-beam-induced current at absorber back surfaces of Cu(In,Ga)Se{sub 2} thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kavalakkatt, J.; Abou-Ras, D., E-mail: daniel.abou-ras@helmholtz-berlin.de; Nichterwitz, M.; Caballero, R.; Rissom, T.; Unold, T.; Scheer, R.; Schock, H. W. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz. 1, 14109 Berlin (Germany); Haarstrich, J.; Ronning, C. [Institut für Festkörperphysik, Friedrich Schiller Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2014-01-07

    The present work reports on investigations of the influence of the microstructure on electronic properties of Cu(In,Ga)Se{sub 2} (CIGSe) thin-film solar cells. For this purpose, ZnO/CdS/CIGSe stacks of these solar cells were lifted off the Mo-coated glass substrates. The exposed CIGSe backsides of these stacks were investigated by means of electron-beam-induced current (EBIC) and cathodoluminescence (CL) measurements as well as by electron backscattered diffraction (EBSD). EBIC and CL profiles across grain boundaries (GBs), which were identified by EBSD, do not show any significant changes at Σ3 GBs. Across non-Σ3 GBs, on the other hand, the CL signals exhibit local minima with varying peak values, while by means of EBIC, decreased and also increased short-circuit current values are measured. Overall, EBIC and CL signals change across non-Σ3 GBs always differently. This complex situation was found in various CIGSe thin films with different [Ga]/([In]+[Ga]) and [Cu]/([In]+[Ga]) ratios. A part of the EBIC profiles exhibiting reduced signals across non-Σ3 GBs can be approximated by a simple model based on diffusion of generated charge carriers to the GBs.

  16. Electron-beam-induced current at absorber back surfaces of Cu(In,Ga)Se2 thin-film solar cells

    Science.gov (United States)

    Kavalakkatt, J.; Abou-Ras, D.; Haarstrich, J.; Ronning, C.; Nichterwitz, M.; Caballero, R.; Rissom, T.; Unold, T.; Scheer, R.; Schock, H. W.

    2014-01-01

    The present work reports on investigations of the influence of the microstructure on electronic properties of Cu(In,Ga)Se2 (CIGSe) thin-film solar cells. For this purpose, ZnO/CdS/CIGSe stacks of these solar cells were lifted off the Mo-coated glass substrates. The exposed CIGSe backsides of these stacks were investigated by means of electron-beam-induced current (EBIC) and cathodoluminescence (CL) measurements as well as by electron backscattered diffraction (EBSD). EBIC and CL profiles across grain boundaries (GBs), which were identified by EBSD, do not show any significant changes at Σ3 GBs. Across non-Σ3 GBs, on the other hand, the CL signals exhibit local minima with varying peak values, while by means of EBIC, decreased and also increased short-circuit current values are measured. Overall, EBIC and CL signals change across non-Σ3 GBs always differently. This complex situation was found in various CIGSe thin films with different [Ga]/([In]+[Ga]) and [Cu]/([In]+[Ga]) ratios. A part of the EBIC profiles exhibiting reduced signals across non-Σ3 GBs can be approximated by a simple model based on diffusion of generated charge carriers to the GBs.

  17. High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots

    Directory of Open Access Journals (Sweden)

    Heayoung P. Yoon

    2013-06-01

    Full Text Available We report a fast, versatile photocurrent imaging technique to visualize the local photo response of solar energy devices and optoelectronics using near-field cathodoluminescence (CL from a homogeneous quantum dot layer. This approach is quantitatively compared with direct measurements of high-resolution Electron Beam Induced Current (EBIC using a thin film solar cell (n-CdS / p-CdTe. Qualitatively, the observed image contrast is similar, showing strong enhancement of the carrier collection efficiency at the p-n junction and near the grain boundaries. The spatial resolution of the new technique, termed Q-EBIC (EBIC using quantum dots, is determined by the absorption depth of photons. The results demonstrate a new method for high-resolution, sub-wavelength photocurrent imaging measurement relevant for a wide range of applications.

  18. Two Penetration Models Featuring Bomber Defense Missiles against an AWACS Air Defense.

    Science.gov (United States)

    1981-12-01

    E’ 2Rdcm Etica = Etic d ( D x (25) Each bomber carries Ncmpb ALCMs, each of which pro- gresses through the corridor after launch at about the same...speed as the bomber. Therefore, the expected number of ALCMs in coverage during the ith bomber’s passage is Emic(i) E bic W PL Etica /Eticb (26) 79 where...that Pe = Pblv E1 + Pav EA’ (35) where Pblv = Pr(target is a bomber, given that AI is vectored) Eb (i) E bic (i) Epic (i) Ebic (+Ebic (i) mbP L Etica

  19. Measurement of N-Type 6H SiC Minority-Carrier Diffusion Lengths by Electron Bombardment of Schottky Barriers

    Science.gov (United States)

    Hubbard, S. M.; Tabib-Azar, M.; Balley, S.; Rybickid, G.; Neudeck, P.; Raffaelle, R.

    2004-01-01

    Minority-Carrier diffusion lengths of n-type 6H-SiC were measured using the electron-beam induced current (EBIC) technique. Experimental values of primary beam current, EBIC, and beam voltage were obtained for a variety of SIC samples. This data was used to calculate experimental diode efficiency vs. beam voltage curves. These curves were fit to theoretically calculated efficiency curves, and the diffusion length and metal layer thickness were extracted. The hole diffusion length in n-6H SiC ranged from 0.93 +/- 0.15 microns.

  20. Generation-dependent charge carrier transport in Cu(In,Ga)Se2/CdS/ZnO thin-film solar-cells

    Science.gov (United States)

    Nichterwitz, Melanie; Caballero, Raquel; Kaufmann, Christian A.; Schock, Hans-Werner; Unold, Thomas

    2013-01-01

    Cross section electron-beam induced current (EBIC) and illumination-dependent current voltage (IV) measurements show that charge carrier transport in Cu(In,Ga)Se2 (CIGSe)/CdS/ZnO solar-cells is generation-dependent. We perform a detailed analysis of CIGSe solar cells with different CdS layer thicknesses and varying Ga-content in the absorber layer. In conjunction with numerical simulations, EBIC and IV data are used to develop a consistent model for charge and defect distributions with a focus on the heterojunction region. The best model to explain our experimental data is based on a p+ layer at the CIGSe/CdS interface leading to generation-dependent transport in EBIC at room temperature. Acceptor-type defect states at the CdS/ZnO interface cause a significant reduction of the photocurrent in the red-light illuminated IV characteristics at low temperatures (red kink effect). Shallow donor-type defect states at the p+ layer/CdS interface of some grains of the absorber layer are responsible for grain specific, i.e., spatially inhomogeneous, charge carrier transport observed in EBIC.

  1. Large area and depth-profiling dislocation imaging and strain analysis in Si/SiGe/Si heterostructures.

    Science.gov (United States)

    Chen, Xin; Zuo, Daniel; Kim, Seongwon; Mabon, James; Sardela, Mauro; Wen, Jianguo; Zuo, Jian-Min

    2014-10-01

    We demonstrate the combined use of large area depth-profiling dislocation imaging and quantitative composition and strain measurement for a strained Si/SiGe/Si sample based on nondestructive techniques of electron beam-induced current (EBIC) and X-ray diffraction reciprocal space mapping (XRD RSM). Depth and improved spatial resolution is achieved for dislocation imaging in EBIC by using different electron beam energies at a low temperature of ~7 K. Images recorded clearly show dislocations distributed in three regions of the sample: deep dislocation networks concentrated in the "strained" SiGe region, shallow misfit dislocations at the top Si/SiGe interface, and threading dislocations connecting the two regions. Dislocation densities at the top of the sample can be measured directly from the EBIC results. XRD RSM reveals separated peaks, allowing a quantitative measurement of composition and strain corresponding to different layers of different composition ratios. High-resolution scanning transmission electron microscopy cross-section analysis clearly shows the individual composition layers and the dislocation lines in the layers, which supports the EBIC and XRD RSM results.

  2. Prediction of Betavoltaic Battery Output Parameters Based on SEM Measurements

    Directory of Open Access Journals (Sweden)

    E.B. Yakimov

    2016-12-01

    Full Text Available The approach for the prediction of betavoltaic battery output parameters based on EBIC investigations of semiconductor converters of beta-radiation energy into electric power is presented. Using this approach the parameters of battery based on porous Si are calculated. These parameters are compared with those of battery based on a planar Si p-n junction.

  3. Measurement of Beta Particles Induced Electron-Hole Pairs Recombination in Depletion Region of GaAs PN Junction

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-Yang; JIANG Lan; LI Da-Rang

    2011-01-01

    PN junctions and schottky diodes are widely employed as electron-hole pair collectors in electron beam induced current (EBIC) techniques and betavoltaic batteries, in which the recombination in depletion regions is ignored.We measured the beta particles induced electron-hole pairs recombination in the depletion region of a GaAs P+ PN+ junction, based on comparisons between measured short currents and ideal values. The results show that only 20% electron-hole pairs in the depletion can be collected, causing the short current. This indicates an electron-hole pair diffusion length of 0.2μm in the depletion region. Hence, it is necessary to evaluate the recombination in the EBIC techniques and betavoltaic design.%@@ PN junctions and schottky diodes are widely employed as electron-hole pair collectors in electron beam induced current(EBIC) techniques and betavoltaic batteries,in which the recombination in depletion regions is ignored.We measured the beta particles induced electron-hole pairs recombination in the depletion region of a GaAs P+ PN+ junction,based on comparisons between measured short currents and ideal values.The results show that only 20% electron-hole pairs in the depletion can be collected,causing the short current.This indicates an electron-hole pair diffusion length of 0.2μm in the depletion region.Hence,it is necessary to evaluate the recombination in the EBIC techniques and betavoltaic design.

  4. Electron stimulated desorption of oxygen from, and subsequent type conversion of, thin-film p-CuInSe/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Matson, R.J.; Kazmerski, L.L.; Noufi, R.; Cahen, D.

    1989-03-01

    There are seemingly conflicting results from two sets of investigations in the literature concerning the electron stimulated desorption of oxygen incorporated into thin-film p-CuInSe/sub 2/ This has a direct bearing on the model for the role of oxygen in the important postdeposition oxygen treatment of CdS/CuInSe/sub 2/ solar cells, proposed in one of the published reports. By comparing the specific beam parameters of the scanning electron microscope (SEM)/ electron beam induced current (EBIC) versus scanning Auger microprobe (SAM) based studies and calculating charge density for the two cases, the SAM experiments are seen to support, rather than contradict, the results of the SEM/EBIC experiments. The evidence tying the addition and deletion of oxygen to changes in the electrical properties of the CuInSe/sub 2/ are then discussed.

  5. Why Lead Methylammonium tri-IODIDE perovskite-based solar cells requires a mesoporous electron transporting scaffold (but not necessarily a hole conductor)

    CERN Document Server

    Edri, Eran; Henning, Alex; Mukhopadhyay, Sabyasachi; Gartsman, Konstantin; Rosenwaks, Yossi; Hodes, Gary; Cahen, David

    2014-01-01

    CH3NH3PbI3-based solar cells were characterized with electron beam-induced current (EBIC), and compared to CH3NH3PbI3-xClx ones. A spatial map of charge separation efficiency in working cells shows p-i-n structures for both thin film cells. Effective diffusion lengths, LD, (from EBIC profile) show that holes are extracted significantly more efficiently than electrons in CH3NH3PbI3, explaining why CH3NH3PbI3-based cells require mesoporous electron conductors, while CH3NH3PbI3-xClx ones, where LD values are comparable for both charge types, do not.

  6. High-resolution electron-beam-induced-current study of the defect structure in GaN epilayers

    CERN Document Server

    Shmidt, N M; Usikov, A S; Yakimov, E B; Zavarin, E E

    2002-01-01

    Electron-beam-induced-current (EBIC) investigations of GaN structures grown by metal-organic chemical vapour deposition on (0001) sapphire substrates have been carried out. It is shown that the widths of the EBIC profiles for individual extended defects can be as small as about 100 nm. This width is observed to decrease with decreasing diffusion length and/or with increasing electron beam energy. The high spatial resolution is explained by the small diffusion length in the samples under study. The diffusion length is small even in structures with dislocation densities of about 10 sup 8 cm sup - sup 3 and carrier mobilities of about 600 cm sup 2 V sup - sup 1 s sup - sup 1 at 300 K and 1800 cm sup 2 V sup - sup 1 s sup - sup 1 at 125 K.

  7. Microcharacterization of CdTe films deposited by close-spaced sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Matson, R.J.; Hasoon, F.S.; Jones, K.M.; Al-Jassim, M.M. (National Renewable Energy Lab., Golden, CO (United States)); Tomlinson, R.D. (Salford Univ. (United Kingdom))

    1994-07-01

    Microcharacterization of the luminescent, structural, electrical and topographical properties of thin films of close-spaced sublimation (CSS)-fabricated CdTe was performed. The film morphology was found to be dependent on the film thickness, deposition conditions and post-deposition treatment. The complementary use of electron beam-induced current (EBIC) and cathodoluminescence (CL) analysis in the scanning electron microscope demonstrated large inter- and intragrain inhomogeneities in the luminescent and electrical properties of the films. Follow-on plan-view examinations with the transmission electron microscope revealed varying densities of structural defects, such as stacking faults and threading dislocations, which could explain the variations observed in the CL and EBIC images. (author)

  8. Grain boundaries in silicon solar cells

    Science.gov (United States)

    Kazmerski, L. L.; Russell, P. E.; Ireland, P. J.; Herrington, C. R.; Dick, J. R.; Matson, R. J.; Jones, K. M.

    The correlations between the electrical and compositional properties of grain boundaries in polycrystalline Si are examined in detail. High-resolution surface analysis techniques (AES, SIMS, XPS, EELS) and microelectrical (SAM, EBIC, minority-carrier lifetime) characterization methods are used. The direct evidence for impurity segregation to the intergrain regions is presented. Effect of illumination on the grain boundary electrical characteristics are correlated with impurity compositions. Finally, the interrelationships among heat-treatment, oxygen segregation and grain boundary electrical activity are discussed.

  9. Nondestructive determination of the depth of planar p-n junctions by scanning electron microscopy

    Science.gov (United States)

    Chi, J.-Y.; Gatos, H. C.

    1977-01-01

    A method was developed for measuring nondestructively the depth of planar p-n junctions in simple devices as well as in integrated-circuit structures with the electron-beam induced current (EBIC) by scanning parallel to the junction in a scanning electron microscope (SEM). The results were found to be in good agreement with those obtained by the commonly used destructive method of lapping at an angle to the junction and staining to reveal the junction.

  10. Nondestructive determination of the depth of planar p-n junctions by scanning electron microscopy

    Science.gov (United States)

    Chi, J.-Y.; Gatos, H. C.

    1977-01-01

    A method was developed for measuring nondestructively the depth of planar p-n junctions in simple devices as well as in integrated-circuit structures with the electron-beam induced current (EBIC) by scanning parallel to the junction in a scanning electron microscope (SEM). The results were found to be in good agreement with those obtained by the commonly used destructive method of lapping at an angle to the junction and staining to reveal the junction.

  11. Correlation Between Morphological Defects, Electron Beam Induced Current Imaging, and the Electrical Properties of 4H-SiC Schottky Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang,Y.; Ali, G.; Mikhov, M.; Vaidyanathan, V.; Skromme, B.; Raghothamachar, B.; Dudley, M.

    2005-01-01

    Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier height within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis.

  12. Electron-beam-induced current measurements with applied bias provide insight to locally resolved acceptor concentrations at p-n junctions

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Ras, D., E-mail: daniel.abou-ras@helmholtz-berlin.de; Schäfer, N.; Baldaz, N.; Brunken, S. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Boit, C. [Technische Universität Berlin, Department of Semiconductor Devices, Einsteinufer 19, 10587 Berlin (Germany)

    2015-07-15

    Electron-beam-induced current (EBIC) measurements have been employed for the investigation of the local electrical properties existing at various types of electrical junctions during the past decades. In the standard configuration, the device under investigation is analyzed under short-circuit conditions. Further insight into the function of the electrical junction can be obtained when applying a bias voltage. The present work gives insight into how EBIC measurements at applied bias can be conducted at the submicrometer level, at the example of CuInSe{sub 2} solar cells. From the EBIC profiles acquired across ZnO/CdS/CuInSe{sub 2}/Mo stacks exhibiting p-n junctions with different net doping densities in the CuInSe{sub 2} layers, values for the width of the space-charge region, w, were extracted. For all net doping densities, these values decreased with increasing applied voltage. Assuming a linear relationship between w{sup 2} and the applied voltage, the resulting net doping densities agreed well with the ones obtained by means of capacitance-voltage measurements.

  13. Charge carrier transport in Cu(In,Ga)Se{sub 2} thin-film solar-cells studied by electron beam induced current and temperature and illumination dependent current voltage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nichterwitz, Melanie

    2012-01-10

    This work contributes to the understanding of generation dependent charge-carrier transport properties in Cu(In,Ga)Se{sub 2} (CIGSe)/ CdS/ ZnO solar cells and a consistent model for the electronic band diagram of the heterojunction region of the device is developed. Cross section electron-beam induced current (EBIC) and temperature and illumination dependent current voltage (IV) measurements are performed on CIGSe solar cells with varying absorber layer compositions and CdS thickness. For a better understanding of possibilities and limitations of EBIC measurements applied on CIGSe solar cells, detailed numerical simulations of cross section EBIC profiles for varying electron beam and solar cell parameters are performed and compared to profiles obtained from an analytical description. Especially the effects of high injection conditions are considered. Even though the collection function of the solar cell is not independent of the generation function of the electron beam, the local electron diffusion length in CIGSe can still be extracted. Grain specific values ranging from (480±70) nm to (2.3±0.2) μm are determined for a CuInSe{sub 2} absorber layer and a value of (2.8±0.3) μm for CIGSe with a Ga-content of 0.3. There are several models discussed in literature to explain generation dependent charge carrier transport, all assuming a high acceptor density either located in the CIGSe layer close to the CIGSe/CdS interface (p{sup +} layer), within the CdS layer or at the CdS/ZnO interface. In all models, a change in charge carrier collection properties is caused by a generation dependent occupation probability of the acceptor type defect state and the resulting potential distribution throughout the device. Numerical simulations of EBIC and IV data are performed with parameters according to these models. The model that explains the experimental data best is that of a p{sup +} layer at the CIGSe/CdS interface and acceptor type defect states at the CdS/ZnO interface

  14. Characterization of electrical and optical properties of silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Guobin

    2009-12-04

    In this work, the electrical and luminescence properties of a series of silicon based materials used for photovoltaics, microelectronics and nanoelectronics have been investigated by means of electron beam induced current (EBIC), cathodoluminescence (CL), photoluminescence (PL) and electroluminescence (EL) methods. Photovoltaic materials produced by block casting have been investigated by EBIC on wafers sliced from different parts of the ingot. Various solar cell processings have been compared in parallel wafers by means of EBIC collection efficiency measurements and contrast-temperature C(T) behaviors of the extended defects, i. e. dislocations and grain boundaries (GBs). It was found that the solar cell processing with phosphorus diffusion gettering (PDG) followed with a SiN firing greatly reduces the recombination activity of extended defects at room temperature, and improves the bulk property simultaneously. A remaining activity of the dislocations indicates the limitation of the PDG at extended defects. Abnormal behavior of the dislocation activity after certain solar cell processes was also observed in the region with high dislocation density, the dislocations are activated after certain solar cell processings. In order to evaluate the properties of a thin polycrystalline silicon layer prepared by Al-induced layer exchange (Alile) technique, epitaxially layer grown on silicon substrate with different orientations was used as a model system to investigate the impact by the process temperature and the substrates. EBIC energy dependent collection efficiency measurements reveal an improvement of the epilayer quality with increasing substrate temperature during the growth from 450 C to 650 C, and a decrease of epilayer quality at 700 C. PL measurements on the epitaxially grown Si layer on silicon substrates revealed no characteristic dislocation-related luminescence (DRL) lines at room temperature and 77 K, while in the samples prepared by Alile process, intense

  15. Comprehensive Characterization of Extended Defects in Semiconductor Materials by a Scanning Electron Microscope.

    Science.gov (United States)

    Hieckmann, Ellen; Nacke, Markus; Allardt, Matthias; Bodrov, Yury; Chekhonin, Paul; Skrotzki, Werner; Weber, Jörg

    2016-01-01

    Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared.

  16. International Workshop on Beam Injection Assessment of Defects in Semiconductors Held in Meudon-Bellevue (France) on 18-20 July 1988

    Science.gov (United States)

    1989-07-20

    Research Office of the U.S.Army Commissariat A l’Energie Atornique - Leti Laboratoire d’’ Electronique et de Physique Appliqu~e Thomson - Laboratoire...imperial College of Science and Technology. LONDON SW7 2BP Abstract - Scanning elect-Dn microscope (SE.M) EBIC (electron beam induced current) and CL...Bologna, Via ’rnerio 46, Bologna ITALY A.Poggi. E.Susi CNR-LAMEL Institute, Via Castagnoll I, Bologna ITALY ABSTRACT Microscopic inhomogeneities in the

  17. Microanalysis of Solar Cells

    Science.gov (United States)

    Kazmerski, Lawrence L.

    1980-11-01

    Applications of complementary surface analysis techniques (AES, SIMS, XPS) to solar cell device problems are discussed. Several examples of device interface and grain boundary problems are presented. Silicon, gallium arsenide and indium phosphide based devices are reviewed. Results of compositional and chemical analysis are correlated directly with EBIC measurements performed in-situ on identical sample areas. Those are, in turn, correlated with resulting photovoltaic device performance. The importance of microanalysis to the solution of critical device problems in the photovoltaics technology is emphasized.

  18. Initial formation and development of CdS/CuInSe2 solar cell interfaces

    Science.gov (United States)

    Kazmerski, L. L.; Russell, P. E.; Jamjoum, O.; Ireland, P. J.; Matson, R. J.; Hermann, A.; Ahrenkiel, R. K.; Mickelsen, R. A.; Chen, W. S.; Bachmann, K. J.

    Fundamental properties of interface formation in the CdS and Cd(Zn)S/CuInSe2 solar cell are investigated using surface analysis and microelectrical characterizations. The formation of a binary semiconductor transition layer during the initial stages of heterojunction growth is reported. The effects of annealing on the integrity of the various device interfaces and the performance of the cells are discussed. The evaluation of heterojunction and electrical response at other internal interfaces is studied using high resolution EBIC on fractured cell cross-sections. The importance and effects of post-deposition oxygen heat-treatments on the cell performance are discussed.

  19. Applications of surface analysis techniques to photovoltaic research: Grain and grain boundary studies

    Science.gov (United States)

    Kazmerski, L. L.

    Complementary surface analysis techniques (AES, SIMS, XPS) are applied to photovoltaic devices in order to assess the limiting factors of grain and grain boundary chemistry to the performance of polycrystalline solar cells. Results of these compositional and chemical studies are directly correlated with electrical measurements (EBIC) and with resulting device performance. Examples of grain boundary passivation in polycrystalline Si and GaAs solar cells are cited. The quality of the intragrain material used in these devices is shown to be equally important to the grain boundary activity in determining overall photovoltaic performance.

  20. Electric field and space-charge distribution in SI GaAs: effect of high-energy proton irradiation

    CERN Document Server

    Castaldini, A; Polenta, L; Canali, C; Nava, F

    1999-01-01

    The effect of irradiation on semi-insulating gallium arsenide Schottky diodes has been investigated by means of surface potential measurements and spectroscopic techniques. Before and after irradiation the electric field exhibits a Mott barrier-like distribution, and the box-shaped space charge modifies its distribution with irradiation. The increase in density or the generation of some traps changes the compensation ratio producing a deeper active region and a more homogeneous distribution of the electric field. The latter phenomenon is also observed by EBIC images of edge-mounted diodes.

  1. A NOVEL COMMERCIAL SCANNING-DLTS EQUIPMENT

    OpenAIRE

    Breitenstein, O.; Raith, H.

    1991-01-01

    A highly sensitive PC-controlled SDLTS-equipment is introduced, which enables Capacitance- and Current-SDLTS, double-pulse SDLTS, standard-DLTS, and EBIC-imaging to be carried out. The comprehensive "Windows-like" operation software supports a time-efficient measurement process. This system fits to any SEM and represents a valuable supplement e.g. to CL or scanning-PL techniques. Its availability now renders this promising technique accessible also to laboratories not engaged in developing su...

  2. Electrical and optical characterization of extended defects in silicon mono-cast material

    Energy Technology Data Exchange (ETDEWEB)

    Moralejo, B.; Tejero, A.; Hortelano, V.; Martinez, O.; Jimenez, J. [GdS-Optronlab, Dpto. Fisica Materia Condensada, Universidad de Valladolid, Edificio I+D, Paseo de Belen, 1, 47011 Valladolid (Spain); Parra, V. [DC Wafers Investments, S.L. Ctra. de Madrid, km. 320, 24227 Valdelafuente (Leon) (Spain)

    2012-10-15

    Mono-cast Si growth is currently a very promising approach to optimize the cost per watt in the production of PV devices, simultaneously increasing the installed energy/m{sup 2} ratio. However, due to the novelty of this growth approach, the material properties have not yet been studied in detail. In this work, by combining PL imaging with electrical characterization techniques (LBIC and EBIC), both the large scale and the local properties of the wafers grown from mono-cast Si ingots have been analyzed. PL imaging shows two kinds of defects, which were studied in detail by LBIC. Electrical active defects are found in areas corresponding to a unique large grain, assigned to sub-GBs, decorated by impurities. These defects have strong charge trapping, with deleterious consequences for the device performance. The presence of those intra-grain defects is also confirmed by EBIC maps, which allows comparing the electrical activity of both grain and sub-grain boundaries (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Plasma-enhanced chemical vapor deposition of ortho-carborane: structural insights and interaction with Cu overlayers.

    Science.gov (United States)

    James, Robinson; Pasquale, Frank L; Kelber, Jeffry A

    2013-09-01

    X-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) are used to investigate the chemical and electronic structure of boron carbide films deposited from ortho-carborane precursors using plasma-enhanced chemical vapor deposition (PECVD), and the reactivity of PECVD films toward sputter-deposited Cu overlayers. The XPS data provide clear evidence of enhanced ortho-carborane reactivity with the substrate, and of extra-icosahedral boron and carbon species; these results differ from results for films formed by condensation and electron beam induced cross-linking of ortho-carborane (EBIC films). The UPS data show that the valence band maximum for PECVD films is ∼1.5 eV closer to the Fermi level than for EBIC films. The XPS data also indicate that PECVD films are resistant to thermally-stimulated diffusion of Cu at temperatures up to 1000 K in UHV, in direct contrast to recently reported results, but important for applications in neutron detection and in microelectronics.

  4. Dislocation gliding and cross-hatch morphology formation in AIII-BV epitaxial heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kovalskiy, V. A., E-mail: kovalva@iptm.ru; Vergeles, P. S.; Eremenko, V. G. [Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Academician Ossipyan str. 6, Chernogolovka, Moscow Region, 142432 (Russian Federation); Fokin, D. A. [Bruker Nano Surface Division, Pyatnitskaya str. 50/2, build. 1, Moscow 119017 (Russian Federation); Dorokhin, M. V.; Danilov, Yu. A.; Zvonkov, B. N. [Physical-Technical Research Institute, University of Nizhni Novgorod, pr. Gagarina 23/3, Nizhni Novgorod 603950 (Russian Federation)

    2014-12-08

    An approach for understanding the origin of cross-hatch pattern (CHP) on the surface of lattice mismatched GaMnAs/InGaAs samples grown on GaAs (001) substrates is developed. It is argued that the motion of threading dislocations in the (111) slip planes during the relaxation of InGaAs buffer layer is more complicated process and its features are similar to the ones of dislocation half-loops gliding in plastically deformed crystals. The heterostructures were characterized by atomic force microscopy and electron beam induced current (EBIC). Detailed EBIC experiments revealed contrast features, which cannot be accounted for by the electrical activity of misfit dislocations at the buffer/substrate interface. We attribute these features to specific extended defects (EDs) generated by moving threading dislocations in the partially relaxed InGaAs layers. We believe that the core topology, surface reconstruction, and elastic strains from these EDs accommodated in slip planes play an important role in the CHP formation. The study of such electrically active EDs will allow further understanding of degradation and changes in characteristics of quantum devices based on strained heterostructures.

  5. Dislocation gliding and cross-hatch morphology formation in AIII-BV epitaxial heterostructures

    Science.gov (United States)

    Kovalskiy, V. A.; Vergeles, P. S.; Eremenko, V. G.; Fokin, D. A.; Dorokhin, M. V.; Danilov, Yu. A.; Zvonkov, B. N.

    2014-12-01

    An approach for understanding the origin of cross-hatch pattern (CHP) on the surface of lattice mismatched GaMnAs/InGaAs samples grown on GaAs (001) substrates is developed. It is argued that the motion of threading dislocations in the {111} slip planes during the relaxation of InGaAs buffer layer is more complicated process and its features are similar to the ones of dislocation half-loops gliding in plastically deformed crystals. The heterostructures were characterized by atomic force microscopy and electron beam induced current (EBIC). Detailed EBIC experiments revealed contrast features, which cannot be accounted for by the electrical activity of misfit dislocations at the buffer/substrate interface. We attribute these features to specific extended defects (EDs) generated by moving threading dislocations in the partially relaxed InGaAs layers. We believe that the core topology, surface reconstruction, and elastic strains from these EDs accommodated in slip planes play an important role in the CHP formation. The study of such electrically active EDs will allow further understanding of degradation and changes in characteristics of quantum devices based on strained heterostructures.

  6. Epitaxial growth and electrical characterization of germanium

    Energy Technology Data Exchange (ETDEWEB)

    Bosi, M.; Attolini, G.; Ferrari, C.; Frigeri, C.; Calicchio, M.; Gombia, E. [IMEM-CNR, Parma (Italy); Asar, T.; Boyali, E.; Aydemir, U.; Ozcelik, S.; Kasap, M. [Physics Department of Arts and Science Faculty, Gazi University, Ankara (Turkey)

    2011-08-15

    Ge homojunctions were deposited by means of Metal Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates at 550 C and 675 C, using AsH{sub 3} as n-type dopant. Ge{sub n}/Ge{sub p}, GaAs{sub n}/InGaP{sub n}/Ge{sub n}/Ge{sub p} and Ge{sub n}/Ge{sub p}/Ge{sub p} structures were prepared and studied, where n and p identify the layer or substrate doping. Vertical mesa junctions were obtained on the above structures by using conventional photolithographic and evaporation techniques. The junctions were characterized by I-V measurements under dark and illumination conditions and by EBIC technique. It has been observed that the samples grown at lower temperature showed better rectifying I-V characteristics and light conversion efficiency while EBIC results may suggest that a high As diffusion is present in the samples grown at higher temperature. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Environmental Binorganic Chemistry 2008 Gordon Research Conference (June 18-20, 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Anne O. Summers

    2009-08-28

    This highly interdisciplinary conference is known for rigorous and wide-ranging consideration of the roles of elements traditionally called 'inorganic' in living systems at scales from the molecular to the global. EBIC brings together those studying the biotic-inorganic interface across the Periodic Table, mingling chemists, ecologists, geneticists, oceanographers, and computational biologists, among others. Topics range from transport, enzymology, and homeostasis in individual cells and organisms to the environmental processes they experience and influence, as well as the latest techniques enabling observation of these phenomena. This conference is distinct from other metallobiology meetings in having a substantial environmental theme and a broader view of the Periodic Table, regularly including radionuclides, metalloids, the halides, silicon, and non-metal essential nutrients. When possible we mix speakers working at the nanometer-nanosecond scale in the same session with those working at the kilometer-megayear scale, a practice demanding high quality introductory material from each speaker and discussion leader. EBIC provides a forum for leading scientists (many of whom will never have met before) with expertise in the inorganic dimensions of life to identify fundamental cross-cutting themes and unrecognized anomalies and share the latest on acquiring, analyzing, and applying bioinorganic chemical concepts to real world issues from public health to climate change.

  8. Environmental Binorganic Chemistry 2008 Gordon Research Conference (June 18-20, 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Anne O. Summers

    2009-08-28

    This highly interdisciplinary conference is known for rigorous and wide-ranging consideration of the roles of elements traditionally called 'inorganic' in living systems at scales from the molecular to the global. EBIC brings together those studying the biotic-inorganic interface across the Periodic Table, mingling chemists, ecologists, geneticists, oceanographers, and computational biologists, among others. Topics range from transport, enzymology, and homeostasis in individual cells and organisms to the environmental processes they experience and influence, as well as the latest techniques enabling observation of these phenomena. This conference is distinct from other metallobiology meetings in having a substantial environmental theme and a broader view of the Periodic Table, regularly including radionuclides, metalloids, the halides, silicon, and non-metal essential nutrients. When possible we mix speakers working at the nanometer-nanosecond scale in the same session with those working at the kilometer-megayear scale, a practice demanding high quality introductory material from each speaker and discussion leader. EBIC provides a forum for leading scientists (many of whom will never have met before) with expertise in the inorganic dimensions of life to identify fundamental cross-cutting themes and unrecognized anomalies and share the latest on acquiring, analyzing, and applying bioinorganic chemical concepts to real world issues from public health to climate change.

  9. The cross-validated AUC for MCP-logistic regression with high-dimensional data.

    Science.gov (United States)

    Jiang, Dingfeng; Huang, Jian; Zhang, Ying

    2013-10-01

    We propose a cross-validated area under the receiving operator characteristic (ROC) curve (CV-AUC) criterion for tuning parameter selection for penalized methods in sparse, high-dimensional logistic regression models. We use this criterion in combination with the minimax concave penalty (MCP) method for variable selection. The CV-AUC criterion is specifically designed for optimizing the classification performance for binary outcome data. To implement the proposed approach, we derive an efficient coordinate descent algorithm to compute the MCP-logistic regression solution surface. Simulation studies are conducted to evaluate the finite sample performance of the proposed method and its comparison with the existing methods including the Akaike information criterion (AIC), Bayesian information criterion (BIC) or Extended BIC (EBIC). The model selected based on the CV-AUC criterion tends to have a larger predictive AUC and smaller classification error than those with tuning parameters selected using the AIC, BIC or EBIC. We illustrate the application of the MCP-logistic regression with the CV-AUC criterion on three microarray datasets from the studies that attempt to identify genes related to cancers. Our simulation studies and data examples demonstrate that the CV-AUC is an attractive method for tuning parameter selection for penalized methods in high-dimensional logistic regression models.

  10. Properties of interfaces in (CdZn)S/CuInSe2 heterojunctions

    Science.gov (United States)

    Kazmerski, L. L.; Ahrenkiel, R. K.; Matson, R. J.; Massopust, T. P.; Dick, J. R.; Osterwald, C. R.; Ireland, P. J.; Jones, K. M.

    1984-06-01

    The efficiency and operational characteristics of the (CdZn)S/CuInSe2 heterojunction solar cell are significantly improved as a result of a postfabrication heat treatment in an oxygen containing environment. The effects of this critical annealing process on the microchemical and microelectrical properties of the various cell layers and interfaces are investigated. Time-resolved EBIC and laser scanning techniques are correlated with cell performance data to identify two separate mechanisms that affect cell response. High resolution SIMS is used to evaluate compositional changes and interdiffusion effects, showing that penetration of the Cu-ternary layer by the oxygen is minimal. Light and dark current-voltage characteristics and diagnostic spectral response data are used to explain changes in cell operation.

  11. Comparison of low-temperature oxides on polycrystalline InP by AES, SIMS and XPS

    Science.gov (United States)

    Kazmerski, L. L.; Ireland, P. J.; Sheldon, P.; Chu, T. L.; Chu, S. S.; Lin, C. L.

    1980-10-01

    Oxides and their interfaces with polycrystalline InP are examined using complementary high-resolution AES, SIMS and XPS. The oxides, grown by low-temperature dry and wet processes, are compared for composition and phase content. SIMS and AES depth-composition data are used to compare the uniformity of the oxide layers and the composition of the interfacial region. Confirmation of impurity accumulation at the oxide-InP interfaces is presented, including buildup of elemental P and InP dopant, S. Other impurities associated with the growth of the wet oxide are found to be localized at the interface. Some evidence of impurity accumulation at grain boundaries at the wet oxide-polycrystalline InP interface is provided by SIMS and EBIC.

  12. Study of radiation induced deep-level defects in proton irradiated AlGaAs-GaAs solar cells

    Science.gov (United States)

    Li, S. S.

    1980-01-01

    Radiation induced deep-level defects (both electron and hole traps) in proton irradiated AlGaAs-GaAs p-n junction solar cells are investigated along with the correlation between the measured defect parameters and the solar cell performance parameters. The range of proton energies studied was from 50 KeV to 10 MeV and the proton fluence was varied from 10 to the 10th power to 10 to the 13th power P/sq cm. Experimental tools employed include deep-level transient spectroscopy, capacitance-voltage, current voltage, and SEM-EBIC methods. Defect and recombination parameters such as defect density and energy level, capture cross section, carrier lifetimes and effective hole diffusion lengths in n-GaAs LPE layers were determined from these measurements.

  13. Model for Electron-Beam-Induced Current Analysis of mc-Si Addressing Defect Contrast Behavior in Heavily Contaminated PV Material: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guthrey, H.; Gorman, B.; Al-Jassim, M.

    2012-06-01

    Much work has been done to correlate electron-beam-induced current (EBIC) contrast behavior of extended defects with the character and degree of impurity decoration. However, existing models fail to account for recently observed contrast behavior of defects in heavily contaminated mc-Si PV cells. We have observed large increases in defect contrast with decreasing temperature for all electrically active defects, regardless of their initial contrast signatures at ambient temperature. This negates the usefulness of the existing models in identifying defect character and levels of impurity decoration based on the temperature dependence of the contrast behavior. By considering the interactions of transition metal impurities with the silicon lattice and extended defects, we attempt to provide an explanation for these observations. Our findings will enhance the ability of the PV community to understand and mitigate the effects of these types of defects as the adoption of increasingly lower purity feedstocks for mc-Si PV production continues.

  14. Selective emitters in buried contact silicon solar cells. Some low-cost solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pirozzi, L.; Arabito, G.; Artuso, F.; Barbarossa, V.; Besi-Vetrella, U.; Loreti, S.; Mangiapane, P.; Salza, E. [ENEA Casaccia, Via Anguillarese 301, 00060 Roma (Italy)

    2001-01-01

    We present the results of our study on the formation of selective emitter structures in buried contact cells. In particular, our attention has been focused on those processes that seem to be scalable to industry. To this aim, specific dopant sources and fabrication steps have been selected.Two different kinds of dopants have been considered: the P-doped SOD and the screen-printed dopant paste. For both sources we have tested the feasibility of the selective diffusion formation in a single step, together with the application of suitable techniques to get selective doping, such as laser enhanced diffusion into the grooves, or selective deposition of screen printed paste in buried grid pattern. SEM and SEM-EBIC analyses have been used to investigate the occurrence of doping. Several batches of buried contact, mechanically grooved cells have prepared and tested.

  15. 3D-Mössbauer spectroscopic microscope for mc-Si solar cell evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Y., E-mail: y-ino@ob.sist.ac.jp; Soejima, H.; Hayakawa, K.; Yukihira, K.; Tanaka, K.; Fujita, H.; Watanabe, T. [Shizuoka Institute of Science and Technology (Japan); Ogai, K.; Moriguchi, K.; Harada, Y. [APCO. Ltd. (Japan); Yoshida, Y. [Shizuoka Institute of Science and Technology (Japan)

    2016-12-15

    A 3D-Mössbauer Spectroscopic Microscope is developed to evaluate Fe impurities in multi-crystalline Si solar cells, which combines the Mössbauer spectroscopic microscope with a scanning electron microscope (SEM), an electron beam induced current (EBIC), an electron backscatter diffraction (EBSD), and an electron energy analyzer (HV-CSA). In addition, a new moving-coil-actuator with a liner encoder of 100 nm-resolution is incorporated for the operations with both a constant velocity and a constant acceleration mode successfully with the same precision as that obtained by the conventional transducers. Furthermore, a new multi-capillary X-ray lens is designed to achieve a γ-ray spot size less than 100 μm in diameter. The new microscope provides us to investigate the space correlation between Fe impurities and the lattice defects such as grain boundaries in multi-crystalline Si solar cells.

  16. Dip coating process. Silicon sheet growth development for the large-area silicon sheet task of the Low Cost Silicon Solar Array Project. Quarterly report No. 5, December 18, 1976--March 21, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

    1977-03-31

    Ceramic substrates can be coated with a thin layer of large-grain polycrystalline silicon by a dip-coating process. The silicon-on-ceramic (SOC) material appears to be quite promising as a low-cost cell material but requires somewhat special fabrication procedure since the contacts to both the n- and p-layers are now made on the front surface. Solar cells have been made on SOC material and on single-crystal control samples. Photodiodes 0.01 to 0.1 cm/sup 2/ made on substrates coated with vitreous carbon prior to dip coating with silicon showed the best efficiency of SOC material to date, namely over 6 percent uncorrected and about 12 percent inherent efficiency. Etching procedures have indicated that the dislocation density varies from almost 10/sup 7/ cm/sup -2/ to almost dislocation-free material, assuming that all etch pits are due to dislocations. EBIC measurements procedures were also improved, and it was found that diodes appear to be fairly uniform in EBIC response. A new SOC coating facility is being designed which will coat larger substrates in a continuous manner. The purpose is to minimize the contamination problem by reducing the contact area of the substrate with molten silicon. By having much larger throughput, it will also demonstrate the scale-up potential of the silicon-on-ceramic process. Portions of the new facility are under construction. An attempt has been made to model the economics of a large-scale facility for coating ceramic panels with silicon. A first iteration based on available parameters estimates showed that major cost items were poly Si ($2.90 per square meter), labor and burden ($2.50 per square meter), and the ceramic substrate ($2.50 per square meter), for a total price of about $11 per square meter.

  17. Inhomogeneities in charge carrier transport properties of Cu(In,Ga)Se{sub 2} solar-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nichterwitz, Melanie; Kaufmann, Christian; Schock, Hans-Werner; Unold, Thomas [Helmholtz-Zentrum Berlin (Germany); Caballero, Raquel [Universidad Autonoma de Madrid (Spain)

    2012-07-01

    In this study, electron beam induced current (EBIC) in the cross section configuration is used to characterize charge carrier transport in Cu(In,Ga)Se{sub 2} (CIGSe)/CdS/ZnO solar-cells. It is shown that charge carrier transport properties are (i) generation dependent and (ii) grain specific, i.e. spatially inhomogeneous. Within some grains of the CIGSe absorber layer, the collected short circuit current is reduced significantly for electron beam irradiation such that there is no generation at the heterojunction. Charge carrier transport is generation dependent in these grains for all used electron beam currents, i.e. generation densities (low injection). In other grains however, charge carrier transport is only generation dependent for the highest used electron beam current. In conjunction with numerical simulations, these results are used to derive a model for the electronic band diagram of the heterojunction region of the solar cell. It is based on the assumption of (i) a thin layer with a high density ({approx}10{sup 17} cm{sup -3}) of deep acceptor type defect states (p{sup +} layer) and a lowered valence band maximum between the CIGSe and the CdS layer and (ii) donor type interface states at the p{sup +} layer/CdS interface of some grains.

  18. 11% efficient single-crystal solar cells and 10% efficient polycrystalline cells made from refined metallurgical silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hanoka, J.I.; Strock, H.B.; Kotval, P.S.

    1981-09-01

    Refined metallurgical silicon has been utilized as a feedstock material both for Czochralski-pulled single crystal and for cast polycrystalline silicon solar cells. Using a phosphorous diffused junction for an n on p structure, the single-crystal cells have yielded AM1 efficiencies up to 11.1%, open circuit voltages up to 596 mV, and fill factors as high as 81% (not all on the same cell). The cast polycrystalline substrates have produced cells up to 10.1% efficient (AM1) with fill factors of 79% and V/sub o/c = 585 mV. Properties of the single-crystal and polycrystalline cells are quite similar, with the principal limiting factor being J/sub s/c , which is typically 20--23 mA/cm/sup 2/. Spectral response and EBIC data indicate that a considerable amount of the recombination is due to impurities. For the cast polycrystalline cells, the electron beam induced current data shows that grain boundary recombination is significant.

  19. Enhanced electrical properties at boundaries including twin boundaries of polycrystalline CdTe thin-film solar cells.

    Science.gov (United States)

    Li, H; Liu, X X; Lin, Y S; Yang, B; Du, Z M

    2015-05-07

    The effect of grain boundaries (GBs), in particular twin boundaries (TBs), on CdTe polycrystalline thin films is studied by conductive atomic force microscopy (C-AFM), electron-beam-induced current (EBIC), scanning Kelvin probe microscopy (SKPM), electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM). Four types of CdTe grains with various densities of {111} Σ3 twin boundaries (TBs) are found in Cl-treated CdTe polycrystalline thin films: (1) grains having multiple {111} Σ3 TBs with a low angle to the film surface; (2) grains having multiple {111} Σ3 TBs parallel to the film surfaces; (3) small grains on a scale of not more than 500 nm, composed of Cd, Cl, Te, and O; and (4) CdTe grains with not more than two {111} Σ3 TBs. Grain boundaries (including TBs) exhibit enhanced current transport phenomena. However, the {111} Σ3 TB is much more beneficial to micro-current transport. The enhanced current transport can be explained by the lower electron potential at GBs (including TBs) than the grain interiors (GIs). Our results open new opportunities for enhancing solar cell performances by controlling the grain boundaries, and in particular TBs.

  20. Investigations of defects after indiffusion of iron and nickel into float-zone silicon

    Energy Technology Data Exchange (ETDEWEB)

    Saring, Philipp; Hildebrand, Nils; Falkenberg, Marie Aylin; Seibt, Michael [IV. Physikalisches Institut, Georg-August-Universitaet, Goettingen (Germany)

    2010-07-01

    The electrical properties of silicon are strongly influenced by fast diffusing transition metal impurities such as iron, nickel and copper, which are unintentionally brought into and distributed inside the material during high temperature treatments. Under certain conditions these metals cluster by forming recombination active silicide precipitates. Whereas homogeneous precipitation has been observed for nickel or copper, iron precipitation generally requires the presence of pre-existing nucleation sites. Recent studies deal with the simultaneous coprecipitation of these elements. In this work we focus on the distribution of the electrically active defects after indiffusion of nickel and iron into float-zone silicon. We investigate the recombination properties of these defects by LBIC- and EBIC-measurements as well as their concentration and majority charge carrier kinetics by DLTS experiments. By suitable annealing conditions we established quite small concentrations of precipitates (<10{sup 8} cm{sup -3}) and metal denuded zones below the sample surfaces. Single precipitates were extracted by Focussed-Ion-Beam technique for TEM-investigations.

  1. A Two-Step Absorber Deposition Approach To Overcome Shunt Losses in Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material System

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul H.; Hartman, Katy; Brandt, Riley E.; Polizzotti, Alex; Yang, Chuanxi; Moriarty, Tom; Gradečak, Silvija; Gordon, Roy G.; Buonassisi, Tonio

    2016-08-31

    As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing 'false-negative' results. Here, we demonstrate a device engineering solution toward a robust device architecture, using a two-step absorber deposition approach. We use tin sulfide (SnS) as a test absorber material. The SnS bulk is processed at high temperature (400 degrees C) to stimulate grain growth, followed by a much thinner, low-temperature (200 degrees C) absorber deposition. At a lower process temperature, the thin absorber overlayer contains significantly smaller, densely packed grains, which are likely to provide a continuous coating and fill pinholes in the underlying absorber bulk. We compare this two-step approach to the more standard approach of using a semi-insulating buffer layer directly on top of the annealed absorber bulk, and we demonstrate a more than 3.5x superior shunt resistance Rsh with smaller standard error ..sigma..Rsh. Electron-beam-induced current (EBIC) measurements indicate a lower density of pinholes in the SnS absorber bulk when using the two-step absorber deposition approach. We correlate those findings to improvements in the device performance and device performance reproducibility.

  2. InGaAsP/InP laser development for single-mode, high-data-rate communications

    Science.gov (United States)

    Ladany, I.; Levin, E. R.; Magee, C. W.; Smith, R. T.

    1981-01-01

    Materials studies as well as general and specific device development were carried out in the InGaAsP system. A comparison was made of three standard methods of evaluating substrate quality by means of dislocation studies. A cause of reduced yield of good wafers, the pullover of melt from one bin to the next, has been analyzed. Difficulties with reproducible zinc acceptor doping have been traced to segregation of zinc in the In/Zn alloy used for the doping source. Using EBIC measurments, the pn junction was shown to drift in location depending on factors not always under control. An analysis of contact structures by SIMS showed that the depth to which the sintered Au/Zn contact penetrates into the structure is typically 0.13 microns, or well within the cap layer and out of the p-type cladding and thus not deleterious to laser prformance. The problem of single-mode laser development was investigated and it was shown to be related to the growth habit over four different possible substrate configurations. The fabrication of constricted double heterojunctions, mesa stripe buried heterostructures, and buried heterostructures was discussed, and measurements were presented on the device properties of single-mode buried heterostructure lasers. Results include single spectral line emission at 3 mW and a threshold current of 60 mA.

  3. Fabrication and characterization of ITO/silicon SIS solar cells. Final report, October 1, 1978-April 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    DuBow, J. B.

    1980-06-01

    The objectives of this research were to optimize the performance of ITO/polycrystalline silicon solar cells, identify performance limitations, identify major stability problems which would inhibit terrestrial application of these devices, evaluate the impact of indium supply and price on terrestrial applications, and evaluate the economic viability of ITO sputter deposited solar cells. These goals were successfully achieved during the course of this multipronged effort. Both area scaling with efficiency maintenance were achieved by process modifications including surface preparation and in-situ passivation techniques. Indium tin oxide on Wacker polycrystalline silicon solar cells were fabricated which achieved 13.7% efficiency for 11 cm/sup 2/ devices. Typical open circuit voltages were 0.525 volts, short circuit currents, 34 mA/cm/sup 2/, and fill factors of 0.75. In the course of this project, three device measurement techniques which assisted in improving cell efficiency and which have broad applicability to all photovoltaic devices were introduced. These were automated admittance and surface state analysis, noise spectral density analysis, and automated I-V and C-V analysis. These measurements were combined with Auger/ESCA, EBIC and flying spot scanner, and other measurement techniques to identify grain boundaries, intragrain defects, edge leakage, and interface losses which were subsequently alleviated through process improvements. It is concluded from this work that prototype production of cells and modules based on this technology would be warranted in the near term.

  4. Long non-coding RNAs on the stage of cervical cancer (Review).

    Science.gov (United States)

    Dong, Junxue; Su, Manman; Chang, Weiqin; Zhang, Kun; Wu, Shuying; Xu, Tianmin

    2017-08-14

    Cervical cancer is one of most malignant gynecological tumors. However, effective means for diagnosing and treating cervical cancer have yet to be identified. A few decades ago, long non-coding RNAs (lncRNAs) were regarded as useless parts of the genome, however, increasing data have demonstrated the importance of lncRNAs in the diagnosis and treatment of cervical cancers. The aim of the present study is to summarize the role(s) of HOTAIR, MALAT1, CCAT2, SPRY4-IT1, RSU1P2, CCHE1, lncRNA-EBIC and PVT1. Approximately 14 lncRNAs are involved in cervical cancer and several important proteins, miRNAs and other molecules and play crucial roles in a few traditional signaling pathways that have been proven to be related to those lncRNAs. In conclusion, lncRNAs may be useful as exact treatment targets and diagnostic biomarkers for improving therapies in cervical cancer patients and lncRNAs may contribute to effective diagnosis and treatment methods for cervical cancer.

  5. Silicon-Film{trademark} photovoltaic manufacturing technology. Semiannual subcontract report, 15 November 1992--15 May 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bottenberg, W.R. [AstroPower, Inc., Newark, DE (United States)

    1994-01-01

    AstroPower is in the second phase of a 3-year, phased effort to upgrade its facility to produce 1.22-m{sup 2} Silicon-Film{trademark} PV modules with an output of 170 W{sub p}. Productivity improvements of the Silicon-Film{trademark} machine were accomplished during the second phase. Improvements were made in solar cell performance while decreasing materials consumption, integrating and mechanizing the fabrication process for solar cells, and scaling-up solar cell and module equipment for fabricating larger cells. AstroPower is continuing work on separating out effects due to impurities and effects due to defects. Analytical tools were developed for measuring area-based response based on EBIC and LBIC methods. The Kauffman source for hydrogen ion implantation was used to map out the process space for Silicon-Film{trademark} solar cell improvement. Progress was made on improving short-circuit current. Areas of focus include developing tools to quickly assess material quality; developing a hydrogen implantation process; increasing material quality on large-area, high-throughput wafers; and studying potential processes for improving solar cell power output during cell fabrication. A method to improve current collection in a solar cell after contact formation is under development.

  6. Polycrystalline Silicon Sheets for Solar Cells by the Improved Spinning Method

    Science.gov (United States)

    Maeda, Y.; Yokoyama, T.; Hide, I.

    1984-01-01

    Cost reduction of silicon materials in the photovoltaic program of materials was examined. The current process of producing silicon sheets is based entirely on the conventional Czochralski ingot growth and wafering used in the semiconductor industry. The current technology cannot meet the cost reduction demands for producing low cost silicon sheets. Alternative sheet production processes such as unconventional crystallization are needed. The production of polycrystalline silicon sheets by unconventional ingot technology is the casting technique. Though large grain sheets were obtained by this technique, silicon ribbon growth overcomes deficiencies of the casting process by obtaining the sheet directly from the melt. The need to solve difficulties of growth stability and impurity effects are examined. The direct formation process of polycrystalline silicon sheets with large grain size, smooth surface, and sharp edges from the melt with a high growth rate which will yield low cost silicon sheets for solar cells and the photovoltaic characteristics associated with this type of sheet to include an EBIC study of the grain boundaries are described.

  7. Bayesian joint modeling of longitudinal measurements and time-to-event data using robust distributions.

    Science.gov (United States)

    Baghfalaki, T; Ganjali, M; Hashemi, R

    2014-01-01

    Distributional assumptions of most of the existing methods for joint modeling of longitudinal measurements and time-to-event data cannot allow incorporation of outlier robustness. In this article, we develop and implement a joint modeling of longitudinal and time-to-event data using some powerful distributions for robust analyzing that are known as normal/independent distributions. These distributions include univariate and multivariate versions of the Student's t, the slash, and the contaminated normal distributions. The proposed model implements a linear mixed effects model under a normal/independent distribution assumption for both random effects and residuals of the longitudinal process. For the time-to-event process a parametric proportional hazard model with a Weibull baseline hazard is used. Also, a Bayesian approach using the Markov-chain Monte Carlo method is adopted for parameter estimation. Some simulation studies are performed to investigate the performance of the proposed method under presence and absence of outliers. Also, the proposed methods are applied for analyzing a real AIDS clinical trial, with the aim of comparing the efficiency and safety of two antiretroviral drugs, where CD4 count measurements are gathered as longitudinal outcomes. In these data, time to death or dropout is considered as the interesting time-to-event outcome variable. Different model structures are developed for analyzing these data sets, where model selection is performed by the deviance information criterion (DIC), expected Akaike information criterion (EAIC), and expected Bayesian information criterion (EBIC).

  8. High-Dimensional Cox Regression Analysis in Genetic Studies with Censored Survival Outcomes

    Directory of Open Access Journals (Sweden)

    Jinfeng Xu

    2012-01-01

    Full Text Available With the advancement of high-throughput technologies, nowadays high-dimensional genomic and proteomic data are easy to obtain and have become ever increasingly important in unveiling the complex etiology of many diseases. While relating a large number of factors to a survival outcome through the Cox relative risk model, various techniques have been proposed in the literature. We review some recently developed methods for such analysis. For high-dimensional variable selection in the Cox model with parametric relative risk, we consider the univariate shrinkage method (US using the lasso penalty and the penalized partial likelihood method using the folded penalties (PPL. The penalization methods are not restricted to the finite-dimensional case. For the high-dimensional (p→∞, p≪n or ultrahigh-dimensional case (n→∞, n≪p, both the sure independence screening (SIS method and the extended Bayesian information criterion (EBIC can be further incorporated into the penalization methods for variable selection. We also consider the penalization method for the Cox model with semiparametric relative risk, and the modified partial least squares method for the Cox model. The comparison of different methods is discussed and numerical examples are provided for the illustration. Finally, areas of further research are presented.

  9. Large area silicon sheet by EFG. Fourth quarterly report, October 1, 1977--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Wald, F.V.

    1978-01-15

    A detailed economic evaluation is presented of several EFG ribbon growth technology scenarios using the ''SAMICS'' interim price estimation guidelines. It is concluded that the growth of 10 ribbons from a double five ribbon furnace of the general type represented by the existing Machine 3A would meet the requirements of producing ribbon at a price below $20/m/sup 2/ the 1986 goal. The technology requirements are that one operator can operate 2 of the 5 ribbon growth stations in which each ribbon grows at a speed of 7.5 cm/min and is also 7.5 cm wide. The machines also would have to achieve a duty cycle of 67% at minimum and yields above 75%. Finally, silicon must be available at $10 to approximately $25/kg, depending on the yield assumed. These conclusions are the final results of the economic analysis. The progress towards the growth of 7.5 cm wide ribbon at 7.5 cm/min is discussed. Also, fluid flow phenomena have been investigated and it is shown that by utilization of such phenomena the impurity distribution in the ribbon may be manipulated to a significant extent. Also, using a somewhat novel ''EBIC'' technique it was demonstrated that the internal grain structure found previously in some ribbons grown at high speeds has virtually no influence on the performance of the material when made into a solar cell.

  10. Current–voltage characteristics of manganite–titanite perovskite junctions

    Directory of Open Access Journals (Sweden)

    Benedikt Ifland

    2015-07-01

    Full Text Available After a general introduction into the Shockley theory of current voltage (J–V characteristics of inorganic and organic semiconductor junctions of different bandwidth, we apply the Shockley theory-based, one diode model to a new type of perovskite junctions with polaronic charge carriers. In particular, we studied manganite–titanate p–n heterojunctions made of n-doped SrTi1−yNbyO3, y = 0.002 and p-doped Pr1−xCaxMnO3, x = 0.34 having a strongly correlated electron system. The diffusion length of the polaron carriers was analyzed by electron beam-induced current (EBIC in a thin cross plane lamella of the junction. In the J–V characteristics, the polaronic nature of the charge carriers is exhibited mainly by the temperature dependence of the microscopic parameters, such as the hopping mobility of the series resistance and a colossal electro-resistance (CER effect in the parallel resistance. We conclude that a modification of the Shockley equation incorporating voltage-dependent microscopic polaron parameters is required. Specifically, the voltage dependence of the reverse saturation current density is analyzed and interpreted as a voltage-dependent electron–polaron hole–polaron pair generation and separation at the interface.

  11. Electrical and optical characterization of surface passivation in GaAs nanowires.

    Science.gov (United States)

    Chang, Chia-Chi; Chi, Chun-Yung; Yao, Maoqing; Huang, Ningfeng; Chen, Chun-Chung; Theiss, Jesse; Bushmaker, Adam W; Lalumondiere, Stephen; Yeh, Ting-Wei; Povinelli, Michelle L; Zhou, Chongwu; Dapkus, P Daniel; Cronin, Stephen B

    2012-09-12

    We report a systematic study of carrier dynamics in Al(x)Ga(1-x)As-passivated GaAs nanowires. With passivation, the minority carrier diffusion length (L(diff)) increases from 30 to 180 nm, as measured by electron beam induced current (EBIC) mapping, and the photoluminescence (PL) lifetime increases from sub-60 ps to 1.3 ns. A 48-fold enhancement in the continuous-wave PL intensity is observed on the same individual nanowire with and without the Al(x)Ga(1-x)As passivation layer, indicating a significant reduction in surface recombination. These results indicate that, in passivated nanowires, the minority carrier lifetime is not limited by twin stacking faults. From the PL lifetime and minority carrier diffusion length, we estimate the surface recombination velocity (SRV) to range from 1.7 × 10(3) to 1.1 × 10(4) cm·s(-1), and the minority carrier mobility μ is estimated to lie in the range from 10.3 to 67.5 cm(2) V(-1) s(-1) for the passivated nanowires.

  12. Catastrophic optical bulk degradation (COBD) in high-power single- and multi-mode InGaAs-AlGaAs strained quantum well lasers

    Science.gov (United States)

    Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Presser, Nathan; Moss, Steven C.

    2017-02-01

    High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and space satellite communications systems. However, little has been reported on failure modes and degradation mechanisms of high-power SM and MM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life-tests followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Our long-term life-test results and FMA results are reported.

  13. Degradation mechanisms in high-power multi-mode InGaAs-AlGaAs strained quantum well lasers for high-reliability applications

    Science.gov (United States)

    Sin, Yongkun; Presser, Nathan; Brodie, Miles; Lingley, Zachary; Foran, Brendan; Moss, Steven C.

    2015-03-01

    control defect densities by introducing extrinsic point defects to the laser via proton irradiation with different energies and fluences. These lasers were subsequently lifetested to study degradation processes in the lasers with different defect densities and also to study precursor signatures of failures - traps and non-radiative recombination centers (NRCs) in pre- and post-stressed lasers. Lastly, we employed focused ion beam (FIB), electron beam induced current (EBIC), and highresolution TEM (HR-TEM) techniques to further study dark line defects and dislocations in both post-aged and postproton irradiated lasers. We report on our long-term low-stress lifetest results and physics of failure investigation results.

  14. Reliability, failure modes, and degradation mechanisms in high power single- and multi-mode InGaAs-AlGaAs strained quantum well lasers

    Science.gov (United States)

    Sin, Yongkun; Presser, Nathan; Lingley, Zachary; Brodie, Miles; Foran, Brendan; Moss, Steven C.

    2016-03-01

    High power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and potential space satellite communications systems. However, little has been reported on failure modes of state-of-the-art SM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life tests under different test conditions followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. To the best of our knowledge, this is the first report demonstrating that the dominant failure mode of both SM and MM InGaAs-AlGaAs strained QW lasers is the bulk failure. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged SM and MM lasers. Our long-term life test results and FMA results are reported.

  15. 长链非编码RNA在宫颈癌中的研究进展%Research Progress of Long Non-coding RNAs in Cervical Cancer

    Institute of Scientific and Technical Information of China (English)

    苏冠男; 王冬亮; 王武亮; 朱前勇

    2015-01-01

    of carcinogenesis: HOX transcription antisense RNA (HOTAIR), lung adenocarcinoma metastasis related transcripts 1 (MALAT1), H19, EBIC, Linc-p21 and brain cell mass (BC200), and mainly two lncRNAs may have the function of cervical cancer suppressor:maternal imprinted genes 3 (MEG3) and XLOC_010588, changing their expression levels of cells may has an obvious effect on the mutiple biological behaviors such as cell proliferation, invasion. Moreover, they are closely associated with clinical pathologic factors of cervical cancer and influence the prognosis of disease.

  16. Study on CIX-M type ESBLs-producing Escherichia coli and Klebsiella pneumoiae in Guangzhou%广州地区产CTX-M型超广谱β内酰胺酶大肠埃希菌和肺炎克雷伯菌的研究

    Institute of Scientific and Technical Information of China (English)

    卓超; 耿穗娜; 金光耀; 钟南山; 苏丹虹; 李红玉; 王露霞; 廖康; 王媚; 植志全; 郭仲辉; 魏衍超

    2009-01-01

    Objective To study phylogenies, epidemiology and genetic environment of CTX-M type of ESBLs produced by Escherichia coli and Klebsiella pneumoniae isolated from nine hospitals in Guangzhou. Methods The phylogenies of CTX-M type of ESBLs were analyzed by PCR Genetic environment of CTX-M-15 encoding gene (bla_(CTX-M-15)) were investigated by conjugation test and plasmid analysis. The clonal relationship of strains producing CTX-M-15 was determined by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). Results A total of 361 ESBLs-producing isolates of Escherichia coli and Klebsiella pneumoniae were collected. 67.3% of ESBLs strains were detected to produce CTX-M-type ESBLs, and the commonest genotypes in Escherichia coli and Klebsiella pneumoniae were CTX-M-14 (35.4% and 28.3%), CTX-M-15(21.5% and 26.1%) EBIC-PCR products of all CTX-M-15-producing strains show 39 strains of Escherichia coli were classified into 27 genotypes while 43 strains of Klebsiella pneumoniae were divided into 30 genotypes. Furthermore, the genotypes of CTX-M-55, CTX-M-19, CTX-M-27, with ceftazidime-hydrelyzing activity, were detected in this study. The great majority of bla_(CTX-M-15) genes were found to locate on a 65 000 bp-conjugative plasmid, and there was no blaTEM-1, bla_(OXA-1), blaDSA-1 or aac (6')-Ib-cr gene coexisted on the plasmid, ISEcp1-like insertion sequences, relative to mobilization of bla_(CTX-M-15) gene, were detected in all bla_(CTX-M-15) positive strains, and the distances between the end of ISEcp1-like insertion sequences and the start cedon of bla_(CTX-M-15) were equal, with 48 base pairs. Conclusion CTX-M-14 is still the most common genotype of ESBLs in Guangzhou, but high prevalence of CTX-M-15 ESBLs hydrolyzing ceftazidime already appears in south China.%目的 研究广州地区大肠埃希菌和肺炎克雷伯菌CTX-M型超广谱β内酰胺酶(ESBLs)的分子表型、流行病学和耐药基因环境特征.方法 收集2007-2008年广州地区9