WorldWideScience

Sample records for eastern tropical pacific

  1. Indo-Pacific echinoids in the tropical eastern Pacific

    Science.gov (United States)

    Lessios, H. A.; Kessing, B. D.; Wellington, G. M.; Graybeal, A.

    1996-06-01

    The existing literature reports that only one species of Indo-Pacific echinoid ( Echinometra oblonga), occurs in the eastern Pacific. In this study we confirm the presence of this species at Islas Revillagigedo and also report the presence of two species of Echinothrix (a genus hitherto unknown outside the Indo-Pacific) at Isla del Coco and at Clipperton Island. We also present evidence from isozymes and from mitochondrial DNA sequences indicating that at least one individual of Diadema at Clipperton may belong to a maternal lineage characteristic of the west Pacific species D. savignyi. These data are consistent with the hypothesis that the observed populations of Indo-Pacific echinoid species are recent arrivals to the eastern Pacific, as opposed to the view that they are relicts of Tethyan pan-tropical distributions. Echinothrix diadema, in particular, may have arrived at Isla del Coco during the 1982-1983 El Nifio. In addition to Indo-Pacific species, Clipperton, Isla del Coco and the Revillagigedos contain a complement of eastern Pacific echinoids. The echinoid faunas of these islands should, therefore, be regarded as mixtures of two biogeographic provinces. Though none of the Indo-Pacific species are known to have reached the coast of the American mainland, their presence at the offshore islands of the eastern Pacific suggests that, for some echinoids, the East Pacific Barrier is not as formidable an obstacle to migration as was previously thought.

  2. Seasonal Climatologies and Variability of Eastern Tropical Pacific Surface Waters

    OpenAIRE

    Fiedler, Paul C.

    1992-01-01

    Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and...

  3. Training on Eastern Pacific tropical cyclones for Latin American students

    Science.gov (United States)

    Farfán, L. M.; Raga, G. B.

    2009-05-01

    Tropical cyclones are one of the most impressive atmospheric phenomena and their development in the Atlantic and Eastern Pacific basins has potential to affect several Latin-American and Caribbean countries, where human resources are limited. As part of an international research project, we are offering short courses based on the current understanding of tropical cyclones in the Eastern Pacific basin. Our main goal is to train students from higher-education institutions from various countries in Latin America. Key aspects are tropical cyclone formation and evolution, with particular emphasis on their development off the west coast of Mexico. Our approach includes lectures on tropical cyclone climatology and formation, dynamic and thermodynamic models, air-sea interaction and oceanic response, ocean waves and coastal impacts as well as variability and climate-related predictions. In particular, we use a best-track dataset issued by the United States National Hurricane Center and satellite observations to analyze convective patterns for the period 1970-2006. Case studies that resulted in landfall over northwestern Mexico are analyzed in more detail; this includes systems that developed during the 2006, 2007 and 2008 seasons. Additionally, we have organized a human-dimensions symposium to discuss socio-economic issues that are associated with the landfall of tropical cyclones. This includes coastal zone impact and flooding, the link between cyclones and water resources, the flow of weather and climate information from scientists to policy- makers, the role of emergency managers and decision makers, impact over health issues and the viewpoint of the insurance industry.

  4. Oceanic upwelling and productivity in the eastern tropical Pacific

    International Nuclear Information System (INIS)

    Fiedler, P.C.; Philbrick, V.; Chavez, F.P.

    1991-01-01

    An oceanographic survey of the eastern tropical Pacific Ocean in August-November 1990 found a productive, nutrient-rich, moderately high-chlorophyll surface layer in two oceanic upwelling regions: the equatorial divergence, especially east of the Galapagos, and the countercurrent divergence out to 105 degree W, > 1,000 km west of the Costa Rica Dome. Although NO 3 is not depleted in upwelling regions, relationships among nutrient concentrations and temperature in 1986-1988 data from the same area show that NO 3 is the first macronutrient to be depleted in adjacent, less-productive regions. A three-dimensional, two-layer box model of NO 3 flux within and into the euphotic zone gives estimated rates of new production that are ∼29% of measured rates of 14 C phytoplankton production. Persistence of excess NO 3 in the euphotic zone exceeds 1 yr under high-nutrient, low-chlorophyll conditions off the equator where weak upwelling, or downwelling, occurs. These results indicate substantial control or limitation of NO 3 utilization and productivity in nutrient-rich oceanic regions of the eastern tropical Pacific

  5. Mechanisms of P* reduction in the eastern tropical South Pacific

    DEFF Research Database (Denmark)

    Meyer, Judith; Löscher, Carolin R.; Lavik, Gaute

    2017-01-01

    Water masses influenced by oxygen minimum zones (OMZ) feature low inorganic nitrogen (N) to phosphorus (P) ratios. The surplus of P over N is thought to favor non-Redfield primary production by bloom-forming phytoplankton species. Additionally, excess phosphate (P*) is thought to provide a niche...... Redfield proportions throughout the sampling area, the stoichiometry of particulate organic nitrogen to phosphorus (PON:POP) generally exceeded ratios of 16:1. Despite PON:POP ≥ 16, high P*-values in the surface layer (0-50 m) above the shelf rapidly decreased as water masses were advected offshore...... for nitrogen fixing organisms. In order to assess the effect of low inorganic nutrient ratios on the stoichiometry and composition of primary producers, biogeochemical measurements were carried out in 2012 during a research cruise in the eastern tropical South Pacific (ETSP). Based on pigment analyses...

  6. First record of the blacktip reef shark Carcharhinus melanopterus (Carcharhiniformes: Carcharhinidae from the Tropical Eastern Pacific

    Directory of Open Access Journals (Sweden)

    Andrés López-Garro

    2012-11-01

    Full Text Available The blacktip reef shark Carcharhinus melanopterus, is one of the most common Indo-Pacific reef sharks. On April 29, 2012, a juvenile male blacktip reef shark measuring 89 cm total length (TL, was incidentally caught during a research expedition in Chatham Bay, Isla del Coco National Park, Costa Rica, located in the Tropical Eastern Pacific. This is the first record of the species from Isla del Coco National Park, Costa Rica, and from the Tropical Eastern Pacific.

  7. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific

    Science.gov (United States)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Oleynik, Sergey; Martens-Habbena, Willm; Devol, Allan H.; Ward, Bess B.

    2015-12-01

    Nitrification plays a key role in the marine nitrogen (N) cycle, including in oceanic oxygen minimum zones (OMZs), which are hot spots for denitrification and anaerobic ammonia oxidation (anammox). Recent evidence suggests that nitrification links the source (remineralized organic matter) and sink (denitrification and anammox) of fixed N directly in the steep oxycline in the OMZs. We performed shipboard incubations with 15N tracers to characterize the depth distribution of nitrification in the Eastern Tropical North Pacific (ETNP). Additional experiments were conducted to investigate photoinhibition. Allylthiourea (ATU) was used to distinguish the contribution of archaeal and bacterial ammonia oxidation. The abundance of archaeal and β-proteobacterial ammonia monooxygenase gene subunit A (amoA) was determined by quantitative polymerase chain reaction. The rates of ammonia and nitrite oxidation showed distinct subsurface maxima, with the latter slightly deeper than the former. The ammonia oxidation maximum coincided with the primary nitrite concentration maximum, archaeal amoA gene maximum, and the subsurface nitrous oxide maximum. Negligible rates of ammonia oxidation were found at anoxic depths, where high rates of nitrite oxidation were measured. Archaeal amoA gene abundance was generally 1 to 2 orders of magnitude higher than bacterial amoA gene abundance, and inhibition of ammonia-oxidizing bacteria with 10 μM ATU did not affect ammonia oxidation rates, indicating the dominance of archaea in ammonia oxidation. These results depict highly dynamic activities of ammonia and nitrite oxidation in the oxycline of the ETNP OMZ.

  8. [Terrestrial flora of Malpelo Island, Colombia, Eastern Tropical Pacific].

    Science.gov (United States)

    González-Román, Rubén D; López-Victoria, Mateo; Silverstone-Sopkin, Philip A

    2014-03-01

    Malpelo Island is located 380km off the mainland continental coast of Colombia, in the Pacific Ocean. Several geological, ecological, and zoological studies, both marine and terrestrial, have been conducted in this island. Despite some marginal comments on some publications, no single specific survey has been devoted to botany so far. In order to make a floristic inventory of the terrestrial flora of this island, three field trips were made in 2010 to collect vascular plants, mosses, and lichens, as well as data on their distribution within the island. We collected and identified 25 species of lichens, two species of vascular plants and one moss. Lichens were the most diverse group found, including records of four new genera (Endocarpon, Fuscidea, Lecanographa and Verrucaria) and 13 new species for Colombia. The high lichen richness on Malpelo might be explained by their efficient form of asexual reproduction (soredia and isidia), that may have facilitated their transport to the island by migrating birds or wind. Once on the island, it is possible that lichens persist by being chemically protected against herbivores. The great number of new generic and species records for Colombia is explained by the low number of studies in saxicolous lichens conducted so far in the country, particularly on coastal areas and remote islands. Only two species of vascular plants were collected, a grass, Paspalum sp., and a fern, Pityrogramma calomelanos, and both of them correspond to new determinations for Malpelo. A moss species previously reported but with no positive identification was collected and identified as Octoblepharum albidum. Other species previously reported, for example, some species of shrubs, were not observed. The low number of vascular plants is probably due to a combination of soil conditions and herbivory by land crabs. This study is the first complete inventory of the flora of Malpelo and is a starting and reference point for future comparisons among islands in

  9. Dissolved iron distribution in the tropical and sub tropical South Eastern Pacific

    Directory of Open Access Journals (Sweden)

    S. Blain

    2008-02-01

    Full Text Available Dissolved iron (DFe distributions (<0.2 μm were determined in the upper water column (0–400 m of the south eastern tropical and subtropical Pacific, in October–November 2004. Data were collected along a transect extending from the Marquesas Islands to the Chilean coast with most of the stations located in the south Pacific gyre. The concentrations of DFe presented large variability with highest values observed at both extremities of the transect. In the Chilean upwelling, DFe concentrations ranged between 1.2–3.9 nM. These high values result from inputs from the continental margin and are likely maintained by anoxic conditions in the water corresponding to the Oxygen Minimum Zone (OMZ. In subsurface waters near the Marquesas, that were also associated with the extension of the OMZ, DFe concentrations varied between 0.15–0.41 nM. Vertical transport of this water by mesoscale activity eastward of the archipelago may explain the dissymmetric east-west distribution of chlorophyll-a evidenced by satellite images. Using the new tracer Fe*=DFe−rFe:P (PO43− we show that DFe was in deficit compared to PO43− resulting from the remineralisation of organic matter. This suggests that the Marquesas islands and the surrounding plateau are not a significant source of DFe. In the gyre, DFe concentrations in the upper 350 m water column were around 0.1 nM and the ferricline was located well below the nitracline. These low concentrations reflect the low input of DFe from the atmosphere, from the ventilation of the upper thermocline with water containing low DFe, and from the low biological activity within this ultra oligotrophic gyre.

  10. Tropical Cyclone Exposure for U.S. waters within the Eastern Pacific Ocean basin, 1900-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent modeled, historical exposure of U.S. offshore and coastal waters to tropical cyclone activity within the Eastern Pacific Ocean basin. BOEM Outer...

  11. First record of the blacktip reef shark Carcharhinus melanopterus (Carcharhiniformes: Carcharhinidae from the Tropical Eastern Pacific

    Directory of Open Access Journals (Sweden)

    Andrés López-Garro

    2012-11-01

    Full Text Available The blacktip reef shark Carcharhinus melanopterus, is one of the most common Indo-Pacific reef sharks. On April 29, 2012, a juvenile male blacktip reef shark measuring 89 cm total length (TL, was incidentally caught during a research expedition in Chatham Bay, Isla del Coco National Park, Costa Rica, located in the Tropical Eastern Pacific. This is the first record of the species from Isla del Coco National Park, Costa Rica, and from the Tropical Eastern Pacific.El tiburón punta negra de arrecife, Carcharhinus melanopterus, es uno de los tiburones de arrecife más comunes del Indo-Pacífico. Durante una expedición científica al Parque Nacional Isla del Coco, Costa Rica, Pacífico Tropical Oriental, un tiburón punta negra de arrecife fue capturado en Bahía Chatham, Parque Nacional Isla del Coco, el 29 de abril 2012. El espécimen capturado era un macho juvenil de 89 cm. Este es el primer informe de esta especie para el Parque Nacional Isla del Coco, Costa Rica y para el Pacífico Tropical Oriental.

  12. Ecdysonelactones, Ecdysteroids from the Tropical Eastern Pacific Zoantharian Antipathozoanthus hickmani

    Directory of Open Access Journals (Sweden)

    Paul O. Guillen

    2018-02-01

    Full Text Available Despite a large occurrence, especially over the Pacific Ocean, the chemical diversity of marine invertebrates belonging to the order Zoantharia is largely underexplored. For the two species of the genus Antipathozoanthus no chemical study has been reported so far. The first chemical investigation of Antipathozoanthus hickmani collected at the Marine Protected Area “El Pelado”, Santa Elena, Ecuador, led to the isolation of four new ecdysteroid derivatives named ecdysonelactones. The structures of ecdysonelactones A–D (1–4 were determined based on their spectroscopy data, including 1D and 2D NMR and HRMS. The four compounds of this family of ecdysteroids feature an unprecedented γ-lactone fused at the C-2/C-3 position of ring A. These derivatives exhibited neither antimicrobial nor cytotoxic activities.

  13. First record in the Tropical Eastern Pacific of the exotic species Ficopomatus uschakovi (Polychaeta, Serpulidae

    Directory of Open Access Journals (Sweden)

    Rolando Bastida Zavala

    2012-11-01

    Full Text Available The exotic Indo-West-Pacific species, Ficopomatus uschakovi (Polychaeta, Serpulidae is recorded for the first time in the Tropical Eastern Pacific from two sites in La Encrucijada Biosphere Reserve, Chiapas, a coastal lagoon in the Pacific south of Mexico. The means of dispersal of this serpulid species still remains unclear, as the nearest port (Puerto Chiapas is 70 km to the south, and there are no port installations or shrimp cultures in the lagoon. The record of this serpulid species, apparently widely distributed in this coastal lagoon, has implications regarding possible effects on the brackish-water ecosystem, since the invasion event very well may have occurred several years ago. It is recommended that an exhaustive study be carried out in the coastal lagoons of Chiapas to evaluate the real distribution and the effects of this invasive species on the ecosystem. A complete description, including photographs and drawings, is provided.

  14. Distribution and Magnitude of Dinitrogen Fixation in the Eastern Tropical North Pacific Oxygen Deficient Zone.

    Science.gov (United States)

    Selden, C.; Mulholland, M. R.; Widner, B.; Bernhardt, P. W.; Macías Tapia, A.; Jayakumar, A.

    2016-12-01

    The Eastern Tropical North Pacific Ocean (ETNP) hosts one of the world's three major open ocean oxygen deficient zones (ODZs). Hotspots for fixed nitrogen (N) loss processes, ODZs have classically been discounted as areas of significant dinitrogen (N2) fixation, the microbe-mediated reduction of N2 to ammonium (NH4+), which has historically been ascribed primarily to euphotic, nutrient-deplete tropical waters. Challenging this paradigm, active expression of nifH (the dinitrogen reductase structural gene) has recently been documented in the ETNP, Eastern Tropical South Pacific, and Arabian Sea ODZs, implying a closer coupling of fixed nitrogen input and loss processes than previously thought. Here, we report rates of N­2 fixation measured in the ETNP ODZ along vertical gradients of oxygen, light, and dissolved N concentrations. Detailed vertical profiles of N2 fixation rates and dissolved N concentrations made within the ODZ were compared with similar profiles from oxic waters outside the ODZ. In addition, different organic carbon sources were investigated as potential rate-limiting factors for N2 fixation in sub-euphotic waters. By establishing the magnitude and distribution of N­2 fixation in the ETNP ODZ, this study contributes to current understanding of N cycling in anoxic and aphotic waters, and serves to elucidate nuances in the global N budget, enabling more accurate biogeochemical modeling. Understanding these processes in present day ODZs is crucial for predicting how ongoing anthropogenic intensification of coastal ODZs will alter biogeochemical cycles in the future.

  15. Soundscapes from a Tropical Eastern Pacific reef and a Caribbean Sea reef

    Science.gov (United States)

    Staaterman, E.; Rice, A. N.; Mann, D. A.; Paris, C. B.

    2013-06-01

    Underwater soundscapes vary due to the abiotic and biological components of the habitat. We quantitatively characterized the acoustic environments of two coral reef habitats, one in the Tropical Eastern Pacific (Panama) and one in the Caribbean (Florida Keys), over 2-day recording durations in July 2011. We examined the frequency distribution, temporal variability, and biological patterns of sound production and found clear differences. The Pacific reef exhibited clear biological patterns and high temporal variability, such as the onset of snapping shrimp noise at night, as well as a 400-Hz daytime band likely produced by damselfish. In contrast, the Caribbean reef had high sound levels in the lowest frequencies, but lacked clear temporal patterns. We suggest that acoustic measures are an important element to include in reef monitoring programs, as the acoustic environment plays an important role in the ecology of reef organisms at multiple life-history stages.

  16. Main factors determining bioerosion patterns on rocky cliffs in a drowned valley estuary in the Colombian Pacific (Eastern Tropical Pacific)

    Science.gov (United States)

    Cobo-Viveros, Alba Marina; Cantera-Kintz, Jaime Ricardo

    2015-10-01

    Bioerosion is an important process that destroys coastal rocks in the tropics. However, the rates at which this process occurs, the organisms involved, and the dynamics of rocky cliffs in tropical latitudes have been less studied than in temperate and subtropical latitudes. To contribute to the knowledge of the bioerosion process in rocky cliffs on the Pacific coast of Colombia (Eastern Tropical Pacific) we compared: 1) boring volume, 2) grain size distribution of the rocks, and 3) rock porosity, across three tidal zones of two cliffs with different wave exposure; these factors were related to the bioeroding community found. We observed that cliffs that were not exposed to wave action (IC, internal cliffs) exhibited high percentages of clays in their grain size composition, and a greater porosity (47.62%) and perforation (15.86%) than exposed cliffs (EC, external cliffs). However, IC also exhibited less diversity and abundance of bioeroding species (22 species and 314 individuals, respectively) compared to the values found in EC (41.11%, 14.34%, 32 and 491, respectively). The most abundant bioeroders were Petrolisthes zacae in IC and Pachygrapsus transversus in EC. Our findings show that the tidal zone is the common factor controlling bioerosion on both cliffs; in addition to the abundance of bioeroders on IC and the number of bioeroding species on EC. The integration of geology, sedimentology, and biology allows us to obtain a more comprehensive view of the patterns and trends in the process of bioerosion.

  17. Interhemispheric leakage of isotopically heavy nitrate in the eastern tropical Pacific during the last glacial period

    Science.gov (United States)

    Pichevin, Laetitia E.; Ganeshram, Raja S.; Francavilla, Stephen; Arellano-Torres, Elsa; Pedersen, Tom F.; Beaufort, Luc

    2010-02-01

    We present new high-resolution N isotope records from the Gulf of Tehuantepec and the Nicaragua Basin spanning the last 50-70 ka. The Tehuantepec site is situated within the core of the north subtropical denitrification zone while the Nicaragua site is at the southern boundary. The δ15N record from Nicaragua shows an “Antarctic” timing similar to denitrification changes observed off Peru-Chile but is radically different from the northern records. We attribute this to the leakage of isotopically heavy nitrate from the South Pacific oxygen minimum zone (OMZ) into the Nicaragua Basin. The Nicaragua record leads the other eastern tropical North Pacific (ETNP) records by about 1000 years because denitrification peaks in the eastern tropical South Pacific (ETSP) before denitrification starts to increase in the Northern Hemisphere OMZ, i.e., during warming episodes in Antarctica. We find that the influence of the heavy nitrate leakage from the ETSP is still noticeable, although attenuated, in the Gulf of Tehuantepec record, particularly at the end of the Heinrich events, and tends to alter the recording of millennial timescale denitrification changes in the ETNP. This implies (1) that sedimentary δ15N records from the southern parts of the ETNP cannot be used straightforwardly as a proxy for local denitrification and (2) that denitrification history in the ETNP, like in the Arabian Sea, is synchronous with Greenland temperature changes. These observations reinforce the conclusion that on millennial timescales during the last ice age, denitrification in the ETNP is strongly influenced by climatic variations that originated in the high-latitude North Atlantic region, while commensurate changes in Southern Ocean hydrography more directly, and slightly earlier, affected oxygen concentrations in the ETSP. Furthermore, the δ15N records imply ongoing physical communication across the equator in the shallow subsurface continuously over the last 50-70 ka.

  18. Circulation, eddies, oxygen, and nutrient changes in the eastern tropical South Pacific Ocean

    Science.gov (United States)

    Czeschel, R.; Stramma, L.; Weller, R. A.; Fischer, T.

    2015-06-01

    A large subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off the coast of Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the equatorial undercurrent (EUC) is centered at 250 m depth, deeper than in earlier observations. In December 2012, the equatorial water is transported southeastward near the shelf in the Peru-Chile undercurrent (PCUC) with a mean transport of 1.4 Sv. In the oxygen minimum zone (OMZ), the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m-3 yr-1 extrapolated to an annual rate and 7.7 mmol C m-3 yr-1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation (IPO), by the phase of El Niño, by seasonal changes, and by eddies, and hence have to be interpreted with care. At and south of the Equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part silicate.

  19. Warm Water Pools of the Western Caribbean and Eastern Tropical Pacific: Their Influence on Intraseasonal Rainfall Regimes and Tropical Storm Activity in Mexico

    Science.gov (United States)

    Douglas, A. V.; Englehart, P. J.

    2007-05-01

    A dipole in tropical cyclone development between the Caribbean and the eastern tropical Pacific will be examined relative to its affect on southern Mexican rainfall. With the change over in the AMO and PDO in 1994 and 1998, respectively, tropical storm genesis has been increasing in the Caribbean while declining in the tropical east Pacific. This dipole in tropical cyclone development appears to be related to changes in the pre storm season heat content of the two ocean basins (data Scripps Institution of Oceanography). Preliminary work indicates that if the Caribbean is warmer than the Pacific by late May the dipole will be accentuated with a pronounced decrease in tropical storms in the east Pacific with an early and prolonged season in the Caribbean. In recent years there appears to have been an increase in the intensity and duration of midsummer drought (Canicula) in Mexico associated with changes in the PDO and AMO. These long term ocean oscillations appear to control the dipole in the strength of the Caribbean and East Pacific warm pools. Mid summer drought is a normal occurrence in much of Mexico and Central America, but the intensified droughts of the recent period have stressed the agricultural community of the region. Based on preliminary work, it appears that the recent increased frequency of midsummer drought can be linked to a shift in the warmest pool from the East Pacific to the Caribbean.

  20. The invasive snowflake coral (Carijoa riisei in the Tropical Eastern Pacific, Colombia

    Directory of Open Access Journals (Sweden)

    Juan Armando Sánchez

    2014-02-01

    Full Text Available Carijoa riisei (Octocorallia: Cnidaria, a western Atlantic species, has been reported in the Pacific as an invasive species for nearly forty years. C. riisei has been recently observed overgrowing native octocorals at several rocky-coral littorals in the Colombian Tropical Eastern Pacific-(TEP. C. riisei has inhabited these reefs for at least 15 years but the aggressive overgrowth on other octocorals have been noted until recently. Here, we surveyed for the first time the distribution and inter-specific aggression by C. riisei in both coastal and oceanic areas colonized in the Colombian TEP (Malpelo, Gorgona and Cabo Corrientes, including preliminary multiyear surveys during 2007-2013. We observed community-wide octocoral mortalities (including local extinction of some Muricea spp. and a steady occurrence of competing and overgrowing Pacifigorgia seafans and Leptogorgia seawhips. In Gorgona Island, at two different sites, over 87% (n=77 tagged colonies of octocorals (Pacifigorgia spp. and Leptogorgia alba died as a result of C. riisei interaction and/or overgrowth between 2011 and 2013. C. riisei overgrows octocorals with an estimate at linear growth rate of about 1cm m-1. The aggressive overgrowth of this species in TEP deserves more attention and regular monitoring programs. Rev. Biol. Trop. 62 (Suppl. 1: 199-207. Epub 2014 February 01.

  1. Octocoral densities and mortalities in Gorgona Island, Colombia, Tropical Eastern Pacific

    Directory of Open Access Journals (Sweden)

    Juan A. Sánchez

    2014-02-01

    Full Text Available Owing to the decrease of reef organisms in general, it has become essential to study populations that are prone to marine diseases, with the purpose of developing accurate survivorship predictions and in turn alarm on triggers and drivers of disease outbreaks. In this study, we quantified the octocorals of Gorgona island, Tropical Eastern Pacific (Colombia, during 2007 and 2009 documenting a mass mortality occurred during 2008. We recorded 16 octocoral species with densities that ranged between 2 and 30 colonies m-2. Most abundant octocorals were Leptogorgia alba and Pacifigorgia spp. (Gorgoniidae: Octocorallia. During 2009 we noticed a mass mortality involving Pacifigorgia irene, P. adamsi, P. rubicunda and P. eximia, with a reduction of 70% of the colonies between 12 and 20 m in water depth. Around 5% of seafans during 2007 had an epizootic disease similar to aspergillosis, which seems the cause of the mass octocoral mortality. This disease outbreak observed in Gorgona island, and other nearby areas of the Colombian Pacific during 2007-2010, corresponded to extended periods of anomalous elevated seawater surface temperatures and thermal anomalies during the upwelling season of 2008. Constant monitoring of seawater temperatures and octocoral populations are urgently needed in this area to understand the nature of this new disease outbreak. Rev. Biol. Trop. 62 (Suppl. 1: 209-219. Epub 2014 February 01.

  2. ENSO signals on sea-surface salinity in the eastern tropical pacific ocean

    Directory of Open Access Journals (Sweden)

    1998-01-01

    types collected in the tropical Pacific are analyzed to assess the regional impacts of past (1972-1996 El Niño Southern Oscillation (ENSO events. Focus is made on the regional changes in sea-surface temperature and salinity. Commercial vessels were recently equipped with automated thermosalinographs which allows to monitor the location of salinity front along the Panama-Tahiti line, separating the Panama Gulf from the South Pacific water masses. The latitudinal change of the salinity front is well correlated with the latitudinal change of the ITCZ. Salinity distribution gives additional information on El-Niño development. How future real time SSS data might provide interesting information on the development of ENSO phenomenon in the eastern tropical Pacific area will be discussed.

  3. Multiscale change in reef coral species diversity and composition in the Tropical Eastern Pacific

    Science.gov (United States)

    Gomez, Catalina G.; Gonzalez, Andrew; Guzman, Hector M.

    2018-03-01

    Both natural and anthropogenic factors are changing coral-reef structure and function worldwide. Long-term monitoring has revealed declines in the local composition and species diversity of reefs. Here we report changes in coral-reef community structure over 12 yr (2000-2012) at 17 sites and three spatial scales (reef, gulf and country) in the Tropical Eastern Pacific (Panama). We found a significant 4% annual decline in species population sizes at the country and gulf scales, with significant declines ranging from 3 to 32% at all but one reef. No significant temporal change in expected richness was found at the country scale or in the Gulf of Chiriquí, but a 7% annual decline in expected species richness was found in the Gulf of Panama. There was a 2% increase in community evenness in the Gulf of Chiriquí, but no change in the Gulf of Panama. Significant temporal turnover was found at the country and gulf scales and at 29% of the reefs, a finding mostly explained by changes in species abundance, and losses and gains of rare species. Temporal trends in alpha and beta diversity metrics were explained by water temperature maxima, anomalies and variation that occurred even in the absence of a strong El Niño warming event.

  4. Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone

    Science.gov (United States)

    Ji, Qixing; Babbin, Andrew R.; Jayakumar, Amal; Oleynik, Sergey; Ward, Bess B.

    2015-12-01

    The Eastern Tropical South Pacific oxygen minimum zone (ETSP-OMZ) is a site of intense nitrous oxide (N2O) flux to the atmosphere. This flux results from production of N2O by nitrification and denitrification, but the contribution of the two processes is unknown. The rates of these pathways and their distributions were measured directly using 15N tracers. The highest N2O production rates occurred at the depth of peak N2O concentrations at the oxic-anoxic interface above the oxygen deficient zone (ODZ) because slightly oxygenated waters allowed (1) N2O production from both nitrification and denitrification and (2) higher nitrous oxide production yields from nitrification. Within the ODZ proper (i.e., anoxia), the only source of N2O was denitrification (i.e., nitrite and nitrate reduction), the rates of which were reflected in the abundance of nirS genes (encoding nitrite reductase). Overall, denitrification was the dominant pathway contributing the N2O production in the ETSP-OMZ.

  5. Dinitrogen Fixation Within and Adjacent to Oxygen Deficient Waters of the Eastern Tropical South Pacific Ocean

    Science.gov (United States)

    Widner, B.; Mulholland, M. R.; Bernhardt, P. W.; Chang, B. X.; Jayakumar, A.

    2016-02-01

    Recent work suggests that planktonic diazotrophs are geographically more widely distributed than previously thought including relatively warm (14-23oC) aphotic oxygenated pelagic waters and in aphotic waters within oxygen deficient zones. Because the volume of aphotic water in the ocean is large and may increase in the future, if dinitrogen (N2) fixation is widely occurring at sub-euphotic depths, this could result in a dramatic upward revision of global nitrogen (N) inputs via this process. N2 fixation rates were measured during a cruise in the Eastern Tropical South Pacific using stable isotope tracer techniques that account for slow gas dissolution. Results are compared with light, nutrient, and oxygen gradients (and necessarily temperature gradients). In addition, rates of N2 fixation made in vertical profiles within and above oxygen deficient waters are compared with those measured in vertical profiles adjacent to oxygen deficient waters. Results suggest that while rates of N2 fixation were measurable in deeper anoxic waters, volumetric N2 fixation rates were higher in surface waters.

  6. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean.

    Science.gov (United States)

    Jayakumar, Amal; Chang, Bonnie X; Widner, Brittany; Bernhardt, Peter; Mulholland, Margaret R; Ward, Bess B

    2017-10-01

    Biological nitrogen fixation (BNF) was investigated above and within the oxygen-depleted waters of the oxygen-minimum zone of the Eastern Tropical North Pacific Ocean. BNF rates were estimated using an isotope tracer method that overcame the uncertainty of the conventional bubble method by directly measuring the tracer enrichment during the incubations. Highest rates of BNF (~4 nM day -1 ) occurred in coastal surface waters and lowest detectable rates (~0.2 nM day -1 ) were found in the anoxic region of offshore stations. BNF was not detectable in most samples from oxygen-depleted waters. The composition of the N 2 -fixing assemblage was investigated by sequencing of nifH genes. The diazotrophic assemblage in surface waters contained mainly Proteobacterial sequences (Cluster I nifH), while both Proteobacterial sequences and sequences with high identities to those of anaerobic microbes characterized as Clusters III and IV type nifH sequences were found in the anoxic waters. Our results indicate modest input of N through BNF in oxygen-depleted zones mainly due to the activity of proteobacterial diazotrophs.

  7. Marine biodiversity of an Eastern Tropical Pacific oceanic island, Isla del Coco, Costa Rica

    Directory of Open Access Journals (Sweden)

    Jorge Cortés

    2012-11-01

    Full Text Available Isla del Coco (also known as Cocos Island is an oceanic island in the Eastern Tropical Pacific; it is part of the largest national park of Costa Rica and a UNESCO World Heritage Site. The island has been visited since the 16th Century due to its abundance of freshwater and wood. Marine biodiversity studies of the island started in the late 19th Century, with an intense period of research in the 1930’s, and again from the mid 1990’s to the present. The information is scattered and, in some cases, in old publications that are difficult to access. Here I have compiled published records of the marine organisms of the island. At least 1688 species are recorded, with the gastropods (383 species, bony fishes (354 spp. and crustaceans (at least 263 spp. being the most species-rich groups; 45 species are endemic to Isla del Coco National Park (2.7% of the total. The number of species per kilometer of coastline and by square kilometer of seabed shallower than 200m deep are the highest recorded in the Eastern Tropical Pacific. Although the marine biodiversity of Isla del Coco is relatively well known, there are regions that need more exploration, for example, the south side, the pelagic environments, and deeper waters. Also, several groups of organisms, such as the flatworms, nematodes, nemerteans, and gelatinous zooplankton, have been observed around the Island but have been poorly studied or not at all.La Isla del Coco es una isla oceánica en el Pacífico Tropical Oriental; es parte del Parque Nacional más grande de Costa Rica y es un sitio de Patrimonio Mundial. La isla ha sido visitada desde el Siglo XVI por su abundancia de agua dulce y árboles. Estudios de biodiversidad marina de la isla empezaron a finales del Siglo XIX, con un intenso período de investigación en la década de 1930, y de nuevo desde mediados de la década de 1990 al presente. La información sobre organismos marinos se encuentra dispersa y en algunos casos en publicaciones

  8. Distribution of macroinvertebrates on intertidal rocky shores in Gorgona Island, Colombia (Tropical Eastern Pacific

    Directory of Open Access Journals (Sweden)

    Edgardo Londoño-Cruz

    2014-02-01

    Full Text Available Organisms found on rocky shores must endure harsh environmental conditions during tidal changes but scientific studies on tropical rocky shores are scarce, particularly in Colombian shores. Here we describe the spatial distribution of macroinvertebrates associated to the intertidal rocky ecosystems of Gorgona Island, Colombia (Tropical Eastern Pacific. Sampling was carried out in four localities around the Island: La Ventana and La Camaronera (sampled during October 2010 and La Mancora and El Muelle (sampled during March 2011. Two methodologies were used: rapid ecological assessments for qualitative data and quadrats for quantitative data. The richness, abundance, diversity (Shannon-Wiener H’, and evenness (Pielou J’ of macroinvertebrates were determined for and compared between, using one way ANOVA, each locality and the three intertidal zones of La Ventana (see methods. One hundred twenty-one species of macroinvertebrates were found during the sampling period. In all localities, Mollusca was the richest and most abundant taxon (46% of the species and 59% of the individuals, followed by Crustacea (32% of the species and 33% of the individuals. The other groups accounted for the remaining 22% of the richness and 8% of the abundance. Several studies have demonstrated that mollusks and crustaceans are the richest and most abundant taxa in marine benthic communities. Most of the abundant species found were herbivores. The species composition varied among zones. The results of dominant species for each zone are consistent with the ones observed in other tropical rocky intertidal shores. All response variables showed a decreasing pattern from the low to the high intertidal (in La Ventana. Post-hoc results indicated that the high intertidal, the zone with the harshest environmental conditions, had significantly lower values than the other two zones for all response variables. Comparisons between the low intertidal zones of the different localities

  9. Modeling the inorganic bromine partitioning in the tropical tropopause layer over the eastern and western Pacific Ocean

    Directory of Open Access Journals (Sweden)

    M. A. Navarro

    2017-08-01

    Full Text Available The stratospheric inorganic bromine (Bry burden arising from the degradation of brominated very short-lived organic substances (VSLorg and its partitioning between reactive and reservoir species is needed for a comprehensive assessment of the ozone depletion potential of brominated trace gases. Here we present modeled inorganic bromine abundances over the Pacific tropical tropopause based on aircraft observations of VSLorg from two campaigns of the Airborne Tropical TRopopause EXperiment (ATTREX 2013, carried out over the eastern Pacific, and ATTREX 2014, carried out over the western Pacific and chemistry-climate simulations (along ATTREX flight tracks using the specific meteorology prevailing. Using the Community Atmosphere Model with Chemistry (CAM-Chem we model that BrO and Br are the daytime dominant species. Integrated across all ATTREX flights, BrO represents ∼ 43 and 48 % of daytime Bry abundance at 17 km over the western and eastern Pacific, respectively. The results also show zones where Br / BrO > 1 depending on the solar zenith angle (SZA, ozone concentration, and temperature. On the other hand, BrCl and BrONO2 were found to be the dominant nighttime species with ∼  61 and 56 % of abundance at 17 km over the western and eastern Pacific, respectively. The western-to-eastern differences in the partitioning of inorganic bromine are explained by different abundances of ozone (O3, nitrogen dioxide (NO2, total inorganic chlorine (Cly, and the efficiency of heterogeneous reactions of bromine reservoirs (mostly BrONO2 and HBr occurring on ice crystals.

  10. Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen minimum zones

    DEFF Research Database (Denmark)

    Tiano, Laura; Garcia-Robledo, Emilio; Dalsgaard, Tage

    2014-01-01

    was generally below the detection limit (few nmol L-1) in the core of both OMZs, suggesting the presence of vast volumes of functionally anoxic waters in the eastern Pacific Ocean. Oxygen was often not detectable in the deep secondary chlorophyll maximum found at some locations, but other secondary maxima...

  11. Rapid recovery of a coral dominated Eastern Tropical Pacific reef after experimentally produced anthropogenic disturbance.

    Science.gov (United States)

    Muthukrishnan, Ranjan; Fong, Peggy

    2018-05-07

    Local anthropogenic stressors such as overfishing, nutrient enrichment and increased sediment loading have been shown to push coral reefs toward greater dominance by algae. In a few cases this shift has been temporary, with the ability to recover to a healthy coral-dominated community after disturbance, suggesting some systems have considerable resilience. However, an understanding of the circumstances under which reefs may recover is only beginning to emerge. We monitored recovery of a coral-dominated reef in the Eastern Tropical Pacific (ETP) after cessation of a ∼6 month multiple stressor experiment (with herbivore exclosure, nutrient addition, and sediment addition). We observed substantial recovery from small-scale disturbances, though there were differences in both the extent and temporal dynamics of recovery between treatments. Plots that had been caged showed the largest recovery in absolute terms and recovery was quite rapid, while nutrient and sediment addition plots were slower to recover. We also observed different recovery patterns depending on the type of algae that replaced coral during or after disturbances. Macroalgae that established during manipulation were almost completely removed within 2 weeks, revealing that a significant proportion had covered still-living coral. Turf algae persisted longer, but were almost completely replaced by regenerating coral within 18 months. Very little crustose coralline algae were apparent during manipulations, but coverage did increase during recovery. This rapid recovery of corals after simulated anthropogenic disturbance to ETP reefs underscores the value of management of local stressors for short-term recovery and perhaps as a buffer for longer-term global stressors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Revisiting nitrification in the Eastern Tropical South Pacific: A focus on controls

    Science.gov (United States)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Warner, Mark J.; Devol, Allan H.; Ward, Bess B.

    2016-03-01

    Nitrification, the oxidation of ammonium (NH4+) to nitrite (NO2-) and to nitrate (NO3-), is a component of the nitrogen (N) cycle internal to the fixed N pool. In oxygen minimum zones (OMZs), which are hotspots for oceanic fixed N loss, nitrification plays a key role because it directly supplies substrates for denitrification and anaerobic ammonia oxidation (anammox), and may compete for substrates with these same processes. However, the control of oxygen and substrate concentrations on nitrification are not well understood. We performed onboard incubations with 15N-labeled substrates to measure rates of NH4+ and NO2- oxidation in the eastern tropical South Pacific (ETSP). The spatial and depth distributions of NH4+ and NO2- oxidation rates were primarily controlled by NH4+ and NO2- availability, oxygen concentration, and light. In the euphotic zone, nitrification was partially photoinhibited. In the anoxic layer, NH4+ oxidation was negligible or below detection, but high rates of NO2- oxidation were observed. NH4+ oxidation displayed extremely high affinity for both NH4+ and oxygen. The positive linear correlations between NH4+ oxidation rates and in situ NH4+ concentrations and ammonia monooxygenase subunit A (amoA) gene abundances in the upper oxycline indicate that the natural assemblage of ammonia oxidizers responds to in situNH4+ concentrations or supply by adjusting their population size, which determines the NH4+ oxidation potential. The depth distribution of archaeal and bacterial amoA gene abundances and N2O concentration, along with independently reported simultaneous direct N2O production rate measurements, suggests that AOA were predominantly responsible for NH4+ oxidation, which was a major source of N2O production at oxygen concentrations > 5 µM.

  13. Insight into the Pacific Sea Surface Temperature- North American Hydroclimate Connection from an Eastern Tropical North Pacific Coral Record

    Science.gov (United States)

    Sanchez, S. C.; Charles, C. D.; Carriquiry, J. D.

    2015-12-01

    The last few years of record-breaking climate anomalies across North America--a resilient atmospheric ridge and extreme drought over the West Coast, and severe winters across the Midwest and East Coast regions--have been linked to anomalous Pacific sea surface temperatures (Seager et al. 2014, Wang et al. 2014, Hartmann 2015). The synoptic associations prompt important questions on the relation between these unusual phenomena and extreme expressions of known Pacific decadal modes, such as the North Pacific Gyre Oscillation (NPGO). These questions motivate our pursuit to document multiple realizations of decadal variability in the Pacific-North American region through periods of varied radiative forcing. Here we introduce a 178 year, seasonally resolved Porites coral record from Clarion Island (18N, 115W), the westernmost island of the Revillagigedo Archipelago, a region both highly influenced by NPGO SST and SSS variability and critical for NPGO tropical-extratropical communication via the Seasonal Footprinting Mechanism (Vimont et al. 2003). When coupled with tree ring records from the western United States (Griffin and Anchukaitis 2014, MacDonald and Case 2005) and coral records from the central tropical Pacific (Cobb et al. 2001), the δ18O signal from the Clarion coral offers an extended framework of coherent continental hydroclimate and oceanic variability across the Pacific basin beyond the instrumental record. Over the last 200 years, we find clear commonality in the timing, magnitude and spatial expression of variability (illustrated through the NADA Atlas, Cook et al. 2004) amongst the proxy records. The strong relationship between Northeastern Pacific Clarion and the Central Pacific Palmyra record with the North American hydroclimate records can be viewed within the mechanistic framework of the NPGO; this framework is then explored over the last millennium across intervals of varied radiative forcing.

  14. Influence of mesoscale eddies on the distribution of nitrous oxide in the eastern tropical South Pacific

    Science.gov (United States)

    Arévalo-Martínez, Damian L.; Kock, Annette; Löscher, Carolin R.; Schmitz, Ruth A.; Stramma, Lothar; Bange, Hermann W.

    2016-02-01

    Recent observations in the eastern tropical South Pacific (ETSP) have shown the key role of meso- and submesoscale processes (e.g. eddies) in shaping its hydrographic and biogeochemical properties. Off Peru, elevated primary production from coastal upwelling in combination with sluggish ventilation of subsurface waters fuels a prominent oxygen minimum zone (OMZ). Given that nitrous oxide (N2O) production-consumption processes in the water column are sensitive to oxygen (O2) concentrations, the ETSP is a region of particular interest to investigate its source-sink dynamics. To date, no detailed surveys linking mesoscale processes and N2O distributions as well as their relevance to nitrogen (N) cycling are available. In this study, we present the first measurements of N2O across three mesoscale eddies (two mode water or anticyclonic and one cyclonic) which were identified, tracked, and sampled during two surveys carried out in the ETSP in November-December 2012. A two-peak structure was observed for N2O, wherein the two maxima coincide with the upper and lower boundaries of the OMZ, indicating active nitrification and partial denitrification. This was further supported by the abundances of the key gene for nitrification, ammonium monooxygenase (amoA), and the gene marker for N2O production during denitrification, nitrite reductase (nirS). Conversely, we found strong N2O depletion in the core of the OMZ (O2 nitrate (NO3-), thus suggesting active denitrification. N2O depletion within the OMZ's core was substantially higher in the centre of mode water eddies, supporting the view that eddy activity enhances N-loss processes off Peru, in particular near the shelf break where nutrient-rich, productive waters from upwelling are trapped before being transported offshore. Analysis of eddies during their propagation towards the open ocean showed that, in general, "ageing" of mesoscale eddies tends to decrease N2O concentrations through the water column in response to the

  15. Evaluating controls on planktonic foraminiferal geochemistry in the Eastern Tropical North Pacific

    Science.gov (United States)

    Gibson, Kelly Ann; Thunell, Robert C.; Machain-Castillo, Maria Luisa; Fehrenbacher, Jennifer; Spero, Howard J.; Wejnert, Kate; Nava-Fernández, Xinantecatl; Tappa, Eric J.

    2016-10-01

    To explore relationships between water column hydrography and foraminiferal geochemistry in the Eastern Tropical North Pacific, we present δ18O and Mg/Ca records from three species of planktonic foraminifera, Globigerinoides ruber, Globigerina bulloides, and Globorotalia menardii, collected from a sediment trap mooring maintained in the Gulf of Tehuantepec from 2006-2012. Differences in δ18O between mixed-layer species G. ruber and G. bulloides and thermocline-dweller G. menardii track seasonal changes in upwelling. The records suggest an increase in upwelling during the peak positive phase of El Niño, and an overall reduction in stratification over the six-year period. For all three species, Mg/Ca ratios are higher than what has been reported in previous studies, and show poor correlations to calcification temperature. We suggest that low pH (7.6-8.0) and [3 2-CO] values (∼70-120 μmol/kg) in the mixed layer contribute to an overall trend of higher Mg/Ca ratios in this region. Laser Ablation Inductively Coupled Mass Spectrometry analyses of G. bulloides with high Mg/Ca ratios (>9 mmol/mol) reveal the presence of a secondary coating of inorganic calcite that has Mg/Ca and Mn/Ca ratios up to an order of magnitude higher than these elemental ratios in the primary calcite, along with elevated Sr/Ca and Ba/Ca ratios. Some of the samples with abnormally high Mg/Ca are found during periods of high primary productivity, suggesting the alteration may be related to changes in carbonate saturation resulting from remineralization of organic matter in oxygen-poor waters in the water column. Although similar shell layering has been observed on fossil foraminifera, this is the first time such alteration has been studied in shells collected from the water column. Our results suggest a role for seawater carbonate chemistry in influencing foraminiferal calcite trace element:calcium ratios prior to deposition on the seafloor, particularly in high-productivity, low

  16. Description of two new associated infaunal decapod crustaceans (Axianassidae and Alpheidae from the tropical eastern Pacific

    Directory of Open Access Journals (Sweden)

    Arthur Anker

    2015-08-01

    Full Text Available Two new species of infaunal decapod crustaceans are described based on material collected in Bahía Málaga, Pacific coast of Colombia, in 2009. The mud-shrimp Axianassa darrylfelderi sp. nov. (Axianassidae appears to be most closely related to A. australis Rodrigues & Shimizu, 1992, A. canalis Kensley & Heard, 1990, and A. jamaicensis Kensley & Heard, 1990. The new species may be distinguished from each of them by a combination of morphological features, mainly on the uropodal exopod, antennal acicle, third maxilliped and first pleonite. The shrimp Leptalpheus canterakintzi sp. nov. (Alpheidae, associated with burrows of A. darrylfelderi sp. nov., undoubtedly represents the eastern Pacific sister species of the western Atlantic L. axianassae Dworschak & Coelho, 1999, which lives exclusively in burrows of A. australis. The two species are reliably distinguishable only by the proportions of the merus and propodus of the third pereiopod. Leptalpheus azuero Anker, 2011, previously known only from the Pacific coast of Panama, is reported for the first time from Bahía Málaga, Colombia.

  17. Association of whale sharks (Rhincodon typus) with thermo-biological frontal systems of the eastern tropical Pacific.

    Science.gov (United States)

    Ryan, John P; Green, Jonathan R; Espinoza, Eduardo; Hearn, Alex R

    2017-01-01

    Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100-350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in

  18. Annual egg production rates of calanoid copepod species on the continental shelf of the Eastern Tropical Pacific off Mexico

    Science.gov (United States)

    Kozak, Eva R.; Franco-Gordo, Carmen; Palomares-García, Ricardo; Gómez-Gutiérrez, Jaime; Suárez-Morales, Eduardo

    2017-01-01

    We provide the first estimations of calanoid copepod egg production rates (EPR) in the Eastern Tropical Pacific over an annual cycle (January-December 2011). Gravid females were collected twice monthly and incubated for 12 h without food to estimate EPR, weight-specific fecundity (Gf), spawning success (SS, percentage of females to spawn out of the total species incubated per month and season) and egg hatching success (EHS). This study reports the average EPR of 10 species and the monthly EPR and Gf of four planktonic calanoid copepods (Centropages furcatus, Temora discaudata, Pontellina sobrina, and Nannocalanus minor) that spawned with enough frequency to infer their seasonal reproductive patterns. These species showed distinct seasonal reproductive strategies. Most copepod species spawned sporadically with large EPR variability, while three copepod species reproduced throughout the year (C. furcatus, T. discaudata and P. sobrina) and N. minor spawned only during the mixed period (Feb-May). The four species had relatively similar average EPR (C. furcatus 16, T. discaudata 18, P. sobrina 13, and N. minor 12 eggs fem-1 day-1). These are the first EPR estimations of P. sobrina and its previously known reproductive period is expanded. A Canonical Correspondence Analysis (CCA) was used to analyze EPR and species abundance of all calanoid copepods (40 spp.) collected throughout the time series in relation to temperature, salinity, mixed layer depth (MLD), dissolved oxygen, and chlorophyll a (Chl-a) concentrations to identify the variables that best explained the copepod abundance variability. Temperature, Chl-a, and salinity had the strongest effect on the biological variables, linked to seasonal and episodic upwelling-downwelling processes in the surveyed area. As a result of moderate upwelling events and seasonal variation of environmental conditions, it appears relatively few species are capable of maintaining continuous reproduction under the relatively higher

  19. A new Lepeophtheirus (Copepoda: Siphonostomatoida: Caligidae from Isla del Coco National Park, Costa Rica, Eastern Tropical Pacific

    Directory of Open Access Journals (Sweden)

    Eduardo Suárez-Morales

    2012-11-01

    Full Text Available Among the several groups of copepods that are teleost parasites, the siphonostomatoid family Caligidae is by far the most widespread and diverse. With more than 108 nominal species, the caligid genus Lepeophtheirus von Nordmann is one of the most speciose. There are no reports of this genus in Costa Rican waters. A new species of Lepeophtheirus is herein described based on female specimens collected from plankton samples in waters off Bahía Wafer, isla del Coco, an oceanic island in the Eastern Tropical Pacific. The new species, L. alvaroi sp. nov., has some affinities with other congeners bearing a relatively short abdomen, a wider than long genital complex and a 3-segmented exopod of leg 4. it differs from most of these species by the presence of an unbranched maxillular process and by the relative lengths of the terminal claws of leg 4, with two equally long elements. it is most closely related to two other Eastern Pacific species: L. dissimulatus Wilson, 1905 and L. clarionensis Shiino, 1959. it differs from these species by the proportions and shape of the genital complex, the shape of the sternal furca, the relative length of the maxillar segments, the absence of a pectiniform process on the distal maxillar segment, the length of leg 4 and the armature of leg 5. The new species represents the first Lepeophtheirus described from Costa Rican waters of the Pacific. The low diversity of this genus in this tropi- cal region is explained by its tendency to prefer hosts from temperate latitudes. Until further evidence is found, the host of this Lepeophtheirus species remains unknown.

  20. Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Brandes, J.A.; Devol, A.H.; Yoshinari, T.; Jayakumar, D.A.; Naqvi, S.W.A.

    Trench. Ph.D. Thesis, Univ. of Cali- fornia, Los Angeles. -. AND I. R. KAPLAN. 1975. Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pa- cific. Mar. Chem. 3: 271-299. CODISPOTI, L. A., AND J. P....-K. 1979. Geochemistry of inorganic nitrogen compounds in two marine environments: The Santa Barbara basin and the ocean off Peru. Ph.D. Thesis, Univ. of California, Los Angeles. -, AND I. R. KAPLAN. 1989. The eastern tropical Pacific as a source of 15N...

  1. Role of the meridional dipole of SSTA and associated cross-equatorial flow in the tropical eastern Pacific in terminating the 2014 El Niño development

    Science.gov (United States)

    Wu, Yi-Kai; Chen, Lin; Hong, Chi-Cherng; Li, Tim; Chen, Cheng-Ta; Wang, Lu

    2018-03-01

    In the boreal spring of 2014, the oceanic and atmospheric conditions were favorable for an El Niño's development. It was predicted that in 2014, a super El Niño or at least a regular El Niño with normal magnitude, would initiate. However, the growth rate of the sea surface temperature anomaly (SSTA) in the equatorial eastern Pacific suddenly declined in the boreal summer. The physical processes responsible for the termination of the 2014 El Niño were addressed in this study. We hypothesized that a meridional dipole of SSTA, characterized by a pronounced warm SSTA over the eastern North Pacific (ENP) and cold SSTA over the eastern South Pacific (ESP), played a crucial role in blocking the 2014 El Niño's development. The observational analysis revealed that the meridional dipole of SSTA and the relevant anomalous cross-equatorial flow in the tropical eastern Pacific, induced anomalous westward ({u^' }0) currents in the equatorial eastern Pacific, leading to negative anomalous zonal advection term (- {u^' }partial \\overline T /partial xpartial \\overline T /partial znegative SSTA tendency in the boreal summer, and thus killed off the budding 2014 El Niño. The idealized numerical experiments further confirmed that the 2014 El Niño's development could be suppressed by the meridional dipole of SSTA, and both the ENP pole and ESP pole make a contribution.

  2. Physical, chemical and biological CTD and bottle data from R/V Thomas G. Thompson cruise TN278 in eastern tropical North Pacific Ocean from March 19 to April 20, 2012 (NODC Accession 0109846)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report contains data from R/V Thomas G. Thompson cruise TN278 to the eastern tropical north pacific oxygen deficient zone. The objective of the cruise was to...

  3. Physical, Chemical, and Biological CTD and Bottle data from NATHANIEL B. PALMER in Eastern Tropical South Pacific Ocean near Peru/Chile from 2013-06-24 to 2013-07-22 (NCEI Accession 0128141)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report contains data from R/V Nathaniel B. Palmer cruise NBP 1305 to the eastern tropical south pacific oxygen deficient zone. The objective of the cruise was...

  4. New records of sabellids and serpulids (Polychaeta: Sabellidae, Serpulidae) from the Tropical Eastern Pacific

    DEFF Research Database (Denmark)

    Rolando Bastida-Zavala, J.; Rodriguez Buelna, Alondra Sofia; Angel De Leon-Gonzalez, Jesus

    2016-01-01

    in the large expanse of the central and southern Mexican Pacific. Thus, sabellids and serpulids were collected from several shallow water habitats along the coast of Mexican Pacific, such as coastal lagoons, coral reefs, rocky shores and from man-made structures as marinas, piers and ships of several harbors...

  5. A new Lepeophtheirus (Copepoda: Siphonostomatoida: Caligidae from Isla del Coco National Park, Costa Rica, Eastern Tropical Pacific

    Directory of Open Access Journals (Sweden)

    Eduardo Suárez-Morales

    2012-11-01

    Full Text Available Among the several groups of copepods that are teleost parasites, the siphonostomatoid family Caligidae is by far the most widespread and diverse. With more than 108 nominal species, the caligid genus Lepeophtheirus von Nordmann is one of the most speciose. There are no reports of this genus in Costa Rican waters. A new species of Lepeophtheirus is herein described based on female specimens collected from plankton samples in waters off Bahía Wafer, isla del Coco, an oceanic island in the Eastern Tropical Pacific. The new species, L. alvaroi sp. nov., has some affinities with other congeners bearing a relatively short abdomen, a wider than long genital complex and a 3-segmented exopod of leg 4. it differs from most of these species by the presence of an unbranched maxillular process and by the relative lengths of the terminal claws of leg 4, with two equally long elements. it is most closely related to two other Eastern Pacific species: L. dissimulatus Wilson, 1905 and L. clarionensis Shiino, 1959. it differs from these species by the proportions and shape of the genital complex, the shape of the sternal furca, the relative length of the maxillar segments, the absence of a pectiniform process on the distal maxillar segment, the length of leg 4 and the armature of leg 5. The new species represents the first Lepeophtheirus described from Costa Rican waters of the Pacific. The low diversity of this genus in this tropi- cal region is explained by its tendency to prefer hosts from temperate latitudes. Until further evidence is found, the host of this Lepeophtheirus species remains unknown.Entre los varios grupos de copépodos que son parásitos de teleósteos, la familia sifonostomatoide Caligidae incluye los más dispersos y diversos. Con más de 108 especies nominales, el género de calígidos Lepeophtheirus von Nordmann es uno de los más diversos. No existen registros previos de este género en aguas de Costa Rica. Se describe una nueva especie de

  6. Sea level variability in the eastern tropical Pacific as observed by TOPEX and Tropical Ocean-Global Atmosphere Tropical Atmosphere-Ocean Experiment

    Science.gov (United States)

    Giese, Benjamin S.; Carton, James A.; Holl, Lydia J.

    1994-01-01

    Sea surface height measurements from the TOPEX altimeter and dynamic height from Tropical Ocean-Global Atmosphere Tropical Atmosphere-Ocean (TOGA TAO) moorings are used to explore sea level variability in the northeastern tropical Pacific Ocean. Afetr the annual harmonic is removed, there are two distinct bands of variability: one band is centered at 5 deg N to 7 deg N and extends from 165 deg W to 110 deg W, and the other band is centered at 10 deg N to 12 deg N and extends from 120 deg W to the coast of Central America. The correspondence between the two independent observation data sets at 5 deg N is excellent with correlations of about 90%. The variability at 5 deg-7 deg N is identified as instability waves formed just south of the North Equatorial Countercurrent during the months of July and March. Wave amplitudes are largest in the range of longitudes 160 deg-140 deg W, where they can exceed 10 cm. The waves disappear when the equatorial current system weakens, during the months of March and May. The variability at 11 deg N in 1993 has the form of anticyclone eddies. These eddies propagate westward at a speed of about 17 cm/s, consistent with the dispersion characteristics of free Rossby waves. The eddies are shown to have their origin near the coast of central America during northern fall and winter. Their formation seems to result from intense wind bursts across the Gulfs of Tehuantepec and Papagayo which generate strong anticyclonic ocean eddies. The disappearance of the eddies in the summer of 1993 coincidences with the seasonal intensification of equatorial currents. Thus the variability at 11 deg N has very little overlap in time with the variability at 5 deg N.

  7. Explained and unexplained tissue loss in corals from the Tropical Eastern Pacific

    Science.gov (United States)

    Rodriguez-Villalobos, Jenny Carolina; Work, Thierry M.; Calderon-Aguilera, Luis Eduardo; Reyes-Bonilla, Hector; Hernández, Luis

    2015-01-01

    Coral reefs rival rainforest in biodiversity, but are declining in part because of disease. Tissue loss lesions, a manifestation of disease, are present in dominant Pocillopora along the Pacific coast of Mexico. We characterized tissue loss in 7 species of Pocillopora from 9 locations (44 sites) spanning southern to northern Mexico. Corals were identified to species, and tissue loss lesions were photographed and classified as those explainable by predation and those that were unexplained. A focal predation study was done concurrently at 3 locations to confirm origin of explained lesions. Of 1054 cases of tissue loss in 7 species of corals, 84% were associated with predation (fish, snails, or seastar) and the remainder were unexplained. Types of tissue loss were not related to coral density; however there was significant geographic heterogeneity in type of lesion; one site in particular (Cabo Pulmo) had the highest prevalence of predator-induced tissue loss (mainly pufferfish predation). Crown-of-thorns starfish, pufferfish, and snails were the most common predators and preferred P. verrucosa, P. meandrina, and P. capitata, respectively. Of the 9 locations, 4 had unexplained tissue loss with prevalence ranging from 1 to 3% with no species predilection. Unexplained tissue loss was similar to white syndrome (WS) in morphology, indicating additional study is necessary to clarify the cause(s) of the lesions and the potential impacts to dominant corals along the Pacific coast of Mexico.

  8. Targeted observations to improve tropical cyclone track forecasts in the Atlantic and eastern Pacific basins

    Science.gov (United States)

    Aberson, Sim David

    In 1997, the National Hurricane Center and the Hurricane Research Division began conducting operational synoptic surveillance missions with the Gulfstream IV-SP jet aircraft to improve operational forecast models. During the first two years, twenty-four missions were conducted around tropical cyclones threatening the continental United States, Puerto Rico, and the Virgin Islands. Global Positioning System dropwindsondes were released from the aircraft at 150--200 km intervals along the flight track in the tropical cyclone environment to obtain wind, temperature, and humidity profiles from flight level (around 150 hPa) to the surface. The observations were processed and formatted aboard the aircraft and transmitted to the National Centers for Environmental Prediction (NCEP). There, they were ingested into the Global Data Assimilation System that subsequently provides initial and time-dependent boundary conditions for numerical models that forecast tropical cyclone track and intensity. Three dynamical models were employed in testing the targeting and sampling strategies. With the assimilation into the numerical guidance of all the observations gathered during the surveillance missions, only the 12-h Geophysical Fluid Dynamics Laboratory Hurricane Model forecast showed statistically significant improvement. Neither the forecasts from the Aviation run of the Global Spectral Model nor the shallow-water VICBAR model were improved with the assimilation of the dropwindsonde data. This mediocre result is found to be due mainly to the difficulty in operationally quantifying the storm-motion vector used to create accurate synthetic data to represent the tropical cyclone vortex in the models. A secondary limit on forecast improvements from the surveillance missions is the limited amount of data provided by the one surveillance aircraft in regular missions. The inability of some surveillance missions to surround the tropical cyclone with dropwindsonde observations is a possible

  9. Mid-term coral-algal dynamics and conservation status of a Gorgona Island (Tropical Eastern Pacific coral reef

    Directory of Open Access Journals (Sweden)

    Fernando A Zapata

    2010-05-01

    Full Text Available Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004 from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7% and algal cover low (28.8%-37.5% and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP, recovering pre-disturbance (1979 levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (<6% reduction. Despite

  10. Mid-term coral-algal dynamics and conservation status of a Gorgona Island (Tropical Eastern Pacific) coral reef.

    Science.gov (United States)

    Zapata, Fernando A; Rodríguez-Ramírez, Alberto; Caro-Zambrano, Carlos; Garzón-Ferreira, Jaime

    2010-05-01

    Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC) was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004) from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7%) and algal cover low (28.8%-37.5%) and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP), recovering pre-disturbance (1979) levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (< 6% reduction). Despite recurrent

  11. Quantifying the sources and sinks of nitrite in the oxygen minimum zone of the Eastern Tropical South Pacific

    Science.gov (United States)

    Ji, Qixing; Widner, Brittany; Jayakumar, Amal; Ward, Bess; Mulholland, Margaret

    2017-04-01

    In coastal upwelling regions, high surface productivity leads to high export and intense remineralization consuming oxygen. This, in combination with slow ventilation, creates oxygen minimum zones (OMZ) in eastern boundary regions of the ocean, such as the one off the Peruvian coast in the Eastern Tropical South Pacific. The OMZ is characterized by a layer of high nitrite concentration coinciding with water column anoxia. Sharp oxygen gradients are located above and below the anoxic layer (upper and lower oxyclines). Thus, the OMZ harbors diverse microbial metabolisms, several of which involve the production and consumption of nitrite. The sources of nitrite are ammonium oxidation and nitrate reduction. The sinks of nitrite include anaerobic ammonium oxidation (anammox), canonical denitrification and nitrite oxidation to nitrate. To quantify the sources and sinks of nitrite in the Peruvian OMZ, incubation experiments with 15N-labeled substrates (ammonium, nitrite and nitrate) were conducted on a research cruise in January 2015. The direct measurements of instantaneous nitrite production and consumption rates were compared with ambient nitrite concentrations to evaluate the turnover rate of nitrite in the OMZ. The distribution of nitrite in the water column showed a two-peak structure. A primary nitrite maximum (up to 0.5 μM) was located in the upper oxycline. A secondary nitrite maximum (up to 10 μM) was found in the anoxic layer. A nitrite concentration minimum occurred at the oxic-anoxic interface just below the upper oxycline. For the sources of nitrite, highest rates of ammonium oxidation and nitrate reduction were detected in the upper oxycline, where both nitrite and oxygen concentrations were low. Lower rates of nitrite production were detected within the layer of secondary nitrite maximum. For the sinks of nitrite, the rates of anammox, denitrification and nitrite oxidation were the highest just below the oxic-anoxic interface. Low nitrite consumption

  12. Fish community structure on coral habitats with contrasting architecture in the Tropical Eastern Pacific

    Directory of Open Access Journals (Sweden)

    María del Mar Palacios

    2014-02-01

    Full Text Available La arquitectura del paisaje arrecifal, definida por la morfología de los corales dominantes, puede desempeñar un papel importante en la estructura y composición de las comunidades de peces al afectar la disponibilidad de nichos y recursos y modificar las interacciones interespecíficas. Hicimos un estudio comparativo entre la comunidad de peces asociada a una comunidad de corales masivos (CCM y a una de corales ramificados (CCR en la isla Gorgona, Pacífico Oriental Tropical. En cada formación coralina, el sustrato bentónico se evaluó a través de “transectos de cadena”, mientras que la comunidad de peces se valoró con el uso censos visuales en transectos de banda. Hubo diferencias en la abundancia, diversidad (H’ y equitatividad (J’ de las dos comunidades de peces. La CCR, a pesar de estar formada por colonias morfológicamente complejas de corales pocillóporidos, presentó una arquitectura simple y relativamente plana que atrajo principalmente peces territoriales y de talla pequeña. Abundancias significativamente altas de Chromis atrilobata y Thalassoma lucasanum en la CCR, aumentaron la abundancia total de peces, pero ocasionaron una baja diversidad y equitatividad de la comunidad. Por el contrario, la CCM constituida principalmente por especies de corales masivos con diversos tamaños y formas, presentó una arquitectura compleja y de alto relieve capaz de mantener una comunidad de peces mucho más diversa y equitativa, aunque con la misma riqueza de especies de peces que la CCR. Los peces de gran talla, con comportamiento errante y hábitos carnívoros fueron atraídos a la MCC. En general, nuestro estudio evidenció que aunque las especies de coral con crecimiento masivo son importantes en la formación de una arquitectura compleja, cada una de las morfologías de coral dominante (masivo y ramificado atrae y brinda recursos a distintos grupos de peces según su tamaño y grupo trófico. La pérdida de corales masivos o un

  13. Redescription of the poorly known planktonic copepod Pontellopsis lubbockii (Giesbrecht, 1889) (Pontellidae) from the Eastern Tropical Pacific with a key to species

    Science.gov (United States)

    Suárez-Morales, Eduardo; Kozak, Eva

    2012-01-01

    Abstract During a survey of the epipelagic zooplankton carried out off the coast of the Mexican states of Jalisco and Colima, in the Eastern Tropical Pacific, female and male specimens of the poorly known calanoid copepod Pontellopsis lubbockii (Giesbrecht, 1889) were collected. Because previous descriptions and illustrations are largely incomplete and have caused some taxonomical confusion, this species is fully redescribed from specimens from the Mexican Pacific. The species has some characters that have been overlooked, but those related to the female genital double-somite are the most striking, it has two conical dorsal protuberances and a long ventral spiniform process unique of this species. The mouthparts of this species have not been hitherto described and figured, the flexible terminal setae of legs 3 and 4 is noteworthy. The male general morphology agrees in general with previous data, but new details of the leg 5 and geniculate antennule are added. Its mouthparts, with strong, serrate setae on the maxillae and maxillules, and a strong mandibular edge, suggest that this is a predator form. A dichotomous key for the identification of males and females of the species of Pontellopsis known from the Eastern Tropical Pacific is included. PMID:23372406

  14. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific.

    Directory of Open Access Journals (Sweden)

    Douglas B Rusch

    2007-03-01

    Full Text Available The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp. Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed "fragment recruitment," addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed "extreme assembly," made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1 extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2 numerous changes in gene content some with direct adaptive implications; and (3 hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic

  15. Patterns at Multi-Spatial Scales on Tropical Island Stream Insect Assemblages: Gorgona Island Natural National Park, Colombia, Tropical Eastern Pacific

    Directory of Open Access Journals (Sweden)

    Magnolia Longo

    2014-02-01

    Full Text Available Tropical Eastern Pacific island streams (TEPis differ from other neotropical streams in their rainy climate, mixed sedimentary-volcanic geology and faunal composition. Yet, their relationships between environmental characteristics and stream biota remain unexplored. We analyzed the environmental subject at three spatial scales using a fully nested sampling design (6 streams, 2 reaches within each stream, 2 habitats within each reach, and 4 replicates per habitat on Gorgona Island (Colombia. Sampling was carried out in two months with contrasting rainfall during early 2009. We studied the spatial variation of assemblage composition and density along with 27 independent variables within two contrasting rainfall conditions. Five stream-scale variables, two reach-scale variables, and five habitat-scale variables were selected using a Canonical Correspondence Analysis (CCA. A partial CCA showed that the total variance explained was 13.98%, while stream- and habitat-scale variables explained the highest proportion of the variance (5.74 and 5.01%, respectively. Dissolved oxygen (as affected by rainfall, high-density use zone (a management category, and sedimentary geology were the best descriptors of insect assemblages. The two latter descriptors affected fine-scale variables such as total benthic organic matter and gravel substratum, respectively. A Nested ANOVA showed significant differences in total density and richness among streams and habitats, and significant differences between the two sampling months regardless of the spatial scale. The evenness showed a significant stream- and habitat-dependent temporal variability. These results suggested that rainfall regime in Gorgona Island might be a driver of insect assemblage dynamics mediated by water chemistry and substratum properties. Spatial assemblage variability here is greater within habitats (among samples, and a minor fraction occurs at habitat- and stream-scales, while no longitudinal

  16. An ecosystem services perspective for the oceanic eastern tropical Pacific: commercial fisheries, carbon storage, recreational fishing, and biodiversity

    Directory of Open Access Journals (Sweden)

    Summer Lynn Martin

    2016-04-01

    Full Text Available The ocean provides ecosystem services (ES that support humanity. Traditional single-issue management largely failed to protect the full suite of ES. Ecosystem-based management (EBM promotes resilient social-ecological systems that provide ES. To implement EBM, an ES approach is useful: 1 characterize major ES provided (magnitude, geographic extent, monetary value, trends, and stakeholders, 2 identify trade-offs, 3 determine desired outcomes, and 4 manage anthropogenic activities accordingly. Here we apply the ES approach (steps 1-2 to an open ocean ecosystem, the eastern tropical Pacific (ETP, an area of 21 million km2 that includes waters of 12 nations and the oceanic commons, using 35 years (1975-2010 of fisheries and economic data, and 20 years (1986-2006 of ship-based survey data. We examined commercial fisheries, carbon storage, biodiversity, and recreational fishing as the major provisioning, regulating, supporting, and cultural ES, respectively. Average catch value (using U.S. import prices for fish for the 10 most commercially fished species was $2.7 billion yr-1. The value of carbon export to the deep ocean was $12.9 billion yr-1 (using average European carbon market prices. For two fisheries-depleted dolphin populations, the potential value of rebuilding carbon stores was $1.6 million (cumulative; for exploited fish stocks it was also $1.6 million (an estimated reduction of 544,000 mt. Sport fishing expenditures totaled $1.2 billion yr-1, from studies of three popular destinations. These initial, conservative estimates do not represent a complete summary of ETP ES values. We produced species richness maps for cetaceans, seabirds, and ichthyoplankton, and a sightings density map for marine turtles. Over 1/3 of cetacean, seabird, and marine turtle species occur in the ETP, and diversity (or density hotspots are widespread. This study fills several gaps in the assessment of marine and coastal ES by focusing on an oceanic habitat

  17. Salinity fronts in the tropical Pacific Ocean.

    Science.gov (United States)

    Kao, Hsun-Ying; Lagerloef, Gary S E

    2015-02-01

    This study delineates the salinity fronts (SF) across the tropical Pacific, and describes their variability and regional dynamical significance using Aquarius satellite observations. From the monthly maps of the SF, we find that the SF in the tropical Pacific are (1) usually observed around the boundaries of the fresh pool under the intertropical convergence zone (ITCZ), (2) stronger in boreal autumn than in other seasons, and (3) usually stronger in the eastern Pacific than in the western Pacific. The relationship between the SF and the precipitation and the surface velocity are also discussed. We further present detailed analysis of the SF in three key tropical Pacific regions. Extending zonally around the ITCZ, where the temperature is nearly homogeneous, we find the strong SF of 1.2 psu from 7° to 11°N to be the main contributor of the horizontal density difference of 0.8 kg/m 3 . In the eastern Pacific, we observe a southward extension of the SF in the boreal spring that could be driven by both precipitation and horizontal advection. In the western Pacific, the importance of these newly resolved SF associated with the western Pacific warm/fresh pool and El Niño southern oscillations are also discussed in the context of prior literature. The main conclusions of this study are that (a) Aquarius satellite salinity measurements reveal the heretofore unknown proliferation, structure, and variability of surface salinity fronts, and that (b) the fine-scale structures of the SF in the tropical Pacific yield important new information on the regional air-sea interaction and the upper ocean dynamics.

  18. Shredders are abundant and species-rich in tropical continental-island low-order streams: Gorgona Island, Tropical Eastern Pacific, Colombia

    Directory of Open Access Journals (Sweden)

    Magnolia Longo

    2014-02-01

    Full Text Available Macroinvertebrate shredders may have been overlooked in tropical streams due to the geographical bias of early studies, methodological limitations, and the complex influences of local-scale factors. While shredders seem to be scarce in most oceanic island streams, we here test if they are abundant in a continental island. Gut content analyses of benthic macroinvertebrates were used to identify shredding taxa in streams located in different types of forest in Gorgona Island (Tropical Eastern Pacific. General dietary overlap (GO was quantified and relative biomass, relative frequency and the leaf litter percentage in the guts were used to establish the relative importance of each taxon in the shredding guild. Various indices were used to identify the spatial arrangement (i.e. contagious or random of each taxon and shredding guild among streams. We identified 31 shredding taxa that were divided into specialist-shredders (14 taxa, generalist-shredders (10, and collector-shredders (7. There was a complete GO (0.75, p<0.001 for the guild. Cockroaches (Epilampra were the most represented shredders due to the greatest contribution to guild total biomass and to the highest content of leaf litter in their guts. These organisms were more important than shrimps and crabs in terms of abundance and biomass in leaf pack samples. Potimirin shrimps ranked second and Stenochironomus midges ranked third. Among aquatic insects, other secondarily important species were Leptohyphes (Ephemeroptera, Macrelmis, Anchytarsus and Tetraglosa (Coleoptera. Ten taxa exhibited contagious spatial pattern and twenty-one exhibited a random distribution. Resource distribution (i.e., leaf packs between streams was random too. The guild was contagiously distributed, but this result could be highly influenced by the taxa with contagious distribution. Mean abundance, richness and mean biomass of shredders were not significantly correlated with any of the environmental variables

  19. Condiciones oceanográficas en isla Gorgona, Pacífico oriental tropical de Colombia Oceanographic conditions off Gorgona Island, eastern tropical Pacific of Colombia

    Directory of Open Access Journals (Sweden)

    Alan Giraldo

    2008-01-01

    Full Text Available La zona de influencia costera de isla Gorgona es un área marina protegida localizada en el Pacífico Oriental Tropical (POT de Colombia. Aunque alberga uno de los arrecifes coralinos más desarrollados del POT, la caracterización de las condiciones oceanógraficas superficiales locales y su variabilidad temporal y espacial han sido escasamente abordadas. Para incrementar el conocimiento sobre la variabilidad de la temperatura y la salinidad en esta localidad se realizaron registros sistemáticos de estas variables durante cuatro periodos (septiembre 2005, diciembre 2005, marzo 2006 y junio 2006, se instalaron sensores de registro continuo de temperatura a f 5 m de profundidad en la zona oriental y occidental de la isla, y se realizó un monitoreo del patrón local de circulación superficial utilizando un perfilador de corrientes (AWAK-ADCP durante junio 2006 y febrero 2007. Se identificaron dos períodos contrastantes para las condiciones oceanógraficas en la capa superficial (0-50 m de la columna de agua: un período cálido y de baja salinidad superficial entre mayo y diciembre (profundidad termoclina 47 m y un período frío y salino entre enero y abril (profundidad termoclina 7,5 m. Se descartó la presencia de proceso local de surgencia y los resultados indicaron una fuerte influencia de procesos de mesoescala (surgencia en el Panamá Bight sobre la variabilidad temporal de las condiciones oceanógraficas en la zona de estudio. En este mismo sentido se sugiere que la variabilidad espacial estaría más asociada a procesos climáticos regionales (patrón de precipitación y la cercanía de la zona de estudio al complejo deltaico río Patía - río Sanquianga.The near shore zone of Gorgona Island is a protected marine area located in the Eastern Tropical Pacific (ETP of Colombia. Although this is home to one of the most developed coral reefs in the ETP, the characteristics of the local oceanographic conditions at the surface and their

  20. Mid-term coral-algal dynamics and conservation status of a Gorgona Island (Tropical Eastern Pacific coral reef

    Directory of Open Access Journals (Sweden)

    Fernando A Zapata

    2010-05-01

    Full Text Available Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004 from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7% and algal cover low (28.8%-37.5% and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP, recovering pre-disturbance (1979 levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (A través del Sistema

  1. Air-sea interaction in the tropical Pacific Ocean

    Science.gov (United States)

    Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.

    1972-01-01

    Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.

  2. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  3. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  4. Hipéridos (Crustacea: Amphipoda en el sector norte del Pacífico oriental tropical colombiano Hyperiids (Crustacea: Amphipoda along the northern margin of the eastern tropical Pacific of Colombia

    Directory of Open Access Journals (Sweden)

    Bellineth Valencia

    2009-01-01

    Full Text Available Con el objetivo de analizar la composición, abundancia y diversidad de la comunidad de anfipodos hipéridos en las localidades de Punta Cruces y Cabo Marzo, costa norte del Pacífico colombiano (Pacífico oriental tropical, se realizó una campaña de muestreo en enero de 2008 siguiendo una malla de nueve estaciones. Se encontró un total de 20 especies, siendo Lestrigonus bengalensis e Hyperioides sibaginis las más abundantes, representando el 91% de la comunidad en Cabo Marzo y el 95% de la comunidad en Punta Cruces. La abundancia y la diversidad en las dos localidades fueron muy variables, y no presentaron diferencias significativas (Mann Whitney; p > 0,05. Así mismo, se estableció que la similitud en términos de la composición y la abundancia entre las comunidades de hipéridos de Punta Cruces y Cabo Marzo fue de un 64,6%. Este trabajo proporciona información inédita sobre un componente poco estudiado del zooplancton en el Pacífico oriental tropical, incrementando el número de especies registradas para el Pacífico colombiano.In order to analyze the composition, abundance, and diversity of hyperiid amphipods at Punta Cruces and Cabo Marzo, on the northern Pacific coast of Colombia (eastern tropical Pacific, a sampling campaign was carried out in January 2008 that covered a nine-station sampling grid. Twenty species were found, of which Lestrigonus bengalensis and Hyperioides sibaginis were the most abundant (91% of the community at Cabo Marzo and 95% at Punta Cruces. Although the abundance and diversity were highly variable at both sites, they did not differ significantly (Mann Whitney; p > 0.05. Likewise, the similarity in terms of composition and abundance between the hyperiid communities at Punta Cruces and Cabo Marzo was 64.6%. This re-search provides new information regarding a scarcely studied component of the zooplankton in the eastern tropical Pacific and increases the number of hyperiid species reported for the Pacific

  5. An aftereffect of global warming on tropical Pacific decadal variability

    Science.gov (United States)

    Zheng, Jian; Liu, Qinyu; Wang, Chuanyang

    2018-03-01

    Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

  6. Coherent tropical Indo-Pacific interannual climate variability

    OpenAIRE

    Wieners, C.E.; de Ruijter, W.P.M.; Ridderinkhof, W.; von der Heydt, A.S.; Dijkstra, H.A.

    2016-01-01

    A multichannel singular spectrum analysis (MSSA) applied simultaneously to tropical sea surface temperature (SST), zonal wind, and burstiness (zonal wind variability) reveals three significant oscillatory modes. They all show a strong ENSO signal in the eastern Pacific Ocean (PO) but also a substantial SST signal in the western Indian Ocean (IO). A correlation-based analysis shows that the western IO signal contains linearly independent information on ENSO. Of the three Indo-Pacific ENSO mode...

  7. The first report of a microdiverse anammox bacteria community in waters of Colombian Pacific, a transition area between prominent oxygen minimum zones of the eastern tropical Pacific.

    Science.gov (United States)

    Castro-González, M; Molina, V; Rodríguez-Rubio, E; Ulloa, O

    2014-12-01

    Anaerobic ammonium oxidizers contribute to the removal of fixed nitrogen in oxygen-deficient marine ecosystems such as oxygen minimum zones (OMZ). Here we surveyed for the first time the occurrence and diversity of anammox bacteria in the Colombian Pacific, a transition area between the prominent South and North Pacific OMZs. Anammox bacteria were detected in the coastal and oceanic areas of the Colombian Pacific in low oxygen (Chile and Arabian Sea) within Candidatus ‘Scalindua spp’. Moreover, some anammox bacteria OTUs shared a low similarity with environmental phylotypes (86–94%). Our results indicated that a microdiverse anammox community inhabits the Colombian Pacific, generating new questions about the ecological and biogeochemical differences influencing its community structure.

  8. Ecological patterns, distribution and population structure of Prionace glauca (Chondrichthyes: Carcharhinidae) in the tropical-subtropical transition zone of the north-eastern Pacific.

    Science.gov (United States)

    Vögler, Rodolfo; Beier, Emilio; Ortega-García, Sofía; Santana-Hernández, Heriberto; Valdez-Flores, J Javier

    2012-02-01

    Regional ecological patterns, distribution and population structure of Prionace glauca were analyzed based on samples collected on-board two long-line fleets operating in oceanic waters (1994-96/2000-02) and in coastal oceanic waters (2003-2009) of the eastern tropical Pacific off México. Generalized additive models were applied to catch per unit of effort data to evaluate the effect of spatial, temporal and environmental factors on the horizontal distribution of the life stages (juvenile, adult) and the sexes at the estimated depth of catch. The presence of breeding areas was explored. The population structure was characterized by the presence of juveniles' aggregations and pregnant females towards coastal waters and the presence of adult males' aggregations towards oceanic waters. The species exhibited horizontal segregation by sex-size and vertical segregation by sex. Distribution of the sex-size groups at oceanic waters was seasonally affected by the latitude; however, at coastal oceanic waters mainly females were influenced by the longitude. Latitudinal changes on the horizontal distribution were coupled to the seasonal forward and backward of water masses through the study area. Adult males showed positive relationship with high temperatures and high-salinities waters (17.0°-20.0 °C; 34.2-34.4) although they were also detected in low-salinities waters. The distribution of juvenile males mainly occurred beyond low temperatures and low-salinities waters (14.0°-15.0 °C; 33.6-34.1), suggesting a wide tolerance of adult males to explore subartic and subtropical waters. At oceanic areas, adult females were aggregated towards latitudes ecological key region to the reproductive cycle of P. glauca. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Elasmobranchs observed in deepwaters (45-330m at Isla del Coco National Park, Costa Rica (Eastern Tropical Pacific

    Directory of Open Access Journals (Sweden)

    Jorge Cortés

    2012-11-01

    Full Text Available Isla del Coco is an oceanic island 500km off the Pacific coast of Costa Rica. It is a National Park and its marine fauna has been relatively well protected. The island is famous for its elasmobranch (sharks, rays and skates sightings in shallow waters. Here we present a catalogue of the deepwater elasmobranchs observed with the DeepSee submersible. Five species of sharks, six species of skates and one ray have been observed between 45 and 330m depth. Triaenodon obesus, the white tip reef shark, was commonly observed between 80 and 301m, but only in the afternoons. Sphyrna lewini, the scalloped hammerhead shark, was observed as deep a 303m, but commonly between 45 and 90m, and close to the island. Odontaspis ferox, the smalltooth sand tiger shark, was observed between 82 and 316m. Echinorhinus cookei, the prickly shark, was observed between 91 and 320m. Rhincodon typus, the whale shark, was observed only close to the island, between 77 and 80m. Taeniura meyeni, the marbled ray, was observed only close to the island, between 45 and 90m. A Dasyatis sp., similar to the the diamond stingray, was observed only once close to the island at 60m; this is the first report of this genus at Isla del Coco National Park. Manta birostris, the giant manta, was only observed close to the island at 90m. Mobula tarapacana, the sicklefin devil ray, was observed between 60 and 326m, extending its maximum depth almost 10 times what has been reported. Aetobatus narinari, the spotted eagle ray, was observed only close to the island between 60 and 82m. Torpedo peruana, the Peruvian torpedo ray, was observed only once at 313m, and is the first record of this species from Isla del Coco National Park.

  10. The tropospheric biennial oscillation defined by a biennial mode of sea surface temperature and its impact on the atmospheric circulation and precipitation in the tropical eastern Indo-western Pacific region

    Science.gov (United States)

    Kim, Jinju; Kim, Kwang-Yul

    2016-10-01

    Temporal and spatial patterns of anomalous atmospheric circulation and precipitation over the Indo-Pacific region are analyzed in conjunction with the Tropospheric Biennial Oscillation as represented by the biennial mode of sea surface temperature anomalies (SSTA). The biennial components of key variables are identified independently of other variability via CSEOF analysis. Then, its impact on the Asian-Australian monsoon is examined. The biennial mode exhibits a seasonally distinctive atmospheric response over the tropical eastern Indo-western Pacific (EIWP) region (90°-150°E, 20°S-20°N). In boreal summer, local meridional circulation is a distinguishing characteristic over the tropical EIWP region, whereas a meridionally expanded branch of intensified zonal circulation develops in austral summer. Temporally varying evolution and distinct timing of SSTA phase transition in the Indian and Pacific Oceans is considered a main factor for this variation of circulation in the tropical EIWP region. The impact of the biennial mode is not the same between the two seasons, with different impacts over ocean areas in Asian monsoon and Australian monsoon regions.

  11. Anthropogenic Pu distribution in Tropical East Pacific

    International Nuclear Information System (INIS)

    Kinoshita, Norikazu; Sumi, Takahiro; Takimoto, Kiyotaka; Nagaoka, Mika; Yokoyama, Akihiko; Nakanishi, Takashi

    2011-01-01

    The geographical distribution of the anthropogenic radionuclides 238 Pu and 239+240 Pu in the Tropical East Pacific in 2003 was studied from the viewpoint of material migration. We measured the contents of Pu isotopes in seawater and in sediment from the sea bottom. The distributions of Pu isotopes, together with those of coexisting nitrate and phosphate species and dissolved oxygen, are discussed in relation to the potential temperature and potential density (sigma-θ). The Pu contents in sediment samples were compared with those in the seawater. Horizontal migration across the Equator from north to south was investigated at depths down to ∼ 800 m in the eastern Pacific. The Pu distribution at 0-400 m correlated well with the distribution of potential temperature. Maximum Pu levels were observed in the subsurface layer at 600-800 m, corresponding to the depth where sigma-θ ∼ 27.0. It is suggested that the Pu distribution depends on the structure of the water mass and the particular temperature and salinity. The water column/sediment column inventory ratio and the vertical distribution of Pu may reflect the efficiency of scavenging in the relevant water areas. Research Highlights: → Geographical distributions of Pu isotopes were investigated from viewpoint of material migration. → Horizontal migration from north to south was found at depths down to ∼800 m in the eastern Pacific. → Pu distribution at 0-400 m was correlated with water temperature. → The distribution at 600-800 m correlated with water mass structure. → Pu in seawater and sediment gave information about efficiency of scavenging.

  12. Elasmobranchs observed in deepwaters (45-330m at Isla del Coco National Park, Costa Rica (Eastern Tropical Pacific

    Directory of Open Access Journals (Sweden)

    Jorge Cortés

    2012-11-01

    Full Text Available Isla del Coco is an oceanic island 500km off the Pacific coast of Costa Rica. It is a National Park and its marine fauna has been relatively well protected. The island is famous for its elasmobranch (sharks, rays and skates sightings in shallow waters. Here we present a catalogue of the deepwater elasmobranchs observed with the DeepSee submersible. Five species of sharks, six species of skates and one ray have been observed between 45 and 330m depth. Triaenodon obesus, the white tip reef shark, was commonly observed between 80 and 301m, but only in the afternoons. Sphyrna lewini, the scalloped hammerhead shark, was observed as deep a 303m, but commonly between 45 and 90m, and close to the island. Odontaspis ferox, the smalltooth sand tiger shark, was observed between 82 and 316m. Echinorhinus cookei, the prickly shark, was observed between 91 and 320m. Rhincodon typus, the whale shark, was observed only close to the island, between 77 and 80m. Taeniura meyeni, the marbled ray, was observed only close to the island, between 45 and 90m. A Dasyatis sp., similar to the the diamond stingray, was observed only once close to the island at 60m; this is the first report of this genus at Isla del Coco National Park. Manta birostris, the giant manta, was only observed close to the island at 90m. Mobula tarapacana, the sicklefin devil ray, was observed between 60 and 326m, extending its maximum depth almost 10 times what has been reported. Aetobatus narinari, the spotted eagle ray, was observed only close to the island between 60 and 82m. Torpedo peruana, the Peruvian torpedo ray, was observed only once at 313m, and is the first record of this species from Isla del Coco National Park.La Isla del Coco es una isla oceánica a 500km de la costa Pacífica de Costa Rica. Es un Parque Nacional donde la fauna marina ha estado relativamente bien protegida. La isla es famosa por los elasmobranquios (tiburones y rayas en aguas poco profundas. Aquí presentamos un cat

  13. Aerobic ammonium oxidation in the oxycline and oxygen minimum zone of the eastern tropical South Pacific off northern Chile (˜20°S)

    Science.gov (United States)

    Molina, Verónica; Farías, Laura

    2009-07-01

    Aerobic NH 4+ oxidation rates were measured along the strong oxygen gradient associated with the oxygen minimum zone (OMZ) of the eastern tropical South Pacific off northern Chile (˜20°S) during 2000, 2003, and 2004. This process was examined by comparing NH 4+ rates of change during dark incubations, with and without the addition of allylthiourea, a classical inhibitor of the ammonia monooxygenase enzyme of ammonium-oxidizing bacteria. The contribution of aerobic NH 4+ oxidation in dark carbon fixation and NO 2- rates of change were also explored. Thirteen samples were retrieved from the oxycline (252 to ⩽5 μM O 2; 15 to ˜65 m depth) and three from the oxygen minimum core (⩽5 μM O 2; 100-200 m depth). Aerobic NH 4+ oxidation rates were mainly detected in the upper part (15-30 m depth) of the oxycline, with rates ranging from 0.16 to 0.79 μM d -1, but not towards the oxycline base (40-65 m depth). In the oxygen minimum core, aerobic NH 4+ oxidation was in the upper range and higher than in the upper part of the oxycline (0.70 and 1.0 μM d -1). Carbon fixation rates through aerobic NH 4+ oxidation ranged from 0.18 to 0.43 μg C L -1 d -1 and contributed between 33% and 57% of the total dark carbon fixation, mainly towards the oxycline base and, in a single experiment, in the upper part of the oxycline. NO 2- consumption was high (up to 10 μM d -1) towards the oxycline base and OMZ core, but was significantly reduced in experiments amended with allylthiourea, indicating that aerobic NH 4+ oxidation could contribute between 8% and 76% of NO 2- production, which in turn could be available for denitrifiers. Overall, these results support the important role of aerobic NH 4+ oxidizers in the nitrogen and carbon cycling in the OMZ and at its upper boundary.

  14. Tropical cyclone statistics in the Northeastern Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Vadillo, E. [Universidad Autonoma de Baja California Sur (UABCS), La Paz, Baja California Sur (Mexico); Zaytsev, O. [Centro Interdisciplinario de Ciencias Marinas, Instituto Politecnico Nacional, La Paz, Baja California Sur (Mexico)]. E-mail: ozaytsev@ipn.mx; Morales-Perez, R. [Instituto Mexicano de Tecnologia del Agua (IMTA), Jiutepec, Morelos (Mexico)

    2007-04-15

    The principal area of tropical cyclogenesis in the tropical eastern Pacific Ocean is offshore in the Gulf of Tehuantepec, between 8 and 15 degrees Celsius N, and most of these cyclones move towards the west and northwest during their initial phase. Historical analysis of tropical cyclone data in the Northeastern (NE) Pacific over the last 38 years (from 1966 to 2004) shows a mean of 16.3 tropical cyclones per year, consisting of 8.8 hurricanes 198 and 7.4 tropical storms. The analysis shows great geographical variability of cyclone tracks, and that there were a considerable number of hurricane strikes along the Mexican coast. About 50% of the tropical cyclones formed turned north to northeast. It was rare that any passed further north than 30 degrees Celsius N in latitude because of the cold California Current. Hurricane tracks that affected the NE Pacific may be separated into 5 groups. We compared the historical record of the sea surface temperature (SST), related with the El Nino events with a data set of tropical cyclones, including frequency, intensity, trajectory, and duration. Although the statistical dependence between the frequencies of tropical cyclones of the most abundant categories, 1 and 2, over this region and SST data was not convincing, the percentage of high intensity hurricanes and hurricanes with a long life-time (greater than 12 days) was more during El Nino years than in non-El Nino years. [Spanish] La principal region de la formacion de ciclones en el oceano Pacifico Este es el Golfo de Tehuantepec, entre los 8 y los 15 grados Celsius N. En su fase inicial los ciclones se mueven hacia el oeste y el noroeste. El analisis historico de los ciclones que se han generado durante los ultimos 38 anos (de 1966 a 2004) muestra un promedio de 16.2 ciclones por ano, consistentes en 8.8 huracanes y 7.4 tormentas tropicales. El analisis muestra una gran variabilidad geografica en la trayectoria de los ciclones, de los cuales un gran numero impacta las

  15. Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism

    Science.gov (United States)

    Miao, Jiapeng; Wang, Tao; Wang, Huijun; Sun, Jianqi

    2018-06-01

    In order to examine the response of the tropical Pacific Walker circulation (PWC) to strong tropical volcanic eruptions (SVEs), we analyzed a three-member long-term simulation performed with HadCM3, and carried out four additional CAM4 experiments. We found that the PWC shows a significant interannual weakening after SVEs. The cooling effect from SVEs is able to cool the entire tropics. However, cooling over the Maritime Continent is stronger than that over the central-eastern tropical Pacific. Thus, non-uniform zonal temperature anomalies can be seen following SVEs. As a result, the sea level pressure gradient between the tropical Pacific and the Maritime Continent is reduced, which weakens trade winds over the tropical Pacific. Therefore, the PWC is weakened during this period. At the same time, due to the cooling subtropical and midlatitude Pacific, the Intertropical Convergence Zone (ITCZ) and South Pacific convergence zone (SPCZ) are weakened and shift to the equator. These changes also contribute to the weakened PWC. Meanwhile, through the positive Bjerknes feedback, weakened trade winds cause El Niño-like SST anomalies over the tropical Pacific, which in turn further influence the PWC. Therefore, the PWC significantly weakens after SVEs. The CAM4 experiments further confirm the influences from surface cooling over the Maritime Continent and subtropical/midlatitude Pacific on the PWC. Moreover, they indicate that the stronger cooling over the Maritime Continent plays a dominant role in weakening the PWC after SVEs. In the observations, a weakened PWC and a related El Niño-like SST pattern can be found following SVEs.

  16. A Record of the Eastern Tropical Pacific of Water Column Structure Reorganization during the Rapid Climate Changes of Marine Isotope Stage 3.

    Science.gov (United States)

    Hendy, I. L.

    2007-05-01

    Little is known about the details of paleoceanographic changes in the Eastern Tropical Pacific (ETP) during marine isotope stage 3. Here we present a high resolution record of climate change from core ME0005A 10JC (15.7°N; 95.3°E, 1040 m water depth) collected in the Gulf of Tehuantepec spanning 48 to 38 Ka. Planktonic and benthic stable isotope records have been generated alongside Corg, carbonate, δ15N and trace metal concentrations of bulk sediments. Seasonal intense wind forced upwelling produces high Corg flux in the Gulf. In winter, high atmospheric pressures in the Gulf of Mexico and low pressures in the ETP (associated with the ITCZ) create a strong pressure gradient generally blocked by high mountains along the isthmus. A gap near the Gulf of Tehuantepec allows air to spill over into the Pacific creating a hurricane force wind (the Tehuanos) that pushes water off the broad shelf, producing non-Ekman upwelling. Corg production increases from 48 to 38 Ka in association with increasing nitrate utilization as indicated by increasing δ15N values. Conservative trace metals increase relative to non-conservative between 45 and 43 Ka simultaneously with shift to more positive benthic δ13C, while non-conservative (nutrient- like) metals increase after 43 Ka. A prominent short ~1‰ negative shift in benthic δ18O occurs at 44.5 Ka with a 0.5‰ positive step occurring at 43.5 Ka. Globigerina ruber records δ18O values of ~-1‰ between 46 and 45 Ka, decreasing by ~1‰ at 45 Ka, while δ13C values vary between 0 and 1‰. Globigerina bulloides records δ18O values of ~0.5‰ and δ13C of 1‰ between 46 and 45 Ka, but records δ18O values of ~-1‰ and δ13C of -1‰ between 44 and 42 Ka. G. bulloides is associated with winter upwelling in the region, while G. ruber is a surface dweller associated with the Costa Rica Current that enters the Gulf in summer. Neogloboquadrina dutertrei and Globorotalia menardii generally record δ18O values of 0.5 to 0‰ and δ13

  17. Using Genome-Wide SNPs to Detect Structure in High-Diversity and Low-Divergence Populations of Severely Impacted Eastern Tropical Pacific Spinner (Stenella longirostris And Pantropical Spotted Dolphins (S. attenuata

    Directory of Open Access Journals (Sweden)

    Matthew Steven Leslie

    2016-12-01

    Full Text Available Millions of spinner (Stenella longirostris and pantropical spotted dolphins (Stenella attenuata died since the 1960’s as bycatch in tuna nets in the eastern tropical Pacific Ocean. Despite three decades of protection, they show little-to-no sign of recovery (although recent fisheries-independent abundance estimates are not available. In efforts to establish biologically meaningful management boundaries for recovery, endemic subspecies and multiple stocks have been proposed. However, genetic differentiation among most of these units has been difficult to identify, possibly due to low statistical power stemming from large historical abundances, ongoing gene flow, and recent divergence. We tested for genetic structure at multiple hierarchical levels by analyzing the largest dataset to date brought to bear on these questions. Single nucleotide polymorphisms (SNPs were collected from nuclear DNA regions associated with the restriction enzyme site PstI from 72 spinner dolphins and 58 pantropical spotted dolphins using genotype-by-sequencing (GBS. Our results support the current subspecies for both species and indicate stock-level separation for Tres Marias spinner dolphins and the two offshore pantropical spotted dolphin stocks in this area. Although bycatch has been reduced a small fraction of pre-protection levels, incidental mortality continues to impact these populations. Our results are important for the ongoing management and recovery of these highly-impacted pelagic dolphins in the eastern tropical Pacific Ocean.

  18. No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata.

    Science.gov (United States)

    Baums, Iliana B; Boulay, Jennifer N; Polato, Nicholas R; Hellberg, Michael E

    2012-11-01

    The expanse of deep water between the central Pacific islands and the continental shelf of the Eastern Tropical Pacific is regarded as the world's most potent marine biogeographic barrier. During recurrent climatic fluctuations (ENSO, El Niño Southern Oscillation), however, changes in water temperature and the speed and direction of currents become favourable for trans-oceanic dispersal of larvae from central Pacific to marginal eastern Pacific reefs. Here, we investigate the population connectivity of the reef-building coral Porites lobata across the Eastern Pacific Barrier (EPB). Patterns of recent gene flow in samples (n = 1173) from the central Pacific and the Eastern Tropical Pacific (ETP) were analysed with 12 microsatellite loci. Results indicated that P. lobata from the ETP are strongly isolated from those in the central Pacific and Hawaii (F(ct) ' = 0.509; P Clipperton Atoll, an oceanic island on the eastern side of the EPB, grouped with the central Pacific. Within the central Pacific, Hawaiian populations were strongly isolated from three co-occurring clusters found throughout the remainder of the central Pacific. No further substructure was evident in the ETP. Changes in oceanographic conditions during ENSO over the past several thousand years thus appear insufficient to support larval deliveries from the central Pacific to the ETP or strong postsettlement selection acts on ETP settlers from the central Pacific. Recovery of P. lobata populations in the frequently disturbed ETP thus must depend on local larval sources. © 2012 Blackwell Publishing Ltd.

  19. Tropical Pacific Observing for the Next Decade

    Science.gov (United States)

    Legler, David M.; Hill, Katherine

    2014-06-01

    More than 60 scientists and program officials from 13 countries met at the Scripps Institution of Oceanography for the Tropical Pacific Observing System (TPOS) 2020 Workshop. The workshop, although motivated in part by the dramatic decline of NOAA's Tropical Atmosphere Ocean (TAO) buoy reporting from mid-2012 to early 2014 (see http://www.bloomberg.com/news/2014-03-07/aging-el-nino-buoys-getting-fixed-as-weather-forecasts-at-risk.html), evaluated the needs for tropical Pacific observing and initiated efforts to develop a more resilient and integrative observing system for the future.

  20. Anfípodos hiperídeos (Crustacea: Peracarida del Parque Nacional Isla del Coco, Costa Rica, Pacífico Tropical Oriental Hyperiid amphipods (Crustacea: Peracarida of the Parque Nacional Isla del Coco, Costa Rica, Eastern Tropical Pacific

    Directory of Open Access Journals (Sweden)

    Rebeca Gasca

    2012-11-01

    together with data on their taxonomy and their distribution both in the surveyed area and in general. Most of the species recorded in this zone have been reported in previous surveys in the Eastern Tropical Pacific region and particularly in oceanic waters of Costa Rica. We found eight species representing new records for Costa Rican waters, thus increasing by 26% (to 38 the number of hyperiid species known from Costa Rica. The most frequent species were Lestrigonus shoemakeri, L. bengalensis, Hyperiodes sibaginis, and Phronimopsis spinifera. We expect that additional samplings both from surface and deep waters will expand the knowledge of the diversity of the group in this important protected area.

  1. Atmospheric salt deposition in a tropical mountain rainforest at the eastern Andean slopes of south Ecuador – Pacific or Atlantic origin?

    Directory of Open Access Journals (Sweden)

    S. Makowski Giannoni

    2016-08-01

    Full Text Available Sea salt (NaCl has recently been proven to be of the utmost importance for ecosystem functioning in Amazon lowland forests because of its impact on herbivory, litter decomposition and, thus, carbon cycling. Sea salt deposition should generally decline as distance from its marine source increases. For the Amazon, a negative east–west gradient of sea salt availability is assumed as a consequence of the barrier effect of the Andes Mountains for Pacific air masses. However, this generalized pattern may not hold for the tropical mountain rainforest in the Andes of southern Ecuador. To analyse sea salt availability, we investigated the deposition of sodium (Na+ and chloride (Cl−, which are good proxies of sea spray aerosol. Because of the complexity of the terrain and related cloud and rain formation processes, sea salt deposition was analysed from both, rain and occult precipitation (OP along an altitudinal gradient over a period between 2004 and 2009. To assess the influence of easterly and westerly air masses on the deposition of sodium and chloride over southern Ecuador, sea salt aerosol concentration data from the Monitoring Atmospheric Composition and Climate (MACC reanalysis data set and back-trajectory statistical methods were combined. Our results, based on deposition time series, show a clear difference in the temporal variation of sodium and chloride concentration and Na+ ∕ Cl− ratio in relation to height and exposure to winds. At higher elevations, sodium and chloride present a higher seasonality and the Na+ ∕ Cl− ratio is closer to that of sea salt. Medium- to long-range sea salt transport exhibited a similar seasonality, which shows the link between our measurements at high elevations and the sea salt synoptic transport. Although the influence of the easterlies was predominant regarding the atmospheric circulation, the statistical analysis of trajectories and hybrid receptor models revealed a stronger impact of the

  2. The Variation of Tropical Cyclone Rainfall within the North Atlantic and Pacific as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward; Pierce, Harold; Adler, Robert

    1999-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations in the North Atlantic and in three equal geographical regions of the North Pacific (i.e., Western, Central, and Eastern North Pacific). These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the 1987-1989, 1991-1998 North Atlantic and Pacific rainfall during June-November when tropical cyclones are most abundant. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from the Defence Meteorological Satellite Program (DMSP) Special Sensor Microwave/ Radiometer (SSM/I) observations within 444 km radius of the center of those North Atlantic and Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are then multiplied by the number of hours in a given month. Mean monthly rainfall amounts are also constructed for all the other North Atlantic and Pacific raining systems during this eleven year period for the purpose of estimating the geographical distribution and intensity of rainfall contributed by non-tropical cyclone systems. Further, the combination of the non-tropical cyclone and tropical cyclone (i.e., total) rainfall is constructed to delineate the fractional amount that tropical cyclones contributed to the total North Pacific rainfall.

  3. RELATIONSHIPS BETWEEN ZONAL WIND ANOMALIES IN HIGH AND LOW TROPOSPHERE AND ANNUAL FREQUENCY OF NW PACIFIC TROPICAL CYCLONES

    Institute of Scientific and Technical Information of China (English)

    GONG Zhen-song; HE Min

    2007-01-01

    Relationships between large-scale zonal wind anomalies and annual frequency of NW Pacific tropical cyclones and possible mechanisms are investigated with the methods of correlation and composition.It is indicated that when △ U200-△U850 >0 in the eastern tropical Pacific and △ U200- △U850 <0 in western tropical Pacific, the Walker cell is stronger in the Pacific tropical region and the annual frequency of NW Pacific tropical cyclone are above normal. In the years with zonal wind anomalies, the circulation of high and low troposphere and the vertical motions in the troposphere have significant characteristics. In the time scale of short-range climate prediction, zonal wind anomalies in high and low troposphere are useful as a preliminary signal of the annual frequency prediction of NW Pacific tropical cyclones.

  4. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites.

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    2000-10-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an 11-yr period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and interannual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important.To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444-km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain-rate observations are converted to monthly rainfall amounts and then compared with those for nontropical cyclone systems.The main results of this study indicate that 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maximum tropical cyclone rainfall is poleward (5°-10° latitude depending on longitude) of the maximum nontropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% off the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the Intertropical Convergence Zone; and 5) in general, tropical cyclone rainfall is enhanced during the El Niño years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  5. Relationship of boreal summer 10-20-day and 30-60-day intraseasonal oscillation intensity over the tropical western North Pacific to tropical Indo-Pacific SST

    Science.gov (United States)

    Wu, Renguang; Cao, Xi

    2017-06-01

    The present study contrasts interannual variations in the intensity of boreal summer 10-20-day and 30-60-day intraseasonal oscillations (ISOs) over the tropical western North Pacific and their factors. A pronounced difference is found in the relationship of the two ISOs to El Niño-Southern Oscillation. The 10-20-day ISO intensity is enhanced during El Niño developing summer, whereas the 30-60-day ISO intensity is enhanced during La Niña decaying summer. The above different relationship is interpreted as follows. The equatorial central and eastern Pacific SST anomalies modify vertical wind shear, lower-level moisture, and vertical motion in a southeast-northwest oriented band from the equatorial western Pacific to the tropical western North Pacific where the 10-20-day ISOs originate and propagate. These background field changes modulate the amplitude of 10-20-day ISOs. Preceding equatorial central and eastern Pacific SST anomalies induce SST anomalies in the North Indian Ocean in summer, which in turn modify vertical wind shear and vertical motion over the tropical western North Pacific. The modified background fields influence the amplitude of the 30-60-day ISOs when they reach the tropical western North Pacific from the equatorial region. A feedback of ISO intensity on local SST change is identified in the tropical western North Pacific likely due to a net effect of ISOs on surface heat flux anomalies. This feedback is more prominent from the 10-20-day than the 30-60-day ISO intensity change.

  6. ENSO surface longwave radiation forcing over the tropical Pacific

    Directory of Open Access Journals (Sweden)

    K. G. Pavlakis

    2007-01-01

    Full Text Available We have studied the spatial and temporal variation of the surface longwave radiation (downwelling and net over a 21-year period in the tropical and subtropical Pacific Ocean (40 S–40 N, 90 E–75 W. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database and reanalysis data from NCEP/NCAR (acronyms explained in main text, for the key atmospheric and surface input parameters. An excellent correlation was found between the downwelling longwave radiation (DLR anomaly and the Niño-3.4 index time-series, over the Niño-3.4 region located in the central Pacific. A high anti-correlation was also found over the western Pacific (15–0 S, 105–130 E. There is convincing evidence that the time series of the mean downwelling longwave radiation anomaly in the western Pacific precedes that in the Niño-3.4 region by 3–4 months. Thus, the downwelling longwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to asses whether or not El Niño or La Niña conditions prevail. Over the Niño-3.4 region, the mean DLR anomaly values range from +20 Wm−2 during El Niño episodes to −20 Wm−2 during La Niña events, while over the western Pacific (15–0 S, 105–130 E these values range from −15 Wm−2 to +10 Wm−2, respectively. The long- term average (1984–2004 distribution of the net downwelling longwave radiation at the surface over the tropical and subtropical Pacific for the three month period November-December-January shows a net thermal cooling of the ocean surface. When El Niño conditions prevail, the thermal radiative cooling in the central and south-eastern tropical Pacific becomes weaker by 10 Wm−2 south of the equator in the central Pacific (7–0 S, 160–120 W for the three-month period of NDJ, because the DLR increase is larger than the increase in surface thermal emission. In contrast, the

  7. A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990

    International Nuclear Information System (INIS)

    Yu, Jin-Yi; Kim, Seon Tae; Lu, Mong-Ming

    2012-01-01

    A newly released reanalysis dataset covering the period 1979–2009 is analyzed to show that the sea surface temperature (SST) variability in the tropical central Pacific is more closely related to the SST variability in the tropical eastern Pacific before 1990 but more closely related to sea level pressure (SLP) variations associated with the North Pacific Oscillation (NPO) after 1990. Only during the period after 1990 can the NPO excite large SST variability in the tropical central Pacific. Related to this change, El Niño Southern Oscillation (ENSO) SST anomalies tend to spread from the eastern to central tropical Pacific before 1990 in a pattern resembling that associated with the Eastern Pacific (EP) type of ENSO, but are more closely connected to SST variability in the subtropical north Pacific after 1990 with a pattern resembling that of the Central Pacific (CP) type of ENSO. This study concludes that the increased influence of the NPO on the tropical Pacific is a likely reason for the increasing occurrence of the CP type of ENSO since 1990. An analysis of the mean atmospheric circulation during these two periods suggests that the increased NPO influence is associated with a strengthening Hadley circulation after 1990. (letter)

  8. Physical and biogeochemical forcing of oxygen and nitrate changes during El Niño/El Viejo and La Niña/La Vieja upper-ocean phases in the tropical eastern South Pacific along 86° W

    Directory of Open Access Journals (Sweden)

    P. J. Llanillo

    2013-10-01

    Full Text Available Temporal changes in the water mass distribution and biogeochemical signals in the tropical eastern South Pacific are investigated with the help of an extended optimum multi-parameter (OMP analysis, a technique for inverse modeling of mixing and biogeochemical processes through a multidimensional least-square fit. Two ship occupations of a meridional section along 85°50' W from 14° S to 1° N are analysed during relatively warm (El Niño/El Viejo, March 1993 and cold (La Niña/La Vieja, February 2009 upper-ocean phases. The largest El Niño–Southern Oscillation (ENSO impact was found in the water properties and water mass distribution in the upper 200 m north of 10° S. ENSO promotes the vertical motion of the oxygen minimum zone (OMZ associated with the hypoxic equatorial subsurface water (ESSW. During a cold phase the core of the ESSW is found at shallower layers, replacing shallow (top 200 m subtropical surface water (STW. The heave of isopycnals due to ENSO partially explains the intrusion of oxygen-rich and nutrient-poor antarctic intermediate water (AAIW into the depth range of 150–500 m. The other cause of the AAIW increase at shallower depths is that this water mass flowed along shallower isopycnals in 2009. The shift in the vertical location of AAIW reaching the OMZ induces changes in the amount of oxygen advected and respired inside the OMZ: the larger the oxygen supply, the greater the respiration and the lower the nitrate loss through denitrification. Variations in the intensity of the zonal currents in the equatorial current system, which ventilates the OMZ from the west, are used to explain the patchy latitudinal changes of seawater properties observed along the repeated section. Significant changes reach down to 800 m, suggesting that decadal variability (Pacific decadal oscillation is also a potential driver in the observed variability.

  9. A comparison of visual and collection-based methods for assessing community structure of coral reef fishes in the tropical Eastern Pacific

    NARCIS (Netherlands)

    Alzate, Adriana; Zapata, Fernando A.; Giraldo, Alan

    Gorgona Island, the major insular area in the Colombian Pacific Ocean, is characterized by a remarkably high biological and ecosystem diversity for this area of the world. Coral reefs are well developed and their fish communities have been described using conventional visual surveys. These methods,

  10. Application of multiplex PCR approaches for shark molecular identification: feasibility and applications for fisheries management and conservation in the Eastern Tropical Pacific.

    Science.gov (United States)

    Caballero, S; Cardeñosa, D; Soler, G; Hyde, J

    2012-03-01

    Here we describe the application of new and existing multiplex PCR methodologies for shark species molecular identification. Four multiplex systems (group ID, thresher sharks, hammerhead sharks and miscellaneous shark) were employed with primers previously described and some designed in this study, which allow for species identification after running PCR products through an agarose gel. This system was implemented for samples (bodies and fins) collected from unidentified sharks landed in the port of Buenaventura and from confiscated tissues obtained from illegal fishing around the Malpelo Island Marine Protected Area, Pacific Coast of Colombia. This method has allowed reliable identification, to date, of 407 samples to the genus and/or species levels, most of them (380) identified as the pelagic thresher shark (Alopias pelagicus). Another seven samples were identified as scalloped hammerhead sharks (Sphyrna lewini). This is an easy-to-implement and reliable identification method that could even be used locally to monitor shark captures in the main fishing ports of developed and developing countries. © 2011 Blackwell Publishing Ltd.

  11. Impacts of the Tropical Pacific Cold Tongue Mode on ENSO Diversity Under Global Warming

    Science.gov (United States)

    Li, Yang; Li, Jianping; Zhang, Wenjun; Chen, Quanliang; Feng, Juan; Zheng, Fei; Wang, Wei; Zhou, Xin

    2017-11-01

    The causes of ENSO diversity, although being of great interest in recent research, do not have a consistent explanation. This study provides a possible mechanism focused on the background change of the tropical Pacific as a response to global warming. The second empirical orthogonal function mode of the sea surface temperature anomalies (SSTA) in the tropical Pacific, namely the cold tongue mode (CTM), represents the background change of the tropical Pacific under global warming. Using composite analysis with surface observations and subsurface ocean assimilation data sets, we find ENSO spatial structure diversity is closely associated with the CTM. A positive CTM tends to cool the SST in the eastern equatorial Pacific and warm the SST outside, as well as widen (narrow) zonal and meridional scales for El Niño (La Niña), and vice versa. Particularly in the positive CTM phase, the air-sea action center of El Niño moves west, resembling the spatial pattern of CP-El Niño. This westward shift of center is related to the weakened Bjerknes feedback (BF) intensity by the CTM. By suppressing the SSTA growth of El Niño in the eastern equatorial Pacific, the CTM contributes to more frequent occurrence of CP-El Niño under global warming.

  12. Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part I: Roles of the Subtropical Ridge

    OpenAIRE

    Chang, C.-P.; Zhang, Yongsheng; Li, Tim

    2000-01-01

    The interannual relationship between the East Asian summer monsoon and the tropical Pacific SSTs is studied using rainfall data in the Yangtze River Valley and the NCEP reanalysis for 1951–96. The datasets are also partitioned into two periods, 1951–77 and 1978–96, to study the interdecadal variations of this relationship. A wet summer monsoon is preceded by a warm equatorial eastern Pacific in the previous winter and followed by a cold equatorial eastern Pacific in the following fa...

  13. Regional impacts of ocean color on tropical Pacific variability

    OpenAIRE

    W. Anderson; A. Gnanadesikan; A. Wittenberg

    2009-01-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly se...

  14. Nitrogen and oxygen isotopic composition of N sub(2)O from suboxic waters of the eastern tropical North Pacific and the Arabian Sea - measurement by continuous-flow isotope-ratio monitoring

    Digital Repository Service at National Institute of Oceanography (India)

    Yoshinari, T.; Altabet, M.A.; Naqvi, S.W.A.; Codispoti, L.; Jayakumar, D.A.; Kuhland, M.; Devol, A.

    of the correlation between apparent oxygen utilization and N,O con- centration found in many portions of the ocean. However, such a correlation is not sufficient evi- dence to conclude that nitrification is the dominant source (Pierotti and Rasmussen, 1980...,O is also significantly affected by denitrification (Yoshinari and Koike, 1994). In the eastern tropical North Pa- cific, nitrate deficits (an estimate of the NO; con- verted to N, by denitrification) are relatively large in the water mass that contains...

  15. Paleoclimate of Quaternary Costa Rica: Analysis of Sediment from ODP Site 1242 in the Eastern Tropical Pacific to Explore the Behavior of the Intertropical Convergence Zone (ITCZ) and Oceanic Circulation

    Science.gov (United States)

    Buczek, C. R.; Joseph, L. H.

    2017-12-01

    Studies of grain size, magnetic fabric, and terrigenous mass accumulation rates (MAR) on oceanic sediment can provide insights into climatic conditions present at or near the time of deposition by helping to delineate changes in rainfall and oceanic circulation intensities. The fairly homogenous hemipelagic nannofossil clays and clayey nannofossil oozes collected in the upper portion of Ocean Drilling Program (ODP) Site 1242 provide a 1.4 million year sediment record from the Cocos Ridge, in relatively shallow waters of the eastern tropical Pacific Ocean, off the coast of present day Central and South America. Information about shifts in rainfall and oceanic circulation provided by this study may be helpful in understanding changes in the location and behavior of the Intertropical Convergence Zone (ITCZ), and/or other climatic factors, in this area during the Pleistocene and Holocene Epochs. Approximately 130 paired side-by-side samples were selected at approximately evenly spaced intervals throughout the uppermost 190 mcd of the core. To obtain terrigenous grain size and MARs, one set of sediment samples was subject to a five-step chemical extraction process to dissolve any oxy-hydroxy coatings, remove the biogenic carbonate and silicate components, and sieve out grains larger than 63 µm. The pre- and post-extraction weights were compared to calculate a terrigenous weight percent (%) from which the terrigenous MAR values were then calculated, with the use of linear sediment rates and dry bulk density measurements determined from shipboard ODP 1242 analyses. Magnetic fabric, or anisotropy of magnetic susceptibility (AMS), was analyzed on a KLY4S-Kappabridge using the second set of samples taken in pmag cubes. Terrigenous MAR values range between 3.1 and 10.9 g/cm2/kyr, while P' (AMS) values range between 1.004 and 1.04 SI. A distinctive trend is noted in both factors, with both exhibiting relatively high initial values that then decrease from the beginning of the

  16. Net Community and Gross Photosynthetic Production Rates in the Eastern Tropical South Pacific, as Determined from O2/AR Ratios and Triple Oxygen Isotopic Composition of Dissolved O2

    Science.gov (United States)

    Prokopenko, M. G.; Yeung, L. Y.; Berelson, W.; Fleming, J.; Rollins, N.; Young, E. D.; Haskell, W. Z.; Hammond, D. E.; Capone, D. G.

    2010-12-01

    This study assesses the rates of ocean carbon production and its fate with respect to recycling or export in the Eastern Tropical South Pacific (ETSP). ETSP has been previously identified as a region where N2 fixation and denitrification may be spatially coupled; this is also a region of localized CO2 outgassing. Using an Equilibrated Inlet Mass Spectrometer (EIMS) system, we obtained continuous measurements of the biological O2 supersaturation in the mixed layer along the ship track encompassing a region bounded by 10-20° S and 80-100° W in January - March, 2010. Vertical profiles were also taken at selected stations and analyzed for dissolved O2/Ar ratios on EIMS and triple oxygen isotope composition (17O excess) on a multi-collector IRMS (Isotope Ratio Mass Spectrometer) at UCLA. Gas exchange rates were estimated using two approaches: the Rn-222 deficit method and the wind parameterization method, which utilized wind speeds extracted from ASCAT satellite database. Oxygen Net Community Production (O-NCP) rates calculated based on biological O2 supersaturation ranged from slightly negative to ~ 0.3 - 15 mmol/m2d, with higher rates along the northern part of the transect. Oxygen Gross Community Production (O-GPP) rates calculated from 17O excess were between 50 ± 20 and 200 ± 40 mmol/m2d, with higher rates observed along the northern cruise transect as well. Notably, the NCP/GPP ratios along the northern transect were higher by the factor of 2 to 3 than their southern counterparts. The O2/Ar-based NCP rates were comparable to POC flux measured with floating traps deployed at the southern stations, but exceeded by a factor of 5-10 the trap POC fluxes obtained at the northern stations. A one-dimensional box model has been constructed to quantify the magnitude of oxygen primary production below the mixed layer. The results of this work will be integrated with measurements of 15-N2 uptake that are in progress, to constrain the potential contribution of N2 fixation

  17. The Impacts of Daily Surface Forcing in the Upper Ocean over Tropical Pacific: A Numerical Study

    Science.gov (United States)

    Sui, C.-H.; Rienecker, Michele M.; Li, Xiaofan; Lau, William K.-M.; Laszlo, Istvan; Pinker, Rachel T.

    2001-01-01

    Tropical Pacific Ocean is an important region that affects global climate. How the ocean responds to the atmospheric surface forcing (surface radiative, heat and momentum fluxes) is a major topic in oceanographic research community. The ocean becomes warm when more heat flux puts into the ocean. The monthly mean forcing has been used in the past years since daily forcing was unavailable due to the lack of observations. The daily forcing is now available from the satellite measurements. This study investigates the response of the upper ocean over tropical Pacific to the daily atmospheric surface forcing. The ocean surface heat budgets are calculated to determine the important processes for the oceanic response. The differences of oceanic responses between the eastern and western Pacific are intensively discussed.

  18. Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM

    Directory of Open Access Journals (Sweden)

    P. Delecluse

    2003-06-01

    Full Text Available A new coupled GCM (SINTEX has been developed. The model is formed by the atmosphere model ECHAM-4 and the ocean model ORCA. The atmospheric and oceanic components are coupled through OASIS. The domain is global and no flux correction is applied. In this study, we describe the ability of the coupled model to simulate the main features of the observed climate and its dominant modes of variability in the tropical Indo-Pacific. Three long experiments have been performed with different horizontal resolution of the atmospheric component in order to assess a possible impact of the atmosphere model resolution onto the simulated climate. Overall, the mean state is captured reasonably well, though the simulated SST tends to be too warm in the tropical Eastern Pacific and there is a model tendency to produce a double ITCZ. The model gives also a realistic representation of the temperature structure at the equator in the Pacific and Indian Ocean. The slope and the structure of the equatorial thermocline are well reproduced. Compared to the observations, the simulated annual cycle appears to be underestimated in the eastern equatorial Pacific, whereas a too pronounced seasonal variation is found in the Central Pacific. The main basic features of the interannual variability in the tropical Indo-Pacific region are reasonably well reproduced by the model. In the Indian Ocean, the characteristics of the simulated interannual variability are very similar to the results found from the observations. In the Pacific, the modelled ENSO variability appears to be slightly weaker and the simulated period a bit shorter than in the observations. Our results suggest that, both the simulated mean state and interannual variability are generally improved when the horizontal resolution of the atmospheric mode component is increased.

  19. The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tao [Chinese Academy of Sciences, Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Beijing (China); Otteraa, Odd Helge [Uni Bjerknes Centre, Uni Research, Bergen (Norway); Bjerknes Center for Climate Research, Bergen (Norway); Gao, Yongqi [Chinese Academy of Sciences, Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Beijing (China); Bjerknes Center for Climate Research, Bergen (Norway); Nansen Environmental and Remote Sensing Center, Bergen (Norway); Wang, Huijun [Chinese Academy of Sciences, Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Beijing (China); Chinese Academy of Sciences, Climate Change Research Center, Institute of Atmospheric Physics, Beijing (China)

    2012-12-15

    In this study, the effects of volcanic forcing on North Pacific climate variability, on interannual to decadal time scales, are examined using climate model simulations covering the last 600 years. The model used is the Bergen Climate Model, a fully coupled atmosphere-ocean general circulation model. It is found that natural external forcings, such as tropical strong volcanic eruptions (SVEs) and variations in total solar irradiance, play an important role in regulating North Pacific Decadal Variability (NPDV). In response to tropical SVEs the lower stratospheric pole-to-equator temperature gradient is enhanced. The North polar vortex is strengthened, which forces a significant positive Arctic Oscillation. At the same time, dipole zonal wind anomalies associated with strong polar vortex propagate downward from the lower stratosphere. Through positive feedbacks in the troposphere, the surface westerly winds across the central North Pacific are significantly weakened, and positive sea level pressure anomalies are formed in the North Pacific. This anomalous surface circulation results in changes in the net heat fluxes and the oceanic advection across the North Pacific. As a result of this, warm water converges in the subtropical western North Pacific, where the surface waters in addition are heated by significantly reduced latent and sensible heat fluxes from the ocean. In the eastern and high-latitude North Pacific the ocean loses more heat, and large-scale decreases in sea surface temperatures are found. The overall response of this chain of events is that the North Pacific enters a negative phase of the Pacific decadal oscillation (PDO), and this negative phase of the PDO is maintained for several years. It is thus concluded that the volcanic forcing plays a key role in the phasing of the PDO. The model results furthermore highlight the important role of troposphere-stratosphere coupling, tropical-extratropical teleconnections and extratropical ocean

  20. Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa

    Science.gov (United States)

    Hoell, Andrew; Funk, Christopher C.

    2014-01-01

    Rainfall over eastern Africa (10°S–10°N; 35°E–50°E) is bimodal, with seasonal maxima during the "long rains" of March–April–May (MAM) and the "short rains" of October–November–December (OND). Below average precipitation during consecutive long and short rains seasons over eastern Africa can have devastating long-term impacts on water availability and agriculture. Here, we examine the forcing of drought during consecutive long and short rains seasons over eastern Africa by Indo-Pacific sea surface temperatures (SSTs). The forcing of eastern Africa precipitation and circulation by SSTs is tested using ten ensemble simulations of a global weather forecast model forced by 1950–2010 observed global SSTs. Since the 1980s, Indo-Pacific SSTs have forced more frequent droughts spanning consecutive long and short rains seasons over eastern Africa. The increased frequency of dry conditions is linked to warming SSTs over the Indo-west Pacific and to a lesser degree to Pacific Decadal Variability. During MAM, long-term warming of tropical west Pacific SSTs from 1950–2010 has forced statistically significant precipitation reductions over eastern Africa. The warming west Pacific SSTs have forced changes in the regional lower tropospheric circulation by weakening the Somali Jet, which has reduced moisture and rainfall over the Horn of Africa. During OND, reductions in precipitation over recent decades are oftentimes overshadowed by strong year-to-year precipitation variability forced by the Indian Ocean Dipole and the El Niño–Southern Oscillation.

  1. Physical and meteorological data from the Tropical Atmosphere Ocean (TAO) array in the tropical Pacific Ocean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Atmosphere Ocean (TAO) Array of 55 moored buoys spans the tropical Pacific from longitudes 165°E to 95°W between latitudes of approximately 8°S and...

  2. How ocean color can steer Pacific tropical cyclones

    Science.gov (United States)

    Gnanadesikan, Anand; Emanuel, Kerry; Vecchi, Gabriel A.; Anderson, Whit G.; Hallberg, Robert

    2010-09-01

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter the distribution of tropical cyclones. If the North Pacific subtropical gyre contained no absorbing and scattering materials, the result would be to reduce subtropical cyclone activity in the subtropical Northwest Pacific by 2/3, while concentrating cyclone tracks along the equator. Predicting tropical cyclone activity using coupled models may thus require consideration of the details of how heat moves into the upper thermocline as well as biogeochemical cycling.

  3. Authigenic Uranium in Eastern Equatorial Pacific Sediments

    Science.gov (United States)

    Marcantonio, F.; Lyle, M. W.; Loveley, M. R.; Ibrahim, R.

    2014-12-01

    Authigenic U concentrations have been used as an indicator of redox state in marine sediments. Soluble U(VI) in porewaters is reduced to insoluble U(IV) under suboxic conditions setting up a diffusion gradient through which U in bottom waters is supplied to reducing sediments. Researchers have used sedimentary redox enrichment of U as a tool to identify past redox changes, which may be caused by changes in organic carbon rain rates and/or bottom water oxygen levels. Differentiating between these two explanations is important, as the former is tied to the use of authigenic U as a paleoproductivity proxy. We examined sediments from 4 sediment cores retrieved from two different localities in the Panama Basin in the eastern equatorial Pacific. Two cores were retrieved from the northern Panama basin at the Cocos Ridge, (4JC at 5° 44.7'N 85° 45.5' W, 1730 m depth; 8JC at 6° 14.0'N 86° 2.6' W, 1993 m depth), and two were retrieved from the south at the Carnegie Ridge, (11JC at 0° 41.6'S 85° 20.0' W, 2452 m depth; 17JC at 0° 10.8'S 85° 52.0' W, 2846 m depth). Using 230Th systematics and seismic profiling at each of the sites, we've identified significant sediment winnowing (4JC and 11JC) and focusing (8JC and 17JC). At all sites, we believe that changes in age-model-derived sand (i.e., >63µm) mass accumulation rates (MAR) best represent changes in rain rates. Glacial rain rates are higher than those in the Holocene by a factor of 2-3 at both sites. Peak Mn levels (>1%), the brown-to-green color transition (which likely represents the oxic/post-oxic boundary), and peak U concentrations all appear in the same order with increasing depth down core. At the Carnegie sites, where MARs are greater than those at the Cocos sites, increases in authigenic U (up to 4 ppm) occur during the mid- to late Holocene at depths of 10-15 cm. At the Cocos sites, increases in authigenic U (up to 12 ppm) occur lower in the sediment column (25-30 cm) during the late glacial. The decrease

  4. Coral Records of 20th Century Central Tropical Pacific SST and Salinity: Signatures of Natural and Anthropogenic Climate Change

    Science.gov (United States)

    Nurhati, I. S.; Cobb, K.; Di Lorenzo, E.

    2011-12-01

    Accurate forecasts of regional climate changes in many regions of the world largely depend on quantifying anthropogenic trends in tropical Pacific climate against its rich background of interannual to decadal-scale climate variability. However, the strong natural climate variability combined with limited instrumental climate datasets have obscured potential anthropogenic climate signals in the region. Here, we present coral-based sea-surface temperature (SST) and salinity proxy records over the 20th century (1898-1998) from the central tropical Pacific - a region sensitive to El Niño-Southern Oscillation (ENSO) whose variability strongly impacts the global climate. The SST and salinity proxy records are reconstructed via coral Sr/Ca and the oxygen isotopic composition of seawater (δ18Osw), respectively. On interannual (2-7yr) timescales, the SST proxy record tracks both eastern- and central-Pacific flavors of ENSO variability (R=0.65 and R=0.67, respectively). Interannual-scale salinity variability in our coral record highlights profound differences in precipitation and ocean advections during the two flavors of ENSO. On decadal (8yr-lowpassed) timescales, the central tropical Pacific SST and salinity proxy records are controlled by different sets of dynamics linked to the leading climate modes of North Pacific climate variability. Decadal-scale central tropical Pacific SST is highly correlated to the recently discovered North Pacific Gyre Oscillation (NPGO; R=-0.85), reflecting strong dynamical links between the central Pacific warming mode and extratropical decadal climate variability. Whereas decadal-scale salinity variations in the central tropical Pacific are significantly correlated with the Pacific Decadal Oscillation (PDO; R=0.54), providing a better understanding on low-frequency salinity variability in the region. Having characterized natural climate variability in this region, the coral record shows a +0.5°C warming trend throughout the last century

  5. Regional impacts of ocean color on tropical Pacific variability

    Science.gov (United States)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-08-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  6. Regional impacts of ocean color on tropical Pacific variability

    Directory of Open Access Journals (Sweden)

    W. Anderson

    2009-08-01

    Full Text Available The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  7. A decadal tropical Pacific condition unfavorable to central Pacific El Niño

    Science.gov (United States)

    Zhong, Wenxiu; Zheng, Xiao-Tong; Cai, Wenju

    2017-08-01

    The frequency of central Pacific (CP) El Niño events displays strong decadal variability but the associated dynamics are unclear. The Interdecadal Pacific Oscillation (IPO) and the tropical Pacific decadal variability (TPDV) are two dominant modes of tropical Pacific decadal variability that can interact with high-frequency activities. Using a 500 year control integration from the Geophysical Fluid Dynamics Laboratory Earth System Model, we find that the difference in mean state between the low-frequency and high-frequency CP El Niño periods is similar to the decadal background condition concurrently contributed by a negative IPO and a positive TPDV. This decadal state features strengthened trade winds west of the International Date Line and anomalous cool sea surface temperatures across the central tropical Pacific. As such, positive zonal advection feedback is difficult to be generated over the central to western tropical Pacific during the CP El Niño developing season, resulting in the low CP El Niño frequency.

  8. The Southern Oscillation, Hypoxia, and the Eastern Pacific Tuna Fishery

    Science.gov (United States)

    Webster, D.; Kiefer, D.; Lam, C. H.; Harrison, D. P.; Armstrong, E. M.; Hinton, M.; Luo, L.

    2012-12-01

    The Eastern Pacific tuna fishery, which is one of the world's major fisheries, covers thousands of square kilometers. The vessels of this fishery are registered in more than 30 nations and largely target bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis), and yellowfin (T. albacores) tuna. In both the Pelagic Habitat Analysis Module project, which is sponsored by NASA, and the Fishscape project, which is sponsored by NSF, we have attempted to define the habitat of the three species by matching a 50 year time series on fish catch and effort with oceanographic information obtained from satellite imagery and from a global circulation model. The fishery time series, which was provided by the Inter-American Tropical Tuna Commission, provided spatial maps of catch and effort at monthly time steps; the satellite imagery of the region consisted of sea surface temperature, chlorophyll, and height from GHRSST, SEAWiFS, and AVISO products, and the modeled flow field at selected depths was output from ECCO-92 simulations from 1992 to present. All information was integrated and analyzed within the EASy marine geographic information system. This GIS will also provides a home for the Fishscape spatial simulation model of the coupled dynamics of the ocean, fish, fleets, and markets. This model will then be applied to an assessment of the potential ecological and economic impacts of climate change, technological advances in fleet operations, and increases in fuel costs. We have determined by application of EOF analysis that the ECCO-2 simulation of sea surface height fits well with that of AVISO imagery; thus, if driven properly by predictions of future air-sea exchange, the model should provide good estimates of circulation patterns. We have also found that strong El Nino events lead to strong recruitment of all three species and strong La Nina events lead to weak recruitment. Finally, we have found that the general spatial distribution of the Eastern Pacific fishing grounds

  9. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    Science.gov (United States)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  10. Primer informe del género Gambierdiscus (Dinophyceae y otros dinoflagelados bentónicos en el Parque Nacional Isla del Coco, Costa Rica, Pacífico Tropical Oriental First report of the genus Gambierdiscus (Dinophyceae and other benthic dinoflagellates from Isla del Coco National Park, Costa Rica, Eastern Tropical Pacific

    Directory of Open Access Journals (Sweden)

    Maribelle Vargas-Montero

    2012-11-01

    conocer la incidencia de dinoflagelados bentónicos implicados en ciguatera para el Pacífico Tropical Oriental.The Eastern Tropical Pacific is a region reported as free of ciguatera poisoning that causes serious gastrointestinal, neural and cardiovascular problems, even death. But with this study we found a high incidence of benthic microalgae involved in ciguatera poisoning in Isla del Coco National Park (PNIC, from its name in Spanish, Costa Rica. Between 2006 and 2011, during expeditions to PNIC, 420 phytoplankton samples with the interest of finding benthic dinoflagellates involved in the ciguatera poisoning were collected and analyzed. Samples were taken with phytoplankton nets, towed vertically and horizontally or carried by diving, between 5 to 30 m depth, over reef areas, and by direct extraction from benthic macroalgae. We found the dinoflagellates Gambierdiscus spp., Coolia tropicalis, Coolia cf. areolota, Prorocentrum concavum, Prorocentrum compressum, Amphidinium carterae and Ostreopsis siamensis. The quantity of dinoflagellates by macroalgae weight was high, mainly for Gambierdiscus. Ostreopsis and Prorocentrum, the most widely distributed genera throughout the collection sites. Gambierdiscus is a ciguatera producing genus. Two different sizes of Gambierdiscus were found, and comparing our samples with other studies, we conclude that they are different to any previously reported. They possibly represent two new species. Coco Island is an oceanic island and because of its protection status, it is an ideal site for studying the evolution of marine phytoplankton. Also, long-term monitoring is important due to the variety of potentially toxic dinoflagellates living in this marine ecosystem. This is the first study to report benthic dinoflagellates implicated in ciguatera poisoning in other areas of the Eastern Tropical Pacific.

  11. Response of the tropical Pacific Ocean to El Niño versus global warming

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fukai; Luo, Yiyong; Lu, Jian; Wan, Xiuquan

    2016-04-15

    Climate models project an El Niño-like SST response in the tropical Pacific Ocean to global warming (GW). By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component, Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of formation mechanism for the changes in the tropical Pacific Ocean under El Niño and GW. Results show that, despite sharing some similarities between the two scenarios, there are many significant distinctions between GW and El Niño: 1) the phase locking of the seasonal cycle reduction is more notable under GW compared with El Niño, implying more extreme El Niño events in the future; 2) in contrast to the penetration of the equatorial subsurface temperature anomaly that appears to propagate in the form of an oceanic equatorial upwelling Kelvin wave during El Niño, the GW-induced subsurface temperature anomaly manifest in the form of off-equatorial upwelling Rossby waves; 3) while significant across-equator northward heat transport (NHT) is induced by the wind stress anomalies associated with El Niño, little NHT is found at the equator due to a symmetric change in the shallow meridional overturning circulation that appears to be weakened in both North and South Pacific under GW; and 4) the maintaining mechanisms for the eastern equatorial Pacific warming are also substantially different.

  12. Examination of the 13 February 2001 Eastern Pacific Maritime Cyclogenesis

    National Research Council Canada - National Science Library

    Touchton, Marc

    2002-01-01

    .... The models did not properly forecast this system due to weak cold air advection over the Eastern Pacific Ocean and due to blending the subpolar and subtropical jets into a single feature. Data assimilation is suspected to have played a role in the mishandling of these key features.

  13. Proceedings of the session on tropical forestry for people of the Pacific, XVII Pacific Science Congress; May 27-28, 1991

    Science.gov (United States)

    Eugene C. Conrad; Leonard A. Newell

    1992-01-01

    The 17 papers in the Proceedings of the Session on Tropical Forestry for People of the Pacific cover the topics of the USDA Forest Service's tropical forestry research, forestry research in Asia and the Pacific, management of tropical forests for products and energy; forest and wildlife management, the South Pacific Forestry Development Programme, tropical...

  14. A review of the razorfishes (Perciformes: Labridae) of the eastern Pacific Ocean.

    Science.gov (United States)

    Victor, B C; Wellington, G M; Caldow, C

    2001-07-01

    Several new species of the razorfish genus Xyrichtys have been discovered recently in the tropical eastern Pacific region. The taxonomy of this group of fishes is not clear, since juveniles, females, and males often have different color patterns and morphologies, and some species descriptions are incomplete. We review the members of this genus in this region based on our recent collections and describe the juvenile, initial, and terminal phase color patterns of the Cape razorfish, Xyrichtys mundiceps. We question the validity of Xyrichtys perlas, which appears to represent the initial phase of X. mundiceps. We conclude that six species of Xyrichtys are present in the tropical eastern Pacific, including one undescribed species we have collected from the Galapagos Islands and one uncollected new species from the Revillagigedos Islands. Xyrichtys mundiceps is found in Baja California and in Panama Xyrichtys pavo is a large species found throughout the Indo-Pacific and eastern Pacific. Xyrichtys victori is a colorful species native to the Galapagos and Cocos Islands, and Xyrichtys wellingtoni is apparently endemic to Clipperton Atoll. The undescribed species is known only from the Galapagos Islands and has a dark-colored juvenile with extended first dorsal fin rays that are not separated from the remainder of the fin. The terminal phase of this species is unknown. We present keys to the known juvenile and initial phase stages of five species. In addition, we document the allometric growth of the head of razorfishes and show that the head shape of small individuals of Xyrichtys razorfishes is no different from that of the razorfish genus Novaculichthys, and therefore we suggest caution in using this character to distinguish these genera.

  15. A warming tropical central Pacific dries the lower stratosphere

    Science.gov (United States)

    Ding, Qinghua; Fu, Qiang

    2018-04-01

    The amount of water vapor in the tropical lower stratosphere (TLS), which has an important influence on the radiative energy budget of the climate system, is modulated by the temperature variability of the tropical tropopause layer (TTL). The TTL temperature variability is caused by a complex combination of the stratospheric quasi-biennial oscillation (QBO), tropospheric convective processes in the tropics, and the Brewer-Dobson circulation (BDC) driven by mid-latitude and subtropical atmospheric waves. In 2000, the TLS water vapor amount exhibited a stepwise transition to a dry phase, apparently caused by a change in the BDC. In this study, we present observational and modeling evidence that the epochal change of water vapor between the periods of 1992-2000 and 2001-2005 was also partly caused by a concurrent sea surface temperature (SST) warming in the tropical central Pacific. This SST warming cools the TTL above by enhancing the equatorial wave-induced upward motion near the tropopause, which consequently reduces the amount of water vapor entering the stratosphere. The QBO affects the TLS water vapor primarily on inter-annual timescales, whereas a classical El Niño southern oscillation (ENSO) event has small effect on tropical mean TLS water vapor because its responses are longitudinally out of phase. This study suggests that the tropical central Pacific SST is another driver of TLS water vapor variability on inter-decadal timescales and the tropical SST changes could contribute to about 30% of the step-wise drop of the lower stratospheric water vapor from 1992-2000 to 2001-2005.

  16. Penetration of tritium into the Tropical Pacific

    International Nuclear Information System (INIS)

    Fine, R.A.; Peterson, W.H.; Ostlund, H.G.

    1987-01-01

    The persistence of subsurface tritium maxima coincident with the Equatorial Currents is used to show that advection along isopycnals by the mean wind-driven circulation is the dominant process in the at most 14-year time scale for the penetration of high northern latitude water to the equator (above 26.2 sigma-theta). Ventilation of the equatorial Pacific thermocline from the north contrasts sharply with the equatorial Atlantic thermocline which is ventilated from the south. The most striking manifestation of the North Pacific circulation is evidenced by a tritium maximum and salinity minimum at the equator between 145 0 and 125 0 W located above 25.6 sigma-theta. It shows that regardless of time of sampling the easter/central equator has received the highest latitude water, probably as a consequence of recirculation by the Equatorial Currents. Between the same meridians there is a tritium maximum on and north of the equator at the surface, which is interpreted as an expression of upwelling. Its coincidence with the cool tongue (Wyrtki) provides direct evidence that the upwelling process plays a dominant role in its maintenance on a decadal time scale

  17. Airborne Tropical TRopopause EXperiment (ATTREX) 2014 Western Pacific Campaign

    Science.gov (United States)

    Jensen, E.; Pfister, L.

    2014-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, carbon dioxide, methane, nonmethane hydrocarbons, sulfur hexafluoride, chlorofluorocarbons, nitrous oxide), reactive chemical compounds (ozone, bromine, nitrous oxide), meteorological parameters, and radiative fluxes. During January-March, 2014, the Global Hawk was deployed to Guam for ATTREX flights. Six science flights were conducted from Guam (in addition to the transits across the Pacific), resulting in over 100 hours of Western Pacific TTL sampling and about 180 vertical profiles through the TTL. I will provide an overview of the dataset, with examples of the measurements including meteorological parameters, clouds and water vapor, and chemical tracers.

  18. Comparaison of last centuries variability in the eastern and central Pacific reconstructed from massive coral geochemical tracers

    Science.gov (United States)

    Moreau, Melanie; Corrège, Thierry; Cole, Julie; Le Cornec, Florence; Edwards, Lawrence; Cheng, Hai; Charlier, Karine

    2014-05-01

    The tropical Pacific is under the influence of different climate modes (from the seasonal to the decadal scale) and, through teleconnections, affects the global climate. At the seasonal scale the latitudinal migration of the Intertropical Convergence Zone (ITCZ) drive the hydrological dynamic of the tropical zone. The tropical Pacific is also a place of strong and variable zonal gradients due to the El Niño Southern Oscillation phenomenon (ENSO) at the interannual scale. A good amount of data is available in the western and the central part of the Pacific to reconstruct climatic parameters such as sea surface temperature (SST) and sea surface salinity (SSS) while there is a striking lack of data in the eastern part. To better estimate the zonal gradients in the tropical Pacific and the different climatic processes in the last two centuries, we present geochemical results (Sr/Ca and δ18O) obtained from aragonitic coral skeletons (Porites genus) from Clipperton atoll (10° N, 109° W) and the Marquesas Islands (10° S, 140° W). Clipperton being the only atoll located in the northern part of the ITCZ latitudinal migration area, information about eastern Pacific hydrological cycle and advection can be obtained. On the other hand, the precise chronology of the Clipperton coral and the comparaison with the records from the Marquesas Islands allows us to calculate SST gradients between the eastern and central Pacific. We will discuss about the recent theory of an El Niño-like condition triggered by a slowdown of the equatorial Walker circulation under global warming. We will also discuss about the evolution (frequency and intensity) of the two differents 'flavours' of El Niño (e.g. the canonical eastern El Niño and the central El Niño Modoki) through the 20thcentury. Indeed the canonical El Niño is characterised by a maximum SST anomaly in the eastern Pacific while the El Niño Modoki is characterised by a maximum SST anomaly persisting in the central Pacific. A

  19. Do regions outside the tropical Pacific influence ENSO through atmospheric teleconnections?

    Digital Repository Service at National Institute of Oceanography (India)

    Dayan, H.; Izumo, T.; Vialard, J.; Lengaigne, M.; Masson, S

    This paper aims at identifying oceanic regions outside the tropical Pacific, which may influence the El Ni�o Southern Oscillation (ENSO) through interannual modulation of equatorial Pacific winds An Atmospheric General Circulation Model (AGCM) 7...

  20. Enhanced Influence of the Tropical Atlantic SST on the Western North Pacific Subtropical High after late 1970s

    Science.gov (United States)

    Hong, C. C.

    2015-12-01

    The western North Pacific subtropical high (WNPSH) in boreal summer shows a remarkable enhancement after the late 1970s. Whereas the sea surface temperature (SST) in the North Indian Ocean (NIO) and the equatorial eastern Pacific (EEP) had been noted to have remarkable local or remote effects on enhancing the WNPSH, the influence of the Atlantic SST, so far, is hardly explored. This article reports a new finding: enhanced relationship between the tropical Atlantic (TA)-SST and the WNPSH after the late 1970s. Regression study suggests that the warm TA-SST produced a zonally overturning circulation anomaly, with descending over the central equatorial Pacific and ascending over the tropical Atlantic/eastern Pacific. The anomalous descending over the central equatorial Pacific likely induced low-level anticyclonic anomaly to the west and therefore enhanced the WNPSH. One implication of this new finding is for predictability. The well-known "spring predictability barrier" (i.e., the influence of El Niño and Southern Oscillation (ENSO) falls dramatically during boreal spring) does not apply to the TA-SST/WNPSH relationship. Conversely, the TA-SST shows consistently high correlation starting from boreal spring when the ENSO influence continues declining. The TA-SST pushes the predictability of the WNPSH in boreal summer approximately one season earlier to boreal spring.

  1. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Emmanuel M. [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); UPMC, LOCEAN/IPSL, Paris Cedex 05 (France); Lengaigne, Matthieu [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); National Institute of Oceanography, Goa (India); Menkes, Christophe E. [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); Institut de Recherche pour le Developpement, Noumea (New Caledonia); Jourdain, Nicolas C. [Institut de Recherche pour le Developpement, Noumea (New Caledonia); Marchesiello, Patrick [Institut de Recherche pour le Developpement, Noumea (New Caledonia); CNES/CNRS/UPS/IRD, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale (LEGOS), Toulouse (France); Madec, Gurvan [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); National Oceanographic Centre, Southampton (United Kingdom)

    2011-05-15

    The interannual variability of the South Pacific Convergence Zone (SPCZ) and its influence on tropical cyclone (TC) genesis in the South Pacific are investigated using observations and ERA40 reanalysis over the 1979-2002 period. In austral summer, the SPCZ displays four typical structures at interannual timescales. The first three are characterized by a diagonal orientation of the SPCZ and account for 85% of the summer seasons. One is close to climatology and the other two exhibit a 3 northward or southward departure from the SPCZ climatological position. In contrast, the fourth one, that only encompasses three austral summer seasons (the extreme 1982/1983 and 1997/1998 El Nino events and the moderate 1991/1992 El Nino event), displays very peculiar behaviour where the SPCZ largely departs from its climatological position and is zonally oriented. Variability of the western/central Pacific equatorial sea surface temperature (SST) is shown to modulate moisture transport south of the equator, thereby strongly constraining the location of the SPCZ. The SPCZ location is also shown to strongly modulate the atmospheric circulation variability in the South Pacific with specific patterns for each class. However, independently of its wide year-to-year excursions, the SPCZ is always collocated with the zero relative vorticity at low levels while the maximum vorticity axis lies 6 to the south of the SPCZ position. This coherent atmospheric organisation in the SPCZ region is shown to constrain tropical cyclogenesis to occur preferentially within 10 south of the SPCZ location as this region combines all the large-scale atmospheric conditions that favour the breeding of TCs. This analysis also reveals that cyclogenesis in the central Pacific (in the vicinity of French Polynesia) only occurs when the SPCZ displays a zonal orientation while this observation was previously attributed to El Nino years in general. Different characteristics of El Nino Southern Oscillation (ENSO

  2. Future extreme sea level seesaws in the tropical Pacific.

    Science.gov (United States)

    Widlansky, Matthew J; Timmermann, Axel; Cai, Wenju

    2015-09-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño-Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño-related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise.

  3. Control of tropical instability waves in the Pacific

    Science.gov (United States)

    Allen, M. R.; Lawrence, S. P.; Murray, M. J.; Mutlow, C. T.; Stockdale, T. N.; Llewellyn-Jones, D. T.; Anderson, D. L. T.

    Westward-propagating waves with periods of 20-30 days and wavelengths of ˜ 1,100km are a prominent feature of sea-surface temperatures (SSTs) in the equatorial Pacific and Atlantic Oceans. They have been attributed to instabilities due to current shear. We compare SST observations from the spaceborne Along Track Scanning Radiometer (ATSR) and TOGA-TAO moored buoys with SSTs from a model of the tropical Pacific forced with observed daily windstress data. The phases of the strongest “Tropical Instability Waves” (TIWs) in the model are in closer correspondence with those observed than we would expect if these waves simply developed from infinitesimal disturbances (in which case their phases would be arbitrary). If we filter out the intraseasonal component of the windstress, all phase-correspondence is lost. We conclude that the phases of these waves are not arbitrary, but partially determined by the intraseasonal winds. The subsurface evolution of the model suggests a possible control mechanism is through interaction with remotely-forced subsurface Kelvin and Rossby waves. This is supported by an experiment which shows how zonal wind bursts in the west Pacific can modify the TIW field, but other mechanisms, such as local feedbacks, are also possible.

  4. 75 FR 68756 - Eastern North Pacific Gray Whale; Notice of Petition Availability

    Science.gov (United States)

    2010-11-09

    ... North Pacific Gray Whale; Notice of Petition Availability AGENCY: National Marine Fisheries Service... petition to designate the Eastern North Pacific population of gray whales (Eschrichtius robustus) as a... Eastern North Pacific gray whales is available on the Internet at the following address: http://www.nmfs...

  5. Oceanic migration behaviour of tropical Pacific eels from Vanuatu

    DEFF Research Database (Denmark)

    Schabetsberger, R; Økland, F; Aarestrup, K

    2013-01-01

    Information on oceanic migrations and spawning areas of tropical Pacific freshwater eels (genus Anguilla) is very limited. Lake Letas and its single outflowing river, Mbe Solomul on Gaua Island, Vanuatu, were surveyed for large migrating individuals. Twenty-four Anguilla marmorata (87 to 142 cm),...... impact of the lunar cycle on the upper limit of migration depths was found in A. marmorata (full moon: 230 m, new moon: 170 m). These behaviours may be explained as a trade-off between predator avoidance and the necessity to maintain a sufficiently high metabolism for migration....

  6. Evaluation of tropical Pacific observing systems using NCEP and GFDL ocean data assimilation systems

    Science.gov (United States)

    Xue, Yan; Wen, Caihong; Yang, Xiaosong; Behringer, David; Kumar, Arun; Vecchi, Gabriel; Rosati, Anthony; Gudgel, Rich

    2017-08-01

    The TAO/TRITON array is the cornerstone of the tropical Pacific and ENSO observing system. Motivated by the recent rapid decline of the TAO/TRITON array, the potential utility of TAO/TRITON was assessed for ENSO monitoring and prediction. The analysis focused on the period when observations from Argo floats were also available. We coordinated observing system experiments (OSEs) using the global ocean data assimilation system (GODAS) from the National Centers for Environmental Prediction and the ensemble coupled data assimilation (ECDA) from the Geophysical Fluid Dynamics Laboratory for the period 2004-2011. Four OSE simulations were conducted with inclusion of different subsets of in situ profiles: all profiles (XBT, moorings, Argo), all except the moorings, all except the Argo and no profiles. For evaluation of the OSE simulations, we examined the mean bias, standard deviation difference, root-mean-square difference (RMSD) and anomaly correlation against observations and objective analyses. Without assimilation of in situ observations, both GODAS and ECDA had large mean biases and RMSD in all variables. Assimilation of all in situ data significantly reduced mean biases and RMSD in all variables except zonal current at the equator. For GODAS, the mooring data is critical in constraining temperature in the eastern and northwestern tropical Pacific, while for ECDA both the mooring and Argo data is needed in constraining temperature in the western tropical Pacific. The Argo data is critical in constraining temperature in off-equatorial regions for both GODAS and ECDA. For constraining salinity, sea surface height and surface current analysis, the influence of Argo data was more pronounced. In addition, the salinity data from the TRITON buoys played an important role in constraining salinity in the western Pacific. GODAS was more sensitive to withholding Argo data in off-equatorial regions than ECDA because it relied on local observations to correct model biases and

  7. Role of sea surface wind stress forcing on transport between Tropical Pacific and Indian Ocean

    Science.gov (United States)

    Zhao, Q.

    Using an Indian-Pacific Ocean Circulation Model (IPOM) a simulation study on the Transports of between Tropical Pacific and Indian Ocean such as Indonesian Through flow (ITF) has been done. IPOM covered the area 25°E-70°W, 35°S-60°N. There are 31 levels in the vertical with 22 levels upper 400m in it. The horizontal resolution is 1/3° lat x 1.5° lon between 10°S and 10°N. The coastline and ocean topography of IPOM is prepared from Scripps topography data on 1x1°grid. Forcing IPOM with monthly observational wind stress in 1990-1999 the interannual variation of sea temperature has been reproduced well, not only on El Nino in the Pacific but also on Indian Ocean Dipole (IOD). Therefore, the oceanic circulations in the tropical ocean are reasonable. The analyses of the oceanic circulations from the simulations suggest that the transport southward through Makassar Strait is the primary route of thermocline water masses from the North Pacific to the Indonesian sea. The transport westward through Bali-Western Australian Transect (BWAT, at 117.5E) can be thought as the final output of ITF through the archipelago to Indian Ocean. The transport westward through BWAT is in 8-12S above 150m, its core centered near surface 10S, which looks like a jet. The westward velocity is more than 50 cm/s. The transport shows significant seasonal and interannual variations. The maximum is in Jul-Oct, minimum in Jan-Mar. These results are consistent with some observation basically. The correlation analyses indict that the variations of transport westward is related with the southeasterly anomaly in the east tropical Indian ocean. The transport variation lags wind anomaly about 3 months. The correlation coefficient is more than 0.6. The transport is strong during IOD, for example in 1994 and 1997. The variations are also related with the northwesterly anomaly in the center equatorial Pacific and the easterly in the eastern equatorial Pacific. The transport is strong in most ENSO

  8. Unprecedented 2015/2016 Indo-Pacific Heat Transfer Speeds Up Tropical Pacific Heat Recharge

    Science.gov (United States)

    Mayer, Michael; Alonso Balmaseda, Magdalena; Haimberger, Leopold

    2018-04-01

    El Niño events are characterized by anomalously warm tropical Pacific surface waters and concurrent ocean heat discharge, a precursor of subsequent cold La Niña conditions. Here we show that El Niño 2015/2016 departed from this norm: despite extreme peak surface temperatures, tropical Pacific (30°N-30°S) upper ocean heat content increased by 9.6 ± 1.7 ZJ (1 ZJ = 1021 J), in stark contrast to the previous strong El Niño in 1997/1998 (-11.5 ± 2.9 ZJ). Unprecedented reduction of Indonesian Throughflow volume and heat transport played a key role in the anomalous 2015/2016 event. We argue that this anomaly is linked with the previously documented intensified warming and associated rising sea levels in the Indian Ocean during the last decade. Additionally, increased absorption of solar radiation acted to dampen Pacific ocean heat content discharge. These results explain the weak and short-lived La Niña conditions in 2016/2017 and indicate the need for realistic representation of Indo-Pacific energy transfers for skillful seasonal-to-decadal predictions.

  9. The Teleconnection of the Tropical Atlantic to Indo-Pacific Sea Surface Temperatures on Inter-Annual to Centennial Time Scales: A Review of Recent Findings

    Directory of Open Access Journals (Sweden)

    Fred Kucharski

    2016-02-01

    Full Text Available In this paper, the teleconnections from the tropical Atlantic to the Indo-Pacific region from inter-annual to centennial time scales will be reviewed. Identified teleconnections and hypotheses on mechanisms at work are reviewed and further explored in a century-long pacemaker coupled ocean-atmosphere simulation ensemble. There is a substantial impact of the tropical Atlantic on the Pacific region at inter-annual time scales. An Atlantic Niño (Niña event leads to rising (sinking motion in the Atlantic region, which is compensated by sinking (rising motion in the central-western Pacific. The sinking (rising motion in the central-western Pacific induces easterly (westerly surface wind anomalies just to the west, which alter the thermocline. These perturbations propagate eastward as upwelling (downwelling Kelvin-waves, where they increase the probability for a La Niña (El Niño event. Moreover, tropical North Atlantic sea surface temperature anomalies are also able to lead La Niña/El Niño development. At multidecadal time scales, a positive (negative Atlantic Multidecadal Oscillation leads to a cooling (warming of the eastern Pacific and a warming (cooling of the western Pacific and Indian Ocean regions. The physical mechanism for this impact is similar to that at inter-annual time scales. At centennial time scales, the Atlantic warming induces a substantial reduction of the eastern Pacific warming even under CO2 increase and to a strong subsurface cooling.

  10. Impacts of the ENSO Modoki and other Tropical Indo-Pacific Climate-Drivers on African Rainfall.

    Science.gov (United States)

    Preethi, B; Sabin, T P; Adedoyin, J A; Ashok, K

    2015-11-16

    The study diagnoses the relative impacts of the four known tropical Indo-Pacific drivers, namely, El Niño Southern Oscillation (ENSO), ENSO Modoki, Indian Ocean Dipole (IOD), and Indian Ocean Basin-wide mode (IOBM) on African seasonal rainfall variability. The canonical El Niño and El Niño Modoki are in general associated with anomalous reduction (enhancement) of rainfall in southern (northern) hemispheric regions during March-May season. However, both the El Niño flavours anomalously reduce the northern hemispheric rainfall during June-September. Interestingly, during boreal spring and summer, in many regions, the Indian Ocean drivers have influences opposite to those from tropical Pacific drivers. On the other hand, during the October-December season, the canonical El Niño and/or positive IOD are associated with an anomalous enhancement of rainfall in the Eastern Africa, while the El Niño Modoki events are associated with an opposite impact. In addition to the Walker circulation changes, the Indo-Pacific drivers influence the African rainfall through modulating jet streams. During boreal summer, the El Niño Modoki and canonical El Niño (positive IOD) tend to weaken (strengthen) the tropical easterly jet, and result in strengthening (weakening) and southward shift of African easterly jet. This anomalously reduces (enhances) rainfall in the tropical north, including Sahelian Africa.

  11. Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans. A review of recent findings

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chunzai [NOAA Atlantic Oceanographic and Meteorological Lab., Miami, FL (United States); Kucharski, Fred; Barimalala, Rondrotiana [The Abdus Salam International Centre for Theoretical Physics, Earth System Physics, Section Trieste (Italy); Bracco, Annalisa [School of Earth and Atmospheric Sciences Georgia, Inst. of Tech., Atlanta, GA (United States)

    2009-08-15

    Recent studies found that tropical Atlantic variability may affect the climate in both the tropical Pacific and Indian Ocean basins, possibly modulating the Indian summer monsoon and Pacific ENSO events. A warm tropical Atlantic Ocean forces a Gill-Matsuno-type quadrupole response with a low-level anticyclone located over India that weakens the Indian monsoon circulation, and vice versa for a cold tropical Atlantic Ocean. The tropical Atlantic Ocean can also induce changes in the Indian Ocean sea surface temperatures (SSTs). especially along the coast of Africa and in the western side of the Indian basin. Additionally, it can influence the tropical Pacific Ocean via an atmospheric teleconnection that is associated with the Atlantic Walker circulation. Although the Pacific El Nino does not contemporaneously correlate with the Atlantic Nino, anomalous warming or cooling of the two equatorial oceans can form an inter-basin SST gradient that induces surface zonal wind anomalies over equatorial South America and other regions in both ocean basins. The zonal wind anomalies act as a bridge linking the two ocean basins, and in turn reinforce the inter-basin SST gradient through the atmospheric Walker circulation and oceanic processes. Thus, a positive feedback seems to exist for climate variability of the tropical Pacific-Atlantic Oceans and atmospheric system, in which the inter-basin SST gradient is coupled to the overlying atmospheric wind. (orig.)

  12. Attribution of the variability of typhoon landfalls in China coasts to the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean-western Pacific

    Science.gov (United States)

    Yang, L.; Chen, S.; Wang, C.; Wang, D.; Wang, X.

    2017-12-01

    The typhoon (TY) landfall activity along China coasts during July-August-September (JAS) shows significant interdecadal variations during 1965-2010. Three typical episodes for TY landfall activities in JAS along the China coasts during 1965-2010 can be identified, with more TY landfall during 1965-1978 (period I) and 1998-2010 (period III), and less during 1982-1995 (period II). We found that the interdcadal variations might be related to the combined effects of the Pacific Decadal Oscillation (PDO) phase change and the sea surface temperature (SST) variation in the tropical Indian Ocean and western Pacific (IO-WP). During negative PDO phase of periods I and III, a cyclonic anomaly is located in the western North Pacific (WNP) inducing easterly flow at its north, favoring TY landfall along eastern China coast. Due to Gill-pattern responses, warm SST anomalies over tropical IO-WP induce an anomalous anticyclonic circulation in the WNP, with southeasterly wind dominating in the northern SCS and WNP (10o-20o N), which favors TY reaching along southern China coast. With both landfalling-favorable conditions satisfied, there are significantly more TY landfall during period III than that of period I, which shows SST cooling in tropical IO-WP.

  13. Temperature correlations between the eastern equatorial Pacific and Antarctica over the past 230,000 years

    Science.gov (United States)

    Koutavas, Athanasios

    2018-03-01

    Tropical sea surface temperatures (SSTs) warmed and cooled in step with the Pleistocene ice age cycles, but the mechanisms are not known. It is assumed that the answer must involve radiative forcing by CO2 but SST reconstructions have been too sparse for a conclusive test. Here I present a 230,000-yr tropical SST stack from the eastern equatorial Pacific (EEP) using two new Mg/Ca reconstructions combined with three earlier ones. The EEP stack shows persistent covariation with Antarctic temperature on orbital and millennial timescales indicating tight coupling between the two regions. This coupling however cannot be explained solely by CO2 forcing because in at least one important case, the Marine Isotope Stage (MIS) 5e-5d glacial inception, both regions cooled ∼5-6.5 thousand years before CO2 decreased. More likely, their covariation was due to advection of Antarctic climate signals to the EEP by the ocean. To explain the MIS 5e-5d event and glacial inception in general the hypothesis is advanced that the cooling signal spreads globally from the Northern Hemisphere with an active ocean circulation - first from the North Atlantic to the Southern Ocean with a colder North Atlantic Deep Water, and then to the Indian and Pacific Oceans with cooler Antarctic deep and intermediate waters.

  14. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean

    Science.gov (United States)

    Boiteau, Rene M.; Mende, Daniel R.; Hawco, Nicholas J.; McIlvin, Matthew R.; Fitzsimmons, Jessica N.; Saito, Mak A.; Sedwick, Peter N.; DeLong, Edward F.; Repeta, Daniel J.

    2016-12-01

    Nearly all iron dissolved in the ocean is complexed by strong organic ligands of unknown composition. The effect of ligand composition on microbial iron acquisition is poorly understood, but amendment experiments using model ligands show they can facilitate or impede iron uptake depending on their identity. Here we show that siderophores, organic compounds synthesized by microbes to facilitate iron uptake, are a dynamic component of the marine ligand pool in the eastern tropical Pacific Ocean. Siderophore concentrations in iron-deficient waters averaged 9 pM, up to fivefold higher than in iron-rich coastal and nutrient-depleted oligotrophic waters, and were dominated by amphibactins, amphiphilic siderophores with cell membrane affinity. Phylogenetic analysis of amphibactin biosynthetic genes suggests that the ability to produce amphibactins has transferred horizontally across multiple Gammaproteobacteria, potentially driven by pressures to compete for iron. In coastal and oligotrophic regions of the eastern Pacific Ocean, amphibactins were replaced with lower concentrations (1-2 pM) of hydrophilic ferrioxamine siderophores. Our results suggest that organic ligand composition changes across the surface ocean in response to environmental pressures. Hydrophilic siderophores are predominantly found across regions of the ocean where iron is not expected to be the limiting nutrient for the microbial community at large. However, in regions with intense competition for iron, some microbes optimize iron acquisition by producing siderophores that minimize diffusive losses to the environment. These siderophores affect iron bioavailability and thus may be an important component of the marine iron cycle.

  15. Transport and Thermohaline Structure in the Western Tropical North Pacific

    Science.gov (United States)

    Schonau, Martha Coakley

    Transport and thermohaline structure of water masses and their respective variability are observed and modeled in the western tropical North Pacific using autonomous underwater gliders, Argo climatology and a numerical ocean state estimate. The North Equatorial Current (NEC) advects subtropical and subpolar water masses into the region that are transported equatorward by the Mindanao Current (MC). Continuous glider observations of these two currents from June 2009 to December 2013 provide absolute geostrophic velocity, water mass structure, and transport. The observations are compared to Argo climatology (Roemmich and Gilson, 2009), wind and precipitation to assess forcing, and annual and interannual variability. Observations are assimilated into a regional ocean state estimate (1/6°) to examine regional transport variability and its relationship to the El Nino-Southern Oscillation phenomena (ENSO). The NEC, described in Chapter 1, is observed along 134.3°E, from 8.5°N to 16.5°N. NEC thermocline transport is relatively constant, with a variable subthermocline transport that is distinguished by countercurrents centered at 9.6°N and 13.1°N. Correlation between thermocline and subthermocline transport is strong. Isopycnals with subducted water masses, the North Pacific Tropical Water and North Pacific Intermediate Water, have the greatest fine-scale thermohaline variance. The NEC advects water masses into the MC, described in Chapter 2, that flows equatorward along the coast of Mindanao. Gliders observed the MC at a mean latitude of 8.5°N. The Mindanao Undercurrent (MUC) persists in the subthermocline offshore of the MC, with a net poleward transport of intermediate water typical of South Pacific origin. The variable subthermocline transport in the MC/MUC has an inverse linear relationship with the Nino 3.4 index and strongly impacts total transport variability. For each the MC and NEC, surface salinity and thermocline depth have a strong relationship with ENSO

  16. Eastern South Pacific water mass geometry during the last glacial-interglacial transition

    Science.gov (United States)

    De Pol-Holz, R.; Reyes, D.; Mohtadi, M.

    2012-12-01

    The eastern South Pacific is characterized today by a complex thermocline structure where large salinity and oxygen changes as a function of depth coexist. Surface waters from tropical origin float on top of subantarctic fresher water (the so-called 'shallow salinity minimum of the eastern south Pacific'), which in turn, flow above aged equatorial and deeper recently ventilated Antarctic Intermediate waters. Little is known however about the water mass geometry changes that could have occurred during the last glacial maximum boundary conditions (about 20,000 years before the present), despite this information being critical for the assessment of potential mechanisms that have been proposed as explanations for the deglacial onset of low oxygen conditions in the area and the atmospheric CO2 increase during the same time. Here we present benthic and planktonic foraminifera stable isotope and radiocarbon data from a set of sediment cores from the Chilean continental margin covering a large -yet still limited- geographical area and depth range. Sedimentations rates were relatively high (>10 cm/kyr) precluding major caveats from bioturbation in all of our archives. The distribution of δ13C of ΣCO2 shows the presence of a very depleted (δ13C < -1‰ V-PDB) water mass overlaying more recently ventilated waters at intermediate depths as indicated by thermocline foraminifer dwellers being more depleted in 13C than the benthic species. The origin of this depleted end-member is probably upwelling from the Southern Ocean as expressed by the radiocarbon content and the large reservoir effect associated with the last glacial maximum and the beginning of the deglaciation along the margin. Our data suggest that the Tropical waters that today bath the lower latitude cores was displaced by surface waters of southern origin and therefore in line with the evidence of a latitudinal shift of the frontal systems.

  17. The role of the tropical West Pacific in the extreme northern hemisphere winter of 2013/14

    Science.gov (United States)

    Watson, Peter; Weisheimer, Antje; Knight, Jeff; Palmer, Tim

    2016-04-01

    In the 2013/14 winter, the eastern USA was exceptionally cold, the Bering Strait region was exceptionally warm, California was in the midst of drought and the UK suffered severe flooding. It has been suggested that elevated SSTs in the tropical West Pacific (TWPAC) were partly to blame due to their producing a Rossby wavetrain that propagated into the extratropics. We find that seasonal forecasts with the tropical atmosphere relaxed towards a reanalysis give 2013/14 winter-mean anomalies with strong similarities to those observed in the Northern Hemisphere, indicating that low-latitude anomalies had a role in the development of the extremes. Relaxing just the TWPAC produces a strong wavetrain over the North Pacific and North America in January, but not in the winter-mean. This suggests that anomalies in this region alone had a large influence, but cannot explain the extremes through the whole winter. We also examine the response to applying the observed TWPAC SST anomalies in two atmospheric general circulation models. We find that this does produce winter-mean anomalies in the North Pacific and North America resembling those observed, but that the tropical forcing of Rossby waves due to the applied SST anomalies appears stronger than that in reanalysis, except in January. Therefore both experiments indicate that the TWPAC influence was important, but the true strength of the TWPAC influence is uncertain. None of the experiments indicate a strong systematic impact of the TWPAC anomalies on Europe.

  18. Changes in Eastern Equatorial Pacific Thermocline Structure across the Last Deglaciation: Evidence from the Carnegie Ridge

    Science.gov (United States)

    Glaubke, R.; Schmidt, M. W.; Warner, L.; Hertzberg, J. E.; Marcantonio, F.; Bianchi, T. S.

    2017-12-01

    The eastern equatorial Pacific (EEP) is an important climatological region given its influence in the modulation of the El Niño - Southern Oscillation (ENSO). The current climatic mean state of the EEP is characterized by cool sea surface temperatures (SST) and a strong, shallow thermocline. Nevertheless, there remains significant uncertainty about past changes in tropical Pacific climate and how ENSO variability relates to the millennial-scale climate events of the last deglaciation. Here, we will present 21 kyrs of Mg/Ca paleotemperature data from the surface-dwelling foraminifera Globigerinoides ruber and the thermocline-dwelling foraminifera Neogloboquadrina dutertrei collected from piston core MV1014-02-17JC (00° 10.83'S, 85° 52.00'W; 2846 m depth) on the Carnegie Ridge. Initial results reveal a 1.3°C warming of the surface ocean from the early-Holocene until 6 kyrs, a trend present in other EEP SST reconstructions (Pena et al., 2008; Timmerman et al., 2014; Lea et al., 2000). The surface ocean subsequently cools from 6 kyrs and reaches present-day temperatures by 3.5 kyrs. The subsurface reveals a nearly monotonic cooling of 1.8°C from 10.8 kyrs to the present day, which suggest a gradual shoaling of the thermocline across the Holocene. Furthermore, an increase in the vertical temperature gradient occurs from the late- to mid-Holocene, with the sharpest temperature difference centered at 6 kyrs, coincident with the mid-Holocene peak in SSTs. Taken together, these data suggest a gradual shoaling of the thermocline across the Holocene, with the variations in SST primarily governing the intensity of the vertical temperature gradient. Future work includes extending this record back to the last glacial maximum (LGM) to assess tropical Pacific mean state change across the abrupt climate events that characterized the last deglaciation.

  19. Clipperton Atoll (eastern Pacific): oceanography, geomorphology, reef-building coral ecology and biogeography

    Science.gov (United States)

    Glynn, P. W.; Veron, J. E. N.; Wellington, G. M.

    1996-06-01

    Coral reef geomorphology and community composition were investigated in the tropical northeastern Pacific during April 1994. Three areas were surveyed in the Revillagigedo Islands (Mexico), and an intensive study was conducted on Clipperton Atoll (1,300 km SW of Acapulco), including macro-scale surface circulation, sea surface temperature (SST) climatology, geomorphology, coral community structure, zonation, and biogeography. Satellite-tracked drifter buoys from 1979 1993 demonstrated complex patterns of surface circulation with dominantly easterly flow (North Equatorial Counter Current, NECC), but also westerly currents (South Equatorial Current, SEC) that could transport propagules to Clipperton from both central and eastern Pacific regions. The northernmost latitude reached by the NECC is not influenced by El Niño-Southern Oscillation (ENSO) events, but easterly flow velocity evidently is accelerated at such times. Maximum NECC flow rates indicate that the eastern Pacific barrier can be bridged in 60 to 120 days. SST anomalies at Clipperton occur during ENSO events and were greater at Clipperton in 1987 than during 1982 1983. Shallow (15 18 m)and deep (50 58 m) terraces are present around most of Clipperton, probably representing Modern and late Pleistocene sea level stands. Although Clipperton is a well developed atoll with high coral cover, the reef-building fauna is depauperate, consisting of only 7 species of scleractinian corals belonging to the genera Pocillopora, Porites, Pavona and Leptoseris, and 1 species of hydrocoral in the genus Millepora. The identities of the one Pocilpopora species and one of the two Porites species are still unknown. Two of the remaining scleractinians ( Pavona minuta, Leptoseris scabra) and the hydrocoral ( Millepora exaesa), all formerly known from central and western Pacific localities, represent new eastern Pacific records. Scleractinian corals predominate (10 100% cover) over insular shelf depths of 8 to 60m, and crustose

  20. Perspective on the northwestward shift of autumn tropical cyclogenesis locations over the western North Pacific from shifting ENSO

    Science.gov (United States)

    Hu, Chundi; Zhang, Chengyang; Yang, Song; Chen, Dake; He, Shengping

    2017-11-01

    During the recent decades of satellite era, more tropical cyclogenesis locations (TCLs) were observed over the northwestern part of the western North Pacific (WNP), relative to the southeastern part, during the boreal autumn. This increase in TCLs over the northwestern WNP is largely attributed to the synergy of shifting El Niño-Southern Oscillation (ENSO) and the 1998 Pacific climate regime shift. Both central Pacific (CP) La Niña and CP El Niño have occurred more frequently since 1998, with only one eastern Pacific El Niño observed in autumn 2015. The change in the mean longitude of TCLs is closely linked to the ENSO diversity, whereas the change in the mean latitude is dominated by the warming of the WNP induced by an interdecadal tendency of CP La Niña-like events. The physical mechanisms responsible for this shifting ENSO-TCL linkage can be potentially explained by the tacit-and-mutual configurations between tropical upper-tropospheric trough and monsoon trough, on both interannual and interdecadal timescales, which is mainly due to the ENSO-related large-scale environment changes in ocean and atmosphere that modulate the WNP TCL.

  1. 16,000 Years of Tropical Eastern Ocean Climate Variability Recorded in a Speleothem From Sumatra, Indonesia

    Science.gov (United States)

    Wurtzel, J. B.; Abram, N.; Hantoro, W. S.; Rifai, H.; Hellstrom, J. C.; Heslop, D.; Troitzsch, U.; Eggins, S.

    2015-12-01

    Holocene climate variability in the Indo-Pacific has largely been inferred from sediment cores primarily from the central and eastern Warm Pool region. A limited number of speleothem oxygen-isotope records have provided decadally-resolved time-series of past rainfall variability over the central Indo-Pacific Warm Pool region, however no records currently exist for the Indian Ocean sector of the IPWP. Here we present the first continuous, high-resolution (~15year) speleothem record from the eastern tropical Indian Ocean, collected from central western Sumatra, Indonesia. Petrographic and geochemical analysis reveals that the sample is primarily composed of aragonite but is punctuated by intervals of primary calcite growth. In addition to Raman spectroscopy, trace element analysis by laser ablation ICP-MS reveals strongly antiphased behaviour between magnesium and strontium, attributed to the strong preference of those elements for the calcite and aragonite lattices, respectively. This relationship is utilized to develop a quantitative correction for the stable isotope fractionation offset between the two calcium carbonate polymorphs identified in the speleothem. The corrected oxygen isotope record shows a rapid transition from drier conditions during the Younger Dryas (YD) into a wetter Holocene, similar in timing and pattern to that recorded in Dongge Cave, China. This is strikingly different from other IPWP speleothem records, which show no YD or a wetter YD, suggesting that different mechanisms may be controlling rainfall amount in the eastern tropical Indian Ocean. These disparate responses are further explored through proxy-model comparison.

  2. Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor

    Science.gov (United States)

    Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.

    2013-01-01

    Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.

  3. ENSO surface shortwave radiation forcing over the tropical Pacific

    Directory of Open Access Journals (Sweden)

    K. G. Pavlakis

    2008-09-01

    Full Text Available We have studied the spatial and temporal variation of the downward shortwave radiation (DSR at the surface of the Earth during ENSO events for a 21-year period over the tropical and subtropical Pacific Ocean (40° S–40° N, 90° E–75° W. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database, reanalysis data from NCEP/NCAR for the key atmospheric and surface input parameters, and aerosol parameters from GADS (acronyms explained in main text. A clear anti-correlation was found between the downward shortwave radiation anomaly (DSR-A time-series, in the region 7° S–5° N 160° E–160° W located west of the Niño-3.4 region, and the Niño-3.4 index time-series. In this region where the highest in absolute value DSR anomalies are observed, the mean DSR anomaly values range from −45 Wm−2 during El Niño episodes to +40 Wm−2 during La Niña events. Within the Niño-3.4 region no significant DSR anomalies are observed during the cold ENSO phase in contrast to the warm ENSO phase. A high correlation was also found over the western Pacific (10° S–5° N, 120–140° E, where the mean DSR anomaly values range from +20 Wm−2 to −20 Wm−2 during El Niño and La Niña episodes, respectively. There is also convincing evidence that the time series of the mean downward shortwave radiation anomaly in the off-equatorial western Pacific region 7–15° N 150–170° E, precedes the Niño-3.4 index time-series by about 7 months and the pattern of this anomaly is indicative of ENSO operating through the mechanism of the western Pacific oscillator. Thus, the downward shortwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to assess whether or not El Niño or La Niña conditions prevail.

  4. Are Simulated and Observed Twentieth Century Tropical Pacific Sea Surface Temperature Trends Significant Relative to Internal Variability?

    Science.gov (United States)

    Coats, S.; Karnauskas, K. B.

    2017-10-01

    Historical trends in the tropical Pacific zonal sea surface temperature gradient (SST gradient) are analyzed herein using 41 climate models (83 simulations) and 5 observational data sets. A linear inverse model is trained on each simulation and observational data set to assess if trends in the SST gradient are significant relative to the stationary statistics of internal variability, as would suggest an important role for external forcings such as anthropogenic greenhouse gasses. None of the 83 simulations have a positive trend in the SST gradient, a strengthening of the climatological SST gradient with more warming in the western than eastern tropical Pacific, as large as the mean trend across the five observational data sets. If the observed trends are anthropogenically forced, this discrepancy suggests that state-of-the-art climate models are not capturing the observed response of the tropical Pacific to anthropogenic forcing, with serious implications for confidence in future climate projections. There are caveats to this interpretation, however, as some climate models have a significant strengthening of the SST gradient between 1900 and 2013 Common Era, though smaller in magnitude than the observational data sets, and the strengthening in three out of five observational data sets is insignificant. When combined with observational uncertainties and the possibility of centennial time scale internal variability not sampled by the linear inverse model, this suggests that confident validation of anthropogenic SST gradient trends in climate models will require further emergence of anthropogenic trends. Regardless, the differences in SST gradient trends between climate models and observational data sets are concerning and motivate the need for process-level validation of the atmosphere-ocean dynamics relevant to climate change in the tropical Pacific.

  5. Physical and meteorological data from the seventy moorings of the Tropical Atmosphere/Ocean (TAO) Project in the Tropical Pacific Ocean, 1979-2002 (NODC Accession 0000727)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and meteorological data were collected in the Tropical Pacific Ocean from 29 January 1979 to 03 November 2001. Data were collected by the Pacific Marine...

  6. Characteristics of regional aerosols: Southern Arizona and eastern Pacific Ocean

    Science.gov (United States)

    Prabhakar, Gouri

    Atmospheric aerosols impact the quality of our life in many direct and indirect ways. Inhalation of aerosols can have harmful effects on human health. Aerosols also have climatic impacts by absorbing or scattering solar radiation, or more indirectly through their interactions with clouds. Despite a better understanding of several relevant aerosol properties and processes in the past years, they remain the largest uncertainty in the estimate of global radiative forcing. The uncertainties arise because although aerosols are ubiquitous in the Earth's atmosphere they are highly variable in space, time and their physicochemical properties. This makes in-situ measurements of aerosols vital in our effort towards reducing uncertainties in the estimate of global radiative forcing due to aerosols. This study is an effort to characterize atmospheric aerosols at a regional scale, in southern Arizona and eastern Pacific Ocean, based on ground and airborne observations of aerosols. Metals and metalloids in particles with aerodynamic diameter (Dp) smaller than 2.5 μm are found to be ubiquitous in southern Arizona. The major sources of the elements considered in the study are identified to be crustal dust, smelting/mining activities and fuel combustion. The spatial and temporal variability in the mass concentrations of these elements depend both on the source strength and meteorological conditions. Aircraft measurements of aerosol and cloud properties collected during various field campaigns over the eastern Pacific Ocean are used to study the sources of nitrate in stratocumulus cloud water and the relevant processes. The major sources of nitrate in cloud water in the region are emissions from ships and wildfires. Different pathways for nitrate to enter cloud water and the role of meteorology in these processes are examined. Observations of microphysical properties of ambient aerosols in ship plumes are examined. The study shows that there is an enhancement in the number

  7. The eastern Pacific species of Bathygobius (Perciformes: Gobiidae).

    Science.gov (United States)

    Miller, P J; Stefanni, S

    2001-07-01

    The circumtropical gobiid genus Bathygobius Bleeker is defined and three Eastern Pacific species are redescribed, with first dorsal fin pattern and postorbital blotches being shown to be additional characters of diagnostic value. Two mainland species are recognised, the Mexican-Panamanian B. ramosus Ginsburg 1947 and the Panamanian B. andrei (Sauvage 1880). B. ramosus is now reported from Clarión Island, Revillagigedos, and also from Cocos Island. Meristic variation of ramosus is tabulated for local populations and PCA analysis of their morphometry suggests regional differentiation in this species, with Tres Marias and Revillagigedos populations clustering away from mainland and Montuosa material. An insular species, B. lineatus (Jenyns 1842) from the Galapagos is defined, with B. arundelii (Garman 1899) from Clipperton Island and B. l. lupinus Ginsburg 1947 from Lobos de Afuera, off Peru, placed as nominal subspecies of lineatus. This species resembles the Indo-west Pacific B. fuscus and Atlantic basin B. soporator more closely than it does ramosus and andrei and may be the product of transpacific dispersal. A similar origin for B. ramosus is discussed but it seems more likely that both B. ramosus and B. andrei have Caribbean sister species.

  8. Role of sea surface temperature anomalies in the tropical Indo-Pacific region in the northeast Asia severe drought in summer 2014: month-to-month perspective

    Science.gov (United States)

    Xu, Zhiqing; Fan, Ke; Wang, HuiJun

    2017-09-01

    The severe drought over northeast Asia in summer 2014 and the contribution to it by sea surface temperature (SST) anomalies in the tropical Indo-Pacific region were investigated from the month-to-month perspective. The severe drought was accompanied by weak lower-level summer monsoon flow and featured an obvious northward movement during summer. The mid-latitude Asian summer (MAS) pattern and East Asia/Pacific teleconnection (EAP) pattern, induced by the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) rainfall anomalies respectively, were two main bridges between the SST anomalies in the tropical Indo-Pacific region and the severe drought. Warming in the Arabian Sea induced reduced rainfall over northeast India and then triggered a negative MAS pattern favoring the severe drought in June 2014. In July 2014, warming in the tropical western North Pacific led to a strong WNPSM and increased rainfall over the Philippine Sea, triggering a positive EAP pattern. The equatorial eastern Pacific and local warming resulted in increased rainfall over the off-equatorial western Pacific and triggered an EAP-like pattern. The EAP pattern and EAP-like pattern contributed to the severe drought in July 2014. A negative Indian Ocean dipole induced an anomalous meridional circulation, and warming in the equatorial eastern Pacific induced an anomalous zonal circulation, in August 2014. The two anomalous cells led to a weak ISM and WNPSM, triggering the negative MAS and EAP patterns responsible for the severe drought. Two possible reasons for the northward movement of the drought were also proposed.

  9. The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming

    Science.gov (United States)

    Yuan, Dongliang; Hu, Xiaoyue; Xu, Peng; Zhao, Xia; Masumoto, Yukio; Han, Weiqing

    2018-01-01

    The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.

  10. Rewilding the tropics, and other conservation translocations strategies in the tropical Asia-Pacific region

    Science.gov (United States)

    Louys, Julien; Corlett, Richard T; Price, Gilbert J; Hawkins, Stuart; Piper, Philip J

    2014-01-01

    Alarm over the prospects for survival of species in a rapidly changing world has encouraged discussion of translocation conservation strategies that move beyond the focus of ‘at-risk’ species. These approaches consider larger spatial and temporal scales than customary, with the aim of recreating functioning ecosystems through a combination of large-scale ecological restoration and species introductions. The term ‘rewilding’ has come to apply to this large-scale ecosystem restoration program. While reintroductions of species within their historical ranges have become standard conservation tools, introductions within known paleontological ranges—but outside historical ranges—are more controversial, as is the use of taxon substitutions for extinct species. Here, we consider possible conservation translocations for nine large-bodied taxa in tropical Asia-Pacific. We consider the entire spectrum of conservation translocation strategies as defined by the IUCN in addition to rewilding. The taxa considered are spread across diverse taxonomic and ecological spectra and all are listed as ‘endangered’ or ‘critically endangered’ by the IUCN in our region of study. They all have a written and fossil record that is sufficient to assess past changes in range, as well as ecological and environmental preferences, and the reasons for their decline, and they have all suffered massive range restrictions since the late Pleistocene. General principles, problems, and benefits of translocation strategies are reviewed as case studies. These allowed us to develop a conservation translocation matrix, with taxa scored for risk, benefit, and feasibility. Comparisons between taxa across this matrix indicated that orangutans, tapirs, Tasmanian devils, and perhaps tortoises are the most viable taxa for translocations. However, overall the case studies revealed a need for more data and research for all taxa, and their ecological and environmental needs. Rewilding the Asian-Pacific

  11. Southernmost record of the Giant Manta Ray Mobula birostris (Walbaum, 1792) in the Eastern Pacific

    OpenAIRE

    Bernabé Moreno; Adriana Gonzalez-Pestana

    2017-01-01

    Abstract Background Manta rays (Mobulidae), Mobula birostris and Mobula alfredi, are widely distributed in tropical and temperate waters. Still, little is known about their movements and their ecological interactions (e.g. behavior and diet). In Peru, M. birostris has only been reported along the northern shore within the Tropical East Pacific Marine Province. No official reports exist from central or south Peru within the Warm Temperate Southeastern Pacific Marine Province. Methods On Decemb...

  12. Effect of boreal spring precipitation anomaly pattern change in the late 1990s over tropical Pacific on the atmospheric teleconnection

    Science.gov (United States)

    Guo, Yuanyuan; Wen, Zhiping; Chen, Ruidan; Li, Xiuzhen; Yang, Xiu-Qun

    2018-02-01

    Observational evidence showed that the leading mode of precipitation variability over the tropical Pacific during boreal spring experienced a pronounced interdecadal change around the late 1990s, characterized by a precipitation pattern shift from an eastern Pacific (EP) type to a central Pacific (CP) type. The distinct impacts of such a precipitation pattern shift on the extratropical atmospheric teleconnection were examined. An apparent poleward teleconnection extending from the tropics to the North Atlantic region was observed after 1998, while, there was no significant teleconnection before 1998. To understand why only the CP-type precipitation mode is associated with a striking atmospheric teleconnection after 1998, diagnostic analyses with the Eliassen-Palm flux and Rossby wave source (RWS) based on the barotropic vorticity equation were performed. The results show that for the EP-type precipitation mode, no significant RWS anomalies appeared over the subtropical Pacific due to the opposite effect of the vortex stretching and absolute vorticity advection processes. For the CP-type precipitation mode, however, there are both significant vorticity forcing source over the subtropical CP and clear poleward-propagation of Rossby wave. The spatial distribution of the CP-type precipitation pattern tends to excite a conspicuous anomalous southerly and a well-organized negative vorticity center over the subtropical CP where both the mean absolute vorticity gradient and mean divergence flow are large, hence, the interaction between the heating-induced anomalous circulation and the basic state made the generation of Rossby waves conceivable and effective. Such corresponding teleconnection responses to the prescribed heating were also examined by using a Linear Baroclinic Model (LBM). It turned out that significant poleward teleconnection pattern is only caused by the CP-type precipitation mode, rather than by the EP-type precipitation mode. Further sensitive experiments

  13. Possible influence of long-term sea surface temperature anomalies in the tropical Pacific on global zone

    Energy Technology Data Exchange (ETDEWEB)

    Komhyr, W D; Oltmans, S J; Grass, R D [Atmospheric Administration Climate Monitoring and Diagnostics Lab., Boulder, CO (USA); Leonard, R K [Colorado Univ., Boulder, CO (USA)

    1991-01-01

    A significant negative correlation exists between summer sea surface temperatures (SSTs) in the east equatorial Pacific and late-October south pole total ozone values. SSTs in the eastern equatorial Pacific were anomalously warmer during 1976-1987 compared with 1962-1975. QBO (quasi-biennial oscillation) easterly winds in the equatorial Pacific stratosphere were generally stronger after 1975. Before the early-to-mid 1970s the trend in global ozone was generally upward, but then turned downward. Total ozone at Hawaii and Samoa, which had been decreasing during 1976-1987, showed recovery to mid-1970s values in 1988-1989 following a drop in SSTs in the eastern equatorial Pacific to low values last observed there prior to 1976. During late October 1988, total south pole ozone, which had decreased from ca 280 Dobson units (DU) before 1980 to 140 DU in 1987, suddenly recovered to 250 DU, though substantial ozone depletion by heterogeneous photochemical processes involving polar stratospheric clouds was still evident in the south pole ozone vertical profiles. These observations suggest that the downward trend in ozone observed over the globe in recent years may have been at least partly meteorologically induced, possibly via modulation by the warmer tropical Pacific ocean waters of QBO easterly winds at the equator, of Hadley Cell circulation, or other factors. A cursory analysis of geostrophic wind flow around the Baffin Island low suggests a meteorological influence on the observed downward trend in ozone over North America during the past decade. Because ozone has a lifetime that varies from years to minutes, changes in atmospheric dynamics have a potential to not only redistribute ozone over the globe but also to change global ozone abundance. 47 refs., 5 figs., 1 tab.

  14. Monsoon rainfall over India in June and link with northwest tropical pacific - June ISMR and link with northwest tropical pacific

    Science.gov (United States)

    Surendran, Sajani; Gadgil, Sulochana; Rajendran, Kavirajan; Varghese, Stella Jes; Kitoh, Akio

    2018-03-01

    Recent years have witnessed large interannual variation of all-India rainfall (AIR) in June, with intermittent large deficits and excesses. Variability of June AIR is found to have the strongest link with variation of rainfall over northwest tropical Pacific (NWTP), with AIR deficit (excess) associated with enhancement (suppression) of NWTP rainfall. This association is investigated using high-resolution Meteorological Research Institute model which shows high skill in simulating important features of Asian summer monsoon, its variability and the inverse relationship between NWTP rainfall and AIR. Analysis of the variation of NWTP rainfall shows that it is associated with a change in the latitudinal position of subtropical westerly jet over the region stretching from West of Tibetan Plateau (WTP) to NWTP and the phase of Rossby wave steered in it with centres over NWTP and WTP. In years with large rainfall excess/deficit, the strong link between AIR and NWTP rainfall exists through differences in Rossby wave phase steered in the jet. The positive phase of the WTP-NWTP pattern, with troughs over WTP and west of NWTP, tends to be associated with increased rainfall over NWTP and decreased AIR. This scenario is reversed in the opposite phase. Thus, the teleconnection between NWTP rainfall and AIR is a manifestation of the difference in the phase of Rossby wave between excess and deficit years, with centres over WTP and NWTP. This brings out the importance of prediction of phase of Rossby waves over WTP and NWTP in advance, for prediction of June rainfall over India.

  15. Do the Atlantic climate modes impact the ventilation of the eastern tropical North Atlantic oxygen minimum zones?

    Science.gov (United States)

    Burmeister, Kristin; Lübbecke, Joke F.

    2017-04-01

    Oxygen minimum zones (OMZs) exist in the upwelling regions of the eastern tropical Atlantic and Pacific at intermediate depth. They are a consequence of high biological productivity in combination with weak ventilation. The flow fields in the tropical Atlantic is characterized by Latitudinally Alternating Zonal Jets (LAZJs) with a large vertical scale. It has been suggested that LAZJs play an important role for the ventilation of the OMZ as eastward currents advect oxygen-rich waters from the western boundary towards the OMZ. In the Eastern Tropical North Atlantic (ETNA), the eastward flowing North Equatorial Undercurrent and North Equatorial Countercurrent (NECC) provide the main oxygen supply into the OMZ. Variability in the strength and location of the LAZJs is associated with oxygen variability in the ETNA OMZ. We here want to address the question whether the variability in the zonal current field can be partly attributed to the large-scale climate modes of the tropical Atlantic, namely the Atlantic zonal and meridional mode. An influence of these modes on the NECC has been found in previous studies. For the analysis we are using the output of a global ocean circulation model, in which a 1/10° nest covering the tropical Atlantic is embedded into a global 1/2° model, as well as reanalysis products and satellite data. The zonal current field and oxygen distribution from the high resolution model is compared to observational data. The location and intensity of the current bands during positive and negative phases of the Atlantic climate modes are compared by focusing on individual events and via composite analysis. Based on the results, the potential impact of the Atlantic climate modes on the ventilation of the ETNA OMZ is discussed.

  16. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yiyong; Lu, Jian; Liu, Fukai; Liu, Wei

    2015-10-10

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although the weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.

  17. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming

    Science.gov (United States)

    Chen, Zesheng; Du, Yan; Wen, Zhiping; Wu, Renguang; Wang, Chunzai

    2018-06-01

    This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a "C-shape" wind anomaly pattern in the lower troposphere. The "C-shape" wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated "C-shape" wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.

  18. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming

    Science.gov (United States)

    Chen, Zesheng; Du, Yan; Wen, Zhiping; Wu, Renguang; Wang, Chunzai

    2017-09-01

    This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a "C-shape" wind anomaly pattern in the lower troposphere. The "C-shape" wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated "C-shape" wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.

  19. Spatial segregation in eastern North Pacific skate assemblages.

    Directory of Open Access Journals (Sweden)

    Joseph J Bizzarro

    Full Text Available Skates (Rajiformes: Rajoidei are common mesopredators in marine benthic communities. The spatial associations of individual species and the structure of assemblages are of considerable importance for effective monitoring and management of exploited skate populations. This study investigated the spatial associations of eastern North Pacific (ENP skates in continental shelf and upper continental slope waters of two regions: central California and the western Gulf of Alaska. Long-term survey data were analyzed using GIS/spatial analysis techniques and regression models to determine distribution (by depth, temperature, and latitude/longitude and relative abundance of the dominant species in each region. Submersible video data were incorporated for California to facilitate habitat association analysis. We addressed three main questions: 1 Are there regions of differential importance to skates?, 2 Are ENP skate assemblages spatially segregated?, and 3 When skates co-occur, do they differ in size? Skate populations were highly clustered in both regions, on scales of 10s of kilometers; however, high-density regions (i.e., hot spots were segregated among species. Skate densities and frequencies of occurrence were substantially lower in Alaska as compared to California. Although skates are generally found on soft sediment habitats, Raja rhina exhibited the strongest association with mixed substrates, and R. stellulata catches were greatest on rocky reefs. Size segregation was evident in regions where species overlapped substantially in geographic and depth distribution (e.g., R. rhina and Bathyraja kincaidii off California; B. aleutica and B. interrupta in the Gulf of Alaska. Spatial niche differentiation in skates appears to be more pronounced than previously reported.

  20. Spatial segregation in eastern North Pacific skate assemblages.

    Science.gov (United States)

    Bizzarro, Joseph J; Broms, Kristin M; Logsdon, Miles G; Ebert, David A; Yoklavich, Mary M; Kuhnz, Linda A; Summers, Adam P

    2014-01-01

    Skates (Rajiformes: Rajoidei) are common mesopredators in marine benthic communities. The spatial associations of individual species and the structure of assemblages are of considerable importance for effective monitoring and management of exploited skate populations. This study investigated the spatial associations of eastern North Pacific (ENP) skates in continental shelf and upper continental slope waters of two regions: central California and the western Gulf of Alaska. Long-term survey data were analyzed using GIS/spatial analysis techniques and regression models to determine distribution (by depth, temperature, and latitude/longitude) and relative abundance of the dominant species in each region. Submersible video data were incorporated for California to facilitate habitat association analysis. We addressed three main questions: 1) Are there regions of differential importance to skates?, 2) Are ENP skate assemblages spatially segregated?, and 3) When skates co-occur, do they differ in size? Skate populations were highly clustered in both regions, on scales of 10s of kilometers; however, high-density regions (i.e., hot spots) were segregated among species. Skate densities and frequencies of occurrence were substantially lower in Alaska as compared to California. Although skates are generally found on soft sediment habitats, Raja rhina exhibited the strongest association with mixed substrates, and R. stellulata catches were greatest on rocky reefs. Size segregation was evident in regions where species overlapped substantially in geographic and depth distribution (e.g., R. rhina and Bathyraja kincaidii off California; B. aleutica and B. interrupta in the Gulf of Alaska). Spatial niche differentiation in skates appears to be more pronounced than previously reported.

  1. Decadal oxygen change in the eastern tropical North Atlantic

    Directory of Open Access Journals (Sweden)

    J. Hahn

    2017-07-01

    Full Text Available Repeat shipboard and multi-year moored observations obtained in the oxygen minimum zone (OMZ of the eastern tropical North Atlantic (ETNA were used to study the decadal change in oxygen for the period 2006–2015. Along 23° W between 6 and 14° N, oxygen decreased with a rate of −5.9 ± 3.5 µmol kg−1 decade−1 within the depth covering the deep oxycline (200–400 m, while below the OMZ core (400–1000 m oxygen increased by 4.0 ± 1.6 µmol kg−1 decade−1 on average. The inclusion of these decadal oxygen trends in the recently estimated oxygen budget for the ETNA OMZ suggests a weakened ventilation of the upper 400 m, whereas the ventilation strengthened homogeneously below 400 m. The changed ventilation resulted in a shoaling of the ETNA OMZ of −0.03 ± 0.02 kg m−3 decade−1 in density space, which was only partly compensated by a deepening of isopycnal surfaces, thus pointing to a shoaling of the OMZ in depth space as well (−22 ± 17 m decade−1. Based on the improved oxygen budget, possible causes for the changed ventilation are analyzed and discussed. Largely ruling out other ventilation processes, the zonal advective oxygen supply stands out as the most probable budget term responsible for the decadal oxygen changes.

  2. On the origin of tropospheric ozone and NOx over the tropical South Pacific

    OpenAIRE

    Schultz, Martin G.; Jacob, Daniel James; Wang, Yuhang; Logan, Jennifer A.; Atlas, Elliot L.; Blake, Donald R.; Blake, Nicola J.; Bradshaw, John D.; Browell, Edward V.; Fenn, Marta A.; Flocke, Frank; Gregory, Gerald L.; Heikes, Brian G.; Sachse, Glen W.; Sandholm, Scott T.

    1999-01-01

    The budgets of ozone and nitrogen oxides (NOx = NO + NO2) in the tropical South Pacific troposphere are analyzed by photochemical point modeling of aircraft observations at 0–12 km altitude from the Pacific Exploratory Mission-Tropics A campaign flown in September-October 1996. The model reproduces the observed NO2/NO concentration ratio to within 30% and has similar success in simulating observed concentrations of peroxides ( H2O2, CH3OOH), lending confidence in its use to investigate ozone ...

  3. Considering native and exotic terrestrial reptiles in island invasive species eradication programmes in the Tropical Pacific

    Science.gov (United States)

    Fisher, Richard N.; Veitch, C.R.; Clout, Mike N.; Towns, D. R.

    2010-01-01

    Most island restoration projects with reptiles, either as direct beneficiaries of conservation or as indicators of recovery responses, have been on temperate or xeric islands. There have been decades of research, particularly on temperate islands in New Zealand, on the responses of native reptiles to mammal eradications but very few studies in tropical insular systems. Recent increases in restoration projects involving feral mammal eradications in the tropical Pacific have led to several specific challenges related to native and invasive reptiles. This paper reviews these challenges and discusses some potential solutions to them. The first challenge is that the tropical Pacific herpetofauna is still being discovered, described and understood. There is thus incomplete knowledge of how eradication activities may affect these faunas and the potential risks facing critical populations of these species from these eradication actions. The long term benefit of the removal of invasives is beneficial, but the possible short term impacts to small populations on small islands might be significant. The second challenge is that protocols for monitoring the responses of these species are not well documented but are often different from those used in temperate or xeric habitats. Lizard monitoring techniques used in the tropical Pacific are discussed. The third challenge involves invasive reptiles already in the tropical Pacific, some of which could easily spread accidentally through eradication and monitoring operations. The species posing the greatest threats in this respect are reviewed, and recommendations for biosecurity concerning these taxa are made.

  4. Mechanism of seasonal eddy kinetic energy variability in the eastern equatorial Pacific Ocean

    Science.gov (United States)

    Wang, Minyang; Du, Yan; Qiu, Bo; Cheng, Xuhua; Luo, Yiyong; Chen, Xiao; Feng, Ming

    2017-04-01

    Enhanced mesoscale eddy activities or tropical instability waves (TIWs) exist along the northern front of the cold tongue in the eastern equatorial Pacific Ocean. In this study, we investigate seasonal variability of eddy kinetic energy (EKE) over this region and its associated dynamic mechanism using a global, eddy-resolving ocean general circulation model (OGCM) simulation, the equatorial mooring data, and satellite altimeter observations. The seasonal-varying enhanced EKE signals are found to expand westward from 100°W in June to 180°W in December between 0°N and 6°N. This westward expansion in EKE is closely connected to the barotropically-baroclinically unstable zonal flows that are in thermal-wind balance with the seasonal-varying thermocline trough along 4°N. By adopting an 1½-layer reduced-gravity model, we confirm that the seasonal perturbation of the thermocline trough is dominated by the anticyclonic wind stress curl forcing, which develops due to southerly winds along 4°N from June to December.

  5. Potential impact of the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean-Western Pacific on the variability of typhoon landfall on the China coast

    Science.gov (United States)

    Yang, Lei; Chen, Sheng; Wang, Chunzai; Wang, Dongxiao; Wang, Xin

    2017-12-01

    The landfall activity of typhoons (TYs) along the coast of China during July-August-September (JAS) shows significant interdecadal variation during 1965-2010. We identify three sub-periods of TY landfall activity in JAS along the China coast in this period, with more TY landfall during 1965-1978 (Period I) and 1998-2010 (Period III), and less during 1982-1995 (Period II). We find that the interdecadal variation might be related to the combined effects of Pacific Decadal Oscillation (PDO) phase changes and sea surface temperature (SST) variation in the tropical Indian Ocean and Western Pacific (IO-WP). During the negative PDO phase in Periods I and III, a cyclonic anomaly is located in the western North Pacific (WNP), inducing easterly flow in its northern part, which favors TY landfall along the eastern China coast. Warm SST anomalies over the tropical IO-WP during Period III induce an anomalous anticyclonic circulation in the WNP through both the Gill-pattern response to the warm SST in the tropical IO and the anomalous meridional circulation induced by the warm SST in the tropical WNP. As a result, the northern South China Sea and WNP (10°-20° N) are dominated by southeasterly flow, which favors TYs making landfall on both the southern and eastern China coast. With both landfalling-favorable conditions satisfied, there are significantly more TYs making landfall along the China coast during Period III than during Period I, which shows cool SST anomalies in the tropical IO-WP.

  6. Tropical Pacific Climate, Carbon, and Ocean Biogeochemical Response to the Central American Seaway in a GFDL Earth System Model

    Science.gov (United States)

    Sentman, L. T.; Dunne, J. P.; Stouffer, R. J.; Krasting, J. P.; Wittenberg, A. T.; Toggweiler, J. R.; Broccoli, A. J.

    2017-12-01

    To explore the tropical Pacific climate, carbon, and ocean biogeochemical response to the shoaling and closure of the Central American Seaway during the Pliocene (5.3-2.6 Ma), we performed a suite of sensitivity experiments using the Geophysical Fluid Dynamics Laboratory Earth System Model, GFDL-ESM2G, varying only the seaway widths and sill depths. These novel ESM simulations include near-final closure of the seaway with a very narrow, 1º grid cell wide opening. Net mass transport through the seaway into the Caribbean is 20.5-23.1 Sv with a deep seaway, but only 14.1 Sv for the wide/shallow seaway because of the inter-basin bi-directional horizontal mass transport. Seaway transport originates from the Antarctic Circumpolar Current in the Pacific and rejoins it in the South Atlantic, reducing the Indonesian Throughflow and transporting heat and salt southward into the South Atlantic, in contrast to present-day and previous seaway simulations. Tropical Pacific mean climate and interannual variability is sensitive to the seaway shoaling, with the largest response to the wider/deeper seaway. In the tropical Pacific, the top 300-m warms 0.4-0.8°C, the equatorial east-west sea surface temperature gradient increases, the north-south sea surface temperature asymmetry at 110°W decreases, thermocline deepens 5-11 m, and the east-west thermocline gradient increases. In the Niño-3 region, ENSO amplitude increases, skewed toward more cold (La Niña) events, El Niño and La Niña develops earlier ( 3 months), the annual cycle weakens and the semi-annual and interannual cycles strengthen from increased symmetry of the north-south sea surface temperature gradient, and atmospheric global teleconnections strengthen with the seaway. The increase in global ocean overturning with the seaway results in a younger average ocean ideal age, reduced dissolved inorganic carbon inventory and marine net primary productivity, and altered inter-basin patterns of surface sediment carbonate

  7. Multiple distant origins for green sea turtles aggregating off Gorgona Island in the Colombian eastern Pacific.

    Directory of Open Access Journals (Sweden)

    Diego F Amorocho

    Full Text Available Mitochondrial DNA analyses have been useful for resolving maternal lineages and migratory behavior to foraging grounds (FG in sea turtles. However, little is known about source rookeries and haplotype composition of foraging green turtle aggregations in the southeastern Pacific. We used mitochondrial DNA control region sequences to identify the haplotype composition of 55 green turtles, Chelonia mydas, captured in foraging grounds of Gorgona National Park in the Colombian Pacific. Amplified fragments of the control region (457 bp revealed the presence of seven haplotypes, with haplotype (h and nucleotide (π diversities of h = 0.300±0.080 and π = 0.009±0.005 respectively. The most common haplotype was CMP4 observed in 83% of individuals, followed by CMP22 (5%. The genetic composition of the Gorgona foraging population primarily comprised haplotypes that have been found at eastern Pacific rookeries including Mexico and the Galapagos, as well as haplotypes of unknown stock origin that likely originated from more distant western Pacific rookeries. Mixed stock analysis suggests that the Gorgona FG population is comprised mostly of animals from the Galapagos rookery (80%. Lagrangian drifter data showed that movement of turtles along the eastern Pacific coast and eastward from distant western and central Pacific sites was possible through passive drift. Our results highlight the importance of this protected area for conservation management of green turtles recruited from distant sites along the eastern Pacific Ocean.

  8. Multiple distant origins for green sea turtles aggregating off Gorgona Island in the Colombian eastern Pacific.

    Science.gov (United States)

    Amorocho, Diego F; Abreu-Grobois, F Alberto; Dutton, Peter H; Reina, Richard D

    2012-01-01

    Mitochondrial DNA analyses have been useful for resolving maternal lineages and migratory behavior to foraging grounds (FG) in sea turtles. However, little is known about source rookeries and haplotype composition of foraging green turtle aggregations in the southeastern Pacific. We used mitochondrial DNA control region sequences to identify the haplotype composition of 55 green turtles, Chelonia mydas, captured in foraging grounds of Gorgona National Park in the Colombian Pacific. Amplified fragments of the control region (457 bp) revealed the presence of seven haplotypes, with haplotype (h) and nucleotide (π) diversities of h = 0.300±0.080 and π = 0.009±0.005 respectively. The most common haplotype was CMP4 observed in 83% of individuals, followed by CMP22 (5%). The genetic composition of the Gorgona foraging population primarily comprised haplotypes that have been found at eastern Pacific rookeries including Mexico and the Galapagos, as well as haplotypes of unknown stock origin that likely originated from more distant western Pacific rookeries. Mixed stock analysis suggests that the Gorgona FG population is comprised mostly of animals from the Galapagos rookery (80%). Lagrangian drifter data showed that movement of turtles along the eastern Pacific coast and eastward from distant western and central Pacific sites was possible through passive drift. Our results highlight the importance of this protected area for conservation management of green turtles recruited from distant sites along the eastern Pacific Ocean.

  9. Spatial variation of the zooplankton community in the western tropical Pacific Ocean during the summer of 2014

    Science.gov (United States)

    Yang, Guang; Li, Chaolun; Wang, Yanqing; Wang, Xiaocheng; Dai, Luping; Tao, Zhencheng; Ji, Peng

    2017-03-01

    Knowledge of the zooplankton community in the western tropical Pacific Ocean is poor compared to that of the communities in the central and eastern Pacific Ocean. The zooplankton composition, abundance, biomass and community structure in the western Pacific Ocean were studied based on data collected during a synoptic cruise (August-September 2014). Four zooplankton communities were determined via cluster analysis, and these four clusters were mainly spatially related to four different currents: the Luzon Current (LC), Subtropical Countercurrent (STCC), North Equatorial Current (NEC) and North Equatorial Countercurrent (NECC). The estimated mean abundance and biomass of the zooplankton for the whole surveyed area were 146.7±178.1 ind/m3 and 36.9±40.3 mg/m3, respectively. The zooplankton abundance was dominated by small copepods, such as Clausocalanus furcatus, C. pergens, Oncaea mediterranea and Oithona plumifera. The zooplankton abundance and biomass values were lowest in the STCC region and highest in the NECC region. BEST analysis based on surface environmental factors showed that chlorophyll a (chl a), pH, temperature and salinity were the environmental variables that best explained the distribution pattern of the zooplankton community (pw=0.372). The zooplankton abundance was higher south of the salinity front at 16°N, in accordance with the relatively higher nutrient and chl a levels. Maximum zooplankton biomass was found in regions on the periphery of the cyclonic Mindanao Eddy (ME) and anticyclonic Halmahera Eddy (HE).

  10. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

    Science.gov (United States)

    Kucharski, F.; Sun, C.; Li, J.; Jin, F. F.; Kang, I. S.; Ding, R.

    2017-12-01

    Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.

  11. Resurrection of the name Albula pacifica (Beebe, 1942 for the shafted bonefish (Albuliformes: Albulidae from the eastern Pacific

    Directory of Open Access Journals (Sweden)

    Edward Pfeiler

    2008-06-01

    Full Text Available The name Albula nemoptera (Fowler, 1911 is currently applied to the Shafted, or Threadfin, Bonefish (Albuliformes: Albulidae inhabiting the tropical coastal waters of both the western Atlantic and eastern Pacific. In the present paper I provide a brief review of the taxonomy and nomenclature of A. nemoptera, and argue that the available morphological, biogeographical and molecular evidence supports resurrecting the name A. pacifica (Beebe, 1942 for the population of A. nemoptera from the eastern Pacific. Rev. Biol. Trop. 56 (2: 839-844. Epub 2008 June 30.El nombre Albula nemoptera (Fowler, 1911 se aplica actualmente a las poblaciones del macabí de hebra (Albuliformes: Albulidae de las aguas costeras tropicales del Atlántico Occidental y el Pacifico Oriental. En este artículo se presenta una revisión breve de la taxonomía y nomenclatura de A. nemoptera, y se sugiere que la evidencia morfológica, biogeográfica y molecular apoya el reestablecimiento del nombre A. pacifica (Beebe, 1942 para la población de A. nemoptera del Pacifico Oriental.

  12. Mesoscale simulation of tropical cyclones in the South Pacific: Climatology and interannual variability

    Digital Repository Service at National Institute of Oceanography (India)

    Jourdain, N.C.; Marchesiello, P.; Menkes, C.E.; Lefevre, J.; Vincent, E.M.; Lengaigne, M.; Chauvin, F.

    The Weather Research and Forecast model at 1/3 degree resolution is used to simulate the statistics of tropical cyclone (TC) activity in the present climate of the South Pacific. In addition to the large-scale conditions, the model is shown...

  13. Ocean climate coupling in the tropical Pacific Ocean over the past fifty years: implications and feedbacks

    International Nuclear Information System (INIS)

    Wang, Xiujun; Murtugudde, Ragu; Busalacchi, Antonio J.

    2007-01-01

    Full text: The tropical Pacific plays an important role in climate because of its significant air-sea exchanges of heat, freshwater, and carbon dioxide (C02), and because of its direct linkage to climate variability. There are two dominant modes of climate variability in the Tropics: the El Nino-Southern Oscillation (ENSO) phenomenon and the Pacific Decadal Oscillation (PDO). There has been strong evidence of ENSO and PDO impacts on tropical Pacific physics and biogeochemistry, including heat content, ocean circulation (McPhaden and Zhang 2002), and carbon fluxes (Feely ef al. 2006; Wang ef al. 2006). In this study, we apply a basin-scale ocean circulation-ecosystem-carbon model (Wang ef al. 2006) to study the responses of the tropical Pacific ecosystem, biogeochemistry and carbon cycle to climate forcing over the past 50 years. The model produces strong spatial and temporal variability in surface nutrient concentration, phytoplankton biomass, carbon uptake, and sea-to-air C02 flux, which are largely associated with the ENSO phenomenon. In particular, the size of the tropical Pacific C02 source is large during the ENSO cold phase but small during the ENSO warm phase. There are significant decadal variations in tropical Pacific carbon fluxes, reflecting physical and biogeochemical changes associated with the 1977 and 1997/98 PDO shifts. The 1977 regime shift caused 1 0 C warming in sea surface temperature and -50% reduction in surface iron concentration in the Niho3.4 area, leading to decreased biological activity. While there is a large decrease in phytoplankton growth and biomass, reduction in carbon uptake is smaller than expected, due to phytoplankton photoadaption, which increases the carbon to chlorophyll ratio in the upper euphotic zone and enhances sub-surface production. Photoadaption also results in clearer water near the surface, leading to less heating near the ocean surface and allowing more solar radiation to penetrate the subsurface. Our studies

  14. The Relationships between Tropical Pacific and Atlantic SST and Northeast Brazil Monthly Precipitation.

    Science.gov (United States)

    Bertacchi Uvo, Cintia; Repelli, Carlos A.; Zebiak, Stephen E.; Kushnir, Yochanan

    1998-04-01

    The monthly patterns of northeast Brazil (NEB) precipitation are analyzed in relation to sea surface temperature (SST) in the tropical Pacific and Atlantic Oceans, using singular value decomposition. It is found that the relationships between precipitation and SST in both basins vary considerably throughout the rainy season (February-May). In January, equatorial Pacific SST is weakly correlated with precipitation in small areas of southern NEB, but Atlantic SST shows no significant correlation with regional precipitation. In February, Pacific SST is not well related to precipitation, but south equatorial Atlantic SST is positively correlated with precipitation over the northern Nordeste, the latter most likely reflecting an anomalously early (or late) southward migration of the ITCZ precipitation zone. During March, equatorial Pacific SST is negatively correlated with Nordeste precipitation, but no consistent relationship between precipitation and Atlantic SST is found. Atlantic SST-precipitation correlations for April and May are the strongest found among all months or either ocean. Precipitation in the Nordeste is positively correlated with SST in the south tropical Atlantic and negatively correlated with SST in the north tropical Atlantic. These relationships are strong enough to determine the structure of the seasonal mean SST-precipitation correlations, even though the corresponding patterns for the earlier months of the season are quite different. Pacific SST-precipitation correlations for April and May are similar to those for March. Extreme wet (dry) years for the Nordeste occur when both Pacific and Atlantic SST patterns for April and May occur simultaneously. A separate analysis reinforces previous findings in showing that SST in the tropical Pacific and the northern tropical Atlantic are positively correlated and that tropical Pacific-south Atlantic correlations are negligible.Time-lagged analyses show the potential for forecasting either seasonal mean

  15. Environmental forcing of nitrogen fixation in the eastern tropical and sub-tropical North Atlantic Ocean.

    Science.gov (United States)

    Rijkenberg, Micha J A; Langlois, Rebecca J; Mills, Matthew M; Patey, Matthew D; Hill, Polly G; Nielsdóttir, Maria C; Compton, Tanya J; Laroche, Julie; Achterberg, Eric P

    2011-01-01

    During the winter of 2006 we measured nifH gene abundances, dinitrogen (N(2)) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 10(6) L(-1)nifH gene copies, unicellular group A cyanobacteria with up to 10(5) L(-1)nifH gene copies and gamma A proteobacteria with up to 10(4) L(-1)nifH gene copies. N(2) fixation rates were low and ranged between 0.032-1.28 nmol N L(-1) d(-1) with a mean of 0.30 ± 0.29 nmol N L(-1) d(-1) (1σ, n = 65). CO(2)-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2 ± 3.2 in surface waters. Nevertheless, N(2) fixation rates contributed only 0.55 ± 0.87% (range 0.03-5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N(2) fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N(2) fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the

  16. Effects of subsurface ocean dynamics on instability waves in the tropical Pacific

    Science.gov (United States)

    Lawrence, Sean P.; Allen, Myles R.; Anderson, David L. T.; Llewellyn-Jones, David T.

    1998-08-01

    Tropical instability waves in a primitive equation model of the tropical Pacific Ocean, forced with analyzed wind stresses updated daily, show unexpectedly close phase correspondence with observation through the latter half of 1992. This suggests that these waves are not pure instabilities developing from infinitesimal disturbances, but that their phases and phase speeds are at least partially determined by the wind stress forcing. To quantify and explain this observation, we perfomed several numerical experiments, which indicate that remotely forced Rossby waves can influence both the phase and phase speed of tropical instability waves. We suggest that a remote wind forcing determines the high model/observation phase correspondence of tropical instability waves through a relatively realistic simulation of equatorial Kelvin and Rossby wave activity.

  17. Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific

    Science.gov (United States)

    Pohlmann, Holger; Kröger, Jürgen; Greatbatch, Richard J.; Müller, Wolfgang A.

    2017-10-01

    Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2-5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global mean temperature. Understanding the causes of the reduced prediction skill is thus of major interest for decadal climate predictions. We look into the problem of reduced prediction skill by analyzing the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcasts for the fifth phase of the Climate Model Intercomparison Project and performing a sensitivity experiment in which hindcasts are initialized from a model run forced only by surface wind stress. In both systems, sea surface temperature variability in the tropical Pacific is successfully initialized, but most skill is lost at lead years 2-5. Utilizing the sensitivity experiment enables us to pin down the reason for the reduced prediction skill in MPI-ESM to errors in wind stress used for the initialization. A spurious trend in the wind stress forcing displaces the equatorial thermocline in MPI-ESM unrealistically. When the climate model is then switched into its forecast mode, the recovery process triggers artificial El Niño and La Niña events at the surface. Our results demonstrate the importance of realistic wind stress products for the initialization of decadal predictions.

  18. Trace gas concentrations, intertropical convergence, atmospheric fronts, and ocean currents in the tropical Pacific m(Paper 8C1060)

    International Nuclear Information System (INIS)

    Wilkniss, P.E.; Rodgers, E.B.; Swinnerton, J.W.; Larson, R.E.; Lamontagne, R.A.

    1979-01-01

    Shipboard measurements of atmospheric 222 Rn, CO, and CH 4 and of dissolved CO in surface waters have been carried out in the equatorial Pacific on a cruise from Ecuador to Hawaii, Tahiti and Panama in March and April of 1974, and during transit from Los Angeles to Antarctica in November and December of 1972. The trace gas results, combined with conventional meteorological data and with satellite images from Nimbus 5 and the defense meteorological satellite project (DMSP), have provided descriptions of the intertropical convergence zones (ITCZ) near 04 0 N, 102 0 W and 03 0 N, 154 0 W in March of 1974, near 04 0 N, 86 0 W in April of 1974, and near 05 0 N, 139 0 W in November of 1972. In all cases the ITCZ seems to be located north of the south equatorial current (SEC) as shown by dissolved CO peaks in surface waters. In April of 1974 a 'second' ITCZ was observed near 01 0 S, 102 0 W just south of the SEC. A stationary front near Hawaii (20 0 N, 147 0 W) in March of 1974 was investigated. The ITCZ was marked by light shifting winds near a zone of heavy cloud cover and precipitation. In the eastern Tropical Pacific atmospheric 222 Rn increases distinctly north of the ITCZ and thus serves as an indicator for the ITCZ. CO and CH 4 do not always increase coincident with atmospheric 222 Rn. The atmospheric features of the stationary front near Hawaii are in many ways similar to those observed for the ITCZ. The front is marked by cloud cover, precipitation zone and light shifting winds. 222 Rn, CO and CH 4 increase signifantly behind the front in subsiding air which was traced back to the Asian continent. The variation of atmospheric 222 Rn, CO and CH 4 with time and geographical area over the equatorial Pacific seems to be a consequence of seasonal variations of the trade wind field and long range transport to the central Pacific from Asia and to the eastern equatorial Pacific from North and Central America

  19. ENSO dynamics and seasonal cycle in the tropical Pacific as simulated by the ECHAM4/OPYC3 coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Oberhuber, J.M. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1996-07-01

    The new version of the atmospheric general circulation model, ECHAM4, at the Max Planck Institute for Meteorology, Hamburg, has been coupled to the OPYC3 isopycnic global ocean general circulation and sea ice model (Oberhuber 1993) in a multi-century present-day climate simulation. Nonseasonal constant flux adjustment for heat and freshwater was employed to ensure a long-term annual mean state close to present day climatology. This paper examines the simulated upper ocean seasonal cycle and interannual variability in the tropical Pacific for the first 100 years. The coupled model`s seasonal cycle of tropical Pacific SSTs is in good agreement with the observations with respect to both the warm pool variation and the Central and Eastern Pacific, with significant errors (up to -2 K) only in the cold tongue around April. The cold phase cold tongue extent and strength is as observed, and for this the heat flux adjustment does not play the decisive role; corrections beyond {+-}40 Wm{sup -2} are rare and only occupy small areas, such as near coasts. A well established south Pacific convergence zone is characteristic for the new AGCM version. Apart from extending the south-east trades seasonal maximum to midbasin, windstress pattern and strength are well captured. The subsurface structure is overall consistent with the observed, with a realistically sharp thermocline at about 150 m depth in the west and rising to the surface from 160 W to 100 W.

  20. Revision of Hydroides Gunnerus, 1768 (Polychaeta: Serpulidae) from the Eastern Pacific region and Hawaii

    NARCIS (Netherlands)

    Bastida-Zavala, J. Rolando; Hove, ten Harry A.

    2003-01-01

    A taxonomic revision of the Hydroides species (Polychaeta: Serpulidae) from the Eastern Pacific Ocean is presented. Twentyone taxa are described, of which two are widespread (H. diramphus Mörch, 1863 and H. elegans (Haswell, 1883)) and four are Amphiamerican (H. alatalateralis (Jones, 1962), H.

  1. Spatial δ18Osw-SSS relationship across the western tropical Pacific Ocean

    Science.gov (United States)

    Thompson, D. M.; Conroy, J. L.; Wyman, A.; Read, D.

    2017-12-01

    Dynamic hydroclimate processes across the western tropical Pacific lead to strong spatial and temporal variability in δ18Osw and sea-surface salinity (SSS) across the western Pacific. Corals in this region have therefore provided key information about past SSS variability, as δ18Osw contributes strongly to coral δ18O across this region. However, uncertainties in the δ18Osw-SSS relationship across space and time often limit quantitative SSS reconstructions from such coral records. Recent work demonstrates considerable variability in the δ18Osw-SSS relationship across the Pacific, which may lead to over- or under-estimation of the contribution of SSS to coral δ18O, particularly across the western tropical Pacific (Conroy et al. 2017). Here we assess the spatial δ18Osw-SSS relationship across the dynamic western tropical Pacific, capitalizing on a transit between Subic Bay, Philippines and Townsville, Australia aboard the International Ocean Discovery program's JOIDES Resolution. Water samples and weather conditions were collected 3 times daily (6:00, 12:00, 18:00) en route, resulting in a network of 47 samples spaced at semi-regular 130-260 km intervals across the western Pacific from 14°N to 18°S. The route also crossed near long-term δ18Osw monitoring sites at Papua New Guinea and Palau (Conroy et al. 2017), allowing us to compare the spatial and temporal δ18Osw-SSS relationships at these sites and test the space-for-time assumption. We present the δ18Osw-SSS relationship across this region, compare the relationship across space and time, and discuss the implications of our results for SSS reconstructions from coral δ18O.

  2. Decrease of tropical cyclone genesis frequency in the western North Pacific since 1960s

    Science.gov (United States)

    Hu, Feng; Li, Tim; Liu, Jia; Bi, Mingyu; Peng, Melinda

    2018-03-01

    Tropical cyclone (TC) genesis frequency in the western North Pacific (WNP) during 1960-2014 shows a step-by-step decrease on interdecadal timescale, in accordance to the phase of the Interdecadal Pacific Oscillation (IPO). The environmental parameters responsible for the interdecadal change of TC genesis frequency were investigated. It was found that vertical wind shear especially the zonal wind shear plays a critical role, while other parameters such as sea surface temperature (SST), vertical velocity, divergence, humidity and maximum potential intensity cannot explain the step-by-step decrease of TC genesis frequency. A further diagnosis shows that the interdecadal change of vertical wind shear is caused by SST and associated rainfall pattern changes across the Indo-Pacific Ocean. A stronger warming in the Indian Ocean/western Pacific from 1960-1976 to 1977-1998 led to enhanced convection over the Maritime Continent and thus strengthened vertical shear over the key TC genesis region in the WNP. A La Nina-like SST pattern change from 1977-1998 to 1999-2014 led to a strengthened Walker circulation in the tropical Pacific, which further enhanced the vertical shear and decreased TC genesis frequency in the WNP.

  3. Estimates of Eastern Equatorial Pacific Sea Surface Temperatures During the Pliocene From Carbonate 'Clumped Isotope' Thermometry

    Science.gov (United States)

    Thiagarajan, N.; Tripati, A.; Eiler, J.

    2007-12-01

    The early Pliocene (5 to 3 Ma) was an interval in Earth history that was globally warmer than the present; thus, study of the details of Pliocene climate can provide insights into the dynamics of warm climates. There are two competing models of the temperature structure of the tropical Pacific upper-ocean during the early Pliocene: the dynamical 'ocean thermostat' model [1,2] and the 'El Padre' (or permanent 'El Nino') model [3], each of which predict zonal temperature gradients and mean conditions in the Eastern Equatorial Pacific (EEP), and which differ markedly from one another in these predictions. The dynamical 'ocean thermostat' model predicts an increased temperature contrast between the Western Equatorial Pacific (WEP) and EEP, enhanced thermocline tilt and intensified upwelling under warmer conditions. In contrast, the 'El Padre' model postulates a collapse of the zonal temperature gradient, reduced thermocline tilt and a reduction in upwelling and/or warmer temperatures of upwelled waters. Existing reconstructions of tropical temperatures produce WEP sea surface temperatures which agree with each other, but yield very different results in the EEP [4,5]. We have reconstructed EEP sea surface temperatures at Ocean Drilling Program (ODP) Site 847 using a few samples spanning key intervals of the last 6 million years using carbonate clumped isotope thermometer [6,7,8]. This technique is based on the temperature dependence of the abundances of 13C-18O bonds in carbonate minerals. Initial measurements of planktonic foraminifera and coccoliths from ODP Site 847 indicate cool EEP sea surface temperatures, supporting models of Pliocene climate that have enhanced zonal temperature gradients, relative to modern. Analyses of Globigerinoides sacculifer (with sac) from sediments indicate calcification temperatures of 20.3°C ± 0.1°C and seawater δ18O values of -0.8‰ ± 0.1‰ from ~6.1 to 5.1 million years ago. Measurements of a mixed coccolith assemblage from the

  4. Low oxygen eddies in the eastern tropical North Atlantic

    DEFF Research Database (Denmark)

    Grundle, D. S.; Löscher, C. R.; Krahmann, G.

    2017-01-01

    Nitrous oxide (N2O) is a climate relevant trace gas, and its production in the ocean generally increases under suboxic conditions. The Atlantic Ocean is well ventilated, and unlike the major oxygen minimum zones (OMZ) of the Pacific and Indian Oceans, dissolved oxygen and N2O concentrations in th...

  5. Genetic isolation between the Western and Eastern Pacific populations of pronghorn spiny lobster Panulirus penicillatus.

    Directory of Open Access Journals (Sweden)

    Seinen Chow

    Full Text Available The pronghorn spiny lobster, Panulirus penicillatus, is a circumtropical species which has the widest global distribution among all the species of spiny lobster, ranging throughout the entire Indo-Pacific region. Partial nucleotide sequences of mitochondrial DNA COI (1,142-1,207 bp and 16S rDNA (535-546 bp regions were determined for adult and phyllosoma larval samples collected from the Eastern Pacific (EP(Galápagos Islands and its adjacent water, Central Pacific (CP(Hawaii and Tuamotu and the Western Pacific (WP(Japan, Indonesia, Fiji, New Caledonia and Australia. Phylogenetic analyses revealed two distinct large clades corresponding to the geographic origin of samples (EP and CP+WP. No haplotype was shared between the two regional samples, and average nucleotide sequence divergence (Kimura's two parameter distance between EP and CP+WP samples was 3.8±0.5% for COI and 1.0±0.4% for 16S rDNA, both of which were much larger than those within samples. The present results indicate that the Pacific population of the pronghorn spiny lobster is subdivided into two distinct populations (Eastern Pacific and Central to Western Pacific, with no gene flow between them. Although the pronghorn spiny lobster have long-lived teleplanic larvae, the vast expanse of Pacific Ocean with no islands and no shallow substrate which is known as the East Pacific Barrier appears to have isolated these two populations for a long time (c.a. 1MY.

  6. An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000

    KAUST Repository

    Hoteit, Ibrahim; Cornuelle, B.; Heimbach, P.

    2010-01-01

    An eddy-permitting adjoint-based assimilation system has been implemented to estimate the state of the tropical Pacific Ocean. The system uses the Massachusetts Institute of Technology's general circulation model and its adjoint. The adjoint method

  7. Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific

    KAUST Repository

    Sraj, Ihab; Zedler, Sarah E.; Knio, Omar; Jackson, Charles S.; Hoteit, Ibrahim

    2016-01-01

    The authors present a polynomial chaos (PC)-based Bayesian inference method for quantifying the uncertainties of the K-profile parameterization (KPP) within the MIT general circulation model (MITgcm) of the tropical Pacific. The inference

  8. Mortalities of Eastern and Pacific oyster Larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii.

    Science.gov (United States)

    Richards, Gary P; Watson, Michael A; Needleman, David S; Church, Karlee M; Häse, Claudia C

    2015-01-01

    Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio coralliilyticus, a well-known coral pathogen, has recently been shown to elicit mortality in fish and shellfish. Several strains of V. coralliilyticus, such as ATCC 19105 and Pacific isolates RE22 and RE98, were misidentified as V. tubiashii until recently. We compared the mortalities caused by two V. tubiashii and four V. coralliilyticus strains in Eastern and Pacific oyster larvae. The 50% lethal dose (LD50) of V. coralliilyticus in Eastern oysters (defined here as the dose required to kill 50% of the population in 6 days) ranged from 1.1 × 10(4) to 3.0 × 10(4) CFU/ml seawater; strains RE98 and RE22 were the most virulent. This study shows that V. coralliilyticus causes mortality in Eastern oyster larvae. Results for Pacific oysters were similar, with LD50s between 1.2 × 10(4) and 4.0 × 10(4) CFU/ml. Vibrio tubiashii ATCC 19106 and ATCC 19109 were highly infectious toward Eastern oyster larvae but were essentially nonpathogenic toward healthy Pacific oyster larvae at dosages of ≥1.1 × 10(4) CFU/ml. These data, coupled with the fact that several isolates originally thought to be V. tubiashii are actually V. coralliilyticus, suggest that V. coralliilyticus has been a more significant pathogen for larval bivalve shellfish than V. tubiashii, particularly on the U.S. West Coast, contributing to substantial hatchery-associated morbidity and mortality in recent years. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Simulation of the intraseasonal variability over the Eastern Pacific ITCZ in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xianan [Univ. of California, Los Angeles, CA (United States); Waliser, Duane E. [California Inst. of Technology (CalTech), La Canada Flintridge, CA (United States). Jet Propulsion Lab.; Kim, Daehyun [Columbia Univ., New York, NY (United States); Zhao, Ming [Princeton Univ., NJ (United States); Sperber, Kenneth R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stern, William F. [Princeton Univ., NJ (United States); Schubert, Siegfried D. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Zhang, Guang J. [Scripps Institute of Oceanography. La Jolla, California (United States); Wang, Wanqiu [National Oceanic and Atmospheric Administration (NOAA), National Centers for Environmental Protection. Camp Springs, MD (United States); Khairoutdinov, Marat [Institute for Terrestrial and Planetary Atmospheres. Stony Brook Univ., NY (United States); Neale, Richard B. [National Center for Atmospheric Research. Boulder, CO (United States); Lee, Myong-In [Ulsan National Institute for Science and Technology. Seoul (Korea)

    2012-08-01

    During boreal summer, convective activity over the eastern Pacific (EPAC) inter-tropical convergence zone (ITCZ) exhibits vigorous intraseasonal variability (ISV). Previous observational studies identified two dominant ISV modes over the EPAC, i.e., a 40-day mode and a quasi-biweekly mode (QBM). The 40-day ISV mode is generally considered a local expression of the Madden-Julian Oscillation. However, in addition to the eastward propagation, northward propagation of the 40-day mode is also evident. The QBM mode bears a smaller spatial scale than the 40-day mode, and is largely characterized by northward propagation. While the ISV over the EPAC exerts significant influences on regional climate/weather systems, investigation of contemporary model capabilities in representing these ISV modes over the EPAC is limited. In this study, the model fidelity in representing these two dominant ISV modes over the EPAC is assessed by analyzing six atmospheric and three coupled general circulation models (GCMs), including one super-parameterized GCM (SPCAM) and one recently developed high-resolution GCM (GFDL HIRAM) with horizontal resolution of about 50 km. While it remains challenging for GCMs to faithfully represent these two ISV modes including their amplitude, evolution patterns, and periodicities, encouraging simulations are also noted. In general, SPCAM and HIRAM exhibit relatively superior skill in representing the two ISV modes over the EPAC. While the advantage of SPCAM is achieved through explicit representation of the cumulus process by the embedded 2-D cloud resolving models, the improved representation in HIRAM could be ascribed to the employment of a strongly entraining plume cumulus scheme, which inhibits the deep convection, and thus effectively enhances the stratiform rainfall. The sensitivity tests based on HIRAM also suggest that fine horizontal resolution could also be conducive to realistically capture the ISV over the EPAC, particularly for the QBM mode

  10. Simulation of the intraseasonal variability over the Eastern Pacific ITCZ in climate models

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xianan [University of California, Joint Institute for Regional Earth System Science and Engineering, Los Angeles, CA (United States); California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA (United States); Waliser, Duane E. [California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA (United States); Kim, Daehyun [Lamont-Doherty Earth Observatory of Columbia University, New York, NY (United States); Zhao, Ming; Stern, William F. [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ (United States); Sperber, Kenneth R. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Schubert, Siegfried D. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Zhang, Guang J. [Scripps Institution of Oceanography, La Jolla, CA (United States); Wang, Wanqiu [NOAA/National Centers for Environmental Prediction, Camp Springs, MD (United States); Khairoutdinov, Marat [Stony Brook University, Institute for Terrestrial and Planetary Atmospheres, Stony Brook, NY (United States); Neale, Richard B. [National Center for Atmospheric Research, Boulder, CO (United States); Lee, Myong-In [Ulsan National Institute of Science and Technology, Seoul (Korea, Republic of)

    2012-08-15

    During boreal summer, convective activity over the eastern Pacific (EPAC) inter-tropical convergence zone (ITCZ) exhibits vigorous intraseasonal variability (ISV). Previous observational studies identified two dominant ISV modes over the EPAC, i.e., a 40-day mode and a quasi-biweekly mode (QBM). The 40-day ISV mode is generally considered a local expression of the Madden-Julian Oscillation. However, in addition to the eastward propagation, northward propagation of the 40-day mode is also evident. The QBM mode bears a smaller spatial scale than the 40-day mode, and is largely characterized by northward propagation. While the ISV over the EPAC exerts significant influences on regional climate/weather systems, investigation of contemporary model capabilities in representing these ISV modes over the EPAC is limited. In this study, the model fidelity in representing these two dominant ISV modes over the EPAC is assessed by analyzing six atmospheric and three coupled general circulation models (GCMs), including one super-parameterized GCM (SPCAM) and one recently developed high-resolution GCM (GFDL HIRAM) with horizontal resolution of about 50 km. While it remains challenging for GCMs to faithfully represent these two ISV modes including their amplitude, evolution patterns, and periodicities, encouraging simulations are also noted. In general, SPCAM and HIRAM exhibit relatively superior skill in representing the two ISV modes over the EPAC. While the advantage of SPCAM is achieved through explicit representation of the cumulus process by the embedded 2-D cloud resolving models, the improved representation in HIRAM could be ascribed to the employment of a strongly entraining plume cumulus scheme, which inhibits the deep convection, and thus effectively enhances the stratiform rainfall. The sensitivity tests based on HIRAM also suggest that fine horizontal resolution could also be conducive to realistically capture the ISV over the EPAC, particularly for the QBM mode

  11. Simulation of the Intraseasonal Variability over the Eastern Pacific ITCZ in Climate Models

    Science.gov (United States)

    Jiang, Xianan; Waliser, Duane E.; Kim, Daehyun; Zhao, Ming; Sperber, Kenneth R.; Stern, W. F.; Schubert, Siegfried D.; Zhang, Guang J.; Wang, Wanqiu; Khairoutdinov, Marat; hide

    2012-01-01

    During boreal summer, convective activity over the eastern Pacific (EPAC) inter-tropical convergence zone (ITCZ) exhibits vigorous intraseasonal variability (ISV). Previous observational studies identified two dominant ISV modes over the EPAC, i.e., a 40-day mode and a quasi-biweekly mode (QBM). The 40-day ISV mode is generally considered a local expression of the Madden-Julian Oscillation. However, in addition to the eastward propagation, northward propagation of the 40-day mode is also evident. The QBM mode bears a smaller spatial scale than the 40-day mode, and is largely characterized by northward propagation. While the ISV over the EPAC exerts significant influences on regional climate/weather systems, investigation of contemporary model capabilities in representing these ISV modes over the EPAC is limited. In this study, the model fidelity in representing these two dominant ISV modes over the EPAC is assessed by analyzing six atmospheric and three coupled general circulation models (GCMs), including one super-parameterized GCM (SPCAM) and one recently developed high-resolution GCM (GFDL HIRAM) with horizontal resolution of about 50 km. While it remains challenging for GCMs to faithfully represent these two ISV modes including their amplitude, evolution patterns, and periodicities, encouraging simulations are also noted. In general, SPCAM and HIRAM exhibit relatively superior skill in representing the two ISV modes over the EPAC. While the advantage of SPCAM is achieved through explicit representation of the cumulus process by the embedded 2-D cloud resolving models, the improved representation in HIRAM could be ascribed to the employment of a strongly entraining plume cumulus scheme, which inhibits the deep convection, and thus effectively enhances the stratiform rainfall. The sensitivity tests based on HIRAM also suggest that fine horizontal resolution could also be conducive to realistically capture the ISV over the EPAC, particularly for the QBM mode

  12. An Evaluation of 700 mb Aircraft Reconnaissance Data for Selected Northwest Pacific Tropical Cyclones.

    Science.gov (United States)

    1983-09-01

    ccesearch flights inte both Atlantic and ncr-.hwust Pacific tropical cyclones. Infcrmation providal by these studies expanded and, in some cases, altered...This assumption iaplies t at the curl of the tangential frictional drag is equal to zero. This further implies that the partial derivative of the sur...20) at 30 NM1, prior to the period of most rapidl deepening, Is reflecti at 60 NNl, and possibly at 90 NMl. In the case of super typhoon. rip (Fig

  13. An Ocean Biology-induced Negative Feedback on ENSO in the Tropical Pacific Climate System

    Science.gov (United States)

    Zhang, R. H.

    2016-02-01

    Biological conditions in the tropical Pacific Ocean (e.g., phytoplankton biomass) are strongly regulated by physical changes associated with the El Niño-Southern Oscillation (ENSO). The existence and variation of phytoplankton biomass, in turn, act to modulate the vertical penetration of the incoming sunlight in the upper ocean, presenting an ocean biology-induced heating (OBH) effect on the climate system. Previously, a penetration depth of solar radiation in the upper ocean (Hp) is defined to describe the related bio-climate connections. Parameterized in terms of its relationship with the sea surface temperature (SST) in the tropical Pacific, an empirical model for interannual Hp variability has been derived from remotely sensed ocean color data, which is incorporated into a hybrid coupled model (HCM) to represent OBH effects. In this paper, various HCM experiments are performed to demonstrate the bio-feedback onto ENSO, including a climatological Hp run (in which Hp is prescribed as seasonally varying only), interannual Hp runs (with different intensities of interannually varying OBH effects), and a run in which the sign of the OBH effect is artificially reversed. Significant modulating impacts on interannual variability are found in the HCM, characterized by a negative feedback between ocean biology and the climate system in the tropical Pacific: the stronger the OBH feedback, the weaker the interannual variability. Processes involved in the feedback are analyzed; it is illustrated that the SST is modulated indirectly by ocean dynamical processes induced by OBH. The significance and implication of the OBH effects are discussed for their roles in ENSO variability and model biases in the tropical Pacific.

  14. Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and East Asian climate interdecadal changes

    Science.gov (United States)

    Chu, Cuijiao; Yang, Xiu-Qun; Sun, Xuguang; Yang, Dejian; Jiang, Yiquan; Feng, Tao; Liang, Jin

    2018-04-01

    Observation reveals that the tropical Pacific-Indian Ocean (TPIO) has experienced a pronounced interdecadal warming since the end of the 1970s. Meanwhile, the wintertime midlatitude Northern Hemispheric atmospheric circulation and East Asian climate have also undergone substantial interdecadal changes. The effect of the TPIO warming on these interdecadal changes are identified by a suite of AMIP-type atmospheric general circulation model experiments in which the model is integrated from September 1948 to December 1999 with prescribed historical, observed realistic sea surface temperature (SST) in a specific region and climatological SST elsewhere. Results show that the TPIO warming reproduces quite well the observed Northern Hemispheric wintertime interdecadal changes, suggesting that these interdecadal changes primarily originate from the TPIO warming. However, each sub-region of TPIO has its own distinct contribution. Comparatively, the tropical central-eastern Pacific (TCEP) and tropical western Pacific (TWP) warming makes dominant contributions to the observed positive-phase PNA-like interdecadal anomaly over the North Pacific sector, while the tropical Indian Ocean (TIO) warming tends to cancel these contributions. Meanwhile, the TIO and TWP warming makes dominant contributions to the observed positive NAO-like interdecadal anomaly over the North Atlantic sector as well as the interdecadal anomalies over the Eurasian sector, although the TWP warming's contribution is relatively small. These remote responses are directly attributed to the TPIO warming-induced tropical convection, rainfall and diabatic heating increases, in which the TIO warming has the most significant effect. Moreover, the TPIO warming excites a Gill-type pattern anomaly over the tropical western Pacific, with a low-level anticyclonic circulation anomaly over the Philippine Sea. Of three sub-regions, the TIO warming dominates such a pattern, although the TWP warming tends to cancel this effect

  15. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models

    Science.gov (United States)

    Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian

    2018-05-01

    An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.

  16. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s.

    Science.gov (United States)

    Du, Yan; Zhang, Yuhong; Feng, Ming; Wang, Tianyu; Zhang, Ningning; Wijffels, Susan

    2015-11-02

    A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004-2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate.

  17. Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing

    Directory of Open Access Journals (Sweden)

    Marta Martín-Rey

    2012-09-01

    Full Text Available Previous studies have reported that the tropical Atlantic has had an influence on tropical Pacific interannual variability since the 1970s. This variability is studied in the present work, using simulations from a coupled model in the Indo-Pacific but with observed sea surface temperature (SST prescribed over the Atlantic. The interannual variability is compared with that from a control simulation in which climatological SSTs are prescribed over the Atlantic. Differences in the Pacific mean state and in its variability are found in the forced simulation as a response to a warming in the equatorial Atlantic, characterized by a cooler background state and an increase in the variability over the tropical Pacific. A striking result is that the principal modes of tropical Pacific SST interannual variability show significant differences before and after the 1970s, providing new evidence of the Atlantic influence on the Pacific Ocean. Significant cooling (warming in the equatorial Atlantic could have caused anomalous winds in the central-easter Pacific during the summer since 1970s. The thermocline depth also seems to be altered, triggering the dynamical processes involved in the development of El Niño (La Niña phenomenon in the following winter. An increase in frequency of Niño and Niña events favouring the Central Pacific (CP ones is observed in the last three decades. Further analyses using coupled models are still necessary to help us to understand the causes of this inter-basin connection.

  18. Centennial changes in North Pacific anoxia linked to tropical trade winds

    Science.gov (United States)

    Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander

    2014-01-01

    Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ15N) from multiple sediment cores. Increasing δ15N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining δ15N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean’s largest anoxic zone will contract despite a global O2 decline.

  19. Oceanography. Centennial changes in North Pacific anoxia linked to tropical trade winds.

    Science.gov (United States)

    Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander

    2014-08-08

    Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ(15)N) from multiple sediment cores. Increasing δ(15)N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining δ(15)N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean's largest anoxic zone will contract despite a global O2 decline. Copyright © 2014, American Association for the Advancement of Science.

  20. 78 FR 33240 - International Fisheries; Pacific Tuna Fisheries; Fishing Restrictions in the Eastern Pacific Ocean

    Science.gov (United States)

    2013-06-04

    ... States, Vanuatu, and Venezuela. Bolivia and the Cook Islands are cooperating non-members. International... Pacific bluefin mortality. In addition, the Department of the Interior, Office of Environmental Policy and...

  1. Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?

    Science.gov (United States)

    Newman, Matthew; Sardeshmukh, Prashant D.

    2017-08-01

    The predictability of seasonal anomalies worldwide rests largely on the predictability of tropical sea surface temperature (SST) anomalies. Tropical forecast skill is also a key metric of climate models. We find, however, that despite extensive model development, the tropical SST forecast skill of the operational North American Multi-Model Ensemble (NMME) of eight coupled atmosphere-ocean models remains close both regionally and temporally to that of a vastly simpler linear inverse model (LIM) derived from observed covariances of SST, sea surface height, and wind fields. The LIM clearly captures the essence of the predictable SST dynamics. The NMME and LIM skills also closely track and are only slightly lower than the potential skill estimated using the LIM's forecast signal-to-noise ratios. This suggests that the scope for further skill improvement is small in most regions, except in the western equatorial Pacific where the NMME skill is currently much lower than the LIM skill.

  2. Subtropical Low Cloud Responses to Central and Eastern Pacific El Nino Events

    Science.gov (United States)

    Rapp, A. D.; Bennartz, R.; Jiang, J. H.; Kato, S.; Olson, W. S.; Pinker, R. T.; Su, H.; Taylor, P. C.

    2014-12-01

    The eastern Pacific El Niño event in 2006-2007 and the central Pacific El Niño event during 2009-2010 exhibit opposite responses in the top of atmosphere (TOA) cloud radiative effects. These responses are driven by differences in large-scale circulation that result in significant low cloud anomalies in the subtropical southeastern Pacific. Both the vertical profile of cloud fraction and cloud water content are reduced during the eastern Pacific El Niño; however, the shift in the distribution of cloud characteristics and the physical processes underlying these changes need further analysis. The NASA Energy and Water Cycle Study (NEWS) Clouds and Radiation Working Group will use a synthesis of NEWS data products, A-Train satellite measurements, reanalysis, and modeling approaches to further explore the differences in the low cloud response to changes in the large-scale forcing, as well as try to understand the physical mechanism driving the observed changes in the low clouds for the 2006/07 and 2009/10 distinct El Niño events. The distributions of cloud macrophysical, microphysical, and radiative properties over the southeast Pacific will first be compared for these two events using a combination of MODIS, CloudSat/CALIPSO, and CERES data. Satellite and reanalysis estimates of changes in the vertical temperature and moisture profiles, lower tropospheric stability, winds, and surface heat fluxes are then used to identify the drivers for observed differences in the clouds and TOA radiative effects.

  3. Gymnothorax phalarus, a new eastern Pacific moray eel (Pisces: Muraenidae

    Directory of Open Access Journals (Sweden)

    William A. Bussing

    1998-06-01

    Full Text Available Gymnothorax phalarus is described from 23 individuals taken in trawl and dredge collections made on the Pacific coast of Costa Rica. The new species is nearly always syntopic with a similar species, Gymnothorax equatorialis. The new moray is distinguished by its white-spotted pattern, uniserial, slightly serrated teeth in adults, four infraorbital pores and mean vertebral formula of 6-58-140. Of the total of 21 valid species of morays recorded from the Pacific coast of Costa Rica, only the new species and G. equatorialis form part of the trawl fishery as the remainder are almost entirely restricted to nearshore rocky habitats. The known range of G. phalarus is from Baja California to Peru.Gymnothorax phalarus se describe con base en 23 individuos de colecciones hechas por redes de arrastre y dragas en la costa Pacífica de Costa Rica. La especie nueva es casi siempre sintópica con la especie similar, Gymnothorax equatorialis. La nueva morena se distingue por su patrón de puntos blancos, dientes ligeramente aserrados y uniseriales en adultos, cuatro poros infraorbitales y MVF (Fórmula de Vértebras de 6-58-140. México a Perú.

  4. Reactive nitrogen over the tropical western Pacific: Influence from lightning and biomass burning during BIBLE A

    Science.gov (United States)

    Koike, M.; Kondo, Y.; Kita, K.; Nishi, N.; Liu, S. C.; Blake, D.; Ko, M.; Akutagawa, D.; Kawakami, S.; Takegawa, N.; Zhao, Y.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE A) aircraft campaign was carried out over the tropical western Pacific in September and October 1998. During this period, biomass burning activity in Indonesia was quite weak. Mixing ratios of NOx and NOy in air masses that had crossed over the Indonesian islands within 3 days prior to the measurement (Indonesian air masses) were systematically higher than those in air masses originating from the central Pacific (tropical air masses). Sixty percent of the Indonesian air masses at 9-13 km (upper troposphere, UT) originated from the central Pacific. The differences in NOy mixing ratio between these two types of air masses were likely due to processes that occurred while air masses were over the Islands. Evidence presented in this paper suggests convection carries material from the surface, and NO is produced from lightning. At altitudes below 3 km (lower troposphere, LT), typical gradient of NOx and NOy to CO (dNOy/dCO and dNOx/dCO) was smaller than that in the biomass burning plumes and in urban areas, suggesting that neither source has a dominant influence. When the CO-NOx and CO-NOy relationships in the UT are compared to the reference relationships chosen for the LT, the NOx and NOy values are higher by 40-60 pptv (80% of NOx) and 70-100 pptv (50% of NOy). This difference is attributed to in situ production of NO by lightning. Analyses using air mass trajectories and geostationary meteorological satellite (GMS) derived cloud height data show that convection over land, which could be accompanied by lightning activity, increases the NOx values, while convection over the ocean generally lowers the NOx level. These processes are found to have a significant impact on the O3 production rate over the tropical western Pacific.

  5. AFSC/RACE/GAP/Conrath: Notes on the Reproductive Biology of Female Salmon Sharks in the Eastern North Pacific Ocean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Little information has previously been published on the reproductive biology of the salmon shark in the Eastern North Pacific ocean. This data set incorporates basic...

  6. AFSC/NMML: Shore-based counts of the Eastern North Pacific gray whale stock from central California, 1967 - 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Fisheries Service (NMFS) has conducted shore-based counts of the Eastern North Pacific stock of gray whales (Eschrichtius robustus) 26 years from...

  7. CTD and Water Chemistry data of the Eastern Pacific Redox Experiment of May - June 2000 (NODC Accession 0000833)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Eastern Pacific Redox Experiment (EPREX) took place 24 May to 28 June 2000 on the R/V Roger Revelle. The first station was at the Hawaii Ocean Time Series...

  8. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans

    Directory of Open Access Journals (Sweden)

    D. Stramski

    2008-02-01

    Full Text Available We have examined several approaches for estimating the surface concentration of particulate organic carbon, POC, from optical measurements of spectral remote-sensing reflectance, Rrs(λ, using field data collected in tropical and subtropical waters of the eastern South Pacific and eastern Atlantic Oceans. These approaches include a direct empirical relationship between POC and the blue-to-green band ratio of reflectance, RrsB/Rrs(555, and two-step algorithms that consist of relationships linking reflectance to an inherent optical property IOP (beam attenuation or backscattering coefficient and POC to the IOP. We considered two-step empirical algorithms that exclusively include pairs of empirical relationships and two-step hybrid algorithms that consist of semianalytical models and empirical relationships. The surface POC in our data set ranges from about 10 mg m−3 within the South Pacific Subtropical Gyre to 270 mg m−3 in the Chilean upwelling area, and ancillary data suggest a considerable variation in the characteristics of particulate assemblages in the investigated waters. The POC algorithm based on the direct relationship between POC and RrsB/Rrs(555 promises reasonably good performance in the vast areas of the open ocean covering different provinces from hyperoligotrophic and oligotrophic waters within subtropical gyres to eutrophic coastal upwelling regimes characteristic of eastern ocean boundaries. The best error statistics were found for power function fits to the data of POC vs. Rrs(443/Rrs(555 and POC vs. Rrs(490/Rrs(555. For our data set that includes over 50 data pairs, these relationships are characterized by the mean normalized bias of about 2% and the normalized root mean square error of about 20%. We

  9. Southernmost record of the Giant Manta Ray Mobula birostris (Walbaum, 1792 in the Eastern Pacific

    Directory of Open Access Journals (Sweden)

    Bernabé Moreno

    2017-11-01

    Full Text Available Abstract Background Manta rays (Mobulidae, Mobula birostris and Mobula alfredi, are widely distributed in tropical and temperate waters. Still, little is known about their movements and their ecological interactions (e.g. behavior and diet. In Peru, M. birostris has only been reported along the northern shore within the Tropical East Pacific Marine Province. No official reports exist from central or south Peru within the Warm Temperate Southeastern Pacific Marine Province. Methods On December 22nd 2015, a rare sighting of a ~4 m disc width mobulid ray was recorded as video footage near the Palomino Islets, Lima, Peru. Results In situ observations and subsequent analysis of the footage confirmed that this single mobulid was a M. birostris with a melanistic color morph. Conclusions This sighting could be explained by the warm El Niño, primary (chl-a, and secondary (zooplankton productivity events during that same period. This represents the southernmost record of M. birostris in the southeastern Pacific (12°S and the first report of this species in the Warm Temperate Southeastern Pacific Marine Province and in the Humboldt Current Large Marine Ecosystem.

  10. Physical and meteorological delayed-mode full-resolution data from the Tropical Atmosphere Ocean (TAO) array in the Equatorial Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Atmosphere Ocean (TAO) array of moored buoys spans the tropical Pacific. Moorings within the array measure surface meteorological and upper-ocean...

  11. Status of the eastern Pacific agujon needlefish Tylosurus pacificus (Steindachner, 1876) (Beloniformes: Belonidae).

    Science.gov (United States)

    Collettte, B B; Banford, H M

    2001-07-01

    Tylosurus pacificus (Steindachner, 1876) is confirmed to have full species rank based on: 1) sympatry with T. acus melanotus at Isla Gorgona and in Panamá; 2) level of morphological differentiation in numbers of vertebrae, dorsal and anal fin rays; and 3) level of mtDNA differentiation. The eastern Pacific agujon needlefish is found from the Gulf of California, Mexico, to Peru, including the Galápagos Islands.

  12. [Trophic niche partitioning of pelagic sharks in Central Eastern Pacific inferred from stable isotope analysis.

    Science.gov (United States)

    Li, Yun Kai; Gao, Xiao di; Wang, Lin Yu; Fang, Lin

    2018-01-01

    As the apex predators of the open ocean ecosystems, pelagic sharks play important roles in stabilizing the marine food web through top-down control. Stable isotope analysis is a powerful tool to investigate the feeding ecology. The carbon and nitrogen isotope ratios can be used to trace food source and evaluate the trophic position of marine organisms. In this study, the isotope values of 130 pelagic sharks from 8 species in Central Eastern Pacific were analyzed and their trophic position and niche were calculated to compare the intra/inter-specific resource partitioning in the Central Eastern Pacific ecosystem. The results exhibited significant differences in both carbon and nitrogen isotope values among the shark species. The trophic levels ranged from 4.3 to 5.4 in the Central Eastern Pacific shark community. The trophic niche of blue sharks and shortfin mako sharks showed no overlap with the other shark species, exhibiting unique ecological roles in the open ocean food web. These data highlighted the diverse roles among pelagic sharks, supporting previous findings that this species is not trophically redundant and the trophic niche of pelagic sharks can not be simply replaced by those of other top predator species.

  13. 77 FR 73969 - International Fisheries; Pacific Tuna Fisheries; Fishing Restrictions in the Eastern Pacific Ocean

    Science.gov (United States)

    2012-12-12

    ... overfishing of the stock. DATES: Comments must be submitted in writing by January 11, 2013. A public hearing... effort quotas are an important step for reducing the overfishing of bluefin tuna. In 2011, NMFS determined overfishing is occurring on Pacific bluefin tuna based on stock assessment results of the...

  14. Role of atmosphere-ocean interactions in supermodeling the tropical Pacific climate

    Science.gov (United States)

    Shen, Mao-Lin; Keenlyside, Noel; Bhatt, Bhuwan C.; Duane, Gregory S.

    2017-12-01

    The supermodel strategy interactively combines several models to outperform the individual models comprising it. A key advantage of the approach is that nonlinear improvements can be achieved, in contrast to the linear weighted combination of individual unconnected models. This property is found in a climate supermodel constructed by coupling two versions of an atmospheric model differing only in their convection scheme to a single ocean model. The ocean model receives a weighted combination of the momentum and heat fluxes. Optimal weights can produce a supermodel with a basic state similar to observations: a single Intertropical Convergence zone (ITCZ), with a western Pacific warm pool and an equatorial cold tongue. This is in stark contrast to the erroneous double ITCZ pattern simulated by both of the two stand-alone coupled models. By varying weights, we develop a conceptual scheme to explain how combining the momentum fluxes of the two different atmospheric models affects equatorial upwelling and surface wind feedback so as to give a realistic basic state in the tropical Pacific. In particular, we propose a mechanism based on the competing influences of equatorial zonal wind and off-equatorial wind stress curl in driving equatorial upwelling in the coupled models. Our results show how nonlinear ocean-atmosphere interaction is essential in combining these two effects to build different sea surface temperature structures, some of which are realistic. They also provide some insight into observed and modelled tropical Pacific climate.

  15. 75 FR 70903 - Eastern North Pacific Gray Whale; Notice of Extension of Public Comment Period on Marine Mammal...

    Science.gov (United States)

    2010-11-19

    ... North Pacific Gray Whale; Notice of Extension of Public Comment Period on Marine Mammal Protection Act... whales (Eschrichtius robustus) as a depleted stock under the Marine Mammal Protection Act (MMPA) and... report for Eastern North Pacific gray whales is available on the Internet at the following address: http...

  16. Benthic macrofaunal structure and secondary production in tropical estuaries on the Eastern Marine Ecoregion of Brazil.

    Science.gov (United States)

    Bissoli, Lorena B; Bernardino, Angelo F

    2018-01-01

    Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine assemblages in Eastern Brazil, our data support the use of benthic secondary production to address long-term changes and improved management of estuaries in Eastern Brazil.

  17. Estimating historical eastern North Pacific blue whale catches using spatial calling patterns.

    Directory of Open Access Journals (Sweden)

    Cole C Monnahan

    Full Text Available Blue whales (Balaenoptera musculus were exploited extensively around the world and remain endangered. In the North Pacific their population structure is unclear and current status unknown, with the exception of a well-studied eastern North Pacific (ENP population. Despite existing abundance estimates for the ENP population, it is difficult to estimate pre-exploitation abundance levels and gauge their recovery because historical catches of the ENP population are difficult to separate from catches of other populations in the North Pacific. We collated previously unreported Soviet catches and combined these with known catches to form the most current estimates of North Pacific blue whale catches. We split these conflated catches using recorded acoustic calls from throughout the North Pacific, the knowledge that the ENP population produces a different call than blue whales in the western North Pacific (WNP. The catches were split by estimating spatiotemporal occurrence of blue whales with generalized additive models fitted to acoustic call patterns, which predict the probability a catch belonged to the ENP population based on the proportion of calls of each population recorded by latitude, longitude, and month. When applied to the conflated historical catches, which totaled 9,773, we estimate that ENP blue whale catches totaled 3,411 (95% range 2,593 to 4,114 from 1905-1971, and amounted to 35% (95% range 27% to 42% of all catches in the North Pacific. Thus most catches in the North Pacific were for WNP blue whales, totaling 6,362 (95% range 5,659 to 7,180. The uncertainty in the acoustic data influence the results substantially more than uncertainty in catch locations and dates, but the results are fairly insensitive to the ecological assumptions made in the analysis. The results of this study provide information for future studies investigating the recovery of these populations and the impact of continuing and future sources of anthropogenic

  18. Oxygen Isotope Composition of Phytoliths From Australian Tropical Forests: Towards a New Paleoclimate Tool for the Tropical Pacific area

    Science.gov (United States)

    Alexandre, A.; Crespin, J.; Sonzogni, C.; Sylvestre, F.; Hilbert, D.

    2008-12-01

    Obtaining new continental δ18Ophytolith records from the tropical pacific area would help to further investigate 1) synchronicity between vegetation and climate changes, and 2) climate interactions between ocean and continent through comparison with oceanic reference δ18O records. In this aim, we produce a calibration of the thermo-dependant relationship between δ18Ophytolith and δ18Orainfall for present phytolith assemblages from Queensland rainforests (Australia). Phytoliths were extracted from soil humic horizons sampled along several elevation, temperature and rainfall gradients. Phytolith samples of 1.6mg were analyzed using a newly calibrated IR-laser fluorination technique, performed after a controlled isotopic exchanged procedure. The long term reproducibility on δ18O measurements is sap should equal to δ18Osoil water. Moreover, because relative humidity is close to 100%, soil evaporation is weak and δ18Osoil water is assumed to be similar to δ18Orainfall. The obtained thermo-dependant relationship between δ18Ophytolith and δ18O mean monthly rainfall of the wet season (r=0.68) is close to the equilibrium fractionation equations obtained for quartz and diatoms. Effects of forest fires on phytoliths dehydration and δ18Ophytolith are tested through heating experiments. Provided that phytolith assemblages present a morphological tropical forest pattern, δ18Ophytolith records from sediments can now be interpreted in term of δ18Osoil water, or δ18Orainfall (provided that no soil evaporation is assumed), and temperature changes. This is a first step in further investigating synchronicity between vegetation changes, global climate changes and ENSO activity in the West-Pacific area.

  19. Reflection of equatorial Kelvin waves at eastern ocean boundaries Part II: Pacific and Atlantic Oceans

    Directory of Open Access Journals (Sweden)

    J. Soares

    1999-06-01

    Full Text Available The effect of viscosity, non linearities, incident wave period and realistic eastern coastline geometry on energy fluxes are investigated using a shallow water model with a spatial resolution of 1/4 degree in both meridional and zonal directions. Equatorial and mid-latitude responses are considered. It is found that (1 the influence of the coastline geometry and the incident wave period is more important for the westward energy flux than for the poleward flux, and (2 the effect of the inclination of the eastern ocean boundary on the poleward energy flux, for the Pacific and Atlantic Oceans, decline as the period of the incident wave increases. Furthermore, the model simulations suggest that the poleward energy fluxes from meridional boundaries give plausible results for motions of seasonal and annual periods. For comparatively shorter periods, a realistic coastline geometry has to be included for more accurate results. It is recommended that any numerical model involving the reflection of baroclinic Rossby waves (of intraseasonal, seasonal or annual periods on the eastern Pacific or Atlantic Oceans, should consider the effect of the coastline geometry in order to improve the accuracy of the results.Key words. Oceanography: general (climate and interannual variability; equatorial oceanography. Oceanography: physical (eastern boundary currents.

  20. Projected increase in El Niño-driven tropical cyclone frequency in the Pacific

    Science.gov (United States)

    Chand, Savin S.; Tory, Kevin J.; Ye, Hua; Walsh, Kevin J. E.

    2017-02-01

    The El Niño/Southern Oscillation (ENSO) drives substantial variability in tropical cyclone (TC) activity around the world. However, it remains uncertain how the projected future changes in ENSO under greenhouse warming will affect TC activity, apart from an expectation that the overall frequency of TCs is likely to decrease for most ocean basins. Here we show robust changes in ENSO-driven variability in TC occurrence by the late twenty-first century. In particular, we show that TCs become more frequent (~20-40%) during future-climate El Niño events compared with present-climate El Niño events--and less frequent during future-climate La Niña events--around a group of small island nations (for example, Fiji, Vanuatu, Marshall Islands and Hawaii) in the Pacific. We examine TCs across 20 models from the Coupled Model Intercomparison Project phase 5 database, forced under historical and greenhouse warming conditions. The 12 most realistic models identified show a strong consensus on El Niño-driven changes in future-climate large-scale environmental conditions that modulate development of TCs over the off-equatorial western Pacific and the central North Pacific regions. These results have important implications for climate change and adaptation pathways for the vulnerable Pacific island nations.

  1. Possible Ballast Water Transfer of Lionfish to the Eastern Pacific Ocean.

    Science.gov (United States)

    MacIsaac, Hugh J; De Roy, Emma M; Leung, Brian; Grgicak-Mannion, Alice; Ruiz, Gregory M

    2016-01-01

    The Indo-Pacific Red Lionfish was first reported off the Florida coast in 1985, following which it has spread across much of the SE USA, Gulf of Mexico, and Caribbean Sea. Lionfish negatively impact fish and invertebrate assemblages and abundances, thus further spread is cause for concern. To date, the fish has not been reported on the Pacific coast of North or Central America. Here we examine the possibility of ballast water transfer of lionfish from colonized areas in the Atlantic Ocean to USA ports on the Pacific coast. Over an eight-year period, we documented 27 commercial vessel-trips in which ballast water was loaded in colonized sites and later discharged untreated into Pacific coast ports in the USA. California had the highest number of discharges including San Francisco Bay and Los Angeles-Long Beach. A species distribution model suggests that the probability of lionfish establishment is low for the western USA, Colombia and Panama, low to medium for Costa Rica, Nicaragua, El Salvador and Guatemala, medium to high for mainland Ecuador, and very high for western Mexico, Peru and the Galapagos Islands. Given the species' intolerance of freshwater conditions, we propose that ballast water exchange be conducted in Gatún Lake, Panama for western-bound vessels carrying 'risky' ballast water to prevent invasion of the eastern Pacific Ocean.

  2. Possible Ballast Water Transfer of Lionfish to the Eastern Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Hugh J MacIsaac

    Full Text Available The Indo-Pacific Red Lionfish was first reported off the Florida coast in 1985, following which it has spread across much of the SE USA, Gulf of Mexico, and Caribbean Sea. Lionfish negatively impact fish and invertebrate assemblages and abundances, thus further spread is cause for concern. To date, the fish has not been reported on the Pacific coast of North or Central America. Here we examine the possibility of ballast water transfer of lionfish from colonized areas in the Atlantic Ocean to USA ports on the Pacific coast. Over an eight-year period, we documented 27 commercial vessel-trips in which ballast water was loaded in colonized sites and later discharged untreated into Pacific coast ports in the USA. California had the highest number of discharges including San Francisco Bay and Los Angeles-Long Beach. A species distribution model suggests that the probability of lionfish establishment is low for the western USA, Colombia and Panama, low to medium for Costa Rica, Nicaragua, El Salvador and Guatemala, medium to high for mainland Ecuador, and very high for western Mexico, Peru and the Galapagos Islands. Given the species' intolerance of freshwater conditions, we propose that ballast water exchange be conducted in Gatún Lake, Panama for western-bound vessels carrying 'risky' ballast water to prevent invasion of the eastern Pacific Ocean.

  3. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific

    OpenAIRE

    Martin, Laura E; Dawson, Michael N; Bell, Lori J; Colin, Patrick L

    2005-01-01

    Understanding El Niño/Southern Oscillation (ENSO) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled ENSO-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Niña than El Niño conditions, temperature anomalies in the lake co-vary strongly with the Niño 3.4 climate index, and the abundance...

  4. The impact of global warming on the tropical Pacific ocean and El Nino

    Digital Repository Service at National Institute of Oceanography (India)

    Collins, M.; An, S.; Cai, W.; Ganachaud, A.; Guilyardi, E; Jin, F.F.; Jochum, M.; Lengaigne, M.; Power, S.; Timmermann, A.; Vecchi, G.; Wittenberg, A.

    Forrestal Campus, 201 Forrestal Road, Princeton, New Jersey 08540-6649, USA. *e-mail: matthew.collins@metoffice.gov.uk ngeo_868_JUN10.indd 391 19/5/10 11:25:42 © 20 Macmillan Publishers Limited. All rights reserved10 392 nature geoscience | VOL 3... | JUNE 2010 | www.nature.com/naturegeoscience review article NaTUrE gEOSciENcE doi: 10.1038/ngeo868 changes in mean climate To assess and understand changes in the mean state of the tropical Pacific, we separate the time-averaged seasonally varying...

  5. Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nidheesh, A.G.; Lengaigne, M.; Vialard, J.; Unnikrishnan, A.S.; Dayan, H.

    (Shankar and Shetye 1999, Unnikrishnan and Shankar 2007) as well as in the basin scale (Lee and McPhaden 2008, Cheng et al. 2008, Han et al. 2010) have been previously investigated, the picture of decadal/multi-decadal variability in the tropical Indo... dynamics along the rim of the northern Indian Ocean (McCreary et al. 1993, McCreary et al. 1996). At intra- seasonal timescales, the Indo-Pacific warm pool region is home to the Madden-Julian Oscillation, an eastward moving energetic fluctuation of deep...

  6. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis

    Digital Repository Service at National Institute of Oceanography (India)

    Vincent, E.M.; Lengaigne, M.; Menkes, C.E.; Jourdain, N.C.; Marchesiello, P.; Madec, G.

    SPCZ con- trols the large scale environment favouring cyclonic activity have not yet been investigated. In addition, the characteristics of El Nin˜o events vary widely from one event to another, and the influence of this diversity on the SPCZ location... which the classification is performed) accu- rately summarizes the large-scale precipitation variability in the tropical South Pacific (on which the EOFs are con- structed). The same AHC applied to PC1–PC2 coordinates instead of latW–latE indices gives...

  7. Seeking deep convective parameter updates that improve tropical Pacific climatology in CESM using Pareto fronts

    Science.gov (United States)

    Langenbrunner, B.; Neelin, J. D.

    2016-12-01

    Despite increasing complexity and process representation in global climate models (GCMs), accurate climate simulation is limited by uncertainties in sub-grid scale model physics, where cloud processes and precipitation occur, and the interaction with large-scale dynamics. Identifying highly sensitive parameters and constraining them against observations is therefore a valuable step in narrowing uncertainty. However, changes in parameterizations often improve some variables or aspects of the simulation while degrading others. This analysis addresses means of improving GCM simulation of present-day tropical Pacific climate in the face of these tradeoffs. Focusing on the deep convection scheme in the fully coupled Community Earth System Model (CESM) version 1, four parameters were systematically sampled, and a metamodel or model emulator was used to reconstruct the parameter space of this perturbed physics ensemble. Using this metamodel, a Pareto front is constructed to visualize multiobjective tradeoffs in model performance, and results highlight the most important aspects of model physics as well as the most sensitive parameter ranges. For example, parameter tradeoffs arise in the tropical Pacific where precipitation cannot improve without sea surface temperature getting worse. Tropical precipitation sensitivity is found to be highly nonlinear for low values of entrainment in convecting plumes, though it is fairly insensitive at the high end of the plausible range. Increasing the adjustment timescale for convective closure causes the centroid of tropical precipitation to vary as much as two degrees latitude, highlighting the effect these physics can have on large-scale features of the hydrological cycle. The optimization procedure suggests that simultaneously increasing the maximum downdraft mass flux fraction and the adjustment timescale can yield improvements to surface temperature and column water vapor without degrading the simulation of precipitation. These

  8. Temporal variability of neustonic ichthyoplankton assemblages of the eastern Pacific warm pool: Can community structure be linked to climate variability?

    Science.gov (United States)

    Ignacio Vilchis, L.; Ballance, Lisa T.; Watson, William

    2009-01-01

    Considerable evidence exists, showing an accelerated warming trend on earth during the past 40-50 years, attributed mainly to anthropogenic factors. Much of this excess heat is stored in the world's oceans, likely resulting in increased environmental variability felt by marine ecosystems. The long-term effects of this phenomenon on oceanic tropical ecosystems are largely unknown, and our understanding of its effects could be facilitated by long-term studies of how species compositions change with time. Ichthyoplankton, in particular, can integrate physical, environmental and ecological factors making them excellent model taxa to address this question. While on eight (1987-1990, 1992 and 1998-2000) NOAA Fisheries cruises to the eastern Pacific warm pool, we characterized the thermal and phytoplankton pigment structure of the water column, as well as the neustonic ichthyoplankton community using CTD casts and Manta (surface) net tows. Over the 13-year period, 852 CTD and Manta tow stations were completed. We divided the study area into three regions based on regional oceanography, thermocline depth and productivity, as well as a longitudinal gradient in species composition among stations. We then analyzed temporal trends of ichthyoplankton species composition within each region by pooling stations by region and year and making pairwise comparisons of community similarity between all combinations of the eight cruises within each region. We also identified environment-specific species assemblages and station groupings using hierarchical clustering and non-metric multi-dimensional scaling (MDS). Our analyses revealed a longitudinal gradient in community structure and temporal stability of ichthyoplankton species composition. Over the 13 years ichthyoplankton assemblages in the two westernmost regions varied less than in the eastern region. MDS and cluster analyses identified five ichthyoplankton assemblages that corresponded to oceanographic habitats and a gradient in

  9. Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean

    Science.gov (United States)

    Fuenzalida, Rosalino; Schneider, Wolfgang; Garcés-Vargas, José; Bravo, Luis; Lange, Carina

    2009-07-01

    Recent hydrographic measurements within the eastern South Pacific (1999-2001) were combined with vertically high-resolution data from the World Ocean Circulation Experiment, high-resolution profiles and bottle casts from the World Ocean Database 2001, and the World Ocean Atlas 2001 in order to evaluate the vertical and horizontal extension of the oxygen minimum zone (oxygen minimum zone to be 9.82±3.60×10 6 km 2 and 2.18±0.66×10 6 km 3, respectively. The oxygen minimum zone is thickest (>600 m) off Peru between 5 and 13°S and to about 1000 km offshore. Its upper boundary is shallowest (zone in some places. Offshore, the thickness and meridional extent of the oxygen minimum zone decrease until it finally vanishes at 140°W between 2° and 8°S. Moving southward along the coast of South America, the zonal extension of the oxygen minimum zone gradually diminishes from 3000 km (15°S) to 1200 km (20°S) and then to 25 km (30°S); only a thin band is detected at ˜37°S off Concepción, Chile. Simultaneously, the oxygen minimum zone's maximum thickness decreases from 300 m (20°S) to less than 50 m (south of 30°S). The spatial distribution of Ekman suction velocity and oxygen minimum zone thickness correlate well, especially in the core. Off Chile, the eastern South Pacific Intermediate Water mass introduces increased vertical stability into the upper water column, complicating ventilation of the oxygen minimum zone from above. In addition, oxygen-enriched Antarctic Intermediate Water clashes with the oxygen minimum zone at around 30°S, causing a pronounced sub-surface oxygen front. The new estimates of vertical and horizontal oxygen minimum zone distribution in the eastern South Pacific complement the global quantification of naturally hypoxic continental margins by Helly and Levin [2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research I 51, 1159-1168] and provide new baseline data useful for studies on the

  10. Modes of ocean variability in the tropical Pacific as derived from GEOSAT altimetry

    International Nuclear Information System (INIS)

    Zou Jiansheng

    1993-01-01

    Satellite-derived (GEOSAT) sea surface height anomalies for the period November 1986 to August 1989 were investigated in order to extract the dominant modes of climate variability in the tropical Pacific. Four modes are identified by applying the POP technique. The first mode has a time scale of about 3 months and can be identified with the first baroclinic equatorial Kelvin wave mode. The second mode has a time scale of about six months and describes the semi-annual cycle in tropical Pacific sea level. Equatorial wave propagation is also crucial for this mode. The third mode is the annual cycle which is dominated by Ekman dynamics. Wave propagation or reflection are found to be unimportant. The fourth mode is associated with the El Nino/Southern Oscillation (ENSO) phenomenon. The ENSO mode is found to be consistent with the 'delayed action oscillator' scenario. The results are substantiated by a companion analysis of the sea surface height variability simulated with an oceanic general circulation model (OGCM) forced by observed wind stresses for the period 1961 to 1989. The modal decomposition of the sea level variability is found to be similar to that derived from the GEOSAT data. The high consistency between the satellite and the model data indicates the high potential value of satellite altimetry for climate modeling and forecasting. (orig.)

  11. Expansion and Contraction of the Indo-Pacific Tropical Rain Belt over the Last Three Millennia.

    Science.gov (United States)

    Denniston, Rhawn F; Ummenhofer, Caroline C; Wanamaker, Alan D; Lachniet, Matthew S; Villarini, Gabriele; Asmerom, Yemane; Polyak, Victor J; Passaro, Kristian J; Cugley, John; Woods, David; Humphreys, William F

    2016-09-29

    The seasonal north-south migration of the intertropical convergence zone (ITCZ) defines the tropical rain belt (TRB), a region of enormous terrestrial and marine biodiversity and home to 40% of people on Earth. The TRB is dynamic and has been shown to shift south as a coherent system during periods of Northern Hemisphere cooling. However, recent studies of Indo-Pacific hydroclimate suggest that during the Little Ice Age (LIA; AD 1400-1850), the TRB in this region contracted rather than being displaced uniformly southward. This behaviour is not well understood, particularly during climatic fluctuations less pronounced than those of the LIA, the largest centennial-scale cool period of the last millennium. Here we show that the Indo-Pacific TRB expanded and contracted numerous times over multi-decadal to centennial scales during the last 3,000 yr. By integrating precisely-dated stalagmite records of tropical hydroclimate from southern China with a newly enhanced stalagmite time series from northern Australia, our study reveals a previously unidentified coherence between the austral and boreal summer monsoon. State-of-the-art climate model simulations of the last millennium suggest these are linked to changes in the structure of the regional manifestation of the atmosphere's meridional circulation.

  12. Expansion and Contraction of the Indo-Pacific Tropical Rain Belt over the Last Three Millennia

    Science.gov (United States)

    Denniston, Rhawn F.; Ummenhofer, Caroline C.; Wanamaker, Alan D.; Lachniet, Matthew S.; Villarini, Gabriele; Asmerom, Yemane; Polyak, Victor J.; Passaro, Kristian J.; Cugley, John; Woods, David; Humphreys, William F.

    2016-09-01

    The seasonal north-south migration of the intertropical convergence zone (ITCZ) defines the tropical rain belt (TRB), a region of enormous terrestrial and marine biodiversity and home to 40% of people on Earth. The TRB is dynamic and has been shown to shift south as a coherent system during periods of Northern Hemisphere cooling. However, recent studies of Indo-Pacific hydroclimate suggest that during the Little Ice Age (LIA; AD 1400-1850), the TRB in this region contracted rather than being displaced uniformly southward. This behaviour is not well understood, particularly during climatic fluctuations less pronounced than those of the LIA, the largest centennial-scale cool period of the last millennium. Here we show that the Indo-Pacific TRB expanded and contracted numerous times over multi-decadal to centennial scales during the last 3,000 yr. By integrating precisely-dated stalagmite records of tropical hydroclimate from southern China with a newly enhanced stalagmite time series from northern Australia, our study reveals a previously unidentified coherence between the austral and boreal summer monsoon. State-of-the-art climate model simulations of the last millennium suggest these are linked to changes in the structure of the regional manifestation of the atmosphere’s meridional circulation.

  13. Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model

    Science.gov (United States)

    Lim, Hyung-Gyu; Park, Jong-Yeon; Kug, Jong-Seong

    2017-12-01

    Climate modeling groups nowadays develop earth system models (ESMs) by incorporating biogeochemical processes in their climate models. The ESMs, however, often show substantial bias in simulated marine biogeochemistry which can potentially introduce an undesirable bias in physical ocean fields through biogeophysical interactions. This study examines how and how much the chlorophyll bias in a state-of-the-art ESM affects the mean and seasonal cycle of tropical Pacific sea-surface temperature (SST). The ESM used in the present study shows a sizeable positive bias in the simulated tropical chlorophyll. We found that the correction of the chlorophyll bias can reduce the ESM's intrinsic cold SST mean bias in the equatorial Pacific. The biologically-induced cold SST bias is strongly affected by seasonally-dependent air-sea coupling strength. In addition, the correction of chlorophyll bias can improve the annual cycle of SST by up to 25%. This result suggests a possible modeling approach in understanding the two-way interactions between physical and chlorophyll biases by biogeophysical effects.

  14. Northern fulmars as biological monitors of trends of plastic pollution in the eastern North Pacific.

    Science.gov (United States)

    Avery-Gomm, Stephanie; O'Hara, Patrick D; Kleine, Lydia; Bowes, Victoria; Wilson, Laurie K; Barry, Karen L

    2012-09-01

    Marine plastic debris is a global issue, which highlights the need for internationally standardized methods of monitoring plastic pollution. The stomach contents of beached northern fulmar (Fulmarus glacialis) have proven a cost-effective biomonitor in Europe. However, recent information on northern fulmar plastic ingestion is lacking in the North Pacific. We quantified the stomach contents of 67 fulmars from beaches in the eastern North Pacific in 2009-2010 and found that 92.5% of fulmars had ingested an average of 36.8 pieces, or 0.385 g of plastic. Plastic ingestion in these fulmars is among the highest recorded globally. Compared to earlier studies in the North Pacific, our findings indicate an increase in plastic ingestion over the past 40 years. This study substantiates the use of northern fulmar as biomonitors of plastic pollution in the North Pacific and suggests that the high levels of plastic pollution in this region warrant further monitoring. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Recycled iron fuels new production in the eastern equatorial Pacific Ocean.

    Science.gov (United States)

    Rafter, Patrick A; Sigman, Daniel M; Mackey, Katherine R M

    2017-10-24

    Nitrate persists in eastern equatorial Pacific surface waters because phytoplankton growth fueled by nitrate (new production) is limited by iron. Nitrate isotope measurements provide a new constraint on the controls of surface nitrate concentration in this region and allow us to quantify the degree and temporal variability of nitrate consumption. Here we show that nitrate consumption in these waters cannot be fueled solely by the external supply of iron to these waters, which occurs by upwelling and dust deposition. Rather, a substantial fraction of nitrate consumption must be supported by the recycling of iron within surface waters. Given plausible iron recycling rates, seasonal variability in nitrate concentration on and off the equator can be explained by upwelling rate, with slower upwelling allowing for more cycles of iron regeneration and uptake. The efficiency of iron recycling in the equatorial Pacific implies the evolution of ecosystem-level mechanisms for retaining iron in surface ocean settings where it limits productivity.

  16. Role of the Tropical Pacific in recent Antarctic Sea-Ice Trends

    Science.gov (United States)

    Codron, F.; Bardet, D.; Allouache, C.; Gastineau, G.; Friedman, A. R.; Douville, H.; Voldoire, A.

    2017-12-01

    The recent (up to 2016) trends in Antarctic sea-ice cover - a global increase masking a dipole between the Ross and Bellingshausen-Weddel seas - are still not well understood, and not reproduced by CMIP5 coupled climate models. We here explore the potential role of atmospheric circulation changes around the Amundsen Sea, themselves possibly forced by tropical SSTs, an explanation that has been recently advanced. As a first check on this hypothesis, we compare the atmospheric circulation trends simulated by atmospheric GCMs coupled with an ocean or with imposed SSTs (AMIP experiment from CMIP5); the latter being in theory able to reproduce changes caused by natural SST variability. While coupled models simulate in aggregate trends that project on the SAM structure, strongest in summer, the AMIP simulations add in the winter season a pronounced Amundsen Sea Low signature (and a PNA signature in the northern hemisphere) both consistent with a Niña-like trend in the tropical Pacific. We then use a specific coupled GCM setup, in which surface wind anomalies over the tropical Pacific are strongly nudged towards the observed ones, including their interannual variability, but the model is free to evolve elsewhere. The two GCMs used then simulate a deepening trend in the Amundsen-Sea Low in winter, and are able to reproduce a dipole in sea-ice cover. Further analysis shows that the sea-ice dipole is partially forced by surface heat flux anomalies in early winter - the extent varying with the region and GCM used. The turbulent heat fluxes then act to damp the anomalies in late winter, which may however be maintained by ice-albedo feedbacks.

  17. Changes in upwelling and surface productivity in the Eastern Pacific during Terminations I and II

    Science.gov (United States)

    Erdem, Z.; De Bar, M.; Stolwijk, D.; Schneider, R. R.; S Sinninghe Damsté, J.; Schouten, S.

    2017-12-01

    The Eastern Pacific coastal system is characterized by intense upwelling and consequently by an enhanced surface primary productivity. Combination of this high organic matter flux with sluggish bottom water ventilation results in one of the most pronounced oxygen minimum zones reaching from offshore California in the North to offshore Chile in the South. As a result of this process, the region is particularly interesting in view of nutrient and carbon cycling as well as ecosystem dynamics. The dynamics of the upwelling and oxygen concentrations are closely related to climatic conditions. Therefore, paleo-reconstructions of different settings are crucial in order to improve our understanding of the response of these nutrient-rich, oxygen-deficient, environments in relation to the recent global ocean warming, acidification and deoxygenation. In this study, we present downcore results from three different sites in the Eastern Pacific: offshore California (IODP site 1012), Peru (M77/2-52-2) and Chile (IODP site 1234). We applied different biomarkers as proxies to decipher changes in phytoplankton community composition, including the upwelling index based on long chain diols, and other common productivity indicators such as bulk organic carbon, carbonate and biogenic opal. In addition, application of carbon and nitrogen isotope ratios of total organic carbon and benthic foraminifera complement our multiproxy approach. Herewith we aim to compare at least two glacial-interglacial transitions with different magnitudes of deglacial warming along the Eastern Pacific upwelling systems at different latitudes. The data presented will cover the last 160 ka BP offshore California and Chile, and 30 ka BP offshore Peru enabling comparison between glacial Terminations I and II.

  18. Plant invasions in protected areas of tropical pacific islands, with special reference to Hawaii

    Science.gov (United States)

    Hughes, R. Flint; Meyer, Jean-Yves; Loope, Lloyd L.

    2013-01-01

    Isolated tropical islands are notoriously vulnerable to plant invasions. Serious management for protection of native biodiversity in Hawaii began in the 1970s, arguably at Hawaii Volcanoes National Park. Concerted alien plant management began there in the 1980s and has in a sense become a model for protected areas throughout Hawaii and Pacific Island countries and territories. We review the relative successes of their strategies and touch upon how their experience has been applied elsewhere. Protected areas in Hawaii are fortunate in having relatively good resources for addressing plant invasions, but many invasions remain intractable, and invasions from outside the boundaries continue from a highly globalised society with a penchant for horticultural novelty. There are likely few efforts in most Pacific Islands to combat alien plant invasions in protected areas, but such areas may often have fewer plant invasions as a result of their relative remoteness and/or socio-economic development status. The greatest current needs for protected areas in this region may be for establishment of yet more protected areas, for better resources to combat invasions in Pacific Island countries and territories, for more effective control methods including biological control programme to contain intractable species, and for meaningful efforts to address prevention and early detection of potential new invaders.

  19. Typhoon Rammasun-Induced Near-Inertial Oscillations Observed in the Tropical Northwestern Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Eung Kim

    2013-01-01

    Full Text Available Wind-induced near-inertial oscillations (NIOs have been known to propagate their energy downward and equatorward, yet few observations have confirmed this in tropical regions. Using measurements from a moored ADCP in the tropical northwestern Pacific, we report an energetic NIO event associated with Typhoon Rammasun in May 2008, when an anti-cyclonic warm eddy existed around the mooring site. Our analyses reveal that the anti-cyclonic eddy traps the NIO energy at two layers around 120 and 210 m where the buoyancy frequency show high values. The NIO energy continuously decays at layers below its maximum at 210 m, and disappears at depths below the thermocline. During their propagation from 137 to 649 stretched-meter depths (equivalent to 100 - 430 m, NIOs shift their frequencies from 0.92f to 1.05f probably due to the effective f, which changes its magnitude from smaller to larger than local inertial frequency f in the anti-cyclonic eddy. In addition, their vertical energy propagation becomes faster from 0.17 to 0.64 mm s-1. Decomposition of downward and upward NIO energy propagation shows that the typhoon-induced NIOs remain 29% of their energy in the upper layer, and transfer 71% to the subsurface layers. Our results suggest that typhoon-induced NIOs interacting with meso-scale eddies can play an important role in providing the energy source available for ocean mixing in the tropical regions.

  20. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Webster, P.J.; Clayson, C.A.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    In the tropical Western Pacific (TWP) Ocean, the clouds and the cloud-radiation feedback can only be understood in the context of air/sea interactions and the ocean mixed layer. Considerable interest has been shown in attempting to explain why sea surface temperature (SST) rarely rises above 30{degrees}C, and gradients of the SST. For the most part, observational studies that address this issue have been conducted using monthly cloud and SST data, and the focus has been on intraseasonal and interannual time scales. For the unstable tropical atmosphere, using monthly averaged data misses a key feedback between clouds and SST that occurs on the cloud-SST coupling time scale, which was estimated to be 3-6 days for the unstable tropical atmosphere. This time scale is the time needed for a change in cloud properties, due to the change of ocean surface evaporation caused by SST variation, to feed back to the SST variation, to feed back to the SST through its effect on the surface heat flux. This paper addresses the relationship between clouds, surface radiation flux and SST of the TWP ocean over the diurnal cycle.

  1. Hydrology Affects Environmental and Spatial Structuring of Microalgal Metacommunities in Tropical Pacific Coast Wetlands.

    Directory of Open Access Journals (Sweden)

    Carmen Rojo

    Full Text Available The alternating climate between wet and dry periods has important effects on the hydrology and therefore on niche-based processes of water bodies in tropical areas. Additionally, assemblages of microorganism can show spatial patterns, in the form of a distance decay relationship due to their size or life form. We aimed to test spatial and environmental effects, modulated by a seasonal flooding climatic pattern, on the distribution of microalgae in 30 wetlands of a tropical dry forest region: the Pacific coast of Costa Rica and Nicaragua. Three surveys were conducted corresponding to the beginning, the highest peak, and the end of the hydrological year during the wet season, and species abundance and composition of planktonic and benthic microalgae was determined. Variation partitioning analysis (as explained by spatial distance or environmental factors was applied to each seasonal dataset by means of partial redundancy analysis. Our results show that microalgal assemblages were structured by spatial and environmental factors depending on the hydrological period of the year. At the onset of hydroperiod and during flooding, neutral effects dominated community dynamics, but niche-based local effects resulted in more structured algal communities at the final periods of desiccating water bodies. Results suggest that climate-mediated effects on hydrology can influence the relative role of spatial and environmental factors on metacommunities of microalgae. Such variability needs to be accounted in order to describe accurately community dynamics in tropical coastal wetlands.

  2. Hydrology Affects Environmental and Spatial Structuring of Microalgal Metacommunities in Tropical Pacific Coast Wetlands.

    Science.gov (United States)

    Rojo, Carmen; Mesquita-Joanes, Francesc; Monrós, Juan S; Armengol, Javier; Sasa, Mahmood; Bonilla, Fabián; Rueda, Ricardo; Benavent-Corai, José; Piculo, Rubén; Segura, M Matilde

    2016-01-01

    The alternating climate between wet and dry periods has important effects on the hydrology and therefore on niche-based processes of water bodies in tropical areas. Additionally, assemblages of microorganism can show spatial patterns, in the form of a distance decay relationship due to their size or life form. We aimed to test spatial and environmental effects, modulated by a seasonal flooding climatic pattern, on the distribution of microalgae in 30 wetlands of a tropical dry forest region: the Pacific coast of Costa Rica and Nicaragua. Three surveys were conducted corresponding to the beginning, the highest peak, and the end of the hydrological year during the wet season, and species abundance and composition of planktonic and benthic microalgae was determined. Variation partitioning analysis (as explained by spatial distance or environmental factors) was applied to each seasonal dataset by means of partial redundancy analysis. Our results show that microalgal assemblages were structured by spatial and environmental factors depending on the hydrological period of the year. At the onset of hydroperiod and during flooding, neutral effects dominated community dynamics, but niche-based local effects resulted in more structured algal communities at the final periods of desiccating water bodies. Results suggest that climate-mediated effects on hydrology can influence the relative role of spatial and environmental factors on metacommunities of microalgae. Such variability needs to be accounted in order to describe accurately community dynamics in tropical coastal wetlands.

  3. New eastern Pacific Ocean record of the rare deep-water fish, Psychrolutes phrictus (Scorpaeniformes: Psychrolutidae)

    OpenAIRE

    Aguirre-Villaseñor, Hugo; Cruz-Acevedo, Edgar; Salas-Singh, Carolina

    2016-01-01

    Abstract: Psychrolutes phrictus is a benthic deep sea fish known from the eastern North Pacific. On 30 March 2008, a specimen of the blob sculpin P. phrictus (297 mm LT) was caught off the Guerrero coast, Mexico (17°45′24″N, 101°59′04″W). The blob sculpin was taken at a depth of 1,100 m within a temperature range of 3.88-4.25 °C, where hypoxic (0.57-0.39 mg/l) conditions prevailed; the specimen was captured over a muddy bottom using a benthic sledge. Representatives of this species had never ...

  4. A multi-scale study of the dynamical processes of the tropical Pacific Ocean

    Science.gov (United States)

    Kidwell, Autumn Noel

    In recent years, it has been observed that there are different types of El Nino events. The warm events can be divided into two categories: those centered in the central Pacific (CP) and those centered in the eastern Pacific (EP). We examined the variability of western Pacific warm pool (WP) horizontal migration and size from January 1982 to December 2011 by applying Ensemble Empirical Mode Decomposition (EEMD) and Hilbert Huang Spectrum (HHS) to the optimally interpolated sea surface temperature (OISST) data set. The analysis shows that the long-term residual trend of the zonal centroid movement is migrating to the west by 3.78 from the mean location during the past 30 years. The size of the warm pool has also increased 18% during this period. These analysis techniques isolated two separate time series for the migration of the zonal component of the WPWP for both CP and EP events and showed that these two types of El Nino generally operate at different time-scales. The EP time-series shows the strong traditional EP El Nino and the transition between strong El Nino conditions and La Nina conditions. The CP time-series shows that CP El Ninos occur more often than EP El Ninos. The changes of the El Nino type in conjunction with westward drift and increasing warm pool size shows an interesting multidecadal change in the warm pool.

  5. Interannual tropical Pacific sea surface temperature anomalies teleconnection to Northern Hemisphere atmosphere in November

    Science.gov (United States)

    King, Martin P.; Herceg-Bulić, Ivana; Kucharski, Fred; Keenlyside, Noel

    2018-03-01

    We investigate the Northern Hemisphere atmospheric circulation anomalies associated to the sea surface temperature (SST) anomalies that are related to the eastern-Pacific and central-Pacific El Nino-Southern Oscillations in the late autumn (November). This research is motivated by the need for improving understanding of the autumn climate conditions which can impact on winter climate, as well as the relative lack of study on the boreal autumn climate processes compared to winter. Using reanalysis and SST datasets available from the late nineteenth century through the recent years, we found that there are two major atmospheric responses; one is a hemispheric-wide wave number-4 pattern, another has a more annular pattern. Both of these project on the East Atlantic pattern (southward-shifted North Atlantic Oscillation) in the Atlantic sector. Which of the patterns is active is suggested to depend on the background mean flow, with the annular anomaly active in the most recent decades, while the wave-4 pattern in the decades before. This switch is associated with a change of correlation sign in the North Pacific. We discuss the robustness of this finding. The ability of two atmospheric general circulation models (ICTP-AGCM and ECHAM-AGCM) to reproduce the teleconnections is also examined. Evidence provided shows that the wave-4 pattern and the East Atlantic pattern signals can be reproduced by the models, while the shift from this to an annular response for the recent years is not found conclusively.

  6. Tropical cyclone-related socio-economic losses in the western North Pacific region

    Science.gov (United States)

    Welker, C.; Faust, E.

    2013-01-01

    The western North Pacific (WNP) is the area of the world most frequently affected by tropical cyclones (TCs). However, little is known about the socio-economic impacts of TCs in this region, probably because of the limited relevant loss data. Here, loss data from Munich RE's NatCatSERVICE database is used, a high-quality and widely consulted database of natural disasters. In the country-level loss normalisation technique we apply, the original loss data are normalised to present-day exposure levels by using the respective country's nominal gross domestic product at purchasing power parity as a proxy for wealth. The main focus of our study is on the question of whether the decadal-scale TC variability observed in the Northwest Pacific region in recent decades can be shown to manifest itself economically in an associated variability in losses. It is shown that since 1980 the frequency of TC-related loss events in the WNP exhibited, apart from seasonal and interannual variations, interdecadal variability with a period of about 22 yr - driven primarily by corresponding variations of Northwest Pacific TCs. Compared to the long-term mean, the number of loss events was found to be higher (lower) by 14% (9%) in the positive (negative) phase of the decadal-scale WNP TC frequency variability. This was identified for the period 1980-2008 by applying a wavelet analysis technique. It was also possible to demonstrate the same low-frequency variability in normalised direct economic losses from TCs in the WNP region. The identification of possible physical mechanisms responsible for the observed decadal-scale Northwest Pacific TC variability will be the subject of future research, even if suggestions have already been made in earlier studies.

  7. Tropical cyclone-related socio-economic losses in the western North Pacific region

    Directory of Open Access Journals (Sweden)

    C. Welker

    2013-01-01

    Full Text Available The western North Pacific (WNP is the area of the world most frequently affected by tropical cyclones (TCs. However, little is known about the socio-economic impacts of TCs in this region, probably because of the limited relevant loss data. Here, loss data from Munich RE's NatCatSERVICE database is used, a high-quality and widely consulted database of natural disasters. In the country-level loss normalisation technique we apply, the original loss data are normalised to present-day exposure levels by using the respective country's nominal gross domestic product at purchasing power parity as a proxy for wealth. The main focus of our study is on the question of whether the decadal-scale TC variability observed in the Northwest Pacific region in recent decades can be shown to manifest itself economically in an associated variability in losses. It is shown that since 1980 the frequency of TC-related loss events in the WNP exhibited, apart from seasonal and interannual variations, interdecadal variability with a period of about 22 yr – driven primarily by corresponding variations of Northwest Pacific TCs. Compared to the long-term mean, the number of loss events was found to be higher (lower by 14% (9% in the positive (negative phase of the decadal-scale WNP TC frequency variability. This was identified for the period 1980–2008 by applying a wavelet analysis technique. It was also possible to demonstrate the same low-frequency variability in normalised direct economic losses from TCs in the WNP region. The identification of possible physical mechanisms responsible for the observed decadal-scale Northwest Pacific TC variability will be the subject of future research, even if suggestions have already been made in earlier studies.

  8. Autumn Cooling of Western East Antarctica Linked to the Tropical Pacific

    Science.gov (United States)

    Clem, Kyle R.; Renwick, James A.; McGregor, James

    2018-01-01

    Over the past 60 years, the climate of East Antarctica cooled while portions of West Antarctica were among the most rapidly warming regions on the planet. The East Antarctic cooling is attributed to a positive trend in the Southern Annular Mode (SAM) and a strengthening of the westerlies, while West Antarctic warming is tied to zonally asymmetric circulation changes forced by the tropics. This study finds recent (post-1979) surface cooling of East Antarctica during austral autumn to also be tied to tropical forcing, namely, an increase in La Niña events. The recent increase in La Niña conditions forces a Rossby wave into the Southern Hemisphere that increases anticyclonic circulation over the South Atlantic. The South Atlantic anticyclone is associated with cold air advection, weakened northerlies, and increased sea ice concentrations across the western East Antarctic coast, which has increased the rate of cooling at Novolazarevskaya and Syowa stations after 1979. This enhanced cooling over western East Antarctica is tied more broadly to a zonally asymmetric temperature trend pattern across East Antarctica during autumn that is consistent with a tropically forced Rossby wave rather than a SAM pattern; the positive SAM pattern is associated with ubiquitous cooling across East Antarctica, which is not seen in temperature observations after 1979. We conclude that El Niño-Southern Oscillation-related circulation anomalies, particularly zonal asymmetries that locally enhance meridional wind, are an important component of East Antarctic climate variability during autumn, and future changes in tropical Pacific climate will likely have implications for East Antarctica.

  9. Relationships between the Tropical Pacific and the Southern California Current productivity at different timescales

    Science.gov (United States)

    Abella-Gutiérrez, J. L.; Herguera, J. C.

    2016-02-01

    The influence of Tropical Pacific in climate during the Common Era has been largely debated due to the lack of agreement between proxies. Some records suggest a La Niña-like conditions during the Medieval Climate Anomaly (MCA) and El Niño-like conditions during the Little Ice Age (LIA) (i.e. Graham et al., 2007), but other records suggest the contrary (i.e. Conroy et al., 2008). Here we present a 2.3Ky biogenic based record from San Lázaro Basin that, in its different modes of variability, contains both visions. Furthermore, these proxies share a centennial mode of variability that dominates the last millennium and connects the Indo-Pacific Warm Pool (IPWP) with the Western North America Drought Area Index (WNA-DAI) through variations in the thermocline.San Lázaro Basin (SLB) is a suboxic basin located in the southern dynamic boundary of the California Current System (CCS). During La Niña-like conditions, the intensification of the trade winds increase the Ekman transport and the invasion of subartic waters, with the result of a shoaled thermocline and enhanced ecosystem productivity. When the winds relax, El Niño-like conditions became, and the intrusion of warm stratified water from the tropical and subtropical regions plummeted the productivity and a coccolitophorid based ecosystem dominates. The opposite relation between Carbonates and Total Organic Carbon (TOC) in SLB sediments confirms this observations. A significant positive correlation between XRF measurements of Br/Si with TOC and Ca counts with Carbonates, allows us to study SCC variability from interannual to centennial resolution.The Spectral Analysis of Br/Si and Carbonates show a common 110y cycle that is also present in the IPWP and WNA-DAI with a ENSO-like pattern. This centennial mode is excited by warm Equatorial Pacific conditions as its variance is correlated with Galapagos precipitation record. Although Galapagos precipitation record has been related with ENSO intensity, the Br

  10. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans

    Science.gov (United States)

    Ronchail, Josyane; Cochonneau, Gérard; Molinier, Michel; Guyot, Jean-Loup; Chaves, Adriana Goretti De Miranda; Guimarães, Valdemar; de Oliveira, Eurides

    2002-11-01

    Rainfall variability in the Amazon basin is studied in relation to sea-surface temperatures (SSTs) in the equatorial Pacific and the northern and southern tropical Atlantic during the 1977-99 period, using the HiBAm original rainfall data set and complementary cluster and composite analyses.The northeastern part of the basin, north of 5 °S and east of 60 °W, is significantly related with tropical SSTs: a rainier wet season is observed when the equatorial Pacific and the northern (southern) tropical Atlantic are anomalously cold (warm). A shorter and drier wet season is observed during El Niño events and negative rainfall anomalies are also significantly associated with a warm northern Atlantic in the austral autumn and a cold southern Atlantic in the spring. The northeastern Amazon rainfall anomalies are closely related with El Niño-southern oscillation during the whole year, whereas the relationships with the tropical Atlantic SST anomalies are mainly observed during the autumn. A time-space continuity is observed between El Niño-related rainfall anomalies in the northeastern Amazon, those in the northern Amazon and south-eastern Amazon, and those in northern South America and in the Nordeste of Brazil.A reinforcement of certain rainfall anomalies is observed when specific oceanic events combine. For instance, when El Niño and cold SSTs in the southern Atlantic are associated, very strong negative anomalies are observed in the whole northern Amazon basin. Nonetheless, the comparison of the cluster and the composite analyses results shows that the rainfall anomalies in the northeastern Amazon are not always associated with tropical SST anomalies.In the southern and western Amazon, significant tropical SST-related rainfall anomalies are very few and spatially variable. The precipitation origins differ from those of the northeastern Amazon: land temperature variability, extratropical perturbations and moisture advection are important rainfall factors, as well

  11. DELP Symposium: Tectonics of eastern Asia and western Pacific Continental Margin

    Science.gov (United States)

    Eastern Asia and the western Pacific make up a broad region of active plate tectonic interaction. The area is a natural laboratory for studying the processes involved in the origin and evolution of volcanic island arcs, marginal basins, accretionary prisims, oceanic trenches, accreted terranes, ophiolite emplacement, and intracontinental deformation. Many of our working concepts of plate tectonics and intraplate deformation were developed in this region, even though details of the geology and geophysics there must be considered of a reconnaissance nature.During the past few years researchers have accumulated a vast amount of new and detailed information and have developed a better understanding of the processes that have shaped the tectonic elements in this region. To bring together scientists from many disciplines and to present the wide range of new data and ideas that offer a broader perspective on the interrelations of geological, geochemical, geophysical and geodetic studies, the symposium Tectonics of Eastern Asia and Western Pacific Continental Margin was held December 13-16, 1988, at the Tokyo Institute of Technology in Japan, under the auspicies of DELP (Dynamics and Evolution of the Lithosphere Project).

  12. Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100,000 years

    Science.gov (United States)

    Loveley, Matthew R.; Marcantonio, Franco; Wisler, Marilyn M.; Hertzberg, Jennifer E.; Schmidt, Matthew W.; Lyle, Mitchell

    2017-10-01

    The eastern equatorial Pacific Ocean plays a crucial role in global climate, as it is a substantial source of CO2 to the atmosphere and accounts for a significant portion of global new export productivity. Here we present a 100,000-year sediment core from the eastern equatorial Pacific, and reconstruct dust flux, export productivity and bottom-water oxygenation using excess-230Th-derived fluxes of 232Th and barium, and authigenic uranium concentrations, respectively. We find that during the last glacial period (71,000 to 41,000 years ago), increased delivery of dust to the eastern equatorial Pacific was coeval with North Atlantic Heinrich stadial events. Millennial-scale pulses of increased dust flux coincided with episodes of heightened biological productivity, suggesting that dissolution of dust released iron that promoted ocean fertilization. We also find that periods of low atmospheric CO2 concentrations were associated with suboxic conditions and increased storage of respired carbon in the deep eastern equatorial Pacific. Increases in CO2 concentrations during the deglaciation are coincident with increases in deep Pacific and Southern Ocean water oxygenation levels. We suggest that deep-ocean ventilation was a primary control on CO2 outgassing in this region, with superimposed pulses of high productivity providing a negative feedback.

  13. New Hexactinellid Sponge Chaunoplectella megapora sp. nov. (Lyssacinosida: Leucopsacidae) from Clarion-Clipperton Fracture Zone, Eastern Pacific Ocean.

    Science.gov (United States)

    Wang, Chunsheng; Zhang, Yuan; Lu, Bo; Wang, Dexiang

    2018-01-23

    The new Hexactinellid sponge Chaunoplectella megapora sp. nov. reported in this study was collected from the COMRA contract area, the western part of Clarion-Clipperton Fracture Zone (CCFZ) in the eastern Pacific Ocean at a depth of 5258 m. This sponge's extraordinary multiporous body with the presence of unique codonhexasters, sigmatocomes, toothed discohexasters and hemidiscohexasters, as well as stellate disocohexasters, characterizes it as a new species in the genus Chaunoplectella. This report presents the first record of family Leucopsacidae at this site in the eastern Pacific Ocean.

  14. Attribution of Extreme Rainfall from Landfalling Tropical Cyclones to Climate Change for the Eastern United States

    Science.gov (United States)

    Liu, M.; Yang, L.; Smith, J. A.; Vecchi, G. A.

    2017-12-01

    Extreme rainfall and flooding associated with landfalling tropical cyclones (TC) is responsible for vast socioeconomic losses and fatalities. Landfalling tropical cyclones are an important element of extreme rainfall and flood peak distributions in the eastern United States. Record floods for USGS stream gauging stations over the eastern US are closely tied to landfalling hurricanes. A small number of storms account for the largest record floods, most notably Hurricanes Diane (1955) and Agnes (1972). The question we address is: if the synoptic conditions accompanying those hurricanes were to be repeated in the future, how would the thermodynamic and dynamic storm properties and associated extreme rainfall differ in response to climate change? We examine three hurricanes: Diane (1955), Agnes (1972) and Irene (2011), due to the contrasts in structure/evolution properties and their important roles in dictating the upper tail properties of extreme rainfall and flood frequency over eastern US. Extreme rainfall from Diane is more localized as the storm maintains tropical characteristics, while synoptic-scale vertical motion associated with extratropical transition is a central feature for extreme rainfall induced by Agnes. Our analyses are based on ensemble simulations using the Weather Research and Forecasting (WRF) model, considering combinations of different physics options (i.e., microphysics, boundary layer schemes). The initial and boundary conditions of WRF simulations for the present-day climate are using the Twentieth Century Reanalysis (20thCR). A sub-selection of GCMs is used, as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5), to provide future climate projections. For future simulations, changes in model fields (i.e., temperature, humidity, geopotential height) between present-day and future climate are first derived and then added to the same 20thCR initial and boundary data used for the present-day simulations, and the ensemble is

  15. Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific

    Science.gov (United States)

    Thamdrup, Bo; Dalsgaard, Tage; Revsbech, Niels Peter

    Oxygen minimum zones (OMZs) as found in the Eastern Pacific and Indian Ocean are biogeochemical hot spots with a disproportionately large role in the marine nitrogen cycle, and they are important components of the highly productive ecosystems in which they occur. Although the oxygen-depleted waters have been known for a century, oxygen levels inside them are not well constrained and the regulation of their anaerobic processes by oxygen is poorly understood. We deployed highly sensitive STOX oxygen sensors with a detection limit of 10 nmol kg-1 in combination with conventional hydrographic oxygen sensors along a cruise track transecting the Eastern South Pacific OMZ from South to North along the coast of Chile and Peru. Oxygen was below the detection limit throughout the ˜200 m thick OMZ core in most casts with STOX sensors. The only exception was an offshore location off Peru where oxygen was 10-50 nmol kg-1 in the core, likely as the result of a transient intrusion. Oxygen was also not detected in the OMZ core in further casts with conventional sensors, which had a detection limit of 90 nmol kg-1 after STOX-based zero calibration. Our measurements tighten the constraints on typical oxygen concentrations in the inner part of the OMZ by at least an order of magnitude relative to previous reports. Nitrite only accumulated when oxygen was depleted below 50 nmol kg-1, which indicates that nitrogen cycling is much more sensitive to oxygen than previously estimated. We argue that extreme oxygen depletion to low nanomalar or even picomolar concentrations is a normal condition in the South Pacific OMZ, and suggest that the OMZ core is in fact functionally anoxic over wide regions for extended periods. Our results further indicate that oxygen dynamics in the low nanomolar range play an important role in OMZ biogeochemistry.

  16. Caribbean Sea rainfall variability during the rainy season and relationship to the equatorial Pacific and tropical Atlantic SST

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Renguang [Institute of Global Environment and Society, Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Kirtman, Ben P. [University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL (United States)

    2011-10-15

    The present study investigates the Caribbean Sea rainfall variability during the early and late rainy seasons and its association with sea surface temperature (SST) and air-sea interaction based on observational estimates, the NCEP Climate Forecast System (CFS) and Global Forecast System (GFS) simulations, and the CFS retrospective forecasts. Analysis of the observational estimates indicates that air-sea interaction is important over the Caribbean Sea, whereas the atmospheric forcing of SST dominates over the Gulf of Mexico. The CFS simulation captures the basic elements of this observed air-sea relationship. The GFS simulation produces spurious SST forcing of the atmosphere over the Gulf of Mexico largely due to prescribing SST. The CFS forecasts capture the air-sea relationship in the late rainy season (August-October), but cannot reproduce the SST forcing of atmosphere over the Caribbean Sea in the early rainy season (May-July). An empirical orthogonal function (EOF) analysis indicates that the leading modes of percent anomalies of the rainy season precipitation have the largest loading in the southern Caribbean Sea in observations. The model simulations and forecasts skillfully reproduce the spatial pattern, but not the temporal evolution. The Caribbean Sea rainfall variability in the early rainy season is mainly due to the tropical North Atlantic (TNA) SST anomalies in observations, is contributed by both the TNA and eastern equatorial Pacific (EEP) SST anomalies in the CFS simulation, and has an overly large impact from the EEP SST anomalies in the GFS simulation and the CFS forecasts. The observed Caribbean Sea rainfall variability in the late rainy season has a leading impact from the EEP SST anomalies, with a secondary contribution from the TNA SST anomalies. In comparison, the model simulations and forecasts overestimate the impacts of the EEP SST anomalies due to an earlier development and longer duration of the El Nino-Southern Oscillation in the CFS

  17. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific.

    Science.gov (United States)

    Martin, Laura E; Dawson, Michael N; Bell, Lori J; Colin, Patrick L

    2006-03-22

    Understanding El Niño/Southern Oscillation (ENSO) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled ENSO-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Niña than El Niño conditions, temperature anomalies in the lake co-vary strongly with the Niño 3.4 climate index, and the abundance of the dominant member of the pelagic community, an endemic subspecies of zooxanthellate jellyfish, is temperature associated. These results have broad relevance because the lake: (i) illustrates an ENSO signal that is partly obscured in surrounding semi-enclosed lagoon waters and, therefore, (ii) may provide a model system for studying the effects of climate change on community evolution and cnidarian-zooxanthellae symbioses, which (iii) should be traceable throughout the Holocene because the lake harbours a high quality sediment record; the sediment record should (iv) provide a sensitive and regionally unique record of Holocene climate relevant to predicting ENSO responses to future global climate change and, finally, (v) seawater lake ecosystems elsewhere in the Pacific may hold similar potential for past, present, and predictive measurements of climate variation and ecosystem response.

  18. Assessing millennial-scale variability during the Holocene: A perspective from the western tropical Pacific

    Science.gov (United States)

    Khider, D.; Jackson, C. S.; Stott, L. D.

    2014-03-01

    We investigate the relationship between tropical Pacific and Southern Ocean variability during the Holocene using the stable oxygen isotope and magnesium/calcium records of cooccurring planktonic and benthic foraminifera from a marine sediment core collected in the western equatorial Pacific. The planktonic record exhibits millennial-scale sea surface temperature (SST) oscillations over the Holocene of 0.5°C while the benthic δ18Oc document 0.10‰ millennial-scale changes of Upper Circumpolar Deep Water (UCDW), a water mass which outcrops in the Southern Ocean. Solar forcing as an explanation for millennial-scale SST variability requires (1) a large climate sensitivity and (2) a long 400 year delayed response, suggesting that if solar forcing is the cause of the variability, it would need to be considerably amplified by processes within the climate system at least at the core location. We also explore the possibility that SST variability arose from volcanic forcing using a simple red noise model. Our best estimates of volcanic forcing falls short of reproducing the amplitude of observed SST variations although it produces power at low-frequency similar to that observed in the MD81 record. Although we cannot totally discount the volcanic and solar forcing hypotheses, we are left to consider that the most plausible source for Holocene millennial-scale variability lies within the climate system itself. In particular, UCDW variability coincided with deep North Atlantic changes, indicating a role for the deep ocean in Holocene millennial-scale variability.

  19. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  20. Compendium of NASA Data Base for the Global Tropospheric Experiment's Pacific Exploratory Mission - Tropics B (PEM-Tropics B). Volume 2; P-3B

    Science.gov (United States)

    Scott, A. Donald, Jr.; Kleb, Mary M.; Raper, James L.

    2000-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) conducted in March and April 1999. PEM-Tropics B was conducted during the southern-tropical wet season when the influence from biomass burning observed in PEM-Tropics A was minimal. Major deployment sites were Hawaii, Kiritimati (Christmas Island), Tahiti, Fiji, and Easter Island. The broad goals of PEM-Tropics B were to improved understanding of the oxidizing power of the atmosphere and the processes controlling sulfur aerosol formation and to establish baseline values for chemical species that are directly coupled to the oxidizing power and aerosol loading of the troposphere. The purpose of this document is to provide a representation of aircraft data that will be available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) or are available through the GTE Project Office archive. The data format is not intended to support original research/analysis, but to assist the reader in identifying data that are of interest.

  1. Compendium of NASA Data Base for the Global Tropospheric Experiment's Pacific Exploratory Mission-Tropics B (PEM-Tropics B). Volume 1; DC-8

    Science.gov (United States)

    Scott, A. Donald, Jr.; Kleb, Mary M.; Raper, James L.

    2000-01-01

    This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) conducted in March and April 1999. PEM-Tropics B was conducted during the southern-tropical wet season when the influence from biomass burning observed in PEM-Tropics A was minimal. Major deployment sites were Hawaii, Kiritimati (Christmas Island), Tahiti, Fiji, and Easter Island. The broad goals of PEM-Tropics B were to improved understanding of the oxidizing power of the atmosphere and the processes controlling sulfur aerosol formation and to establish baseline values for chemical species that are directly coupled to the oxidizing power and aerosol loading of the troposphere. The purpose of this document is to provide a representation of aircraft data that will be available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) or are available through the GTE Project Office archive. The data format is not intended to support original research/analysis, but to assist the reader in identifying data that are of interest.

  2. Knowledge exchange in the Pacific: The TROPIC (Translational Research into Obesity Prevention Policies for Communities) project

    Science.gov (United States)

    2012-01-01

    Background Policies targeting obesogenic environments and behaviours are critical to counter rising obesity rates and lifestyle-related non-communicable diseases (NCDs). Policies are likely to be most effective and enduring when they are based on the best available evidence. Evidence-informed policy making is especially challenging in countries with limited resources. The Pacific TROPIC (Translational Research for Obesity Prevention in Communities) project aims to implement and evaluate a tailored knowledge-brokering approach to evidence-informed policy making to address obesity in Fiji, a Pacific nation challenged by increasingly high rates of obesity and concomitant NCDs. Methods The TROPIC project draws on the concept of ‘knowledge exchange’ between policy developers (individuals; organisations) and researchers to deliver a knowledge broking programme that maps policy environments, conducts workshops on evidence-informed policy making, supports the development of evidence-informed policy briefs, and embeds evidence-informed policy making into organisational culture. Recruitment of government and nongovernment organisational representatives will be based on potential to: develop policies relevant to obesity, reach broad audiences, and commit to resourcing staff and building a culture that supports evidence-informed policy development. Workshops will increase awareness of both obesity and policy cycles, as well as develop participants’ skills in accessing, assessing and applying relevant evidence to policy briefs. The knowledge-broking team will then support participants to: 1) develop evidence-informed policy briefs that are both commensurate with national and organisational plans and also informed by evidence from the Pacific Obesity Prevention in Communities project and elsewhere; and 2) collaborate with participating organisations to embed evidence-informed policy making structures and processes. This knowledge broking initiative will be evaluated via

  3. Recent Atlantic Hurricanes, Pacific Super Typhoons, and Tropical Storm Awareness in Underdeveloped Island and Coastal Regions

    Science.gov (United States)

    Plondke, D. L.

    2017-12-01

    Hurricane Harvey was the first major hurricane to make landfall in the continental U.S. in 12 years. The next tropical storm in the 2017 Atlantic Hurricane Season was Hurricane Irma, a category 5 storm and the strongest storm to strike the U.S. mainland since Hurricane Wilma in 2005. These two storms were the third and fourth in a sequence of 10 consecutive storms to reach hurricane status in this season that ranks at least seventh among the most active seasons as measured by the Accumulate Cyclone Energy (ACE) index. Assessment of damage from Harvey may prove it to be the costliest storm in U.S. history, approaching $190 billion. Irma was the first category 5 hurricane to hit the Leeward Islands, devastating island environments including Puerto Rico, the Virgin Islands, Barbuda, Saint Barthelemy, and Anguilla with sustained winds reaching at times 185 mph. Together with the two super typhoons of the 2017 Pacific season, Noru and Lan, the two Atlantic hurricanes rank among the strongest, longest-lasting tropical cyclones on record. How many more billions of dollars will be expended in recovery and reconstruction efforts following future mega-disasters comparable to those of Hurricanes Harvey and Irma? Particularly on Caribbean and tropical Pacific islands with specialized and underdeveloped economies, aging and substandard infrastructure often cannot even partially mitigate against the impacts of major hurricanes. The most frequently used measurements of storm impact are insufficient to assess the economic impact. Analysis of the storm tracks and periods of greatest storm intensity of Hurricanes Harvey and Irma, and Super Typhoons Lan and Noru, in spatial relationship with island and coastal administrative regions, shows that rainfall totals, flooded area estimates, and property/infrastructure damage dollar estimates are all quantitative indicators of storm impact, but do not measure the costs that result from lack of storm preparedness and education of residents

  4. Whales, Dolphins, and Porpoises of the Eastern North Pacific and Adjacent Arctic Waters: A Guide to Their Identification.

    Science.gov (United States)

    Leatherwood, Stephen; And Others

    This field guide is designed to permit observers to identify the cetaceans (whales, dolphins, and porpoises) they see in the waters of the eastern North Pacific, including the Gulf of California, Hawaii, and the western Arctic of North America. The animals described are grouped not by scientific relationships but by similarities in appearance in…

  5. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Echinodermata.

    Science.gov (United States)

    Amon, Diva J; Ziegler, Amanda F; Kremenetskaia, Antonina; Mah, Christopher L; Mooi, Rich; O'Hara, Tim; Pawson, David L; Roux, Michel; Smith, Craig R

    2017-01-01

    There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite being the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. In order to predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to these research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle, the megafauna within the UKSRL exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal echinoderm megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 62 distinct morphospecies (13 Asteroidea, 5 Crinoidea, 9 Echinoidea, 29 Holothuroidea and 6 Ophiuroidea) identified mostly by imagery but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat.

  6. Monorchiids (Platyhelminthes: Digenea) of chaetodontid fishes (Perciformes): biogeographical patterns in the tropical Indo-West Pacific.

    Science.gov (United States)

    McNamara, M K A; Adlard, R D; Bray, R A; Sasal, P; Cribb, T H

    2012-06-01

    Species richness and biogeography of the monorchiid genus Hurleytrematoides was studied by the examination of 2834 individuals of 45 species of Chaetodontidae at six major sites in the tropical Indo-West Pacific: Heron Island, Lizard Island, Ningaloo (Western Australia), Palau, New Caledonia and Moorea (French Polynesia). In total, 18 species were distributed among six sites; descriptions are provided for eight new species: H. boucheti n. sp., H. combesi n. sp., H. deblocki n. sp., H. dollfusi n. sp., H. euzeti n. sp., H. kulbickii n. sp., H. pasteuri n. sp., and H. planesi n. sp. Overall richness ranged from zero to five Hurleytrematoides species per chaetodontid species. Seven Hurleytrematoides species were found at only one locality and eleven were found at multiple localities. Only one species, H. morandi, was found at all localities. Individual localities had between six (Moorea) and 10 (Heron Island) species; we attribute Moorea's depauperate parasite fauna to its isolation and distance from the Indo-Philippine centre of biological diversity. Using cluster analysis of 18 species of Hurleytrematoides and 45 species of chaetodontids sampled in the Indo-West Pacific, we show that the localities on the Great Barrier Reef (Heron Island and Lizard Island) and New Caledonia have the most similar chaetodontid and parasite fauna of any locality pairs. Cluster analysis results also show that the similarity of the chaetodontid assemblages at five of the six localities is relatively high and that Ningaloo has the most distinct fauna. Similarity values based on sharing of species of Hurleytrematoides are generally lower than those for their hosts; Moorea, Ningaloo and Palau all have low similarity to New Caledonia and Great Barrier Reef sites. We attribute these distinctions to the differential dispersal capability of the fish and their parasites. Chaetodontids have long-lived mobile pelagic larvae, the dispersal of which would be most affected by prominent

  7. Spatial and temporal variability in nutrients and carbon uptake during 2004 and 2005 in the eastern equatorial Pacific Ocean

    DEFF Research Database (Denmark)

    Palacz, A. P.; Chai, F.

    2012-01-01

    The eastern equatorial Pacific plays a great role in the global carbon budget due to its enhanced biological productivity linked to the equatorial upwelling. However, as confirmed by the Equatorial Biocomplexity cruises in 2004 and 2005, nutrient upwelling supply varies strongly, partly due...... and intraseasonal time scales. Here, high resolution Pacific ROMS-CoSiNE (Regional Ocean Modeling System-Carbon, Silicon, Nitrogen Ecosystem) model results were evaluated with in situ and remote sensing data. The results of model-data comparison revealed a good agreement in domain-average hydrographic....... In order to fully resolve the complexity of biological and physical interactions in the eastern equatorial Pacific, we recommended improving CoSiNE and other models by introducing more phytoplankton groups, variable Redfield and carbon to chlorophyll ratios, as well as resolving the Fe-Si co...

  8. Population structure and phylogeography reveal pathways of colonization by a migratory marine reptile (Chelonia mydas) in the central and eastern Pacific.

    Science.gov (United States)

    Dutton, Peter H; Jensen, Michael P; Frey, Amy; LaCasella, Erin; Balazs, George H; Zárate, Patricia; Chassin-Noria, Omar; Sarti-Martinez, Adriana Laura; Velez, Elizabeth

    2014-11-01

    Climate, behavior, ecology, and oceanography shape patterns of biodiversity in marine faunas in the absence of obvious geographic barriers. Marine turtles are an example of highly migratory creatures with deep evolutionary lineages and complex life histories that span both terrestrial and marine environments. Previous studies have focused on the deep isolation of evolutionary lineages (>3 mya) through vicariance; however, little attention has been given to the pathways of colonization of the eastern Pacific and the processes that have shaped diversity within the most recent evolutionary time. We sequenced 770 bp of the mtDNA control region to examine the stock structure and phylogeography of 545 green turtles from eight different rookeries in the central and eastern Pacific. We found significant differentiation between the geographically separated nesting populations and identified five distinct stocks (F ST = 0.08-0.44, P eastern Pacific Chelonia mydas form a monophyletic group containing 3 subclades, with Hawaii more closely related to the eastern Pacific than western Pacific populations. The split between sampled central/eastern and western Pacific haplotypes was estimated at around 0.34 mya, suggesting that the Pacific region west of Hawaii has been a more formidable barrier to gene flow in C. mydas than the East Pacific Barrier. Our results suggest that the eastern Pacific was colonized from the western Pacific via the Central North Pacific and that the Revillagigedos Islands provided a stepping-stone for radiation of green turtles from the Hawaiian Archipelago to the eastern Pacific. Our results fit with a broader paradigm that has been described for marine biodiversity, where oceanic islands, such as Hawaii and Revillagigedo, rather than being peripheral evolutionary "graveyards", serve as sources and recipients of diversity and provide a mechanism for further radiation.

  9. Interactions between tropical cyclones and mid-latitude systems in the Northeastern Pacific

    Science.gov (United States)

    Lugo, A.; Abarca, S. F.; Raga, G. B.; Vargas, D. C.

    2014-12-01

    Major challenges in tropical meteorology include the short-term forecast of tropical cyclone (TC) intensity, which is defined as the maximum tangential wind. Several efforts have been made in order to reach this goal over the last decade: Among these efforts, the study of lightning in the TC inner core (the region inside a disc of 100 km radius from the center) as a proxy to deep convection, has the potential to be used as a predictor to forecast intensity (DeMaria et al, 2012, Mon. Wea. Rev., 140, 1828-1842).While most studies focus their objectives in studying the lightning flash density in the inner core, we study the probability of flash occurrence for intensifying and weakening cyclones. We have analyzed the trajectories of the observed 62 tropical cyclones that developed in the basin from 2006 to 2009, and classified them into separate clusters according to their trajectories. These clusters can broadly be described as having trajectories mostly oriented: East-West, towards the central Pacific, NW far from the Mexican coast, parallel to the Mexican coast and recurving towards the Mexican coast.We estimate that probability of inner core lightning occurrence increases as cyclones intensify but the probability rapidly decrease as the systems weaken. This is valid for cyclones in most of the clusters. However, the cyclones that exhibit trajectories that recurve towards the Mexican coast, do not present the same relationship between intensity and inner-core lightning probability, these cyclones show little or no decrease in the lightning occurrence probability as they weaken.We hypothesize that one of the reasons for this anomalous behavior is likely the fact that these cyclones interact with mid-latitude systems. Mid-latitude systems are important in determining the recurving trajectory but they may also influence the TC by advecting mid-level moisture towards the TC inner core. This additional supply of moisture as the system is approaching land may enhance deep

  10. Publisher Correction: Recycled iron fuels new production in the eastern equatorial Pacific Ocean.

    Science.gov (United States)

    Rafter, Patrick A; Sigman, Daniel M; Mackey, Katherine R M

    2017-12-05

    The original version of this Article contained errors in Fig. 2b and Table 2. In Fig. 2b, the white circle labels were incorrectly positioned as they referred to scenarios that were used in an earlier version of the Article. In Table 2, the following three sentences were removed from the legend 'The last two calculations are discussed in the "Methods". The first assumes that all dissolved plus the ≈0.3 nmol kg -1 of particulate iron (measured in the eastern equatorial Pacific 30 ) is bioavailable. The last calculation assumes EUC dissolved iron concentrations from 140° W'. These errors have now been corrected in both the PDF and HTML versions of the Article.

  11. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus

    Science.gov (United States)

    Deser, Clara; Guo, Ruixia; Lehner, Flavio

    2017-08-01

    The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.

  12. Mitochondrial and nuclear genetic variation across calving lagoons in Eastern North Pacific gray whales (Eschrichtius robustus).

    Science.gov (United States)

    Alter, S Elizabeth; Ramirez, Sergio Flores; Nigenda, Sergio; Ramirez, Jorge Urbán; Bracho, Lorenzo Rojas; Palumbi, Stephen R

    2009-01-01

    Accurate knowledge of population structure in cetaceans is critical for preserving and managing breeding habitat, particularly when habitat is not uniformly protected. Most eastern gray whales return to their major breeding range each winter along the Pacific coast of Baja California, Mexico, concentrating in 3 major calving lagoons, but it is unknown whether genetic differences exist between lagoons. Previous photo-identification studies and genetic studies suggest that gray whales may return to their natal lagoons to breed, potentially resulting in the buildup of genetic differences. However, an earlier genetic study used only one genetic marker and did not include samples from Bahia Magdalena, a major calving lagoon not currently designated as a wildlife refuge. To expand on this previous study, we collected genetic data from the mitochondrial control region (442 bp) and 9 microsatellite markers from 112 individuals across all 3 major calving lagoons. Our data suggest that migration rates between calving lagoons are high but that a small but significant departure from panmixia exists between Bahia Magdalena and Laguna San Ignacio (Fisher's Exact test, P 10% per generation). In addition, microsatellite data showed evidence of a severe population bottleneck. Eastern gray whales are still recovering from the impacts of whaling on their breeding grounds, and these populations should be protected and monitored for future genetic changes.

  13. An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific

    Directory of Open Access Journals (Sweden)

    Y. Dandonneau

    2011-12-01

    Full Text Available Trichodesmium, a major colonial cyanobacterial nitrogen fixer, forms large blooms in NO3-depleted tropical oceans and enhances CO2 sequestration by the ocean due to its ability to fix dissolved dinitrogen. Thus, its importance in C and N cycles requires better estimates of its distribution at basin to global scales. However, existing algorithms to detect them from satellite have not yet been successful in the South Western Tropical Pacific (SP. Here, a novel algorithm (TRICHOdesmium SATellite based on radiance anomaly spectra (RAS observed in SeaWiFS imagery, is used to detect Trichodesmium during the austral summertime in the SP (5° S–25° S 160° E–170° W. Selected pixels are characterized by a restricted range of parameters quantifying RAS spectra (e.g. slope, intercept, curvature. The fraction of valid (non-cloudy pixels identified as Trichodesmium surface blooms in the region is low (between 0.01 and 0.2 %, but is about 100 times higher than deduced from previous algorithms. At daily scales in the SP, this fraction represents a total ocean surface area varying from 16 to 48 km2 in Winter and from 200 to 1000 km2 in Summer (and at monthly scale, from 500 to 1000 km2 in Winter and from 3100 to 10 890 km2 in Summer with a maximum of 26 432 km2 in January 1999. The daily distribution of Trichodesmium surface accumulations in the SP detected by TRICHOSAT is presented for the period 1998–2010 which demonstrates that the number of selected pixels peaks in November–February each year, consistent with field observations. This approach was validated with in situ observations of Trichodesmium surface accumulations in the Melanesian archipelago around New Caledonia, Vanuatu and Fiji Islands for the same period.

  14. A real-time ocean reanalyses intercomparison project in the context of tropical pacific observing system and ENSO monitoring

    Science.gov (United States)

    Xue, Yan; Wen, C.; Kumar, A.; Balmaseda, M.; Fujii, Y.; Alves, O.; Martin, M.; Yang, X.; Vernieres, G.; Desportes, C.; Lee, T.; Ascione, I.; Gudgel, R.; Ishikawa, I.

    2017-12-01

    An ensemble of nine operational ocean reanalyses (ORAs) is now routinely collected, and is used to monitor the consistency across the tropical Pacific temperature analyses in real-time in support of ENSO monitoring, diagnostics, and prediction. The ensemble approach allows a more reliable estimate of the signal as well as an estimation of the noise among analyses. The real-time estimation of signal-to-noise ratio assists the prediction of ENSO. The ensemble approach also enables us to estimate the impact of the Tropical Pacific Observing System (TPOS) on the estimation of ENSO-related oceanic indicators. The ensemble mean is shown to have a better accuracy than individual ORAs, suggesting the ensemble approach is an effective tool to reduce uncertainties in temperature analysis for ENSO. The ensemble spread, as a measure of uncertainties in ORAs, is shown to be partially linked to the data counts of in situ observations. Despite the constraints by TPOS data, uncertainties in ORAs are still large in the northwestern tropical Pacific, in the SPCZ region, as well as in the central and northeastern tropical Pacific. The uncertainties in total temperature reduced significantly in 2015 due to the recovery of the TAO/TRITON array to approach the value before the TAO crisis in 2012. However, the uncertainties in anomalous temperature remained much higher than the pre-2012 value, probably due to uncertainties in the reference climatology. This highlights the importance of the long-term stability of the observing system for anomaly monitoring. The current data assimilation systems tend to constrain the solution very locally near the buoy sites, potentially damaging the larger-scale dynamical consistency. So there is an urgent need to improve data assimilation systems so that they can optimize the observation information from TPOS and contribute to improved ENSO prediction.

  15. Influences of two types of El Niño event on the Northwest Pacific and tropical Indian Ocean SST anomalies

    Science.gov (United States)

    Hu, Haibo; Wu, Qigang; Wu, Zepeng

    2018-01-01

    Based on the HadISST1 and NCEP datasets, we investigated the influences of the central Pacific El Niño event (CP-EL) and eastern Pacific El Niño event (EP-EL) on the Sea Surface Temperature (SST) anomalies of the Tropical Indian Ocean. Considering the remote effect of Indian Ocean warming, we also discussed the anticyclone anomalies over the Northwest Pacific, which is very important for the South China precipitation and East Asian climate. Results show that during the El Niño developing year of EP-EL, cold SST anomalies appear and intensify in the east of tropical Indian Ocean. At the end of that autumn, all the cold SST anomaly events lead to the Indian Ocean Dipole (IOD) events. Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs. However, considering the statistical significance, more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year. For further research, EP-EL accompany with Indian Ocean Basin Warming (EPI-EL) and CP El Niño accompany with Indian Ocean Basin Warming (CPI-EL) events are classified. With the remote effects of Indian Ocean SST anomalies, the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific. For the EPI-EL developing year, large-scale warm SST anomalies arise in the North Indian Ocean in May, and persist to the autumn of the El Niño decaying year. However, for the CPI-EL, weak warm SST anomalies in the North Indian Ocean maintain to the El Niño decaying spring. Because of these different SST anomalies in the North Indian Ocean, distinct zonal SST gradient, atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Niño decaying years. Specifically, the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years, can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean. The atmospheric

  16. Indo-Pacific Warm Pool Area Expansion, Modoki Activity, and Tropical Cold-Point Tropopause Temperature Variations

    Science.gov (United States)

    Xie, Fei; Li, Jianping; Tian, Wenshou; Li, Yanjie; Feng, Juan

    2014-01-01

    The tropical cold-point tropopause temperature (CPTT), a potentially important indicator of global climate change, is of particular importance for understanding changes in stratospheric water vapor levels. Since the 1980s, the tropical CPTT has shown not only interannual variations, but also a decreasing trend. However, the factors controlling the variations in the tropical CPTT since the 1980s remain elusive. The present study reveals that the continuous expansion of the area of the Indo-Pacific warm pool (IPWP) since the 1980s represents an increase in the total heat energy of the IPWP available to heat the tropospheric air, which is likely to expand as a result. This process lifts the tropical cold-point tropopause height (CPTH) and leads to the observed long-term cooling trend of the tropical CPTT. In addition, our analysis shows that Modoki activity is an important factor in modulating the interannual variations of the tropical CPTT through significant effects on overshooting convection. PMID:24686481

  17. Gill monogenean communities (Platyhelminthes, Monogenea, Dactylogyridae) of butterflyfishes from tropical Indo-West Pacific Islands.

    Science.gov (United States)

    Reverter, Miriam; Cutmore, Scott C; Bray, Rodney; Cribb, Thomas H; Sasal, Pierre

    2016-10-01

    We studied the monogenean communities of 34 species of butterflyfish from the tropical Indo-West Pacific, identifying 13 dactylogyrid species (including two species that are presently undescribed). Monogenean assemblages differed significantly between host species in terms of taxonomic structure, intensity and prevalence. Parasite richness ranged from 0 (Chaetodon lunulatus) to 11 (C. auriga, C. citrinellus and C. lunula). Host specificity varied between the dactylogyrids species, being found on 2-29 of the 34 chaetodontid species examined. Sympatric butterflyfish species were typically parasitized by different combinations of dactylogyrid species, suggesting the existence of complex host-parasite interactions. We identified six clusters of butterflyfish species based on the similarities of their dactylogyrid communities. Dactylogyrid richness and diversity were not related to host size, diet specialization, depth range or phylogeny of butterflyfish species. However, there was a weak positive correlation between monogenean richness and diversity and host geographical range. Most communities of dactylogyrids were dominated by Haliotrema aurigae and H. angelopterum, indicating the importance of the genus Haliotrema in shaping monogenean communities of butterflyfishes. This study casts light on the structure of the monogenean communities of butterflyfishes, suggesting that the diversity and complexity of community structures arises from a combination of host species-specific parameters.

  18. Interdecadal Change of Tropical Cyclone Genesis Controlling Parameter in Western North Pacific

    Science.gov (United States)

    Li, T.

    2017-12-01

    The main environmental parameter controlling tropical cyclone (TC) genesis in the western North Pacific (WNP) changed in different interdecadal periods. The interannual variability of TC genesis frequency was primarily control by specific humidity in 1950-1976, sea surface temperature (SST) in 1977-1998, and vorticity in 1999-2014. A further diagnosis shows that the change of environmental specific humidity during 1950-1976 was attributed to anomalous advection of mean moisture during ENSO developing summer. The SST change during 1977-1998 was associated with circulation change during ENSO decaying summer. The change of environment vorticity was primarily related to CP-type El Niño during 1999-2014. The ultimate cause of the controlling parameter change is attributed to the change of ENSO behavior. Compared to the first period, a stronger EP-type ENSO variability in the second period leads to a stronger circulation/SST response during ENSO decaying phase. The occurrence of more frequent CP type El Niño in the third period was responsible for greater vorticity controlling in the WNP.

  19. A Climatology of Surface Cloud Radiative Effects at the ARM Tropical Western Pacific Sites

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Sally A.; Long, Charles N.; Flaherty, Julia E.

    2013-04-01

    Cloud radiative effects on surface downwelling fluxes are investigated using long-term datasets from the three Atmospheric Radiation Measurement (ARM) sites in the Tropical Western Pacific (TWP) region. The Nauru and Darwin sites show significant variability in sky cover, downwelling radiative fluxes, and surface cloud radiative effect (CRE) due to El Niño and the Australian monsoon, respectively, while the Manus site shows little intra-seasonal or interannual variability. Cloud radar measurement of cloud base and top heights are used to define cloud types so that the effect of cloud type on the surface CRE can be examined. Clouds with low bases contribute 71-75% of the surface shortwave (SW) CRE and 66-74% of the surface longwave (LW) CRE at the three TWP sites, while clouds with mid-level bases contribute 8-9% of the SW CRE and 12-14% of the LW CRE, and clouds with high bases contribute 16-19% of the SW CRE and 15-21% of the LW CRE.

  20. Application of Entropy Ensemble Filter in Neural Network Forecasts of Tropical Pacific Sea Surface Temperatures

    Directory of Open Access Journals (Sweden)

    Hossein Foroozand

    2018-03-01

    Full Text Available Recently, the Entropy Ensemble Filter (EEF method was proposed to mitigate the computational cost of the Bootstrap AGGregatING (bagging method. This method uses the most informative training data sets in the model ensemble rather than all ensemble members created by the conventional bagging. In this study, we evaluate, for the first time, the application of the EEF method in Neural Network (NN modeling of El Nino-southern oscillation. Specifically, we forecast the first five principal components (PCs of sea surface temperature monthly anomaly fields over tropical Pacific, at different lead times (from 3 to 15 months, with a three-month increment for the period 1979–2017. We apply the EEF method in a multiple-linear regression (MLR model and two NN models, one using Bayesian regularization and one Levenberg-Marquardt algorithm for training, and evaluate their performance and computational efficiency relative to the same models with conventional bagging. All models perform equally well at the lead time of 3 and 6 months, while at higher lead times, the MLR model’s skill deteriorates faster than the nonlinear models. The neural network models with both bagging methods produce equally successful forecasts with the same computational efficiency. It remains to be shown whether this finding is sensitive to the dataset size.

  1. Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean.

    Science.gov (United States)

    Nguyen, Vy X; Detcharoen, Matsapume; Tuntiprapas, Piyalap; Soe-Htun, U; Sidik, Japar B; Harah, Muta Z; Prathep, Anchana; Papenbrock, Jutta

    2014-04-30

    The Indo-Pacific region has the largest number of seagrass species worldwide and this region is considered as the origin of the Hydrocharitaceae. Halophila ovalis and its closely-related species belonging to the Hydrocharitaceae are well-known as a complex taxonomic challenge mainly due to their high morphological plasticity. The relationship of genetic differentiation and geographic barriers of H. ovalis radiation was not much studied in this region. Are there misidentifications between H. ovalis and its closely related species? Does any taxonomic uncertainty among different populations of H. ovalis persist? Is there any genetic differentiation among populations in the Western Pacific and the Eastern Indian Ocean, which are separated by the Thai-Malay peninsula? Genetic markers can be used to characterize and identify individuals or species and will be used to answer these questions. Phylogenetic analyses of the nuclear ribosomal internal transcribed spacer region based on materials collected from 17 populations in the Western Pacific and the Eastern Indian Ocean showed that some specimens identified as H. ovalis belonged to the H. major clade, also supported by morphological data. Evolutionary divergence between the two clades is between 0.033 and 0.038, much higher than the evolutionary divergence among H. ovalis populations. Eight haplotypes were found; none of the haplotypes from the Western Pacific is found in India and vice versa. Analysis of genetic diversity based on microsatellite analysis revealed that the genetic diversity in the Western Pacific is higher than in the Eastern Indian Ocean. The unrooted neighbor-joining tree among 14 populations from the Western Pacific and the Eastern Indian Ocean showed six groups. The Mantel test results revealed a significant correlation between genetic and geographic distances among populations. Results from band-based and allele frequency-based approaches from Amplified Fragment Length Polymorphism showed that all

  2. On the impact of the resolution on the surface and subsurface Eastern Tropical Atlantic warm bias

    Science.gov (United States)

    Martín-Rey, Marta; Lazar, Alban

    2016-04-01

    The tropical variability has a great importance for the climate of adjacent areas. Its sea surface temperature anomalies (SSTA) affect in particular the Brazilian Nordeste and the Sahelian region, as well as the tropical Pacific or the Euro-Atlantic sector. Nevertheless, the state-of the art climate models exhibits very large systematic errors in reproducing the seasonal cycle and inter-annual variability in the equatorial and coastal Africa upwelling zones (up to several °C for SST). Theses biases exist already, in smaller proportions though, in forced ocean models (several 1/10th of °C), and affect not only the mixed layer but also the whole thermocline. Here, we present an analysis of the impact of horizontal and vertical resolution changes on these biases. Three different DRAKKAR NEMO OGCM simulations have been analysed, associated to the same forcing set (DFS4.4) with different grid resolutions: "REF" for reference (1/4°, 46 vertical levels), "HH" with a finer horizontal grid (1/12°, 46 v.l.) and "HV" with a finer vertical grid (1/4°, 75 v.l.). At the surface, a more realistic seasonal SST cycle is produced in HH in the three upwellings, where the warm bias decreases (by 10% - 20%) during boreal spring and summer. A notable result is that increasing vertical resolution in HV causes a shift (in advance) of the upwelling SST seasonal cycles. In order to better understand these results, we estimate the three upwelling subsurface temperature errors, using various in-situ datasets, and provide thus a three-dimensional view of the biases.

  3. Revisiting the La Nina 1998 phytoplankton blooms in the equatorial Pacific

    OpenAIRE

    Gorgues, T.; Menkès, Christophe; Slemons, L.; Aumont, Olivier; Dandonneau, Yves; Radenac, Marie-Hélène; Alvain, S.; Moulin, C.

    2010-01-01

    A biogeochemical model of the tropical Pacific has been used to assess the impact of interannual variability in a western Pacific iron source on the iron-limited ecosystem of the central and eastern Pacific during the 1997-1998 El Nino A reference simulation and two simulations with an iron source in the western Pacific have been performed The two "source" simulations differed only in the temporal variability of the iron source. In the variable source simulation, the iron concentration in the...

  4. Indo-Pacific sea level variability during recent decades

    Science.gov (United States)

    Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.

    2016-12-01

    Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.

  5. AFSC/RACE/FBEP/Hurst: Distributional patterns of 0-group Pacific cod (Gadus macrocephalus) in the eastern Bering Sea under variable recruitment and thermal conditions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is from a study that analyzed the late summer distribution of juvenile Pacific cod in the eastern Bering Sea for 6 cohorts (2004-2009), based on catches...

  6. Airborne dust transport to the eastern Pacific Ocean off southern California: Evidence from San Clemente Island

    Science.gov (United States)

    Muhs, D.R.; Budahn, J.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.

    2007-01-01

    Islands are natural dust traps, and San Clemente Island, California, is a good example. Soils on marine terraces cut into Miocene andesite on this island are clay-rich Vertisols or Alfisols with vertic properties. These soils are overlain by silt-rich mantles, 5-20 cm thick, that contrast sharply with the underlying clay-rich subsoils. The silt mantles have a mineralogy that is distinct from the island bedrock. Silt mantles are rich in quartz, which is rare in the island andesite. The clay fraction of the silt mantles is dominated by mica, also absent from local andesite, and contrasts with the subsoils, dominated by smectite. Ternary plots of immobile trace elements (Sc-Th-La and Ta-Nd-Cr) show that the island andesite has a composition intermediate between average upper continental crust and average oceanic crust. In contrast, the silt and, to a lesser extent, clay fractions of the silt mantles have compositions closer to average upper continental crust. The silt mantles have particle size distributions similar to loess and Mojave Desert dust, but are coarser than long-range-transported Asian dust. We infer from these observations that the silt mantles are derived from airborne dust from the North American mainland, probably river valleys in the coastal mountains of southern California and/or the Mojave Desert. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. Examination of satellite imagery shows that easterly Santa Ana winds carry abundant dust to the eastern Pacific Ocean and the California Channel Islands. Airborne dust from mainland North America may be an important component of the offshore sediment budget in the easternmost Pacific Ocean, a finding of potential biogeochemical and climatic significance.

  7. Is the core top modern? Observations from the eastern equatorial Pacific

    Science.gov (United States)

    Mekik, Figen; Anderson, Robert

    2018-04-01

    A compilation of ages from 67 core tops in the eastern equatorial Pacific (EEP) does not display an easily discernible regional pattern. The ages range from 790 to over 15,000 years. The youngest core tops with the highest sediment focusing factors are located in the Panama Basin. There are weak but statistically significant inverse relationships between core top age and age-model based mass accumulation rates, bioturbation depth, linear sedimentation rate and sediment focusing factors. However, we found no statistically significant relationship between core top age and calcite dissolution in sediments or 230Th-normalized mass accumulation rates. We found evidence suggesting that greater amount of sediment focusing helps to preserve the carbonate fraction of the sediment where focusing is taking place. When focusing factors are plotted against percent calcite dissolved, we observe a strong inverse relationship, and core tops younger than 4500 years tend to occur where focusing factors are high and percent calcite dissolved values are low. Using labile organic carbon fluxes to estimate bioturbation depth in the sediments results in the observation that where bioturbation depth is shallow (<4 cm), the core top age has a strong, inverse relationship with sediment accumulation rate. We used the Globorotalia menardii Fragmentation Index (MFI) as an indicator of percent calcite dissolved in deep sea sediments. There is a distinct pattern to core top calcite dissolution in the EEP which delineates bands of high surface ocean productivity as well as the clear increase in dissolution downward on the flanks of the East Pacific Rise.

  8. Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean

    Science.gov (United States)

    Moutin, Thierry; Wagener, Thibaut; Caffin, Mathieu; Fumenia, Alain; Gimenez, Audrey; Baklouti, Melika; Bouruet-Aubertot, Pascale; Pujo-Pay, Mireille; Leblanc, Karine; Lefevre, Dominique; Helias Nunige, Sandra; Leblond, Nathalie; Grosso, Olivier; de Verneil, Alain

    2018-05-01

    Surface waters (0-200 m) of the western tropical South Pacific (WTSP) were sampled along a longitudinal 4000 km transect (OUTPACE cruise, DOI: 10.17600/15000900) during the austral summer (stratified) period (18 February to 3 April 2015) between the Melanesian Archipelago (MA) and the western part of the SP gyre (WGY). Two distinct areas were considered for the MA, the western MA (WMA), and the eastern MA (EMA). The main carbon (C), nitrogen (N), and phosphorus (P) pools and fluxes provide a basis for the characterization of the expected trend from oligotrophy to ultra-oligotrophy, and the building of first-order budgets at the daily and seasonal timescales (using climatology). Sea surface chlorophyll a well reflected the expected oligotrophic gradient with higher values obtained at WMA, lower values at WGY, and intermediate values at EMA. As expected, the euphotic zone depth, the deep chlorophyll maximum, and nitracline depth deepen from west to east. Nevertheless, phosphaclines and nitraclines did not match. The decoupling between phosphacline and nitracline depths in the MA allows for excess P to be locally provided in the upper water by winter mixing. We found a significant biological soft tissue carbon pump in the MA sustained almost exclusively by dinitrogen (N2) fixation and essentially controlled by phosphate availability in this iron-rich environment. The MA appears to be a net sink for atmospheric CO2, while the WGY is in quasi-steady state. We suggest that the necessary excess P, allowing the success of nitrogen fixers and subsequent carbon production and export, is mainly brought to the upper surface by local deep winter convection at an annual timescale rather than by surface circulation. While the origin of the decoupling between phosphacline and nitracline remains uncertain, the direct link between local P upper water enrichment, N2 fixation, and organic carbon production and export, offers a possible shorter timescale than previously thought between

  9. Complementary Use of Glider Data, Altimetry, and Model for Exploring Mesoscale Eddies in the Tropical Pacific Solomon Sea

    Science.gov (United States)

    Gourdeau, L.; Verron, J.; Chaigneau, A.; Cravatte, S.; Kessler, W.

    2017-11-01

    Mesoscale activity is an important component of the Solomon Sea circulation that interacts with the energetic low-latitude western boundary currents of the South Tropical Pacific Ocean carrying waters of subtropical origin before joining the equatorial Pacific. Mixing associated with mesoscale activity could explain water mass transformation observed in the Solomon Sea that likely impacts El Niño Southern Oscillation dynamics. This study makes synergetic use of glider data, altimetry, and high-resolution model for exploring mesoscale eddies, especially their vertical structures, and their role on the Solomon Sea circulation. The description of individual eddies observed by altimetry and gliders provides the first elements to characterize the 3-D structure of these tropical eddies, and confirms the usefulness of the model to access a more universal view of such eddies. Mesoscale eddies appear to have a vertical extension limited to the Surface Waters (SW) and the Upper Thermocline Water (UTW), i.e., the first 140-150 m depth. Most of the eddies are nonlinear, meaning that eddies can trap and transport water properties. But they weakly interact with the deep New Guinea Coastal Undercurrent that is a key piece of the equatorial circulation. Anticyclonic eddies are particularly efficient to advect salty and warm SW coming from the intrusion of equatorial Pacific waters at Solomon Strait, and to impact the characteristics of the New Guinea Coastal Current. Cyclonic eddies are particularly efficient to transport South Pacific Tropical Water (SPTW) anomalies from the North Vanuatu Jet and to erode by diapycnal mixing the high SPTW salinity.

  10. The Pleistocene Eastern Equatorial Pacific: Insights from a New Carnegie Platform Stratigraphic Record

    Science.gov (United States)

    Gwizd, S.; Lea, D. W.

    2016-12-01

    Renewed interest in a classic Eastern Equatorial Pacific paleoceanographic site at 3° 35.85' S, 83° 57.79' W, previous site of cores V19-29 and TR163-31, prompted a re-coring in 2009 using the recently developed CDH giant piston coring system on cruise KNR195-5. Giant piston core CDH-36 (3225 m depth, 42.61 m length) nearly triples the length of previous cores at this site. When spliced together with companion multicore MC-34A (0.36 m length), these two cores generate continuous stratigraphy throughout most of the middle Pleistocene, and include recognized stratigraphic tie points ash layer "L" (Ninkovich and Shackleton, 1975) and the extinction of pink G. ruber. A new age model utilizing Bayesian analysis of 17 N. dutertrei radiocarbon dates in MC-34A and the top 3.4 m of CDH-36, and alignment of a new CDH-36 δ18O record with the LR04 benthic stack (Lisiecki and Raymo, 2005), demonstrates that this new "Carnegie Platform" (CP) record extends from 0 to 720 ka (MIS 18), tripling the timescale of previous studies, with an average sedimentation rate of 7 cm/kyr. The CP C. wuellerstorfi δ18O and δ13C records reveal strong consistencies in timing and extent of glacial and interglacial episodes with previously studied regional records. Coarse fraction percentage (%CF) ([coarse fraction/bulk dry sample] * 100) is also evaluated throughout the CP core in order to qualitatively assess dissolution cycles. The CP %CF dataset primarily records Pleistocene dissolution cycles, yet exhibits variability representative of potential local bathymetric and hydrographic effects. The timing of %CF cyclicity is consistent with processes which affect basin-wide calcium carbonate dissolution cycles, including changes in terrestrial carbon input to the oceans and changes in water mass ventilation (Shackleton, 1977; Toggweiler et al., 2006; Sexton and Barker, 2012). Establishing the stratigraphy of the CP record provides the first step towards a more thorough and extended analysis of

  11. An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000

    KAUST Repository

    Hoteit, Ibrahim

    2010-03-02

    An eddy-permitting adjoint-based assimilation system has been implemented to estimate the state of the tropical Pacific Ocean. The system uses the Massachusetts Institute of Technology\\'s general circulation model and its adjoint. The adjoint method is used to adjust the model to observations by controlling the initial temperature and salinity; temperature, salinity, and horizontal velocities at the open boundaries; and surface fluxes of momentum, heat, and freshwater. The model is constrained with most of the available data sets in the tropical Pacific, including Tropical Atmosphere and Ocean, ARGO, expendable bathythermograph, and satellite SST and sea surface height data, and climatologies. Results of hindcast experiments in 2000 suggest that the iterated adjoint-based descent is able to significantly improve the model consistency with the multivariate data sets, providing a dynamically consistent realization of the tropical Pacific circulation that generally matches the observations to within specified errors. The estimated model state is evaluated both by comparisons with observations and by checking the controls, the momentum balances, and the representation of small-scale features that were not well sampled by the observations used in the assimilation. As part of these checks, the estimated controls are smoothed and applied in independent model runs to check that small changes in the controls do not greatly change the model hindcast. This is a simple ensemble-based uncertainty analysis. In addition, the original and smoothed controls are applied to a version of the model with doubled horizontal resolution resulting in a broadly similar “downscaled” hindcast, showing that the adjustments are not tuned to a single configuration (meaning resolution, topography, and parameter settings). The time-evolving model state and the adjusted controls should be useful for analysis or to supply the forcing, initial, and boundary conditions for runs of other models.

  12. Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya

    Directory of Open Access Journals (Sweden)

    Nathaniel A. Lyngwi

    2013-03-01

    Full Text Available The Northeastern part of India sprawls over an area of 262 379km² in the Eastern Himalayan range. This constitutes a biodiversity hotspot with high levels of biodiversity and endemism; unfortunately, is also a poorly known area, especially on its microbial diversity. In this study, we assessed cultivable soil bacterial diversity and distribution from lowlands to highlands (34 to 3 990m.a.s.l.. Soil physico-chemical parameters and forest types across the different altitudes were characterized and correlated with bacterial distribution and diversity. Microbes from the soil samples were grown in Nutrient, Muller Hinton and Luria-Bertani agar plates and were initially characterized using biochemical methods. Parameters like dehydrogenase and urease activities, temperature, moisture content, pH, carbon content, bulk density of the sampled soil were measured for each site. Representative isolates were also subjected to 16S rDNA sequence analysis. A total of 155 cultivable bacterial isolates were characterized which were analyzed for richness, evenness and diversity indices. The tropical and sub-tropical forests supported higher bacterial diversity compared to temperate pine, temperate conifer, and sub-alpine rhododendron forests. The 16S rRNA phylogenetic analysis revealed that Firmicutes was the most common group followed by Proteobacteria and Bacteroidetes. Species belonging to the genera Bacillus and Pseudomonas were the most abundant. Bacterial CFU showed positive but insignificant correlation with soil parameters like pH (r=0.208, soil temperature (r=0.303, ambient temperature (r=0.443, soil carbon content (r=0.525, soil bulk density (r=0.268, soil urease (r=0.549 and soil dehydrogenase (r=0.492. Altitude (r=0.561 and soil moisture content (r=-0.051 showed negative correlation. Altitudinal gradient along with the vegetation and soil physico-chemical parameters were found to influence bacterial diversity and distribution. This study points out

  13. Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias

    Science.gov (United States)

    Kajtar, Jules B.; Santoso, Agus; McGregor, Shayne; England, Matthew H.; Baillie, Zak

    2018-02-01

    The strengthening of the Pacific trade winds in recent decades has been unmatched in the observational record stretching back to the early twentieth century. This wind strengthening has been connected with numerous climate-related phenomena, including accelerated sea-level rise in the western Pacific, alterations to Indo-Pacific ocean currents, increased ocean heat uptake, and a slow-down in the rate of global-mean surface warming. Here we show that models in the Coupled Model Intercomparison Project phase 5 underestimate the observed range of decadal trends in the Pacific trade winds, despite capturing the range in decadal sea surface temperature (SST) variability. Analysis of observational data suggests that tropical Atlantic SST contributes considerably to the Pacific trade wind trends, whereas the Atlantic feedback in coupled models is muted. Atmosphere-only simulations forced by observed SST are capable of recovering the time-variation and the magnitude of the trade wind trends. Hence, we explore whether it is the biases in the mean or in the anomalous SST patterns that are responsible for the under-representation in fully coupled models. Over interannual time-scales, we find that model biases in the patterns of Atlantic SST anomalies are the strongest source of error in the precipitation and atmospheric circulation response. In contrast, on decadal time-scales, the magnitude of the model biases in Atlantic mean SST are directly linked with the trade wind variability response.

  14. Delta Oxygen-18 and SEA SURFACE TEMPERATURE collected from KNORR in Equatorial Pacific Ocean from 0862-01-01 to 2009-01-01 (NCEI Accession 0142201)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tropical Pacific Ocean dynamics during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA) are poorly characterized due to lack of evidence from the eastern...

  15. Three Dinophyceae from Clipperton Island lagoon (eastern Pacific Ocean), including a description of Peridiniopsis cristata var. tubulifera var. nov.

    OpenAIRE

    Coute, Alain; Perrette, Catherine; Chomerat, Nicolas

    2012-01-01

    Clipperton Island is a small French coral atoll in the eastern Pacific Ocean, which has been rarely investigated because of its remote location and difficult access. There is little scientific information on this ecosystem and only a few microalgae have been reported from the lagoon. To date, only one dinoflagellate taxon, Peridiniopsis cristata, is known to inhabit the lagoon. During an expedition in 2005 to study the lagoon and the surrounding oceanic waters of Clipperton Island, a further ...

  16. Lowermost mantle anisotropy near the eastern edge of the Pacific LLSVP: constraints from SKS-SKKS splitting intensity measurements

    Science.gov (United States)

    Deng, Jie; Long, Maureen D.; Creasy, Neala; Wagner, Lara; Beck, Susan; Zandt, George; Tavera, Hernando; Minaya, Estela

    2017-08-01

    Seismic anisotropy has been documented in many portions of the lowermost mantle, with particularly strong anisotropy thought to be present along the edges of large low shear velocity provinces (LLSVPs). The region surrounding the Pacific LLSVP, however, has not yet been studied extensively in terms of its anisotropic structure. In this study, we use seismic data from southern Peru, northern Bolivia and Easter Island to probe lowermost mantle anisotropy beneath the eastern Pacific Ocean, mostly relying on data from the Peru Lithosphere and Slab Experiment and Central Andean Uplift and Geodynamics of High Topography experiments. Differential shear wave splitting measurements from phases that have similar ray paths in the upper mantle but different ray paths in the lowermost mantle, such as SKS and SKKS, are used to constrain anisotropy in D″. We measured splitting for 215 same station-event SKS-SKKS pairs that sample the eastern Pacific LLSVP at the base of the mantle. We used measurements of splitting intensity(SI), a measure of the amount of energy on the transverse component, to objectively and quantitatively analyse any discrepancies between SKS and SKKS phases. While the overall splitting signal is dominated by the upper-mantle anisotropy, a minority of SKS-SKKS pairs (∼10 per cent) exhibit strongly discrepant splitting between the phases (i.e. the waveforms require a difference in SI of at least 0.4), indicating a likely contribution from lowermost mantle anisotropy. In order to enhance lower mantle signals, we also stacked waveforms within individual subregions and applied a waveform differencing technique to isolate the signal from the lowermost mantle. Our stacking procedure yields evidence for substantial splitting due to lowermost mantle anisotropy only for a specific region that likely straddles the edge of Pacific LLSVP. Our observations are consistent with the localization of deformation and anisotropy near the eastern boundary of the Pacific LLSVP

  17. How Ocean Color Influences the Interplay Between Annual and Interannual Tropical Pacific Variability

    Science.gov (United States)

    Hammann, A. C.; Gnanadesikan, A.

    2010-12-01

    While the basic mechanisms responsible for ENSO have long been known, many details still evade our understanding. Since the behavior of the real climate system appears to be highly sensitive to such details, however, our ability to model, let alone predict it with any confidence has so far been rather restricted. Not only can small perturbations in many state variables lead to strongly amplified responses, but also do spatial and temporal scales of variability rarely occur in isolation from each other. Both points are born out in the study by Anderson et al. (2009), who removed surface chlorophyll in different regions of the tropical (but mostly off-equatorial) Pacific in a coupled ocean-atmosphere-land-ice model. Different removal patterns lead to large differences in the amplitudes of both ENSO and the equatorial annual cycle. Anderson et al.’s analysis focuses on ENSO and reveals that the transmission of off-equatorial perturbations to the equator happens mainly through a changed atmospheric response to SST anomalies. Here, we analyze the same data with respect to the annual cycle and how it interacts with ENSO. Guilyardi (2006) reports that observations and models alike show a zero-sum-type behavior of annual and ENSO-scale variability; increased spectral power in the annual band means decreased power in the ENSO band and vice versa. This is not the case for the different patterns of chlorophyll removal in our model, and hence it appears that this removal changes a fundamental part of its mean state. The dynamics of the annual cycle are likely influenced by oceanic meridional temperature advection, which provides another possible route for off-to-equatorial signal propagation. A common aspect of the tropical annual cycle in most coupled climate models is the presence of a double ITCZ instead of a single north-shifted one. Even though this appears to be unrelated to (albeit influenced by) the changes in ocean color, our model exhibits a much improved

  18. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000)

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K. A.; Negrón-Juárez, R. I.

    2013-12-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr-1, an amount equivalent to 17%-36% of the US forest carbon sink.

  19. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851–2000)

    International Nuclear Information System (INIS)

    Fisk, J P; Hurtt, G C; Dolan, K A; Chambers, J Q; Zeng, H; Negrón-Juárez, R I

    2013-01-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851–2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr −1 , an amount equivalent to 17%–36% of the US forest carbon sink. (letter)

  20. A revision of the genus Muricea Lamouroux, 1821 (Anthozoa, Octocorallia) in the eastern Pacific. Part II.

    Science.gov (United States)

    Breedy, Odalisca; Guzman, Hector M

    2016-01-01

    The species of the genus Muricea were mainly described from 1846 to 1870. After that very few contributions were published. Although the highest richness of Muricea species is in the eastern Pacific shallow waters, a comprehensive systematic study of the genus does not exist. Recently we started a taxonomic review of the genus in order to validate the status of four species previously included in the genus Eumuricea. Herein we present the second part of the Muricea revision dealing with the species-group characterised by shelf-like calyces instead of tubular-like calyces (the Muricea squarrosa-group). Original type material was morphologically analysed and illustrated using optical and scanning electron microscopy. Comparative character tables are provided for the genus. The taxonomic status of the species was analysed and established by designating lectotypes, alternatively by recognising a holotype by monotypy. We conclude that the genus Muricea comprises 20 valid species, including the previous four in the Muricea squarrosa-group. We propose 10 lectotypes, a new combination and three more species groups for the genus based on morphology: the Muricea fruticosa-group, Muricea plantaginea-group and Muricea austera-group.

  1. Plastic ingestion in marine-associated bird species from the eastern North Pacific.

    Science.gov (United States)

    Avery-Gomm, S; Provencher, J F; Morgan, K H; Bertram, D F

    2013-07-15

    In addition to monitoring trends in plastic pollution, multi-species surveys are needed to fully understand the pervasiveness of plastic ingestion. We examined the stomach contents of 20 bird species collected from the coastal waters of the eastern North Pacific, a region known to have high levels of plastic pollution. We observed no evidence of plastic ingestion in Rhinoceros Auklet, Marbled Murrelet, Ancient Murrelet or Pigeon Guillemot, and low levels in Common Murre (2.7% incidence rate). Small sample sizes limit our ability to draw conclusions about population level trends for the remaining fifteen species, though evidence of plastic ingestion was found in Glaucous-Winged Gull and Sooty Shearwater. Documenting levels of plastic ingestion in a wide array of species is necessary to gain a comprehensive understanding about the impacts of plastic pollution. We propose that those working with bird carcasses follow standard protocols to assess the levels of plastic ingestion whenever possible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Northerly surface winds over the eastern North Pacific Ocean in spring and summer

    Science.gov (United States)

    Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.

    2008-01-01

    Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.

  3. Simulation of tropical cyclone activity over the western North Pacific based on CMIP5 models

    Science.gov (United States)

    Shen, Haibo; Zhou, Weican; Zhao, Haikun

    2017-09-01

    Based on the Coupled Model Inter-comparison Project 5 (CMIP5) models, the tropical cyclone (TC) activity in the summers of 1965-2005 over the western North Pacific (WNP) is simulated by a TC dynamically downscaling system. In consideration of diversity among climate models, Bayesian model averaging (BMA) and equal-weighed model averaging (EMA) methods are applied to produce the ensemble large-scale environmental factors of the CMIP5 model outputs. The environmental factors generated by BMA and EMA methods are compared, as well as the corresponding TC simulations by the downscaling system. Results indicate that BMA method shows a significant advantage over the EMA. In addition, impacts of model selections on BMA method are examined. To each factor, ten models with better performance are selected from 30 CMIP5 models and then conduct BMA, respectively. As a consequence, the ensemble environmental factors and simulated TC activity are similar with the results from the 30 models' BMA, which verifies the BMA method can afford corresponding weight for each model in the ensemble based on the model's predictive skill. Thereby, the existence of poor performance models will not particularly affect the BMA effectiveness and the ensemble outcomes are improved. Finally, based upon the BMA method and downscaling system, we analyze the sensitivity of TC activity to three important environmental factors, i.e., sea surface temperature (SST), large-scale steering flow, and vertical wind shear. Among three factors, SST and large-scale steering flow greatly affect TC tracks, while average intensity distribution is sensitive to all three environmental factors. Moreover, SST and vertical wind shear jointly play a critical role in the inter-annual variability of TC lifetime maximum intensity and frequency of intense TCs.

  4. Impacts of the Pacific Meridional Mode on Landfalling North Atlantic tropical cyclones

    Science.gov (United States)

    Zhang, Wei; Villarini, Gabriele; Vecchi, Gabriel A.; Murakami, Hiroyuki

    2018-02-01

    This study examines the impacts of the Pacific Meridional Mode (PMM) on North Atlantic tropical cyclones (TCs) making landfall along the coastal US, Caribbean Islands and Mexico, and provides insights on the underlying physical mechanisms using observations and model simulations. There is a statistically significant time-lagged association between spring PMM and the August-October US and Caribbean landfalling TCs. Specifically, the positive (negative) spring PMM events tend to be followed by fewer (more) TCs affecting the coastal US (especially over the Gulf of Mexico and Florida) and the Caribbean Islands. This lagged association is mainly caused by the lagged impacts of PMM on the El Niño Southern Oscillation (ENSO), and the subsequent impacts of ENSO on TC frequency and landfalls. Positive (negative) PMM events are largely followed by El Niño (La Niña) events, which lead to less (more) TC geneses close to the US coast (i.e., the Gulf of Mexico and the Caribbean Sea); this also leads to easterly (westerly) steering flow in the vicinity of the US and Caribbean coast, which is unfavorable (favorable) to TC landfall across the Gulf of Mexico, Florida and Caribbean Islands. Perturbation simulations with the state-of-the-art Geophysical Fluid Dynamics Laboratory Forecast-oriented Low Ocean Resolution Version of CM2.5 (FLOR) support the linkage between PMM and TC landfall activity. The time-lagged impacts of spring PMM on TC landfalling activity results in a new predictor to forecast seasonal TC landfall activity along the US (especially over the Gulf of Mexico and Florida) and Caribbean coastal regions.

  5. Cantharellus violaceovinosus, a new species from tropical Quercus forests in eastern Mexico

    Science.gov (United States)

    Herrera, Mariana; Bandala, Victor M.; Montoya, Leticia

    2018-01-01

    Abstract During explorations of tropical oak forests in central Veracruz (eastern Mexico), the authors discovered a Cantharellus species that produces basidiomes with strikingly violet pileus and a hymenium with yellow, raised gill-like folds. It is harvested locally and valued as a prized edible wild mushroom. Systematic multiyear sampling of basidiomes allowed the recording of the morphological variation exhibited by fresh fruit bodies in different growth stages, which supports the recognition of this Cantharellus species from others in the genus. Two molecular phylogenetic analyses based on a set of sequences of species of all major clades in Cantharellus, one including sequences of the transcription elongation factor 1-alpha (tef-1α) and a combined tef-1α and nLSU region (the large subunit of the ribosome), confirm the isolated position of the new species in a clade close to C. lewisii from USA, in the subgenus Cantharellus. Detailed macroscopic and microscopic descriptions, accompanied by illustrations and a taxonomic discussion are presented. PMID:29681739

  6. Tree diversity in the tropical dry forest of Bannerghatta National Park in Eastern Ghats, Southern India

    Directory of Open Access Journals (Sweden)

    Gopalakrishna S. Puttakame

    2015-12-01

    Full Text Available Tree species inventories, particularly of poorly known dry deciduous forests, are needed to protect and restore forests in degraded landscapes. A study of forest stand structure, and species diversity and density of trees with girth at breast height (GBH ≥10 cm was conducted in four management zones of Bannerghatta National Park (BNP in the Eastern Ghats of Southern India. We identified 128 tree species belonging to 45 families in 7.9 hectares. However, 44 species were represented by ≤ 2 individuals. Mean diversity values per site for the dry forest of BNP were: tree composition (23.8 ±7.6, plant density (100.69 ± 40.02, species diversity (2.56 ± 0.44 and species richness (10.48 ± 4.05. Tree diversity was not significantly different (P>0.05 across the four management zones in the park. However, the number of tree species identified significantly (P<0.05 increased with increasing number of sampling sites, but majority of the species were captured. Similarly, there were significant variations (p<0.05 between tree diameter class distributions. Juveniles accounted for 87% of the tree population. The structure of the forest was not homogeneous, with sections ranging from poorly structured to highly stratified configurations. The study suggests that there was moderate tree diversity in the tropical dry thorn forest of Bannerghatta National Park, but the forest was relatively young.

  7. Multiformity of the tropical cyclone wind–pressure relationship in the western North Pacific: discrepancies among four best-track archives

    International Nuclear Information System (INIS)

    Kueh, Mien-Tze

    2012-01-01

    The reliability of tropical cyclone intensity estimates for the western North Pacific is assessed in the context of wind–pressure relationships. Four best-track datasets compiled in the International Best Track Archive for Climate Stewardship (IBTrACS) are compared to assess the data consistency. Over the past 20 yr period (1991–2010), apparent interagency discrepancies in the archived tropical cyclone intensities are found. Heavy reliance upon operational wind–pressure relationships may reduce subjective biases at the cost of potential loss of tropical cyclone natural variability. Given that the intercomparisons are performed based upon a set of identical tropical cyclones, the differences in operational wind–pressure relationships and in the mapping of satellite tropical cyclone intensity classification for these relationships are presumably critical causes of the interagency discrepancies. This result calls for imperative refinement of current satellite-based tropical cyclone intensity estimates and reanalysis of historical tropical cyclone best-track archives for the basin. (letter)

  8. Crustaceans from a tropical estuarine sand-mud flat, Pacific, Costa Rica, (1984-1988 revisited

    Directory of Open Access Journals (Sweden)

    José A. Vargas-Zamora

    2012-12-01

    Full Text Available The availability of data sets for time periods of more than a year is scarce for tropical environments. Advances in hardware and software speed-up the re-analysis of old data sets and facilitates the description of population oscillations. Using recent taxonomic literature and software we have updated and re-analized the information on crustacean diversity and population fluctuations from a set of cores collected at a mud-sand flat in the mid upper Gulf of Nicoya estuary, Pacific coast of Costa Rica (1984-1988. A total of 112 morphological species of macroinvertebrates was found, of which 29 were crustaceans. Taxonomic problems, maily with the peracarids, prevented the identification of a group of species. The abundance patterns of the crab Pinnixa valerii, the ostracod Cyprideis pacifica, and the cumacean Coricuma nicoyensis were analized with the Generalized Additive Models of the free software R. The models evidenced a variety of population oscillations during the sampling period. These oscillations probably included perturbations induced by external factors, like the strong red tide events of 1985. In additon, early on 1984 the populations might have been at an altered state due to the inpact of El Niño 1982-83. Thus, the oscillations observed during the study period departed from the expected seasonality (dry vs rainy pattern and are thus considered atypical for this tropical estuarine tidal-flat. Crustacean diversity and population peaks were within the range of examples found in worldwide literature. However, abundances of the cumacean C. nicoyensis, an endemic species, are the highest reported for a tropical estuary. Comparative data from tropical tidal flat crustaceans continues to be scarce. Crustaceans (total vs groups had population changes in response to the deployment of predator exclusion cages during the dry and rainy seasons of 1985. Temporal and spatial patchiness characterized the abundances of P. valeri, C. pacifica and C

  9. Main Introduction Way of Indo-Pacific and Red Sea Originated Benthic Foraminifers to the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    Engin MERİÇ

    2015-12-01

    Full Text Available Majority of the alien foraminifers recorded in the eastern Mediterranean are Indo-Pacific originated and entered the Mediterranean via Suez Canal. In this study, current literature on the alien benthic foraminiferal fauna of the eastern Mediterranean was reviewed and the main dispersal pathways are determined. Distribution patterns of the alien species suggests that most of the species are introduced via Suez Canal and expand their range of distributions in a counter-clockwise manner by the general surface currents of the eastern Mediterranean. However, not all, but some of the species have also been dispersed westwards along the North African coast and reached central Mediterranean. Locally abundant records of Euthymonacha polita (Chapman, Coscinospira acicularis (Batsch and Amphistegina lobifera in the Aegean Sea indicates that Suez Canal may not be the only vector for the Indo-Pacific species to enter eastern Mediterranean and submarine springs help these thermophilic species to form establish populations in cool waters of the northern Aegean and the Sea of Marmara

  10. Gibbons (Nomascus gabriellae) provide key seed dispersal for the Pacific walnut (Dracontomelon dao), in Asia's lowland tropical forest

    Science.gov (United States)

    Hai, Bach Thanh; Chen, Jin; McConkey, Kim R.; Dayananda, Salindra K.

    2018-04-01

    Understanding the mutualisms between frugivores and plants is essential for developing successful forest management and conservation strategies, especially in tropical rainforests where the majority of plants are dispersed by animals. Gibbons are among the most effective seed dispersers in South East Asia's tropical forests, but are also one of the highly threatened arboreal mammals in the region. Here we studied the seed dispersal of the Pacific walnut (Dracontomelon dao), a canopy tree which produces fruit that are common in the diet of the endangered southern yellow-cheeked crested gibbon (Nomascus gabriellae). We found that gibbons were the most effective disperser for this species; they consumed approximately 45% of the fruit crop, which was four times more than that consumed by macaques - the only other legitimate disperser. Gibbons tracked the temporal (but not spatial) abundance of ripe fruits, indicating this fruit was a preferred species for the gibbon. Both gibbons and macaques dispersed the majority (>90%) of the seeds at least 20 m away from parent crowns, with mean dispersal distances by gibbons measuring 179.3 ± 98.0 m (range: 4-425 m). Seeds defecated by gibbons germinated quicker and at greater rates than seeds spat by macaques, or in undispersed fruits. Gibbon-dispersed seeds were also more likely to be removed by unknown seed predators or unknown secondary dispersers. Overall, gibbons play a key role in the regeneration of the Pacific walnut. Our findings have significant implications both for the management of the Pacific walnut tree dominating tropical rainforest as well as the reintroduction program of the Southern yellow-cheeked crested gibbon.

  11. A new Indo-Pacific Zebina species (Mollusca: Gastropoda: Rissoidae)

    OpenAIRE

    Sleurs, W.J.; Van Goethem, J.L.

    2002-01-01

    A new, widespread, but uncommon Indo-Pacific rissoinine species, Zebina ( ? Zebina) malagazzae sp. nov. is described. It is compared with its morphologically closest relative, the tropical Eastern Pacific species Zebina axeliana (STRONG & HERTLEIN, 1951 ), with the holotype of Zebina constricta LASERON, 1956 from Christmas Island and with Zebina ( ?Zebina) japonica (WEINKAUFF, 1881).

  12. Contribution of landfalling tropical system rainfall to the hydroclimate of the eastern U.S. Corn Belt 1981–2012

    Directory of Open Access Journals (Sweden)

    Olivia Kellner

    2016-09-01

    Landfalling tropical system rainfall accounts for approximately 20% of the observed monthly rainfall during the tropical storm season (June–November across the eastern U.S. Corn Belt (1981–2012. Correlation between the annual number of landfalling tropical systems and annual yield by state results in no relationship, but correlation of August monthly observed rainfall by climate division to crop reporting district annual yields has a weak to moderate, statistically significant correlation in Ohio districts 30–60 and Indiana CRD 90. ANOVA analysis suggests that landfalling tropical rainfall may actually reduce yields in some state's climate divisions/crop reporting districts while increasing yield in others. Results suggest that there is a balance between landfalling tropical storms providing sufficient rainfall or too much rainfall to be of benefit to crops. Findings aim to provide information to producers, crop advisers, risk managers and commodity groups so that seasonal hurricane forecasts can potentially be utilized in planning for above or below normal precipitation during phenologically important portions of the growing season.

  13. RELATIONSHIPS BETWEEN SEA SURFACE TEMPERATURE, LARGE-SCALE ATMOSPHERIC CIRCULATION, AND CONVECTION OVER THE TROPICAL INDIAN AND PACIFIC OCEANS

    Directory of Open Access Journals (Sweden)

    Orbita Roswintiarti

    2008-07-01

    Full Text Available In this paper, the quantitative estimates of the effect of large-scale circulations on the sea surface temperature (SST-tropical convection relationship and the effect of SST on the large-scale circulation-convection relationship over the tropical Indian and Pacific Oceans are presented. Although convection tends to maximize at warm SSTs, increased deep convection is also determined by the divergence (DIV associated with large-scale circulation. An analysis of the relationship between SST and deep convection shows that under subsidence and clear conditions, there is a decrease in convection or increase in Outgoing Longwave Radiation (OLR at a maximum rate of 3.4 Wm-2 °C-1. In the SST range of 25°C to 29.5°C, a large increase in deep convection (decrease in OLR occurs in the tropical Indian and Pacific Oceans. The OLR reduction is found to be a strong function of the large-scale circulation in the Indian and western Pacific Oceans. Under a weak large-scale circulation, the rate of OLR reduction is about    -3.5 Wm-2 °C-1 to -8.1 Wm-2 °C-1. Under the influence of strong rising motions, the rate can increase to about -12.5 Wm-2 °C-1 for the same SST range. The overall relationship between large-scale circulation and deep convection is nearly linear. A maximum rate of OLR reduction with respect to DIV is -6.1 Wm-2 (10-6 s-1 in the western Pacific Ocean. It is also found that the DIV-OLR relationship is less dependent on SST. For example, the rate of OLR reduction over the western Pacific Ocean for 26°C < SST £ 27°C is -4.2 Wm-2 (10-6 s-1, while that for 28°C < SST £ 29°C is  -5.1 Wm-2 (10-6 s-1. These results are expected to have a great importance for climate feedback mechanisms associated with clouds and SST and for climate predictability.

  14. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    Science.gov (United States)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Crowe, Sean; Fowle, David; Haffner, Douglas; King, John; Marwoto, Ristiyanti; Melles, Martin; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Wattrus, Nigel

    2014-05-01

    Lake Towuti (2.5°S, 121°E) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 MYr) tectonic lakes in central Sulawesi, Indonesia. Lake Towuti's location in central Indonesia provides a unique opportunity to reconstruct long-term paleoclimate change in a crucially important yet understudied region- the Indo-Pacific warm pool (IPWP), heart of the El Niño-Southern Oscillation. The Malili Lakes have extraordinarily high rates of floral and faunal endemism, and the lakes are surrounded by one of the most diverse tropical forests on Earth. Drilling in Lake Towuti will identify the age and origin of the lake and the environmental and climatic context that shaped the evolution of this unique lacustrine and terrestrial ecosystem. The ultramafic (ophiolitic) rocks and lateritic soils surrounding Lake Towuti provide metal substrates that feed a diverse, exotic microbial community, analogous to the microbial ecosystems that operated in the Archean Oceans. Drill core will provide unique insight into long-term changes in this ecosystem, as well as microbial processes operating at depth in the sediment column. High-resolution seismic reflection data (CHIRP and airgun) combined with numerous long sediment piston cores collected from 2007-2013 demonstrate the enormous promise of Lake Towuti for an ICDP drilling campaign. Well-stratified sequences of up to 150 m thickness, uninterrupted by unconformities or erosional truncation, are present in multiple sub-basins within Towuti, providing ideal sites for long-term environmental, climatic, and limnological reconstructions. Multiproxy analyses of our piston cores document a continuous and detailed record of moisture balance variations in Lake Towuti during the past 60 kyr BP. In detail our datasets show that wet conditions and rainforest ecosystems in central Indonesia persisted during Marine Isotope Stage 3 (MIS3) and the Holocene, and were interrupted by severe

  15. The distribution of lead concentrations and isotope compositions in the eastern Tropical Atlantic Ocean

    Science.gov (United States)

    Bridgestock, Luke; Rehkämper, Mark; van de Flierdt, Tina; Paul, Maxence; Milne, Angela; Lohan, Maeve C.; Achterberg, Eric P.

    2018-03-01

    Anthropogenic emissions have dominated marine Pb sources during the past century. Here we present Pb concentrations and isotope compositions for ocean depth profiles collected in the eastern Tropical Atlantic Ocean (GEOTRACES section GA06), to trace the transfer of anthropogenic Pb into the ocean interior. Variations in Pb concentration and isotope composition were associated with changes in hydrography. Water masses ventilated in the southern hemisphere generally featured lower 206Pb/207Pb and 208Pb/207Pb ratios than those ventilated in the northern hemisphere, in accordance with Pb isotope data of historic anthropogenic Pb emissions. The distributions of Pb concentrations and isotope compositions in northern sourced waters were consistent with differences in their ventilation timescales. For example, a Pb concentration maximum at intermediate depth (600-900 m, 35 pmol kg-1) in waters sourced from the Irminger/Labrador Seas, is associated with Pb isotope compositions (206Pb/207Pb = 1.1818-1.1824, 208Pb/207Pb = 2.4472-2.4483) indicative of northern hemispheric emissions during the 1950s and 1960s close to peak leaded petrol usage, and a transit time of ∼50-60 years. In contrast, North Atlantic Deep Water (2000-4000 m water depth) featured lower Pb concentrations and isotope compositions (206Pb/207Pb = 1.1762-1.184, 208Pb/207Pb = 2.4482-2.4545) indicative of northern hemispheric emissions during the 1910s and 1930s and a transit time of ∼80-100 years. This supports the notion that transient anthropogenic Pb inputs are predominantly transferred into the ocean interior by water mass transport. However, the interpretation of Pb concentration and isotope composition distributions in terms of ventilation timescales and pathways is complicated by (1) the chemical reactivity of Pb in the ocean, and (2) mixing of waters ventilated during different time periods. The complex effects of water mass mixing on Pb distributions is particularly apparent in seawater in the

  16. Inter-decadal change of the lagged inter-annual relationship between local sea surface temperature and tropical cyclone activity over the western North Pacific

    Science.gov (United States)

    Zhao, Haikun; Wu, Liguang; Raga, G. B.

    2018-02-01

    This study documents the inter-decadal change of the lagged inter-annual relationship between the TC frequency (TCF) and the local sea surface temperature (SST) in the western North Pacific (WNP) during 1979-2014. An abrupt shift of the lagged relationship between them is observed to occur in 1998. Before the shift (1979-1997), a moderately positive correlation (0.35) between previous-year local SST and TCF is found, while a significantly negative correlation (- 0.71) is found since the shift (1998-2014). The inter-decadal change of the lagged relationship between TCF and local SST over the WNP is also accompanied by an inter-decadal change in the lagged inter-annual relationship between large-scale factors affecting TCs and local SST over the WNP. During 1998-2014, the previous-year local SST shows a significant negative correlation with the mid-level moisture and a significant positive correlation with the vertical wind shear over the main development region of WNP TC genesis. Almost opposite relationships are seen during 1979-1997, with a smaller magnitude of the correlation coefficients. These changes are consistent with the changes of the lagged inter-annual relationship between upper- and lower-level winds and local SST over the WNP. Analyses further suggests that the inter-decadal shift of the lagged inter-annual relationship between WNP TCF and local SST may be closely linked to the inter-decadal change of inter-annual SST transition over the tropical central-eastern Pacific associated with the climate regime shift in the late 1990s. Details on the underlying physical process need further investigation using observations and simulations.

  17. Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Jeff [Bureau of Meteorology, Brisbane (Australia); Power, Scott B. [Bureau of Meteorology, Centre for Australian Weather and Climate Research, GPO Box 1289, Melbourne (Australia)

    2011-08-15

    Recent studies have raised concerns that tropical cyclones (TCs), particularly severe TCs, have become more frequent in many places in response to global warming. Other studies discuss errors in TC data that can cause large inaccuracies in some of the observed trends. Additional studies conclude that TCs are likely to become more intense in the future in response to global warming, while regional modelling studies for the south-west Pacific near north-eastern Australia project an intensification of TCs and either a decrease or no change in TC numbers. Here we describe and use a new data base of severe land-falling TCs for eastern Australia derived from numerous historical sources, that has taken over a decade to develop. It provides one of the world's longest reliable records of tropical cyclone activity, and allows us to document changes over much longer periods than has been done previously for the Southern Hemisphere. Land-fall numbers are shown to vary a great deal on interannual, decadal and longer time-scales. The interannual variability is consistent with previous studies using much shorter data sets: land-fall numbers are well-simulated as a Poisson process and are modulated by the El Nino-Southern Oscillation (ENSO). Land-falls occurred almost twice as often in La Nina years as they did in El Nino years, and multiple land-falls only occurred during La Nina years. The statistical link between land-falls and pre-season values of the Southern Oscillation Index provides a modest predictive capability. Decadal variability in ENSO drives some of the decadal variability in land-fall numbers. The sign and magnitude of trends calculated over 30 years periods vary substantially, highlighting that caution needs to be taken in making inferences about trends based on e.g. satellite era data only. The linear trend in the number of severe TCs making land-fall over eastern Australia declined from about 0.45 TCs/year in the early 1870s to about 0.17 TCs/year in recent

  18. A new species of Indo-Pacific Modulidae (Mollusca: Caenogastropoda).

    Science.gov (United States)

    Lozouet, Pierre; Krygelmans, Anouchka

    2016-04-12

    Modulidae is a littoral cerithioid family exclusively encountered in tropical and subtropical regions. It contains 12 to 15 living species (some species are not clearly delimited). Only one species is known to occur in the vast Indo-Pacific region (Bouchet 2015) and two species in the eastern Atlantic. By comparison, the tropical American regions are relatively rich with at least eleven living species (two or three species in the eastern Pacific and nine or more in the western Atlantic), and an equivalent number or more of fossil species (Landau et al. 2014).

  19. Tropical Indo-Pacific hydroclimate response to North Atlantic forcing during the last deglaciation as recorded by a speleothem from Sumatra, Indonesia

    Science.gov (United States)

    Wurtzel, Jennifer B.; Abram, Nerilie J.; Lewis, Sophie C.; Bajo, Petra; Hellstrom, John C.; Troitzsch, Ulrike; Heslop, David

    2018-06-01

    Abrupt changes in Atlantic Meridional Overturning Circulation are known to have affected the strength of the Indian and Asian Monsoons during glacial and deglacial climate states. However, there is still much uncertainty around the hydroclimate response of the Indo-Pacific Warm Pool (IPWP) region to abrupt climate changes in the North Atlantic. Many studies suggest a mean southward shift in the intertropical convergence zone (ITCZ) in the IPWP region during phases of reduced Atlantic meridional overturning, however, existing proxies have seasonal biases and conflicting responses, making it difficult to determine the true extent of North Atlantic forcing in this climatically important region. Here we present a precisely-dated, high-resolution record of eastern Indian Ocean hydroclimate variability spanning the last 16 ky (thousand years) from δ18O measurements in an aragonite-calcite speleothem from central Sumatra. This represents the western-most speleothem record from the IPWP region. Precipitation arrives year-round at this site, with the majority sourced from the local tropical eastern Indian Ocean and two additional long-range seasonal sources associated with the boreal and austral summer monsoons. The Sumatran speleothem demonstrates a clear deglacial structure that includes 18O enrichment during the Younger Dryas and 18O depletion during the Bølling-Allerød, similar to the pattern seen in speleothems of the Asian and Indian monsoon realms. The speleothem δ18O changes at this site are best explained by changes in rainfall amount and changes in the contributions from different moisture pathways. Reduced rainfall in Sumatra during the Younger Dryas is most likely driven by reductions in moisture transport along the northern or southern monsoon transport pathways to Sumatra. Considered with other regional proxies, the record from Sumatra suggests the response of the IPWP to North Atlantic freshwater forcing is not solely driven by southward shifts of the

  20. Mesozooplankton respiration and community structure in a seamount region of the eastern South Pacific

    Science.gov (United States)

    Frederick, Leissing; Escribano, Ruben; Morales, Carmen E.; Hormazabal, Samuel; Medellín-Mora, Johanna

    2018-05-01

    Seamounts in the Juan Fernandez Ridge, as well as in other seamount regions in the eastern South Pacific and in the world oceans, remain poorly studied ecosystems in terms of structure and functioning. Here, community respiration by epipelagic mesozooplankton in three seamounts of the Juan Fernandez Ridge, including the O`Higgins Seamount close to the coastal upwelling zone and two oceanic seamounts near the Juan Fernandez Archipelago ( 33°S-78°W), was assessed. Oxygen consumption by mixed assemblages was estimated using continuous measurements of dissolved oxygen concentration under controlled temperature during onboard, short-term incubations (2-4 h). Mesozooplankton composition was analyzed with a ZooScan device and expressed in terms of community normalized size spectra, and taxa and size diversity (Shannon-Wiener index). Carbon-specific community respiration rates in the upper 100 m layer were in the range of 0.3-1.9 mg O2 m-2 d-1, indicating that up to 3.1% of the mesozooplankton biomass can be respired on a daily basis. The mesozooplankton community was dominated by small-size copepods but the proportions of small copepods, large copepods, and gelatinous zooplankton (mostly salps) changed between the seamounts, in association with modifications in taxa composition, size diversity, and the slope of the size spectrum. Community respiration was significantly correlated to these community descriptors, suggesting the composition of the pelagic community has a direct impact on the total amount of respired-C. Connectivity between the coastal upwelling zone and the Juan Fernandez Ridge region mediated by mesoscale activity, interacting with the seamounts, is suggested as a most important process in controlling zooplankton community structure and in turn community metabolism.

  1. The bladed Bangiales (Rhodophyta) of the South Eastern Pacific: Molecular species delimitation reveals extensive diversity.

    Science.gov (United States)

    Guillemin, Marie-Laure; Contreras-Porcia, Loretto; Ramírez, María Eliana; Macaya, Erasmo C; Contador, Cristian Bulboa; Woods, Helen; Wyatt, Christopher; Brodie, Juliet

    2016-01-01

    A molecular taxonomic study of the bladed Bangiales of the South Eastern Pacific (coast of Chile) was undertaken based on sequence data of the mitochondrial COI and chloroplast rbcL for 193 specimens collected from Arica (18°S) in the north to South Patagonia (53°S) in the south. The results revealed for the first time that four genera, Porphyra, Pyropia, Fuscifolium and Wildemania were present in the region. Species delimitation was determined based on a combination of a General Mixed Yule Coalescence model (GMYC) and Automatic Barcode Gap Discovery (ABGD) coupled with detection of monophyly in tree reconstruction. The overall incongruence between the species delimitation methods within each gene was 29%. The GMYC method led to over-splitting groups, whereas the ABGD method had a tendency to lump groups. Taking a conservative approach to the number of putative species, at least 18 were recognized and, with the exception of the recently described Pyropia orbicularis, all were new to the Chilean flora. Porphyra and Pyropia were the most diverse genera with eight 'species' each, whereas only a 'single' species each was found for Fuscifolium and Wildemania. There was also evidence of recently diverging groups: Wildemania sp. was distinct but very closely related to W. amplissima from the Northern Hemisphere and raises questions in relation to such disjunct distributions. Pyropia orbicularis was very closely related to two other species, making species delimitation very difficult but provides evidence of an incipient speciation. The difference between the 'species' discovered and those previously reported for the region is discussed in relation to the difficulty of distinguishing species based on morphological identification. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean

    Science.gov (United States)

    Cornejo D'Ottone, Marcela; Bravo, Luis; Ramos, Marcel; Pizarro, Oscar; Karstensen, Johannes; Gallegos, Mauricio; Correa-Ramirez, Marco; Silva, Nelson; Farias, Laura; Karp-Boss, Lee

    2016-05-01

    Mesoscale eddies are important, frequent, and persistent features of the circulation in the eastern South Pacific (ESP) Ocean, transporting physical, chemical and biological properties from the productive shelves to the open ocean. Some of these eddies exhibit subsurface hypoxic or suboxic conditions and may serve as important hotspots for nitrogen loss, but little is known about oxygen consumption rates and nitrogen transformation processes associated with these eddies. In the austral fall of 2011, during the Tara Oceans expedition, an intrathermocline, anticyclonic, mesoscale eddy with a suboxic ( 0.5 µM), suggesting that active denitrification occurred in this water mass. Using satellite altimetry, we were able to track the eddy back to its region of formation on the coast of central Chile (36.1° S, 74.6° W). Field studies conducted in Chilean shelf waters close to the time of eddy formation provided estimates of initial O2 and N2O concentrations of the ESSW source water in the eddy. By the time of its offshore sighting, concentrations of both O2 and N2O in the subsurface oxygen minimum zone (OMZ) of the eddy were lower than concentrations in surrounding water and "source water" on the shelf, indicating that these chemical species were consumed as the eddy moved offshore. Estimates of apparent oxygen utilization rates at the OMZ of the eddy ranged from 0.29 to 44 nmol L-1 d-1 and the rate of N2O consumption was 3.92 nmol L-1 d-1. These results show that mesoscale eddies affect open-ocean biogeochemistry in the ESP not only by transporting physical and chemical properties from the coast to the ocean interior but also during advection, local biological consumption of oxygen within an eddy further generates conditions favorable to denitrification and loss of fixed nitrogen from the system.

  3. Biogeochemistry of Recently Discovered Oxygen-Depleted Mesoscale Eddies in the Open Eastern Tropical North Atlantic

    Science.gov (United States)

    Fiedler, B.; Grundle, D.; Löscher, C. R.; Schütte, F.; Hauss, H.; Karstensen, J.; Silva, P.; Koertzinger, A.

    2016-02-01

    Severely oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered only recently. So far, few remote surveys conducted with autonomous platforms such as moorings, underwater gliders and profiling floats have provided a very first insight into these mesoscale eddies. Due to their hydrographic properties such water bodies are well isolated from ambient waters and therefore can develop severe near-surface oxygen deficits. In this presentation we show results from the first-ever biogeochemical survey of one of these anticyclonic mode-water eddies conducted in spring 2014 at the Cape Verde Ocean Observatory (CVOO) off West Africa. Very low oxygen concentrations of 4.5 µmol kg-1 associated with a CO2 partial pressure of 1164 µatm were found close to the core of the eddy (at 100 m depth). Measurements for nitrate and phosphate also show exceptional high values. Findings point to rapid oxygen consumption through remineralization of organic matter along with depressed lateral mixing of this water body. Indeed, rates for oxygen utilization (OUR) were found to be enhanced when compared to known values in the Atlantic. A closer look into the carbonate system inside the eddýs core revealed disadvantageous conditions for calcifying organisms with the pH dropping down to 7.6 and the Aragonite saturation level reaching 1 at the lower boundary of the euphotic zone. Finally, strong indications for a shift in nitrogen cycling in the core of the eddy from nitrification towards denitrification were found based on gene abundance and N2O-isotope analyses. To our knowledge such severe hypoxic and even suboxic near-surface conditions along with active denitrification have never been reported before in the open Atlantic Ocean.

  4. Pattern Classification of Tropical Cyclone Tracks over the Western North Pacific using a Fuzzy Clustering Method

    Science.gov (United States)

    Kim, H.; Ho, C.; Kim, J.

    2008-12-01

    This study presents the pattern classification of tropical cyclone (TC) tracks over the western North Pacific (WNP) basin during the typhoon season (June through October) for 1965-2006 (total 42 years) using a fuzzy clustering method. After the fuzzy c-mean clustering algorithm to the TC trajectory interpolated into 20 segments of equivalent length, we divided the whole tracks into 7 patterns. The optimal number of the fuzzy cluster is determined by several validity measures. The classified TC track patterns represent quite different features in the recurving latitudes, genesis locations, and geographical pathways: TCs mainly forming in east-northern part of the WNP and striking Korean and Japan (C1); mainly forming in west-southern part of the WNP, traveling long pathway, and partly striking Japan (C2); mainly striking Taiwan and East China (C3); traveling near the east coast of Japan (C4); traveling the distant ocean east of Japan (C5); moving toward South China and Vietnam straightly (C6); and forming in the South China Sea (C7). Atmospheric environments related to each cluster show physically consistent with each TC track patterns. The straight track pattern is closely linked to a developed anticyclonic circulation to the north of the TC. It implies that this ridge acts as a steering flow forcing TCs to move to the northwest with a more west-oriented track. By contrast, recurving patterns occur commonly under the influence of the strong anomalous westerlies over the TC pathway but there definitely exist characteristic anomalous circulations over the mid- latitudes by pattern. Some clusters are closely related to the well-known large-scale phenomena. The C1 and C2 are highly related to the ENSO phase: The TCs in the C1 (C2) is more active during La Niña (El Niño). The TC activity in the C3 is associated with the WNP summer monsoon. The TCs in the C4 is more (less) vigorous during the easterly (westerly) phase of the stratospheric quasi-biennial oscillation

  5. Enhancement of seasonal prediction of East Asian summer rainfall related to the western tropical Pacific convection

    Science.gov (United States)

    Lee, D. Y.; Ahn, J. B.; Yoo, J. H.

    2014-12-01

    The prediction skills of climate model simulations in the western tropical Pacific (WTP) and East Asian region are assessed using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers (June-August) during the period 1983-2005, along with corresponding observed and reanalyzed data. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation (ENSO) developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index (EASMI) or each MP index (MPI). Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by statistical-empirical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using the statistical-empirical method compared to the dynamical models

  6. Impacts of Potential Aircraft Observations on Forecasts of Tropical Cyclones Over the Western North Pacific

    Science.gov (United States)

    2014-12-01

    tropical storm , red is a typhoon, and magenta is an extratropical cyclone. The numbers in each circle define the day in September 2008. (From...green is a tropical depression, yellow is a tropical storm , red is a typhoon, and magenta is an extratropical cyclone. The numbers in each circle define...depended on the location of the observation with respect to the storm and the altitude from which the observation provided a profile of winds

  7. Potential Vorticity Streamers as Precursors to Tropical Cyclone Genesis in the Western Pacific

    Science.gov (United States)

    2012-03-01

    study a developing system with an extratropical precursor (TCS-037) developing into Tropical Storm 16W (TS 16W)” (Schönenberger 2010). This subsection...tropopause maps), the TC genesis event is termed a tropical transition (TT) case. If no such extratropical feature 38 is present, the storm in... extratropical origin is deemed to play an important role in the dynamical evolution leading to tropical cyclogenesis. In contrast, non-TT storms

  8. Water temperature, salinity, and other data from CTD taken from the RV Sikuliaq in the Pacific Ocean between San Diego, California and Manzanillo, Mexico from 2016-12-21 to 2017-01-13 (NCEI Accession 0164968)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report contains data from R/V Sikuliaq cruise SKQ201617S to the eastern tropical north pacific oxygen deficient zone. The objective of the cruise was to study...

  9. Impact of the intraseasonal variability of large-scale circulation over the Western North Pacific on the characteristics of tropical cyclone track

    OpenAIRE

    Chen, T. C.; Wang, Shih-Yu (Simon); Yen, M. C.; Clark, A. J.

    2009-01-01

    The life cycle of the Southeast Asian–western North Pacific monsoon circulation is established by the northward migrations of the monsoon trough and the western Pacific subtropical anticyclone, and is reflected by the intraseasonal variations of mo nsoon westerlies and trad e easterlies in the form of an east–west seesaw oscillation. In this paper, an effort is made to disclose the influence of this monsoon circulation on tropical cyclone tracks during its different ph ases using composite ch...

  10. Decadal scale droughts over northwestern Thailand over the past 448 years: links to the tropical Pacific and Indian Ocean sectors

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Brendan M. [Lamont-Doherty Earth Observatory, Tree-Ring Laboratory, Palisades, NY (United States); Palakit, Kritsadapan; Duangsathaporn, Khwanchai [Kasetsart University Faculty of Forestry, Laboratory of Tropical Dendrochronology, Bangkok (Thailand); Sanguantham, Prasong; Prasomsin, Patsi [Kasetsart University Faculty of Forestry, Department of Forest Management, Bangkok (Thailand)

    2007-07-15

    A 448-year teak chronology from northwestern Thailand is used to assess past changes in the strength of the summer monsoon. The chronology is based on 30 living trees that extend from 1604 to 2005, and a 47-stump chronology that spans from 1558 to 1903. We used methods of cross dating and chronology building that address problems specifically found in teak. The result is a robust chronology with strong signal strength back to 1600 ad, and with variability retained at the multi-decadal scale. Variability in annual growth in teak from this area is dependent on rainfall and soil moisture availability at both the beginning and end of the monsoon season as confirmed by comparisons with temperature, rainfall and PDSI data. These correlation analyses confirm that our record is a proxy for summer monsoon strength and/or duration, and highlight the importance of soil moisture availability in the seasons of transition. The chronology reveals two prominent periods of decadal-scale drought in the early and mid 1700s that correspond to persistently warm sea surface temperature anomalies in the tropical Pacific as derived from Galapagos Island coral records. Speleothem data from central India also indicate protracted periods of drought for the 1700s. While these broad-scale eighteenth-century persistent droughts may be related to protracted El Nino-like conditions in the tropical Pacific, regional climate forcing over the Indian Ocean and western Pacific sectors appears to be a strong contributor as well. Spectral analyses reveal power in the ENSO range of variability from 2.2 to 4 years, and at the multi-decadal scale at 48.5 years. (orig.)

  11. Did biogeographical processes shape the monogenean community of butterflyfishes in the tropical Indo-west Pacific region?

    Science.gov (United States)

    Reverter, M; Cribb, T H; Cutmore, S C; Bray, R A; Parravicini, V; Sasal, P

    2017-07-01

    Geographical distribution of parasite species can provide insights into the evolution and diversity of parasitic communities. Biogeography of marine parasites is poorly known, especially because it requires an understanding of host-parasite interactions, information that is rare, especially over large spatial scales. Here, we have studied the biogeographical patterns of dactylogyrid parasites of chaetodontids, one of the most well-studied fish families, in the tropical Indo-west Pacific region. Dactylogyrid parasites were collected from gills of 34 butterflyfish species (n=560) at nine localities within an approximate area of 62millionkm 2 . Thirteen dactylogyrid species were identified, with richness ranging from 6 to 12 species at individual localities. Most dactylogyrid communities were dominated by Haliotrema angelopterum or Haliotrema aurigae, for which relative abundance was negatively correlated (ρ=-0.59). Parasite richness and diversity were highest in French Polynesia and the Great Barrier Reef (Australia) and lowest in Palau. Three biogeographic regions were identified based on dactylogyrid dissimilarities: French Polynesia, characterised by the dominance of H. angelopterum, the western Pacific region dominated by H. aurigae, and Ningaloo Reef (Australia), dominated by Euryhaliotrema berenguelae. Structure of host assemblages was the main factor explaining the dissimilarity (turnover and nestedness components of the Bray-Curtis dissimilarity and overall Bray-Curtis dissimilarity) of parasite communities between localities, while environment was only significant in the turnover of parasite communities and overall dissimilarity. Spatial structure of localities explained only 10% of the turnover of parasite communities. The interaction of the three factors (host assemblages, environment and spatial structure), however, explained the highest amounts of variance of the dactylogyrid communities, indicating a strong colinearity between the factors. Our findings

  12. Extended-range forecast for the temporal distribution of clustering tropical cyclogenesis over the western North Pacific

    Science.gov (United States)

    Zhu, Zhiwei; Li, Tim; Bai, Long; Gao, Jianyun

    2017-11-01

    Based on outgoing longwave radiation (OLR), an index for clustering tropical cyclogenesis (CTC) over the western North Pacific (WNP) was defined. Around 76 % of total CTC events were generated during the active phase of the CTC index, and 38 % of the total active phase was concurrent with CTC events. For its continuous property, the CTC index was used as the representative predictand for extended-range forecasting the temporal distribution of CTC events. The predictability sources for CTC events were detected via correlation analyses of the previous 35-5-day lead atmospheric fields against the CTC index. The results showed that the geopotential height at different levels and the 200 hPa zonal wind over the global tropics possessed large predictability sources, whereas the predictability sources of other variables, e.g., OLR, zonal wind, and relatively vorticity at 850 hPa and relatively humility at 700 hPa, were mainly confined to the tropical Indian Ocean and western Pacific Ocean. Several spatial-temporal projection model (STPM) sets were constructed to carry out the extended-range forecast for the CTC index. By combining the output of STPMs separately conducted for the two dominant modes of intraseasonal variability, e.g., the 10-30 and the 30-80 day mode, useful forecast skill could be achieved for a 30-day lead time. The combined output successfully captured both the 10-30 and 30-80 day mode at least 10 days in advance. With a relatively low rate of false alarm, the STPM achieved hits for 80 % (69 %) of 54 CTC events during 2003-2014 at the 10-day (20-day) lead time, suggesting a practical value of the STPM for real-time forecasting WNP CTC events at an extended range.

  13. Oceanic, Latitudinal, and Sex-Specific Variation in Demography of a Tropical Deepwater Snapper across the Indo-Pacific Region

    Directory of Open Access Journals (Sweden)

    Ashley J. Williams

    2017-12-01

    Full Text Available Deepwater tropical fisheries provide an important source of income and protein to Pacific and Indian Ocean coastal communities who are highly dependent on fish for food security. The development of quantitative assessments and management strategies for these deepwater fisheries has been hindered by insufficient biological and fisheries data. We examine the age-specific demography of the pygmy ruby snapper Etelis carbunculus, an important target species in tropical deepwater fisheries, across 90° of longitude and 20° of latitude in the Pacific and Indian Oceans. Our results show that growth of E. carbunculus varies significantly between oceans and sexes and across latitudes in both oceans. Estimates of natural and fishing mortality were similar between oceans, but higher for females than males in both oceans. Evidence of greater fishing pressure on females than males is likely due to the larger size-at-age of females compared to males, assuming that selectivity of the fishing gear is related directly to fish size. Sex ratios were significantly female biased in both oceans despite this species being gonochoristic, and maturity schedules were similar between sexes in the Pacific Ocean. This species exhibits a protracted spawning season from mid-spring to autumn (i.e., October to May in the Pacific Ocean. These results represent the first estimates of age-specific demographic parameters for E. carbunculus, and provide the foundation for the development of the first species-specific assessment models and harvest strategies for the species. Future stock assessment models for E. carbunculus should consider sex-specific demographic parameters and spatial variation in demography. Our results reveal substantial differences in biology between E. carbunculus and the giant ruby snapper E. sp., a cryptic congeneric species, and thus contribute to greater clarity in managing fisheries that are dependent on these two species. Furthermore, the improved

  14. Spatiotemporal change of intraseasonal oscillation intensity over the tropical Indo-Pacific Ocean associated with El Niño and La Niña events

    Science.gov (United States)

    Wu, Renguang; Song, Lei

    2018-02-01

    The present study analyzes the intraseasonal oscillation (ISO) intensity change over the tropical Indo-Pacific associated with the El Niño-Southern Oscillation (ENSO) and compares the intensity change between El Niño and La Niña years and between the 10-20-day and 30-60-day ISOs. The ISO intensity change tends to be opposite between El Niño and La Niña years in the developing and mature phases. The intensity change features a contrast between the tropical southeastern Indian Ocean and the tropical western North Pacific (WNP) in the developing phases and between the Maritime Continent and the tropical central Pacific in the mature phase. In the decaying phases, the intensity change shows notable differences between El Niño and La Niña events and between fast and slow decaying El Niño events. Large intensity change is observed over the tropical WNP in the developing summer, over the tropical southeastern Indian Ocean in the developing fall, and over the tropical WNP in the fast decaying El Niño summer due to a combined effect of vertical shear, vertical motion, and lower-level moisture. In the ENSO developing summer and in the El Niño decaying summer, the 10-20-day ISO intensity change displays a northwest-southeast tilted distribution over the tropical WNP, whereas the large 30-60-day ISO intensity change is confined to the off-equatorial WNP. In the La Niña decaying summer, the 30-60-day ISO intensity change features a large zonal contrast across the Philippines, whereas the 10-20-day ISO intensity anomaly is characterized by a north-south contrast over the tropical WNP.

  15. Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific

    Science.gov (United States)

    Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping

    2018-01-01

    The impact of mesoscale oceanic eddies on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-eddy interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-core eddies (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in eddy-free condition, while warm-core eddies (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating eddies and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic eddies in coupled numerical models to improve the prediction of storm-induced SST response.

  16. Global warming hiatus contributed to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia.

    Science.gov (United States)

    Zhao, Jiuwei; Zhan, Ruifen; Wang, Yuqing

    2018-04-16

    The recent global warming hiatus (GWH) was characterized by a La Niña-like cooling in the tropical Eastern Pacific accompanied with the Indian Ocean and the tropical Atlantic Ocean warming. Here we show that the recent GWH contributed significantly to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia since 1998. The GWH associated sea surface temperature anomalies triggered a pair of anomalous cyclonic and anticyclonic circulations and equatorial easterly anomalies over the Northwest Pacific, which favored TC genesis and intensification over the western Northwest Pacific but suppressed TC genesis and intensification over the southeastern Northwest Pacific due to increased vertical wind shear and anticyclonic circulation anomalies. Results from atmospheric general circulation model experiments demonstrate that the Pacific La Niña-like cooling dominated the Indian Ocean and the tropical Atlantic Ocean warming in contributing to the observed GWH-related anomalous atmospheric circulation over the Northwest Pacific.

  17. Cleaning interactions by gobies on a tropical eastern Pacific coral reef.

    Science.gov (United States)

    Quimbayo, J P; Zapata, F A

    2018-04-01

    The present study describes the cleaning interactions among species of cleaner gobies Tigrigobius spp. and Elacatinus puncticulatus (family Gobiidae) and the client fish species they clean in a coral reef of Gorgona Island, Colombia. In 419 cleaning events, we observed 27 species acting as clients of Tigrigobius spp., whereas only nine were clients of E. puncticulatus. Paranthias colonus and Cephalopholis panamensis were the species most commonly cleaned by Tigrigobius spp., while Ophioblennius steindachneri and Stegastes acalpulcoensis were the clients most commonly cleaned by E. puncticulatus. The abundance (but not the body size) of clients was an important variable predicting the cleaning frequency observed for clients of Tigrigobius spp., but this was not the case for clients of E. puncticulatus. Additionally, Tigrigobius spp. preferred cleaning planktivores, sessile invertebrate feeders and territorial herbivores (Ivlev's index >0·15), whereas E. puncticulatus did not exhibit any preference. We observed two major peaks of cleaning activity for Tigrigobius spp., one in the early morning and another one in the late afternoon. These results suggest that Tigrigobius spp. is a specialized cleaner goby, whereas E. puncticulatus is a facultative cleaner that cleans sporadically. © 2018 The Fisheries Society of the British Isles.

  18. The Use of Satellite Microwave Rainfall Measurements to Predict Eastern North Pacific Tropical Cyclone Intensity

    National Research Council Canada - National Science Library

    West, Derek

    1998-01-01

    .... Relationships between parameters obtained from an operational SSM/I based rainfall measuring algorithm and current intensity and ensuing 12, 24, 36, 48, 60, and 72 hour intensity changes from best...

  19. Coral reef fish assemblages at Clipperton Atoll (Eastern Tropical Pacific and their relationship with coral cover

    Directory of Open Access Journals (Sweden)

    Aurora M. Ricart

    2016-11-01

    Full Text Available Clipperton Atoll, one of the most isolated coral reefs worldwide, is of great scientific interest due to its geomorphology and high levels of endemism. This study explored the reef fish assemblage structure of Clipperton Atoll and its relationship with live coral cover. Nine stations were sampled at three sites and three depths (6, 12 and 20 m around the reef, measuring fish species richness and biomass and hermatypic coral cover (at genus level. We evaluated variation in species richness, biomass and diversity of fish assemblages among sites and depths, as well as the relationship between the entire fish assemblage composition and live coral cover. The results showed that species richness and biomass were similar among sites, but differed across depths, increasing with depth. In contrast, diversity differed among sites but not among depths. Multivariate analyses indicated that fish assemblage composition differed among sites and depths in relation to changes in cover of coral of the genera Pocillopora, Porites, Pavona and Leptoseris, which dominate at different depths. The results showed that fish species richness and diversity were low at Clipperton Atoll and that, in isolated coral reefs with a low habitat heterogeneity and low human disturbance, live coral cover has a significant influence on the spatial variation of the reef fish assemblages. This study highlights the importance of coral habitat structure in shaping coral reef fish assemblages.

  20. Tropical Cyclone Wind Probability Forecasting for the Eastern North Pacific (EPWINDP).

    Science.gov (United States)

    1982-04-01

    INSTITUTO DE GEOFISICA DIRECTOR HONOLULU, HI 96822 U.N.A.M. BIBLIOTECA NATIONAL HURRICANE CENTER TORRE DE CIENCIAS, 3ER PISO NOAA, GABLES ONE TOWER CHAIRMAN...METEOROLOGY DEPT. CIUDAD UNIVERSITARIA 1320 S. DIXIE HWY. UNIVERSITY OF WISCONSIN MEXICO 20, D.F. CORAL GABLES, FL 33146 1225 W. DAYTON STREET

  1. Basking Shark (Cetorhinus maximus Movements in the Eastern North Pacific Determined Using Satellite Telemetry

    Directory of Open Access Journals (Sweden)

    Heidi Dewar

    2018-05-01

    Full Text Available To fill data gaps on movements, behaviors and habitat use, both near- and offshore, two programs were initiated to deploy satellite tags on basking sharks off the coast of California. Basking sharks are large filter-feeding sharks that are second in size only to whale sharks. Similar to many megafauna populations, available data suggest that populations are below historic levels. In the eastern North Pacific (ENP Ocean, the limited information on basking sharks comes from nearshore habitats where they forage. From 2010 to 2011, four sharks were tagged with pop-off satellite archival tags with deployments ranging from 9 to 240 days. The tags provided both transmitted and archived data on habitat use and geographic movement patterns. Nearshore, sharks tended to move north in the summer and prefer shelf and slope habitat around San Diego, Point Conception and Monterey Bay. The two sharks with 180 and 240 days deployments left the coast in the summer and fall. Offshore their paths diverged and by January one shark had moved to near the tip of the Baja Peninsula, Mexico and the other to the waters near Hawaii, USA. Vertical habitat use was variable both within and among individuals and changed as sharks moved offshore. Nearshore, most time was spent in the mixed layer but sharks did spend hours in cold waters below the mixed layer. Offshore vertical movements depended on location. The shark that went to Hawaii had a distinct diel pattern, with days spent at ~450–470 m and nights at ~250–300 m and almost no time in surface waters, corresponding with the diel migration of a specific portion of the deep scattering layer. The shark that moved south along the Baja Peninsula spent progressively more time in deep water but came to the surface daily. Movement patterns and shifts in vertical habitat and use are likely linked to shifts in prey availability and oceanography. Data collected indicate the potential for large-scale movements and the need for

  2. Impact of Preferred Eddy Tracks on Transport and Mixing in the Eastern South Pacific

    Science.gov (United States)

    Belmadani, A.; Donoso, D.; Auger, P. A.; Chaigneau, A.

    2017-12-01

    Mesoscale eddies, which play a fundamental role in the transport of mass, heat, nutrients, and biota across the oceans, have been suggested to propagate preferently along specific tracks. These preferred pathways, also called eddy trains, are near-zonal due to westward drift of individual vortices, and tend to be polarized (ie alternatively dominated by anticyclonic/cyclonic eddies), coinciding with the recently discovered latent striations (quasi-zonal mesoscale jet-like features). While significant effort has been made to understand the dynamics of striations and their interplay with mesoscale eddies, the impact of repeated eddy tracks on physical (temperature, salinity), biogeochemical (oxygen, carbon, nutrients) and other tracers (e.g. chlorophyll, marine debris) has received little attention. Here we report on the results of numerical modeling experiments that simulate the impact of preferred eddy tracks on the transport and mixing of water particles in the Eastern South Pacific off Chile. A 30-year interannual simulation of the oceanic circulation in this region has been performed over 1984-2013 with the ROMS (Regional Oceanic Modeling System) at an eddy-resolving resolution (10 km). Objective tracking of mesoscale coherent vortices is obtained using automated methods, allowing to compute the contribution of eddies to the ocean circulation. Preferred eddy tracks are further isolated from the more random eddies, by comparing the distances between individual tracks and the striated pattern in long-term mean eddy polarity with a least-squares approach. The remaining non-eddying flow may also be decomposed into time-mean and anomalous circulation, and/or small- and large-scale circulation. Neutrally-buoyant Lagrangian floats are then released uniformly into the various flow components as well as the total flow, and tracked forward in time with the ARIANE software. The dispersion patterns of water particles are used to estimate the respective contributions of

  3. Lead and stable Pb-isotope characteristics of tropical soils in north-eastern Brazil

    International Nuclear Information System (INIS)

    Schucknecht, Anne; Matschullat, Jörg; Reimann, Clemens

    2011-01-01

    Stable Pb-isotope ratios are widely used as tracers for Pb-sources in the environment. Recently, a few publications have challenged the predominating view of environmental applications of Pb-isotopes. Present applications of Pb-isotopic tracers in soils largely represent the northern hemisphere. This study focuses on tropical soils from Paraíba, north-eastern Brazil. Lead concentrations and Pb-isotopic signatures (both 7N HNO 3 ) were determined at 30 sites along a 327 km E–W-transect, from the Atlantic coast at João Pessoa to some kilometers west of Patos, to identify possible processes for the observed (and anticipated) distribution pattern. Thirty samples each of litter (ORG) and top mineral soil (TOP) were taken on pasture land at suitable distance from roads or other potential contamination sources. Lead-content was determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES) and the ratios of 206 Pb/ 207 Pb, 206 Pb/ 208 Pb, and 208 Pb/ 207 Pb by ICP-sector field mass spectrometry (ICP-SFMS). Both sample materials show similarly low Pb-concentrations with a lower median in the ORG samples (ORG 3.4 mg kg −1 versus TOP 6.9 mg kg −1 ). The 206 Pb/ 207 Pb ratios revealed a large spread along the transect with median 206 Pb/ 207 Pb ratios of 1.160 (ORG) and 1.175 (TOP). The 206 Pb/ 207 Pb ratios differ noticeably between sample sites located in the Atlantic Forest biome along the coast and sample sites in the inland Caatinga biome. The “forest” sites were characterised by a significant lower median and a lower spread in the 206 Pb/ 207 Pb and 206 Pb/ 208 Pb ratios compared to the Caatinga sites. Results indicate a very restricted influence of anthropogenic activities (individual sites only). The main process influencing the spatial variability of Pb-isotope ratios is supposed to be precipitation-dependent bioproductivity and weathering.

  4. Variability of radiatively forced diurnal cycle of intense convection in the tropical west pacific

    Energy Technology Data Exchange (ETDEWEB)

    Gray, W.M.; Sheaffer, J.D.; Thorson, W.B. [Colorado State Univ., Fort Collins, CO (United States)

    1996-04-01

    Strong differences occur in daytime versus nighttime (DVN) net radiative cooling in clear versus cloudy areas of the tropical atmosphere. Daytime average cooling is approximately -0.7{degrees}C/day, whereas nighttime net tropospheric cooling rates are about -1.5{degrees}C/day, an approximately two-to-one difference. The comparatively strong nocturnal cooling in clear areas gives rise to a diurnally varying vertical circulation and horizontal convergence cycle. Various manifestations of this cyclic process include the observed early morning heavy rainfall maxima over the tropical oceans. The radiatively driven DVN circulation appears to strongly modulate the resulting diurnal cycle of intense convection which creates the highest, coldest cloudiness over maritime tropical areas and is likely a fundamental mechanism governing both small and large scale dynamics over much of the tropical environment.

  5. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08

    Science.gov (United States)

    2012-09-30

    cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds...there is a need to improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution...of the transition from a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that

  6. Modulation of the intraseasonal Indo-western Pacific convection oscillation to tropical cyclogenesis location and frequency over the Indo-western North Pacific during boreal extended summer

    Science.gov (United States)

    Wang, Qiuyun; Li, Jianping; Li, Yanjie; Zhang, Jingwen

    2017-04-01

    The influence of the intraseasonal Indo-western Pacific convection oscillation (IPCO) on the tropical cyclone (TC) genesis location and frequency over the Indo-western North Pacific during the boreal extended summer (May-October) is explored in this paper. Observational analysis shows that the impacts of the intraseasonal IPCO on TCs over the Indo-western North Pacific features in evident "locational phase lock of TC genesis" and distinct differences in TC frequency. In term of the WNP, when the intraseasonal IPCO is positive phase, there tends to be much more TCs, especially in the South China Sea (SCS), and more TCs generate in the west of the WNP and lower latitude (around 5°-20°N); vice versa. At the positive intraseasonal IPCO phase, the atmosphere gains heat through both sea-air interaction and the latent heat release of cumulus convective condensation, and the anomalous cyclonic circulation weakens the western Pacific subtropical high (WPSH), these conditions do favor the TC genesis. Moreover, the shrinking WPSH, the enhanced heat transfer from sea to air at the lower latitude as well as the westward shifts of heating center and anomalous cyclonic circulation lock TC genesis locations in the west of the WNP and lower latitude. The opposite situation occurs at negative phase. As for the North Indian Ocean (NIO), the TC genesis locations at the positive intraseasonal IPCO phase mainly situate in 13°-20°N and distribute closer to Indian Peninsula, particularly in the Arabian Sea (ARB), in contrast, the spatial distribution is more dispersed at the negative intraseasonal IPCO phase. However, the total TC frequencies at two intraseasonal IPCO phases are similar. These features come largely from the differences in the area featuring conditions between the northern and southern regions of 13°N in the NIO: at the positive intraseasonal IPCO phase, to the northern region of 13°N, the environmental conditions are similar to the case of the WNP except without the

  7. Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya

    Directory of Open Access Journals (Sweden)

    Nathaniel A. Lyngwi

    2013-03-01

    Full Text Available The Northeastern part of India sprawls over an area of 262 379km² in the Eastern Himalayan range. This constitutes a biodiversity hotspot with high levels of biodiversity and endemism; unfortunately, is also a poorly known area, especially on its microbial diversity. In this study, we assessed cultivable soil bacterial diversity and distribution from lowlands to highlands (34 to 3 990m.a.s.l.. Soil physico-chemical parameters and forest types across the different altitudes were characterized and correlated with bacterial distribution and diversity. Microbes from the soil samples were grown in Nutrient, Muller Hinton and Luria-Bertani agar plates and were initially characterized using biochemical methods. Parameters like dehydrogenase and urease activities, temperature, moisture content, pH, carbon content, bulk density of the sampled soil were measured for each site. Representative isolates were also subjected to 16S rDNA sequence analysis. A total of 155 cultivable bacterial isolates were characterized which were analyzed for richness, evenness and diversity indices. The tropical and sub-tropical forests supported higher bacterial diversity compared to temperate pine, temperate conifer, and sub-alpine rhododendron forests. The 16S rRNA phylogenetic analysis revealed that Firmicutes was the most common group followed by Proteobacteria and Bacteroidetes. Species belonging to the genera Bacillus and Pseudomonas were the most abundant. Bacterial CFU showed positive but insignificant correlation with soil parameters like pH (r=0.208, soil temperature (r=0.303, ambient temperature (r=0.443, soil carbon content (r=0.525, soil bulk density (r=0.268, soil urease (r=0.549 and soil dehydrogenase (r=0.492. Altitude (r=0.561 and soil moisture content (r=-0.051 showed negative correlation. Altitudinal gradient along with the vegetation and soil physico-chemical parameters were found to influence bacterial diversity and distribution. This study points out

  8. Drought reconstruction in eastern Hulun Buir steppe, China and its linkages to the sea surface temperatures in the Pacific Ocean

    Science.gov (United States)

    Liu, Na; Liu, Yu; Bao, Guang; Bao, Ming; Wang, Yanchao; Zhang, Lizhi; Ge, Yuxiang; Bao, Wurigen; Tian, Heng

    2016-01-01

    A tree-ring width chronology covering the period 1780-2013 AD was developed from Pinus sylvestris var. mongolica for the eastern Hulun Buir steppe, a region located on the edge of the eastern Mongolian Plateau, China. Climate-growth response analysis revealed drought stress to be the primary limiting factor for tree growth. Therefore, the mean February-July standardized precipitation evapotranspiration index (SPEI) was reconstructed over the period 1819-2013, where the reconstruction could account for 32.8% of the variance in the instrumental record over the calibration period 1953-2011. Comparison with other tree-ring-based moisture sequences from nearby areas confirmed a high degree of confidence in our reconstruction. Severe drought intervals since the late 1970s in our study area consisted with the weakening East Asian summer monsoon, which modulating regional moisture conditions in semi-arid zone over northern China. Drought variations in the study area significantly correlated with sea surface temperatures (SSTs) in North Pacific Ocean, suggesting a possible connection of regional hydroclimatic variations to the Pacific Decadal Oscillation (PDO). The potential influence associated with El Niño-Southern Oscillation (ENSO) was primarily analyzed.

  9. Dissolved iron anomaly in the deep tropical-subtropical Pacific: Evidence for long-range transport of hydrothermal iron

    Science.gov (United States)

    Wu, Jingfeng; Wells, Mark L.; Rember, Robert

    2011-01-01

    Dissolved iron profiles along a north-south transect along 158°W in the tropical Pacific show evidence of two deepwater anomalies. The first extends from Station ALOHA (22.78°N) to the equator at ˜1000-1500 m and lies below the maximum apparent oxygen utilization and nutrient (N, P) concentrations. The feature is not supported by vertical export processes, but instead corresponds with the lateral dilution field of δ 3He derived from the Loihi seamount, Hawaii, though a sediment source associated with the Hawaiian Island Chain cannot be entirely ruled out. The second, deeper (2000-3000 m) anomaly occurs in tropical South Pacific waters (7°S) and also does not correlate with the depths of maximum nutrient concentrations or apparent oxygen utilization, but it does coincide closely with δ 3He emanating from the East Pacific Rise, more than 5000 km to the east. We hypothesize that these anomalies represent the long-range (>2000 km) transport of hydrothermal iron residuals, stabilized against scavenging by complexation with excess organic ligands in the plume source regions. Such trace leakage of hydrothermal iron to distal plume regions would have been difficult to identify in most hydrothermal vent mapping studies because low analytical detection limits were not needed for the proximal plume regions. These findings suggest that hydrothermal activity may represent a major source of dissolved iron throughout the South Pacific deep basin today, as well as other regions having high mid-ocean spreading rates in the geologic past. In particular, we hypothesize that high spreading rates along the South Atlantic and Southern Ocean mid-oceanic ridges, combined with the upwelling ventilation of these distal hydrothermal plumes, may have increased ocean productivity and carbon export in the Southern Ocean. Assessing the magnitude and persistence of dissolved hydrothermal iron in basin scale deep waters will be important for understanding the marine biogeochemistry of iron

  10. Pleurolucina from the western Atlantic and eastern Pacific Oceans: a new intertidal species from Curaçao with unusual shell microstructure (Mollusca, Bivalvia, Lucinidae

    Directory of Open Access Journals (Sweden)

    Emily A. Glover

    2016-09-01

    Full Text Available A new shallow water species of the lucinid bivalve Pleurolucina is described from Curaçao in the southern Caribbean Sea and compared with known species of the genus from the western Atlantic and eastern Pacific Oceans. Although confused with the Floridian species P. leucocyma, it is most similar to the eastern Pacific P. undata. As in all studied lucinids, the new species possesses symbiotic bacteria housed in the ctenidia. The shell microstructure is unusual with repeated and intercalated conchiolin layers that have sublayers of ‘tulip-shaped’ calcareous spherules. Predatory drillings by naticid gastropods frequently terminate at the conchiolin layers.

  11. An Indo-West Pacific `zooxanthella' invasive to the western Atlantic finds its way to the Eastern Pacific via an introduced Caribbean coral

    Science.gov (United States)

    LaJeunesse, Todd C.; Forsman, Zac H.; Wham, Drew C.

    2016-06-01

    Phylogenetic evidence indicates that Siderastrea glynni, a species of coral thought to be endemic to the Eastern Pacific, is actually more likely to be Si. siderea introduced from the Atlantic. Our analyses of the endosymbionts of Si. glynni ( Symbiodinium) substantiate this as an introduced species; attempts to conserve and list Si. glynni as an endangered species are probably unwarranted. The specimens we examined harbored Symbiodinium trenchii and some also contained Sy. goreaui, symbionts that occur with Si. siderea in the Atlantic. Moreover, the genotype of Sy. trenchii (a single strain defined by ten diallelic microsatellite loci) was genetically distinct from genotypes of Sy. ` glynni,' also in Clade D, found abundantly in colonies of Pocillopora throughout the region. Furthermore, the strain of Sy. trenchii grouped with genotypes from the Greater Caribbean, an inbred population that was recently introduced from the Indo-West Pacific. This secondary introduction suggests that strains of Caribbean Sy. trenchii are capable of dispersal into new reef coral communities where this symbiont does not presently exist.

  12. Changes to extreme wave climates of islands within the Western Tropical Pacific throughout the 21st century under RCP 4.5 and RCP 8.5, with implications for island vulnerability and sustainability

    Science.gov (United States)

    Shope, James B.; Storlazzi, Curt; Erikson, Li; Hegermiller, Christie

    2016-01-01

    Waves are the dominant influence on coastal morphology and ecosystem structure of tropical Pacific islands. Wave heights, periods, and directions for the 21st century were projected using near-surface wind fields from four atmosphere-ocean coupled global climate models (GCM) under representative concentration pathways (RCP) 4.5 and 8.5. GCM-derived wind fields forced the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters around 25 islands in the mid to western tropical Pacific Ocean for historical (1976–2005), mid-, and end-of-century time periods. Extreme significant wave heights decreased (~10.0%) throughout the 21st century under both climate scenarios compared to historical wave conditions and the higher radiative forcing 8.5 scenario displayed a greater and more widespread decrease in extreme significant wave heights compared to the lower forcing 4.5 scenario. An exception was for the end-of-century June–August season. Offshore of islands in the central equatorial Pacific, extreme significant wave heights displayed the largest changes from historical values. The frequency of extreme events during December–February decreased under RCP 8.5, whereas the frequency increased under RCP 4.5. Mean wave directions often rotated more than 30° clockwise at several locations during June–August, which could indicate a weakening of the trade winds’ influence on extreme wave directions and increasing dominance of Southern Ocean swell or eastern shift of storm tracks. The projected changes in extreme wave heights, directions of extreme events, and frequencies at which extreme events occur will likely result in changes to the morphology and sustainability of island nations.

  13. ENSO Modulations due to Interannual Variability of Freshwater Forcing and Ocean Biology-induced Heating in the Tropical Pacific.

    Science.gov (United States)

    Zhang, Rong-Hua; Gao, Chuan; Kang, Xianbiao; Zhi, Hai; Wang, Zhanggui; Feng, Licheng

    2015-12-18

    Recent studies have identified clear climate feedbacks associated with interannual variations in freshwater forcing (FWF) and ocean biology-induced heating (OBH) in the tropical Pacific. The interrelationships among the related anomaly fields are analyzed using hybrid coupled model (HCM) simulations to illustrate their combined roles in modulating the El Niño-Southern Oscillation (ENSO). The HCM-based supporting experiments are performed to isolate the related feedbacks, with interannually varying FWF and OBH being represented individually or collectively, which allows their effects to be examined in a clear way. It is demonstrated that the interannual freshwater forcing enhances ENSO variability and slightly prolongs the simulated ENSO period, while the interannual OBH reduces ENSO variability and slightly shortens the ENSO period, with their feedback effects tending to counteract each other.

  14. The impact of summertime north Indian Ocean SST on tropical cyclone genesis over the western North Pacific

    Science.gov (United States)

    Zheng, Jiayu; Wu, Qiaoyan; Guo, Yipeng; Zhao, Sen

    2017-04-01

    In this study, we investigate the impact of interannual variability of boreal summertime (June-September) north Indian Ocean (NIO) sea surface temperature (SST) on the distribution of tropical cyclone (TC) genesis over the western North Pacific (WNP) using observational datasets. In the boreal summers with warm (cold) SST in the NIO, fewer (more) than normal TCs form over the entire WNP, with fewer (more) TCs forming north of 10°N and more (fewer) TCs forming south of 10°N. The warm (cold) SST in the NIO induces anomalous anticyclonic (cyclonic) vorticity north of 10°N and cyclonic (anticyclonic) vorticity south of 10°N, which contributes to the meridional seesaw-like distribution of WNP TC genesis. This study provides a new perspective to understand TC activities over the WNP and may help seasonal TC prediction.

  15. Seasonal dependence of the predictable low-level circulation patterns over the tropical Indo-Pacific domain

    Science.gov (United States)

    Zhang, Tuantuan; Huang, Bohua; Yang, Song; Laohalertchai, Charoon

    2018-06-01

    The seasonal dependence of the prediction skill of 850-hPa monthly zonal wind over the tropical Indo-Pacific domain is examined using the ensemble reforecasts for 1983-2010 from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis and Reforecast (CFSRR) project. According to a maximum signal-to-noise empirical orthogonal function analysis, the most predictable patterns of atmospheric low-level circulation are associated with the developing and maturing phases of El Niño-Southern Oscillation (ENSO). The CFSv2 is capable of predicting these ENSO-related patterns up to 9-months in advance for all months, except for May-June when the effect of the spring barrier is strong. The other predictable climate processes associated with the low-level atmospheric circulation are more seasonally dependent. For winter and spring, the second most predictable patterns are associated with the ENSO decaying phase. Within these seasons, the monthly evolution of the predictable patterns is characterized by a southward shift of westerly wind anomalies, generated by the interaction between the annual cycle and the ENSO signals (i.e., the combination-mode). In general, the CFSv2 hindcast well predicts these patterns at least 5 months in advance for spring, while shows much lower skills for winter months. In summer, the second predictable patterns are associated with the western North Pacific (WNP) monsoon (i.e., the WNP anticyclone/cyclone) in short leads while associated with ENSO in longer leads (after 4-month lead). The second predictable patterns in fall are mainly associated with tropical Indian Ocean Dipole, which can be predicted 3 months in advance.

  16. Comparison of TOPEX/Poseidon Sea Level and Linear Model Results forced by Various Wind Products for the Tropical Pacific

    Science.gov (United States)

    Hackert, Eric C.; Busalacchi, Antonio J.

    1997-01-01

    The goal of this paper is to compare TOPEX/Posaidon (T/P) sea level with sea level results from linear ocean model experiments forced by several different wind products for the tropical Pacific. During the period of this study (October 1992 - October 1995), available wind products include satellite winds from the ERS-1 scatterometer product of [HALP 97] and the passive microwave analysis of SSMI winds produced using the variational analysis method (VAM) of [ATLA 91]. In addition, atmospheric GCM winds from the NCEP reanalysis [KALN 96], ECMWF analysis [ECMW94], and the Goddard EOS-1 (GEOS-1) reanalysis experiment [SCHU 93] are available for comparison. The observed ship wind analysis of FSU [STRI 92] is also included in this study. The linear model of [CANE 84] is used as a transfer function to test the quality of each of these wind products for the tropical Pacific. The various wind products are judged by comparing the wind-forced model sea level results against the T/P sea level anomalies. Correlation and RMS difference maps show how well each wind product does in reproducing the T/P sea level signal. These results are summarized in a table showing area average correlations and RMS differences. The large-scale low-frequency temporal signal is reproduced by all of the wind products, However, significant differences exist in both amplitude and phase on regional scales. In general, the model results forced by satellite winds do a better job reproducing the T/P signal (i.e. have a higher average correlation and lower RMS difference) than the results forced by atmospheric model winds.

  17. Habitat availability and heterogeneity and the indo-pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific.

    Science.gov (United States)

    Sanciangco, Jonnell C; Carpenter, Kent E; Etnoyer, Peter J; Moretzsohn, Fabio

    2013-01-01

    Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km(2) with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region.

  18. Habitat availability and heterogeneity and the indo-pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific.

    Directory of Open Access Journals (Sweden)

    Jonnell C Sanciangco

    Full Text Available Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs, 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km(2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region.

  19. Cold trap dehydration in the Tropical Tropopause Layer characterised by SOWER chilled-mirror hygrometer network data in the Tropical Pacific

    Directory of Open Access Journals (Sweden)

    F. Hasebe

    2013-04-01

    Full Text Available A network of balloon-borne radiosonde observations employing chilled-mirror hygrometers for water and electrochemical concentration cells for ozone has been operated since the late 1990s in the Tropical Pacific to capture the evolution of dehydration of air parcels advected quasi-horizontally in the Tropical Tropopause Layer (TTL. The analysis of this dataset is made on isentropes taking advantage of the conservative properties of tracers moving adiabatically. The existence of ice particles is diagnosed by lidars simultaneously operated with sonde flights. Characteristics of the TTL dehydration are presented on the basis of individual soundings and statistical features. Supersaturations close to 80% in relative humidity with respect to ice (RHice have been observed in subvisible cirrus clouds located near the cold point tropopause at extremely low temperatures around 180 K. Although further observational evidence is needed to confirm the credibility of such high values of RHice, the evolution of TTL dehydration is evident from the data in isentropic scatter plots between the sonde-observed mixing ratio (OMR and the minimum saturation mixing ratio (SMRmin along the back trajectories associated with the observed air mass. Supersaturation exceeding the critical value of homogeneous ice nucleation (OMR > 1.6 × SMRmin is frequently observed on the 360 and 365 K surfaces indicating that cold trap dehydration is in progress in the TTL. The near correspondence between the two (OMR ~ SMRmin at 380 K on the other hand implies that this surface is not sufficiently cold for the advected air parcels to be dehydrated. Above 380 K, cold trap dehydration would scarcely function while some moistening occurs before the air parcels reach the lowermost stratosphere at around 400 K where OMR is generally smaller than SMRmin.

  20. Relevance of Indian Summer Monsoon and its Tropical Indo-Pacific Climate Drivers for the Kharif Crop Production

    Science.gov (United States)

    Amat, Hemadri Bhusan; Karumuri, Ashok

    2017-12-01

    While the Indian agriculture has earlier been dependent on the Indian summer monsoon rainfall (ISMR), a multifold increase in irrigation and storage facilities raise a question whether the ISMR is still as relevant. We revisit this question using the latest observational climate datasets as well as the crop production data and find that the ISMR is still relevant for the Kharif crop production (KCP). In addition, in the recent changes in the tropical Indo-Pacific driver evolutions and frequency, particularly more frequent occurrence of the ENSO Modokis in place of the canonical ENSOs, we carry out a correlation analysis to estimate the impact of the various Indo-Pacific climate drivers on the rainfall of individual Indian states for the period 1998-2013, for which crop production data for the most productive Indian states, namely West Bengal, Odisha, United Andhra Pradesh (UAP), Haryana, Punjab, Karnataka, Kerala, Madhya Pradesh, Bihar and Uttar Pradesh are available. The results suggest that the KCP of the respective states are significantly correlated with the summer monsoon rainfall at the 95-99% confidence levels. Importantly, we find that the NINO 3.4 and ENSO Modoki indices have a statistically significant correlation with the KCP of most of the Indian states, particularly in states such as UAP and Karnataka, through induction of anomalous local convergence/divergence, well beyond the equatorial Indian Ocean. The KCP of districts in UAP also has a significant response to all the climate drivers, having implication for prediction of local crop yield.

  1. Evaluations of Extended-Range tropical Cyclone Forecasts in the Western North Pacific by using the Ensemble Reforecasts: Preliminary Results

    Science.gov (United States)

    Tsai, Hsiao-Chung; Chen, Pang-Cheng; Elsberry, Russell L.

    2017-04-01

    The objective of this study is to evaluate the predictability of the extended-range forecasts of tropical cyclone (TC) in the western North Pacific using reforecasts from National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) during 1996-2015, and from the Climate Forecast System (CFS) during 1999-2010. Tsai and Elsberry have demonstrated that an opportunity exists to support hydrological operations by using the extended-range TC formation and track forecasts in the western North Pacific from the ECMWF 32-day ensemble. To demonstrate this potential for the decision-making processes regarding water resource management and hydrological operation in Taiwan reservoir watershed areas, special attention is given to the skill of the NCEP GEFS and CFS models in predicting the TCs affecting the Taiwan area. The first objective of this study is to analyze the skill of NCEP GEFS and CFS TC forecasts and quantify the forecast uncertainties via verifications of categorical binary forecasts and probabilistic forecasts. The second objective is to investigate the relationships among the large-scale environmental factors [e.g., El Niño Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), etc.] and the model forecast errors by using the reforecasts. Preliminary results are indicating that the skill of the TC activity forecasts based on the raw forecasts can be further improved if the model biases are minimized by utilizing these reforecasts.

  2. Notes on some sertulariid hydroids (Cnidaria: Hydrozoa from the tropical western Pacific, with descriptions of nine new species

    Directory of Open Access Journals (Sweden)

    Horia R. Galea

    2016-08-01

    Full Text Available Forty-three species of sertulariid hydroids (Cnidaria: Hydrozoa: Sertulariidae, collected from the tropical western Pacific (Taiwan, Philippines, New Caledonia, French Polynesia, Vanuatu, Fiji, Tonga, Solomon Islands during various expeditions of the French Tropical Deep-Sea Benthos program, are discussed. Of these, nine are new to science: Gonaxia nova sp. nov., G. plumularioides sp. nov., Sertularella folliformis sp. nov., Se. plicata sp. nov., Se. pseudocatena sp. nov., Se. splendida sp. nov., Se. tronconica sp. nov., Se. tubulosa sp. nov., and Symplectoscyphus paucicatillus sp. nov. The subspecies Symplectoscyphus johnstoni (Gray, 1843 tropicus Vervoort, 1993 is raised to species but, in order to avoid the secondary homonymy with Sy. tropicus (Hartlaub, 1901, the replacement name, Sy. fasciculatus nom. nov., is introduced. The male and female gonothecae of Diphasia cristata Billard, 1920, the male gonothecae of Gonaxia elegans Vervoort, 1993, as well as the female gonothecae of Salacia macer Vervoort & Watson, 2003, are described for the first time. Additional notes on the morphology of several other species are provided. All taxa are illustrated, in most cases using figures drawn at the same scale, so as to highlight the differences between related species.

  3. Tropical forestry research at the USDA Forest Service's Institute of Pacific Island Forestry

    Science.gov (United States)

    C. Eugene Conrad; Jerry A. Sesco

    1992-01-01

    Deforestation during the last decade has grown at an alarming rate, giving rise to concern for its potential adverse effects on global climate. The impetus for focusing greater emphasis on tropical forestry management and research was provided by the International Forestry Cooperation Act enacted into law in 1990. The Act enables the Forest Service to intensify its...

  4. Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration

    Science.gov (United States)

    D.C. Donato; J.B. Kauffman; R.A. Mackenzie; A. Ainsworth; A.Z. Pfleeger

    2012-01-01

    Management of forest carbon (C) stocks is an increasingly prominent land-use issue. Knowledge of carbon storage in tropical forests is improving, but regional variations are still poorly understood, and this constrains forest management and conservation efforts associated with carbon valuation mechanisms (e.g., carbon markets). This deficiency is especially pronounced...

  5. Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the western North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Au-Yeung, Andie Y.M.; Chan, Johnny C.L. [City University of Hong Kong, Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, Kowloon, Hong Kong (China)

    2012-08-15

    This study investigates the potential use of a regional climate model in forecasting seasonal tropical cyclone (TC) activity. A modified version of Regional Climate Model Version 3 (RegCM3) is used to examine the ability of the model to simulate TC genesis and landfalling TC tracks for the active TC season in the western North Pacific. In the model, a TC is identified as a vortex satisfying several conditions, including local maximum relative vorticity at 850 hPa with a value {>=}450 x 10{sup -6} s{sup -1}, and the temperature at 300 hPa being 1 C higher than the average temperature within 15 latitude radius from the TC center. Tracks are traced by following these found vortices. Six-month ensemble (8 members each) simulations are performed for each year from 1982 to 2001 so that the climatology of the model can be compared to the Joint Typhoon Warning Center (JTWC) observed best-track dataset. The 20-year ensemble experiments show that the RegCM3 can be used to simulate vortices with a wind structure and temperature profile similar to those of real TCs. The model also reproduces tracks very similar to those observed with features like genesis in the tropics, recurvature at higher latitudes and landfall/decay. The similarity of the 500-hPa geopotential height patterns between RegCM3 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis (ERA-40) shows that the model can simulate the subtropical high to a large extent. The simulated climatological monthly spatial distributions as well as the interannual variability of TC occurrence are also similar to the JTWC data. These results imply the possibility of producing seasonal forecasts of tropical cyclones using real-time global climate model predictions as boundary conditions for the RegCM3. (orig.)

  6. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  7. Separating the Effects of Tropical Atlantic and Pacific SST-driven Climate Variability on Amazon Carbon Exchange

    Science.gov (United States)

    Liptak, J.; Keppel-Aleks, G.

    2016-12-01

    Amazon forests store an estimated 25% percent of global terrestrial carbon per year1, 2, but the responses of Amazon carbon uptake to climate change is highly uncertain. One source of this uncertainty is tropical sea surface temperature variability driven by teleconnections. El Nino-Southern Oscillation (ENSO) is a key driver of year-to-year Amazon carbon exchange, with associated temperature and precipitation changes favoring net carbon storage in La Nina years, and net carbon release during El Nino years3. To determine how Amazon climate and terrestrial carbon fluxes react to ENSO alone and in concert with other SST-driven teleconnections such as the Atlantic Multidecadal Oscillation (AMO), we force the atmosphere (CAM5) and land (CLM4) components of the CESM(BGC) with prescribed monthly SSTs over the period 1950—2014 in a Historical control simulation. We then run an experiment (PAC) with time-varying SSTs applied only to the tropical equatorial Pacific Ocean, and repeating SST seasonal cycle climatologies elsewhere. Limiting SST variability to the equatorial Pacific indicates that other processes enhance ENSO-driven Amazon climate anomalies. Compared to the Historical control simulation, warming, drying and terrestrial carbon loss over the Amazon during El Nino periods are lower in the PAC simulation, especially prior to 1990 during the cool phase of the AMO. Cooling, moistening, and net carbon uptake during La Nina periods are also reduced in the PAC simulation, but differences are greater after 1990 during the warm phase of the AMO. By quantifying the relationships among climate drivers and carbon fluxes in the Historical and PAC simulations, we both assess the sensitivity of these relationships to the magnitude of ENSO forcing and quantify how other teleconnections affect ENSO-driven Amazon climate feedbacks. We expect that these results will help us improve hypotheses for how Atlantic and Pacific climate trends will affect future Amazon carbon carbon

  8. Biochemical and volatile organic compound profile of European flat oyster (Ostrea edulis) and Pacific cupped oyster (Crassostrea gigas) cultivated in the Eastern Scheldt and Lake Grevelingen, the Netherlands

    NARCIS (Netherlands)

    Houcke, van Jasper; Medina, Isabel; Linssen, Jozef; Luten, Joop

    2016-01-01

    The aim of this study was to evaluate the effect of two important different geographical cultivation areas in the Netherlands (Eastern Scheldt and Lake Grevelingen) on the volatile organic compound (VOC) profile of European flat oyster (Ostrea edulis) and Pacific cupped oyster (Crassostrea

  9. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata, Ctenophora, Mollusca.

    Science.gov (United States)

    Amon, Diva J; Ziegler, Amanda F; Drazen, Jeffrey C; Grischenko, Andrei V; Leitner, Astrid B; Lindsay, Dhugal J; Voight, Janet R; Wicksten, Mary K; Young, Craig M; Smith, Craig R

    2017-01-01

    There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite having been the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. To predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to ABYSSLINE research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle (as well as several other pieces of equipment), the megafauna within the UK Seabed Resources Ltd exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal annelid, arthropod, bryozoan, chordate, ctenophore and molluscan megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 55 distinct morphospecies (8 Annelida, 12 Arthropoda, 4 Bryozoa, 22 Chordata, 5 Ctenophora, and 4 Mollusca) identified mostly by morphology but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat.

  10. Responses of tropical root crops to climate change: implications for Pacific food security

    Science.gov (United States)

    Gleadow, R.; Webber, B.; Macness, N.; Lisson, S.; Nauluvula, P.; Hargraves, J.; Crimp, S. J.

    2013-12-01

    Cassava and taro are an important source of calories in many parts of the developing world and hold much promise for meeting the need for food security in equatorial regions. Communities in the Pacific Island countries reliant on agriculture-based livelihood systems have been identified as particularly at risk from climate change, due to likely increases in crop failure, new patterns of pests and diseases, lack of appropriate seed and plant material, loss of livestock and potential loss of arable land. Recent shortfalls in agricultural production resulting from changing export markets, commodity prices, climatic variation, and population growth and urbanisation, have contributed further to regional food insecurity concerns. Cassava and taro contain herbivore defense chemicals that are detrimental to human health (cyanogenic glucosides and calcium oxalate). Unprocessed cassava can cause acute cyanide intoxication, paralysis and even death, especially during droughts. A number of activities are already underway in the Pacific region to identify ways to ameliorate existing climate risk and enhance current agricultural production. Whilst these activities are important to ensure long-term agricultural sustainability, there remains a significant degree of uncertainty as to how effective these strategies may be in the face of a changing and increasingly variable future climate. We present our current understanding of the impact of climate change on key Pacific production systems - specifically those based on the staple root crops, taro and cassava. This includes (1) Our understanding of the responses of cassava and taro crops to existing environmental drivers (climate, soil and nutrient interactions); (2) The responses of cassava and taro crops to enhanced CO2 conditions; and (3) Efforts to model productivity responses (within the APSIM framework) and results for locations in the Pacific.

  11. Fatty acids profile and nutritional composition of two tropical diatoms from the Costa Rican Pacific Coast

    Directory of Open Access Journals (Sweden)

    K. Rodríguez-Núñez

    2017-09-01

    Full Text Available Microalgae represent an important nutritional source for diverse organisms, therefore, their nutritional value, and more specifically, total lipid and fatty acid contents, must be considered. This study evaluated the nutritional contents and potential growth under controlled conditions of Nitzschia sp. and Chaetoceros sp. Tropical microalgae, isolated from the Gulf of Nicoya, Costa Rica. In both strains, the nutritional composition and the fatty acid profile were evaluated in exponential and stationary phases. With regards to fatty acids, v sp. had more Eicosapentaenoic Acid (EPA in both the exponential (32.80% and stationary (27.20% phases. The results in growth rate, production and biochemical composition indicated two tropical microalgae strains suitable for cultivation under controlled conditions. The studies of the phytoplankton in this geographical area is highly relevant because of its importance in the primary production of nutrients and the importance of finding sources of fatty acids such as the EPA.

  12. Fatty acids profile and nutritional composition of two tropical diatoms from the Costa Rican Pacific Coast

    International Nuclear Information System (INIS)

    Rodríguez-Núñez, K.; Toledo-Aguero, P.

    2017-01-01

    Microalgae represent an important nutritional source for diverse organisms, therefore, their nutritional value, and more specifically, total lipid and fatty acid contents, must be considered. This study evaluated the nutritional contents and potential growth under controlled conditions of Nitzschia sp. and Chaetoceros sp. Tropical microalgae, isolated from the Gulf of Nicoya, Costa Rica. In both strains, the nutritional composition and the fatty acid profile were evaluated in exponential and stationary phases. With regards to fatty acids, Nitzschia sp. had more Eicosapentaenoic Acid (EPA) in both the exponential (32.80%) and stationary (27.20%) phases. The results in growth rate, production and biochemical composition indicated two tropical microalgae strains suitable for cultivation under controlled conditions. The studies of the phytoplankton in this geographical area is highly relevant because of its importance in the primary production of nutrients and the importance of finding sources of fatty acids such as the EPA. [es

  13. Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: Part II analysis of CMIP5 simulations

    Science.gov (United States)

    Chen, Ying-Ying; Jin, Fei-Fei

    2017-12-01

    In this study, a simple coupled framework established in Part I is utilized to investigate inter-model diversity in simulating the equatorial Pacific SST annual cycle (SSTAC). It demonstrates that the simulated amplitude and phase characteristics of SSTAC in models are controlled by two internal dynamical factors (the damping rate and phase speed) and two external forcing factors (the strength of the annual and semi-annual harmonic forcing). These four diagnostic factors are further condensed into a dynamical response factor and a forcing factor to derive theoretical solutions of amplitude and phase of SSTAC. The theoretical solutions are in remarkable agreement with observations and CMIP5 simulations. The great diversity in the simulated SSTACs is related to the spreads in these dynamic and forcing factors. Most models tend to simulate a weak SSTAC, due to their weak damping rate and annual harmonic forcing. The latter is due to bias in the meridional asymmetry of the annual mean state of the tropical Pacific, represented by the weak cross-equatorial winds in the cold tongue region.

  14. Latitudinal Change of Tropical Cyclone Maximum Intensity in the Western North Pacific

    OpenAIRE

    Choi, Jae-Won; Cha, Yumi; Kim, Hae-Dong; Kang, Sung-Dae

    2016-01-01

    This study obtained the latitude where tropical cyclones (TCs) show maximum intensity and applied statistical change-point analysis on the time series data of the average annual values. The analysis results found that the latitude of the TC maximum intensity increased from 1999. To investigate the reason behind this phenomenon, the difference of the average latitude between 1999 and 2013 and the average between 1977 and 1998 was analyzed. In a difference of 500 hPa streamline between the two ...

  15. Melting of the Patagonian Ice Sheet and deglacial perturbations of the nitrogen cycle in the eastern South Pacific

    Science.gov (United States)

    De Pol-Holz, Ricardo; Ulloa, Osvaldo; Dezileau, Laurent; Kaiser, Jérôme; Lamy, Frank; Hebbeln, Dierk

    2006-02-01

    We report the last glacial-interglacial transition of marine denitrification off northern Chile based on sedimentary nitrogen isotopes. Our results show a relatively early, large and abrupt transition from low to high denitrification regimes consistent with recently-reported data from off Peru. The deglaciation is characterized by millennial-scale adjustments of the oxygen minimum zone that mimic the atmospheric temperature record from Antarctica. We also show that the sharp denitrification onset was not caused by an increase in local primary productivity, nor by ventilation changes occurring in the Southern Ocean, as previously proposed. We found that the magnitude and timing of the deglacial denitrification changes are in close agreement with the fresh-water pulses that resulted from the melting of the Patagonian Ice Sheet. We consequently attribute the deglacial onset of marine denitrification in the area to a collapse of the thermocline ventilation occurred at the mid-latitude subduction region of the eastern South Pacific.

  16. Possible Demands for Eastern Hardwoods Resulting from Harvest Restrictions in the Pacific

    Science.gov (United States)

    Janice K. Wiedenbeck; Philip A. Araman

    1993-01-01

    Efforts to conserve the habitat of the northern spotted owl in the Pacific Northwest have placed softwood timber supplies under a great deal of pressure and driven up the price of softwood lumber. Hardwoods could meet some of the demand for products that have previously been manufactured from softwood species. Hardwood structural lumber may soon become an economically...

  17. A new and presumably now extinct species of Millepora (Hydrozoa) in the eastern Pacific

    NARCIS (Netherlands)

    Weerdt, de W.H.; Glynn, P.W.

    1991-01-01

    A new species of hydrocoral, Millepora boschmai, is described from the Gulf of Chiriqui, Pacific Panamá. This species was first found in the early 1970's, but it has disappeared from this area as a result of the severe 1982-83 El Nino-Southern Oscillation (ENSO) event. Because the species has never

  18. Evidence of Enhanced Respired Carbon in Eastern Equatorial Pacific Deep-Waters over the last 30,000 years

    Science.gov (United States)

    Umling, N. E.; Thunell, R.

    2016-12-01

    Rapid decreases in glacial deep water reservoir ages have been observed in the Eastern Equatorial Pacific (EEP; this study), North Pacific (Rae et al., 2014), Southwest Pacific (Sikes et al., 2016), and North Atlantic (Skinner et al., 2013). It has been hypothesized that release of a deep ocean 14C-depleted, respired-carbon reservoir to the surface ocean and atmosphere is the most likely mechanism for the observed increases in atmospheric CO2 concentrations recorded in ice cores during the last glacial-interglacial transition (Broecker and Barker, 2007). This study examines whether oxygenation, organic carbon flux, and carbonate chemistry in the EEP deep-waters reflect an increase in respired carbon associated with recorded 14C-depletions using isotopic and trace element records from three Panama Basin cores (2,650-3,200 m water-depth). An increase in glacial deep-water respired carbon storage would result in a shift of DIC speciation towards lower carbonate ion concentrations along with deoxygenation of bottom waters. Specifically, we use the boron to calcium (B/Ca) and uranium to calcium (U/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentration (Yu and Elderfield, 2007; Raizsch et al., 2011). Additionally, bottom water oxygenation is estimated from the difference in δ13C of benthic foraminifera living in pore waters at the anoxic boundary and of those living in bottom water (Δ δ13C; Hoogakker et al., 2015, 2016), while carbon flux was assessed from the U/Ca and Cd/Ca of foraminiferal authigenic coatings.

  19. The Evolution of Deep Ocean Chemistry and Respired Carbon in the Eastern Equatorial Pacific Over the Last Deglaciation

    Science.gov (United States)

    de la Fuente, Maria; Calvo, Eva; Skinner, Luke; Pelejero, Carles; Evans, David; Müller, Wolfgang; Povea, Patricia; Cacho, Isabel

    2017-12-01

    It has been shown that the deep Eastern Equatorial Pacific (EEP) region was poorly ventilated during the Last Glacial Maximum (LGM) relative to Holocene values. This finding suggests a more efficient biological pump, which indirectly supports the idea of increased carbon storage in the deep ocean contributing to lower atmospheric CO2 during the last glacial. However, proxies related to respired carbon are needed in order to directly test this proposition. Here we present Cibicides wuellerstorfi B/Ca ratios from Ocean Drilling Program Site 1240 measured by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) as a proxy for deep water carbonate saturation state (Δ[CO32-], and therefore [CO32-]), along with δ13C measurements. In addition, the U/Ca ratio in foraminiferal coatings has been analyzed as an indicator of oxygenation changes. Our results show lower [CO32-], δ13C, and [O2] values during the LGM, which would be consistent with higher respired carbon levels in the deep EEP driven, at least in part, by reduced deep water ventilation. However, the difference between LGM and Holocene [CO32-] observed at our site is relatively small, in accordance with other records from across the Pacific, suggesting that a "counteracting" mechanism, such as seafloor carbonate dissolution, also played a role. If so, this mechanism would have increased average ocean alkalinity, allowing even more atmospheric CO2 to be "sequestered" by the ocean. Therefore, the deep Pacific Ocean very likely stored a significant amount of atmospheric CO2 during the LGM, specifically due to a more efficient biological carbon pump and also an increase in average ocean alkalinity.

  20. Anomalous summer climate in China influenced by the tropical Indo-Pacific Oceans

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Hengyi; Wu, Guoxiong; Liu, Yimin [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); Behera, Swadhin K. [Application Laboratory, JAMSTEC, Yokohama (Japan); Yamagata, Toshio [Application Laboratory, JAMSTEC, Yokohama (Japan); Graduate School of Science, University of Tokyo, Tokyo (Japan)

    2011-02-15

    Possible influences of three coupled ocean-atmosphere phenomena in the Indo-Pacific Oceans, El Nino, El Nino Modoki and the Indian Ocean Dipole (IOD), on summer climate in China are studied based on data analysis for the summers of 1951-2007. Partial correlation/regression analysis is used to find the influence paths through the related anomalous mid- and low-level tropospheric circulations over the oceanic region and East Eurasia, including the western North Pacific summer monsoon (WNPSM). Among the three phenomena, El Nino Modoki has the strongest relationship with the WNPSM. When two or three phenomena coexist with either positive or negative phase, the influences exerted by one phenomenon on summer climate in different regions of China may be enhanced or weakened by other phenomena. In 1994 when both El Nino Modoki and IOD are prominent without El Nino, a strong WNPSM is associated with severe flooding in southern China and severe drought in the Yangtze River Valley (YRV). The 500 hPa high systems over China are responsible for heat waves in most parts of China. In 1983 when a strong negative phase of El Nino Modoki is accompanied by moderate El Nino and IOD, a weak WNPSM is associated with severe flooding in the YRV and severe drought in southern China. The 500 hPa low systems over China are responsible for the cold summer in the YRV and northeastern China. For rainfall, the influence path seems largely through the low-level tropospheric circulations including the WNPSM. For temperature, the influence path seems largely through the mid-level tropospheric circulations over East Eurasia/western North Pacific Ocean. (orig.)

  1. Seasonal signatures in the physical properties of a tropical estuary in the central america pacific

    OpenAIRE

    Brenes, C. L.; Benavides, R.; Ballestero, D.

    2013-01-01

    A hydrographic survey was carried out in the Jaltepeque estuary in the Pacific coast of El Salvador. From September 2005 to March 2006, 10 sampling stations were occupied to measure temperature, salinity, dissolved oxygen and turbidity. Surface temperatures between 27 and 30.6 °C were observed during the survey, with extreme temporal variations close to 3°C. Minimum temperatures occur in October and February. Surface salinity shows a clear seasonal cycle, with values greater than 30 o/oo duri...

  2. Forests of the tropical eastern Andean flank during the middle Pleistocene

    NARCIS (Netherlands)

    Cárdenas, M.L.; Gosling, W.D.; Pennington, R.T.; Poole, I.; Sherlock, S.C.; Mothes, P.

    2014-01-01

    Inter-bedded volcanic and organic sediments from Erazo (Ecuador) indicate the presence of four different forest assemblages on the eastern Andean flank during the middle Pleistocene. Radiometric dates (40Ar-39Ar) obtained from the volcanic ash indicate that deposition occurred between 620,000 and

  3. Pre-whaling genetic diversity and population ecology in eastern Pacific gray whales: insights from ancient DNA and stable isotopes.

    Directory of Open Access Journals (Sweden)

    S Elizabeth Alter

    Full Text Available Commercial whaling decimated many whale populations, including the eastern Pacific gray whale, but little is known about how population dynamics or ecology differed prior to these removals. Of particular interest is the possibility of a large population decline prior to whaling, as such a decline could explain the ~5-fold difference between genetic estimates of prior abundance and estimates based on historical records. We analyzed genetic (mitochondrial control region and isotopic information from modern and prehistoric gray whales using serial coalescent simulations and Bayesian skyline analyses to test for a pre-whaling decline and to examine prehistoric genetic diversity, population dynamics and ecology. Simulations demonstrate that significant genetic differences observed between ancient and modern samples could be caused by a large, recent population bottleneck, roughly concurrent with commercial whaling. Stable isotopes show minimal differences between modern and ancient gray whale foraging ecology. Using rejection-based Approximate Bayesian Computation, we estimate the size of the population bottleneck at its minimum abundance and the pre-bottleneck abundance. Our results agree with previous genetic studies suggesting the historical size of the eastern gray whale population was roughly three to five times its current size.

  4. Migratory preferences of humpback whales between feeding and breeding grounds in the eastern South Pacific

    NARCIS (Netherlands)

    Acevedo, Jorge; Aguayo-lobo, Anelio; Allen, Judith; Botero-acosta, Natalia; Capella, Juan; Castro, Cristina; Rosa, Luciano Dalla; Denkinger, Judith; Félix, Fernando; Flórez-gonzález, Lilian; Garita, Frank; Guzmán, Héctor M.; Haase, Ben; Kaufman, Gregory; Llano, Martha; Olavarría, Carlos; Pacheco, Aldo S.; Plana, Jordi; Rasmussen, Kristin; Scheidat, Meike; Secchi, Eduardo R.; Silva, Sebastian; Stevick, Peter T.

    2017-01-01

    Latitudinal preferences within the breeding range have been suggested for Breeding Stock G humpback whales that summer in different feeding areas of the eastern South Pacific. To address this hypothesis, humpback whales photo-identified from the Antarctic Peninsula and the Fueguian Archipelago

  5. Climate Prediction Center (CPC)Area-averaged 850-hPa Eastern Pacific Trade Wind Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and SST Indices. It is the 850-hPa trade wind anomalies averaged over the area 5oN ? 5oS, 135oW-120oW (eastern...

  6. Biogeochemical linkage between atmosphere and ocean in the eastern equatorial Pacific Ocean: Results from the EqPOS research cruise

    Science.gov (United States)

    Furutani, H.; Inai, Y.; Aoki, S.; Honda, H.; Omori, Y.; Tanimoto, H.; Iwata, T.; Ueda, S.; Miura, K.; Uematsu, M.

    2012-12-01

    Eastern equatorial Pacific Ocean is a unique oceanic region from several biogeochemical points of view. It is a remote open ocean with relatively high marine biological activity, which would result in limited influence of human activity but enhanced effect of marine natural processes on atmospheric composition. It is also characterized as high nutrient low chlorophyll (HNLC) ocean, in which availability of trace metals such as iron and zinc limits marine primary production and thus atmospheric deposition of these trace elements to the ocean surface is expected to play an important role in regulating marine primary production and defining unique microbial community. High sea surface temperature in the region generates strong vertical air convection which efficiently brings tropospheric atmospheric composition into stratosphere. In this unique eastern equatorial Pacific Ocean, EqPOS (Equatorial Pacific Ocean and Stratospheric/Tropospheric Atmospheric Study) research cruise was organized as a part of SOLAS Japan activity to understand biogeochemical ocean-atmospheric interaction in the region. Coordinated atmospheric, oceanic, and marine biological observations including sampling/characterization of thin air-sea interfacial layer (sea surface microlayer: SML) and launching large stratospheric air sampling balloons were carried out on-board R/V Hakuho Maru starting from 29 January for 39 days. Biogeochemically important trace/long-lived gases such as CO2, dimethyl sulfide (DMS), and some volatile organic carbons (VOCs) both in the atmosphere and seawater were continuously monitored and their air-sea fluxes were also observed using gradient and eddy-covariance techniques. Atmospheric gas measurement of CO2, CH4, N2O, SF6, CO, H2, Ar and isotopic composition of selected gases were further extended to stratospheric air by balloon-born sampling in addition to a vertical profiling of O3, CO2, and H2O with sounding sondes. Physical and chemical properties of marine

  7. N2 fixation as a dominant new N source in the western tropical South Pacific Ocean (OUTPACE cruise)

    Science.gov (United States)

    Caffin, Mathieu; Moutin, Thierry; Foster, Rachel Ann; Bouruet-Aubertot, Pascale; Michelangelo Doglioli, Andrea; Berthelot, Hugo; Guieu, Cécile; Grosso, Olivier; Helias-Nunige, Sandra; Leblond, Nathalie; Gimenez, Audrey; Petrenko, Anne Alexandra; de Verneil, Alain; Bonnet, Sophie

    2018-05-01

    We performed nitrogen (N) budgets in the photic layer of three contrasting stations representing different trophic conditions in the western tropical South Pacific (WTSP) Ocean during austral summer conditions (February-March 2015). Using a Lagrangian strategy, we sampled the same water mass for the entire duration of each long-duration (5 days) station, allowing us to consider only vertical exchanges for the budgets. We quantified all major vertical N fluxes both entering (N2 fixation, nitrate turbulent diffusion, atmospheric deposition) and leaving the photic layer (particulate N export). The three stations were characterized by a strong nitracline and contrasted deep chlorophyll maximum depths, which were lower in the oligotrophic Melanesian archipelago (MA, stations LD A and LD B) than in the ultra-oligotrophic waters of the South Pacific Gyre (SPG, station LD C). N2 fixation rates were extremely high at both LD A (593 ± 51 µmol N m-2 d-1) and LD B (706 ± 302 µmol N m-2 d-1), and the diazotroph community was dominated by Trichodesmium. N2 fixation rates were lower (59 ± 16 µmol N m-2 d-1) at LD C, and the diazotroph community was dominated by unicellular N2-fixing cyanobacteria (UCYN). At all stations, N2 fixation was the major source of new N (> 90 %) before atmospheric deposition and upward nitrate fluxes induced by turbulence. N2 fixation contributed circa 13-18 % of primary production in the MA region and 3 % in the SPG water and sustained nearly all new primary production at all stations. The e ratio (e ratio = particulate carbon export / primary production) was maximum at LD A (9.7 %) and was higher than the e ratio in most studied oligotrophic regions (leading to N accumulation in the upper layer appears as a characteristic of the WTSP during the summer season.

  8. Coupled interactions of organized deep convection over the tropical western pacific

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The relationship between sea surface temperature (SST) and deep convection is complex. In general, deep convection occurs more frequently and with more intensity as SSTs become higher. This theory assumes that the atmospheric stability is sufficiently reduced to allow the onset of moist convection. However, the amount and intensity of convection observed tends to decrease with increasing SST because very warm SSTs. A reason for such decrease is the enhancements to surface fluxes of heat and moisture out of the ocean surface because of the vertical overturning associated with deep convection. Early studies used the radiative-convective models of the atmosphere to examine the role of the convective exchange of heat and moisture in maintaining the vertical temperature profile. In this paper we use a Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to simulate a squall line over a tropical ocean global atmosphere/coupled ocean atmosphere response experiment (TOGA/COARE) area and to investigate how the ocean cooling mechanisms associated with organized deep convection act to limit tropical SSTs.

  9. Molecular Phylogeny Of Microbes In The Deep-Sea Sediments From Tropical West Pacific Warm Pool

    Science.gov (United States)

    Wang, F.; Xiao, X.; Wang, P.

    2005-12-01

    The presence and phylogeny of bacteria and archaea in five deep-sea sediment samples collected from west Pacific Warm Pool area (WP-0, WP-1, WP-2, WP-3, WP-4), and in five sediment layers (1cm-, 3cm-, 6cm-, 10cm-, 12cm- layer) of the 12-cm sediment core of WP-0 were checked and compared. The microbial diversity in the five deep-sea sediments were similar as revealed by denaturing gradient gel electrophoresis, and all of them contained members of non-thermophilic marine group I crenarchaeota as the predominant archaeal group. The composition of methylotrophs including methanotrophs, sulfate reducing bacteria in the WP-0 sediment core were further investigated by molecular marker based analysis of mxaF, pmoA, dsrAB, specific anoxic methane oxidation archaeal and sulfate reducing bacterial 16S rRNA genes. From MxaF amino acid sequence analysis, it was demonstrated that microbes belonging to α - Proteobacteria most related to Hyphomicrobium and Methylobacterium were dominant aerobic methylotrophs in this deep-sea sediment; and small percentage of type II methanotrophs affiliating closest to Methylocystis and Methylosinus were also detected in this environment. mxaF quantitative PCR results showed that in the west Pacific WP sediment there existed around 3× 10 4-5 methylotrophs per gram sediment, 10-100 times more than that in samples collected from several other deep-sea Pacific sediment sample, but about 10 times less than that present in samples collected from rice and flower garden soil. Diverse groups of novel archaea (named as WPA), not belonging to any known archaeal lineages were checked out. They could be placed in the euryarchaeota kingdom, separated into two distinct groups, the main group was peripherally related with methanogens, the other group related with Thermoplasma. Possible sulfate reducing bacterial related with Desulfotomaculum, Desulfacinum, Desulfomonile and Desulfanuticus were also detected in our study. The vertical distributions of WPA

  10. Whole-island carbon stocks in the tropical Pacific: implications for mangrove conservation and upland restoration.

    Science.gov (United States)

    Donato, D C; Kauffman, J B; Mackenzie, R A; Ainsworth, A; Pfleeger, A Z

    2012-04-30

    Management of forest carbon (C) stocks is an increasingly prominent land-use issue. Knowledge of carbon storage in tropical forests is improving, but regional variations are still poorly understood, and this constrains forest management and conservation efforts associated with carbon valuation mechanisms (e.g., carbon markets). This deficiency is especially pronounced in tropical islands and low-lying coastal areas where climate change impacts are expected to be among the most severe. This study presents the first field estimate of island-wide carbon storage in ecosystems of Oceania, with special attention to the regional role of coastal mangroves, which occur on islands and coastal zones throughout the tropics. On two island groups of Micronesia (Yap and Palau), we sampled all above- and belowground C pools, including soil and vegetation, in 24 sites distributed evenly among the three major vegetation structural types: mangroves, upland forests, and open savannas (generally on degraded lands formerly forested). Total C stocks were estimated to be 3.9 and 15.2 Tg C on Yap and Palau, respectively. Mangroves contained by far the largest per-hectare C pools (830-1218 Mg C ha(-1)), with deep organic-rich soils alone storing more C (631-754 Mg C ha(-1)) than all pools combined in upland systems. Despite covering just 12-13% of land area, mangroves accounted for 24-34% of total island C stocks. Savannas (156-203 Mg C ha(-1)) contained significantly lower C stocks than upland forests (375-437 Mg C ha(-1)), suggesting that reforesting savannas where appropriate has high potential for carbon-based funding to aid restoration objectives. For mangroves, these results demonstrate the key role of these systems within the broader context of C storage in island and coastal landscapes. Sustainable management of mangrove forests and their large C stocks is of high importance at the regional scale, and climate change mitigation programs such as REDD+ could play a large role in

  11. Mesozooplankton structure and functioning in the western tropical South Pacific along the 20° parallel south during the OUTPACE survey (February-April 2015)

    Science.gov (United States)

    Carlotti, François; Pagano, Marc; Guilloux, Loïc; Donoso, Katty; Valdés, Valentina; Hunt, Brian P. V.

    2018-03-01

    This paper presents results on the spatial and temporal distribution patterns of mesozooplankton in the western tropical South Pacific along the 20 °S south visited during austral summer (February-April 2015). By contributing to the interdisciplinary OUTPACE (Oligotrophy to UlTra-oligotrophy PACific Experiment) project (Moutin et al., 2017), the specific aims of this study dedicated to mesozooplankton observations were (1) to document the responses of zooplankton in terms of species diversity, density and biomass along the transect, and (2) to characterize the trophic pathways from primary production to large mesozooplanktonic organisms. Along a West-East transect of 4000 km from New Caledonia to the French Polynesia, 15 short-duration stations (SD-1 to SD-15, 8 hours each) dedicated to a large-scale description, and three long-duration stations (LD-A to LD-C, 5days each), respectively positioned (1) in offshore northern waters of New Caledonia, (2) near Niue Island, and (3) in the subtropical Pacific gyre near the Cook Islands, were sampled with a Bongo Net with 120 μm mesh size net for quantifying mesozooplankton abundance, biomass, community taxonomy and size structure, and size fractionated content of δ15N. Subsequently, the contribution of Diazotroph Derived Nitrogen (DDN (%) to zooplankton δ15N (ZDDN) values at each station was calculated, as well as an estimation of zooplankton carbon demand and grazing impact and of zooplankton excretion rates. The mesozooplankton community showed a general decreasing trend in abundance and biomass from West to East, with a clear drop in the ultra-oligotrophic waters of the subtropical Pacific gyre (LD-C, SD-14 and SD-15). Higher abundance and biomass corresponded to higher primary production of more or less ephemeral blooms linked to complex mesoscale circulation in the Coral Sea and between the longitudes 170-180 °W. Copepods were the most abundant group (68 to 86 % of total abundance), slightly

  12. A satellite view of the sources and interannual variability of free tropospheric PAN over the eastern Pacific Ocean during summer and its timeline for trend detection

    Science.gov (United States)

    Zhu, L.; Fischer, E. V.; Payne, V.; Walker, T. W.; Worden, J. R.; Jiang, Z.; Kulawik, S. S.

    2016-12-01

    Peroxyacetyl nitrate (PAN) is the most important reservoir for nitrogen oxide radicals (NOx = NO + NO2) in the troposphere and plays a significant role in the redistribution of NOx to remote regions. There is strong evidence that PAN decomposition in specific plumes of Asian origin subsiding over the eastern Pacific Ocean can lead to significant ozone (O3) enhancements in the troposphere. Thus quantifying the spatial and temporal variability of PAN over the eastern Pacific Ocean is an important part of understanding the O3 budget upwind of the North American airshed. Here we present observations of PAN from the Tropospheric Emission Spectrometer (TES) over the eastern Pacific for July 2006-2010. We focus our analysis on July because prior work based on in situ observations has primarily addressed the transpacific transport of PAN in spring. Plumes containing elevated PAN are present almost every day in the month of July, and we show that elevated PAN observed in July has multiple sources, including fires in Siberia, anthropogenic and lightning sources in eastern China, and re-circulated pollution from the continental U.S. We provide examples of each type of source using both HYPLIT trajectories and a GEOS-Chem adjoint sensitivity analysis. Based on the variability observed in the TES PAN retrievals over this region, we predict it would be faster to detect a trend of a given magnitude in PAN using satellite observations over the eastern Pacific Ocean region rather than surface in situ observations at one site, and that a trend of a given magnitude would be more quickly detected in summer than spring.

  13. Deriving inertial wave characteristics from surface drifter velocities: Frequency variability in the Tropical Pacific

    Science.gov (United States)

    Poulain, Pierre-Marie; Luther, Douglas S.; Patzert, William C.

    1992-11-01

    Two techniques have been developed for estimating statistics of inertial oscillations from satellite-tracked drifters. These techniques overcome the difficulties inherent in estimating such statistics from data dependent upon space coordinates that are a function of time. Application of these techniques to tropical surface drifter data collected during the NORPAX, EPOCS, and TOGA programs reveals a latitude-dependent, statistically significant "blue shift" of inertial wave frequency. The latitudinal dependence of the blue shift is similar to predictions based on "global" internal wave spectral models, with a superposition of frequency shifting due to modification of the effective local inertial frequency by the presence of strongly sheared zonal mean currents within 12° of the equator.

  14. Perturbations to the lower ionosphere by tropical cyclone Evan in the South Pacific Region

    Science.gov (United States)

    Kumar, Sushil; NaitAmor, Samir; Chanrion, Olivier; Neubert, Torsten

    2017-08-01

    Very low frequency (VLF) electromagnetic signals from navigational transmitters propagate worldwide in the Earth-ionosphere waveguide formed by the Earth and the electrically conducting lower ionosphere. Changes in the signal properties are signatures of variations in the conductivity of the reflecting boundary of the lower ionosphere which is located in the mesosphere and lower thermosphere, and their analysis is, therefore, a way to study processes in these remote regions. Here we present a study on amplitude perturbations of local origin on the VLF transmitter signals (NPM, NLK, NAA, and JJI) observed during tropical cyclone (TC) Evan, 9-16 December 2012 when TC was in the proximity of the transmitter-receiver links. We observed a maximum amplitude perturbation of 5.7 dB on JJI transmitter during 16 December event. From Long Wave Propagation Capability model applied to three selected events we estimate a maximum decrease in the nighttime D region reference height (H') by 5.2 km (13 December, NPM) and maximum increase in the daytime D region H' by 6.1 km and 7.5 km (14 and 16 December, JJI). The results suggest that the TC caused the neutral densities of the mesosphere and lower thermosphere to lift and sink (bringing the lower ionosphere with it), an effect that may be mediated by gravity waves generated by the TC. The perturbations were observed before the storm was classified as a TC, at a time when it was a tropical depression, suggesting the broader conclusion that severe convective storms, in general, perturb the mesosphere and the stratosphere through which the perturbations propagate.

  15. Perceptions, impacts and adaptation of tropical cyclones in the Southwest Pacific: an urban perspective from Fiji, Vanuatu and Tonga

    Science.gov (United States)

    Magee, A. D.; Verdon-Kidd, D. C.; Kiem, A. S.; Royle, S. A.

    2015-11-01

    To better understand perceptions, impacts and adaptation strategies related to tropical cyclones (TCs) in urban environments of the Southwest Pacific (SWP), a survey (with 130 participants) was conducted across three island nations; Fiji, Vanuatu and Tonga. The key aims of this study include: (i) understanding local perceptions of TC activity, (ii) investigating physical impacts of TC activity, and (iii) uncovering adaptation strategies used to offset the impacts of TCs. It was found that current methods of adaptation generally occur at the local level immediately prior to a TC event (preparation of property, gathering of food, setting up of community centres). This method of adaptation appears to be effective, however higher level adaptation measures (such as the development of building codes as developed in Fiji) may reduce vulnerability further. The survey responses also highlight that there is significant scope to provide education programs specifically aimed at improving the understanding of weather related aspects of TCs. Finally, we investigate the potential to merge ecological traditional knowledge with the non-traditional knowledge of empirical and climate mode based weather forecasts to improve forecasting of TCs, which would ultimately reduce vulnerability and increase adaptive capacity.

  16. Tropical cyclone perceptions, impacts and adaptation in the Southwest Pacific: an urban perspective from Fiji, Vanuatu and Tonga

    Science.gov (United States)

    Magee, Andrew D.; Verdon-Kidd, Danielle C.; Kiem, Anthony S.; Royle, Stephen A.

    2016-05-01

    The destruction caused by tropical cyclone (TC) Pam in March 2015 is considered one of the worst natural disasters in the history of Vanuatu. It has highlighted the need for a better understanding of TC impacts and adaptation in the Southwest Pacific (SWP) region. Therefore, the key aims of this study are to (i) understand local perceptions of TC activity, (ii) investigate impacts of TC activity and (iii) uncover adaptation strategies used to offset the impacts of TCs. To address these aims, a survey (with 130 participants from urban areas) was conducted across three SWP small island states (SISs): Fiji, Vanuatu and Tonga (FVT). It was found that respondents generally had a high level of risk perception and awareness of TCs and the associated physical impacts, but lacked an understanding of the underlying weather conditions. Responses highlighted that current methods of adaptation generally occur at the local level, immediately prior to a TC event (preparation of property, gathering of food, finding a safe place to shelter). However higher level adaptation measures (such as the modification to building structures) may reduce vulnerability further. Finally, we discuss the potential of utilising weather-related traditional knowledge and non-traditional knowledge of empirical and climate-model-based weather forecasts to improve TC outlooks, which would ultimately reduce vulnerability and increase adaptive capacity. Importantly, lessons learned from this study may result in the modification and/or development of existing adaptation strategies.

  17. Evidence for island effects and diurnal signals in satellite images of clouds over the tropical western pacific

    Energy Technology Data Exchange (ETDEWEB)

    Barr-Kumarakulasinghe, S.A. [State Univ. of New York, Stony Brook, NY (United States); Reynolds, R.M.; Minnett, P.J. [Brookhaven National Lab., Upton, NY (United States)

    1996-04-01

    Instruments to measure atmospheric radiation and ancillary meteorological variables will be set up on Manus Island as the first site of the tropical western pacific (TWP) locale of the Atmospheric Radiation Measurements (ARM) program. Manus is in the {open_quotes}warm pool{close_quotes} region of the TWP. This region is critical in establishing global atmospheric circulation patterns and is a primary energy source for the Hadley and Walker cells. The myriad islands and enclosed seas in the immediate vicinity of Manus have been referred to as the {open_quotes}maritime continent{close_quotes}, which has the deepest convective activity in the world. Manus is in a region having a global impact on climate and where island effects on clouds are likely to be important. In this preliminary analysis we have sought evidence of island effects in the cloud fields around Manus and have studied the variability of the diurnal cycles of cloud cover over Manus and over other islands and areas of open sea in the region.

  18. Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific

    KAUST Repository

    Sraj, Ihab

    2016-08-26

    The authors present a polynomial chaos (PC)-based Bayesian inference method for quantifying the uncertainties of the K-profile parameterization (KPP) within the MIT general circulation model (MITgcm) of the tropical Pacific. The inference of the uncertain parameters is based on a Markov chain Monte Carlo (MCMC) scheme that utilizes a newly formulated test statistic taking into account the different components representing the structures of turbulent mixing on both daily and seasonal time scales in addition to the data quality, and filters for the effects of parameter perturbations over those as a result of changes in the wind. To avoid the prohibitive computational cost of integrating the MITgcm model at each MCMC iteration, a surrogate model for the test statistic using the PC method is built. Because of the noise in the model predictions, a basis-pursuit-denoising (BPDN) compressed sensing approach is employed to determine the PC coefficients of a representative surrogate model. The PC surrogate is then used to evaluate the test statistic in the MCMC step for sampling the posterior of the uncertain parameters. Results of the posteriors indicate good agreement with the default values for two parameters of the KPP model, namely the critical bulk and gradient Richardson numbers; while the posteriors of the remaining parameters were barely informative. © 2016 American Meteorological Society.

  19. GROWTH AND SURVIVAL OF PRAWN Macrobrachium tenellum IN EXPERIMENTAL CULTURES DURING SUMMER AND AUTUMN IN THE TROPICAL MEXICAN PACIFIC COAST.

    Directory of Open Access Journals (Sweden)

    Fernando Vega Villasante

    2011-03-01

    Full Text Available For aquaculture purposes, Macrobrachium tenellum is considered as a good candidate, is not aggressive nor presents cannibalism and can tolerate an ample interval of temperatures, salinities and oxygen concentrations. The present work evaluates the semi-intensive culture of M. tenellum under environmental conditions of summer and autumn with special attention to water temperature. The results of the experimental cultures in the tropical Mexican Pacific coast, suggest this species demonstrates better growth during the end of the spring, summer and the beginning of the autumn, time at which the average temperature of the water is near 30°C. The experimental cultures of end of autumn and beginnings of winter demonstrate minimum growth, with an average temperature of the culture water of 27°C.  Other parameters like pH, O2 concentration and turbidity in the culture water were similar in all the experimental cultures reason why temperature is suggested the factor was the determinant in the differences found in growth. Â

  20. Notoraja martinezi sp. nov., a new species of deepwater skate and the first record of the genus Notoraja Ishiyama, 1958 (Rajiformes: Arhynchobatidae) from the eastern Pacific Ocean.

    Science.gov (United States)

    Concha, Francisco J; Ebert, David A; Long, Douglas J

    2016-04-05

    A new arhynchobatid skate, Notoraja martinezi, sp. nov., is described from four specimens collected from the eastern Central Pacific from Costa Rica to Ecuador and between depths of 1256-1472 m. The new species is placed in the genus Notoraja based on the long and flexible rostrum and its proportionally long tail with respect to total length. This species is distinct from its congeners in the Western Pacific by the straight margins of its rostrum, long anterior lobes of pelvic fins, and its abundant and very well developed caudal thorns.

  1. Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans.

    Science.gov (United States)

    Estrada, Marta; Delgado, Maximino; Blasco, Dolors; Latasa, Mikel; Cabello, Ana María; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Mozetič, Patricija; Vidal, Montserrat

    2016-01-01

    We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal

  2. Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans

    Science.gov (United States)

    Estrada, Marta; Delgado, Maximino; Blasco, Dolors; Latasa, Mikel; Cabello, Ana María; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Mozetič, Patricija; Vidal, Montserrat

    2016-01-01

    We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal

  3. Seasonal abundance of the dolphinfish, Coryphaena hippurus, in Hawaii and the tropical Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Syd Kraul

    1999-12-01

    Full Text Available This report looks at possible explanations for the seasonal abundance of the dolphinfish, Coryphaena hippurus, in Hawaii. In Hawaii and many parts of the Pacific Ocean, the abundance of C. hippurus (called mahimahi in Hawaii varies seasonally in a pattern that is fairly consistent from year to year. Size frequency analysis shows that this pattern of seasonal landings matches the pattern of cohort abundance in certain years. The strongest cohorts are spawned in July, often stay in our fishing zone for at least 5 months, and may comprise the predominant portion of the catch through October. Even though mahimahi spawn copiously all year in captivity, the data here suggest that wild mahimahi either spawn less frequently, or their larvae survive better at certain times of the year. Thus, seasonal abundance of mahimahi in Hawaii might be a function of cohort survival. The abundance pattern also fits the pattern of change in seasonal surface temperatures, and it is quite possible that mahimahi migrate north and south to stay in the sea surface thermocline associated with the 23°C isotherm. Natural growth rates were derived from our size frequency analyses, and the rates matched growth rates reported in a previous study of otolith ring deposition. A significant increase in longline fishing in 1989 increased total landings but did not reduce the catch quantity or sales price for charter boat mahimahi.

  4. Shore-based counts of the Eastern North Pacific gray whale stock from central California conducted from 1967-12-18 to 2007-02-22 (NCEI Accession 0138007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Fisheries Service (NMFS) has conducted shore-based counts of the Eastern North Pacific stock of gray whales (Eschrichtius robustus) 26 years from...

  5. Latitudinal Change of Tropical Cyclone Maximum Intensity in the Western North Pacific

    Directory of Open Access Journals (Sweden)

    Jae-Won Choi

    2016-01-01

    Full Text Available This study obtained the latitude where tropical cyclones (TCs show maximum intensity and applied statistical change-point analysis on the time series data of the average annual values. The analysis results found that the latitude of the TC maximum intensity increased from 1999. To investigate the reason behind this phenomenon, the difference of the average latitude between 1999 and 2013 and the average between 1977 and 1998 was analyzed. In a difference of 500 hPa streamline between the two periods, anomalous anticyclonic circulations were strong in 30°–50°N, while anomalous monsoon trough was located in the north of South China Sea. This anomalous monsoon trough was extended eastward to 145°E. Middle-latitude region in East Asia is affected by the anomalous southeasterlies due to these anomalous anticyclonic circulations and anomalous monsoon trough. These anomalous southeasterlies play a role of anomalous steering flows that make the TCs heading toward region in East Asia middle latitude. As a result, TCs during 1999–2013 had higher latitude of the maximum intensity compared to the TCs during 1977–1998.

  6. Impacts of Pacific SSTs on California Winter Precipitation

    Science.gov (United States)

    Myoung, B.; Kafatos, M.

    2017-12-01

    Consecutive below-normal precipitation years and resulted multi-year droughts are critical issues as the recent 2012-2015 drought of California caused tremendous socio-economic damages. However, studies on the causes of the multi-year droughts lack. In this study, focusing on the three multi-year droughts (1999-2002, 2007-2009, and 2012-2015) in California during the last two decades, we investigated the atmospheric and oceanic characteristics of the three drought events for winter (December-February, DJF) in order to understand large-scale circulations that are responsible for initiation, maintenance, and termination of the droughts. It was found that abnormally developed upper-tropospheric ridges over the North Pacific are primarily responsible for precipitation deficits and then droughts. These ridges developed when negative sea surface temperature anomalies (SSTs) including La Niña events are pervasive in the tropical Pacific. After 3 or 4 years, the droughts ended under the opposite conditions; upper-tropospheric troughs in the North Pacific with El Niño events in the tropics. Results of Empirical Orthogonal Function (EOF) analysis for the 41-year (1974/75-2014/15) 500 hPa geopotential height in DJF revealed that, during the drought periods, the positive phases of the first and second EOF mode (EOF1+ and EOF2+, respectively) were active one by one, positioning upper-tropospheric ridges over the North Pacific. While EOF1+ is associated with cold tropical central Pacific and negative Pacific Decadal Oscillation (PDO), EOF2+ is associated with the tropical east-west SST dipole pattern (i.e., warm western tropical Pacific and cool eastern tropical Pacific near the southern Peru). Based on these results, we developed a regression model for winter precipitation. While dominant SST factors differ by decades, for the recent two decades (1994/1995-2014/2015), 56% variability of DJF precipitation is explained by the tropical east-west SST dipole pattern and PDO (NINO3

  7. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios

    Science.gov (United States)

    Erikson, Li H.; Hegermiller, Christie; Barnard, Patrick; Ruggiero, Peter; van Ormondt, Martin

    2015-01-01

    Hindcast and 21st century winds, simulated by General Circulation Models (GCMs), were used to drive global- and regional-scale spectral wind-wave generation models in the Pacific Ocean Basin to assess future wave conditions along the margins of the North American west coast and Hawaiian Islands. Three-hourly winds simulated by four separate GCMs were used to generate an ensemble of wave conditions for a recent historical time-period (1976–2005) and projections for the mid and latter parts of the 21st century under two radiative forcing scenarios (RCP 4.5 and RCP 8.5), as defined by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) experiments. Comparisons of results from historical simulations with wave buoy and ERA-Interim wave reanalysis data indicate acceptable model performance of wave heights, periods, and directions, giving credence to generating projections. Mean and extreme wave heights are projected to decrease along much of the North American west coast. Extreme wave heights are projected to decrease south of ∼50°N and increase to the north, whereas extreme wave periods are projected to mostly increase. Incident wave directions associated with extreme wave heights are projected to rotate clockwise at the eastern end of the Aleutian Islands and counterclockwise offshore of Southern California. Local spatial patterns of the changing wave climate are similar under the RCP 4.5 and RCP 8.5 scenarios, but stronger magnitudes of change are projected under RCP 8.5. Findings of this study are similar to previous work using CMIP3 GCMs that indicates decreasing mean and extreme wave conditions in the Eastern North Pacific, but differ from other studies with respect to magnitude and local patterns of change. This study contributes toward a larger ensemble of global and regional climate projections needed to better assess uncertainty of potential future wave climate change, and provides model boundary conditions for assessing the impacts of

  8. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    Science.gov (United States)

    Scholl, Martha A.; Murphy, Sheila F.

    2014-05-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, -0.73 ‰ to tropical storm rain with values as low as -127 ‰, -16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply

  9. Elevational Distribution of Flightless Ground Beetles in the Tropical Rainforests of North-Eastern Australia.

    Science.gov (United States)

    Staunton, Kyran M; Nakamura, Akihiro; Burwell, Chris J; Robson, Simon K A; Williams, Stephen E

    2016-01-01

    Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of relatively distinct assemblages containing a high level of regional endemic species. Species richness was most strongly and positively associated with historical and current climatic stabilities and negatively associated with severity of recent disturbance (treefalls). Assemblage composition was associated with latitude and historical and current climatic conditions. Although the results need to be interpreted carefully due to inter-correlation between historical and current climatic variables, our study is in agreement with the hypothesis that upland refugia provided stable climatic conditions since the last glacial maximum, and supported a diverse fauna of flightless beetle species. These findings are important for conservation

  10. Reply to Comment on 'Drought Variability in the Eastern Australia and New Zealand Summer Drought Atlas (ANZDA, CE 1500-2012) Modulated by the Interdecadal Pacific Oscillation'

    Science.gov (United States)

    Palmer, Jonathan G.; Cook, Edward R.; Turney, Chris S. M.; Allen, Kathy; Fenwick, Pavla; Cook, Benjamin I.; O'Donnell, Alison; Lough, Janice; Grierson, Pauline; Baker, Patrick J.

    2017-01-01

    This reply is in response to Vance et al (2017), who expressed concern that their Law Dome summer sea salt record (LDsss; Vance et al 2013) and two Interdecadal Pacific Oscillation (IPO) reconstructions (PLF and DT-median; Vance et al 2015) were not compared properly in our recent study (Palmer et al 2015) describing the eastern Australian and New Zealand summer Drought Atlas (ANZDA) and that this omission mischaracterizes their records.

  11. Extreme weather impacts on tropical mangrove forests in the Eastern Brazil Marine Ecoregion.

    Science.gov (United States)

    Servino, Ricardo Nogueira; Gomes, Luiz Eduardo de Oliveira; Bernardino, Angelo Fraga

    2018-07-01

    Extreme weather events are likely to become more frequent in the 21st century bringing significant impacts to coastal ecosystems. However, the capacity to detect and measure those impacts are still limited, with effects largely unstudied. In June 2016, a hailstorm with wind gusts of over 100 km·h -1 caused an unprecedented mangrove dieback on Eastern Brazil. To quantify the scale of impact and short-term recovery of mangroves (15-mo), we used satellite imagery and field sampling to evaluate changes in forest structure in control and impacted areas after the hailstorm. Satellite imagery revealed mangrove dieback in over 500 ha, corresponding to 29.3% of the total forest area suddenly impacted after the hailstorm. Fifteen months after the hailstorm, some impacted areas show an initial recovery, while others continued to degrade. The El Niño years of 2014-2016 created mild drought conditions in Eastern Brazil. As observed in wetlands of semi-arid regions during the same period, mangrove recovery may have been impaired by continued physiological stress and climate change effects. Economic losses in the study site from typical mangrove ecosystem services including food provision, climate regulation, raw materials and nurseries are estimated to at least US$ 792,624 yr -1 . This is the first evidence of an extreme weather impact on mangroves in Brazil that typically provide unique ecological and economic subsistence to coastal populations. Our results reveal that there is a pressing need for long-term monitoring and climate change adaptation actions for coastal wetlands in Brazil, and to provide broad estimates of ecosystem values associated with these ecosystems given many areas are already experiencing chronic stress from local impacts, drought and high temperatures. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Objective Tracking of Tropical Cyclones in the North-West Pacific Basin Based on Wind Field Information only

    Science.gov (United States)

    Leckebusch, G. C.; Befort, D. J.; Kruschke, T.

    2016-12-01

    Although only ca. 12% of the global insured losses of natural disasters occurred in Asia, there are two major reasons to be concerned about risks in Asia: a) The fraction of loss events was substantial higher with 39% of which 94% were due to atmospheric processes; b) Asia and especially China, is undergoing quick transitions and especially the insurance market is rapidly growing. In order to allow for the estimation of potential future (loss) impacts in East-Asia, in this study we further developed and applied a feature tracking system based on extreme wind speed occurrences to tropical cyclones, which was originally developed for extra-tropical cyclones (Leckebusch et al., 2008). In principle, wind fields will be identified and tracked once a coherent exceedance of local percentile thresholds is identified. The focus on severe wind impact will allow an objective link between the strength of a cyclone and its potential damages over land. The wind tracking is developed in such a way to be applicable also to course-gridded AOGCM simulation. In the presented configuration the wind tracking algorithm is applied to the Japanese reanalysis (JRA55) and TC Identification is based on 850hPa wind speeds (6h resolution) from 1979 to 2014 over the Western North Pacific region. For validation the IBTrACS Best Track archive version v03r8 is used. Out of all 904 observed tracks, about 62% can be matched to at least one windstorm event identified in JRA55. It is found that the relative amount of matched best tracks increases with the maximum intensity. Thus, a positive matching (hit rate) of above 98% for Violent Typhoons (VTY), above 90% for Very Strong Typhoons (VSTY), about 75% for Typhoons (TY), and still some 50% for less intense TCs (TD, TS, STS) is found. This result is extremely encouraging to apply this technique to AOGCM outputs and to derive information about affected regions and intensity-frequency distributions potentially changed under future climate conditions.

  13. An individual-based model of skipjack tuna (Katsuwonus pelamis) movement in the tropical Pacific ocean

    Science.gov (United States)

    Scutt Phillips, Joe; Sen Gupta, Alex; Senina, Inna; van Sebille, Erik; Lange, Michael; Lehodey, Patrick; Hampton, John; Nicol, Simon

    2018-05-01

    The distribution of marine species is often modeled using Eulerian approaches, in which changes to population density or abundance are calculated at fixed locations in space. Conversely, Lagrangian, or individual-based, models simulate the movement of individual particles moving in continuous space, with broader-scale patterns such as distribution being an emergent property of many, potentially adaptive, individuals. These models offer advantages in examining dynamics across spatiotemporal scales and making comparisons with observations from individual-scale data. Here, we introduce and describe such a model, the Individual-based Kinesis, Advection and Movement of Ocean ANimAls model (Ikamoana), which we use to replicate the movement processes of an existing Eulerian model for marine predators (the Spatial Ecosystem and Population Dynamics Model, SEAPODYM). Ikamoana simulates the movement of either individual or groups of animals by physical ocean currents, habitat-dependent stochastic movements (kinesis), and taxis movements representing active searching behaviours. Applying our model to Pacific skipjack tuna (Katsuwonus pelamis), we show that it accurately replicates the evolution of density distribution simulated by SEAPODYM with low time-mean error and a spatial correlation of density that exceeds 0.96 at all times. We demonstrate how the Lagrangian approach permits easy tracking of individuals' trajectories for examining connectivity between different regions, and show how the model can provide independent estimates of transfer rates between commonly used assessment regions. In particular, we find that retention rates in most assessment regions are considerably smaller (up to a factor of 2) than those estimated by this population of skipjack's primary assessment model. Moreover, these rates are sensitive to ocean state (e.g. El Nino vs La Nina) and so assuming fixed transfer rates between regions may lead to spurious stock estimates. A novel feature of the

  14. Asymmetric variations in the tropical ascending branches of Hadley circulations and the associated mechanisms and effects

    Science.gov (United States)

    Sun, Bo

    2018-03-01

    This study investigates the variations in the tropical ascending branches (TABs) of Hadley circulations (HCs) during past decades, using a variety of reanalysis datasets. The northern tropical ascending branch (NTAB) and the southern tropical ascending branch (STAB), which are defined as the ascending branches of the Northern Hemisphere HC and Southern Hemisphere HC, respectively, are identified and analyzed regarding their trends and variability. The reanalysis datasets consistently show a persistent increase in STAB during past decades, whereas they show less consistency in NTAB regarding its decadalto multidecadal variability, which generally features a decreasing trend. These asymmetric trends in STAB and NTAB are attributed to asymmetric trends in the tropical SSTs. The relationship between STAB/NTAB and tropical SSTs is further examined regarding their interannual and decadal- to multidecadal variability. On the interannual time scale, the STAB and NTAB are essentially modulated by the eastern-Pacific type of ENSO, with a strengthened (weakened) STAB (NTAB) under an El Niño condition. On the decadal- to multidecadal time scale, the variability of STAB and NTAB is closely related to the southern tropical SSTs and the meridional asymmetry of global tropical SSTs, respectively. The tropical eastern Pacific SSTs (southern tropical SSTs) dominate the tropical SST-NTAB/STAB relationship on the interannual (decadal- to multidecadal) scale, whereas the NTAB is a passive factor in this relationship. Moreover, a cross-hemispheric relationship between the NTAB/STAB and the HC upper-level meridional winds is revealed.

  15. Eastern equatorial Pacific sea surface temperature annual cycle in the Kiel climate model: simulation benefits from enhancing atmospheric resolution

    Science.gov (United States)

    Wengel, C.; Latif, M.; Park, W.; Harlaß, J.; Bayr, T.

    2018-05-01

    A long-standing difficulty of climate models is to capture the annual cycle (AC) of eastern equatorial Pacific (EEP) sea surface temperature (SST). In this study, we first examine the EEP SST AC in a set of integrations of the coupled Kiel Climate Model, in which only atmosphere model resolution differs. When employing coarse horizontal and vertical atmospheric resolution, significant biases in the EEP SST AC are observed. These are reflected in an erroneous timing of the cold tongue's onset and termination as well as in an underestimation of the boreal spring warming amplitude. A large portion of these biases are linked to a wrong simulation of zonal surface winds, which can be traced back to precipitation biases on both sides of the equator and an erroneous low-level atmospheric circulation over land. Part of the SST biases also is related to shortwave radiation biases related to cloud cover biases. Both wind and cloud cover biases are inherent to the atmospheric component, as shown by companion uncoupled atmosphere model integrations forced by observed SSTs. Enhancing atmosphere model resolution, horizontal and vertical, markedly reduces zonal wind and cloud cover biases in coupled as well as uncoupled mode and generally improves simulation of the EEP SST AC. Enhanced atmospheric resolution reduces convection biases and improves simulation of surface winds over land. Analysis of a subset of models from the Coupled Model Intercomparison Project phase 5 (CMIP5) reveals that in these models, very similar mechanisms are at work in driving EEP SST AC biases.

  16. Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: part I a linear coupled framework

    Science.gov (United States)

    Chen, Ying-Ying; Jin, Fei-Fei

    2018-03-01

    The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.

  17. Circulation in the eastern North Pacific: results from a current meter array along 152°W

    Science.gov (United States)

    Hall, Melinda M.; Niiler, Pearn P.; Schmitz, William J.

    1997-07-01

    Data from four, 2-3 year long current meter records, at 28°N, 35°N, 39°N and 42°N, along 152°W in the eastern North Pacific, are used to describe the variability found in mesoscale period ( 200 days) motions. Energy in the mesoscale energy band of 40-200 day periodicity is found in the upper ocean at each location, generally decreasing to the north and with depth. The long period flow is not coherent among these locations. Record length mean velocities at 3-4 separate depths were used to provide estimates of reference level velocities for vertical profiles of geostrophic currents derived from historical hydrographic data. The vertical profile of measured east-west vertical shear agrees well with the geostrophically computed value; the north-south measured vertical shear is not in as good agreement. Assuming a vorticity balance of fwz= βv, and with w( z=0) as the Ekman pumping, the vertical velocity profiles were also calculated at 28°N and 42dgN. Using these three-dimensional referenced vertical profiles of mean currents, an examination of the mean advection of density in the thermocline revealed significant residuals in the net three-dimensional advection of density (or heat and salt) above 850 m at 28°N and above 240 m at 42°N. These results are relatively independent of the reference level velocities.

  18. Dissolved Organic Matter Influences N2 Fixation in the New Caledonian Lagoon (Western Tropical South Pacific

    Directory of Open Access Journals (Sweden)

    Mar Benavides

    2018-03-01

    Full Text Available Specialized prokaryotes performing biological dinitrogen (N2 fixation (“diazotrophs” provide an important source of fixed nitrogen in oligotrophic marine ecosystems such as tropical and subtropical oceans. In these waters, cyanobacterial photosynthetic diazotrophs are well known to be abundant and active, yet the role and contribution of non-cyanobacterial diazotrophs are currently unclear. The latter are not photosynthetic (here called “heterotrophic” and hence require external sources of organic matter to sustain N2 fixation. Here we added the photosynthesis inhibitor 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU to estimate the N2 fixation potential of heterotrophic diazotrophs as compared to autotrophic ones. Additionally, we explored the influence of dissolved organic matter (DOM on these diazotrophs along a coast to open ocean gradient in the surface waters of a subtropical coral lagoon (New Caledonia. Total N2 fixation (samples not amended with DCMU ranged from 0.66 to 1.32 nmol N L−1 d−1. The addition of DCMU reduced N2 fixation by >90%, suggesting that the contribution of heterotrophic diazotrophs to overall N2 fixation activity was minor in this environment. Higher contribution of heterotrophic diazotrophs occurred in stations closer to the shore and coincided with the decreasing lability of DOM, as shown by various colored DOM and fluorescent DOM (CDOM and FDOM indices. We tested the response of diazotrophs (in terms of nifH gene expression and bulk N2 fixation rates upon the addition of a mix of carbohydrates (“DOC” treatment, amino acids (“DON” treatment, and phosphonates and phosphomonesters (“DOP” treatment. While nifH expression increased significantly in Trichodesmium exposed to the DOC treatment, bulk N2 fixation rates increased significantly only in the DOP treatment. The lack of nifH expression by gammaproteobacteria, in any of the DOM addition treatments applied, questions the contribution of non

  19. Gross and microscopic pathology of lesions in Pocillopora spp. from the subtropical eastern Pacific

    Science.gov (United States)

    Rodríguez-Villalobos, Jenny Carolina; Rocha-Olivares, Axayácatl; Work, Thierry M.; Calderon-Aguilera, Luis Eduardo; Cáceres-Martínez, Jorge Abelardo

    2014-01-01

    Coral reefs are threatened by a variety of factors including diseases that have caused significant damage in some regions such as in the Caribbean. At present, no data are available on coral diseases in the Mexican Pacific where Pocillopora spp. is a dominant component of coral communities. Here, we describe gross and microscopic morphology of lesions found in pocilloporids at four sites in the Mexican Pacific. Corals were identified and their lesions photographed and quantified in the field. Tissue samples were collected from healthy and affected colonies for histopathology. We recorded seven species of pocilloporids at the study sites with Isla Isabel being the location with the highest coral diversity (H′ = 1.27). Lesions were present in 42% of the colonies and included discoloration (32%), predation-induced tissue loss (30%), unexplained tissue loss (3%) and overgrowth by sponges or algae (35%). The most affected species, P. damicornis (50%), was also one of the most common in the region. No species was more prone to a particular lesion, but there was a significant association between location and the presence of lesions. Northern Islas Marietas (61%) and Isla Isabel (41%) had the highest prevalence of lesions, followed by Manzanillo (37%) and Bahías de Huatulco (23%). Histological changes included atrophy of the surface body wall with depletion of zooxanthellae (91%) in corals with discoloration (bleaching). Ablation of tissue from mesoglea (18%) was also observed. Colonies with unexplained tissue loss showed atrophy and thinning of the epidermis (89%), characterized by cuboidal instead of pseudocolumnar cells normally found in healthy pseudocolumnar ciliated epithelium. Bacterial aggregates between the mesoglea and gastrodermis (11%) were very conspicuous in healthy and diseased corals. Lesions produced by fish bites and gastropods were associated with tissue atrophy (40%) and, in some cases, algal overgrowth near the lesion (20%). No infectious

  20. Aboveground tree biomass in a recovering tropical sal (Shorea robusta Gaertn. f.) forest of Eastern Ghats, India

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Soumit K.; Misra, Malaya K. [Ecology and Floristic Laboratory, Department of Botany, Berhampur University, Berhampur 760 007, Orissa (India)

    2006-06-15

    Aboveground biomass of individual tree species by component and total biomass per unit area for four different stages of a recovering tropical dry deciduous forest stands, dominated by sal (Shorea robusta Gaertn. f.) of the Eastern Ghats, India were investigated during 2001-2002. Different periods of recovering (2, 4, 6, and 10-year) forest stands (84{sup o}13'E, 20{sup o}29'N) were selected in the Kandhamal district of Orissa, India and sample trees of all species were harvested. Tree species diversity was 23, 23, 21 and 22 in 2, 4, 6, and 10-year recovering stands, respectively. Species-wise Ixora pavetta showed the highest biomass in 2 and 4-year stands while Shorea robusta in 6 and 10-year stands. Component-wise, in all species, bole-wood contribution ranged between 22.6% and 60.9%. Aboveground tree biomass, in all the stands, was dominated by Shorea robusta, which ranged between 12.68 and 231.91Mgha{sup -1}. Total aboveground tree biomass was 30.12, 49.21, 107.54 and 261.08Mgha{sup -1} in 2, 4, 6 and 10-year stands, respectively. (author)

  1. The phase differences of the interdecadal variabilities of tropical cyclone activity in the peak and late seasons over the western North Pacific

    Science.gov (United States)

    Fan, Tingting; Xu, Shibin; Huang, Fei; Zhao, Jinping

    2018-04-01

    This study compares the interdecadal variations in tropical cyclone (TC) activities over the western North Pacific (WNP) basin during the peak season (July-September) and late season (October-December) of 1955-2014 and explores the possible physical mechanisms behind the variations. Both the peak- and late-season tropical storm (TS) days show distinct interdecadal variations, while the late-season TS days lead the peak-season TS days by approximately 4 years on an interdecadal time scale. The late-season TC activity is related to the east-west sea surface temperature (SST) gradient across the equatorial Pacific. The westerly winds induced by the SST gradient can reduce the vertical wind shear and increase the low-level vorticity, which favors TC genesis over the TC genesis region. The peak-season TC activity appears to relate to the SST gradient between the Indian Ocean and the Central Pacific. The westerly wind induced by the SST gradient can reduce the vertical wind shear and increase the mid-level relative humidity, thereby enhancing the TC activity. The full picture of the interdecadal variation in the WNP TC activity during the peak and late seasons revealed in this study provides a new perspective on the seasonal TC forecasts and future projections.

  2. Tropical Pacific climate variability over the last 6000 years as recorded in Bainbridge Crater Lake, Galápagos

    Science.gov (United States)

    Thompson, Diane M.; Conroy, Jessica L.; Collins, Aaron; Hlohowskyj, Stephan R.; Overpeck, Jonathan T.; Riedinger-Whitmore, Melanie; Cole, Julia E.; Bush, Mark B.; Whitney, H.; Corley, Timothy L.; Kannan, Miriam Steinitz

    2017-08-01

    Finely laminated sediments within Bainbridge Crater Lake, Galápagos, provide a record of El Niño-Southern Oscillation (ENSO) events over the Holocene. Despite the importance of this sediment record, hypotheses for how climate variability is preserved in the lake sediments have not been tested. Here we present results of long-term monitoring of the local climate and limnology and a revised interpretation of the sediment record. Brown-green, organic-rich, siliciclastic laminae reflect warm, wet conditions typical of El Niño events, whereas carbonate and gypsum precipitate during cool, dry La Niña events and persistent dry periods, respectively. Applying this new interpretation, we find that ENSO events of both phases were generally less frequent during the mid-Holocene ( 6100-4000 calendar years B.P.) relative to the last 1500 calendar years. Abundant carbonate laminations between 3500 and 3000 calendar years B.P. imply that conditions in the Galápagos region were cool and dry during this period when the tropical Pacific E-W sea surface temperature (SST) gradient likely strengthened. The frequency of El Niño and La Niña events then intensified dramatically around 1750-2000 calendar years B.P., consistent with a weaker SST gradient and an increased frequency of ENSO events in other regional records. This strong interannual variability persisted until 700 calendar years B.P., when ENSO-related variability at the lake decreased as the SST gradient strengthened. Persistent, dry conditions then dominated between 300 and 50 calendar years B.P. (A.D. 1650-1900, ± 100 years), whereas wetter conditions and frequent El Niño events dominated in the most recent century.

  3. Knowledge-exchange in the Pacific: outcomes of the TROPIC (translational research for obesity prevention in communities) project.

    Science.gov (United States)

    Kremer, Peter; Mavoa, Helen; Waqa, Gade; Moodie, Marjory; McCabe, Marita; Swinburn, Boyd

    2017-04-26

    The Pacific TROPIC (Translational Research for Obesity Prevention in Communities) project aimed to design, implement and evaluate a knowledge-broking approach to evidence-informed policy making to address obesity in Fiji. This paper reports on the quantitative evaluation of the knowledge-broking intervention through assessment of participants' perceptions of evidence use and development of policy/advocacy briefs. Selected staff from six organizations - four government Ministries and two nongovernment organizations (NGOs) - participated in the project. The intervention comprised workshops and supported development of policy/advocacy briefs. Workshops addressed obesity and policy cycles and developing participants' skills in accessing, assessing, adapting and applying relevant evidence. A knowledge-broking team supported participants individually and/or in small groups to develop evidence-informed policy/advocacy briefs. A questionnaire survey that included workplace and demographic items and the self-assessment tool "Is Research Working for You?" (IRWFY) was administered pre- and post-intervention. Forty nine individuals (55% female, 69% 21-40 years, 69% middle-senior managers) participated in the study. The duration and level of participant engagement with the intervention activities varied - just over half participated for 10+ months, just under half attended most workshops and approximately one third produced one or more policy briefs. There were few reliable changes on the IRWFY scales following the intervention; while positive changes were found on several scales, these effects were small (d organizational-level change post-intervention. This study empirically evaluated a knowledge-broking program that aimed to extend evidence-informed policy making skills and development of a suite of national policy briefs designed to increase the enactment of obesity-related policies. The findings failed to indicate reliable improvements in research utilization at either

  4. Dynamics and controls of heterotrophic prokaryotic production in the western tropical South Pacific Ocean: links with diazotrophic and photosynthetic activity

    Science.gov (United States)

    Van Wambeke, France; Gimenez, Audrey; Duhamel, Solange; Dupouy, Cécile; Lefevre, Dominique; Pujo-Pay, Mireille; Moutin, Thierry

    2018-05-01

    Heterotrophic prokaryotic production (BP) was studied in the western tropical South Pacific (WTSP) using the leucine technique, revealing spatial and temporal variability within the region. Integrated over the euphotic zone, BP ranged from 58 to 120 mg C m-2 d-1 within the Melanesian Archipelago, and from 31 to 50 mg C m-2 d-1 within the western subtropical gyre. The collapse of a bloom was followed during 6 days in the south of Vanuatu using a Lagrangian sampling strategy. During this period, rapid evolution was observed in the three main parameters influencing the metabolic state: BP, primary production (PP) and bacterial growth efficiency. With N2 fixation being one of the most important fluxes fueling new production, we explored relationships between BP, PP and N2 fixation rates over the WTSP. The contribution of N2 fixation rates to bacterial nitrogen demand ranged from 3 to 81 %. BP variability was better explained by the variability of N2 fixation rates than by that of PP in surface waters of the Melanesian Archipelago, which were characterized by N-depleted layers and low DIP turnover times (TDIP 100 h), deeper in the Melanesian Archipelago, or within the entire euphotic zone in the subtropical gyre. The bacterial carbon demand to gross primary production ratio ranged from 0.75 to 3.1. These values are discussed in the framework of various assumptions and conversion factors used to estimate this ratio, including the methodological errors, the daily variability of BP, the bacterial growth efficiency and one bias so far not considered: the ability for Prochlorococcus to assimilate leucine in the dark.

  5. Validation of Satellite Estimates (Tropical Rainfall Measuring Mission, TRMM for Rainfall Variability over the Pacific Slope and Coast of Ecuador

    Directory of Open Access Journals (Sweden)

    Bolívar Erazo

    2018-02-01

    Full Text Available A dense rain-gauge network within continental Ecuador was used to evaluate the quality of various products of rainfall data over the Pacific slope and coast of Ecuador (EPSC. A cokriging interpolation method is applied to the rain-gauge data yielding a gridded product at 5-km resolution covering the period 1965–2015. This product is compared with the Global Precipitation Climatology Centre (GPCC dataset, the Climatic Research Unit–University of East Anglia (CRU dataset, the Tropical Rainfall Measuring Mission (TRMM/TMPA 3B43 Version 7 dataset and the ERA-Interim Reanalysis. The analysis reveals that TRMM data show the most realistic features. The relative bias index (Rbias indicates that TRMM data is closer to the observations, mainly over lowlands (mean Rbias of 7% but have more limitations in reproducing the rainfall variability over the Andes (mean Rbias of −28%. The average RMSE and Rbias of 68.7 and −2.8% of TRMM are comparable with the GPCC (69.8 and 5.7% and CRU (102.3 and −2.3% products. This study also focuses on the rainfall inter-annual variability over the study region which experiences floods that have caused high economic losses during extreme El Niño events. Finally, our analysis evaluates the ability of TRMM data to reproduce rainfall events during El Niño years over the study area and the large basins of Esmeraldas and Guayas rivers. The results show that TRMM estimates report reasonable levels of heavy rainfall detection (for the extreme 1998 El Niño event over the EPSC and specifically towards the center-south of the EPSC (Guayas basin but present underestimations for the moderate El Niño of 2002–2003 event and the weak 2009–2010 event. Generally, the rainfall seasonal features, quantity and long-term climatology patterns are relatively well estimated by TRMM.

  6. Predictability of CFSv2 in the tropical Indo-Pacific region, at daily and subseasonal time scales

    Science.gov (United States)

    Krishnamurthy, V.

    2018-06-01

    The predictability of a coupled climate model is evaluated at daily and intraseasonal time scales in the tropical Indo-Pacific region during boreal summer and winter. This study has assessed the daily retrospective forecasts of the Climate Forecast System version 2 from the National Centers of Environmental Prediction for the period 1982-2010. The growth of errors in the forecasts of daily precipitation, monsoon intraseasonal oscillation (MISO) and the Madden-Julian oscillation (MJO) is studied. The seasonal cycle of the daily climatology of precipitation is reasonably well predicted except for the underestimation during the peak of summer. The anomalies follow the typical pattern of error growth in nonlinear systems and show no difference between summer and winter. The initial errors in all the cases are found to be in the nonlinear phase of the error growth. The doubling time of small errors is estimated by applying Lorenz error formula. For summer and winter, the doubling time of the forecast errors is in the range of 4-7 and 5-14 days while the doubling time of the predictability errors is 6-8 and 8-14 days, respectively. The doubling time in MISO during the summer and MJO during the winter is in the range of 12-14 days, indicating higher predictability and providing optimism for long-range prediction. There is no significant difference in the growth of forecasts errors originating from different phases of MISO and MJO, although the prediction of the active phase seems to be slightly better.

  7. Changes in abundance and community structure of nematodes from the abyssal polymetallic nodule field, Tropical Northeast Pacific

    Science.gov (United States)

    Miljutin, Dmitry; Miljutina, Maria; Messié, Monique

    2015-12-01

    Deep-sea fields of polymetallic nodules in the Clarion-Clipperton Zone (CCFZ, tropical NE Pacific) are currently being investigated to assess their potential for commercial mining. During such mining, benthic communities will be inevitably disturbed or destroyed. Therefore, assessments of their standing stock and composition may be helpful for the future evaluation of possible impacts of commercial nodule exploitation. Analysis of nematode communities (at genus level) inhabiting the French license area of the CCFZ were studied based on data from the cruises NODINAUT (2004) and BIONOD (2012). The total nematode density was ca. 1.5-fold higher in 2012 as compared with 2004. This reflected a 2-2.5 times higher density of non-selective deposit-feeders (i.e. possessing a small buccal cavity without armature) in 2012 compared with 2004, whereas no significant differences between sampling periods were observed in the density of the other feeding groups. Consequently, whilst the list of the most abundant genera was identical, their relative abundances changed significantly. The relative abundance of the genus Thalassomonhystera was two times greater in 2012 than in 2004, whereas the relative abundances of the genera Acantholaimus and Theristus were significantly lower in 2012 (10% and 4%, respectively) than in 2004 (28% and 9%). Nematode diversity (including values of diversity indices and total number of recorded genera) was significantly lower in 2012 in comparison with 2004. Although our data do not take into account seasonal and shorter temporal scales of variability in nematode assemblages, we report here that a certain fraction of variations observed between the two sampling periods could be associated with differences in primary production. Future studies should aim to better characterise temporal variability in nematode communities of the CCFZ at seasonal and interannual scales.

  8. Distribution and drivers of symbiotic and free-living diazotrophic cyanobacteria in the western tropical South Pacific

    Science.gov (United States)

    Stenegren, Marcus; Caputo, Andrea; Berg, Carlo; Bonnet, Sophie; Foster, Rachel A.

    2018-03-01

    The abundance and distribution of cyanobacterial diazotrophs were quantified in two regions (Melanesian archipelago, MA; and subtropical gyre, SG) of the western tropical South Pacific using nifH quantitative polymerase chain reaction (qPCR) assays. UCYN-A1 and A2 host populations were quantified using 18S rRNA qPCR assays including one newly developed assay. All phylotypes were detected in the upper photic zone (0-50 m), with higher abundances in the MA region. Trichodesmium and UCYN-B dominated and ranged from 2.18 × 102 to 9.41 × 106 and 1.10 × 102 to 2.78 × 106 nifH copies L-1, respectively. Het-1 (symbiont of Rhizosolenia diatoms) was the next most abundant (1.40 × 101-1.74 × 105 nifH copies L-1) and co-occurred with het-2 and het-3. UCYN-A1 and A2 were the least abundant diazotrophs and were below detection (bd) in 63 and 79, respectively, of 120 samples. In addition, in up to 39 % of samples in which UCYN-A1 and A2 were detected, their respective hosts were bd. Pairwise comparisons of the nifH abundances and various environmental parameters supported two groups: a deep-dwelling group (45 m) comprised of UCYN-A1 and A2 and a surface group (0-15 m) comprised of Trichodesmium, het-1 and het-2. Temperature and photosynthetically active radiation were positively correlated with the surface group, while UCYN-A1 and A2 were positively correlated with depth, salinity, and oxygen. Similarly, in a meta-analysis of 11 external datasets, all diazotrophs, except UCYN-A were correlated with temperature. Combined, our results indicate that conditions favoring the UCYN-A symbiosis differ from those of diatom diazotroph associations and free-living cyanobacterial diazotrophs.

  9. Amphidromy links a newly documented fish community of continental Australian streams, to oceanic islands of the west Pacific.

    Directory of Open Access Journals (Sweden)

    Paul A Thuesen

    Full Text Available BACKGROUND: Indo-Pacific high island streams experience extreme hydrological variation, and are characterised by freshwater fish species with an amphidromous life history. Amphidromy is a likely adaptation for colonisation of island streams following stochastic events that lead to local extirpation. In the Wet Tropics of north-eastern Australia, steep coastal mountain streams share similar physical characteristics to island systems. These streams are poorly surveyed, but may provide suitable habitat for amphidromous species. However, due to their ephemeral nature, common non-diadromous freshwater species of continental Australia are unlikely to persist. Consequently, we hypothesise that coastal Wet Tropics streams are faunally more similar, to distant Pacific island communities, than to nearby faunas of large continental rivers. METHODS/PRINCIPAL FINDINGS: Surveys of coastal Wet Tropics streams recorded 26 species, 10 of which are first records for Australia, with three species undescribed. This fish community is unique in an Australian context in that it contains mostly amphidromous species, including sicydiine gobies of the genera Sicyopterus, Sicyopus, Smilosicyopus and Stiphodon. Species presence/absence data of coastal Wet Tropics streams were compared to both Wet Tropics river networks and Pacific island faunas. ANOSIM indicated the fish fauna of north-eastern Australian coastal streams were more similar to distant Pacific islands (R = 0.76, than to nearby continental rivers (R = 0.98. MAIN CONCLUSIONS/SIGNIFICANCE: Coastal Wet Tropics streams are faunally more similar to distant Pacific islands (79% of species shared, than to nearby continental fauna due to two factors. First, coastal Wet Tropics streams lack many non-diadromous freshwater fish which are common in nearby large rivers. Second, many amphidromous species found in coastal Wet Tropics streams and Indo-Pacific islands remain absent from large rivers of the Wet Tropics

  10. Evaporation from a tropical rain forest, Luquillo Experimental Forest, eastern Puerto Rico

    Science.gov (United States)

    Schellekens, J.; Bruijnzeel, L. A.; Scatena, F. N.; Bink, N. J.; Holwerda, F.

    2000-08-01

    Evaporation losses from a watertight 6.34 ha rain forest catchment under wet maritime tropical conditions in the Luquillo Experimental Forest, Puerto Rico, were determined using complementary hydrological and micrometeorological techniques during 1996 and 1997. At 6.6 mm d-1 for 1996 and 6.0 mm d-1 for 1997, the average evapotranspiration (ET) of the forest is exceptionally high. Rainfall interception (Ei), as evaluated from weekly throughfall measurements and an average stemflow fraction of 2.3%, accounted for much (62-74%) of the ET at 4.9 mm d-1 in 1996 and 3.7 mm d-1 in 1997. Average transpiration rates (Et) according to a combination of the temperature fluctuation method and the Penman-Monteith equation were modest at 2.2 mm d-1 and 2.4 mm d-1 in 1996 and 1997, respectively. Both estimates compared reasonably well with the water-budget-based estimates (ET - Ei) of 1.7 mm d-1 and 2.2 mm d-1. Inferred rates of wet canopy evaporation were roughly 4 to 5 times those predicted by the Penman-Monteith equation, with nighttime rates very similar to daytime rates, suggesting radiant energy is not the dominant controlling factor. A combination of advected energy from the nearby Atlantic Ocean, low aerodynamic resistance, plus frequent low-intensity rain is thought to be the most likely explanation of the observed discrepancy between measured and estimated Ei.

  11. Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    Science.gov (United States)

    Coykendall, D.K.; Johnson, S.B.; Karl, S.A.; Lutz, R.A.; Vrijenhoek, R.C.

    2011-01-01

    Background: Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galpagos Rift. Results: Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions: Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. ?? 2011 Coykendall et al; licensee BioMed Central Ltd.

  12. Three decades of reference evapotranspiration estimates for a tropical watershed in the eastern Amazon

    Directory of Open Access Journals (Sweden)

    RENATO O. DA SILVA JÚNIOR

    2017-10-01

    Full Text Available ABSTRACT This study estimated the reference evapotranspiration rate (ETo for the Itacaiúnas River Watershed (IRW, Eastern Amazonia, and measured the accuracy of eight empirical equations: Penman-Monteith (PM, Priestley-Taylor (PT, Hargreaves and Samani (HS, Camargo (CAM, Thornthwaite (TH, Hamon (HM, Kharrufa (KF and Turc (TC using monthly data from 1980 to 2013. In addition, it verifies the regional applicability to the IRW using a for the Marabá-PA station. The methods TC and PM (FAO56 presented the best results, which demonstrate that radiation and higher temperatures are the dominant drivers in the Evapotranspiration process, while relative humidity and wind speed have a much smaller impact. The temporal and spatial variability of ETo for IRW show has strong seasonality, increasing during the dry season and decreasing during the rainy season. The statistical analyses at 1% level of significance, indicates that there is no correlation of the residuals between the dry and rainy seasons, and test of the physical parameters such as mean temperature, solar radiation and relative air humidity explains the variations of ETo.

  13. Transport of North Pacific 137Cs labeled waters to the south-eastern Atlantic Ocean

    Science.gov (United States)

    Sanchez-Cabeza, J. A.; Levy, I.; Gastaud, J.; Eriksson, M.; Osvath, I.; Aoyama, M.; Povinec, P. P.; Komura, K.

    2011-04-01

    During the reoccupation of the WOCE transect A10 at 30°S by the BEAGLE2003 cruise, the SHOTS project partners collected a large number of samples for the analysis of isotopic tracers. 137Cs was mostly deposited on the oceans surface during the late 1950s and early 1960s, after the atmospheric detonation of large nuclear devices, which mostly occurred in the Northern Hemisphere. The development of advanced radioanalytical and counting techniques allowed to obtain, for the first time in this region, a zonal section of 137Cs water concentrations, where little information existed before, thus constituting an important benchmark for further studies. 137Cs concentrations in the upper waters (0-1000 m) of the south-eastern Atlantic Ocean are similar to those observed in the south-western Indian Ocean, suggesting transport of 137Cs labeled waters by the Agulhas current to the Benguela Current region. In contrast, bomb radiocarbon data do not show this feature, indicating the usefulness of 137Cs as a radiotracer of water mass transport from the Indian to the South Atlantic Ocean.

  14. Uranium and plutonium in anoxic marine sediments of the Santiago River mouth (Eastern Pacific, Mexico).

    Science.gov (United States)

    Almazán-Torres, María Guadalupe; Ordóñez-Regil, Eduardo; Ruiz-Fernández, Ana Carolina

    2016-11-01

    The uranium (U) and plutonium (Pu) content with depth in a sediment core collected in the continental shelf off the mouth of the Santiago River in the Mexican Pacific was studied to evaluate the contamination effects of the effluent of the Santiago-Lerma River as it moves into the sea. The large mass of terrestrial detritus delivered by the river influences the physicochemical and geochemical processes in the seafloor. Abnormal concentrations of U and Pu in sediments were examined as indicative of the effects of anoxic conditions. One of the indicators of pollution of seawater is the bacterial activity of the shallow seabed layer; and among the prevailing bacteria, the magnetotactic ones induce the formation of euhedral and framboidal shapes (pyrite). These pyrite entities are by-products of anoxic environments loaded with decomposing detrital material and are very abundant in the surface layers of the sediment core analyzed. The pyrite formation is the result of a biochemical reaction between iron and organic sulphur reduced by bacteria, and the pyrite entities precipitate to the seafloor. In the same upper zone of the profile, 238 U is readily immobilized, while 234 U is oxidized and dissolved in seawater by the effect of hot atom chemistry. This may cause the activity ratio (AR) 234 U/ 238 U disequilibrium (near 0.41). Furthermore, in the shallow layer of the sediment core, an abnormally high concentration of 239+240 Pu was detected. In this upper layer, the activity concentrations found were 3.19 Bq kg -1 for 238 U, 1.32 kg -1 for 234 U and 2.78 Bq kg -1 for 239+240 Pu. In the lower fractions of the sediment core, normal values of AR 234 U/ 238 U (≈1) were found, with traces of 239+240 Pu. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Airborne Measurements of BrO and the Sum of HOBr and Br2 over the Tropical West Pacific from 1 to 15 Km During the CONvective TRansport of Active Species in the Tropics (CONTRAST) Experiment

    Science.gov (United States)

    Chen, Dexian; Huey, L. Gregory; Tanner, David J.; Salawitch, Ross J.; Anderson, Daniel C.; Wales, Pamela A.; Pan, Laura L.; Atlas, Elliot L.; Hornbrook, Rebecca S.; Apel, Eric C.; hide

    2016-01-01

    A chemical ionization mass spectrometer was used to measure BrO and HOBr + Br2 over the Tropical West Pacific Ocean within the altitude range of 1 to 15 km, during the CONvective TRansport of Active Species in the Tropics (CONTRAST) campaign in 2014. Isolated episodes of elevated BrO (up to 6.6 pptv) and/or HOBr + Br2 (up to 7.3 pptv) were observed in the tropical free troposphere (TFT) and were associated with biomass burning. However, most of the time we did not observe significant BrO or HOBr + Br2 in the TFT and the tropical tropopause layer (TTL) above our limits of detection (LOD). The 1 min average LOD for BrO ranged from 0.6 to 1.6 pptv and for HOBr + Br2 ranged from 1.3 to 3.5 pptv. During one flight, BrO observations from the TTL to the extratropical lowermost stratosphere were used to infer a profile of inorganic bromine (Br(sub y)). Based on this profile, we estimated the product gas injection of bromine species into the stratosphere to be 2 pptv. Analysis of Br(sub y) partitioning further indicates that BrO levels are likely very low in the TFT environment and that future studies should target the measurement of HBr or atomic Br.

  16. Nitrous oxide distribution and its origin in the central and eastern South Pacific Subtropical Gyre

    Directory of Open Access Journals (Sweden)

    J. Charpentier

    2007-09-01

    Full Text Available The mechanisms of microbial nitrous oxide (N2O production in the ocean have been the subject of many discussions in recent years. New isotopomeric tools can further refine our knowledge of N2O sources in natural environments. This study compares hydrographic, N2O concentration, and N2O isotopic and isotopomeric data from three stations along a coast-perpendicular transect in the South Pacific Ocean, extending from the center (Sts. GYR and EGY of the subtropical oligotrophic gyre (~26° S; 114° W to the upwelling zone (St. UPX off the central Chilean coast (~34° S. Although AOU/N2O and NO3 trends support the idea that most of the N2O (mainly from intermediate water (200–600 m comes from nitrification, N2O isotopomeric composition (intramolecular distribution of 15N isotopes expressed as SP (site preference of 15N shows low values (10 to 12permil that could be attributed to the production through of microbial nitrifier denitrification (reduction of nitrite to N2O mediated by ammonium oxidizers. The coincidence of this SP signal with high – stability layer, where sinking organic particles can accumulate, suggests that N2O could be produced by nitrifier denitrification inside particles. It is postulated that deceleration of particles in the pycnocline can modify the advection - diffusion balance inside particles, allowing the accumulation of nitrite and O2 depletion suitable for nitrifier denitrication. As lateral advection seems to be relatively insignificant in the gyre, in situ nitrifier denitrification could account for 40–50% of the N2O produced in this layer. In contrast, coastal upwelling system is characterized by O2 deficient condition and some N deficit in a eutrophic system. Here, N2O accumulates up to 480% saturation, and isotopic and

  17. Redox Conditions and Related Color Change in Eastern Equatorial Pacific Sediments: IODP Site U1334

    Science.gov (United States)

    Kordesch, W. E.; Gussone, N. C.; Hathorne, E. C.; Kimoto, K.; Delaney, M. L.

    2011-12-01

    This study was prompted by a 65 m thick brown-green color change in deep-sea sediments of IODP Site U1334 (0-38 Ma, 4799 m water depth) that corresponds to its equatorial crossing (caused by the Northward movement of the pacific plate). Green sediment is a visual indicator of reducing conditions in sediment due to enhanced organic matter deposition and burial. Here we use geochemical redox indicators to characterize the effect of equatorial upwelling on bottom water. The modern redox signal is captured in porewater profiles (nitrate, manganese, iron, sulfate) while trace metal Enrichment Factors (EF) in bulk sediment (manganese, uranium, molybdenum, rhenium) normalized to the detrital component (titanium) record redox state at burial. To measure export productivity we also measure biogenic barium. Porewater profiles reveal suboxic diagenesis; profiles follow the expected sequence of nitrate, manganese oxide, and iron oxide reduction with increasing depth. Constant sulfate (~28 μM) implies anoxia has not occurred. Bulk sediment Mn EF are enriched (EF > 1) throughout the record (Mn EF = 15-200) while U and Mo enrichment corresponds to green color and equatorial proximity (U EF = 4-19; Mo EF = 0-7). Constant Mn enrichment implies continuous oxygenation. Uranium and Mo enrichment near the equator represents suboxic conditions also seen in the porewater. Low Re concentrations (below detection) provide additional evidence against anoxia. A comparison of Mn EF from total digestions to samples treated with an additional reductive cleaning step distinguishes between Mn-oxides and Mn-carbonates, indicating oxygenated and reducing conditions respectively. Mn-carbonate occurrence agrees with U and Mo EF; conditions were more reducing near the equator. Bio-Ba shows significant variability over this interval (22-99 mmol g-1). Our geochemical results indicate that bottom waters became suboxic at the equator as a result of equatorial upwelling-influenced increases in organic

  18. Ca Isotope Geochemistry in Marine Deep Sea Sediments of the Eastern Pacific

    Science.gov (United States)

    Wittke, A.; Gussone, N. C.; Derigs, D.; Schälling, M.; Teichert, B. M.

    2017-12-01

    Ca isotope ratio analysis (δ44/40Ca) is a powerful tool to investigate diagenetic reactions in marine sedimentary porewater systems, as it is sensitive to processes such as carbonate dissolution, precipitation, recrystallization, ion exchange and deep fluid sources, due to the isotopic difference between dissolved Ca and solid carbonate minerals (e.g. [1];[2]). We analyzed eight sediment cores of the (paleo-) Pacific equatorial age transect. Two sediment cores show decreasing Ca isotope profiles starting at the sediment/water interface with seawater-like values down to sediment-like values due to recrystallization and an increasing in the bottom part again to seawater-like values. The other studied cores show different degrees of flattening of this middle bulge. We interpret this pattern either as an effect of sediment composition and thickness, decreasing recrystallization rates and/or fluid flux or a combination of all of these factors at the respective sampling sites. Element concentration profiles and Sr-isotope variations on some of these sediment cores show a similar behavior, supporting our findings ([3]; [4]). Seawater influx at (inactive) seamounts is supposed to cause seawater-like values at the bottom of the sediment cores by fluids migrating through the oceanic basement (e.g. [5]). While [6] hypothesizes that two seamounts or bathymetric pits are connected, with a recharge and a discharge site [7] say that uptaken fluids could be released through the surrounding seafloor as well due to diffusive exchange with the underlying oceanic crust. Our Ca isotope results combined with a transport reaction model approach support the latter hypothesis. References: [1] Teichert B. M., Gussone N. and Torres M. E. (2009) [2] Ockert C., Gussone N., Kaufhold S. and Teichert B. (2013) [3] Pälike H., Lyle M., Nishi H., Raffi I., Gamage K. and Klaus A. (eds.) (2010) [4] Voigt J., Hathorne E. C., Frank M., Vollstaedt H. and Eisenhauer A. (2015) [5] Villinger H. W

  19. Trends in Upper-Level Cloud Cover and Surface Divergence Over the Tropical Indo-Pacific Ocean Between 1952 And 1997

    Science.gov (United States)

    Norris, Joel R.

    2005-01-01

    This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.

  20. The Modulation of Tropical Storm Activity in the Western North Pacific by the Madden-Julian Oscillation in GEOS-5 AGCM Experiments

    Science.gov (United States)

    Kim, Dongmin; Lee, Myong-In; Kim, Hye-Mi; Schubert, Siegfried D.; Yoo, Jin Ho

    2014-01-01

    This study examines the influence of the Madden-Julian Oscillation (MJO) on tropical storm (TS) activity in the western North Pacific, using observations and GEOS-5 simulations at 50-km horizontal resolution. While GEOS-5 produces an MJO of faster propagation and weaker amplitude, it nevertheless reproduces the observed modulation of TS activity by the MJO with the highest TS genesis and increased track density in the active phases of MJO. The study suggests that the simulation of the sub-seasonal variability of TS activity could be improved by improving the simulations of the MJO in climate models.

  1. Diet and stable isotope analyses reveal the feeding ecology of the orangeback squid Sthenoteuthis pteropus (Steenstrup 1855 (Mollusca, Ommastrephidae in the eastern tropical Atlantic.

    Directory of Open Access Journals (Sweden)

    Véronique Merten

    Full Text Available In the eastern tropical Atlantic, the orangeback flying squid Sthenoteuthis pteropus (Steenstrup 1855 (Cephalopoda, Ommastrephidae is a dominant species of the epipelagic nekton community. This carnivore squid has a short lifespan and is one of the fastest-growing squids. In this study, we characterise the role of S. pteropus in the pelagic food web of the eastern tropical Atlantic by investigating its diet and the dynamics of its feeding habits throughout its ontogeny and migration. During three expeditions in the eastern tropical Atlantic in 2015, 129 specimens were caught by hand jigging. Stomach content analyses (via visual identification and DNA barcoding were combined with stable isotope data (∂15N and ∂13C of muscle tissue to describe diet, feeding habits and trophic ecology of S. pteropus. Additionally, stable isotope analyses of incremental samples along the squid's gladius-the chitinous spiniform structure supporting the muscles and organs-were carried out to explore possible diet shifts through ontogeny and migration. Our results show that S. pteropus preys mainly on myctophid fishes (e.g. Myctophum asperum, Myctophum nitidulum, Vinciguerria spp., but also on other teleost species, cephalopods (e.g. Enoploteuthidae, Bolitinidae, Ommastrephidae, crustaceans and possibly on gelatinous zooplankton as well. The squid shows a highly opportunistic feeding behaviour that includes cannibalism. Our study indicates that the trophic position of S. pteropus may increase by approximately one trophic level from a mantle length of 15 cm to 47 cm. The reconstructed isotope-based feeding chronologies of the gladii revealed high intra- and inter-individual variability in the squid's trophic position and foraging area. These findings are not revealed by diet or muscle tissue stable isotope analysis. This suggests a variable and complex life history involving individual variation and migration. The role of S. pteropus in transferring energy and

  2. Diet and stable isotope analyses reveal the feeding ecology of the orangeback squid Sthenoteuthis pteropus (Steenstrup 1855) (Mollusca, Ommastrephidae) in the eastern tropical Atlantic.

    Science.gov (United States)

    Merten, Vé