WorldWideScience

Sample records for eastern snake river

  1. Water Quality of the Snake River and Five Eastern Tributaries in the Upper Snake River Basin, Grand Teton National Park, Wyoming, 1998-2002

    Science.gov (United States)

    Clark, Melanie L.; Sadler, Wilfrid J.; O'Ney, Susan E.

    2004-01-01

    To address water-resource management objectives of the National Park Service in Grand Teton National Park, the U.S. Geological Survey in cooperation with the National Park Service has conducted water-quality sampling in the upper Snake River Basin. Routine sampling of the Snake River was conducted during water years 1998-2002 to monitor the water quality of the Snake River through time. A synoptic study during 2002 was conducted to supplement the routine Snake River sampling and establish baseline water-quality conditions of five of its eastern tributaries?Pilgrim Creek, Pacific Creek, Buffalo Fork, Spread Creek, and Ditch Creek. Samples from the Snake River and the five tributaries were collected at 12 sites and analyzed for field measurements, major ions and dissolved solids, nutrients, selected trace metals, pesticides, and suspended sediment. In addition, the eastern tributaries were sampled for fecal-indicator bacteria by the National Park Service during the synoptic study. Major-ion chemistry of the Snake River varies between an upstream site above Jackson Lake near the northern boundary of Grand Teton National Park and a downstream site near the southern boundary of the Park, in part owing to the inputs from the eastern tributaries. Water type of the Snake River changes from sodium bicarbonate at the upstream site to calcium bicarbonate at the downstream site. The water type of the five eastern tributaries is calcium bicarbonate. Dissolved solids in samples collected from the Snake River were significantly higher at the upstream site (p-valueion chemistry of Pilgrim Creek, Pacific Creek, Buffalo Fork, Spread Creek, and Ditch Creek generally did not change substantially between the upstream sites near the National Park Service boundary with the National Forest and the downstream sites near the Snake River; however, variations in the major ions and dissolved solids existed between basins. Variations probably result from differences in geology between the

  2. Geothermal significance of magnetotelluric sounding in the eastern Snake River Plain-Yellowstone Region

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, W.D.; Boehl, J.E.; Bostick, F.X.; Smith, H.W.

    1977-06-10

    Magnetotelluric soundings along a profile extending from the Raft River geothermal area in southern Idaho in Yellowstone National Park in Wyoming reveal a highly anamalous crustal structure involving a conductive zone at depths that range from 18 km in the central part of the eastern Snake River Plain to 7 km beneath the Raft River thermal area and as little as 5 km in Yellowstone. Resistivities in this conductive zone are less than 10 ohm m and at some sites than 1 ohm m. Structural parameters obtained in processing the magnetotelluric data suggest the possibility of a conductive axis along the center of the eastern Snake River Plain, and these parameters also point to very conductive structures beneath the Yellowstone caldera system. A sounding completed in the Island Park caldera can only be modeled with a crustal structure very different from the Yellowstone caldera system, requiring the absence of this conductive zone to depths greater than 25 km in the Island Park caldera. In addition to the deep conductive zone the thickness of extensive surface basalts in the eastern Snake River Plain was mapped geophysically, and units between the basalts and the deep conductive zone were also well defined and fitted to geologic models.

  3. Hydrology and digital simulation of the regional aquifer system, eastern Snake River Plain, Idaho

    Science.gov (United States)

    Garabedian, S.P.

    1992-01-01

    The occurrence and movement of water in the regional aquifer system that underlies the eastern Snake River Plain, Idaho, de- pend on the transmissivity and storage capacity of rocks that compose the geologic framework and on the distribution and amount of recharge and discharge of water within that frame- work. On a regional scale, most water moves horizontally through interflow zones in Quaternary basalt of the Snake River Group. In recharge and discharge areas, water also moves vertically along joints and interfingering edges of basalt flows. Aquifer thickness is largely unknown, but geophysical studies suggest that locally the Quaternary basalt may exceed several thousand feet. Along the margins of the plain, sand and gravel several hundred feet thick transmit large volumes of water.

  4. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    Science.gov (United States)

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  5. Extension of the Yellowstone plateau, eastern Snake River Plain, and Owyhee plateau

    Science.gov (United States)

    Rodgers, David W.; Hackett, William R.; Ore, H. Thomas

    1990-11-01

    Formation of the late Cenozoic volcanic province comprising the Owyhee plateau, eastern Snake River Plain, and Yellowstone plateau has been accompanied by east-northeast-directed crustal extension. A new vector of 45 mm/yr, N56°E for the migration of silicic volcanism across the volcanic province is calculated. If migration of volcanism reflects west-southwest continental drift over a mantle plume, a zone of crustal extension must separate the volcanic province from the more slowly moving North American craton. Space-time relations of basin fill in the adjacent Basin and Range province provide evidence for a zone of extension, about 125 km wide, coincident with and east of coeval silicic volcanism. Since 16 Ma, the zone of extension has migrated along with silicic volcanism, maintaining its position between the province and the unextended craton.

  6. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

  7. Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Tullis, J.A.

    1995-09-01

    Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, <0.5 m in height, and from 8 to 14 m in diameter. They are found on flat and sloped surfaces, and appear less frequently in lowland areas. The mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dug to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a {open_quotes}floor{close_quotes} of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief.

  8. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood

    2014-02-01

    The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer. We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.

  9. Potential hydrothermal resource temperatures in the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashayam Neupane; Earl D. Mattson; Cody J. Cannon; Trevor A. Atkinson; Travis L. McLing; Thomas R. Wood; Patrick F. Dobson; Mark E. Conrad

    2016-02-01

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of the Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources as evidenced by numerous hot springs scattered along the margins of the plain and several hot-water producing wells and hot springs within the plain. Despite these thermal expressions, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water and re-equilibration at lower temperature are significant challenges for the evaluation of potential resource areas in the ESRP. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to these chemical compositions of ESRP water samples. Geothermometric calculations based on principles of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for the evaluation of reservoir temperatures. RTEst geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Bennett Hills and within the Camas Prairies in the western-northwestern regions of the ESRP and its margins suggest temperatures in the range of 140-200°C. In the northeastern portions of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature =140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host

  10. Reconnaissance of ground-water quality, eastern Snake River basin, Idaho

    Science.gov (United States)

    Parliman, D.J.

    1982-01-01

    Water-quality, geologic, and hydrologic data were collected for 165 wells in the eastern Snake River basin, Idaho. Water-quality characteristics analyzed include specific conductance, pH, water temperature, major dissolved cations and anions, and coliform bacteria. Ground water from aquifers in all rock units is generally composed of calcium, magnesium, and bicarbonate type and contains carbonate ions. Changes in area trends of ground-water composition probably are most directly related to variability in aquifer composition and proximity to varying sources of recharge, especially those related to man 's land- and water-use activities. In the uplands subareas, median values for selected ground-water characteristics from current analyses are 2000 mg/l hardness; 7.6, pH; 200 mg/l alkalinity; 13C; 0.2 mg/l fluoride; 15 mg/l silica; 0.51 mg/l nitrite (as nitrogen); less than 1 colony per 100 milliliters of water coliform bacteria; 0.02 mg/l phosphorus (total); and 25 mg/l hardness; 7.7, pH; 180 mg/l alkalinity; 11C; 0.4 mg/l fluoride; 26 mg/l silica; 1.2 mg/l nitrite plus nitrate; less than 1 colony per 100 milliliters of water coliform bacteria; 0.01 amg/l phosphorus; and 283 mg/l dissolved solids. Ground-water quality in most of the study area meets recommended standards or criteria for most uses. (USGS)

  11. Induced thermoluminescence as a method for dating recent volcanism: Eastern Snake River Plain, Idaho, USA

    Science.gov (United States)

    Sears, Derek W. G.; Sears, Hazel; Sehlke, Alexander; Hughes, Scott S.

    2017-02-01

    The induced thermoluminescence properties of 24 samples of basalts from volcanoes in the eastern Snake River Plain, Idaho, were measured as part of an investigation into the possibility of using this technique for dating purposes. The volcanic flows sampled ranged in age from 2200 years to 400,000 years. The thermoluminescence (TL) sensitivity values obtained, i.e., maximum induced TL normalized to that of the Dhajala meteorite (where Dhajala = 1000), ranged from 1.6 ± 0.3 to 226 ± 15 and showed a correlation between log TL and age with an r2 value of 0.47. Thus, TL sensitivity values correlate with age in the manner expected, although there is a high level of scatter. We discuss various mechanisms for the correlation and scatter, particularly (1) the role of primary (igneous processes) and secondary (solid state processes), (2) composition of the plagioclase feldspar, and (3) weathering. The induced TL signal from feldspars, the mineral responsible for the TL, is strongly dependent on their composition, and correcting for this improved the correlation (r2 = 0.7). Variations in primary feldspar are affecting the data, but we find no evidence that weathering of the samples is important. Further work is required to explore the remaining causes for the scatter and the TL-age trend. However, it is clear from the present study that induced TL has the potential for dating volcanism on the 2200 to 400,000 year time frame. This dating method, if successful, would be well-suited to spacecraft use since it requires low mass and low power instruments with a low data demand.

  12. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer...

  13. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2011-13

    Science.gov (United States)

    Twining, Brian V.; Fisher, Jason C.

    2015-01-01

    From 2011 to 2013, the U.S. Geological Survey’s Idaho National Laboratory (INL) Project Office, in cooperation with the U.S. Department of Energy, collected depth-discrete measurements of fluid pressure and temperature in 11 boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system (MLMS) consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers.

  14. Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho

    Science.gov (United States)

    Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.

    2012-12-01

    The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and

  15. Wellbore and groundwater temperature distribution eastern Snake River Plain, Idaho: Implications for groundwater flow and geothermal potential

    Science.gov (United States)

    McLing, Travis L.; Smith, Richard P.; Smith, Robert W.; Blackwell, David D.; Roback, Robert C.; Sondrup, Andrus J.

    2016-06-01

    A map of groundwater temperatures from the Eastern Snake River Plain (ESRP) regional aquifer can be used to identify and interpret important features of the aquifer, including aquifer flow direction, aquifer thickness, and potential geothermal anomalies. The ESRP is an area of high heat flow, yet most of this thermal energy fails to reach the surface, due to the heat being swept downgradient by the aquifer to the major spring complexes near Thousand Springs, ID, a distance of 300 km. Nine deep boreholes that fully penetrate the regional aquifer display three common features: (1) high thermal gradients beneath the aquifer, corresponding to high conductive heat flow in low-permeability hydrothermally-altered rocks; (2) isothermal temperature profiles within the aquifer, characteristic of an actively flowing groundwater; and (3) moderate thermal gradients in the vadose zone with values that indicate that over half of the geothermal heat flow is removed by advective transport in the regional aquifer system. This study utilized temperature data from 250 ESRP aquifer wells to evaluate regional aquifer flow direction, aquifer thickness, and potential geothermal anomalies. Because the thermal gradients are typically low in the aquifer, any measurement of groundwater temperature is a reasonable estimate of temperature throughout the aquifer thickness, allowing the construction of a regional aquifer temperature map for the ESRP. Mapped temperatures are used to identify cold thermal plumes associated with recharge from tributary valleys and adjacent uplands, and warm zones associated with geothermal input to the aquifer. Warm zones in the aquifer can have various causes, including local circulation of groundwater through the deep conductively dominated region, slow groundwater movement in low-permeability regions, or localized heat flow from deeper thermal features.

  16. Deciphering the Influence of Crustal Flexure and Shear Along the Margins of the Eastern Snake River Plain

    Science.gov (United States)

    Parker, S. D.

    2016-12-01

    The kinematic evolution of the eastern Snake River Plain (ESRP) remains highly contested. A lack of strike-slip faults bounding the ESRP serves as a primary assumption in many leading kinematic models. Recent GPS geodesy has highlighted possible shear zones along the ESRP yet regional strike-slip faults remain unidentified. Oblique movement within dense arrays of high-angle conjugate normal faults, paralleling the ESRP, occur within a discrete zone of 50 km on both margins of the ESRP. These features have long been attributed to progressive crustal flexure and subsidence within the ESRP, but are capable of accommodating the observed strain without necessitating large scale strike-slip faults. Deformation features within an extensive Neogene conglomerate provide field evidence for dextral shear in a transtensional system along the northern margin of the ESRP. Pressure-solution pits and cobble striations provide evidence for a horizontal ENE/WSW maximum principal stress orientation, consistent with the hypothesis of a dextral Centennial shear zone. Fold hinges, erosional surfaces and stratigraphic datums plunging perpendicular into the ESRP have been attributed to crustal flexure and subsidence of the ESRP. Similar Quaternary folds plunge obliquely into the ESRP along its margins where diminishing offset along active normal faults trends into linear volcanic features. In all cases, orientations and distributions of plunging fold structures display a correlation to the terminus of active Basin and Range faults and linear volcanic features of the ESRP. An alternative kinematic model, rooted in kinematic disparities between Basin and Range faults and parallelling volcanic features may explain the observed downwarping as well as provide a mechanism for the observed shear along the margins of the ESRP. By integrating field observations with seismic, geodetic and geomorphic observations this study attempts to decipher the signatures of crustal flexure and shear along the

  17. Evaluation of background concentrations of selected chemical and radiochemical constituents in water from the eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Bartholomay, Roy C.; L. Flint Hall,

    2016-05-05

    The U.S. Geological Survey and Idaho Department of Environmental Quality Idaho National Laboratory (INL) Oversight Program in cooperation with the U.S. Department of Energy determined background concentrations of selected chemical and radiochemical constituents in the eastern Snake River Plain aquifer to aid with ongoing cleanup efforts at the INL. Chemical and radiochemical constituents including calcium, magnesium, sodium, potassium, silica, chloride, sulfate, fluoride, bicarbonate, chromium, nitrate, tritium, strontium-90, chlorine-36, iodine-129, plutonium-238, plutonium-239, -240 (undivided), americium-241, technetium-99, uranium-234, uranium-235, and uranium-238 were selected for the background study because they were either not analyzed in earlier studies or new data became available to give a more recent determination of background concentrations. Samples of water collected from wells and springs at and near the INL that were not believed to be influenced by wastewater disposal were used to identify background concentrations. Groundwater in the eastern Snake River Plain aquifer at and near the INL was divided into two major water types (western tributary and eastern regional) based on concentrations of lithium less than and greater than 5 micrograms per liter (μg/L). Median concentrations for each constituent were used to define the upper limit of background.

  18. Mixing effects on geothermometric calculations of the Newdale geothermal area in the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashayam Neupane; Earl D. Mattson; Travis L. McLing; Cody J. Cannon; Thomas R. Wood; Trevor A. Atkinson; Patrick F. Dobson; Mark E. Conrad

    2016-02-01

    The Newdale geothermal area in Madison and Fremont Counties in Idaho is a known geothermal resource area whose thermal anomaly is expressed by high thermal gradients and numerous wells producing warm water (up to 51 °C). Geologically, the Newdale geothermal area is located within the Eastern Snake River Plain (ESRP) that has a time-transgressive history of sustained volcanic activities associated with the passage of Yellowstone Hotspot from the southwestern part of Idaho to its current position underneath Yellowstone National Park in Wyoming. Locally, the Newdale geothermal area is located within an area that was subjected to several overlapping and nested caldera complexes. The Tertiary caldera forming volcanic activities and associated rocks have been buried underneath Quaternary flood basalts and felsic volcanic rocks. Two southeast dipping young faults (Teton dam fault and an unnamed fault) in the area provide the structural control for this localized thermal anomaly zone. Geochemically, water samples from numerous wells in the area can be divided into two broad groups – Na-HCO3 and Ca-(Mg)-HCO3 type waters and are considered to be the product of water-rhyolite and water-basalt interactions, respectively. Each type of water can further be subdivided into two groups depending on their degree of mixing with other water types or interaction with other rocks. For example, some bivariate plots indicate that some Ca-(Mg)-HCO3 water samples have interacted only with basalts whereas some samples of this water type also show limited interaction with rhyolite or mixing with Na-HCO3 type water. Traditional geothermometers [e.g., silica variants, Na-K-Ca (Mg-corrected)] indicate lower temperatures for this area; however, a traditional silica-enthalpy mixing model results in higher reservoir temperatures. We applied a new multicomponent equilibrium geothermometry tool (e.g., Reservoir Temperature Estimator, RTEst) that is based on inverse geochemical modeling which

  19. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    Energy Technology Data Exchange (ETDEWEB)

    L. D. Cecil; L. L. Knobel; J. R. Green (USGS); S. K. Frape (University of Waterloo)

    2000-06-01

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water.

  20. Preliminary geologic mapping of Cretaceous and Tertiary formations in the eastern part of the Little Snake River coal field, Carbon County, Wyoming

    Science.gov (United States)

    Haacke, Jon E.; Barclay, C. S. Venable; Hettinger, Robert D.

    2016-09-30

    In the 1970s and 1980s, C.S. Venable Barclay conducted geologic mapping of areas primarily underlain by Cretaceous coals in the eastern part of the Little Snake River coal field (LSR) in Carbon County, southwest Wyoming. With some exceptions, most of the mapping data were never published. Subsequently, after his retirement from the U.S. Geological Survey (USGS), his field maps and field notebooks were archived in the USGS Field Records. Due to a pending USGS coal assessment of the Little Snake River coal field area and planned geological mapping to be conducted by the Wyoming State Geological Survey, Barclay’s mapping data needed to be published to support these efforts. Subsequently, geologic maps were scanned and georeferenced into a geographic information system, and project and field notes were scanned into Portable Document Format (PDF) files. Data for seventeen 7½-minute quadrangles are presented in this report. This publication is solely intended to compile the mapping data as it was last worked on by Barclay and provides no interpretation or modification of his work.

  1. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2007-08

    Science.gov (United States)

    Fisher, Jason C.; Twining, Brian V.

    2011-01-01

    During 2007 and 2008, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected quarterly depth-discrete measurements of fluid pressure and temperature in six boreholes located in the eastern Snake River Plain aquifer of Idaho. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Hydraulic heads (head) and water temperatures in boreholes were monitored at 86 hydraulically-isolated depth intervals located 448.0 to 1,377.6 feet below land surface. The calculation of head is most sensitive to fluid pressure and the altitude of the pressure transducer at each port coupling; it is least sensitive to barometric pressure and water temperature. An analysis of errors associated with the head calculation determined the accuracy of an individual head measurement at +/- 2.3 feet. Many of the sources of measurement error are diminished when considering the differences between two closely-spaced readings of head; therefore, a +/- 0.1 foot measurement accuracy was assumed for vertical head differences (and gradients) calculated between adjacent monitoring zones. Vertical head and temperature profiles were unique to each borehole, and were characteristic of the heterogeneity and anisotropy of the eastern Snake River Plain aquifer. The vertical hydraulic gradients in each borehole remained relatively constant over time with minimum Pearson correlation coefficients between head profiles ranging from 0.72 at borehole USGS 103 to 1.00 at boreholes USGS 133 and MIDDLE 2051. Major inflections in the head profiles almost always coincided with low permeability sediment layers. The presence of a sediment layer, however, was insufficient for identifying the location of a major head change in a borehole. The vertical hydraulic gradients were defined for the major inflections in the head profiles and were as much as 2.2 feet per foot. Head gradients

  2. 33 CFR 117.385 - Snake River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake River. 117.385 Section 117.385 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12...

  3. Snakes! Snakes! Snakes!

    Science.gov (United States)

    Nature Naturally, 1983

    1983-01-01

    Designed for students in grades 4-6, the teaching unit presents illustrations and facts about snakes. Topics include common snakes found in the United States, how snakes eat, how snakes shed their skin, poisonous snakes, the Eastern Indigo snake, and the anatomy of a snake. A student page includes a crossword puzzle and surprising snake facts. A…

  4. Chemical constituents in groundwater from multiple zones in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2009-13

    Science.gov (United States)

    Bartholomay, Roy C.; Hopkins, Candice B.; Maimer, Neil V.

    2015-01-01

    From 2009 to 2013, the U.S. Geological Survey’s (USGS) Idaho National Laboratory (INL) Project office, in cooperation with the U.S. Department of Energy, collected water-quality samples from multiple water-bearing zones in the eastern Snake River Plain aquifer. Water samples were collected from 11 monitoring wells completed in about 250–750 feet of the upper part of the aquifer, and samples were analyzed for selected major ions, trace elements, nutrients, radiochemical constituents, and stable isotopes. Each well was equipped with a multilevel monitoring system containing four to seven sampling ports that were each isolated by permanent packer systems. The sampling ports were installed in aquifer zones that were highly transmissive and that represented the water chemistry of the top three to five model layers of a steady-state and transient groundwater‑flow model. The groundwater-flow model and water chemistry are being used to better define movement of wastewater constituents in the aquifer.

  5. Holocene environmental change in the eastern Snake River Plain of Idaho, USA, as inferred from stable isotope analyses of small mammals

    Science.gov (United States)

    Commendador, Amy S.; Finney, Bruce P.

    2016-05-01

    Previous research on the small mammal population recovered from archeological excavations at the Wasden Site in southeastern Idaho suggests that changing frequency distributions through time represent a shift in climate during the early Holocene from a cooler, wetter regime to a warmer, drier one. This conclusion was re-evaluated using stable carbon and nitrogen isotope analyses of bone collagen from the three species of small mammals examined in the earlier studies: pocket gophers (Thomomys talpoides), pygmy rabbits (Brachylagus idahoensis), and ground squirrels (Spermophilus townsendii). Resulting carbon and nitrogen isotopic values are consistent with known differences in feeding ecology, suggesting high fidelity as proxies for past vegetation (and thus climate) regimes. Patterns of 15N enrichment and increased representation of C4-CAM vegetation observed in the pocket gophers, and to a lesser extent ground squirrels, suggests increasing warmth and/or aridity from the early Holocene until ∼7000 cal yr BP, thus supporting previous hypotheses of climate change on the eastern Snake River Plain. The results highlight the potential contribution of such studies for archeological research by providing additional proxies for environmental conditions that bear on paleoecological adaptations to climatic change, including past human use and occupation of the region.

  6. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Science.gov (United States)

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River... Snake—Asotin 17060103 17060103 17060103 Upper Grande Ronde 17060104 Wallowa 17060105 Lower Grande...

  7. Borehole deviation and correction factor data for selected wells in the eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Twining, Brian V.

    2016-11-29

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, has maintained a water-level monitoring program at the Idaho National Laboratory (INL) since 1949. The purpose of the program is to systematically measure and report water-level data to assess the eastern Snake River Plain aquifer and long term changes in groundwater recharge, discharge, movement, and storage. Water-level data are commonly used to generate potentiometric maps and used to infer increases and (or) decreases in the regional groundwater system. Well deviation is one component of water-level data that is often overlooked and is the result of the well construction and the well not being plumb. Depending on measured slant angle, where well deviation generally increases linearly with increasing slant angle, well deviation can suggest artificial anomalies in the water table. To remove the effects of well deviation, the USGS INL Project Office applies a correction factor to water-level data when a well deviation survey indicates a change in the reference elevation of greater than or equal to 0.2 ft.Borehole well deviation survey data were considered for 177 wells completed within the eastern Snake River Plain aquifer, but not all wells had deviation survey data available. As of 2016, USGS INL Project Office database includes: 57 wells with gyroscopic survey data; 100 wells with magnetic deviation survey data; 11 wells with erroneous gyroscopic data that were excluded; and, 68 wells with no deviation survey data available. Of the 57 wells with gyroscopic deviation surveys, correction factors for 16 wells ranged from 0.20 to 6.07 ft and inclination angles (SANG) ranged from 1.6 to 16.0 degrees. Of the 100 wells with magnetic deviation surveys, a correction factor for 21 wells ranged from 0.20 to 5.78 ft and SANG ranged from 1.0 to 13.8 degrees, not including the wells that did not meet the correction factor criteria of greater than or equal to 0.20 ft.Forty-seven wells had

  8. Optimization of water-level monitoring networks in the eastern Snake River Plain aquifer using a kriging-based genetic algorithm method

    Science.gov (United States)

    Fisher, Jason C.

    2013-01-01

    Long-term groundwater monitoring networks can provide essential information for the planning and management of water resources. Budget constraints in water resource management agencies often mean a reduction in the number of observation wells included in a monitoring network. A network design tool, distributed as an R package, was developed to determine which wells to exclude from a monitoring network because they add little or no beneficial information. A kriging-based genetic algorithm method was used to optimize the monitoring network. The algorithm was used to find the set of wells whose removal leads to the smallest increase in the weighted sum of the (1) mean standard error at all nodes in the kriging grid where the water table is estimated, (2) root-mean-squared-error between the measured and estimated water-level elevation at the removed sites, (3) mean standard deviation of measurements across time at the removed sites, and (4) mean measurement error of wells in the reduced network. The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The network design tool was applied to optimize two observation well networks monitoring the water table of the eastern Snake River Plain aquifer, Idaho; these networks include the 2008 Federal-State Cooperative water-level monitoring network (Co-op network) with 166 observation wells, and the 2008 U.S. Geological Survey-Idaho National Laboratory water-level monitoring network (USGS-INL network) with 171 wells. Each water-level monitoring network was optimized five times: by removing (1) 10, (2) 20, (3) 40, (4) 60, and (5) 80 observation wells from the original network. An examination of the trade-offs associated with changes in the number of wells to remove indicates that 20 wells can be removed from the Co-op network with a relatively small degradation of the estimated water table map, and 40 wells

  9. Optimization of Water-Level Monitoring Networks in the Eastern Snake River Plain Aquifer Using a Kriging-Based Genetic Algorithm Method

    Science.gov (United States)

    Fisher, J. C.

    2013-12-01

    Long-term groundwater monitoring networks can provide essential information for the planning and management of water resources. Budget constraints in water resource management agencies often mean a reduction in the number of observation wells included in a monitoring network. A network design tool, distributed as an R package, was developed to determine which wells to exclude from a monitoring network because they add little or no beneficial information. A kriging-based genetic algorithm method was used to optimize the monitoring network. The algorithm was used to find the set of wells whose removal leads to the smallest increase in the weighted sum of the (1) mean standard error at all nodes in the kriging grid where the water table is estimated, (2) root-mean-squared-error between the measured and estimated water-level elevation at the removed sites, (3) mean standard deviation of measurements across time at the removed sites, and (4) mean measurement error of wells in the reduced network. The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The network design tool was applied to optimize two observation well networks monitoring the water table of the eastern Snake River Plain aquifer, Idaho; these networks include the 2008 Federal-State Cooperative water-level monitoring network (Co-op network) with 166 observation wells, and the 2008 U.S. Geological Survey-Idaho National Laboratory water-level monitoring network (USGS-INL network) with 171 wells. Each water-level monitoring network was optimized five times: by removing (1) 10, (2) 20, (3) 40, (4) 60, and (5) 80 observation wells from the original network. An examination of the trade-offs associated with changes in the number of wells to remove indicates that 20 wells can be removed from the Co-op network with a relatively small degradation of the estimated water table map, and 40 wells

  10. Steady-State and Transient Groundwater Flow and Advective Transport, Eastern Snake River Plain Aquifer, Idaho National Laboratory and Vicinity, Idaho

    Science.gov (United States)

    Fisher, J. C.; Ackerman, D. J.; Rousseau, J. P.; Rattray, G. W.

    2009-12-01

    Three-dimensional steady-state and transient models of groundwater flow and advective transport through the fractured basalts and interbedded sediments of the Eastern Snake River Plain (ESRP) aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The model domain covers an area of 1,940 square miles that includes most of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the aquifer. Numerical models simulated 1980 steady-state conditions and transient flow for 1980-95. In the transient model, streamflow infiltration was the major stress. The models were calibrated using the parameter-estimation program incorporated in MODFLOW-2000. The steady-state model reasonably simulated the observed water-table altitude and gradients. Simulation of transient conditions reproduced changes in the flow system resulting from episodic infiltration from the Big Lost River. Analysis of simulations shows that flow is (1) dominantly horizontal through interflow zones in basalt, vertical anisotropy resulting from contrasts in hydraulic conductivity of different types of basalt and the interbedded sediments, (2) temporally variable due to streamflow infiltration from the Big Lost River, and (3) moving downward downgradient of the INL. Particle-tracking simulations were used to evaluate how simulated groundwater flow paths and travel times differ between the steady-state and transient flow models, and how well model-derived groundwater flow directions and velocities compare to independently-derived estimates. Particle tracking also was used to simulate the growth of tritium plumes originating at two INL facilities over a 16 year period under steady-state and transient flow conditions (1953-68). The shape, dimensions, and areal extent of these plumes were compared to a map of the plumes for 1968 from tritium releases beginning in 1952

  11. Snake River Islands Wilderness proposal : Snake River sector : Deer Flat National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document describes the Snake River Islands in the Deer Flat National Wildlife Refuge which have been studied pursuant to the Wilderness Act of 1964 to determine...

  12. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2009–10

    Science.gov (United States)

    Twining, Brian V.; Fisher, Jason C.

    2012-01-01

    During 2009 and 2010, the U.S. Geological Survey’s Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly, depth-discrete measurements of fluid pressure and temperature in nine boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Multilevel monitoring at the Idaho National Laboratory has been ongoing since 2006. This report summarizes data collected from three multilevel monitoring wells installed during 2009 and 2010 and presents updates to six multilevel monitoring wells. Hydraulic heads (heads) and groundwater temperatures were monitored from 9 multilevel monitoring wells, including 120 hydraulically isolated depth intervals from 448.0 to 1,377.6 feet below land surface. Quarterly head and temperature profiles reveal unique patterns for vertical examination of the aquifer’s complex basalt and sediment stratigraphy, proximity to aquifer recharge and discharge, and groundwater flow. These features contribute to some of the localized variability even though the general profile shape remained consistent over the period of record. Major inflections in the head profiles almost always coincided with low-permeability sediment layers and occasionally thick sequences of dense basalt. However, the presence of a sediment layer or dense basalt layer was insufficient for identifying the location of a major head change within a borehole without knowing the true areal extent and relative transmissivity of the lithologic unit. Temperature profiles for boreholes completed within the Big Lost Trough indicate linear conductive trends; whereas, temperature profiles for boreholes completed within the axial volcanic high indicate mostly convective heat transfer resulting from the vertical movement of groundwater. Additionally, temperature profiles

  13. Snake and Columbia Rivers Sediment Sampling Project

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Word, J.Q; Barrows, E.S.; Mayhew, H.L.; Clark, D.R. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

    1992-12-01

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  14. Snake and Columbia Rivers Sediment Sampling Project

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M. R.; Word, J. Q.; Barrows, E. S.; Mayhew, H. L.; Clark, D. R. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1992-12-01

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  15. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2012-15

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Rattray, Gordon W.; Fisher, Jason C.

    2017-04-10

    Since 1952, wastewater discharged to in ltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater-monitoring networks at the INL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from the ESRP aquifer, multilevel monitoring system (MLMS) wells in the ESRP aquifer, and perched groundwater wells in the USGS groundwater monitoring networks during 2012-15.

  16. Evaluation of Eastern Indigo Snakes Restocking Attempts

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Beginning in 1976 and continuing through 1987 marked indigo snakes adults, juveniles and hatchlings were released in wild habitats within the historic range of the...

  17. Growth data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  18. Snake River Plain Basin-fill aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Snake River Plain aquifer system, which includes both the basaltic and basin-fill aquifers. This dataset does not...

  19. Broodyear data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  20. Fish Culture data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  1. Spawning data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  2. Production data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  3. INEEL Subregional Conceptual Model Report; Volume 1 - Summary of Existing Knowledge of Natural and Anthropogenic Influences Governing Subsurface Contaminant Transport in the INEEL Subregion of the Eastern Snake River Plain

    Energy Technology Data Exchange (ETDEWEB)

    Wichlacz, Paul Louis; Orr, Brennan

    2002-08-01

    The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual models of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of

  4. INEEL Subregional Conceptual Model Report; Volume 1 - Summary of Existing Knowledge of Natural and Anthropogenic Influences Governing Subsurface Contaminant Transport in the INEEL Subregion of the Eastern Snake River Plain

    Energy Technology Data Exchange (ETDEWEB)

    Wichlacz, Paul Louis; Orr, Brennan

    2002-08-01

    The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual models of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of

  5. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Muir, William D.; Connor, William P.; Arnsberg, Billy D.

    1999-03-01

    In 1997, the National Marine Fisheries Service, the U.S. Fish and Wildlife Service, and the Nez Perce Tribe completed the third year of research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin.

  6. 75 FR 6020 - Electrical Interconnection of the Lower Snake River Wind Energy Project

    Science.gov (United States)

    2010-02-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Bonneville Power Administration Electrical Interconnection of the Lower Snake River Wind Energy Project... their proposed Lower Snake River Wind Energy Project (Wind Project) in Garfield and Columbia...

  7. River Incision and Knickpoints on the Flank of the Yellowstone Hotspot — Alpine Canyon of the Snake River, Wyoming

    Science.gov (United States)

    Tuzlak, D.; Pederson, J. L.

    2015-12-01

    Understanding patterns of deformation and testing geophysical models in the dynamic region of the Yellowstone Hotspot requires Quaternary-scale records of incision and uplift, which are currently absent. This study examines fluvial terraces and longitudinal-profile metrics along Alpine Canyon of the Snake River, WY. Because the Snake is the only regional river crossing from the uplifting Yellowstone Plateau and flowing into the subsiding Eastern Snake River Plain, it provides an opportunity to investigate both ends of the phenomenon. Field observations through Alpine Canyon indicate that Pleistocene incision rates in this region are relatively high for the interior western U.S., that the river switches between bedrock and alluvial forms, and that incision/uplift is not uniform. Two endmembers of regional deformation may be tested: 1) the arch of high topography surrounding Yellowstone is uplifting and terraces converge downstream as incision rates decrease towards the Snake River Plain, or 2) baselevel fall originates at the subsiding Snake River Plain and terraces diverge as incision rates increase downstream. Datasets include surficial mapping, rock strength measurements, surveying of the longitudinal profile and terraces using RTK-GPS, optically stimulated luminescence dating of fluvial-terrace deposits, and investigation of drainages through ksn and χ analyses. Initial results indicate that there are four primary terrace deposits along the canyon, three of which are timed with glacial epochs. Considering the relative heights of terrace straths and preliminary ages, incision rates are indeed relatively high. There is a major knickzone covering the last 15 km of the canyon that is also reflected in tributary profiles and is consistent with a wave of incision propagating upstream, favoring the second endmember of active baselevel fall downstream.

  8. Live blind snakes (Leptotyphlops dulcis) in eastern screech owl (Otus asio) nests: a novel commensalism.

    Science.gov (United States)

    Gehlbach, F R; Baldridge, R S

    1987-03-01

    Eastern screech owls bring live blind snakes to their nestlings, whereas all other prey are delivered dead. Some of the snakes are eaten but most live in nest debris, where they eat soft-bodied insect larvae from the decomposer community in fecal matter, pellets, and uneaten prey. Consumption of larvae may reduce larval parasitism on owl nestlings or larval competition with nestlings for food stored in the nest, because nestlings with live-in blind snakes grow faster and experience lower mortality than same-season broods lacking snakes. We propose a commensalistic association in which the screech owl benefits reproductively and the live-in blind snake is not affected.

  9. Snake River Fall Chinook Salmon life history investigations

    Science.gov (United States)

    Erhardt, John M.; Bickford, Brad; Hemingway, Rulon; Rhodes, Tobyn; Tiffan, Kenneth F.

    2017-01-01

    Predation by nonnative fishes is one factor that has been implicated in the decline of juvenile salmonids in the Pacific Northwest. Impoundment of much of the Snake and Columbia rivers has altered food webs and created habitat favorable for species such as Smallmouth Bass Micropterus dolomieu. Smallmouth Bass are common throughout the Columbia River basin and have become the most abundant predator in lower Snake River reservoirs (Zimmerman and Parker 1995). This is a concern for Snake River Fall Chinook Salmon Oncorhynchus tshawytscha (hereafter, subyearlings) that may be particularly vulnerable due to their relatively small size and because their main-stem rearing habitats often overlap or are in close proximity to habitats used by Smallmouth Bass (Curet 1993; Tabor et al. 1993). Concern over juvenile salmon predation spawned a number of large-scale studies to quantify its effect in the late 1980s, 1990s, and early 2000s (Poe et al. 1991; Rieman et al. 1991; Vigg et al. 1991; Fritts and Pearsons 2004; Naughton et al. 2004). Smallmouth Bass predation represented 9% of total salmon consumption by predatory fishes in John Day Reservoir, Columbia River, from 1983 through 1986 (Rieman et al. 1991). In transitional habitat between the Hanford Reach of the Columbia River and McNary Reservoir, juvenile salmon (presumably subyearlings) were found in 65% of Smallmouth Bass (>200 mm) stomachs and comprised 59% of the diet by weight (Tabor et al. 1993). Within Lower Granite Reservoir on the Snake River, Naughton et al. (2004) showed that monthly consumption (based on weight) ranged from 5% in the upper reaches of the reservoir to 11% in the forebay. However, studies in the Snake River were conducted soon after Endangered Species Act (ESA) listing of Snake River Fall Chinook Salmon (NMFS 1992). During this time, Fall Chinook Salmon abundance was at an historic low, which may explain why consumption rates were relatively low compared to those from studies conducted in the

  10. Snake River Plain Play Fairway Analysis – Phase 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Shervais, John W. [Utah State Univ., Logan, UT (United States). Dept. of Geology; Glen, Jonathan M. [US Geological Survey, Menlo Park, CA (United States); Liberty, Lee M. [Boise State Univ., ID (United States). Center for Geophysical Investigation of the Shallow Subsurface; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. Our goals for this Phase 1 study are to: (1) adapt the methodology of Play Fairway Analysis for geothermal exploration to create a formal basis for its application to geothermal systems, (2) assemble relevant data for the SRP from publicly available and private sources, and (3) build a geothermal play fairway model for the SRP and identify the most promising plays, using software tools that are standard in the petroleum industry. The success of play fairway analysis in geothermal exploration depends critically on defining a systematic methodology that is grounded in theory (as developed within the petroleum industry over the last two decades) and within the geologic and hydrologic framework of real geothermal systems. Our preliminary assessment of the data suggests that important undiscovered geothermal resources may be located in several areas of the SRP, including the western SRP (associated with buried lineaments defined by gravity or magnetic anomalies, and capped by extensive deposits of lacustrine sediment), at lineament intersections in the central SRP (along the Banbury-Hagerman trend NW of Twin Falls, and along the northern margin of the Mt Bennett Hills-Camas Prairie area), and along the margins of the eastern SRP. Additional high temperature resources are likely associated with rhyolite domes and crypto-domes in the eastern SRP, but are masked by shallow groundwater flow leading to low upper crustal heat flow values. These blind resources may be exploitable with existing deep drilling technology. Groundwater modeling planned for later phases of the PFA project will address whether temperatures at viable producing depths are sufficient to support electricity production.

  11. Snake River Plain Play Fairway Analysis - Phase 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Shervais, John W.; Glen, Jonathan M.; Liberty, Lee M.; Dobson, Patrick; Gasperikova, Erika; Sonnenthal, Eric; Visser, Charles; Nielson, Dennis; Garg, Sabodh; Evans, James P.; Siler, Drew; DeAngelo, Jacob; Athens, Noah; Burns, Erick

    2015-09-02

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. Our goals for this Phase 1 study are to: (1) adapt the methodology of Play Fairway Analysis for geothermal exploration to create a formal basis for its application to geothermal systems, (2) assemble relevant data for the SRP from publicly available and private sources, and (3) build a geothermal play fairway model for the SRP and identify the most promising plays, using software tools that are standard in the petroleum industry. The success of play fairway analysis in geothermal exploration depends critically on defining a systematic methodology that is grounded in theory (as developed within the petroleum industry over the last two decades) and within the geologic and hydrologic framework of real geothermal systems. Our preliminary assessment of the data suggests that important undiscovered geothermal resources may be located in several areas of the SRP, including the western SRP (associated with buried lineaments defined by gravity or magnetic anomalies, and capped by extensive deposits of lacustrine sediment), at lineament intersections in the central SRP (along the Banbury-Hagerman trend NW of Twin Falls, and along the northern margin of the Mt Bennett Hills-Camas Prairie area), and along the margins of the eastern SRP. Additional high temperature resources are likely associated with rhyolite domes and crypto-domes in the eastern SRP, but are masked by shallow groundwater flow leading to low upper crustal heat flow values. These blind resources may be exploitable with existing deep drilling technology. Groundwater modeling planned for later phases of the PFA project will address whether temperatures at viable producing depths are sufficient to support electricity production.

  12. Snagging, Clearing, and Shelterbelt for Flood Control, Snake River, Minnesota.

    Science.gov (United States)

    1982-01-01

    Water Quality 8 Water Supply 8 Wildlife Resources 11 Fish 11 Mamals 11 Birds 11 Amphibians and Reptiles 12 Endangered Species 12 Vegetation 12 Land Use...relationships. It is important, especially in an area like the Snake River, to maintain and, if possible, to propagate these ecosystems that represent the...River bottoms rich in bird life, as evidenced by the large number of species that are known to use the area. Amphibians and Reptiles 2.21 The limited

  13. Geothermal investigations in Idaho. Part 8. Heat flow study of the Snake River Plain region, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Brott, C.A.; Blackwell, D.D.; Mitchell, J.C.

    1976-09-01

    The Snake River Plain of Idaho has recent lava flows and a large number of thermal springs and wells. A heat flow study was initiated which, together with available geological and geophysical information, allows a better definition of the geothermal resource and evaluation of the geothermal potential. Local geothermal anomalies were not the objects of this study and have not been studied in detail. The quality of the heat flow values obtained varies as interpretation was necessary to determine geothermal gradients for many of the holes which had disturbances. A major problem in determining the heat flow values is the lack of knowledge of the in situ porosity of the rocks. The heat flow values obtained for the Eastern Snake River Plain are from shallow wells (< 200 m), hence the heat flow there is low (< 0.5 HFU) because of the water movement in the Snake Plain aquifer. The anomalous regional heat flow pattern around the Snake River Plain, together with other geophysical and geological data, suggest the presence of a major crustal heat source. With the exception of the area of the Snake Plain aquifer, high geothermal gradients were found in all areas of southern Idaho (40 to 100/sup 0/C/km). Temperatures hot enough for space heating can be found most anywhere in the Plain at relatively shallow depths (1 to 2 km). Temperatures hot enough for electrical power generation (200/sup 0/C) can be found beneath southern Idaho almost anywhere at depths of 3 to 4 kilometers. The Plain is fault bounded and hot water circulating along the fault zones from depths can be a very important geothermal resource at shallow depths. The margins of the Plain have the highest heat flow values, are the most faulted, and have possibly the highest geothermal resource potential.

  14. Habitat fragmentation effects on annual survival of the federally protected eastern indigo snake

    Science.gov (United States)

    Breininger, D.R.; Mazerolle, M.J.; Bolt, M.R.; Legare, M.L.; Drese, J.H.; Hines, J.E.

    2012-01-01

    The eastern indigo snake (Drymarchon couperi) is a federally listed species, most recently threatened by habitat loss and habitat degradation. In an effort to estimate snake survival, a total of 103 individuals (59 males, 44 females) were followed using radio-tracking from January 1998 to March 2004 in three landscape types that had increasing levels of habitat fragmentation: (1) conservation cores; (2) conservation areas along highways; (3) suburbs. Because of a large number of radio-tracking locations underground for which the state of snakes (i.e. alive or dead) could not be assessed, we employed a multistate approach to model snake apparent survival and encounter probability of live and dead snakes. We predicted that male snakes in suburbs would have the lowest annual survival. We found a transmitter implantation effect on snake encounter probability, as snakes implanted on a given occasion had a lower encounter probability on the next visit compared with snakes not implanted on the previous occasion. Our results indicated that adult eastern indigo snakes have relatively high survival in conservation core areas, but greatly reduced survival in conservation areas along highways and in suburbs. These findings indicate that habitat fragmentation is likely to be the critical factor for species' persistence.

  15. Report on the Status of the Eastern Indigo Snake (Drymarchon couperi) on St. Vincent National Wildlife Refuge, Franklin County, Florida

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report discusses the status of the Indigo Snake and efforts being taken to repopulate habitat. The Eastern Indigo Snake (Drymarchon couperi) was listed as a...

  16. Detection of eastern equine encephalomyelitis virus RNA in North American snakes.

    Science.gov (United States)

    Bingham, Andrea M; Graham, Sean P; Burkett-Cadena, Nathan D; White, Gregory S; Hassan, Hassan K; Unnasch, Thomas R

    2012-12-01

    The role of non-avian vertebrates in the ecology of eastern equine encephalomyelitis virus (EEEV) is unresolved, but mounting evidence supports a potential role for snakes in the EEEV transmission cycle, especially as over-wintering hosts. To determine rates of exposure and infection, we examined serum samples from wild snakes at a focus of EEEV in Alabama for viral RNA using quantitative reverse transcription polymerase chain reaction. Two species of vipers, the copperhead (Agkistrodon contortrix) and the cottonmouth (Agkistrodon piscivorus), were found to be positive for EEEV RNA using this assay. Prevalence of EEEV RNA was more frequent in seropositive snakes than seronegative snakes. Positivity for the quantitative reverse transcription polymerase chain reaction in cottonmouths peaked in April and September. Body size and sex ratios were not significantly different between infected and uninfected snakes. These results support the hypothesis that snakes are involved in the ecology of EEEV in North America, possibly as over-wintering hosts for the virus.

  17. Water Cycle Dynamics in the Snake River Basin, Alaska

    Science.gov (United States)

    Busey, R.; Hinzman, L. D.

    2009-12-01

    Alaska’s Seward Peninsula is underlain in the south by areas of near-freezing, continuous and discontinuous permafrost. These conditions make it susceptible to changing climatic conditions such as acceleration of the hydrologic cycle or general atmospheric warming. This study looks at the hydrologic record of the Snake River over the mid-twentieth century through present. The Snake River basin drains an area of about 22 square kilometers into Norton Sound near the Bering Strait, off the western coast of Alaska. Climate for this area is maritime in summer and somewhat continental in winter once the sea ice forms. Hydrometeorological parameters have been measured locally for more than fifty years with temperature being measured regularly over the last 100 years. Discharge has been measured in the Snake River intermittently over that time period as well. This study looks closely at drivers of inter-annual variations in soil moisture in the basin over the observational record using a physically based numerical hydrological model. Unlike many areas of Alaska, the meteorological record at Nome, located at the mouth of the watershed, shows no statistically significant increase in precipitation over either the last 30 years or the last 100 years. However, there has been a small increase in temperature over the 100 year time period.

  18. Head shape variation in eastern and western Montpellier snakes

    Directory of Open Access Journals (Sweden)

    Marco Mangiacotti

    2014-12-01

    Full Text Available The Montpellier snake Malpolon monspessulanus is a wide-ranging species that inhabits Western and Eastern Europe, North Africa and Middle East. Four clades have been recognised as two species, M. insignitus and M. monspessulanus, each with two subspecies. Clades have been substantially identified on the basis of molecular data, pholidosis and colouration, while morphometric traits have been ignored. We compared head shape of 54 specimens belonging to three out of the four clades (M. insignitus insignitus, M. i. fuscus, and M. monspessulanus monspessulanus by means of geometric morphometrics. We found a significant differentiation: the supraocular and frontal area showed the largest amount of variation, being respectively much thinner in M. i. insignitus, a bit less thin in M. i. fuscus and definitely wider in M. m. monspessulanus. Our findings are fully in agreement with the genetic studies and phylogeny explains more than 20% of the observed variation, supporting the taxonomic distinction inside the genus Malpolon. The functional and/or adaptive meaning of the observed differences is not clear, but it seems unlikely that it may be related to diet. Combining morphological data with phylogeography and environmental features, we formulated an explanatory hypothesis that allowed a precise and testable prediction.

  19. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2009–11

    Science.gov (United States)

    Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.

    2013-01-01

    Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 2009–11. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March–May 2009 to March–May 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 2009–11. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 200±60 to 7,000±260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or

  20. Snakes

    Energy Technology Data Exchange (ETDEWEB)

    Wesson, J.A. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1995-11-01

    The injection of pellets into JET sometimes leaves a resonant localised structure commonly known as a snake. Snakes constitute a remarkable phenomenon, having both an intrinsic interest and a relevance to understanding transport. How are snakes formed? What maintains the magnetic island created by the snake? How does the confined density persist? And finally, why don`t such structures arise spontaneously? (Author).

  1. Space-Time-Isotopic Trends of Snake River Plain Basalts

    Science.gov (United States)

    Jean, M. M.; Hanan, B. B.; Shervais, J. W.

    2010-12-01

    The Snake River Plain (SRP) volcanic province is an 800 km track of basalt extending from the Owyhee Plateau to its current terminus, the Yellowstone Plateau. It is one of several late-Tertiary magmatic terranes that also include the Cascades magmatic arc, the Columbia River basalts, and the Oregon Plateau basalts; all of which are adjacent to the Basin and Range Province extensional system (Hughes and McCurry, 2002). This province represents the track of the Yellowstone plume and consists of basalt that is compositionally similar to ocean-island basalt. This basalt overlies a series of rhyolitic eruptive centers (overlapping caldera complexes, ignimbrites, and caldera-filling eruptions) that signal the arrival of the plume head (Christiansen, 2001) and herald the onset of plume-related rhyolitic and basaltic volcanism (Pierce et al., 2002). Observed within the SRP are two basalt types: the dominant low-K olivine tholeiites and less common high-K alkaline basalts. We report new Sr-, Nd-, and Pb-isotopic analyses of these two basalt types from all three SRP provinces: eastern, central, and western. Low-K tholeiites are enriched in 143Nd/144Nd and 86Sr/87Sr and forms a quasi-linear array in Pb-isotope space, along with Craters of the Moon and eastern SRP basalts. High-K lavas are found largely in the western plain, and have a uniquely different isotopic signature. They are depleted in 143Nd/144Nd and 86Sr/87Sr, relative to the low-K tholeiites, and plot closer to the BSE component of Zindler and Hart (1986). They also share the same Pb-isotopic space with high-K basalts from Smith Prairie (Boise River Group 2 of Vetter and Shervais, 1992). One low-K tholeiite - Eureka North, plots with these high alkali basalts. Mass balance models have demonstrated an increasing plume component from the Yellowstone caldera in the east to the craton edge in the west. The lavas analyzed in this study conform remarkably to this model. The mass fraction of plume component in western

  2. Heavy metal levels in ribbon snakes (Thamnophis sauritus) and anuran larvae from the Mobile-Tensaw River Delta, Alabama, USA.

    Science.gov (United States)

    Albrecht, J; Abalos, M; Rice, T M

    2007-11-01

    The Mobile-Tensaw River Delta (MTD) drains more than 75% of the state of Alabama and leads into Mobile Bay and the Northern Gulf of Mexico. Although it is a relatively healthy watershed, the MTD is potentially impacted by inputs of contaminants such as heavy metals. The levels of lead, copper, cadmium, and mercury were measured in whole body samples of Eastern Ribbon Snakes (Thamnophis sauritus) collected from the MTD. Lead, copper, and cadmium levels were also measured in anuran larvae (Rana catesbeiana, R. clamitans, and Hyla cinerea). These organisms were chosen because they are abundant in the MTD and are underrepresented in environmental contaminant biomonitoring studies. Ribbon snakes had significantly lower levels of lead, copper, and cadmium compared to whole body levels in anuran larvae, indicating that these metals were not biomagnifying through upper trophic levels. Copper and mercury levels were significantly correlated with age/growth indices in ribbon snakes. Although detectable levels of all metals were found in anuran larvae and ribbon snakes, these levels appear to be less than body burdens that would be associated with toxic effects. Populations of ribbon snakes in our particular collection sites within the MTD appear to be at minimal risk of exposure to toxic levels of metals. However, the MTD contains low- and high-impact areas, and other populations within this watershed could be at higher risk of exposure to heavy metals. We found the Eastern Ribbon Snake to be an excellent snake model for contaminant biomonitoring because of its abundance, reasonable size, and ease of collection.

  3. 77 FR 42327 - Proposed Supplementary Rules for the Morley Nelson Snake River Birds of Prey National...

    Science.gov (United States)

    2012-07-18

    ...The Bureau of Land Management (BLM) is proposing supplementary rules for all BLM-administered public lands within the approximately 483,700-acre Morley Nelson Snake River Birds of Prey National Conservation Area (NCA), addressed in the September 2008 Resource Management Plan (RMP) and Record of Decision (ROD). The Snake River Birds of Prey NCA RMP identifies implementation level decisions......

  4. Fuels Management and Habitat Restoration Activities Benefit Eastern Hognose Snakes (Heterodon platirhinos) in a Disturbance-Dependent Ecosystem

    Science.gov (United States)

    Michael E. Akresh; David I. King; Brad C. Timm; Robert T. Brooks

    2017-01-01

    Eastern Hognose Snakes (Heterodon platirhinos) are considered a species of conservation concern in the northeast United States because of their association with rare and declining habitats such as pine barrens and shrublands. These are disturbance-dependent habitats that currently require management to persist. We studied Eastern Hognose Snakes on...

  5. An examination of scale-dependent resource use by Eastern Hognose snakes in southcentral New Hampshire.

    Energy Technology Data Exchange (ETDEWEB)

    LaGory, K. E.; Walston, L. J.; Goulet, C; Van Lonkhuyzen, R. A.; Najjar, S.; Andrews, C.; Environmental Science Division; Univ. of New Hampshire; U.S. Air Force

    2009-11-01

    The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 {+-} 14.7 ha) was similar to that reported in other parts of the species range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the

  6. White sturgeon spawning areas in the lower Snake River

    Science.gov (United States)

    Parsley, M.J.; Kappenman, K.M.

    2000-01-01

    We documented 17 white sturgeon Acipenser transmontanus spawning locations in the Snake River from the mouth to Lower Granite Dam (river km 0 to 173). Spawning locations were determined by the collection of fertilized eggs on artificial substrates or in plankton nets. We collected 245 eggs at seven locations in McNary Reservoir, 22 eggs at three locations in Ice Harbor Reservoir, 30 eggs from two locations in Lower Monumental Reservoir, and 464 eggs at five locations in Little Goose Reservoir. All 17 locations were in high water velocity areas and between 1.0 and 7.0 km downstream from a hydroelectric dam. The documentation of spawning areas is important because this habitat is necessary to maintain natural and viable populations.

  7. Willingness to pay for non angler recreation at the lower Snake River reservoirs

    Science.gov (United States)

    McKean, J.R.; Johnson, D.; Taylor, R.G.; Johnson, R.L.

    2005-01-01

    This study applied the travel cost method to estimate demand for non angler recreation at the impounded Snake River in eastern Washington. Net value per person per recreation trip is estimated for the full non angler sample and separately for camping, boating, water-skiing, and swimming/picnicking. Certain recreation activities would be reduced or eliminated and new activities would be added if the dams were breached to protect endangered salmon and steelhead. The effect of breaching on non angling benefits was found by subtracting our benefits estimate from the projected non angling benefits with breaching. Major issues in demand model specification and definition of the price variables are discussed. The estimation method selected was truncated negative binomial regression with adjustment for self selection bias. Copyright 2005 National Recreation and Park Association.

  8. Snakes of the Savannah River Plant with Information About Snakebite Prevention and Treatment.

    Science.gov (United States)

    Gibbons, Whit

    This booklet is intended to provide information on the snakes of South Carolina, to point out the necessary steps to avoid a snakebite, and to indicate the current medical treatment for poisonous snakebite. It includes a checklist of South Carolina reptiles and a taxonomic key for the identification of snakes in the Savannah River Plant. Three…

  9. Geomorphology of the Burnt River, eastern Oregon, USA: Topographic adjustments to tectonic and dynamic deformation

    Science.gov (United States)

    Morriss, Matthew Connor; Wegmann, Karl W.

    2017-02-01

    Eastern Oregon contains the deepest gorge in North America, where the Snake River cuts vertically down 2300 m. This deep gorge is known as Hells Canyon. A landscape containing such a topographic feature is likely undergoing relatively recent deformation. Study of the Burnt River, a tributary to the Snake River at the upstream end of Hells Canyon, yields data on active river incision in eastern Oregon, indicating that Quaternary faults are a first order control on regional landscape development. Through 1:24,000-scale geologic mapping, a 500,000-year record of fluvial incision along the Burnt River was constructed and is chronologically anchored by optically stimulated luminescence dating and tephrochronology analyses. A conceptual model of fluvial terrace formation was developed using these ages and likely applies to other non-glaciated catchments in eastern Oregon. Mapped terraces, inferred to have formed during glacial-interglacial cycles, provide constraints on rates of incision of the Burnt River. Incision through these terraces indicates that the Burnt River is down-cutting at 0.15 to 0.57 m kyr- 1. This incision appears to reflect a combination of local base-level adjustments tied to movement along the newly mapped Durkee fault and regional base-level control imposed by the downcutting of the Snake River. Deformation of terraces as young as 38.7 ± 5.1 ka indicates Quaternary activity along the Durkee fault, and when combined with topographic metrics (slope, relief, hypsometry, and stream-steepness), reveals a landscape in disequilibrium. Longer wavelength lithospheric dynamics (delamination and crustal foundering) that initiated in the Miocene may also be responsible for continued regional deformation of the Earth's surface.

  10. Raptor-Powerline Mortality Data, Snake River Birds of Prey Conservation Area - 1999-2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set is a spreadsheet resulting from monthly searches for dead birds along randomly selected power line segments in and near the Snake River Birds of Prey...

  11. Raptor-Powerline Mortality Data, Snake River Birds of Prey Conservation Area - 1999-2005

    Data.gov (United States)

    Oak Ridge National Laboratory — This data set is a spreadsheet resulting from monthly searches for dead birds along randomly selected power line segments in and near the Snake River Birds of Prey...

  12. Habitats of Weak Salmon Stocks of the Snake River Basin and Feasible Recovery Measures : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 1 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, D.W.; Witty, Kenneth L.

    1993-06-01

    This report describes spawning aggregations of Snake River salmon listed under the Endangered Species Act, and numerical status of aggregations. It summarizes habitat quality and problems between the natal area and the open ocean. It reviews critical habitat designation, identifies mitigative measures and suggests monitoring and research.

  13. Deformation Rates in the Snake River Plain and Adjacent Basin and Range Regions Based on GPS Measurements

    Science.gov (United States)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-12-01

    We estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010 within the Northern Basin and Range Province, U.S.A. The velocities reveal a slowly-deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 nanostrain/yr in the Centennial Tectonic Belt and an ~E-oriented extensional strain rate of 3.5 ± 0.2 nanostrain/yr in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km x 650 km region of the Snake River Plain and Owyhee-Oregon Plateau which is not distinguishable from zero (-0.1 ± 0.4 x nanostrain/yr). Inversions of Snake River Plain velocities with dike-opening models indicate that rapid extension by dike intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring. GPS data also disclose that rapid extension in the surrounding regions adjacent to the slowly-deforming region of the Snake River Plain drives shear between them. We estimate right-lateral shear with slip rates of 0.3-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where earthquakes with right-lateral strike-slip focal mechanisms are within a NE-trending zone of seismicity. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the south across the Wasatch fault possibly due to gravitational

  14. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjornn (Bjomn), Theodore C.

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on the Clearwater River to collect data on survival detection probabilities, and travel time.

  15. Abundance and population structure of eastern worm snakes in forest stands with various levels of overstory tree retention

    Science.gov (United States)

    Zachary I. Felix; Yong Wang; Callie Jo Schweitzer

    2010-01-01

    In-depth analyses of a species’ response to canopy retention treatments can provide insight into reasons for observed changes in abundance. The eastern worm snake (Carphophis amoenus amoenus Say) is common in many eastern deciduous forests, yet little is known about the ecology of the species in managed forests. We examined the relationship between...

  16. Integrated geophysical studies of the Fort Worth Basin (Texas), Harney Basin (Oregon), and Snake River Plain (Idaho)

    Science.gov (United States)

    Khatiwada, Murari

    geospatial data to understand the basement and sub-basement structures in the study area. Major tectonic features including the Ouachita thrust-fold belt, Lampasas arch, Llano uplift, and Bend arch surround the southeast Fort Worth Basin. The effects of these tectonic units in the basement were imaged in form of faulted and folded basement and sub-basement layers. Euler deconvolution and integrated forward gravity modeling were employed to extend the interpretations beyond the 3D seismic survey into a regional context. The Harney Basin is a relatively flat lying depression in the northeast portion of the enigmatic High Lava Plains volcanic province in eastern Oregon. In addition to the High Lava Plains active source seismic data, I also employed gravity, magnetic, digital elevation, geologic maps, and other geospatial data in this integrated study. I generated an upper crustal 3D seismic tomographic model of the Harney Basin and surrounding area using the active source seismic data. I then integrated it with gravity, magnetic, and geologic data to produce a geophysical model of the upper crustal structure, which reveals that the basin reaches as deep as 6 km in the central areas. I observed two major caldera shaped features within the basin. These calderas reveal seismic low velocity areas along with low gravity and magnetic anomalies. I interpreted the extent of these calderas with the help of integrated geophysical results. I propose a nested caldera complex in the northern Harney Basin and another caldera in the southern part. The Snake River Plain is an arcuate-shaped topographic low that lies in southern Idaho. This rifted valley is filled by large volume of mafic magma with numerous exposures of silicic volcanic centers. The scientific discussion on the structural complexities and evolution of the Snake River Plain and the role of extension in its formation has been going on for decades. Similarly, high gravity and magnetic anomalies are associated with the Snake River

  17. Inter- and intraspecific variation in mercury bioaccumulation by snakes inhabiting a contaminated river floodplain.

    Science.gov (United States)

    Drewett, David V V; Willson, John D; Cristol, Daniel A; Chin, Stephanie Y; Hopkins, William A

    2013-04-01

    Although mercury (Hg) is a well-studied contaminant, knowledge about Hg accumulation in snakes is limited. The authors evaluated Hg bioaccumulation within and among four snake species (northern watersnakes, Nerodia sipedon; queen snakes, Regina septemvittata; common garter snakes, Thamnophis sirtalis; and rat snakes, Elaphe obsoleta [Pantherophis alleghaniensis]) from a contaminated site on the South River (Waynesboro, VA, USA) and two nearby reference sites. Total Hg (THg) concentrations in northern watersnake tail tissue at the contaminated site ranged from 2.25 to 13.84 mg/kg dry weight (mean: 4.85 ± 0.29), or 11 to 19 times higher than reference sites. Blood THg concentrations (0.03-7.04 mg/kg wet wt; mean: 2.24 ± 0.42) were strongly correlated with tail concentrations and were the highest yet reported in a snake species. Within watersnakes, nitrogen stable isotope values indicated ontogenetic trophic shifts that correlated with THg bioaccumulation, suggesting that diet plays a substantial role in Hg exposure. Female watersnakes had higher mean THg concentrations (5.67 ± 0.46 mg/kg) than males (4.93 ± 0.49 mg/kg), but no significant differences between sexes were observed after correcting for body size. Interspecific comparisons identified differences in THg concentrations among snake species, with more aquatic species (watersnakes and queen snakes) accumulating higher mean concentrations (5.60 ± 0.40 and 4.59 ± 0.38 mg/kg in tail tissue, respectively) than the more terrestrial species, garter snakes and rat snakes (1.28 ± 0.32 and 0.26 ± 0.09 mg/kg, respectively). The results of the present study warrant further investigation of potential adverse effects and will aid in prioritizing conservation efforts.

  18. Hotspot: the Snake River Geothermal Drilling Project--initial report

    Science.gov (United States)

    Shervais, J.W.; Nielson, D.; Lachmar, T.; Christiansen, E.H.; Morgan, L.; Shanks, Wayne C.; Delahunty, C.; Schmitt, D.R.; Liberty, L.M.; Blackwell, D.D.; Glen, J.M.; Kessler, J.A.; Potter, K.E.; Jean, M.M.; Sant, C.J.; Freeman, T.

    2012-01-01

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. The primary goal of this project is to evaluate geothermal potential in three distinct settings: (1) Kimama site: inferred high sub-aquifer geothermal gradient associated with the intrusion of mafic magmas, (2) Kimberly site: a valley-margin setting where surface heat flow may be driven by the up-flow of hot fluids along buried caldera ringfault complexes, and (3) Mountain Home site: a more traditional fault-bounded basin with thick sedimentary cover. The Kimama hole, on the axial volcanic zone, penetrated 1912 m of basalt with minor intercalated sediment; no rhyolite basement was encountered. Temperatures are isothermal through the aquifer (to 960 m), then rise steeply on a super-conductive gradient to an estimated bottom hole temperature of ~98°C. The Kimberly hole is on the inferred margin of a buried rhyolite eruptive center, penetrated rhyolite with intercalated basalt and sediment to a TD of 1958 m. Temperatures are isothermal at 55-60°C below 400 m, suggesting an immense passive geothermal resource. The Mountain Home hole is located above the margin of a buried gravity high in the western SRP. It penetrates a thick section of basalt and lacustrine sediment overlying altered basalt flows, hyaloclastites, and volcanic sediments, with a TD of 1821 m. Artesian flow of geothermal water from 1745 m depth documents a power-grade resource that is now being explored in more detail. In-depth studies continue at all three sites, complemented by high-resolution gravity, magnetic, and seismic surveys, and by downhole geophysical logging.

  19. Rheomorphic ignimbrites of the Rogerson Formation, central Snake River plain, USA

    DEFF Research Database (Denmark)

    Knott, Thomas R.; Reichow, Marc K.; Branney, Michael J.

    2016-01-01

    Rogerson Graben, USA, is critically placed at the intersection between the Yellowstone hotspot track and the southern projection of the west Snake River rift. Eleven rhyolitic members of the re-defined, ≥420-m-thick, Rogerson Formation record voluminous high-temperature explosive eruptions...... by a trend towards less-evolved rhyolites that may record melting and hybridisation of a mid-crustal source region. Contemporaneous magmatism-induced crustal subsidence of the central Snake River Basin is recorded by successive ignimbrites offlapping and thinning up the N-facing limb of a regional basin...

  20. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; Matthews, Gene M.; Kamikawa, Daniel J.

    1995-09-01

    The goals of this study are to (1) characterize the outmigration timing of different wild stocks of spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence outmigration timing. The authors PIT tagged wild spring/summer chinook salmon parr in the Snake River Basin in 1993, and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, and McNary Dams during spring, summer, and fall 1994. This report details their findings.

  1. Quarterly narrative report - Snake River Refuge: August - September - October, 1939.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from August through October of 1939. The report begins by summarizing...

  2. Optimal husbandry of hatchling Eastern Indigo Snakes (Drymarchon couperi) during a captive head-start program.

    Science.gov (United States)

    Wines, Michael P; Johnson, Valerie M; Lock, Brad; Antonio, Fred; Godwin, James C; Rush, Elizabeth M; Guyer, Craig

    2015-01-01

    Optimal husbandry techniques are desirable for any headstart program, but frequently are unknown for rare species. Here we describe key reproductive variables and determine optimal incubation temperature and diet diversity for Eastern Indigo Snakes (Drymarchon couperi) grown in laboratory settings. Optimal incubation temperature was estimated from two variables dependent on temperature, shell dimpling, a surrogate for death from fungal infection, and deviation of an egg from an ovoid shape, a surrogate for death from developmental anomalies. Based on these relationships and size at hatching we determined optimal incubation temperature to be 26°C. Additionally, we used incubation data to assess the effect of temperature on duration of incubation and size of hatchlings. We also examined hatchling diets necessary to achieve optimal growth over a 21-month period. These snakes exhibited a positive linear relationship between total mass eaten and growth rate, when individuals were fed less than 1711 g of prey, and displayed constant growth for individuals exceeding 1711 g of prey. Similarly, growth rate increased linearly with increasing diet diversity up to a moderately diverse diet, followed by constant growth for higher levels of diet diversity. Of the two components of diet diversity, diet evenness played a stronger role than diet richness in explaining variance in hatchling growth. These patterns document that our goal of satiating snakes was achieved for some individuals but not others and that diets in which total grams consumed over the first 21 months of life is distributed equivalently among at least three prey genera yielded the fastest growth rates for hatchling snakes.

  3. Water-quality conditions near the confluence of the Snake and Boise Rivers, Canyon County, Idaho

    Science.gov (United States)

    Wood, Molly S.; Etheridge, Alexandra

    2011-01-01

    Total Maximum Daily Loads (TMDLs) have been established under authority of the Federal Clean Water Act for the Snake River-Hells Canyon reach, on the border of Idaho and Oregon, to improve water quality and preserve beneficial uses such as public consumption, recreation, and aquatic habitat. The TMDL sets targets for seasonal average and annual maximum concentrations of chlorophyll-a at 14 and 30 micrograms per liter, respectively. To attain these conditions, the maximum total phosphorus concentration at the mouth of the Boise River in Idaho, a tributary to the Snake River, has been set at 0.07 milligrams per liter. However, interactions among chlorophyll-a, nutrients, and other key water-quality parameters that may affect beneficial uses in the Snake and Boise Rivers are unknown. In addition, contributions of nutrients and chlorophyll-a loads from the Boise River to the Snake River have not been fully characterized. To evaluate seasonal trends and relations among nutrients and other water-quality parameters in the Boise and Snake Rivers, a comprehensive monitoring program was conducted near their confluence in water years (WY) 2009 and 2010. The study also provided information on the relative contribution of nutrient and sediment loads from the Boise River to the Snake River, which has an effect on water-quality conditions in downstream reservoirs. State and site-specific water-quality standards, in addition to those that relate to the Snake River-Hells Canyon TMDL, have been established to protect beneficial uses in both rivers. Measured water-quality conditions in WY2009 and WY2010 exceeded these targets at one or more sites for the following constituents: water temperature, total phosphorus concentrations, total phosphorus loads, dissolved oxygen concentration, pH, and chlorophyll-a concentrations (WY2009 only). All measured total phosphorus concentrations in the Boise River near Parma exceeded the seasonal target of 0.07 milligram per liter. Data collected

  4. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.; Bleich, Matthew D.; Titzler, P. Scott; Fu, Tao

    2006-01-30

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be of key

  5. Survival of Hatchery Subyearling Fall Chinook Salmon in the Free-Flowing Snake River and Lower Snake River Reservoirs, 1998-2001 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G.; Muir, William D. (National Marine Fisheries Service, Seattle, WA)

    2002-09-01

    We report results from four years (1998-2001) of an ongoing study of survival and travel time of subyearling fall chinook salmon in the Snake River. We report analyses of associations among river conditions and survival and travel time estimates, which include data from 1995 through 1997. At weekly intervals from early June to early July each year (mid-May to late June in 2001), hatchery-reared subyearling fall chinook salmon were PIT tagged at Lyons Ferry Hatchery, trucked upstream, acclimated, and released above Lower Granite Dam at Pittsburgh Landing and Billy Creek on the Snake River and at Big Canyon Creek on the Clearwater River. Each year, a small proportion of fish released were not detected until the following spring. However, the number that overwintered in the river and migrated seaward as yearlings the following spring was small and had minimal effect on survival estimates. Concurrent with our studies, a number of subyearling fall chinook salmon that reared naturally in the Snake River were caught by beach seine, PIT tagged, and released. We compared a number of characteristics of hatchery and wild fish. Hatchery and wild fish were similar in 2001, and from 1995 through 1997. Results for 1998 through 2000 showed some relatively large differences between hatchery and wild fish. However, recent information suggests that a considerable proportion of wild subyearling chinook salmon migrating in a given year may actually be stream-type (spring/summer), rather than ocean-type (fall) fish, which may account for some of the differences we have observed.

  6. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; Kamikawa, Daniel J.; Sandford, Benjamin P. (Northwest and Alaska Fisheries Science Center, Coastal Zone and Estuarine Studies Division, Seattle, WA)

    1995-01-01

    The goals of this study are to (1) characterize the outmigration timing of different wild stocks of spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence outmigration timing.

  7. Salmonid Gamete Preservation in the Snake River Basin, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    1999-03-01

    Steelhead (Oncorhynchus mykiss) and salmon (Oncorhynchus tshawytscha)populations in the Northwest are decreasing. The Nez Perce Tribe (Tribe) was funded in 1998 by the Bonneville Power Administration to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin.

  8. Snake River Fall Chinook Salmon Brood-Stock Program, 1984 Annual Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Harrell, Lee W.

    1985-02-01

    The objective is the enhancement of upriver stocks through research and development of an eggbank source. Viable gametes, produced from fish held to maturity in sea pens, will be made available for restoration purposes on the Snake River. Seawater entry trials with 0+-age and 1+-age fish have shown that 0+-age Snake River fall chinook salmon are not amenable to seawater entry and will either die or require up to 6 months to fully adapt to seawater. However, 1+-age smolts experience little problem at seawater entry; it is therefore suggested that Snake River fall chinook salmon be released as 1+ smolting fish in hatchery situations. Important marine mortalities occurring from osmoregulatory dysfunction, Bacterial Kidney Disease, and precocity at various life stages have been documented. Also, a previously unreported marine fungal pathogen has been identified. Mortality from this pathogen occurs from 3-years of age to maturity and can exceed 0.5% per day (resulting in losses to 90+%). At the end of December 1984, Snake River fall chinook salmon from 1980 (n = 67), 1981 (n = 876), 1982 (n = 4809), and 1983 (n = 7100) broods were under production. Because of the extensive mortality due to the marine fungal pathogen, only seven spawners were obtained from the 1980 stock in fall 1984. The 1980-brood spawners produced only minimal eggs and these will be used to investigate possible vertical transmission of the fungal pathogen. 4 figs.

  9. Performance of Yellowstone and Snake River Cutthroat Trout Fry Fed Seven Different Diets.

    Science.gov (United States)

    Five commercial diets and two formulated feeds were fed to initial-feeding Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri fry and Snake River cutthroat trout O. clarkii spp. (currently being petitioned for classification as O. clarkii behnkei) fry for 18 weeks to evaluate fish performance...

  10. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; Bellgraph, Brian J. [Pacific Northwest National Laboratory

    2009-09-15

    This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

  11. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E. [Shoshone-Bannock Tribes; Griswold, Robert G. [Biolines Environmental Consulting; Taki, Doug [Shoshone-Bannock Tribes

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  12. Snake River Sockeye Salmon Habitat and Limnological Research : 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Doug; Kohler, Andre E.; Griswold, Robert G.; Gilliland, Kim

    2006-07-14

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2005 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee spawning in Fishhook and Alturas Lake creeks; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  13. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.; Kline, Paul A.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangered under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and

  14. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.; Kline, Paul A.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangered under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and

  15. Summary of Radiological Monitoring of Columbia and Snake River Sediment, 1988 Through 2004

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Gregory W.; Dirkes, Roger L.

    2007-10-01

    From 1988 through 2004, samples of upper-layer sediments from the Columbia River and Snake River were collected under the Hanford Site Surface Environmental Surveillance Project to document concentrations and trends of radionuclides. Low concentrations of potassium-40, cesium-137, uranium isotopes, and plutonium isotopes were detected consistently in sediment samples over the entire sampling period. The concentrations of most radionuclides were similar to values measured upstream of the Hanford Site behind Priest Rapids Dam. For all locations, the concentrations of radionuclides in sediment samples from the Columbia and Snake rivers were below concentrations that would result in a 1-mrem effective dose equivalent to a hypothetical exposed individual using a shoreline exposure scenario (i.e., 500 hr/yr of external dose). The DOE limit for public exposure is 100 mrem/yr.

  16. Geothermal solute flux monitoring and the source and fate of solutes in the Snake River, Yellowstone National Park, WY

    Science.gov (United States)

    McCleskey, R. Blaine; Lowenstern, Jacob B.; Schaper, Jonas; Nordstrom, D Kirk; Heasler, Henry P.; Mahony, Dan

    2016-01-01

    The combined geothermal discharge from over 10,000 features in Yellowstone National Park (YNP) can be can be estimated from the Cl flux in the Madison, Yellowstone, Falls, and Snake Rivers. Over the last 30 years, the Cl flux in YNP Rivers has been calculated using discharge measurements and Cl concentrations determined in discrete water samples and it has been determined that approximately 12% of the Cl flux exiting YNP is from the Snake River. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes was quantified at a monitoring site located downstream from the thermal inputs in the Snake River. Beginning in 2012, continuous (15 min) electrical conductivity measurements have been made at the monitoring site. Combining continuous electrical conductivity and discharge data, the Cl and other geothermal solute fluxes were determined. The 2013–2015 Cl fluxes (5.3–5.8 kt/yr) determined using electrical conductivity are comparable to historical data. In addition, synoptic water samples and discharge data were obtained from sites along the Snake River under low-flow conditions of September 2014. The synoptic water study extended 17 km upstream from the monitoring site. Surface inflows were sampled to identify sources and to quantify solute loading. The Lewis River was the primary source of Cl, Na, K, Cl, SiO2, Rb, and As loads (50–80%) in the Snake River. The largest source of SO4 was from the upper Snake River (50%). Most of the Ca and Mg (50–55%) originate from the Snake Hot Springs. Chloride, Ca, Mg, Na, K, SiO2, F, HCO3, SO4, B, Li, Rb, and As behave conservatively in the Snake River, and therefore correlate well with conductivity (R2 ≥ 0.97).

  17. Laboratory data on Snake River steelhead - Evaluation of methods to reduce straying rates of barged juvenile steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goals of this study are to develop methods to reduce wandering and straying of steelhead (Oncorhynchus mykiss) that are collected and barged from the Snake River...

  18. Survival estimates - Survival estimates for the passage of juvenile salmonids through Snake and Columbia River dams and reservoirs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This BPA-funded study provides estimates of smolt survival and travel time through individual reaches and reaches combined in the Snake and Columbia Rivers...

  19. Harvest Management and Recovery of Snake River Salmon Stocks : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 7 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Lestelle, Lawrence C.; Gilbertson, Larry G.

    1993-06-01

    Management measures to regulate salmon fishing harvest have grown increasingly complex over the past decade in response to the needs for improved protection for some salmon runs and to alter harvest sharing between fisheries. The development of management plans that adequately address both needs is an immensely complicated task, one that involves a multitude of stocks, each with its own migration patterns and capacity to sustain exploitation. The fishing industry that relies on these fish populations is also highly diverse. The management task is made especially difficult because the stocks are often intermingled on the fishing grounds, creating highly mixed aggregates of stocks and species on which the fisheries operate. This situation is the one confronting harvest managers attempting to protect Snake River salmon. This report provides an overview of some of the factors that will need to be addressed in assessing the potential for using harvest management measures in the recovery of Snake River salmon stocks. The major sections of the report include the following: perspectives on harvest impacts; ocean distribution and in-river adult migration timing; description of management processes and associated fisheries of interest; and altemative harvest strategies.

  20. An Integrated Geophysical and Tectonic Study of the Structure and Evolution of the Crust in the Snake River Plain Region, Pacific Northwest

    Science.gov (United States)

    Keller, G. R.; Khatiwada, M.

    2016-12-01

    The Snake River Plain region in the Pacific Northwest of North America has been the target of a number of recent studies that have revealed further complexities in its structure and tectonic evolution. Based on surface morphology and Late Cenozoic volcanic activity, the Snake River Plain consists of an eastern and western arm (ESRP and WSRP) that are similar in many respects but also quite different in other respects. Thus, its origin, evolution, structural complexities, the role of extension and magmatism in its formation, and the tectonic drivers are still subjects of debate. Numerous seismic studies have specifically focused on the structure of the ESRP and Yellowstone area. However, crustal-scale studies of the WSRP are limited. We added new gravity data to the existing coverage in the WSRP region and undertook a regional, integrated analysis approach that included magnetic, seismic reflection and refraction profiling, receiver function results, geological and geospatial data, and interpreted well logs. Our integrated geophysical modeling focused on the structure of the WSRP. We generated two crustal models across it at locations where the most existing geophysical and geological constraints were available. We observed both differences and similarities in the structure of the WSRP and ESRP. Although, the shallow crustal structures are different, a mid-crustal mafic intrusion is a major source of the high gravity anomaly values. Within the context of recent studies in the surrounding region, the intersection of the two arms of the Snake River Plain emerges as a major element of a complex tectonic intersection that includes the High Lava Plains of eastern Oregon, the Northern Nevada Rift, a southwestern extension of the ESRP into northern Nevada, as well as, faulting and volcanism extending northwestward to connect with the Columbia River Basalts region.

  1. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin steelhead and

  2. Sarcocystis pantherophis, n. sp. from eastern rat snakes (Pantherophis alleghaniensis) definitive hosts and interferongamma gene knockout mice as experimental intermediate hosts

    Science.gov (United States)

    Here we report a new species, Sarcocystis pantherophisi with the Eastern rat snake (Pantherophis alleghaniensis) as natural definitive host and the interferon gamma gene knockout (KO) mouse as the experimental intermediate host. Sporocysts (n=15) from intestinal contents of the snake were 17.3 x 10....

  3. Life history diversity of Snake River finespotted cutthroat trout: managing for persistence in a rapidly changing environment

    Science.gov (United States)

    Homel, Kristen M.; Gresswell, Robert E.; Kershner, Jeffrey L.

    2015-01-01

    Over the last century, native trout have experienced dramatic population declines, particularly in larger river systems where habitats associated with different spawning life history forms have been lost through habitat degradation and fragmentation. The resulting decrease in life history diversity has affected the capacity of populations to respond to environmental variability and disturbance. Unfortunately, because few large rivers are intact enough to permit full expression of life history diversity, it is unclear what patterns of diversity should be a conservation target. In this study, radiotelemetry was used to identify spawning and migration patterns of Snake River Finespotted Cutthroat Trout Oncorhynchus clarkii behnkei in the upper Snake River. Individuals were implanted with radio tags in October 2007 and 2008, and monitored through October 2009. Radio-tagged cutthroat trout in the upper Snake River exhibited variation in spawning habitat type and location, migration distance, spawn timing, postspawning behavior, and susceptibility to mortality sources. Between May and July, Cutthroat Trout spawned in runoff-dominated tributaries, groundwater-dominated spring creeks, and side channels of the Snake River. Individuals migrated up to 101 km from tagging locations in the upper Snake River to access spawning habitats, indicating that the upper Snake River provided seasonal habitat for spawners originating throughout the watershed. Postspawning behavior also varied; by August each year, 28% of spring-creek spawners remained in their spawning location, compared with 0% of side-channel spawners and 7% of tributary spawners. These spawning and migration patterns reflect the connectivity, habitat diversity, and dynamic template of the Snake River. Ultimately, promoting life history diversity through restoration of complex habitats may provide the most opportunities for cutthroat trout persistence in an environment likely to experience increased variability from

  4. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

  5. Research and Recovery of Snake River Sockeye Salmon, 1995-1996 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Paul A.

    1997-04-01

    On November 20, 1991, the National Marine Fisheries Services listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and the Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. The first planning of hatchery-produced juvenile sockeye salmon from a captive broodstock occurred in 1994 with the release of 14,119 fish to Redfish Lake. Two release strategies were used with four broodstock lineages represented. In 1995, 95,411 hatchery-produced juvenile sockeye salmon were planted to Stanley Basin waters, including the release of additional broodstock lineage groups and release strategies in Redfish Lake, a yearling smolt release to Redfish Lake Creek, and a direct release to Pettit Lake.

  6. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    Science.gov (United States)

    Rogers, Lynn L; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon becoming aware of venomous and non-venomous snakes; but in northern Michigan and Minnesota where venomous snakes have been absent for millennia, black bears showed little or no fear in four encounters with non-venomous snakes of three species. The possible roles of experience and evolution in bear reactions to snakes and vice versa are discussed. In all areas studied, black bears had difficulty to recognize non-moving snakes by smell or sight. Bears did not react until snakes moved in 11 of 12 encounters with non-moving timber rattlesnakes (Crotalus horridus) and four species of harmless snakes. However, in additional tests in this study, bears were repulsed by garter snakes that had excreted pungent anal exudates, which may help explain the absence of snakes, both venomous and harmless, in bear diets reported to date. PMID:25635152

  7. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1998 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Paul A.; Heindel, Jeff A.

    1999-12-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and NMFS initiated efforts to conserve and rebuild populations in Idaho. Captive broodstock program activities conducted between January 1, 1998 and December 31, 1998, are presented in this report.

  8. Snake River Sockeye Salmon Habitat and Limnological Research; 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-06-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU); The Tribe's long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through their Integrated Fish and Wildlife Program. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2004 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit Lake; (3) reduce the number of mature kokanee salmon spawning in Fishhook Creek; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye salmon and kokanee salmon population surveys; (7) evaluate potential competition and predation

  9. Snake River Sockeye Salmon Habitat and Limnological Research; 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Doug; Kohler, Andre E. (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-01-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition, the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power and Conservation Council Fish and Wildlife Program (NPCCFWP). Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2003 calendar year. Project objectives include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) reduce the number of mature kokanee spawning in Fishhook Creek; (3) monitor sockeye salmon smolt migration from the captive rearing program release of juveniles into Pettit and Alturas lakes; (4) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (5) conduct sockeye and kokanee salmon population surveys; (6

  10. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a

  11. Insights into the Quaternary tectonics of the Yellowstone hotspot from a terrace record along the Hoback and Snake rivers.

    Science.gov (United States)

    Bufe, A.; Pederson, J. L.; Tuzlak, D.

    2016-12-01

    One of Earth's largest active supervolcanos and one of the most dynamically deforming areas in North America is located above the Yellowstone mantle plume. A pulse of dynamically supported uplift and extension of the upper crust has been moving northeastward as the North American plate migrated across the hotspot. This pules of uplift is complicated by subsidence of the Snake River Plain in the wake of the plume, due to a combination of crustal loading by intrusive and extrusive magmas, and by densification of igneous and volcanic rocks. Understanding the geodynamics as well as the seismic hazard of this region relies on studying the distribution and timing of active uplift, subsidence, and faulting across timescales. Here, we present preliminary results from a study of river terraces along the Hoback and upper Snake rivers that flow from the flanks of the Yellowstone plateau into the subsiding Snake River Plain. Combining terrace surveys with optically stimulated luminescence ages, we calculate incision rates of 0.1 - 0.3 mm/y along the deeply incised canyons of the Hoback and Snake rivers upstream of Alpine, WY. Rather than steadily decreasing away from the Yellowstone plume-head, the pattern of incision rates seems to be mostly affected by the distribution of normal faults - including the Alpine section of the Grand Valley Fault that has been reported to be inactive throughout the Quaternary. Downstream of Alpine and approaching the Snake River Plain, late Quaternary fill-terraces show much slower incision rates which might be consistent with a broad flexure of the region toward the subsiding Snake River Plain. Future studies of the Snake and Hoback rivers and additional streams around the Yellowstone hotspot will further illuminate the pattern of late Quaternary uplift in the region.

  12. PLASMA ELECTROPHORETIC PROFILES IN THE EASTERN MASSASAUGA (SISTRURUS CATENATUS) AND INFLUENCES OF AGE, SEX, YEAR, LOCATION, AND SNAKE FUNGAL DISEASE.

    Science.gov (United States)

    Allender, Matthew C; Junge, Randall E; Baker-Wylie, Sarah; Hileman, Eric T; Faust, Lisa J; Cray, Carolyn

    2015-12-01

    The purpose of this study was to establish reference intervals of the protein electrophoretic fractions and the acute-phase proteins hemoglobin binding protein (as determined by the haptoglobin assay) and C-reactive protein (CRP) and assess any possible correlations between varying age class, sex, location (Illinois or Michigan), year, or presence of snake fungal disease (SFD). Banked plasma samples were assayed from 130 eastern massasaugas from 2009 to 2014 in Illinois and Michigan. Snakes from Michigan had higher total protein (mean: 5.50 g/dl), albumin/globulin ratio (0.42), albumin (1.59 g/dl), and gamma globulins (0.55 g/dl) than from snakes in Illinois (4.72 g/dl, 0.29, 1.03 g/dl, 0.38 g/dl, respectively). Snakes in Illinois (22.19 g/ml) had higher CRP than snakes in Michigan (10.89 mg/ml). Adults had higher gamma globulins (0.47 g/dl) than juveniles (0.28 g/dl). Males had higher alpha-2 globulins (0.98 g/dl) and CRP (21.4 mg/ml) than females (0.85, 11.6, respectively). There were no significant differences in absolute plasma proteins in SFD-positive snakes, but the percentage of gamma globulins was significantly higher in positive snakes. Future research in this area can now build on this data to determine changes in population health over time or due to specific environmental or disease threats.

  13. Monitoring and mapping selected riparian habitat along the lower Snake River

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J. L; Tiller, B. L [Pacific Northwest Lab., Richland, WA (United States); Witter, M. [Shannon and Wilson, Inc., Seattle, WA (United States). Geotechnical and Environmental Consultants, Seattle, Washington (United States); Mazaika, R. [Corps of Engineers, Portland, OR (United States)

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  14. Phase II Water Rental Pilot Project: Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Stacey H.

    1994-08-01

    The Idaho Water Rental Pilot Project was implemented in 1991 as part of the Non-Treaty Storage Fish and Wildlife Agreement between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to quantify resident fish and wildlife impacts resulting from salmon flow augmentation releases made from the upper Snake River Basin. Phase I summarized existing resource information and provided management recommendations to protect and enhance resident fish and wildlife habitat resulting from storage releases for the I improvement of an adromous fish migration. Phase II includes the following: (1) a summary of recent biological, legal, and political developments within the basin as they relate to water management issues, (2) a biological appraisal of the Snake River between American Falls Reservoir and the city of Blackfoot to examine the effects of flow fluctuation on fish and wildlife habitat, and (3) a preliminary accounting of 1993--1994 flow augmentation releases out of the upper Snake, Boise, and Payette river systems. Phase III will include the development of a model in which annual flow requests and resident fish and wildlife suitability information are interfaced with habitat time series analysis to provide an estimate of resident fish and wildlife resources.

  15. South Fork Snake River/Palisades Wildlife Mitigation Project: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    BPA proposes to fund the implementation of the South Fork Snake River Programmatic Management Plan to compensate for losses of wildlife and wildlife habitat due to hydroelectric development at Palisades Dam. The Idaho Department of Fish and Game drafted the plan, which was completed in May 1993. This plan recommends land and conservation easement acquisition and wildlife habitat enhancement measures. These measures would be implemented on selected lands along the South Fork of the Snake River between Palisades Dam and the confluence with the Henry`s Fork, and on portions of the Henry`s Fork located in Bonneville, Madison, and Jefferson Counties, Idaho. BPA has prepared an Environmental Assessment evaluating the proposed project. The EA also incorporates by reference the analyses in the South Fork Snake River Activity/Operations Plan and EA prepared jointly in 1991 by the Bureau of Land Management and the Forest Service. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  16. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    OpenAIRE

    Rogers, Lynn L.; Mansfield, Susan A; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Gordon M. Burghardt

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon b...

  17. Black Bear Reactions to Venomous and Non-venomous Snakes in Eastern North America

    OpenAIRE

    Rogers, Lynn L.; Mansfield, Susan A.; Hornby, Kathleen; Hornby, Stewart; Debruyn, Terry D; Mize, Malvin; Clark, Rulon; Burghardt, Gordon M.

    2014-01-01

    Bears are often considered ecological equivalents of large primates, but the latter often respond with fear, avoidance, and alarm calls to snakes, both venomous and non-venomous, there is sparse information on how bears respond to snakes. We videotaped or directly observed natural encounters between black bears (Ursus americanus) and snakes. Inside the range of venomous snakes in Arkansas and West Virginia, adolescent and adult black bears reacted fearfully in seven of seven encounters upon b...

  18. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 in order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the

  19. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    Science.gov (United States)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-04-01

    Within the Northern Basin and Range Province, USA, we estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010. The velocities, together with geologic, volcanic, and earthquake data, reveal a slowly deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 × 10-9 yr-1 in the Centennial Tectonic Belt and an ˜E-oriented extensional strain rate of 3.5 ± 0.2 × 10-9 yr-1 in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km × 650 km region of the Snake River Plain and Owyhee-Oregon Plateau, which is indistinguishable from zero (-0.1 ± 0.4 × 10-9 yr-1). Inversions of the velocities with dyke-opening models indicate that rapid extension by dyke intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring in the Snake River Plain. This slow internal deformation, in contrast to the rapidly extending adjacent Basin and Range regions, indicates shear along the boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.3-1.4 mm yr-1 along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm yr-1 along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the

  20. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.; Kern, J. Chris; Hughes, Michele L. (Oregon Department of Fish and Wildlife)

    2004-02-01

    We report on our progress from April 2002 through March 2003 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  1. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.; Kern, J. Chris; Hughes, Michele L.

    2003-12-01

    We report on our progress from April 2001 through March 2002 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  2. Salmonid Gamete Preservation in the Snake River Basin : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. [Nez Perce Tribe. Dept. of Fisheries Resource Management, Lapwai, ID (US)

    2001-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2000 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2000, a total of 349 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Rapid River Hatchery, Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 283 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Imnaha River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Tribe acquired 5 frozen steelhead samples from the Selway River collected in 1994 and 15 from Fish Creek sampled in 1993 from the U.S. Geological Survey, for addition into the germplasm repository. Also, 590 cryopreserved samples from the Grande Ronde chinook salmon captive broodstock program are being stored at the University of Idaho as

  3. Snake River Spring/Summer Chinook Captive Broodstock Rearing and Research, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Desmond J.; McAuley, W. Carlin (National Marine Fisheries Service, Northwest Fisheries Science Center, Resource Enhancement and Utilization, Seattle, WA)

    2004-08-01

    In 1995, the National Marine Fisheries Service (NMFS), in cooperation with the Idaho Department of Fish and Game (IDFG), the Oregon Department of Fish and Wildlife (ODFW), and the Bonneville Power Administration (BPA) established captive broodstock programs to aid in the recovery of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) listed as endangered under the U.S. Endangered Species Act (ESA). These programs are intended to provide safety nets for Salmon and Grande Ronde River Basins spring/summer chinook salmon stocks. They also provide a basis of examining the efficacy of captive rearing and captive breeding programs as tools for recovering listed salmonid populations. In years when no or few naturally produced fish return from the sea, captive fish and their progeny can be used to maintain populations in these two Snake River Basin tributaries. The NMFS facility at Manchester, WA provides the crucial seawater environment needed to culture anadromous salmonids during the marine phase of their life cycle. At the Manchester Research Station, the fish are cultured in 6.1m diameter circular tanks housed in a fully enclosed and secure building. The tanks are supplied with seawater that has been processed to eliminate most marine pathogens. The fish are fed a commercially prepared diet and held at densities and loading rates intended to maximize fish quality. When fish begin to mature, they are transferred to ODFW or IDFG freshwater facilities in Oregon and Idaho for final maturation. The states then release the mature fish (Idaho) or their progeny (Oregon) back into their native Snake River tributary waters in restoration efforts. In FY 2003, NMFS cultured 1998, 1999, 2000, and 2001 broodyear fish at its Manchester Facility. This report addresses program activities from September 1, 2002 to August 31, 2003.

  4. Snake River Spring/Summer Chinook Captive Broodstock Rearing and Research, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, W. Carlin; Maynard, Desmond J. (National Marine Fishereis Service, Northwest Fisheries Science Center, Seattle, WA)

    2003-03-01

    In 1995, the National Marine Fisheries Service (NMFS), in cooperation with the Idaho Department of Fish and Game (IDFG), the Oregon Department of Fish and Wildlife (ODFW), and the Bonneville Power Administration (BPA) established captive broodstock programs to aid in the recovery of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) listed as endangered under the U.S. Endangered Species Act (ESA). These programs were intended to provide safety nets for Salmon and Grande Ronde River Basins spring/summer chinook salmon stocks. They also provide a basis of examining the efficacy of captive rearing and captive breeding programs as tools for recovering listed salmonid populations. In years when no or few naturally produced fish return from the sea, captive fish and their progeny can be used to maintain populations in these two Snake River Basin tributaries. The NMFS facility at Manchester, WA, provides the crucial seawater environment needed to culture anadromous salmonids during the marine phase of their life cycle. At the Manchester Research Station, the fish are cultured in 6.1m diameter circular tanks housed in a fully enclosed and secure building. The tanks are supplied with seawater that has been processed to eliminate most marine pathogens. The fish are fed a commercially prepared diet and held at densities and loading rates designed to maximize fish quality. When fish begin to mature, they are transferred to ODFW or IDFG freshwater facilities in Oregon and Idaho for final maturation. The states then release the mature fish (Idaho) or their progeny (Oregon) back into their native Snake River tributary waters in restoration efforts. In FY 2002, NMFS cultured 1996, 1997, 1998, 1999, and 2000 broodyear fish at its Manchester Facility. This report addresses program activities from September 1, 2001 to August 31, 2002.

  5. Snake River Spring/Summer Chinook Captive Broodstock Rearing and Research, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Desmond J.; McAuley, W. Carlin (National Marine Fisheries Service, Northwest Fisheries Science Center, Resource Enhancement and Utilization, Seattle, WA)

    2004-08-01

    In 1995, the National Marine Fisheries Service (NMFS), in cooperation with the Idaho Department of Fish and Game (IDFG), the Oregon Department of Fish and Wildlife (ODFW), and the Bonneville Power Administration (BPA) established captive broodstock programs to aid in the recovery of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) listed as endangered under the U.S. Endangered Species Act (ESA). These programs are intended to provide safety nets for Salmon and Grande Ronde River Basins spring/summer chinook salmon stocks. They also provide a basis of examining the efficacy of captive rearing and captive breeding programs as tools for recovering listed salmonid populations. In years when no or few naturally produced fish return from the sea, captive fish and their progeny can be used to maintain populations in these two Snake River Basin tributaries. The NMFS facility at Manchester, WA provides the crucial seawater environment needed to culture anadromous salmonids during the marine phase of their life cycle. At the Manchester Research Station, the fish are cultured in 6.1m diameter circular tanks housed in a fully enclosed and secure building. The tanks are supplied with seawater that has been processed to eliminate most marine pathogens. The fish are fed a commercially prepared diet and held at densities and loading rates intended to maximize fish quality. When fish begin to mature, they are transferred to ODFW or IDFG freshwater facilities in Oregon and Idaho for final maturation. The states then release the mature fish (Idaho) or their progeny (Oregon) back into their native Snake River tributary waters in restoration efforts. In FY 2003, NMFS cultured 1998, 1999, 2000, and 2001 broodyear fish at its Manchester Facility. This report addresses program activities from September 1, 2002 to August 31, 2003.

  6. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Faler, Michael P. [U.S. Fish and Wildlife Service; Mendel, Glen; Fulton, Carl [Washington Department of Fish and Wildlife

    2008-11-20

    The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on a seasonal basis. As a result, a radio telemetry study was conducted on this subgroup from 2002-2006, to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the lower Snake River dams in the FCRPS Biological Opinion, and to increase understanding of bull trout movements within the Tucannon River drainage. We sampled 1,109 bull trout in the Tucannon River; 124 of these were surgically implanted with radio tags and PIT tagged, and 681 were only PIT tagged. The remaining 304 fish were either recaptures, or released unmarked. Bull trout seasonal movements within the Tucannon River were similar to those described for other migratory bull trout populations. Bull trout migrated upstream in spring and early summer to the spawning areas in upper portions of the Tucannon River watershed. They quickly moved off the spawning areas in the fall, and either held or continued a slower migration downstream through the winter until early the following spring. During late fall and winter, bull trout were distributed in the lower half of the Tucannon River basin, down to and including the mainstem Snake River below Little Goose Dam. We were unable to adequately radio track bull trout in the Snake River and evaluate their movements or interactions with the federal hydroelectric dams for the following reasons: (1) none of our radio-tagged fish were detected attempting to pass a Snake River dam, (2) our radio tags had poor transmission capability at depths greater than 12.2 m, and (3) the sample size of fish that actually entered the Snake River

  7. Predicting community structure in snakes on Eastern Nearctic islands using ecological neutral theory and phylogenetic methods

    Science.gov (United States)

    Burbrink, Frank T.; McKelvy, Alexander D.; Pyron, R. Alexander; Myers, Edward A.

    2015-01-01

    Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities. PMID:26609083

  8. Predicting community structure in snakes on Eastern Nearctic islands using ecological neutral theory and phylogenetic methods.

    Science.gov (United States)

    Burbrink, Frank T; McKelvy, Alexander D; Pyron, R Alexander; Myers, Edward A

    2015-11-22

    Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities.

  9. HEALTH AND NUTRITIONAL ASSESSMENT OF FREE-RANGING EASTERN INDIGO SNAKES (DRYMARCHON COUPERI) IN GEORGIA, UNITED STATES.

    Science.gov (United States)

    Knafo, S Emmanuelle; Norton, Terry M; Mitchell, Mark; Stevenson, Dirk J; Hyslop, Natalie; Poppenga, Robert; Oliva, Marcie; Chen, Tai; Cray, Carolyn; Gibbs, Samantha E J; Durden, Lance; Stedman, Nancy; Divers, Stephen; Dierenfeld, Ellen

    2016-12-01

    Clinical pathology and nutritional parameters are useful in evaluating and monitoring threatened and endangered wildlife populations, but reference ranges for most snake species are lacking. From 2001 to 2005, health assessments were performed on 58 eastern indigo snakes (EIS) (Drymarchon couperi) captured in the wild in southeastern Georgia, United States. Health and nutritional assessments performed included hematology, serum biochemistry, fat-soluble vitamins, heavy metals, pesticide contaminants, parasitology, and surveys of other pathogens. Significant differences in total solids, packed cell volume, glucose, blood urea nitrogen, albumin : globulin ratio, amylase, triglycerides, and bile acids between males and females were observed. Additionally, there was a significant difference between liver and kidney concentrations for vitamins A and E. As previously noted in captive EIS, total Ca was elevated in comparison to concentrations reported in other snake species. Parasitism was a common finding in sampled EIS, but the overall health status of this free-ranging population appeared good. A winter-time dermatitis was found in most snakes, which resolved in the summer months. This study represents the first health and nutritional assessment of free-ranging EIS, and provides needed data to guide monitoring and conservation efforts.

  10. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.; Dibrani, B.; Richmond, M.; Bleich, M.; Titzler, P..; Fu, T. [Pacific Northwest National Laboratory

    2006-01-01

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile

  11. Snagging and Clearing for Flood Control, Snake River, Minnesota.

    Science.gov (United States)

    1979-07-01

    range from a high of 1080F to a low of -490F. Frost-free days, as observed at the University of Minnesota Experiment Station at Crookston, Minnesota...American plum, and black willow (Salix nigra). Further away from the river a shrub layer is present consisting of chokecherry, raspberry (Rubus strigosus...flood-prone areas or erection of emergency * flood protection. 6.04 The National Weather Service currently provides area officials and local news

  12. Ecology of nonnative Siberian prawn (Palaemon modestus) in the lower Snake River, Washington, USA

    Science.gov (United States)

    Erhardt, John M.; Tiffan, Kenneth F.

    2016-01-01

    We assessed the abundance, distribution, and ecology of the nonnative Siberian prawn Palaemon modestus in the lower Snake River, Washington, USA. Analysis of prawn passage abundance at three Snake River dams showed that populations are growing at exponential rates, especially at Little Goose Dam where over 464,000 prawns were collected in 2015. Monthly beam trawling during 2011–2013 provided information on prawn abundance and distribution in Lower Granite and Little Goose Reservoirs. Zero-inflated regression predicted that the probability of prawn presence increased with decreasing water velocity and increasing depth. Negative binomial models predicted higher catch rates of prawns in deeper water and in closer proximity to dams. Temporally, prawn densities decreased slightly in the summer, likely due to the mortality of older individuals, and then increased in autumn and winter with the emergence and recruitment of young of the year. Seasonal length frequencies showed that distinct juvenile and adult size classes exist throughout the year, suggesting prawns live from 1 to 2 years and may be able to reproduce multiple times during their life. Most juvenile prawns become reproductive adults in 1 year, and peak reproduction occurs from late July through October. Mean fecundity (189 eggs) and reproductive output (11.9 %) are similar to that in their native range. The current use of deep habitats by prawns likely makes them unavailable to most predators in the reservoirs. The distribution and role of Siberian prawns in the lower Snake River food web will probably continue to change as the population grows and warrants continued monitoring and investigation.

  13. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  14. Ecology of nonnative Siberian prawn (Palaemon modestus) in the lower Snake River, Washington, USA

    Science.gov (United States)

    Erhardt, John M.; Tiffan, Kenneth F.

    2016-01-01

    We assessed the abundance, distribution, and ecology of the nonnative Siberian prawn Palaemon modestus in the lower Snake River, Washington, USA. Analysis of prawn passage abundance at three Snake River dams showed that populations are growing at exponential rates, especially at Little Goose Dam where over 464,000 prawns were collected in 2015. Monthly beam trawling during 2011–2013 provided information on prawn abundance and distribution in Lower Granite and Little Goose Reservoirs. Zero-inflated regression predicted that the probability of prawn presence increased with decreasing water velocity and increasing depth. Negative binomial models predicted higher catch rates of prawns in deeper water and in closer proximity to dams. Temporally, prawn densities decreased slightly in the summer, likely due to the mortality of older individuals, and then increased in autumn and winter with the emergence and recruitment of young of the year. Seasonal length frequencies showed that distinct juvenile and adult size classes exist throughout the year, suggesting prawns live from 1 to 2 years and may be able to reproduce multiple times during their life. Most juvenile prawns become reproductive adults in 1 year, and peak reproduction occurs from late July through October. Mean fecundity (189 eggs) and reproductive output (11.9 %) are similar to that in their native range. The current use of deep habitats by prawns likely makes them unavailable to most predators in the reservoirs. The distribution and role of Siberian prawns in the lower Snake River food web will probably continue to change as the population grows and warrants continued monitoring and investigation.

  15. Research and Recovery of Snake River Sockeye Salmon, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Paul A.

    1995-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribe and the Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. In 1994, the authors estimated the total September Redfish Lake O. nerka population at 51,529 fish (95% CI, {+-} 33,179). The Alturas Lake O. nerka population was estimated at 5,785 fish ({+-} 6,919). The total density and biomass of Alturas Lake was estimated at 27 fish/hectare ({+-} 33) and 0.7 kg/hectare, respectively. The total O. nerka population estimate for Pettit Lake was 14,743 fish ({+-} 3,683). Stanley Lake O. nerka total population size, density, and biomass was estimated at 2,695 fish ({+-} 963), 37 fish/hectare ({+-} 13), and 0.5 kg/hectare, respectively. Estimated numbers of O. nerka outmigrant smolts passing Redfish Lake Creek and Salmon River trapping sites increased in 1994. The authors estimated 1,820 (90% CI 1,229--2,671) and 945 (90% CI 331--13,000) smolts left Redfish and Alturas lakes, respectively. The total PIT tag detection rate at mainstem dams for Redfish Lake outmigrants was 21% in 1994. No Alturas Lake outmigrants were detected at any of the downstream facilities with detection capabilities (zero of 50 fish).

  16. Fluorite equilibria in thermal springs of the Snake River Basin, Idaho

    Science.gov (United States)

    Roberson, C.E.; Schoen, Robert

    1973-01-01

    Some thermal water sources of the Snake River basin, Idaho, are near saturation with respect to fluorite. That mineral was identified by X-ray diffraction in precipitates induced in three water samples by adding sodium fluoride. The derived solubility product (KS0) for zero ionic strength was close to that calculated from Latimer's thermodynamic data (10-9.7 7). The relative ease of precipitation of fluorite from these water samples indicates that equilibrium with respect to fluorite may occur in some ground-water systems.

  17. Population dynamics of the Concho water snake in rivers and reservoirs

    Science.gov (United States)

    Whiting, M.J.; Dixon, J.R.; Greene, B.D.; Mueller, J.M.; Thornton, O.W.; Hatfield, J.S.; Nichols, J.D.; Hines, J.E.

    2008-01-01

    The Concho Water Snake (Nerodia harteri paucimaculata) is confined to the Concho–Colorado River valley of central Texas, thereby occupying one of the smallest geographic ranges of any North American snake. In 1986, N. h. paucimaculata was designated as a federally threatened species, in large part because of reservoir projects that were perceived to adversely affect the amount of habitat available to the snake. During a ten-year period (1987–1996), we conducted capture–recapture field studies to assess dynamics of five subpopulations of snakes in both natural (river) and man-made (reservoir) habitats. Because of differential sampling of subpopulations, we present separate results for all five subpopulations combined (including large reservoirs) and three of the five subpopulations (excluding large reservoirs). We used multistate capture–recapture models to deal with stochastic transitions between pre-reproductive and reproductive size classes and to allow for the possibility of different survival and capture probabilities for the two classes. We also estimated both the finite rate of increase (λ) for a deterministic, stage-based, female-only matrix model using the average litter size, and the average rate of adult population change, λ ˆ, which describes changes in numbers of adult snakes, using a direct capture–recapture approach to estimation. Average annual adult survival was about 0.23 and similar for males and females. Average annual survival for subadults was about 0.14. The parameter estimates from the stage-based projection matrix analysis all yielded asymptotic values of λ populations that are not viable. However, the direct estimates of average adult λ for the three subpopulations excluding major reservoirs were λ ˆ  =  1.26, SE ˆ(λ ˆ)  =  0.18 and λ ˆ  =  0.99, SE ˆ(λ ˆ)  =  0.79, based on two different models. Thus, the direct estimation approach did not provide strong evidence of population declines of the

  18. A simulation study of factors controlling white sturgeon recruitment in the Snake River

    Science.gov (United States)

    Jager, H.I.; Van Winkle, W.; Chandler, James Angus; Lepla, K.B.; Bates, P.; Counihan, T.D.

    2002-01-01

    Five of the nine populations of white sturgeon Acipenser transmontanus, located between dams on the Middle Snake River, have declined from historical levels and are now at risk of extinction. One step towards more effectively protecting and managing these nine populations is ranking factors that influence recruitment in each of these river segments. We developed a model to suggest which of seven mechanistic factors contribute most to lost recruitment in each river segment: (1) temperature-related mortality during incubation, (2) flow-related mortality during incubation, (3) downstream export of larvae, (4) limitation of juvenile and adult habitat, (5) mortality of all ages during summer episodes of poor water quality in reservoirs, (6) entrainment mortality of juveniles and adults, and (7) angling mortality. We simulated recruitment with, and without, each of the seven factors, over a typical series of hydrologic years. We found a hierarchical pattern of limitation. In the first tier, river segments with severe water quality problems grouped together. Poor water quality during summer had a strong negative effect on recruitment in the river segments between Swan Falls Dam and Hell's Canyon Dam. In the second tier, river segments with better water quality divided into short river segments and longer river segments. Populations in short river segments were limited by larval export. Populations in longer river segments tended to be less strongly limited by any one factor. We also found that downstream effects could be important, suggesting that linked populations cannot be viewed in isolation. In two cases, the effects of a factor on an upstream population had a significant influence on its downstream neighbors. ?? 2002 by the American Fisheries Society.

  19. Parasites of prairie rattlesnakes (Crotalus viridis viridis) and gopher snakes (Pituophis melanoleucus sayi) from the eastern high plains of New Mexico.

    Science.gov (United States)

    Pfaffenberger, G S; Jorgensen, N M; Woody, D D

    1989-04-01

    Three prairie rattlesnakes (Crotalus viridis viridis) and two gopher snakes (Pituophis melanoleucus sayi) from the eastern high plains of New Mexico (USA) were examined for parasites. One cestode (Oochoristica osheroffi), and two nematode (Kalicephalus inermis and Physoloptera retusa) species were recovered from two infected rattlesnakes. One female gopher snake was infected with two nematode (K. inermis and Rhabdias spp.) and one mite (Entonyssus halli) species.

  20. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.P. [Pacific Northwest National Laboratory

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the

  1. Anthropogenic Impacts of Recreational Use on Sandbars in Hells Canyon on the Snake River, Idaho

    Science.gov (United States)

    Morehead, M. D.

    2014-12-01

    Sandbars along large rivers are important cultural, recreational, and natural resources. In modern, historic and prehistoric times the sandbars have been used for camping, hunting, fishing and recreational activities. Sandbars are a dynamic geomorphic unit of the river system that stores and exchanges sand with the main river channel. Both natural and anthropogenic changes to river systems affect the size, shape and dynamics of sandbars. During high spring flows, the Snake River can resupply and build the sand bars. During the lower flows of the summer and fall the sand is redistributed to lower levels by natural and anthropogenic forces, where it can be remobilized by the river and exported from the bar. During the summer and fall high use season many people camp and recreate on the bars and redistribute the sand. This study utilizes change detection from repeat high resolution terrestrial LiDAR scanning surveys to study the impacts humans have on the sandbars in Hells Canyon. Nearly a decade of annual LiDAR and Bathymetric surveys were used to place these recreational impacts into the context of overall sandbar dynamics.

  2. Radiological survey of exposed shorelines and islands of the Columbia River between Vernita and the Snake River confluence

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.

    1980-04-01

    This document describes a radiological survey which was performed to evaluate the magnitude and distribution of radioactive contamination on the exposed shorelines of the Columbia River along and downstream of the Hanford Site. The area encompassed by the survey includes the low-lying exposed land on both sides of the river from the uppermost point of production reactor discharge into the river at 100-B Area to the confluence of the Snake and Columbia Rivers, almost 60 miles downstream of the starting point. External exposure rate measurements were made at nearly 30,000 locations during the survey - accounting for approximately 60% of the land in the study area. Measurable radioactive contamination, resulting from past Hanford operations was found to be present on the shorelines of the Columbia River along the study area. The absence of short-lived radionuclides in the shore sediments and the presence of contamination several meters above recent maximum river levels indicate that the material was deposited some years ago.

  3. Plume-Lithosphere Interaction beneath the Snake River Plain, Idaho: Constraints from Pb, Sr, Nd, and Hf Isotopes

    Science.gov (United States)

    Jean, M. M.; Hanan, B. B.; Shervais, J. W.

    2011-12-01

    The Yellowstone-Snake River Plain (YSRP) volcanic province links 17 million years of volcanic activity that extends from the Owyhee Plateau in western Idaho/eastern Oregon to its current terminus underlying the Yellowstone Plateau. This investigation presents new Strontium, Neodymium, Lead, and Hafnium isotopic compositions of 25 basalts that represent four distinct areas of the YSRP (i.e., eastern province, central province, western province, Owyhee Plateau), which transect the ancient cratonic boundary of North America. The purpose of this study is to test and refine models for plume-lithosphere interaction and determines the mantle origin for YSRP basalts. New results shows: (1) low-K tholeiites from the eastern, central, and western SRP have ɛNd (-2 to -5.5), 87Sr/86Sr (0.7060-0.7071) and similar Pb-isotopes [206Pb/204Pb (17.8-18.6), 207Pb/204Pb (15.5-15.66), 208Pb/204Pb (38.4-39.1)]; (2) central SRP tholeiites are enriched in 208Pb/204Pb (~38.5-38.9), relative to eastern SRP basalts and define a 208Pb/204Pb trend, intermediate between the eastern SRP and Craters of the Moon lavas; (3) western SRP high-K basalts are depleted in ɛNd (> -1) and 87Sr/86Sr (0.7050-0.7057), relative to low-K tholeiites, and plot closer to "bulk silicate earth," but are enriched in 206Pb/204Pb (18.66-18.71), and have 207Pb/204Pb (15.62-15.65) and 208Pb/204Pb (39.1-39.2) isotope ratios similar to high-K basalts of Smith Prairie (Boise River Group 2); (4) Silver City basalt (>16.6 Ma) overlaps in Pb-isotope space with Imnaha basalt compositions (Columbia River Basalt Group); (5) new 177Hf/176Hf isotopic data lie above and parallel to the Mantle array in Nd and Hf isotope space and define a linear trend between Leucite Hills lavas and OIB basalts (i.e., Steens and Hawaii); (6) these basalts follow a systematic geographic pattern: eastern and central plain low-K tholeiites have low ɛNd (-3 to -5) and intermediate 206Pb/204Pb (~17.7-18.5), while western plain low-K tholeiites are

  4. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

    2005-11-01

    We sampled and released 313 bull trout (Salvelinus confluentus) from the Tucannon River in 2004. Passive Integrated Transponder (PIT) tags were inserted in 231 of these individuals, and we detected existing PIT tags in an additional 44 bull trout. Twenty-five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Ten bull trout that were radio-tagged in 2003 were known to survive and carry their tags through the spring of 2004. One of these fish outmigrated into the Snake River in the fall, and remained undetected until February, when it's tag was located near the confluence of Alkali Flat Creek and the Snake River. The remaining 9 fish spent the winter between Tucannon River miles 2.1 (Powers Road) and 36.0 (Tucannon Fish Hatchery). Seven of these fish retained their tags through the summer, and migrated to known spawning habitat prior to September 2004. During June and July, radio-tagged bull trout again exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. As in past years, we observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October, suggesting post spawning outmigrations. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from river mile 42 at Camp Wooten downstream to river mile 17, near the Highway 12 bridge. As in previous years, we did not collect data associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the vicinity of the hydropower dams on the main stem Snake River. Transmission tests of submerged Lotek model NTC-6-2 nano-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20, 30, and 40 ft. We were able to maintain tag detection and code separation at all depths from both a boat and 200 ft

  5. Organochlorine compounds and trace elements in fish tissue and bed sediments in the lower Snake River basin, Idaho and Oregon

    Science.gov (United States)

    Clark, Gregory M.; Maret, Terry R.

    1998-01-01

    Fish-tissue and bed-sediment samples were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the lower Snake River Basin. Whole-body composite samples of suckers and carp from seven sites were analyzed for organochlorine compounds; liver samples were analyzed for trace elements. Fillets from selected sportfish were analyzed for organochlorine compounds and trace elements. Bed-sediment samples from three sites were analyzed for organochlorine compounds and trace elements. Twelve different organochlorine compounds were detected in 14 fish-tissue samples. All fish-tissue samples contained DDT or its metabolites. Concentrations of total DDT ranged from 11 micrograms per kilogram wet weight in fillets of yellow perch from C.J. Strike Reservoir to 3,633 micrograms per kilogram wet weight in a whole-body sample of carp from Brownlee Reservoir at Burnt River. Total DDT concentrations in whole-body samples of sucker and carp from the Snake River at C.J. Strike Reservoir, Snake River at Swan Falls, Snake River at Nyssa, and Brownlee Reservoir at Burnt River exceeded criteria established for the protection of fish-eating wildlife. Total PCB concentrations in a whole-body sample of carp from Brownlee Reservoir at Burnt River also exceeded fish-eating wildlife criteria. Concentrations of organochlorine compounds in whole-body samples, in general, were larger than concentrations in sportfish fillets. However, concentrations of dieldrin and total DDT in fillets of channel catfish from the Snake River at Nyssa and Brownlee Reservoir at Burnt River, and concentrations of total DDT in fillets of smallmouth bass and white crappie from Brownlee Reservoir at Burnt River exceeded a cancer risk screening value of 10-6 established by the U.S. Environmental Protection Agency. Concentrations of organochlorine compounds in bed sediment were smaller than concentrations in fish tissue. Concentrations of p,p'DDE, the only compound detected

  6. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  7. Isotopic and physical evidence for persistently high eruption temperatures for Yellowstone-Snake River Plain rhyolites

    Science.gov (United States)

    Loewen, M.; Bindeman, I. N.; Melnik, O. E.

    2015-12-01

    Low crystallinity rhyolite lavas and tuffs from the Yellowstone-Snake River plain system were long-thought to erupt at high 800-900 °C temperatures with evidence derived from experimental work and geothermometry (e.g., QUILF, Ti-in-quartz). Despite this evidence, newer experimental phase equilibria studies as well as a reformulation of zircon saturation temperatures support lower temperature magma eruption conditions. Here we present two independent lines of evidence for 850 °C and greater temperatures. We present high precision oxygen isotope thermometry for coexisting quartz, glass, pyroxene, and magnetite in order make temperature estimates independent of phase equilibria. For all analyzed Snake River Plain-Yellowstone rhyolites, we determine 800-1100 °C temperatures for clinopyroxene and 850-1100 °C temperatures for magnetite. Extremely slow oxygen diffusion in pyroxene will preserve oxygen isotope crystal composition for millions of years stored at magmatic temperatures. Interestingly, oxygen in magnetite will reequilibrate in ice caps or prexisiting topography did not otherwise restrict flow. Using these results and simple conductive cooling models, we show that flows erupted at >800 °C and probably ~850 °C in order to be emplaced before cooling below the melt-glass transition and forming a more dome-like and lobate morphology.

  8. First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A.

    Directory of Open Access Journals (Sweden)

    John W. Shervais

    2013-03-01

    Full Text Available HOTSPOT is an international collaborative effort to understand the volcanic history of the Snake River Plain (SRP. The SRP overlies a thermal anomaly, the Yellowstone-Snake River hotspot, that is thought to represent a deep-seated mantle plume under North America. Theprimary goal of this project is to document the volcanic and stratigraphic history of the SRP, which represents the surface expression of this hotspot, and to understand how it affected the evolution of continental crust and mantle. An additional goal is to evaluate the geothermal potential of southern Idaho.Project HOTSPOT has completed three drill holes. (1 The Kimama site is located along the central volcanic axis of the SRP; our goal here was to sample a long-term record of basaltic volcanism in the wake of the SRP hotspot. (2 The Kimberly site is located near the margin of the plain; our goal here was to sample a record of high-temperaturerhyolite volcanism associated with the underlying plume. This site was chosen to form a nominally continuous record of volcanism when paired with the Kimama site. (3 The Mountain Home site is located in the western plain; our goal here was to sample the Pliocene-Pleistocene transition in lake sediments at this site and to sample older basalts that underlie the sediments.We report here on our initial results for each site, and on some of the geophysical logging studies carried out as part of this project.

  9. Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

    1979-09-01

    Environmental baseline data for the Snake River Plain known geothermal resource areas (KGRAs) are evaluated for geothermal development. The objective is to achieve a sound data base prior to geothermal development. These KGRAs are: Vulcan Hot Springs, Crane Creek, Castle Creek, Bruneau, Mountain Home, Raft River, Island Park, and Yellowstone. Air quality, meteorology, hydrology, water quality, soils, land use, geology, subsidence, seismicity, terrestrial and aquatic ecology, demography, socioeconomics, and heritage resources are analyzed. This program includes a summary of environmental concerns related to geothermal development in each of the KGRAs, an annotated bibliography of reference materials (Volume II), detailed reports on the various program elements for each of the KGRAs, a program plan identifying future research needs, and a comprehensive data file.

  10. HOTSPOT: The Snake River Scientifi c Drilling Project— Tracking the Yellowstone Hotspot Through Space and Time

    Directory of Open Access Journals (Sweden)

    Douglas F. Williams

    2006-09-01

    Full Text Available The project “HOTSPOT: Scientifi c Drilling of the Snake River Plain” held its inaugural workshop in Twin Falls, Idaho, U.S.A. on 18–21 May 2006. This inter-disciplinary workshop, sponsored by the International Continental Scientifi c Drilling Program (ICDP, explored the major scientifi c and logistical issues central to a transect of boreholes along the hotspot track and addressing the geochemical evolution of continental lithosphere in response to interaction with deepseated mantle hotspots or plumes. A series of four to six bore holes is envisioned, each about 1.5–2.0 km deep and located along the axis of the Snake River Plain. The holes will specific ally target the origin and evolution of hotspot-related volcanism in space and time. To accomplish scientific and logistical planning, sixty scientists from six countries attended the workshop.

  11. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, James R.; Smith, Steven G.; Muir, William D. [Northwest Fisheries Science Center

    2009-06-23

    In 2008, the National Marine Fisheries Service completed the sixteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder (PIT) tags. We PIT tagged and released a total of 18,565 hatchery steelhead O. mykiss, 15,991 wild steelhead, and 9,714 wild yearling Chinook salmon O. tshawytscha at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. These included 122,061 yearling Chinook salmon tagged at Lower Granite Dam for evaluation of latent mortality related to passage through Snake River dams. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2008 were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon and steelhead, (2) evaluate relationships between survival estimates and migration conditions, and (3) evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2008 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here. Survival

  12. Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10

    Science.gov (United States)

    Wood, Molly S.; Teasdale, Gregg N.

    2013-01-01

    Elevated levels of fluvial sediment can reduce the biological productivity of aquatic systems, impair freshwater quality, decrease reservoir storage capacity, and decrease the capacity of hydraulic structures. The need to measure fluvial sediment has led to the development of sediment surrogate technologies, particularly in locations where streamflow alone is not a good estimator of sediment load because of regulated flow, load hysteresis, episodic sediment sources, and non-equilibrium sediment transport. An effective surrogate technology is low maintenance and sturdy over a range of hydrologic conditions, and measured variables can be modeled to estimate suspended-sediment concentration (SSC), load, and duration of elevated levels on a real-time basis. Among the most promising techniques is the measurement of acoustic backscatter strength using acoustic Doppler velocity meters (ADVMs) deployed in rivers. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Walla Walla District, evaluated the use of acoustic backscatter, turbidity, laser diffraction, and streamflow as surrogates for estimating real-time SSC and loads in the Clearwater and Snake Rivers, which adjoin in Lewiston, Idaho, and flow into Lower Granite Reservoir. The study was conducted from May 2008 to September 2010 and is part of the U.S. Army Corps of Engineers Lower Snake River Programmatic Sediment Management Plan to identify and manage sediment sources in basins draining into lower Snake River reservoirs. Commercially available acoustic instruments have shown great promise in sediment surrogate studies because they require little maintenance and measure profiles of the surrogate parameter across a sampling volume rather than at a single point. The strength of acoustic backscatter theoretically increases as more particles are suspended in the water to reflect the acoustic pulse emitted by the ADVM. ADVMs of different frequencies (0.5, 1.5, and 3 Megahertz) were tested to

  13. Analysis of the spatial and temporal variability of mountain snowpack and terrestrial water storage in the Upper Snake River, USA

    Science.gov (United States)

    The spatial and temporal relationships of winter snowpack and terrestrial water storage (TWS) in the Upper Snake River were analyzed for water years 2001–2010 at a monthly time step. We coupled a regionally validated snow model with gravimetric measurements of the Earth’s water...

  14. Cryopreservation of Adult Male Spring and Summer Chinook Salmon Gametes in the Snake River Basin, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A.; Armstrong, Robyn D. (Nez Perce Tribe, Lapwai, ID)

    1998-06-01

    Chinook salmon populations in the Northwest are decreasing in number. The Nez Perce Tribe was funded in 1997 by the Bonneville Power Administration to coordinate and initiate gene banking of adult male gametes from Endangered Species Act (ESA) listed spring and summer chinook salmon in the Snake River basin.

  15. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2002-03-01

    In 1998 white sturgeon (Acipenser transmontanus) were captured, marked, and population data were collected in the Snake River between Lower Granite Dam and the mouth of the Salmon River. A total of 13,785 hours of setline effort and 389 hours of hook-and-line effort was employed in 1998. Of the 278 white sturgeon captured in the Snake River, 238 were marked for future identification. Three sturgeon were captured in the Salmon River and none were captured in the Clearwater River. Since 1997, 6.9% of the tagged fish have been recovered. Movement of recaptured white sturgeon ranged from 98.5 kilometers downstream to 60.7 kilometers upstream, however, less than 25% of the fish moved more than 16 kilometers (10 miles). In the Snake River, white sturgeon ranged in total length from 51.5 cm to 286 cm and averaged 118.9 cm. Differences were detected in the length frequency distributions of sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). In addition, the proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 37% since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir were slightly larger than white sturgeon in the free-flowing Snake River.

  16. Proteomic profiling of liver from Elaphe taeniura, a common snake in eastern and southeastern Asia

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2013-01-01

    Full Text Available Snake liver has been implicated in the adaptation of snakes to a variety of habitats. However, to date, there has been no systematic analysis of snake liver proteins. In this study, we undertook a proteomic analysis of liver from the colubrid snake Elaphe taeniura using a combination of two-dimensional electrophoresis (2-DE and matrix-assisted laser desorption/ionization time of flightmass spectrometry (MALDI-TOF MS. We also constructed a local protein sequence database based on transcriptome sequencing to facilitate protein identification. Of the 268 protein spots revealed by 2-DE 109 gave positive MS signals, 84 of which were identified by searching the NCBInr, Swiss-Prot and local databases. The other 25 protein spots could not be identified, possibly because their transcripts were not be stable enough to be detected by transcriptome sequencing. GO analysis showed that most proteins may be involved in binding, catalysis, cellular processes and metabolic processes. Forty-two of the liver proteins identified were found in other reptiles and in amphibians. The findings of this study provide a good reference map of snake liver proteins that will be useful in molecular investigations of snake physiology and adaptation.

  17. Increased river alkalinization in the Eastern U.S

    Science.gov (United States)

    Kaushal, S.; Likens, G. E.; Utz, R.; Pace, M.; Grese, M.; Yepsen, M.

    2013-12-01

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km2. We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These 3 variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  18. Increased river alkalinization in the Eastern U.S.

    Science.gov (United States)

    Kaushal, Sujay S; Likens, Gene E; Utz, Ryan M; Pace, Michael L; Grese, Melissa; Yepsen, Metthea

    2013-09-17

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  19. Simultaneously Extracted Metals/Acid-Volatile Sulfide and Total Metals in Surface Sediment from the Hanford Reach of the Columbia RIver and the Lower Snake River

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Gregory W.; Crecelius, Eric A.

    2001-01-24

    Metals have been identified as contaminants of concern for the Hanford Reach because of upriver mining, industrial activities, and past nuclear material production at the US Department of Energy's Hanford Site. This study was undertaken to better understand the occurrence and fate of metals in sediment disposition areas in the Columbia and Snake Rivers.

  20. Effects of hyporheic exchange flows on egg pocket water temperature in Snake River fall Chinook salmon spawning areas

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geist, D. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arntzen, E. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abernethy, C. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002–2003 water year.

  1. Research and Recovery of Snake River Sockeye Salmon, 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pravecek, Jay J.

    1997-07-01

    In 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. Initial steps to recover the species include the establishment of captive broodstocks at the Idaho Department of Fish and Game`s Eagle Fish Hatchery in Eagle, Idaho. Research and recovery activities for sockeye conducted by the Idaho Department of Fish and Game at the Eagle Fish Hatchery during the period April 1, 1995 to April 1, 1996 are covered by this report. The performance of all captive broodstock groups held at Eagle Fish Hatchery is included in this report. No anadromous adults returned to Redfish Lake in 1995. Three adult residual males were captured in a merwin trap and used in the spawning of captive residual females held at Eagle Fish Hatchery.

  2. Snake River Sockeye Salmon Captive Broodstock Program : Hatchery Element : Annual Progress Report, 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Paul A.; Willard, Catherine

    2001-04-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 2000 and December 31, 2000 are presented in this report.

  3. Agribusiness geothermal energy utilization potential of Klamath and Western Snake River Basins, Oregon. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1978-03-01

    Resource assessment and methods of direct utilization for existing and prospective food processing plants have been determined in two geothermal resource areas in Oregon. Ore-Ida Foods, Inc. and Amalgamated Sugar Company in the Snake River Basin; Western Polymer Corporation (potato starch extraction) and three prospective industries--vegetable dehydration, alfalfa drying and greenhouses--in the Klamath Basin have been analyzed for direct utilization of geothermal fluids. Existing geologic knowledge has been integrated to indicate locations, depth, quality, and estimated productivity of the geothermal reservoirs. Energy-economic needs and balances, along with cost and energy savings associated with field development, delivery systems, in-plant applications and fluid disposal have been calculated for interested industrial representatives.

  4. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    Science.gov (United States)

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  5. Fall transport - A study to compare smolt-to-adult return rates (SARs) of Snake River fall Chinook salmon under alternative transport and dam operational strategies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This U.S. Army Corps of Engineers (USACE)-funded study that began in 2005 compares the SARs of PIT tagged juvenile hatchery Snake River fall Chinook that are split...

  6. Genetic Monitoring and Evaluation Program for Supplemented Populations of Salmon and Steelhead in the Snake River Basin, 1990-1991 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Waples, Robin S.; Teel, David J.; Aebersold, Paul B.

    1991-08-01

    This is the first report of research for an ongoing study to evaluate the genetic effects of using hatchery-reared fish to supplement natural populations of chinook salmon and steelhead in the Snake River Basin.

  7. Snake fungal disease: An emerging threat to wild snakes

    Science.gov (United States)

    Lorch, Jeffrey M.

    2016-01-01

    Snake fungal disease (SFD) is an emerging disease of wild snakes in eastern North America caused by the fungus Ophidiomyces ophiodiicola. The data presented here describe: 1) the types of fungi recovered in culture from the skin of snakes with and without fungal skin infections, 2) the presence or absence of skin lesions in populations of snakes surveyed at several sites in Wisconsin and Minnesota, and 3) the various species of snakes that have been found to harbor O. ophiodiicola.

  8. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, Richard; Smith, Steven G.; Muir, William D. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2001-02-01

    In 2000, the National Marine Fisheries Service and the University of Washington completed the eight year of a study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. A total of 20,313 hatchery steelhead were tagged with passive integrated transpoder (PIT) tags and released at Lower Granite Dam for reach survival estimation. They did not PIT tag any yearlying chinook salmon (O. tshawytscha) for reach survival estimates in 2000 because sufficient numbers for these estimates were available from other studies. Primary research objectives in 2000 were (1) to estimate reach and project survival in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations, and (2) to evaluate the survival-estimation models under prevailing conditions. In addition, they estimated survival from point of release to Lower Granite Dam and below for chinook salmon, steelhead, and sockeye salmon (O.nerka) PIT tagged and released at Snake River basin hatcheries and chinook salmon and steelhead PIT tagged and released at Snake River basin hatcheries and chinook salmon and steelhead PIT tagged and released at Snake River basin smolt traps. This report provides reach survival and travel time estimates for 2000 for PIT-tagged yearling chinook salmon and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures. Further details on methodology and statistical models used are provided in previous reports cited in the text.

  9. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

    2003-06-01

    We collected, radio-tagged, and PIT-tagged 41 bull trout at the Tucannon River Hatchery trap from May 17, through June 14, 2002. An additional 65 bull trout were also collected and PIT tagged by June 24, at which time we ceased PIT tagging operations because water temperatures were reaching 16.0 C or higher on a regular basis. Six radio-tags were recovered shortly after tagging, and as a result, 35 remained in the river through November 30, 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon Subbasin. We began to observe some downstream movements of radio-tagged bull trout in mid to late September and throughout October. These movements appeared to be associated with post spawning migrations. As of November 30, radio tagged bull trout were relatively stationary, and distributed from the headwaters downstream to river mile 11.3, near Pataha Creek. None of the radio-tagged bull trout left the Tucannon Subbasin and entered the federal hydropower system on the mainstem Snake River. We conducted some initial transmission tests of submerged radio tags at depths of 25, 35, 45, and 55 ft. in Lower Monumental Pool to test our capability of detection at these depths. Equipment used included Lotek model MCFT-3A transmitters, an SRX 400 receiver, a 4 element Yagi antenna, and a Lotek ''H'' antenna. Test results indicated that depth transmission of these tags was poor; only the transmitter placed at 25 ft. was audibly detectable.

  10. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, Annual Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.P.; Bradbury, S.M.; Arnsberg, B.D.

    2004-08-01

    Redd counts were used to document the spawning distribution of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2003; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992) and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2003 was funded by the Bonneville Power Administration (Projects 199801003, 199801004, 199403400, 198335003), Idaho Power Company, and Bureau of Land Management.

  11. Impacts of the Snake River drawdown experiment on fisheries resources in Little Goose and Lower Granite Reservoirs, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D D; Geist, D R

    1992-09-01

    In March 1992, the US Army Corps of Engineers initiated a test to help evaluate physical and environmental impacts resulting from the proposed future drawdown of Snake River reservoirs. Drawdown would reduce water levels in Snake River reservoirs and is being proposed as a solution to decrease the time it takes for salmon and steelhead smolts to migrate to the ocean. The Pacific Northwest Laboratory evaluated impacts to specific fisheries resources during the drawdown experiment by surveying Lower Granite Reservoir to determine if fall chinook salmon (Oncorhynchus tshawytscha) spawning areas and steelhead (0. mykiss) access to tributary creeks were affected. In addition, shoreline areas of Little Goose Reservoir were monitored to evaluate the suitability of these areas for spawning by fall chinook salmon. Relative abundance of fish species in nearshore areas was also determined during the drawdown, and stranded resident fish and other aquatic organisms were observed.

  12. Geochronology and Geomorphology of the Pioneer Archaeological Site (10BT676), Upper Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Keene, Joshua L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Pioneer site in southeastern Idaho, an open-air, stratified, multi-component archaeological locality on the upper Snake River Plain, provides an ideal situation for understanding the geomorphic history of the Big Lost River drainage system. We conducted a block excavation with the goal of understanding the geochronological context of both cultural and geomorphological components at the site. The results of this study show a sequence of five soil formation episodes forming three terraces beginning prior to 7200 cal yr BP and lasting until the historic period, preserving one cultural component dated to ~3800 cal yr BP and multiple components dating to the last 800 cal yr BP. In addition, periods of deposition and stability at Pioneer indicate climate fluctuation during the middle Holocene (~7200-3800 cal yr BP), minimal deposition during the late Holocene, and a period of increased deposition potentially linked to the Little Ice Age. In addition, evidence for a high-energy erosion event dated to ~3800 cal yr BP suggest a catastrophic flood event during the middle Holocene that may correlate with volcanic activity at the Craters of the Moon lava fields to the northwest. This study provides a model for the study of alluvial terrace formations in arid environments and their potential to preserve stratified archaeological deposits.

  13. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

    2004-04-01

    We collected 279 adult bull trout (Salvelinus confluentus) in the Tucannon River during the Spring and Fall of 2003. Passive Integrated Transponder (PIT) tags were inserted in 191 of them, and we detected existing PIT tags in an additional 31bull trout. Thirty five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Fourteen radio-tags were recovered shortly after tagging, and as a result, 21 remained in the river through December 31, 2003. Four bull trout that were radio-tagged in spring 2002 were known to survive and carry their tags through the spring and/or summer of 2003. One of these fish spent the winter near river mile (RM) 13.0; the other 3 over-wintered in the vicinity of the Tucannon Hatchery between RM 34 and 36. Twenty-one radio tags from bull trout tagged in 2002 were recovered during the spring and summer, 2003. These tags became stationary the winter of 2002/2003, and were recovered between RM 11 and 55. We were unable to recover the remaining 15 tags from 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. We observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from the headwaters downstream to river mile 6.4, near Lower Monumental Pool. As in 2002, we did not conduct work associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the Federal hydropower system on the mainstem Snake River. Transmission tests of submerged ATS model F1830 radio-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20 and 30 ft. Tests were conducted using an ATS R-4000 Receiver equipped with an &apos

  14. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G.

    1998-02-01

    In 1996, the National Marine Fisheries Service and the University of Washington completed the fourth year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake River. Actively migrating smolts were collected near the head of Lower Granite Reservoir and at Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Individual smolts were subsequently detected at PIT-tag detection facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day and Bonneville Dams. Survival estimates were calculated using the Single-Release (SR) and Paired-Release (PR) Models. Timing of releases of tagged hatchery steelhead (O. mykiss) from the head of Lower Granite Reservoir and yearling chinook salmon (O. tshawytscha) from Lower Granite Dam in 1996 spanned the major portion of their juvenile migrations. Specific research objectives in 1996 were to (1) estimate reach and project survival in the Snake River using the Single-Release and Paired-Release Models throughout the yearling chinook salmon and steelhead migrations, (2) evaluate the performance of the survival-estimation models under prevailing operational and environmental conditions in the Snake River, and (3) synthesize results from the 4 years of the study to investigate relationships between survival probabilities, travel times, and environmental factors such as flow levels and water temperature.

  15. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rien, Thomas A.; Hughes, Michele L.; Kern, J. Chris (Oregon Department of Fish and Wildlife, Clackamas, OR)

    2006-03-01

    We report on our progress from April 2004 through March 2005 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  16. White Sturgeon Mitgation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Thomas A.; Hughes, Michele L.; Kern, J. Chris (Oregon Department of Fish and Wildlife, Clackamas, OR)

    2005-08-01

    We report on our progress from April 2003 through March 2004 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  17. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Hebdon, J. Lance; Castillo, Jason (Idaho Department of Fish and Game, Boise, ID)

    2004-06-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacks and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2002. Age-0, age-1, and age-2 O. nerka were captured in Redfish Lake, and population abundance was estimated at 50,204 fish. Age-0, age-1, age-2, and age-3 kokanee were captured in Alturas Lake, and population abundance was estimated at 24,374 fish. Age-2 and age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 18,328 fish. The ultimate goal of the Idaho Department of Fish and Game (IDFG) captive broodstock development and evaluation efforts is to recover sockeye salmon runs in Idaho waters. Recovery is defined as reestablishing sockeye salmon runs and providing for utilization of sockeye salmon and kokanee resources by anglers

  18. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.

  19. Flora of the Kap River Reserve, Eastern Cape, South Africa

    Directory of Open Access Journals (Sweden)

    E. C. Cloete

    1999-12-01

    Full Text Available A detailed analysis ot the flora of the newly proclaimed Kap River Reserve (600 ha is given. The reserve is adjacent to the Fish River and some 5 km from the Fish River Mouth It consists of a coastal plateau up to 100 m a.s.I. which is steeply dissected by the two rivers that partially form the boundary of the reserve. The flora of the reserve was sampled over a period o f three years and plants were collected in all the vegetation types of grassland, thicket and forest. 488 species were collected with a species to family ratio of 4:4. The majority of the taxa recorded represent the major phytochoria of the region. Nineteen species are endemic to the Eastern Cape, two are classed as vulnerable, five are rare, six are protected and a further seventeen are of uncertain status. The flora of the Kap River has closest affinities to that of the Alexandria Forest.

  20. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat

  1. Research and Recovery of Snake River Sockeye Salmon, 1994-1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith A.

    1996-09-01

    In 1991, the National Marine Fisheries Service (NMFS) listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. Initial steps to recover the species include the establishment of captive broodstocks at the Idaho Department of Fish and Game (IDFG) Eagle Fish Hatchery in Eagle, Idaho. Research and recovery activities for sockeye salmon conducted by IDFG during the period of April 1994 to April 1995 are covered by this report. One female anadromous adult returned to the Redfish Lake Creek trap this year. She was spawned at Eagle Fish Hatchery on October 21, 1994. Her fecundity was 2,896. The mean fertilization rate and percent swim-up were 96% and 95%, respectively. Four hundred eighty eyed eggs were shipped to the NMFS Big Beef Creek Fish Hatchery in Washington state, leaving 2,028 fish on site at Eagle. Additionally, captive broodstock and wild residual sockeye salmon (captured at Redfish Lake) were spawned. Spawning data from 234 females spawned during this period are included in this report. Other spawning data (i.e., genetic cross and incubation temperature) are included in the Captive Broodstock Research section of this report.

  2. Wintering bats of the upper Snake River Plain: occurrence in lava-tube caves

    Energy Technology Data Exchange (ETDEWEB)

    Genter, D.L.

    1986-04-30

    Distribution and habitat selection of hibernating bats at the Idaho National Engineering Laboratory (INEL) and adjacent area are reported. Exploration of over 30 lava-tube caves revealed that two species, Myotis leibii and Plecotus townsendii, hibernate in the upper Snake River Plain. Five species, M. lucifugus, M. evotis, Eptesicus fuscus, Lasionycteris noctivagans, and Lasiurus cinereus are considered migratory. Myotis leibii and P. townsendii hibernate throughout much of the area, occasionally in mixed-species groups. Myotis leibii uses the dark and protected regions of the cave, usually wedged into tiny pockets and crevices near or at the highest portion of the ceiling. Individuals of P. townsendii may be found at any height or depth in the cave. Temperature appears to be primary limiting factor in habitat selection. Myotis leibii was found in significantly cooler air temperatures than P. townsendii. Neither species tolerated continuous temperatures below 1.5 C. Relative humidity does not seem to be a significant factor in the distribution or habitat selection of the two species in lava-tube caves. 18 references, 1 figure, 1 table.

  3. Types of phreatomagmatic volcanoes in the western Snake River Plain, Idaho, USA

    Science.gov (United States)

    Godchaux, M.M.; Bonnichsen, B.; Jenks, M.D.

    1992-01-01

    The western Snake River Plain graben in southwestern Idaho includes a large hydrovolcanic field which was produced in late Miocene to Pleistocene time by the interaction of rising basaltic magmas with the waters and water-saturated deposits of an enormous freshwater lake, Lake Idaho. The phreatomagmatic volcanoes in this field may be grouped into three types: emergent, subaqueous and subaerial. Emergent volcanoes, which began erupting under water and built up above the lake level, are relatively large and symmetrical, are dominated by bedded tuffs and late magmatic deposits, and are excellent indicators of water depth at the time of the eruption. Subaqueous volcanoes, which never built up above the lake level, are relatively small and asymmetrical, are dominated by basal massive deposits, and are potentially useful in discriminating between deep- and very-deep-water settings. Subaerial volcanoes, which were formed when magmas intercepted buried aquifers and interacted explosively with water, are small tuff rings and maars with variable shapes, are composed of subequal (although variable) proportions of basal massive deposits, bedded tuffs and late magmatic deposits, and are useful in determining the stratigraphic successions underlying them. ?? 1992.

  4. Characterization and mapping of the Browns Creek rhyolite: Western Snake River Plain, ID, USA

    Science.gov (United States)

    Clippinger, D. T.; Boroughs, S.; Bonnichsen, B.

    2012-12-01

    The purpose of this study is to map and characterize the geologic units that comprise the Brown's Creek region of the western Snake River Plain, with a focus on the eruptive behavior and physical characteristics of the exposed rhyolite. Located near Oreana ID, southeast of the Owyhee Front, the rhyolite in Browns Creek and adjacent rocks has never been mapped in detail. The volcanics in the Browns Creek area are predominantly comprised of low to high silica rhyolite (73%-78% SiO2), and a previously published 40Ar/39Ar date returned an age of 11.20 ± .02 Ma. The rhyolites have phenocryst assemblages of Na-plagioclase, quartz, K-feldspar, pyroxene, oxides, and zircon. Both phenocryst content and crystal size vary widely from approximately 15-50% and 1-10 mm respectively. The rhyolite in the Browns Creek region has a δ18O value of 8.5‰ and marks a very sharp boundary (Owyhee Front.

  5. Reproductive output, costs of reproduction, and ecology of the smooth snake, Coronella austriaca, in the eastern Italian Alps.

    Science.gov (United States)

    Luiselli, L; Capula, M; Shine, R

    1996-04-01

    A 5-year mark-recapture study of smooth snakes (Coronella austriaca) in the Carnic Alps (1100 m above sea level) of north-eastern Italy provided extensive information on the biology and life-history of these small viviparous snakes. Offspring were relatively large (mean=15 cm total length, 2.9 g) when they were born in late summer, and females grew to maturity (44 cm, 50 g) in approximately 4 years. Larger neonates retained their size advantage for at least 12 months, but did not have a higher probability of survival. Although sexual size dimorphism (at birth and at mean adult body sizes) was minor, the sexes differed significantly in several respects. Females grew faster than males during juvenile life, and adult females diverged in dietary habits from the rest of the population. Whereas juveniles (of both sexes) and adult males fed primarily on lizards, larger females shifted to feeding less frequently, but taking larger prey (mammals and snakes). Reproductive output increased strongly with maternal body size: larger females reproduced more frequently, produced larger litters of larger neonates, had higher relative clutch masses (RCMs), and had a lower proportion of stillborn off-spring. Most females produced a litter every 2nd or 3rd year. We did not detect significant year-to-year variation in reproductive traits over the 5 years of our study. Females were consistent from one litter to the next in several traits (e.g., litter sizes, offspring sizes and shapes, proportions of stillborn neonates, RCMs), but this consistency was due to differences in body size among females rather than to size-independent maternal effects. Overall litter sex ratios averaged 50/50, but sex ratios tended to be more male-biased in litters that were unusually large relative to maternal body size, and in litters containing a high proportion of stillborn offspring. "Costs" of reproduction appear to be high in this population, in terms of both energy allocation and risk. Reproduction

  6. Bathymetry Differencing to Quantify Volumetric Change within the Snake River in Hells Canyon

    Science.gov (United States)

    Welcker, C. W.; Hensleigh, J.; Wheaton, J. M.; Anderson, K.; Butler, M.; Hocker, B.

    2013-12-01

    A nearly complete baseline multibeam echosounder (MBES) survey of the 90 km of the Hells Canyon Reach of the Snake River that runs along the border of Idaho and Oregon, US was collected to monitor volumetric change in the sediment resources of this reach (e.g. fall Chinook salmon spawning gravel and beach-building sand). This baseline will be compared to future MBES surveys to determine the impact of the Hells Canyon Complex (HCC) that cuts off the supply of coarse sediment from the relatively small, unimpounded upstream area. MBES surveying is unique from other survey methods (terrestrial LiDAR scanning (TLS)), aerial LiDAR, RTK-GPS, or photogrammetry) in ways that lead to unique errors in the point measurements. For example, unlike static TLS acquisition, MBES surveys are performed from a moving platform that relies on GPS positioning, which introduces one of the largest sources of error into the point cloud. Because the GPS antenna is on the Earth's surface, this error is more extreme and more variable than aerial surveys where the sky view is unobstructed. Beyond the GPS positional accuracy, the errors of each MBES survey point are impacted by the geometry of the beam angle and range, which determine the beam footprint. The extremely rugged river bottom in the Hells Canyon Reach magnifies the error of the points when they are interpolated into a surface for differencing. The methods presented here account for both error sources in the surface (point and interpolation) in order to accurately determine the volumetric change between surveys.

  7. Cost-effective management alternatives for Snake river chinook salmon: A biological-economic synthesis

    Science.gov (United States)

    Halsing, D.L.; Moore, M.R.

    2008-01-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  8. Effect of multiple turbine passage on juvenile Snake River salmonid survival

    Energy Technology Data Exchange (ETDEWEB)

    Ham, K. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, J. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vucellck, J. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2005-09-01

    Juvenile salmonids originating in the Snake River upstream of Lower Granite Dam must pass up to eight hydroelectric projects during their downstream migration to the Pacific Ocean. Fish may pass a project through a turbine or a spillbay or be screened into a bypass system that either collects fish into a barge or releases them downstream of the project. Previous reviews of studies of downstream passage for salmon at hydroelectric projects in the Columbia River basin found higher mean mortality at turbines than for spillways or bypass systems. The potential mechanisms of mortality during turbine passage may include pressure changes, cavitation, shear, turbulence, strike, or grinding. Observing those mechanisms is challenging in the field, but laboratory studies have demonstrated that a single exposure to shear or pressure changes similar to turbine passage conditions can result in injury for some individuals. Because fish pass several dams along their migration, individuals experience a series of passage events. If estimates of surviving the passage of a single project are applied to each passage event, then the underlying assumption is that the mortality at each project is independent of previous exposure. If individuals approaching a project were already sub-lethally stressed, higher than expected mortality rates might occur upon subsequent passage events. Report presents the hypothesis that fish passing more than one turbine will experience a greater than expected rate of mortality. Because measuring an incremental increase in mortality would be challenging in the field, scientists developed an approach to first assess whether such an increment has any potential to influence a fish population. This approach identified populations at risk and will help design laboratory or field experiments to address those risks.

  9. Assessing juvenile salmon rearing habitat and associated predation risk in a lower Snake River reservoir

    Science.gov (United States)

    Tiffan, Kenneth F.; Hatten, James R.; Trachtenbarg, David A

    2015-01-01

    Subyearling fall Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin exhibit a transient rearing strategy and depend on connected shoreline habitats during freshwater rearing. Impoundment has greatly reduced the amount of shallow-water rearing habitat that is exacerbated by the steep topography of reservoirs. Periodic dredging creates opportunities to strategically place spoils to increase the amount of shallow-water habitat for subyearlings while at the same time reducing the amount of unsuitable area that is often preferred by predators. We assessed the amount and spatial arrangement of subyearling rearing habitat in Lower Granite Reservoir on the Snake River to guide future habitat improvement efforts. A spatially explicit habitat assessment was conducted using physical habitat data, two-dimensional hydrodynamic modelling and a statistical habitat model in a geographic information system framework. We used field collections of subyearlings and a common predator [smallmouth bass (Micropterus dolomieu)] to draw inferences about predation risk within specific habitat types. Most of the high-probability rearing habitat was located in the upper half of the reservoir where gently sloping landforms created low lateral bed slopes and shallow-water habitats. Only 29% of shorelines were predicted to be suitable (probability >0.5) for subyearlings, and the occurrence of these shorelines decreased in a downstream direction. The remaining, less suitable areas were composed of low-probability habitats in unmodified (25%) and riprapped shorelines (46%). As expected, most subyearlings were found in high-probability habitat, while most smallmouth bass were found in low-probability locations. However, some subyearlings were found in low-probability habitats, such as riprap, where predation risk could be high. Given their transient rearing strategy and dependence on shoreline habitats, subyearlings could benefit from habitat creation efforts in the lower

  10. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.; Abernethy, Cary S.

    2004-09-24

    The development of the Snake River hydroelectric system has affected fall chinook salmon smolts by shifting their migration timing to a period when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations to improve water temperature and flow conditions during the juvenile chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by PNNL that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall chinook salmon spawning areas. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The hydrologic regime during the 2002?2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, the results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures

  11. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    Science.gov (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  12. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J,; Heindel, Jeff A.; Kline, Paul A. (Idaho Department of Fish and Game, Boise, ID)

    2005-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 1999 and December 31, 1999 are presented in this report. In 1999, seven anadromous sockeye salmon returned to the Sawtooth Valley and were captured at the adult weir located on the upper Salmon River. Four anadromous adults were incorporated in the captive broodstock program spawning design for year 1999. The remaining three adults were released to Redfish Lake for natural spawning. All seven adults were adipose and left ventral fin-clipped, indicating hatchery origin. One sockeye salmon female from the anadromous group and 81 females from the captive broodstock group were spawned at the Eagle Fish Hatchery in 1999. Spawn pairings produced approximately 63,147 eyed-eggs with egg survival to eyed-stage of development averaging 38.97%. Eyed-eggs (20,311), presmolts (40,271), smolts (9,718), and adults (21) were planted or released into Sawtooth Valley waters in 1999. Supplementation strategies involved releases to Redfish Lake, Redfish Lake Creek

  13. Oxbow Fish Hatchery Snake River Sockeye Salmon Smolt Program, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Banks, Duane D. [Oregon Department of Fish and Wildlife

    2009-11-14

    This contract proposal is in response to the Federal Columbia River Power System Biological Opinion Implementation Plan/Update Proposed Action (UPA) associated with increasing the number of Snake River sockeye smolts by 150,000. To accomplish this proposal the cooperation and efforts of three government entities has been planned (e.g., Idaho Department of Fish and Game (IDFG), Oregon Department of Fish and Wildlife (ODFW), and the National Marine Fisheries Service (NMFS)). Improvements at the IDFG Eagle Fish Hatchery and NMFS Burley Creek Hatchery will focus on increasing sockeye salmon captive broodstock and egg production. Improvements at the ODFW Oxbow Fish Hatchery will be made to accommodate the incubation, hatching and rearing of 150,000 sockeye salmon smolts for release into Idaho's Sawtooth Valley, Upper Salmon River near IDFG's Sawtooth Fish Hatchery and/or Redfish Lake Creek 1.4 km downstream of Redfish Lake. Modifications to Oxbow Fish Hatchery (ODFW) will include retro-fit existing pond drains so pond cleaning effluent water can be routed to the pollution abatement pond, and modifications to the abatement pond. Also included in this project as an added phase, was the rerouting of the hatchery building effluent water to meet state DEQ guidelines for the use of formalin to treat salmonid eggs. Some additional funding for the described Oxbow Hatchery modifications will come from Mitchell Act Funding. All personnel costs associated with this project will come from Mitchell Act funding. Due to heavy work load issues, being under staffed, and two emergency projects in the spring and summer of 2006, ODFW engineers were not able to complete all plans and get them out for bid in 2006. As a result of these circumstances retro-fitting pond drains and modifications to the abatement pond was carried over into fiscal year 2007-2008. A no cost time extension to the contract was approved by BPA. The format for this report will follow the standard format for

  14. Proteomic comparisons of venoms of long-term captive and recently wild-caught Eastern brown snakes (Pseudonaja textilis) indicate venom does not change due to captivity.

    Science.gov (United States)

    McCleary, Ryan J R; Sridharan, Sindhuja; Dunstan, Nathan L; Mirtschin, Peter J; Kini, R Manjunatha

    2016-07-20

    Snake venom is a highly variable phenotypic character, and its variation and rapid evolution are important because of human health implications. Because much snake antivenom is produced from captive animals, understanding the effects of captivity on venom composition is important. Here, we have evaluated toxin profiles from six long-term (LT) captive and six recently wild-caught (RC) eastern brown snakes, Pseudonaja textilis, utilizing gel electrophoresis, HPLC-MS, and shotgun proteomics. We identified proteins belonging to the three-finger toxins, group C prothrombin activators, Kunitz-type serine protease inhibitors, and phospholipases A2, among others. Although crude venom HPLC analysis showed LT snakes to be higher in some small molecular weight toxins, presence/absence patterns showed no correlation with time in captivity. Shotgun proteomics indicated the presence of similar toxin families among individuals but with variation in protein species. Although no venom sample contained all the phospholipase A2 subunits that form the textilotoxin, all did contain both prothrombin activator subunits. This study indicates that captivity has limited effects on venom composition, that venom variation is high, and that venom composition may be correlated to geographic distribution. Through proteomic comparisons, we show that protein variation within LT and RC groups of snakes (Pseudonaja textilis) is high, thereby resulting in no discernible differences in venom composition between groups. We utilize complementary techniques to characterize the venom proteomes of 12 individual snakes from our study area, and indicate that individuals captured close to one another have more similar venom gel electrophoresis patterns than those captured at more distant locations. These data are important for understanding natural variation in and potential effects of captivity on venom composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Parabolic distribution of circumeastern Snake River Plain seismicity and latest Quaternary faulting: Migratory pattern and association with the Yellowstone hotspot

    Science.gov (United States)

    Anders, Mark H.; Geissman, John Wm.; Piety, Lucille A.; Sullivan, J. Timothy

    1989-02-01

    The Intermountain and Idaho seismic belts within Idaho, Wyoming, and Montana form an unusual parabolic pattern about the axis of the aseismic eastern Snake River Plain (SRP). This pattern is also reflected in the distribution of latest Quaternary normal faults. Several late Cenozoic normal faults that trend perpendicular to the axis of the eastern SRP extend from the aseismic region to the region of latest Quaternary faulting and seismicity. A study of the late Miocene to Holocene displacement history of one of these, the Grand Valley fault system in southeastern Idaho and western Wyoming, indicates that a locus of high displacement rates has migrated away from the eastern SRP to its present location in southern Star Valley in western Wyoming. In Swan Valley the studied area closest to the eastern SRP, isotopic ages, and paleomagnetic data for over 300 samples from 47 sites on well-exposed late Cenozoic volcanic rocks (the tuff of Spring Creek, the tuff of Heise, the Huckleberry Ridge tuff, the Pine Creek Basalt, and an older tuff thought to be the tuff of Cosgrove Road) are used to demonstrate differences in the displacement rate on the Grand Valley fault over the last ˜10 m.y. Tectonic tilts for these volcanic rocks are estimated by comparing the results of paleomagnetic analyses in Swan Valley to similar analyses of samples from undeformed volcanic rocks outside of Swan Valley. Basin geometry and tilt axes are established using seismic reflection profiles and field mapping. Combining these data with the tilt data makes it possible to calculate displacement rates during discrete temporal intervals. An average displacement rate of ˜1.8 mm/yr is calculated for the Grand Valley fault in Swan Valley between 4.4 and 2.0 Ma. In the subsequent 2.0-m.y. interval the rate dropped 2 orders of magnitude to ˜0.014 mm/yr; during the preceding 5.5-m.y. interval the displacement rate is ˜0.15 mm/yr, or about 1 order of magnitude less than the rate between 4.4 and 2.0 Ma

  16. Linking River Management-Induced Perturbations of Hydrologic and Sediment Regimes to Geomorphic Processes Along a Highly-Dynamic Gravel-Bed River: Snake River, WY.

    Science.gov (United States)

    Leonard, C.; Legleiter, C. J.

    2015-12-01

    Encroachment of human development onto river floodplains creates a need to stabilize rivers and provide flood protection. Structural interventions, such as levees, often perturb hydrologic and sediment regimes and thus can initiate morphological responses. An understanding of how human activities affect river morphodynamics and trigger channel change is needed to anticipate future river responses and facilitate effective restoration. This study examines approximately 66 km of the Snake River, WY, USA, and links sediment transport processes to channel form and behavior by developing a morphological sediment budget that spans both a natural, unconfined reach and a reach confined by artificial levees. Sediment transport rates are inferred from the morphological sediment budget and a bed mobility study is used to estimate entrainment thresholds that allow us to link the hydrological regime during the sediment budget period to the observed channel changes. Results indicate that lateral constriction by levees triggers a positive feedback mechanism by incising the bed, focusing flow energy, thus increasing transport capacity, and leading to armoring of the bed. In other systems, armoring promotes widening of the channel but in this case levees prevent widening and the channel instead migrates across the braidplain rapidly, producing further erosion of bars and vegetated islands that is expressed as negative net volumetric changes and increased sediment transport rates. Furthermore, decreased slopes and reduced discharges due to dam regulation in the upstream unconfined reach cause gravel sheets to stall on bars and in other areas of storage, creating a spatial discontinuity in sediment conveyance downstream, and thus contributing to the sediment deficit within the leveed reach.

  17. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura; Heindel, Jeff; Kline, Paul

    2008-12-17

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out-migrated from

  18. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fishereis Resource Management, Lapwai, ID)

    2003-03-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2000 annual report covers the fourth year of sampling of this multi-year study. In 2000 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 53,277 hours of setline effort and 630 hours of hook-and-line effort was employed in 2000. A total of 538 white sturgeon were captured and tagged in the Snake River and 25 in the Salmon River. Since 1997, 32.8 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 48 cm to 271 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 103 cm to 227 cm and averaged 163 cm. Using the Jolly-Seber open population estimator, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,725 fish, with a 95% confidence interval of 1,668-5,783. A total of 10 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 54.7 km (34 miles) downstream to 78.8 km (49 miles) upstream; however, 43.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of

  19. Post-Release Performance of Natural and Hatchery Subyearling Fall Chinook Salmon in the Snake and Clearwater Rivers.

    Energy Technology Data Exchange (ETDEWEB)

    Connor, William P.

    2008-04-01

    In 2006, we continued a multi-year study to compare smolt-to-adult return rate (SAR) ratios between two groups of Snake River Basin fall Chinook salmon Oncorhynchus tshawytscha that reached the sea through a combination of either (1) transportation and inriver migration or (2) bypass and inriver migration. We captured natural subyearlings rearing along the Snake and Clearwater rivers and implanted them with passive integrated transponder (PIT) tags, but knew in advance that sample sizes of natural fish would not be large enough for precise comparisons of SAR ratios. To increase sample sizes, we also cultured Lyons Ferry Hatchery subyearlings under a surrogate rearing strategy, implanted them with PIT tags, and released them into the Snake and Clearwater rivers to migrate seaward. The surrogate rearing strategy involved slowing growth at Dworshak National Fish Hatchery to match natural subyearlings in size at release as closely as possible, while insuring that all of the surrogate subyearlings were large enough for tagging (i.e., 60-mm fork length). Surrogate subyearlings were released from late May to early July 2006 to coincide with the historical period of peak beach seine catch of natural parr in the Snake and Clearwater rivers. We also PIT tagged a large representative sample of hatchery subyearlings reared under a production rearing strategy and released them into the Snake and Clearwater rivers in 2006 as part of new research on dam passage experiences (i.e., transported from a dam, dam passage via bypass, dam passage via turbine intakes or spillways). The production rearing strategy involved accelerating growth at Lyons Ferry Hatchery, sometimes followed by a few weeks of acclimation at sites along the Snake and Clearwater rivers before release from May to June. Releasing production subyearlings has been suggested as a possible alternative for making inferences on the natural population if surrogate fish were not available. Smoltto-adult return rates are not

  20. Snake River Sockeye Salmon Captive Broodstock Program, Research Element : Project Progress Report, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hebdon, J. Lance (Jason Lance); Castillo, Jason; Kline, Paul A.

    2002-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacks and one jill were captured at Idaho Department of Fish and Game's Sawtooth Fish Hatchery. In 2000, progeny from the captive broodstock program were released using four strategies: eyed-eggs were placed in Pettit Lake; age-0 presmolts were released to all three lakes in October; age-1 smolts were released to Redfish Lake Creek, and hatchery-produced adult sockeye salmon were released to Redfish and Alturas lakes for volitional spawning in September. Anadromous adult sockeye salmon were released to all three lakes. Total kokanee abundance in Redfish Lake was estimated at 10,268, which was the lowest abundance since 1991. Abundance of kokanee in Alturas Lake was estimated at 125,462, which was one of the highest values recorded since 1991. Abundance of kokanee in Pettit Lake was estimated at 40,599, which is the third highest value recorded since 1991. Upon the recommendation of the Stanley Basin Sockeye Technical Oversight Committee, the National Marine Fisheries Service reopened the kokanee fishery on Redfish Lake in 1995 in an attempt to reduce kokanee numbers. Anglers fished an estimated 3,063 hours and harvested approximately 67 kokanee during the 2000 season. Angler effort and harvest were also monitored on Alturas Lake during 2000. Effort on Alturas Lake was 5,190 hours, and harvest of

  1. Avoiding the Pitfalls of Anisotropy in Paleomagnetic Correlation of Snake River Plain Ignimbrites

    Science.gov (United States)

    Finn, D. R.; Coe, R. S.; Kelly, H.; Murphy, J.; Reichow, M. K.; Knott, T.; Branney, M.

    2013-12-01

    Migration of the Yellowstone hotspot center tracks northeast along the central Snake River Plain (cSRP), leaving a succession of calderas, bimodal rhyolitic and basaltic volcanism, and crustal deformation. Large-scale explosive volcanism common to this province between 12.5-8 Ma is characterized by unusually high-temperature, intensely welded, rheomorphic rhyolitic ignimbrites, typical of what is now known as ';Snake River (SR)-type volcanism'. Individual eruption volumes likely exceed 450 km3 but are poorly known due to the difficulty of correlating units between widely spaced (50-200 km) exposures along the north and south of the plain. Radiometric dating does not have the resolution to identify the eruptive units. Our goal is to use a combination of paleomagnetic, petrographic, chemical and field characterization to establish robust correlations and better constrain eruption volumes and frequencies. Paleomagnetic correlation using the stable remanence, which is the focus of this presentation, has the advantage of very high temporal resolution of the order of centuries. This is due to the geologically rapid rate of geomagnetic secular variation and high accuracy to which extrusive rocks may record the instantaneous direction of the magnetic field. We have collected more than 1200 paleomagnetic samples from over 90 sites to help build a regional stratigraphy between the dozens of known ignimbrite units in the cSRP. During this process, however, we have found that the use of paleomagnetism is complicated by the large variation in the paleomagnetic direction that sometimes exists both within and between sub-lithologies of the same flow. Individual SR-type ignimbrite cooling-units have an upper and lower glassy margin (vitrophyre) enclosing a lithoidal (microcrystalline) zone. These vitrophyre lithologies often have a shallow paleomagnetic direction compared to the lithoidal lithologies. Here we present preliminary results from a detailed paleomagnetic and rock

  2. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    Science.gov (United States)

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (areas increased. Reservoir-type juveniles (or fish likely destined to become reservoir-type juveniles) were present in the lower Snake River reservoirs from fall 2010 through winter 2011; however, use of shallow water habitat by reservoir-type juveniles was limited during our study. We only collected 38 reservoir-type juveniles in shallow water habitat sites in beach and lampara seines during the fall. Radiotelemetry data revealed that though many tagged fish passed shallow water habitat sites, relatively few fish entered them and the median time fish spent within a given site was less than 1.4 h. Fish located by mobile tracking away from study sites were pelagically oriented, and generally not found over shallow water or close to shore. The findings in this report: (1) support the selection of natural fall Chinook subyearlings as the indicator group for determining the potential benefits of using dredge spoils to create shallow water habitat, (2) provide evidence for shallow water habitat use by natural subyearlings, (3) provide evidence against large-scale use of shallow water habitat by reservoir-type juveniles, (4) suggest that the depth criterion for defining shallow water habitat (i.e., competition would help to better inform the long-term management plan.

  3. Survival of radio-implanted drymarchon couperi (Eastern Indigo Snake) in relation to body size and sex

    Science.gov (United States)

    Hyslop, N.L.; Meyers, J.M.; Cooper, R.J.; Norton, Terry M.

    2009-01-01

    Drymarchon couperi (eastern indigo snake) has experienced population declines across its range primarily as a result of extensive habitat loss, fragmentation, and degradation. Conservation efforts for D. couperi have been hindered, in part, because of informational gaps regarding the species, including a lack of data on population ecology and estimates of demographic parameters such as survival. We conducted a 2- year radiotelemetry study of D. couperi on Fort Stewart Military Reservation and adjacent private lands located in southeastern Georgia to assess individual characteristics associated with probability of survival. We used known-fate modeling to estimate survival, and an information-theoretic approach, based on a priori hypotheses, to examine intraspecific differences in survival probabilities relative to individual covariates (sex, size, size standardized by sex, and overwintering location). Annual survival in 2003 and 2004 was 0.89 (95% CI = 0.73-0.97, n = 25) and 0.72 (95% CI = 0.52-0.86; n = 27), respectively. Results indicated that body size, standardized by sex, was the most important covariate determining survival of adult D. couperi, suggesting lower survival for larger individuals within each sex. We are uncertain of the mechanisms underlying this result, but possibilities may include greater resource needs for larger individuals within each sex, necessitating larger or more frequent movements, or a population with older individuals. Our results may also have been influenced by analysis limitations because of sample size, other sources of individual variation, or environmental conditions. ?? 2009 by The Herpetologists' League, Inc.

  4. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2003-03-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2001 annual report covers the fifth year of sampling of this multi-year study. In 2001 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 45,907 hours of setline effort and 186 hours of hook-and-line effort was employed in 2001. A total of 390 white sturgeon were captured and tagged in the Snake River and 12 in the Salmon River. Since 1997, 36.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 42 cm to 307 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 66 cm to 235 cm and averaged 160 cm. Using the Jolly-Seber model, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,483 fish, with a 95% confidence interval of 1,208-7,477. An additional 10 white sturgeon were fitted with radio-tags during 2001. The locations of 17 radio-tagged white sturgeon were monitored in 2001. The movement of these fish ranged from 38.6 km (24 miles) downstream to 54.7 km (34 miles) upstream; however, 62.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish

  5. Snake River Sockeye Salmon Captive Broodstock; Research Element, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith A.

    1995-12-01

    In 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. Initial steps to recover the species include the establishment of captive broodstocks at the Eagle Fish Hatchery in Eagle, Idaho. Research and recovery activities for sockeye conducted by the Idaho Department of Fish and Game during the period of April 1993 to April 1994 are covered by this report. Eight anadromous adults (two female and six male) returned to the Redfish Lake Creek trap this year and were spawned at the Sawtooth Hatchery near Stanley, Idaho. Fecundity was 3160 for each female. The mean fertilization rate was 52% for female {open_quotes}A{close_quotes} and 65% for female {open_quotes}B.{close_quotes} Captive broodstock also spawned as well as residual sockeye captured in a Merwin trap in Redfish Lake. Spawning data from 72 fish spawned during this period is included in this report. Captive broodstock also matured later than normal (winter and spring 1994). Fish were spawned and samples were taken to investigate reasons for poor fertilization rates. Twenty-four out migrants of 1991 were selected for return to Redfish Lake for volitional spawning. Releases were made in August of 1993. All fish were implanted with sonic tags and tracking of this group began soon after the release to identify spawning-related activities. A research project is being conducted on captive broodstock diets. The project will investigate the effect of diet modification on spawn timing, gamete quality, and fertilization rates. A second project used ultrasound to examine fish for sexual maturity. The goal was to obtain a group a fish to be released f or volitional spawning. A total of 44 fish were found to be mature. The performance of all captive groups held at Eagle are included in this report.

  6. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Paul A.; Heindel, Jeff A.; Willard, Catherine (Idaho Department of Fish and Game, Boise, ID)

    2003-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported under separate cover. Captive broodstock program activities conducted between January 1, 1997 and December 31, 1997 are presented in this report. One hundred twenty-six female sockeye salmon from one captive broodstock group were spawned at the Eagle Fish Hatchery in 1997. Successful spawn pairings produced approximately 148,781 eyed-eggs with a cumulative mean survival to eyed-egg rate of 57.3%. Approximately 361,600 sockeye salmon were released to Sawtooth basin waters in 1997. Reintroduction strategies included eyed-eggs (brood year 1997), presmolts (brood year 1996), and prespawn adults for volitional spawning (brood year 1994). Release locations included Redfish Lake, Alturas Lake, and Pettit Lake. During this reporting period, four broodstocks and two unique production groups were in culture at the Eagle Fish Hatchery. Two of the four broodstocks were incorporated into the 1997 spawning design, and one broodstock was terminated following

  7. Effects of lateral confinement in natural and leveed reaches of a gravel-bed river: Snake River, Wyoming, USA

    Science.gov (United States)

    Leonard, Christina M.; Legleiter, Carl; Overstreet, Brandon T.

    2017-01-01

    This study examined the effects of natural and anthropogenic changes in confining margin width by applying remote sensing techniques – fusing LiDAR topography with image-derived bathymetry – over a large spatial extent: 58 km of the Snake River, Wyoming, USA. Fused digital elevation models from 2007 and 2012 were differenced to quantify changes in the volume of stored sediment, develop morphological sediment budgets, and infer spatial gradients in bed material transport. Our study spanned two similar reaches that were subject to different controls on confining margin width: natural terraces versus artificial levees. Channel planform in reaches with similar slope and confining margin width differed depending on whether the margins were natural or anthropogenic. The effects of tributaries also differed between the two reaches. Generally, the natural reach featured greater confining margin widths and was depositional, whereas artificial lateral constriction in the leveed reach produced a sediment budget that was closer to balanced. Although our remote sensing methods provided topographic data over a large area, net volumetric changes were not statistically significant due to the uncertainty associated with bed elevation estimates. We therefore focused on along-channel spatial differences in bed material transport rather than absolute volumes of sediment. To complement indirect estimates of sediment transport derived by morphological sediment budgeting, we collected field data on bed mobility through a tracer study. Surface and subsurface grain size measurements were combined with bed mobility observations to calculate armoring and dimensionless sediment transport ratios, which indicated that sediment supply exceeded transport capacity in the natural reach and vice versa in the leveed reach. We hypothesize that constriction by levees induced an initial phase of incision and bed armoring. Because levees prevented bank erosion, the channel excavated sediment by

  8. Effects of Dissolved Gas Supersaturation on Fish Residing in the Snake and Columbia Rivers, 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schrank, Boyd P.

    1998-03-01

    Increased spill at dams has commonly brought dissolved gas supersaturation higher than levels established by state and federal water quality criteria in the Columbia and Snake Rivers. These increased spill volumes are intended to provide safe passage for migrating juvenile salmon. However, dissolved gas supersaturation resulting from spill in past decades has led to gas bubble disease (GBD) in fish. Therefore, during the period of high spill in 1996, the authors monitored the prevalence and severity of gas bubble disease by sampling resident fish in Priest Rapids Reservoir and downstream from Bonneville, Priest Rapids, and Ice Harbor Dams.

  9. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Muir, William D.

    1995-02-01

    In 1994, the National Marine Fisheries Service and the University of Washington completed the second year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through the dams and reservoirs of the Snake River. Actively migrating smolts were collected at selected locations above, at, and below Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Survival estimates were calculated using the Single-Release, Modified Single-Release, and Paired-Release Models.

  10. Water-quality assessment of the upper Snake River basin, Idaho and western Wyoming; environmental setting, 1980-92

    Science.gov (United States)

    Maupin, Molly A.

    1995-01-01

    The 35,800-square-mile upper Snake River Basin is one of 20 areas studied as part of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey. Objectives of NAWQA are to study ground- and surface-water quality, biology, and their relations to land-use activities. Major land and water uses that affect water quality in the basin are irrigated agriculture, grazing, aquaculture, food processing, and wastewater treatment. Data summarized in this report are used in companion reports to help define the relations among land use, water use, water quality, and biological conditions.

  11. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Plaster, Kurtis; Castillo, Jason (Idaho Department of Fish and Game, Boise, ID)

    2005-01-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2003, progeny from the captive broodstock program were released using three strategies: eyed-eggs were planted in Pettit and Alturas lakes in November and December, age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2003. Age-0 through age-4 O. nerka were captured in Redfish Lake, and population abundance was estimated at 81,727 fish. Age-0 through age-3 O. nerka were captured in Alturas Lake, and population abundance was estimated at 46,234 fish. Age-0 through age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 11,961 fish. Angler surveys were conducted from May 25 through August 7, 2003 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 179 anglers and estimated that 424 kokanee were harvested. The calculated kokanee catch rate was 0.09 fish/hour. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 15 to May 29

  12. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Plaster, Kurtis; Castillo, Jason (Idaho Department of Fish and Game, Boise, ID)

    2005-01-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2003, progeny from the captive broodstock program were released using three strategies: eyed-eggs were planted in Pettit and Alturas lakes in November and December, age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2003. Age-0 through age-4 O. nerka were captured in Redfish Lake, and population abundance was estimated at 81,727 fish. Age-0 through age-3 O. nerka were captured in Alturas Lake, and population abundance was estimated at 46,234 fish. Age-0 through age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 11,961 fish. Angler surveys were conducted from May 25 through August 7, 2003 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 179 anglers and estimated that 424 kokanee were harvested. The calculated kokanee catch rate was 0.09 fish/hour. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 15 to May 29

  13. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hebdon, J. Lance; Castillo, Jason; Willard, Catherine (Idaho Department of Fish and Game, Boise, ID)

    2003-12-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999, when six jacks and one jill were captured at Idaho Department of Fish and Game's Sawtooth Fish Hatchery. In 2001, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to all three lakes in October and to Pettit and Alturas lakes in July; age-1 smolts were released to Redfish Lake Creek, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September along with anadromous adult sockeye salmon that returned to the Sawtooth basin and were not incorporated into the captive broodstock program. Kokanee population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September. Only age-0 and age-1 kokanee were captured on Redfish Lake, resulting in a population estimate of 12,980 kokanee. This was the second lowest kokanee abundance estimated since 1990. On Alturas Lake age-0, age-1, and age-2 kokanee were captured, and the kokanee population was estimated at 70,159. This is a mid range kokanee population estimate for Alturas Lake, which has been sampled yearly since 1990. On Pettit Lake only age-1 kokanee were captured, and the kokanee population estimate was 16,931. This estimate is in the midrange of estimates of the kokanee population in Pettit Lake, which has been sampled

  14. Middle Miocene Hotspot-Related Uplift, Exhumation, and Extension north of the Snake River Plain: Evidence from Apatite (U-Th)/He Thermochronology

    Science.gov (United States)

    Foster, D. A.; Vogl, J.; Min, K. K.; Bricker, A.; Gelato, P. W.

    2013-12-01

    Passage of North America over the Yellowstone hotspot has had a profound influence on the topography of the northern Rocky Mountains. One of the most prominent topographic features is the Yellowstone crescent of high topography, which comprises two elevated shoulders bounding the eastern Snake River Plain (SRP) and converging at a topographic swell centered on the Yellowstone region. Kilometer-scale erosion has occurred locally within the topographic crescent, but it is unclear if rock exhumation is due to surface uplift surrounding the propagating hot spot, subsidence of the Snake River Plain after passage of the hot spot, or relief initiated by extension in the Northern Basin and Range Province. We have applied (U-Th/He) apatite (AHe) thermochronology to the Pioneer-Boulder Mountains (PBM) on the northern flank of the SRP, and the southern Beartooth Mountains (BM) directly north of the modern Yellowstone caldera, to constrain the timing, rates, and spatial distribution of exhumation. AHe ages from the PBM indicate that >2-3 km of exhumation occurred in the core of this topographic culmination since ~11 Ma. Age-elevation relationships suggest an exhumation rate of ~0.3 mm/yr between ~11 and 8 Ma. Eocene Challis volcanic rocks are extensively preserved and Eocene topographic highs are locally preserved to the north and south of the PBM, indicating minimal erosion adjacent to the PBM culmination. Spatial patterns of both exhumation and topography indicate that faulting was not the primary control on uplift and exhumation. Regional exhumation at 11-8 Ma was synchronous with silicic eruptions from the ~10.3 Ma Picabo volcanic field located immediately to the south and with S-tilting of the southern flank of the PBM that is likely the result of loading of the ESRP by mid-crustal mafic intrusions. AHe data from Archean rocks of the southern BM reveal Miocene-Pliocene cooling ages and include samples as young as ~2-6 Ma. Discordant single grain ages in samples with

  15. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Baker, Dan J.; Heindel, Jeff A. (Idaho Department of Fish and Game, Boise, ID)

    2003-12-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2002 and December 31, 2002 for the hatchery element of the program are presented in this report. n 2002, 22 anadromous sockeye salmon returned to the Sawtooth Valley. Fifteen of these adults were captured at adult weirs located on the upper Salmon River and on Redfish Lake Creek. Seven of the anadromous sockeye salmon that returned were observed below the Sawtooth Fish Hatchery weir and allowed to migrate upstream volitionally (following the dismantling of the weir on September 30, 2002). All adult returns were released to Redfish Lake for natural spawning. Based on their marks, returning adult sockeye salmon originated from a variety of release options. Sixty-six females from brood year 1999 and 28 females from brood year 2000 captive broodstock groups were spawned at the Eagle Hatchery in 2002. Spawn pairings produced approximately 65

  16. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Paul A.; Willard, Catherine; Baker, Dan J. (Idaho Department of Fish and Game, Boise, ID)

    2003-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2001 and December 31, 2001 for the hatchery element of the program are presented in this report. In 2001, 26 anadromous sockeye salmon returned to the Sawtooth Basin. Twenty-three of these adults were captured at adult weirs located on the upper Salmon River and on Redfish Lake Creek. Three of the anadromous sockeye salmon that returned were observed below the Sawtooth Fish Hatchery weir and allowed to migrate upstream volitionally (following the dismantling of the weir on October 12, 2001). Nine anadromous adults were incorporated into the captive broodstock program spawning design in 2001. The remaining adults were released to Redfish Lake for natural spawning. Based on their marks, returning adult sockeye salmon originated from a variety of release options. Two sockeye salmon females from the anadromous group and 152 females from the brood year 1998 captive

  17. Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Steven P.; Neeley, Doug

    1993-06-01

    We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model to estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.

  18. Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Steven P.; Neeley, Doug

    1993-06-01

    We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model to estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.

  19. Determining Columbia and Snake River Project Tailrace and Forebay Zones of Hydraulic Influence using MASS2 Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.

    2010-12-01

    Although fisheries biology studies are frequently performed at US Army Corps of Engineers (USACE) projects along the Columbia and Snake Rivers, there is currently no consistent definition of the ``forebay'' and ``tailrace'' regions for these studies. At this time, each study may use somewhat arbitrary lines (e.g., the Boat Restriction Zone) to define the upstream and downstream limits of the study, which may be significantly different at each project. Fisheries researchers are interested in establishing a consistent definition of project forebay and tailrace regions for the hydroelectric projects on the lower Columbia and Snake rivers. The Hydraulic Extent of a project was defined by USACE (Brad Eppard, USACE-CENWP) as follows: The river reach directly upstream (forebay) and downstream (tailrace) of a project that is influenced by the normal range of dam operations. Outside this reach, for a particular river discharge, changes in dam operations cannot be detected by hydraulic measurement. The purpose of this study was to, in consultation with USACE and regional representatives, develop and apply a consistent set of criteria for determining the hydraulic extent of each of the projects in the lower Columbia and Snake rivers. A 2D depth-averaged river model, MASS2, was applied to the Snake and Columbia Rivers. New computational meshes were developed most reaches and the underlying bathymetric data updated to the most current survey data. The computational meshes resolved each spillway bay and turbine unit at each project and extended from project to project. MASS2 was run for a range of total river flows and each flow for a range of project operations at each project. The modeled flow was analyzed to determine the range of velocity magnitude differences and the range of flow direction differences at each location in the computational mesh for each total river flow. Maps of the differences in flow direction and velocity magnitude were created. USACE

  20. Pliocene-Pleistocene lineage diversifications in the Eastern Indigo Snake (Drymarchon couperi) in the Southeastern United States.

    Science.gov (United States)

    Krysko, Kenneth L; Nuñez, Leroy P; Lippi, Catherine A; Smith, Daniel J; Granatosky, Michael C

    2016-05-01

    Indigo Snakes (Drymarchon; with five currently recognized species) occur from northern Argentina, northward to the United States in southern Texas and eastward in disjunct populations in Florida and Georgia. Based on this known allopatry and a difference in supralabial morphology the two United States taxa previously considered as subspecies within D. corais (Boie 1827), the Western Indigo Snake, D. melanurus erebennus (Cope 1860), and Eastern Indigo Snake, D. couperi (Holbrook 1842), are currently recognized as separate species. Drymarchon couperi is a Federally-designated Threatened species by the United States Fish and Wildlife Service under the Endangered Species Act, and currently being incorporated into a translocation program. This, combined with its disjunct distribution makes it a prime candidate for studying speciation and genetic divergence. In this study, we (1) test the hypothesis that D. m. erebennus and D. couperi are distinct lineages by analyzing 2411 base pairs (bp) of two mitochondrial (mtDNA) loci and one single copy nuclear (scnDNA) locus; (2) estimate the timing of speciation using a relaxed phylogenetics method to determine if Milankovitch cycles during the Pleistocene might have had an influence on lineage diversifications; (3) examine historical population demography to determine if identified lineages have undergone population declines, expansions, or remained stable during the most recent Milankovitch cycles; and (4) use this information to assist in an effective and scientifically sound translocation program. Our molecular data support the initial hypothesis that D. melanurus and D. couperi should be recognized as distinct species, but further illustrate that D. couperi is split into two distinct genetic lineages that correspond to historical biogeography and sea level changes in peninsular Florida. These two well-supported genetic lineages (herein termed Atlantic and Gulf lineages) illustrate a common biogeographic distributional break

  1. Detection of PIT-tagged subyearling Chinook salmon at a Snake River dam: Implications for summer flow augmentation

    Science.gov (United States)

    Connor, W.P.; Burge, H.L.; Bennett, D.H.

    1998-01-01

    Rearing subyearling chinook salmon Oncorhynchus tshawytscha (≥60 mm in fork length) were captured in the Snake River and tagged with passive integrated transponders to provide an index of their survival to Lower Granite Dam, the first of eight dams encountered by seaward migrants. Water was released from reservoirs upstream of Lower Granite Dam to augment summer flows and thereby increase subyearling chinook salmon survival. Mean summer flow and maximum summer water temperature in Lower Granite Reservoir were highly correlated (N = 4; r = −0.999). Acknowledging this correlation, we conducted two separate least-squares regressions using detection rate as the dependent variable. Detection rate at Lower Granite Dam was positively related to mean summer flow (N = 4; r 2 = 0.993; P = 0.003) and negatively related to maximum summer water temperature (N = 4; r 2 = 0.984; P = 0.008). Summer flow augmentation increased flow and decreased water temperature in Lower Granite Reservoir especially in low-flow years. Our results support summer flow augmentation as a beneficial interim recovery measure for enhancing survival of subyearling chinook salmon in the Snake River. Additional research should include replicate within-year releases of PIT-tagged subyearlings as well as studies of fish guidance efficiency.

  2. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy (Idaho Department of Fish and Game, Boise, ID)

    2006-05-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred to

  3. Factors affecting route selection and survival of steelhead kelts at Snake River dams in 2012 and 2013

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison H. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xinya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Green, Ethan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-31

    In 2012 and 2013, Pacific Northwest National Laboratory (PNNL) conducted a study that summarized the passage route proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged kelts. Kelts were also tagged with passive integrated transponder tags to monitor passage through juvenile bypass systems (JBS) and detect returning fish. The current study evaluated data collected in 2012 and 2013 to identify environmental, temporal, operational, individual, and behavioral variables that were related to forebay residence time, route of passage, and survival of steelhead kelts at FCRPS dams on the Snake River. Multiple approaches, including 3-D tracking, bivariate and multivariable regression modeling, and decision tree analyses were used to identify the environmental, temporal, operational, individual, and behavioral variables that had the greatest effect on forebay residence time, route of passage, and route-specific and overall dam passage survival probabilities for tagged kelts at Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams. In general, kelt behavior and discharge appeared to work independently to affect forebay residence times. Kelt behavior, primarily approach location, migration depth, and “searching” activities in the forebay, was found to have the greatest influence on their route of passage. The condition of kelts was the single most important factor affecting their survival. The information gathered in this study may be used by dam operators and fisheries managers to identify potential management actions to improve in-river survival of kelts or collection methods for kelt reconditioning programs to aid

  4. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; McMichael, Geoffrey A. [Pacific Northwest National Laboratory

    2009-08-21

    higher probability of successfully passing through the confluence (P=0.0050 for radio-tagged fish; P=0.0038 for acoustic-tagged fish). Radio-tagged fish with greater weight at tagging also had a higher probability of migrating and surviving through both the lower free-flowing reach (P=0.0497) and the transition zone (P=0.0007). Downstream movement rates of radio-tagged subyearlings were highest in free-flowing reaches in every month and decreased considerably with impoundment. Movement rates were slowest in the transition zone for the June and August release groups, and in the confluence reach for the July release group. For acoustic-tagged subyearlings, the slowest movement rates through the confluence and upper reservoir reaches were observed for the September release group. Radio-tagged fish released in August showed the greatest delay in the transition zone, while acoustic-tagged fish released in September showed the greatest delay in the transition zone and confluence reaches. Across the monthly release groups from July through September, the probability of delaying in the transition zone and surviving there declined throughout the study. All monthly release groups of radio-tagged subyearlings showed evidence of mortality within the transition zone, with final estimates (across the full 45-d detection period) ranging from 0.12 (SE not available) for the May release group to 0.58 (SE = 0.06) for the June release group. The May and September release groups tended to have lower mortality in the transition zone than the June, July, and August release groups. Live fish were primarily detected away from shore in the channel, whereas all dead fish were located along shorelines with most being located in the vicinity of the Memorial Bridge and immediately upstream. During the May detection period, before the implementation of summer flow augmentation, temperatures in the Clearwater River and Snake River arms of Lower Granite Reservoir and the downstream boundary of the

  5. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; McMichael, Geoffrey A. [Pacific Northwest National Laboratory

    2009-08-21

    higher probability of successfully passing through the confluence (P=0.0050 for radio-tagged fish; P=0.0038 for acoustic-tagged fish). Radio-tagged fish with greater weight at tagging also had a higher probability of migrating and surviving through both the lower free-flowing reach (P=0.0497) and the transition zone (P=0.0007). Downstream movement rates of radio-tagged subyearlings were highest in free-flowing reaches in every month and decreased considerably with impoundment. Movement rates were slowest in the transition zone for the June and August release groups, and in the confluence reach for the July release group. For acoustic-tagged subyearlings, the slowest movement rates through the confluence and upper reservoir reaches were observed for the September release group. Radio-tagged fish released in August showed the greatest delay in the transition zone, while acoustic-tagged fish released in September showed the greatest delay in the transition zone and confluence reaches. Across the monthly release groups from July through September, the probability of delaying in the transition zone and surviving there declined throughout the study. All monthly release groups of radio-tagged subyearlings showed evidence of mortality within the transition zone, with final estimates (across the full 45-d detection period) ranging from 0.12 (SE not available) for the May release group to 0.58 (SE = 0.06) for the June release group. The May and September release groups tended to have lower mortality in the transition zone than the June, July, and August release groups. Live fish were primarily detected away from shore in the channel, whereas all dead fish were located along shorelines with most being located in the vicinity of the Memorial Bridge and immediately upstream. During the May detection period, before the implementation of summer flow augmentation, temperatures in the Clearwater River and Snake River arms of Lower Granite Reservoir and the downstream boundary of the

  6. Survey of pathogens in hatchery Chinook salmon with different out-migration histories through the Snake and Columbia rivers.

    Science.gov (United States)

    Van Gaest, A L; Dietrich, J P; Thompson, D E; Boylen, D A; Strickland, S A; Collier, T K; Loge, F J; Arkoosh, M R

    2011-06-01

    The operation of the Federal Columbia River Power System (FCRPS) has negatively affected threatened and endangered salmonid populations in the Pacific Northwest. Barging Snake River spring Chinook salmon Oncorhynchus tshawytscha through the FCRPS is one effort to mitigate the effect of the hydrosystem on juvenile salmon out-migration. However, little is known about the occurrence and transmission of infectious agents in barged juvenile salmon relative to juvenile salmon that remain in-river to navigate to the ocean. We conducted a survey of hatchery-reared spring Chinook salmon at various points along their out-migration path as they left their natal hatcheries and either migrated in-river or were barged through the FCRPS. Salmon kidneys were screened by polymerase chain reaction for nine pathogens and one family of water molds. Eight pathogens were detected; the most prevalent were Renibacterium salmoninarum and infectious hematopoietic necrosis virus. Species in the family Saprolegniaceae were also commonly detected. Pathogen prevalence was significantly greater in fish that were barged through the FCRPS than in fish left to out-migrate in-river. These results suggest that the transmission of infectious agents to susceptible juvenile salmon occurs during the barging process. Therefore, management activities that reduce pathogen exposure during barging may increase the survival of juvenile Chinook salmon after they are released.

  7. Evaluate Potenial Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Scott R.; Tuell, Michael A.; Hesse, Jay A. (Nez Perce Tribe, Department of Fisheries Management, Lapwai, ID)

    2004-02-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This report presents a summary of results from the 1997-2002 Phase II data collection and represents the end of phase II. From 1997 to 2001 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon. A total of 1,785 white sturgeon were captured and tagged in the Snake River and 77 in the Salmon River. Since 1997, 25.8 percent of the tagged white sturgeon have been recaptured. Relative density of white sturgeon was highest in the free-flowing segment of the Snake River, with reduced densities of fish in Lower Granite Reservoir, and low densities the Salmon River. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir, the free-flowing Snake River and the Salmon River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 30 percent since the 1970's. Using the Jolly-Seber model, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,483 fish, with a 95% confidence interval of 1,208-7,477. Total annual mortality rate was estimated to be 0.14 (95% confidence interval of 0.12 to 0.17). A total of 35 white sturgeon were fitted with radio-tags during 1999-2002. The movement of these fish ranged from 53 km (33 miles) downstream to 77 km (48 miles) upstream; however, 38.8 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No

  8. Toxicovenomics and antivenom profiling of the Eastern green mamba snake (Dendroaspis angusticeps)

    DEFF Research Database (Denmark)

    Lauridsen, Line P.; Laustsen, Andreas Hougaard; Lomonte, Bruno

    2016-01-01

    A toxicovenomic study was performed on the venom of the green mamba, Dendroaspis angusticeps. Forty-two different proteins were identified in the venom of D. angusticeps, in addition to the nucleoside adenosine. The most abundant proteins belong to the three-finger toxin (3FTx) (69.2%) and the Ku......A toxicovenomic study was performed on the venom of the green mamba, Dendroaspis angusticeps. Forty-two different proteins were identified in the venom of D. angusticeps, in addition to the nucleoside adenosine. The most abundant proteins belong to the three-finger toxin (3FTx) (69...... was followed for the study of the proteome of the venom of the Eastern green mamba, D. angusticeps. Forty-two different proteins were identified, among which the three-finger toxin (3FTx) family, characteristic of elapid venoms, was the most abundant, followed by the Kunitz-type proteinase inhibitor family...

  9. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G.; Muir, William D.; Marsh, Douglas M. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2006-05-01

    In 2005, the National Marine Fisheries Service and the University of Washington completed the thirteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 18,439 hatchery steelhead, 5,315 wild steelhead, and 6,964 wild yearling Chinook salmon at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the ''single-release model''). Primary research objectives in 2005 were: (1) Estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon O. tshawytscha and steelhead O. mykiss. (2) Evaluate relationships between survival estimates and migration conditions. (3) Evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2005 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here.

  10. Significance of Selective Predation and Development of Prey Protection Measures for Juvenile Salmonids in the Columbia and Snake River Reservoirs: Annual Progress Report, February 1993-February 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Poe, Thomas P.

    1994-08-01

    This report addresses the problem of predator-prey interactions of juvenile salmonids in the Columbia and Snake River. Six papers are included on selective predation and prey protection. Attention is focused on monitoring the movements, the distribution, and the behavior of juvenile chinook salmon and northern squawfish.

  11. Do cheatgrass, snake river wheatgrass, and crested wheatgrass sense different availabilities of N and P in soils conditioned by a cheatgrass invasion?

    Science.gov (United States)

    Long-term invasion by cheatgrass often increases availability of soil N and P thereby fostering increased competitive ability. We designed an experiment to test if cheatgrass (exotic annual), Snake River wheatgrass (native perennial), and crested wheatgrass (exotic perennial) all benefit from this e...

  12. Hydrologic Conditions and Distribution of Selected Constituents in Water, Snake River Plain Aquifer, Idaho National Engineering and Environmental Laboratory, Idaho, 1996 through 1998

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Bartholomay; B. J. Tucker; L. C. Davis; M. R. Greene

    2000-09-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering and Environmental Laboratory (INEEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEEL to determine hydrologic trends and to delineate the movement to radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1996-98. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEEL decreased or remained constant during 1996-98. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption process, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEEL were variable during 1996-98.

  13. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Tuell, Michael A.; Everett, Scott R. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2003-03-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 1999 annual report covers the third year of sampling of this multi-year study. In 1999 white sturgeon were captured, marked and population data were collected in the Snake and Salmon rivers. A total of 33,943 hours of setline effort and 2,112 hours of hook-and-line effort was employed in 1999. A total of 289 white sturgeon were captured and tagged in the Snake River and 29 in the Salmon River. Since 1997, 11.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 27 cm to 261 cm and averaged 110 cm. In the Salmon River, white sturgeon ranged in total length from 98 cm to 244 cm and averaged 183.5 cm. Using the Jolly-Seber model, the abundance of white sturgeon < 60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 1,823 fish, with a 95% confidence interval of 1,052-4,221. A total of 15 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 6.4 km (4 miles) downstream to 13.7 km (8.5 miles) upstream; however, 83.6 percent of the detected movement was less than 0.8 kilometers (0.5 miles). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River

  14. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; Hodge, Jacob M.; Sandford, Benjamin P.

    2005-06-01

    This report provides information on PIT-tagging of wild Chinook salmon parr in Idaho in 2003 and the subsequent monitoring of these fish and similarly tagged fish from Oregon. We report estimated parr-to-smolt survival and arrival timing of these fish at Lower Granite Dam, as well as interrogation data collected at several other sites throughout the Snake and Columbia River system. This research continues studies that began under Bonneville Power Administration (BPA) funding in 1991. Results from previous study years were reported by Achord et al. (1994; 1995a,b; 1996a; 1997; 1998; 2000; 2001a,b; 2002, 2003, 2004). Goals of this ongoing study are: (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer Chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence migration patterns. (4) Characterize the migration behavior and estimate survival of different wild juvenile fish stocks as they emigrate from their natal rearing areas. This study provides critical information for recovery planning, and ultimately recovery for these ESA-listed wild fish stocks. In 2003-2004, we also continued to measure water temperature, dissolved oxygen, specific conductance, turbidity, water depth, and pH at five monitoring stations in the Salmon River Basin, Idaho for the Baseline Environmental Monitoring Program. These data, along with parr/smolt migration, survival, and timing data, will help to discern patterns or characteristic relationships between fish movement/survival and environmental factors.

  15. Chronic Wasting Disease Surveillance and Contingency Plan Eastern Virginia Rivers Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan is established to provide a framework for surveillance, monitoring and disease response to Chronic Wasting Disease at the Eastern Virginia Rivers National...

  16. Hydrogeology and water quality in the Snake River alluvial aquifer at Jackson Hole Airport, Jackson, Wyoming, September 2008-June 2009

    Science.gov (United States)

    Wright, Peter R.

    2010-01-01

    The hydrogeology and water quality of the Snake River alluvial aquifer, at the Jackson Hole Airport in northwest Wyoming, was studied by the U.S. Geological Survey in cooperation with the Jackson Hole Airport Board and the Teton Conservation District during September 2008-June 2009. Hydrogeologic conditions were characterized using data collected from 14 Jackson Hole Airport wells. Groundwater levels are summarized in this report and the direction of groundwater flow, hydraulic gradients, and estimated groundwater velocity rates in the Snake River alluvial aquifer underlying the study area are presented. Analytical results of chemical, dissolved gas, and stable isotopes are presented and summarized. Seasonally, the water table at Jackson Hole Airport was lowest in early spring and reached its peak in July, with an increase of 12 to 14 feet between April and July 2009. Groundwater flow was predominantly horizontal but had the hydraulic potential for downward flow. The direction of groundwater flow was from the northeast to the west-southwest. Horizontal groundwater velocities within the Snake River alluvial aquifer at the airport were estimated to be about 26 to 66 feet per day. This indicates that the traveltime from the farthest upgradient well to the farthest downgradient well was approximately 53 to 138 days. This estimate only describes the movement of groundwater because some solutes may move at a rate much slower than groundwater flow through the aquifer. The quality of the water in the alluvial aquifer generally was considered good. The alluvial aquifer was a fresh, hard to very hard, calcium carbonate type water. No constituents were detected at concentrations exceeding U.S. Environmental Protection Agency Maximum Contaminant Levels, and no anthropogenic compounds were detected at concentrations greater than laboratory reporting levels. The quality of groundwater in the alluvial aquifer generally was suitable for domestic and other uses; however, dissolved

  17. Stress feature interpretation from ICDP drill holes to constrain the orientations of the three principal stresses: Snake River Plain (USA)

    Science.gov (United States)

    Pierdominici, Simona; Kück, Jochem; Harms, Ulrich; Schmitt, Douglas R.

    2016-04-01

    Downhole data from drilled holes provide a unique opportunity to identify wellbore failure and understand physical properties of the deep sediments and rocks. In the framework of the ICDP (International Continental Scientific Drilling Program) we have obtained and analysed a set of geophysical logging data of two deep boreholes (Kimama and Kimberly) in the Snake River Plain in southern Idaho for the ICDP Hot Spot project. The Snake River Plain represents the track of a deep-seated mantle hotspot that has thinned the lithosphere and fuelled the intrusion of up to 10 km of hot basaltic-rhyolitic magma into the lower and middle crust. This area represents the ideal place for geothermal exploration and exploitation. For that a study of the complete state of stress in this region becomes a key point to know and understand the distribution of fractures and failures and how they can influence the permeability of the Hot Spot geothermal reservoir. Processed acoustic borehole images acquired along two boreholes detect a variety of natural and drilling induced features on the borehole wall, including bedding, fractures and breakouts. Three primary types of stress-induced drillhole indicators, breakouts, petal centre-line fractures and tensile fractures, were analysed in detail in order to define the orientation of the present-day stress state. Borehole breakouts are stress-induced elongations of a borehole cross section and on borehole images they appear as dark features and in some cases, incipient breakouts have been identified by conjugate shear fractures, where no spalling of the borehole wall has occurred. The drilling induced tensile fractures appear as dark electrically conductive features, with a strike parallel to the direction of the far-field greatest horizontal stress. They can be differentiated from natural fractures because they do not cross the borehole, do not form complete sinusoids shape on BHTV images and show a discontinuous nature. On the contrary the

  18. Project Hotspot - The Snake River Scientific Drilling Project - Investigating the Interactions of Mantle Plumes and Continental Lithosphere

    Science.gov (United States)

    Shervais, J. W.

    2008-12-01

    The Yellowstone-Snake River Plain (YSRP) volcanic province is the world's best modern example of a time- transgressive hotspot track beneath continental crust. Recently, a 100 km wide thermal anomaly has been imaged by seismic tomography to depths of over 500 km beneath the Yellowstone Plateau. The Yellowstone Plateau volcanic field consists largely of rhyolite lavas and ignimbrites, with few mantle-derived basalts. In contrast, the Snake River Plain (SRP), which represents the track of the Yellowstone hotspot, consists of rhyolite caldera complexes that herald the onset of plume-related volcanism and basalts that are compositionally similar to ocean island basalts like Hawaii. The SRP preserves a record of volcanic activity that spans over 16 Ma and is still active today, with basalts as young as 200 ka in the west and 2 ka in the east. The SRP is unique because it is young and relatively undisturbed tectonically, and because it contains a complete record of volcanic activity associated with passage of the hotspot. This complete volcanic record can only be sampled by drilling. In addition, the western SRP rift basin preserves an unparalleled deep-water lacustrine archive of paleoclimate evolution in western North America during the late Neogene. The central question addressed by the Snake River Scientific Drilling Project is how do mantle hotspots interact with continental lithosphere, and how does this interaction affect the geochemical evolution of mantle-derived magmas and the continental lithosphere? Our hypothesis is that continental mantle lithosphere is constructed in part from the base up by the underplating of mantle plumes, which are compositionally distinct from cratonic lithosphere, and that plumes modify the impacted lithosphere by thermally and mechanically eroding cratonic mantle lithosphere, and by underplating depleted plume-source mantle. Addition of mafic magma to the crust represents a significant contribution to crustal growth, and densifies

  19. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hockersmith, Eric E.

    1999-03-01

    This report consists of two parts describing research activities completed during 1997 under Bonneville Power Administration Project Number 93-29. Part 1 provides reach survival and travel time estimates for 1997 for PIT-tagged hatchery steelhead and yearling chinook salmon in the Snake and Columbia Rivers. The results are reported primarily in the form of tables and figures with a minimum of text. More detailed information on methodology and the statistical models used in the analysis are provided in previous annual reports cited in the text. Analysis of the relationships among travel time, survival, and environmental factors for 1997 and previous years of the study will be reported elsewhere. Part 2 of this report describes research to determine areas of loss and delay for juvenile hatchery salmonids above Lower Granite Reservoir.

  20. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; Axel, Gordon A.; Hockersmith, Eric E.

    2002-07-01

    This report details the 2001 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these data in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers.

  1. Effects of Dissolved Gas Supersaturation on Fish Residing in the Snake and Columbia Rivers, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Brad A.

    1998-04-01

    Large amounts of spill at dams has commonly generated levels of dissolved gas supersaturation that are higher than levels established by state and federal agencies setting criteria for acceptable water quality in the Columbia and Snake Rivers. Large spill volumes are sometimes provided voluntarily to increase the proportion of migrating juvenile salmon that pass dams through nonturbine routes. However, total dissolved gas supersaturation (TDGS) resulting from spill in past decades has led to gas bubble disease (GBD) in fish. Therefore, during the period of high spill in 1997, the authors monitored the prevalence and severity of gas bubble disease by sampling resident fish in Ice Harbor reservoir and downstream from Ice Harbor and Bonneville Dams.

  2. Comparative evaluation of molecular diagnostic tests for Nucleospora salmonis and prevalence in migrating juvenile salmonids from the Snake River, USA

    Science.gov (United States)

    Badil, Samantha; Elliott, Diane G.; Kurobe, Tomofumi; Hedrick, Ronald P.; Clemens, Kathy; Blair, Marilyn; Purcell, Maureen K.

    2011-01-01

    Nucleospora salmonis is an intranuclear microsporidian that primarily infects lymphoblast cells and contributes to chronic lymphoblastosis and a leukemia-like condition in a range of salmonid species. The primary goal of this study was to evaluate the prevalence of N. salmonis in out-migrating juvenile hatchery and wild Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss from the Snake River in the U.S. Pacific Northwest. To achieve this goal, we first addressed the following concerns about current molecular diagnostic tests for N. salmonis: (1) nonspecific amplification patterns by the published nested polymerase chain reaction (nPCR) test, (2) incomplete validation of the published quantitative PCR (qPCR) test, and (3) whether N. salmonis can be detected reliably from nonlethal samples. Here, we present an optimized nPCR protocol that eliminates nonspecific amplification. During validation of the published qPCR test, our laboratory developed a second qPCR test that targeted a different gene sequence and used different probe chemistry for comparison purposes. We simultaneously evaluated the two different qPCR tests for N. salmonis and found that both assays were highly specific, sensitive, and repeatable. The nPCR and qPCR tests had good overall concordance when DNA samples derived from both apparently healthy and clinically diseased hatchery rainbow trout were tested. Finally, we demonstrated that gill snips were a suitable tissue for nonlethal detection of N. salmonis DNA in juvenile salmonids. Monitoring of juvenile salmonid fish in the Snake River over a 3-year period revealed low prevalence of N. salmonis in hatchery and wild Chinook salmon and wild steelhead but significantly higher prevalence in hatchery-derived steelhead. Routine monitoring of N. salmonis is not performed for all hatchery steelhead populations. At present, the possible contribution of this pathogen to delayed mortality of steelhead has not been determined.

  3. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 1998-1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.

    2000-12-01

    The authors report on their progress from April 1998 through March 1999 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), U.S. Fish and Wildlife Service (USFWS; Report D), Columbia River Inter-Tribal Fish Commission (CRITFC; Report E), and the University of Idaho (UI; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 1998 through March 1999 are given.

  4. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam, 1999-2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L. (Oregon Department of Fish and Wildlife, Portland, OR)

    2001-04-01

    We report on our progress from April 1999 through March 2000 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), Columbia River Inter-Tribal Fish Commission (CRITFC; Report D), and the U.S. Fish and Wildlife Service (USFWS; Report E). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 1999 through March 2000 are given.

  5. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kern, J. Chris; Ward, David L.; Farr, Ruth A. (Oregon Department of Fish and Wildlife)

    2002-02-01

    We report on our progress from April 2000 through March 2001 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), Columbia River Inter-Tribal Fish Commission (CRITFC; Report D), the U.S. Fish and Wildlife Service (USFWS; Report E), and Oregon State University (OSU; Report F). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 2000 through March 2001 are listed.

  6. Snake bites

    Science.gov (United States)

    Bites - snakes ... Snake bites can be deadly if not treated quickly. Because of their smaller body size, children are ... risk for death or serious complications due to snake bites. The right antivenom can save a person's ...

  7. Land degradation in the Canyoles river watershed, Eastern Spain

    Science.gov (United States)

    Cerdà, A.; Gonzalez Peñaloza, F. A.; Imeson, A. C.; Gimenez Morera, A.

    2012-04-01

    Human induced Land Degradation by actions that have a negative impact on the functioning of the environment (Imeson, 2012). Mediterranean arid lands have been intensely transformed by human activity through history, especially due to agricultural management. This intense use of the land resulted in a new man made landscape that is evolving as a consequence of the global change to a new situation that can trigger Land Degradation processes. Extensive areas of olive groves, fruit orchards and vineyards, many of them grown on marginal areas (e.g., terraced slopes) as well as non-sustainable land uses have induced different environmental problems in the Canyoles river watershed (Eastern Spain). The human and physical changes suffered by this region are being used as a representative area of the western Mediterranean basin to monitor how the responses to the Desertification and Land Degradation fit. The aim of this research is to evaluate socio-ecological systems as a part of the Land Ecosystem and Degradation Desertification Response Assessment (LEDDRA) project. This presentation will show the main Land Degradation processes that has been identified: [1] soil erosion as a consequence of agriculture, [2] soil compaction due to herbicide and heavy machinery use, [3] soil sealing on croplands due to heavy vehicles and asphalt and concrete application on roads, [4] soil/water pollution due to agrochemicals, [5] reduction of biodiversity in croplands due to herbicides and substitution of the traditional irrigation system, [6] urbanization processes of rural areas due to the development of urban areas and agricultural infrastructures, [7] monoculture of citrus plantations in the lower part of the watershed, [8] roads and railway construction, [9] aquifer depletion, [10] abandonment of industrial activities, [11] abandonment of local traditional practices for food production and other resources and [12] the effect of land abandonment and wildfires in the nearby mountainous

  8. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin ; Volume 1 ; Evaluation of the 1995 Predictions of the Run-Timing of Wild Migrant Subyearling Chinook in the Snake River Basin Using Program RealTime.

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Richard L.

    1997-06-01

    This project was initiated in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of the project include: (1) to address the need for further synthesis of historical tagging and other biological information to improve understanding and to help identify future research and analysis needs; (2) to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to assist in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; and (3) to design better analysis tools for evaluation programs; and (4) to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community.

  9. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms.

    Science.gov (United States)

    Margres, Mark J; Aronow, Karalyn; Loyacano, Jacob; Rokyta, Darin R

    2013-08-02

    Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland. We describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A(2) and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A(2) expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection. We describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of polymorphic toxin loci was

  10. Mixing zone hydrodynamics in a large confluence: a case study of the Snake and Clearwater Rivers confluence

    Science.gov (United States)

    Shehata, M. M.; Petrie, J.

    2015-12-01

    Confluences are a basic component in all fluvial systems, which are often characterized by complex flow and sediment transport patterns. Addressing confluences, however, started only recently in parallel with new advances of flow measurement tools and computational techniques. A limited number of field studies exist investigating flow hydrodynamics through confluences, particularly for large confluences with central zone widths of 100 m or greater. Previous studies have indicated that the size of the confluent rivers and the post-confluence zone may impact flow and sediment transport processes in the confluence zone, which consequently could impact the biodiversity within the river network. This study presents the results of a field study conducted at the confluence of the Snake and the Clearwater rivers near the towns of Clarkston, WA and Lewiston, ID (average width of 700 m at the confluence center). This confluence supports many different and, sometimes, conflicting purposes including commercial navigation, recreation, and fish and wildlife conservation. The confluence properties are affected by dredging operations carried out periodically to maintain the minimum water depth required for safe flow conveyance and navigation purposes. Also, a levee system was constructed on the confluence banks as an extra flood control measure. In the recent field work, an Acoustic Doppler Current Profiler was used to measure water velocity profiles at cross sections in the confluence region. Fixed and moving vessel measurements were taken at selected locations to evaluate both the spatial and temporal variation in velocity throughout the confluence. The confluence bathymetry was surveyed with a multi-beam sonar to investigate existent bed morphological elements. The results identify the velocity pattern in the mixing zone between the two rivers. The present findings are compared to previous studies on small confluences to demonstrate the influence of scale on flow processes.

  11. Identifying and Quantifying Sources of Fall Chinook Salmon Spawning Gravel to the Snake River in Hells Canyon

    Science.gov (United States)

    Welcker, C. W.; Burke, M.

    2015-12-01

    The Snake River in Hells Canyon supports a growing population of spawning Fall Chinook Salmon (Oncorhynchus tshawytscha) immediately downstream of the Hells Canyon Complex (HCC) of hydroelectric dams for the last 60 years. The long-term survival of this salmon run depends on the input of spawning gravel (25-150 mm) from local tributaries balancing the losses of spawning gravel through attrition and export out of the reach between the HCC and the Salmon River confluence. We are working to quantify the gravel input of these local tributaries at different time-scales and put this into the context of historical supply and transport. Long-term total sediment production rates of these tributaries estimated through various methods have varied by over 2 orders of magnitude, but we have recently completed 10Be work to constrain these estimates. We are measuring the change in storage of Fall Chinook spawning-size gravel through repeat multibeam echosounder surveys of the riverbed. The limited amount of repeat data collected to date has shown complex patterns of change in the riverbed. One possible driver of this complexity is the episodic and spatially variable nature of sediment inputs from these tributaries. We are attempting to quantify the frequency of the debris flows or floods capable of transporting spawning gravel through digitizing historic imagery of the last 60 years to determine the recurrence interval. We are measuring the magnitude of these events by surveying tributary fans pre and post-event to measure the sediment volume and particle size produced by specific events. These floods and debris flows are driven by extreme rainfall or snowmelt events, so we have also reconstructed historical meteorological conditions to identify the triggering conditions for transport, and identify the areas where snowmelt or rainfall is the more likely trigger. We are currently testing whether the unique bedrock geology of Hells Canyon can be used as a tracer to identify the

  12. Geomorphic evidence for Quaternary tectonics on the southern flank of the Yellowstone hotspots from terraces and stream profiles along the Hoback and Snake River

    Science.gov (United States)

    Bufe, Aaron; Pederson, Joel; Tuzlak, Daphnee

    2017-04-01

    The greater Yellowstone region offers a type example of Earth surface response to a mantle anomaly. Motion of the North American plate across the Yellowstone plume over the past 17 Ma is predicted to have produced a wave of transient uplift and extension of the upper crust. In the wake of the plume, the Snake River Plain (SRP) has been subsiding 4-8 km due to a combination of crustal loading by basaltic magmatism and cooling. Studying patterns and rates of Quaternary incision of rivers flowing off the Yellowstone plateau can test models about the distribution and timing of active uplift, subsidence, and faulting, improving our understanding of the geodynamics and the hazards in the region. We present results from surveying and optically stimulated luminescence (OSL) dating of river terraces along the Hoback and upper Snake rivers (western Wyoming and southeastern Idaho), which provide a study transect from the modern Yellowstone hotspot center, across zones of changing fault activity, into the subsiding SRP. Downstream of Palisades Reservoir, dated fill terraces reveal that the Snake River has seen no apparent net incision since 50-60 ky. Moreover, a paleo-channel bed preserved by a 2 My-old basalt flow and exposed <10 m above the modern river suggests that net incision rates averaged over 2 My were <5 m/My. In contrast, upstream of Alpine, we find that three levels of 10-90 ky-old strath terraces record recent incision at rates of 0.1-0.3 mm/y along the deeply incised Alpine Canyon and the Hoback River. Here, the pattern of incision rates appear to be controlled by local baselevel fall along normal faults and we hypothesize that rates of subsidence of the SRP in the Quaternary have been relatively slow (< 0.1 mm/y).

  13. Assessment of the Flow-Survival Relationship Obtained by Sims and Ossiander (1981) for Snake River Spring/Summer Chinook Salmon Smolts, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Steward, C.R. (Cleveland R.)

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic`s chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts.

  14. System-Wide Significance of Predation on Juvenile Salmonids in the Columbia and Snake River Reservoirs : Annual Report of Research 1991.

    Energy Technology Data Exchange (ETDEWEB)

    Shively, R.S.

    1991-01-01

    We indexed consumption rates of northern squawfish (Ptychoch oregonensis) preying upon juvenile salmonids in four lower Snake River reservoirs. Stomach contents were also collected from smallmouth bass (Micropterus dolomieui), channel catfish (Ictaluris gunctatus), and walleye (Stizostedion vitreum). Northern squawfish digestive tracts were analyzed and the overall diet (% weight) was dominated by fish and crustaceans. Examination of stomach contents smallmouth bass showed that crustaceans (primarily crayfish) dominated their diets. Overall, the consumption rate of juvenile salmonids by smallmouth bass was low. The northern squawfish consumption index (CI) at Snake River locations ranged from zero at all mid-reservoir locations to 1.2 at Lower Granite forebay. In John Day Reservoir, CI values ranged from 0.5 to 1.9 in May and from 0.9 to 3.0 in July. Consumption index values were highest in forebay and tailrace areas, and were slightly higher in BRZs than in non-restricted zones.

  15. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E. [Fish Ecology Division, Northwest Fisheries Science Center

    2009-07-09

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008 are: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007

  16. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River : Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.

    2001-01-01

    This report summarizes results of research activities conducted in 1999 and years previous. In an effort to provide this information to a wider audience, the individual chapters in this report have been submitted as manuscripts to peer-reviewed journals. These chapters communicate significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin. Abundance and timing of seaward migration of Snake River fall chinook salmon was indexed using passage data collected at Lower Granite Dam for five years. We used genetic analyses to determine the lineage of fish recaptured at Lower Granite Dam that had been previously PIT tagged. We then used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured to enable us to calculate annual run composition and to compared early life history attributes of wild subyearling fall and spring chinook salmon. Because spring chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam, subyearling passage data at Lower Granite Dam can only be used to index fall chinook salmon smolt abundance and passage timing if genetic samples are taken to identify run membership of smolts. Otherwise, fall chinook salmon smolt abundance would be overestimated and timing of fall chinook salmon smolt passage would appear to be earlier and more protracted than is the case.

  17. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achond, Stephen; Hockersmith, Eric E.; Sandford, Benjamin P. (National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA)

    2003-07-01

    This report details the 2002 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these differences in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers. In 1991, the Bonneville Power Administration began a cooperative effort with NMFS to expand tagging and interrogation of wild fish. Project goals were to characterize the outmigration timing of these fish, to determine whether consistent migration patterns would emerge, and to investigate the influence of environmental factors on the timing and distribution of these migrations. In 1992, the Oregon Department of Fish and Wildlife (ODFW) began an independent program of PIT tagging wild chinook salmon parr in the Grande Ronde and Imnaha River Basins in northeast Oregon. Since then, ODFW has reported all tagging, detection, and timing information on fish from these streams. However, with ODFW concurrence, NMFS will continue to report arrival timing of these fish at Lower Granite Dam.

  18. Mortality of Yearling Chinook Salmon Prior to Arrival at Lower Granite Dam, on the Snake River : Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, Albert E.

    1991-10-01

    Efforts have been initiated to develop a research plan that will provide insight into causes of, and ultimately solutions to, the apparent excessive mortality of juvenile chinook upstream from Lower Granite Dam on the Snake River. In the context of the proposed salmon stock listings under the Endangered Species Act, issues that potentially affect wild stocks of spring chinook salmon probably warrant immediate consideration and resolution. Mark-recapture data at Lower Granite Dam indicate that few yearling chinook salmon (Oncorhynchus tshawytscha) smolts survive to that site after release from various hatcheries. Upriver stocks of yearling spring and summer chinook exhibit pronounced losses en route to the dam. In 1989 and 1990, only about 8 to 18% of PIT-tagged representatives from McCall or Sawtooth hatchery were detected at the dam. General survival indices for these stocks indicate that perhaps only 15 to 35% of the yearlings survived to that site. This suggests these stocks may sustain as much mortality traversing this unobstructed reach of river as the general population would passing through the entire hydroelectric complex.

  19. Wyoming big sagebrush associations of eastern Oregon; vegetation attributes

    Science.gov (United States)

    This report provides a synopsis of several vegetative characteristics for the Wyoming big sagebrush complex in eastern Oregon covering the High Desert , Snake River, and Owyhee Ecological Provinces in Harney, Lake, and Malheur Counties. The complex has been grouped into six associations defined by t...

  20. Statistical Evaluation of Travel Time Estimation Based on Data from Freeze-Branded Chinook Salmon on the Snake River, 1982-1990.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G.; Skalski, J.R.; Giorgi, Albert E.

    1993-10-01

    The purpose of this investigation is to assess the strengths and limitations of existing freeze brand recapture data in describing the migratory dynamics of juvenile salmonids in the mainstream, impounded sections of the Snake and Columbia Rivers. With the increased concern over the threatened status of spring and summer chinook salmon in the Snake River drainage, we used representative stocks for these races as our study populations. However, statistical considerations resultant from these analyses apply to other species and drainages as well. This report describes analyses we conducted using information derived from freeze-branded groups. We examined both index production groups released from hatcheries upstream from Lower Granite Dam (1982--1990) and freeze-branded groups used as controls in smolt transportation evaluations conducted by the National Marine Fisheries Service (1986, 1989). The scope of our analysis was limited to describing travel time estimates and derived relationships, as well as reach survival estimates through the mainstem Snake River from Lower Granite to McNary Dam.

  1. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399

  2. An Overview of the Origin of A-type Silicic Magmatism Along the Snake River Plain-Yellowstone Hotspot Track

    Science.gov (United States)

    Christiansen, E. H.; Bindeman, I. N.; Leishman, J. R.

    2015-12-01

    Disparate models have been proposed for the origin of A-type rhyolites--a volumetrically minor part of modern terrestrial magmatism. But understanding the origin of A-type granites and rhyolites has significance for understanding the formation of the Earth's first silicic crust and for planetary magmatism--small volumes of such granitic materials have been found in lunar rocks, martian and asteroidal meteorites, and have been speculated to have formed on Venus. On other planets, vertical tectonics and plume-like mantle convection dominate, not the recycling of wet, oxidized plates of lithosphere as on Earth. Thus, understanding the origins of A-type silicic magma is important on multiple levels. Voluminous A-type rhyolite were produced on the Snake River Plain-Yellowstone hotspot track and provide the opportunity to better understand these important silicic magmas. Detailed petrologic studies suggest that most Snake River Plain rhyolites ultimately formed by partially melting of previously emplaced basaltic intrusions rather than by fractional crystallization of basalt or melting of Archean crust. This hypothesis is favored because of the bimodal association of rhyolite and basalt without linking intermediate compositions. In addition, incompatible element ratios (e.g., La/Nb, Pb/Ce), a lack of old zircon antecrysts, low-U inherited zircon, high ɛNd and ɛHf values, high eruption temperatures (1050°C to 850°C), low fO2 (near QFM), and H2O (as low as 1.5%), link the rhyolites to a plume-derived basaltic parent through partial melting with lesser incorporation of the Archean to Mesozoic crust that underlies the plain. Moreover, the contrast with wetter, lower temperature rhyolites that must have formed by direct crustal melting (e.g., Arbon Valley Tuff) strengthens this interpretation. Many of the rhyolites also have low δ18O values that must be produced in two stages: first by partial melting of already hydrothermally altered basalt, and subsequently in single

  3. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for low-δ18O magmas of the Snake River Plain - Yellowstone hotspot

    Science.gov (United States)

    Blum, T.; Kitajima, K.; Nakashima, D.; Valley, J. W.

    2013-12-01

    The Snake River Plain - Yellowstone (SRP-Y) hotspot trend is one of the largest known low-δ18O magmatic provinces, yet the timing and distribution of hydrothermal alteration relative to hotspot magmatism remains incompletely understood. Existing models for SRP-Y low-δ18O magma genesis differ regarding the timing of protolith alteration (e.g. Eocene vs. present), depth at which alteration occurs (e.g. 15 km vs. Owyhee volcanic field (LOVF) of east central Oregon to further identify magmatic oxygen isotope trends within the field. These data offer insight into the timing of alteration and the extent of the greater SRP-Y low-δ18O province, as well as the conditions that generate large low-δ18O provinces. 16-14 Ma silicic volcanism in the LOVF is linked to the pre-14 Ma SRP-Y hotspot, with volcanism partially overlapping extension in the north-south trending Oregon-Idaho Graben (OIG). Ion microprobe analyses of zircons from 16 LOVF silicic lavas and tuffs reveal homogeneous zircons on both the single grain and hand sample scales: individual samples have 2 S.D. for δ18O ranging from 0.27 to 0.96‰ (SMOW), and sample averages ranging from 1.8 to 6.0‰, excluding texturally chaotic and/or porous zircons which have δ18O values as low as 0.0‰. All low-δ18O LOVF magmas, including the caldera-forming Tuff of Leslie Gulch and Tuff of Spring Creek, are confined to the OIG, although not all zircons from within the OIG have low δ18O values. The presence and sequence of low-δ18O magmas in the LOVF and adjacent central Snake River Plain (CSRP) cannot be explained by existing caldera subsidence or pre-hotspot source models. These data, however, combined with volumetrically limited low-δ18O material in the adjacent Idaho Batholith and Basin and Range, are consistent with low-δ18O magmas generated by the superposition of high hotspot-derived thermal fluxes on active extensional structures (OIG extension in the LOVF, and Basin and Range rifting in the CSRP) thereby

  4. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2014 - 12/31/2014

    Science.gov (United States)

    Connor, William P.; Mullins, Frank L; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St John, Scott J.; Bickford, Brad; Rhodes, Tobyn

    2015-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  5. Factors Affecting the Survival of Upstream Migrant Adult Salmonids in the Columbia River Basin : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 9 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, Dennis D.; Mueller, Robert P.

    1993-06-01

    The Bonneville Power Administration (BPA) is developing conservation planning documentation to support the National Marine Fisheries Service`s (NMFS) recovery plan for Columbia Basin salmonid stocks that are currently listed under the Endangered Species Act (ESA). Information from the conservation planning documentation will be used as a partial scientific basis for identifying alternative conservation strategies and to make recommendations toward conserving, rebuilding, and ultimately removing these salmon stocks from the list of endangered species. This report describes the adult upstream survival study, a synthesis of biological analyses related to conditions affecting the survival of adult upstream migrant salmonids in the Columbia River system. The objective of the adult upstream survival study was to analyze existing data related to increasing the survival of adult migrant salmonids returning to the Snake River system. The fate and accountability of each stock during its upstream migration period and the uncertainties associated with measurements of escapement and survival were evaluated. Operational measures that affected the survival of adult salmon were evaluated including existing conditions, augmented flows from upstream storage release, and drawdown of mainstem reservoirs. The potential impacts and benefits of these measures to each ESA stock were, also described based on considerations of species behavior and run timing.

  6. river basin, north eastern nigeria, using swat model *ejieji

    African Journals Online (AJOL)

    USER

    2016-03-29

    Mar 29, 2016 ... Hade ia-:ama are-Komadugu-Yobe River basin (H:KYRB) is one of the ma or .... Prediction of the Streamflow of Hadejia-Jama are-Komadugu-Yobe-River. ..... Assessment Tool Input/Output documentation version 2009. Texas.

  7. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Payne; R. McCaffrey; R.W. King; S.A. Kattenhorn

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{sup -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to the

  8. Stochastic Model of Fracture Frequency Heterogeneity in a Welded Tuff EGS reservoir, Snake River Plain, Idaho, USA

    Science.gov (United States)

    Moody, A.; Fairley, J. P., Jr.

    2014-12-01

    In light of recent advancements in reservoir enhancement and injection tests at active geothermal fields, there is interest in investigating the geothermal potential of widespread subsurface welded tuffs related to caldera collapse on the Snake River Plain (SRP). Before considering stimulation strategies, simulating heat extraction from the reservoir under in-situ fracture geometries will give a first-order estimation of extractable heat. With only limited deep boreholes drilled on the SRP, few analyses of the bulk hydrologic properties of the tuffs exist. Acknowledging the importance of the spatial heterogeneity of fractures to the permeability and injectivity of reservoirs hosted in impermeable volcanic units, we present fracture distributions from ICDP hole 5036-2A drilled as a part of Project HOTSPOT. The core documents more than 1200 m of largely homogeneous densely welded tuff hosting an isothermal warm-water reservoir at ~60˚ C. Multiple realizations of a hypothetical reservoir are created using sequential indicator algorithms that honor the observed vertical fracture frequency statistics. Results help form criteria for producing geothermal energy from the SRP.

  9. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, D.

    1996-05-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. A total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout.

  10. Strain Rates and Contemporary Deformation in the Snake River Plain and Surrounding Basin and Range From GPS and Seismicity

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Payne; R. McCaffrey; R. W. King

    2008-08-01

    New horizontal GPS velocities along with earthquakes, faults, and volcanic features are used to assess how strain is accommodated in the Northern Basin and Range Province. We used GPS phase data collected from 1994 to 2007 to estimate horizontal velocities for 132 stations within the Snake River Plain (SRP) and surrounding basin and range. These velocities show regional scale clockwise rotation indicating basal driving forces beyond those associated with the Yellowstone Hotspot. Within the western Centennial Tectonic Belt (CTB), the GPS measurements indicate the basin and range is extending at a rate between 5x10-9/yr and 10x10-9/yr, which is an order of magnitude greater than the strain rate we observe with GPS in the SRP, explaining its low seismicity. Between these two regions is the “Centennial Shear Zone”, a NE-trending zone of right-lateral shear with estimated slip rates that increase northeastward from 0.9±0.3 mm/yr in the SW to 1.7±0.2 mm/yr in NE. We interpret the new GPS velocities to indicate: 1) right-lateral shear may be accommodated by strike-slip earthquakes on NE-trending faults in the Centennial Shear Zone; 2) three basin and range faults (Lost River, Lemhi, and Beaverhead) do not extend into the SRP, but instead terminate at the SRP margin; and 3) extension in the SRP occurs at a much lower rate than the rate of normal faulting in the western CTB.

  11. Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Cegelski, Christine C.; Campbell, Matthew R.

    2006-05-30

    Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

  12. Records of human occupation from Pleistocene river terrace and aeolian sediments in the Arneiro depression (Lower Tejo River, central eastern Portugal)

    DEFF Research Database (Denmark)

    Cunha, Pedro P.; Almeida, Nelson A.C.; Aubry, Thierry

    2012-01-01

    In the uppermost reach of the Lower Tejo River (eastern central Portugal), where the river crosses two quartzite ridges that separate the Ródão (upstream) and Arneiro (downstream) depressions, Palaeolithic artefacts have been recovered from three lower river terrace levels and a cover unit of aeo...

  13. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, Richard; Williams, John G.; Smith, Steven G. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2002-06-01

    In 2001, the National Marine Fisheries Service and the University of Washington completed the ninth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from passive integrated transponder (PIT)-tagged fish. We PIT tagged and released at Lower Granite Dam a total of 17,028 hatchery and 3,550 wild steelhead. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream of the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using the Single-Release Model. Primary research objectives in 2001 were to: (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2001 for PIT-tagged yearling chinook salmon and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures with a minimum of text. More details on methodology and statistical models used are provided in previous reports cited in the text. Results for summer-migrating chinook salmon will be reported separately.

  14. Survival Estimates for the Passage of Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Muir, William D.; Smith, Steven G.; Zabel, Richard W. (NOAA Fisheries, Northwest Fisheries Center, Seattle, WA)

    2003-07-01

    In 2002, the National Marine Fisheries Service and the University of Washington completed the tenth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 19,891 hatchery steelhead at Lower Granite Dam. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the ''Single-Release Model''). Primary research objectives in 2002 were to (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling chinook salmon O. tshawytscha and steelhead O. mykiss; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2002 for PIT-tagged yearling chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures; details on methodology and statistical models used are provided in previous reports cited here. Results for summer-migrating chinook salmon will be reported separately.

  15. Fish assemblage relationships with physical characteristics and presence of dams in three eastern Iowa rivers

    Science.gov (United States)

    Pierce, Clay; Nicholas L. Ahrens,; Anna K. Loan-Wilsey,; Gregory A. Simmons,; Gregory T. Gelwicks,

    2013-01-01

    Fish assemblages in rivers of the Midwestern United States are an important component of the region's natural resources and biodiversity. We characterized the physical environment and presence of dams in a series of reaches in three eastern Iowa rivers tributary to the Mississippi River and related these characteristics to the fish assemblages present. Some physical characteristics were similar among the 12 study reaches, whereas others differed substantially. We found a total of 68 species across the 12 study reaches; 56 in the Turkey River, 51 in the Maquoketa River and 50 in the Wapsipinicon River. Seventeen species could be described as ‘downstream-distributed’; 15 being found only in the lowest reach of one or more rivers and the other two being found only in the lowest reaches or two or more contiguous reaches including the lowest reach. Two species could be described as ‘upstream-distributed’, being found only in an uppermost reach. Non-metric multidimensional scaling ordination illustrated similarities among reaches, and five physical variables were significantly correlated with assemblage similarities. Catchment area and number of dams between reaches and the Mississippi River were strongly correlated with assemblage similarities, but the directions of their effects were opposite. Catchment area and number of dams were confounded. The collective evidence to date suggests that the pervasiveness of dams on rivers significantly alters fish assemblages, making underlying patterns of species change and relationships with naturally varying and human-influenced physical characteristics along a river's course difficult to discern.

  16. Genetic diversity of riperian populations of glycyrrhiza lepidota along the salmon and snake rivers

    Science.gov (United States)

    Glycyrrhiza lepidota Pursh (Fabaceae; American wild licorice), is a nitrogen-fixing, perennial, facultative riparian species present along many dryland rivers in western North America, including the U.S., southern Canada and northern Mexico. Like Glycyrrhiza glabra, common licorice native to Europe,...

  17. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  18. Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Munk, L.A.; Faure, G.; Pride, D.E. [Ohio State University, Columbus, OH (United States). Dept. of Geological Sciences; Bigham, J.M. [Ohio State University, Columbus, OH (United States). School of Natural Resources

    2002-07-01

    The quality of water in streams that are contaminated by acid drainage from mines and from the weathering of mineralized rocks improves as the water flows downstream. The purpose of this study was to investigate the geochemical processes that occur in one such stream and to determine the fate of the trace metals that are removed from the water. The stream chosen for this purpose was the Snake River, Summit County, Colorado, which is affected by natural acid rock-drainage (ARD) containing SO{sub 4}, Al, Fe, and various trace elements such as Zn, Cu, Pb, Ni, and others. Most of the Fe in the Snake River is removed from solution by the oxidation of Fe{sup 2+} to Fe{sup 3+} and the subsequent precipitation of Fe-oxyhydroxides that form a massive ferricrete deposit near the springs that feed the river. Further downstream, the Snake River (pH = 3.0) mixes with water from Deer Creek (pH = 7.0) thereby increasing its pH to 6.3 and causing SO{sub 4}-rich precipitates of Al-oxyhydroxide to form. The precipitates and associated organic C complexes sorb trace metals from the water and thus have high concentrations of certain elements, including Zn (540-11,400 ppm), Cu (34-221 ppm), Pb (90-340 ppm), and Ni (11-197 ppm). The concentrations of these elements in the precipitates that coat the streambed rise steeply in the zone of mixing and then decline downstream. The trace element concentrations of the water in the mixing zone at the confluence with Deer Creek decrease by 75% or more and are up to 3 orders of magnitude lower than those of the precipitates. Sorption curves for Zn, Cu, Pb, Ni, and SO{sub 4} were derived by stepwise neutralization of a sample of Snake River water (collected above the confluence with Deer Creek) and indicate that the trace metals are sorbed preferentially with increasing pH in the general order Pb, Cu, Zn, and Ni. Sulfate is removed between pH 4 and 5 to form an Al-hydroxysulfate and/or by sorption to microcrystalline gibbsite. The sorption data

  19. Intravascular hemolysis induced by the venom of the Eastern coral snake, Micrurus fulvius, in a mouse model: identification of directly hemolytic phospholipases A2.

    Science.gov (United States)

    Arce-Bejarano, Ruth; Lomonte, Bruno; Gutiérrez, José María

    2014-11-01

    Intravascular hemolysis has been described in envenomings by the Eastern coral snake, Micrurus fulvius, in dogs. An experimental model of intravascular hemolysis was developed in mice after intravenous (i.v.) injection of M. fulvius venom. Within one hr, there was prominent hemolysis, associated with a drastic drop in hematocrit, morphological alterations of erythrocytes, hemoglobinemia, and hemoglobinuria. Hemoglobin was identified in urine by mass spectrometry. Histological sections of kidney revealed abundant hyaline casts, probably corresponding to hemoglobin. This effect was abrogated by p-bromophenacyl bromide, indicating that it is caused by phospholipases A2 (PLA2). A monospecific anti-Micrurus nigrocinctus antivenom neutralized hemolytic activity in vivo. When tested in vitro with erythrocytes of various species, a clear difference in susceptibility was observed. Mouse and dog erythrocytes showed the highest susceptibility, whereas human and rabbit erythrocytes were not affected at the experimental conditions tested. The higher susceptibility of dog and mouse erythrocytes correlates with a high ratio of phosphatidylcholine/sphingomyelin in erythrocyte plasma membrane. When mouse erythrocytes were subjected to mechanical stress, after incubation with venom, hemolysis increased significantly, suggesting that both phospholipid hydrolysis by PLA2s and mechanical stress associated with rheological factors are likely to contribute to cell lysis in vivo. Several PLA2s isolated from this venom reproduced the hemolytic effect, and the complete amino acid sequence of one of them (fraction 17), which also induces myotoxicity, is reported. Since very few PLA2s inducing intravascular hemolysis have been described from snake venoms, this enzyme is a valuable tool to identify the structural determinants of hemolytic activity. The mouse model described in this study may be useful to explore the pathophysiology of intravascular hemolysis.

  20. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River Fall Chinook Salmon ESU, 1/1/2016 - 12/31/2016

    Science.gov (United States)

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Plumb, John M.; Perry, Russell W.; Erhardt, John M.; Hemingway, Rulon; Bickford, Brad; Rhodes, Tobyn

    2017-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2016 in association with U.S. Endangered Species Act recovery efforts and other federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2016, we described estimated the consumption rate and loss of subyearlings by Smallmouth Bass before, during, and after four hatchery releases. Before releases, Smallmouth Bass consumption rates of subyearling was low (0–0.36 fish/bass/d), but the day after the releases consumption rates reached as high as 1.6 fish/bass/d. Bass consumption in the upper portion of Hells Canyon was high for about 1–2 d before returning to pre-release levels, but in the lower river consumption rates were reduced but took longer to return to pre-release levels. We estimated that most of the subyearlings consumed by bass were of hatchery origin. Smallmouth Bass predation on subyearlings is intense following a hatchery release, but the

  1. Petrology and Bulk Chemistry of Modern Bed Load Sediments From Rivers Draining the Eastern Tibetan Plateau

    Science.gov (United States)

    Borges, J. B.

    2003-12-01

    We studied river bed load petrology and bulk sediment chemistry of the headwaters of the Changjiang, Huang He and Red rivers in China and Vietnam. These rivers drain the eastern and southeastern parts of the Tibetan Plateau which includes part of the Indian-Eurasian suture zone. The eastern Tibetan Plateau is dominated by marine sedimentary rocks with a few scattered intrusive igneous outcrops, while the suture zone is characterized by a mixture of high-grade metamorphic, ultramafic, granitic, volcanic arc and marine sedimentary rocks. The arithmetic average for Qt: Ft: Rft along the suture zone varies from 56:2:42 along the Red River Fault (RRF) zone to 38:6:56 in the interior of the continent, while sands from rivers draining the plateau average 32:8:60. The sands analyzed in this study are relatively immature compared to most data available from most rivers in the tropics. The average Chemical Index of Alteration (CIA) for samples from the RRF suture zone (0.62) is similar to that of rivers draining other tropical regions like the Niger, Chao Phraya, Mekong, Ganges, Amazon and Brahmaputra. The CIA values from the RRF zone are also significantly different from the rest of the suture zone (0.36) and the plateau area (0.38). The difference can be attributed to the combined effect of relief and precipitation. The RRF lies in the Red River drainage and receives ˜1820 mm of precipitation annually, while the plateau area averages ˜620 mm annually. In the case of the Red River drainage, the relief combined with higher humidity can increase physical weathering and reduce the residence time of sediment in the river drainage, therefore, continuously replacing the sediment transported out of the drainage by freshly weathered immature materials. In the plateau area, lower precipitation and runoff may limit sediment transport and chemical weathering leading to sediment immaturity.

  2. Geochronological and isotopic records of crustal storage and assimilation in the Wolverine Creek-Conant Creek system, Heise eruptive centre, Snake River Plain

    Science.gov (United States)

    Szymanowski, D.; Ellis, B. S.; Wotzlaw, J. F.; Buret, Y.; von Quadt, A.; Peytcheva, I.; Bindeman, I. N.; Bachmann, O.

    2016-12-01

    Understanding the processes of differentiation of the Yellowstone-Snake River Plain (YSRP) rhyolites is typically impeded by the apparent lack of erupted intermediate compositions as well as the complex nature of their shallow interaction with the surrounding crust responsible for their typically low O isotopic ratios. A pair of normal-δ18O rhyolitic eruptions from the Heise eruptive centre in eastern Idaho, the Wolverine Creek Tuff and the Conant Creek Tuff, represent unique magmatic products of the Yellowstone hotspot preserving abundant vestiges of the intermediate differentiation steps leading to rhyolite generation. We address both shallow and deep processes of magma generation and storage in the two units by combining high-precision ID-TIMS U-Pb zircon geochronology, trace element, O and Hf isotopic studies of zircon, and Sr isotopic analyses of individual high-Mg# pyroxenes inherited from lower- to mid-crustal differentiation stages. The zircon geochronology confirms the derivation of both tuffs from the same rhyolitic magma reservoir erupted at 5.5941 ± 0.0097 Ma, preceded by at least 92 ± 14 ky of continuous or intermittent zircon saturation approximating the length of pre-eruptive magma accumulation in the upper crust. Some low-Mg# pyroxenes enclosing zircons predate the eruption by at least 45 ± 27 ky, illustrating the co-crystallisation of major and accessory phases in the near-liquidus rhyolitic melts of the YSRP over a significant period of time. Coeval zircon crystals are isotopically heterogeneous (two populations at ɛHf -5 and -13), requiring the assembly of isotopically distinct melt pockets directly prior to, or during, the eruption. The primitive Mg# 60-90 pyroxenes are out of isotopic equilibrium with the host rhyolitic melt (87Sr/86Sri = 0.70889), covering a range of 87Sr/86Sri = 0.70705-0.70883 corresponding to ratios typical of the most radiogenic YSRP basalts to the least radiogenic YSRP rhyolites. Together with the low ɛHf in zircon

  3. Controversy, Conflict and Compromise: A History of the Lower Snake River Development

    Science.gov (United States)

    1994-01-01

    luxurious experience. Henry Miller made the trip to the mines in 1861, observing "gentlemen .. ·. [who] view the scenery, smoke Havana cigars, and...matter the time of year. Henry Miller described the ordeal at Palouse Rapids: 43 Despite the river’s many rapids, numerous stem wheeled steamboats...136-43; Henry Miller , "Letters From the Upper Columbia," Idaho Ytlsterdays, 4:4 (Winter 1960-61), pp. 14-25; Lulu Donnell Crandall, "The Colonel

  4. Transportation of Snake River Fall Chinook Salmon 2008: Final Report for the 2004 Juvenile Migration

    Science.gov (United States)

    2010-06-01

    East Seattle, Washington 98112-2097 for Walla Walla District Northwestern Division U.S. Army Corps of Engineers 201 North 3rd Walla Walla ...Clearwater Rivers. Annual report of research activities to the U.S. Army Corps of Engineers, Walla Walla , Washington. Connor, W. P., J. G. Sneva...Report of the National Marine Fisheries Service to the U.S. Army Corps of Engineers, Walla Walla , Washington. Marsh, D. M., J. R. Harmon, N. N

  5. Snake River Sockeye Salmon Habitat and Limnological Research; 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, David; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID

    1996-05-01

    This report contains studies which are part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Attention is focused on population monitoring studies in the Sawtooth Valley Lakes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; Annual Progress Report, April 2007 - March 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Mallette, Christine [Oregon Department of Fish and Wildlife

    2009-07-28

    We report on our progress from April 2007 through March 2008 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), Columbia River Inter-Tribal Fish Commission (CRITFC; Report C), and Montana State University (MSU; Report D). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  7. Long Lead-Time Forecasting of Snowpack and Precipitation in the Upper Snake River Basin using Pacific Oceanic-Atmospheric Variability

    Science.gov (United States)

    Anderson, S.; Tootle, G.; Parkinson, S.; Holbrook, P.; Blestrud, D.

    2012-12-01

    Water managers and planners in the western United States are challenged with managing resources for various uses, including hydropower. Hydropower is especially important throughout the Upper Snake River Basin, where a series of hydropower projects provide a low cost renewable energy source to the region. These hydropower projects include several dams that are managed by Idaho Power Company (IPC). Planners and managers rely heavily on forecasts of snowpack and precipitation to plan for hydropower availability and the need for other generation sources. There is a pressing need for improved snowpack and precipitation forecast models in the Upper Snake River Basin. This research investigates the ability of Pacific oceanic-atmospheric data and climatic variables to provide skillful long lead-time (three to nine months) forecasts of snowpack and precipitation, and examines the benefits of segregating the warm and cold phases of the Pacific Decadal Oscillation (PDO) to reduce the temperature variability within the target dataset. Singular value decomposition (SVD) was used to identify regions of Pacific Ocean sea surface temperatures (SST) and 500mbar geopotential heights (Z500) for various lead times (three, six, and nine months) that were teleconnected with snowpack and precipitation stations in Upper Snake River Basin headwaters. The identified Pacific Ocean SST and Z500 regions were used to create indices that became predictors in a non-parametric forecasting model. The majority of forecasts resulted in positive statistical skill, which indicated an improvement of the forecast over the climatology forecast (no-skill forecast). The results from the forecasts models indicated that derived indices from the SVD analysis resulted in improved forecast skill when compared to forecasts using established climate indices. Segregation of the cold phase PDO years resulted in the identification of different regions in the Pacific Ocean and vastly improved skill for the nine month

  8. Geomorphic Parameters for Developing a Hydrologic Model to Infer Holocene Climate Variability, Middle Snake River near Bliss, Idaho

    Science.gov (United States)

    Bullard, T. F.; Bacon, S. N.; Kimball, V. R.

    2015-12-01

    The geomorphology and stratigraphy preserved in a canyon reach of the Middle Snake River provide model parameter constraints for estimating Holocene paleohydrology. Channel constrictions, which acted as hydraulic weirs throughout the Holocene, were created in this reach by the Bonneville Flood (~17.5 ka) that left very large (>10 m) slabs of basalt and 2-3 m diameter boulder deposits near the canyon floor. Post-Bonneville Flood landforms and deposits that formed during the Holocene are situated less than ~30 m above river level (arl) in this reach and include fluvial and boulder terraces, alluvial fans, and incised tributary alluvial units. Relative topographic position of these geomorphic features, cross-cutting relations, multiple buried soils, depositional and erosional contacts, and radiocarbon dates from terraces (Qt) and alluvial fans provide a geomorphic and stratigraphic framework and a Holocene chronology for this area. The relative stratigraphic position of a massive silty sand that overlies Bonneville Flood gravel in Qt5 (~20 m arl) and Qt4 (~10 m arl) deposits and comprises all of Qt3 (~5 m arl) deposits indicates changes in Holocene discharge; longitudinal profiles of fluvial terraces graded to hydraulic constrictions provide reasonable estimates of paleo-stage. Fifteen radiocarbon dates yielded ages of ~8670 and ~3500 cal yr BP for Qt4 deposits and ~1100 and ~100 cal yr BP for Qt3 deposits and help define periods of episodic cutting and filling. Timing of Qt4 and Qt3 cut-and-fill episodes and alluvial fan formation correlates well with Holocene global and regional paleoclimate events inferred from Great Basin lake histories including wet periods from ~9.0 to 8.0 ka and ~4.2 to 2.5 ka, the Medieval Climatic Anomaly (~1.2 to 0.8 ka), and the Little Ice Age (~0.3 to 0.6 ka). The fluvial geomorphology documented in this study will be used to develop a watershed-scale hydrologic model to infer paleoprecipitation in the region during the Holocene.

  9. Survival of Subyearling Fall Chinook Salmon in the Free-flowing Snake River and Lower Snake River Reservoirs in 2003 and from McNary Dam Tailrace to John Day Dam Tailrace in the Columbia River from 1999 to 2002, 1999-2003 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Muir, William D.; Axel, Gordon A.; Smith, Steven G. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2004-12-01

    We report results from an ongoing study of survival and travel time of subyearling fall Chinook salmon in the Snake River during 2003 and in the Columbia River during 1999-2002. Earlier years of the study included serial releases of PIT-tagged hatchery subyearling Chinook salmon upstream from Lower Granite Dam, but these were discontinued in 2003. Instead, we estimated survival from a large number of PIT-tagged fish released upstream from Lower Granite Dam to evaluate transportation from Snake River Dams. During late May and early June 2003, 68,572 hatchery-reared subyearling fall Chinook salmon were PIT tagged at Lyons Ferry Hatchery, trucked upstream, acclimated, and released at Couse Creek and Pittsburg Landing in the free-flowing Snake River. We estimated survival for these fish from release to Lower Granite Dam tailrace. In comparison to wild subyearling fall Chinook salmon PIT tagged and released in the free-flowing Snake River, the hatchery fish we released traveled faster and had higher survival to Lower Granite Dam, likely because of their larger size at release. For fish left in the river to migrate we estimated survival from Lower Granite Dam tailrace to McNary Dam tailrace. Each year, a small proportion of fish released are not detected until the following spring. However, the number of fish released in 2003 that overwintered in the river and were detected as they migrated seaward as yearlings in 2004 was small (<1.0%) and had minimal effect on survival estimates. We evaluated a prototype floating PIT-tag detector deployed upstream from Lower Granite reservoir to collect data for use in partitioning travel time and survival between free-flowing and reservoir habitats. The floating detector performed poorly, detecting only 27 PIT tags in 340 h of operation from a targeted release of 68,572; far too few to partition travel time and survival between habitats. We collected river-run subyearling Chinook salmon (mostly wild fish from the Hanford Reach) at Mc

  10. The Brahmaputra tale of tectonics and erosion: Early Miocene river capture in the Eastern Himalaya

    Science.gov (United States)

    Bracciali, Laura; Najman, Yani; Parrish, Randall R.; Akhter, Syed H.; Millar, Ian

    2015-04-01

    The Himalayan orogen provides a type example on which a number of models of the causes and consequences of crustal deformation are based and it has been suggested that it is the site of a variety of feedbacks between tectonics and erosion. Within the broader orogen, fluvial drainages partly reflect surface uplift, different climatic zones and a response to crustal deformation. In the eastern Himalaya, the unusual drainage configuration of the Yarlung Tsangpo-Brahmaputra River has been interpreted either as antecedent drainage distorted by the India-Asia collision (and as such applied as a passive strain marker of lateral extrusion), latest Neogene tectonically-induced river capture, or glacial damming-induced river diversion events. Here we apply a multi-technique approach to the Neogene paleo-Brahmaputra deposits of the Surma Basin (Bengal Basin, Bangladesh) to test the long-debated occurrence and timing of river capture of the Yarlung Tsangpo by the Brahmaputra River. We provide U-Pb detrital zircon and rutile, isotopic (Sr-Nd and Hf) and petrographic evidence consistent with river capture of the Yarlung Tsangpo by the Brahmaputra River in the Early Miocene. We document influx of Cretaceous-Paleogene zircons in Early Miocene sediments of the paleo-Brahmaputra River that we interpret as first influx of material from the Asian plate (Transhimalayan arc) indicative of Yarlung Tsangpo contribution. Prior to capture, the predominantly Precambrian-Paleozoic zircons indicate that only the Indian plate was drained. Contemporaneous with Transhimalayan influx reflecting the river capture, we record arrival of detrital material affected by Cenozoic metamorphism, as indicated by rutiles and zircons with Cenozoic U-Pb ages and an increase in metamorphic grade of detritus as recorded by petrography. We interpret this as due to a progressively increasing contribution from the erosion of the metamorphosed core of the orogen. Whole rock Sr-Nd isotopic data from the same samples

  11. A review of neogene and quaternary snakes of Central and Eastern Europe. Part 11: natricinae, elapidae, viperidae

    Directory of Open Access Journals (Sweden)

    Szyndlar, Z.

    1991-08-01

    Full Text Available Remains of Neogene and Quaternary "natricine" colubrids, elapids and viperids, including snakes previously described and those undescribed yet, coming from Poland, Ukraine, Moldavia, Czechoslovakia, Austria, Hungary, Romania, Bulgaria, and Greece are discussed. The following taxa, including 11 extinct species, were recognized: "Natricinae": Neonatrix nova, Neonatrix sp., Palaeonatrix silesiaca, Palaeonatrix lehmani, Natrix longivertebrata, Natrix cf. N. longivertebrata, Natrix natrix, Natrix tesselata, Natrix cf. N. tesselata, Natrix sp., "Natricinae" indet.; Elapidae: Naja romani, Naja sp., cf. Naja sp.; Viperidae: Vipera platyspondyla, Vipera sarmatica, Vipera burgenlandica, Vipera gedulyi, Vipera kuchurganica, Vipera antiqua, Vipera cf. V. ammodytes, Vipera berus, Vipera sp ('Oriental vipers' group, Vipera sp. ('aspis' group, Vipera sp. ('berus' group, Vipera sp. . (status unknown. Taxonomic status of two other extinct species, Natrix parva and Laophis crotaloides, is uncertain. Modern species appeared fírst in Central and East Europe in the middle Pliocene (MN 15. Older snakes belonged to extinct species of either extinct or extant genera; taxonomic distinction of most extinct genera is, however, not fully demonstrated. Best recognized oldest snakes from the area (Elapidae, Viperidae, and sorne Colubridae are clearly referable to modern genera and intrageneric subdivisions occurring today are observed in oldest (Iower Miocene remains; closest living relatives of these fossils are presently distributed in the Oriental Realm.Se revisan y estudian los restos neógenos y cuaternarios de colúbridos «natricinos», elápidos y vipéridos, incluyendo tanto serpientes previamente descritas como- otras inéditas. Los materiales analizados proceden de Polonia, Ukrania, Moldavia, Checoslovaquia, Austria, Hungría, Rumania, Bulgaria y Grecia. Se reconocen los siguientes taxones, incluyendo 11 especies extinguidas: Natricinae: Neonatrix nova

  12. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; McNatt, Regan A.; Hockersmith, Eric E. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2004-04-01

    Prior to 1992, decisions on dam operations and use of stored water relied on recoveries of branded hatchery fish, index counts at traps and dams, and flow patterns at the dams. The advent of PIT-tag technology provided the opportunity to precisely track the smolt migrations of many wild stocks as they pass through the hydroelectric complex and other monitoring sites on their way to the ocean. With the availability of the PIT tag, a more complete approach to these decisions was undertaken starting in 1992 with the addition of PIT-tag detections of several wild spring and summer chinook salmon stocks at Lower Granite Dam. Using data from these detections, we initiated development of a database on wild fish, addressing several goals of the Columbia River Basin Fish and Wildlife Program of the Pacific Northwest Electric Power Planning Council and Conservation Act (NPPC 1980). Section 304(d) of the program states, ''The monitoring program will provide information on the migrational characteristics of the various stocks of salmon and steelhead within the Columbia Basin.'' Further, Section 201(b) urges conservation of genetic diversity, which will be possible only if wild stocks are preserved. Section 5.9A.1 of the 1994 Fish and Wildlife Program states that field monitoring of smolt movement will be used to determine the best timing for water storage releases and Section 5.8A.8 states that continued research is needed on survival of juvenile wild fish before they reach the first dam with special attention to water quantity, quality, and several other factors. The goals of this ongoing study are as follows (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence these patterns. (4) Characterize the migrational behavior and

  13. A Study of the Response of Eastern Spiny Softshell Turtle to Boat Traffic in the Missisquoi River of Northern Vermont

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this study was to gauge the degree to which boat traffic in the Missisquoi River affects the basking behavior of the eastern spiny softshell turtle...

  14. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.

  15. Synthesis of juvenile lamprey migration and passage research and monitoring at Columbia and Snake River Dams

    Science.gov (United States)

    Mesa, Matthew G.; Weiland, Lisa K.; Christiansen, Helena E.

    2016-01-01

    We compiled and summarized previous sources of data and research results related to the presence, numbers, and migration timing characteristics of juvenile (eyed macropthalmia) and larval (ammocoetes) Pacific lamprey Entosphenus tridentatus, in the Columbia River basin (CRB). Included were data from various screw trap collections, data from historic fyke net studies, catch records of lampreys at JBS facilities, turbine cooling water strainer collections, and information on the occurrence of lampreys in the diets of avian and piscine predators. We identified key data gaps and uncertainties that should be addressed in a juvenile lamprey passage research program. The goal of this work was to summarize information from disparate sources so that managers can use it to prioritize and guide future research and monitoring efforts related to the downstream migration of juvenile Pacific lamprey within the CRB. A common finding in all datasets was the high level of variation observed for CRB lamprey in numbers present, timing and spatial distribution. This will make developing monitoring programs to accurately characterize lamprey migrations and passage more challenging. Primary data gaps centered around our uncertainty on the numbers of juvenile and larval present in the system which affects the ability to assign risk to passage conditions and prioritize management actions. Recommendations include developing standardized monitoring methods, such as at juvenile bypass systems (JBS’s), to better document numbers and timing of lamprey migrations at dams, and use biotelemetry tracking techniques to estimate survival potentials for different migration histories.

  16. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea

    OpenAIRE

    Li, R. H.; Liu, S.M.; Li, Y. W.; Zhang, G.L.; Ren, J. L.; Zhang, J.

    2014-01-01

    Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006–2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43−. High riverine concentrations of nitr...

  17. Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island

    OpenAIRE

    Li, R. H.; Liu, S.M.; Li, Y. W.; Zhang, G.L.; Ren, J. L.; J. Zhang

    2013-01-01

    Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006–2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : ...

  18. Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Perkins, Kim S.

    2008-01-01

    Sediments are believed to comprise as much as 50 percent of the Snake River Plain aquifer thickness in some locations within the Idaho National Laboratory. However, the hydraulic properties of these deep sediments have not been well characterized and they are not represented explicitly in the current conceptual model of subregional scale ground-water flow. The purpose of this study is to evaluate the nature of the sedimentary material within the aquifer and to test the applicability of a site-specific property-transfer model developed for the sedimentary interbeds of the unsaturated zone. Saturated hydraulic conductivity (Ksat) was measured for 10 core samples from sedimentary interbeds within the Snake River Plain aquifer and also estimated using the property-transfer model. The property-transfer model for predicting Ksat was previously developed using a multiple linear-regression technique with bulk physical-property measurements (bulk density [pbulk], the median particle diameter, and the uniformity coefficient) as the explanatory variables. The model systematically underestimates Ksat,typically by about a factor of 10, which likely is due to higher bulk-density values for the aquifer samples compared to the samples from the unsaturated zone upon which the model was developed. Linear relations between the logarithm of Ksat and pbulk also were explored for comparison.

  19. Effects of summer flow augmentation on the migratory behavior and survival of juvenile Snake River fall Chinook salmon. Annual report 2005

    Science.gov (United States)

    Tiffan, Kenneth F.; Connor, William P.

    2006-01-01

    This report summarizes results of research activities conducted in 2004 and years previous to aid in the management and recovery of fall Chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall Chinook salmon juveniles for the years 1992-2004. Publication is a high priority of our staff. Publication provides our results to a wide audience, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 1991-02900 that were written or published from 1998 to 2005.

  20. Effects of Summer Flow Augmentation on the Migratory Behavior and Survival of Juvenile Snake River Fall Chinook Salmon; 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Haskell, Craig A. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA); Connor, William P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-10-01

    This report summarizes results of research activities conducted in 2002 and years previous to aid in the management and recovery of fall chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. The report is divided into self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2002. Peer-review publication remains a high priority of this research project, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers coauthored by personnel of project 199102900 that were written or published from 1998 to 2003.

  1. Effects of Summer Flow Augmentation on the Migratory Behavior and Survival of Juvenile Snake River Fall Chinook Salmon; 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA); Connor, William P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2006-03-01

    This report summarizes results of research activities conducted in 2004 and years previous to aid in the management and recovery of fall Chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall Chinook salmon juveniles for the years 1992-2004. Publication is a high priority of our staff. Publication provides our results to a wide audience, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 1991-02900 that were written or published from 1998 to 2005.

  2. Factors Affecting Route Selection and Survival of Steelhead Kelts at Snake River Dams in 2012 and 2013

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A.; Colotelo, Alison HA; Li, Xinya; Ham, Kenneth D.; Deng, Zhiqun

    2014-12-15

    turbines. The side of the river in which kelts approached the dam and dam operations also affected route of passage. Dam operations and the size and condition of kelts were found to have the greatest effect on route-specific survival probabilities for fish that passed via the spillway at LGS. That is, longer kelts and those in fair condition had a lower probability of survival for fish that passed via the spillway weir. The survival of spillway weir- and deep-spill passed kelts was positively correlated with the percent of the total discharge that passed through turbine unit 4. Too few kelts passed through the traditional spill, JBS, and turbine units to evaluate survival through these routes. The information gathered in this study describes Snake River steelhead kelt passage behavior, rates, and distributions through the FCRPS as well as provide information to biologists and engineers about the dam operations and abiotic conditions that are related to passage and survival of steelhead kelts.

  3. Factors Affecting Route Selection and Survival of Steelhead Kelts at Snake River Dams in 2012 and 2013

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison HA [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xinya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    turbines. The side of the river in which kelts approached the dam and dam operations also affected route of passage. Dam operations and the size and condition of kelts were found to have the greatest effect on route-specific survival probabilities for fish that passed via the spillway at LGS. That is, longer kelts and those in fair condition had a lower probability of survival for fish that passed via the spillway weir. The survival of spillway weir- and deep-spill passed kelts was positively correlated with the percent of the total discharge that passed through turbine unit 4. Too few kelts passed through the traditional spill, JBS, and turbine units to evaluate survival through these routes. The information gathered in this study describes Snake River steelhead kelt passage behavior, rates, and distributions through the FCRPS as well as provide information to biologists and engineers about the dam operations and abiotic conditions that are related to passage and survival of steelhead kelts.

  4. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399

  5. A review of Neogene and Quaternary snakes of central and eastern Europe. Part 1: Scolecophidia, Boidae, Colubrinae

    Directory of Open Access Journals (Sweden)

    Szyndlar, Z.

    1991-04-01

    Full Text Available Remains of Neogene and Quaternary seoleeophidians, boids and «eolubrine» eolubrids, including snakes previously deseribed and those undeseribed yet, eoming fram Poland, Ukraine, Moldavia, Czeehoslovakia, Austria, Hungary, Romania, Bulgaria, and Greece are diseussed. The following taxa, including 7 extinet speeies, were reeognized: Seoleeophidia indet.; Boidae: Bransateryx septentrionalis, Bransateryx sp., Albaneryx volynicus, cf., Gongylophis sp., Eryx jaculus, Eryx sp., eL Eryx sp., Eryeinae indet.; Colubridae: Texasophis bohemiacus, Coluber dolnicensis, Coluber planicarinatus, Coluber viridij1avus, cf. Coluber viridiflavus, Coluber caspius, Coluber gemonensis, cf. Coluber gemonensis, Coluber sp., Coronella austriaca, Coronella sp., cf. Coronella sp., Elaphe kohfidischi, cf. Elaphe kohfidischi, Elaphe paralongissima, Elaphe longissima, cf. Elaphe longissima, Elaphe quatuorlineata, cf. Elaphe quatuorlineata, eL Elaphe situla, Elaphe sp., cf. Malpolon sp., Telescopus sp., «Colubrinae» indet.Revisión de las serpientes neógenas y cuaternarias de Europa central y oriental. Parte 1: Scolecophidia, Boidae, Colubrinae. Se estudian restos neógenos y cuaternarios de escolecofidios, boidos y colúbridos «colubrinos», incluyendo tanto formas ya descritas como inéditas, y procedentes de Polonia, Ucrania, Moldavia, Checoslovaquia, Austria, Hungría, Rumanía, Bulgaria y Grecia. Se reconocen los siguientes taxones: Scolecophidia indet.; Boidae: Bransateryx septentrionalis, Bransateryx sp., Albaneryx volynicus, cf. Gongylophis sp., Eryx jaculus, Eryx sp., cf. Eryx sp., Erycinae indet.; Colubridae: Texasophis bohemiacus, Coluber dolnicensis, Coluber planicarinatus, Coluber viridij1avus, cf., Coluber viridiflavus, Coluber caspius, Coluber gemonensis, eL Coluber gemonensis, Coluber sp., Coronella austriaca, Coronella sp., cf. Coronella sp., Elaphe kohfidischi, cf. Elaphe kohfidischi, Elaphe paralongissima, Elaphe longissima, cf. Elaphe

  6. Petrographically deduced triassic climate for the Deep River Basin, eastern piedmont of North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    McCarn, S.T.; Mansfield, C.F.

    1985-01-01

    A petrographic comparison of Triassic, fluvial sandstones from the Deep River Basin in the eastern piedmont of North Carolina with nearby Holocene stream sands (1) indicates that he Triassic climate was more arid than today's and (2) distinguishes an eastern, more plutonic terrane from a western, more metamorphic source terrane. The paleoclimatic interpretation is based on differences in framework composition between modern and ancient sands of the same grain size, derived from the same rock type, transported similar distances and deposited in similar settings. The Triassic sandstones contain more lithic-fragments but less quartz than otherwise equivalent, modern sand in the Deep River Basin. Feldspar content is more complex, controlled by both source-rock composition and climate. Sand from the more plutonic terrane contains more feldspar and plutonic lithic-fragments than sand from the more metamorphic terrane, which contains more quartz and metamorphic lithic-fragments. This petrographic interpretation of the Triassic sandstones along with the presence of coal, limestone, chert and caliche in the middle of the section suggests that the Triassic climate was cyclic, changing from arid to humid and back to arid. Plate-tectonic reconstructions place the Deep River Basin between the Triassic equator and Tropic of cancer, where the easterly trade winds would predominate. Therefore, the arid portions of the cycle could have been due to a periodic, orographic, rain shadow formed as the result of intermittent movement along the Jonesboro Fault, creating a highland area east of the Deep River Basin.

  7. Groundwater quality in the Chemung River, Eastern Lake Ontario, and Lower Hudson River Basins, New York, 2013

    Science.gov (United States)

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2015-11-10

    In a study conducted by the U.S. Geological Survey (USGS) in cooperation with the New York State Department of Environmental Conservation, water samples were collected from 4 production wells and 4 domestic wells in the Chemung River Basin, 8 production wells and 7 domestic wells in the Eastern Lake Ontario Basin, and 12 production wells and 13 domestic wells in the Lower Hudson River Basin (south of the Federal Lock and Dam at Troy) in New York. All samples were collected in June, July, and August 2013 to characterize groundwater quality in these basins. The samples were collected and processed using standard USGS procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds, radionuclides, and indicator bacteria.

  8. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume II : Evaluation of the 1996 Predictions of the Run-Timing of Wild Migrant Subyearling Chinook in the Snake River Basin using Program RealTime.

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Yasuda, Dean

    1998-07-01

    This project was initiated in 1991 in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of this project include: (1)to address the need for further synthesis of historical tagging and other biological information to improve understanding and identify future research and analysis needs; (2)to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to aid management in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; (3)to design better analysis tools for evaluation programs; and (4)to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community.

  9. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G.; Muir, William D.; Zabel, Richard W. (NOAA Fisheries Science Center, Seattle, WA)

    2004-01-01

    For juvenile chinook salmon Oncorhynchus tshawytscha, sockeye salmon O. nerka, and steelhead O. mykiss that migrate through reservoirs, hydroelectric projects, and free-flowing sections of the Snake and Columbia Rivers, survival estimates are essential to develop effective strategies for recovering depressed stocks. Many management strategies were based on estimates of system survival (Raymond 1979; Sims and Ossiander 1981) derived in a river system considerably different from today's (Williams and Matthews 1995; Williams et al. 2001). Knowledge of the magnitude, locations, and causes of smolt mortality under present passage conditions, and under conditions projected for the future, are necessary to develop strategies that will optimize smolt survival during migration. From 1993 through 2002, the National Marine Fisheries Service (NMFS) and the University of Washington (UW) demonstrated the feasibility of using three statistical models to estimate survival of PIT-tagged (Prentice et al. 1990a) juvenile salmonids passing through Snake River dams and reservoirs (Iwamoto et al. 1994; Muir et al. 1995, 1996, 2001a, 2003; Smith et al. 1998, 2000a,b; Hockersmith et al. 1999; Zabel et al. 2001, 2002). Evaluation of assumptions for these models indicated that all were generally satisfied, and accurate and precise survival estimates were obtained. In 2003, NMFS and UW completed the eleventh year of the study. Flow levels during the early portion of the 2003 spring migration were similar to 2002, and only slightly higher than in the drought conditions during 2001. However, flow levels were much greater during the later part of the migration in 2003. Spill levels were similar to 2002, much higher than in 2001. Research objectives were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3

  10. Phylogeography of the Mekong mud snake (Enhydris subtaeniata): the biogeographic importance of dynamic river drainages and fluctuating sea levels for semiaquatic taxa in Indochina.

    Science.gov (United States)

    Lukoschek, Vimoksalehi; Osterhage, Jennifer L; Karns, Daryl R; Murphy, John C; Voris, Harold K

    2011-11-01

    During the Cenozoic, Southeast Asia was profoundly affected by plate tectonic events, dynamic river systems, fluctuating sea levels, shifting coastlines, and climatic variation, which have influenced the ecological and evolutionary trajectories of the Southeast Asian flora and fauna. We examined the role of these paleogeographic factors on shaping phylogeographic patterns focusing on a species of semiaquatic snake, Enhydris subtaeniata (Serpentes: Homalopsidae) using sequence data from three mitochondrial fragments (cytochrome b, ND4, and ATPase-2785 bp). We sampled E. subtaeniata from seven locations in three river drainage basins that encompassed most of this species' range. Genetic diversities were typically low within locations but high across locations. Moreover, each location had a unique suite of haplotypes not shared among locations, and pairwise φ(ST) values (0.713-0.998) were highly significant between all location pairs. Relationships among phylogroups were well resolved and analysis of molecular variance (AMOVA) revealed strong geographical partitioning of genetic variance among the three river drainage basins surveyed. The genetic differences observed among the populations of E. subtaeniata were likely shaped by the Quaternary landscapes of Indochina and the Sunda Shelf. Historically, the middle and lower Mekong consisted of strongly dissected river valleys separated by low mountain ranges and much of the Sunda Shelf consisted of lowland river valleys that served to connect faunas associated with major regional rivers. It is thus likely that the contemporary genetic patterns observed among populations of E. subtaeniata are the result of their histories in a complex terrain that created abundant opportunities for genetic isolation and divergence yet also provided lowland connections across now drowned river valleys.

  11. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    Science.gov (United States)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  12. Wild snakes harbor West Nile virus

    Directory of Open Access Journals (Sweden)

    C.R. Dahlin

    2016-12-01

    Full Text Available West Nile virus (WNV has a complex eco-epidemiology with birds acting as reservoirs and hosts for the virus. Less well understood is the role of reptiles, especially in wild populations. The goal of our study was to determine whether a wild population of snakes in Pennsylvania harbored WNV. Six species of snakes were orally sampled in the summer of 2013 and were tested for the presence of WNV viral RNA using RT-PCR. Two Eastern Garter Snakes, Thamnophis sirtalis sirtalis tested positive for viral RNA (2/123, 1.62%. These results indicate a possible role for snakes in the complex transmission cycle of WNV.

  13. Numerically Simulating the Hydrodynamic and Water Quality Environment for Migrating Salmon in the Lower Snake River, 2002-2003 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.; Richmond, M.; Coleman, A. (Pacific Northwest National Laboratory)

    2003-06-01

    Summer temperatures in the Lower Snake River can be altered by releasing cold waters that originate from deep depths within Dworshak Reservoir. These cold releases are used to lower temperatures in the Clearwater and Lower Snake Rivers and to improve hydrodynamic and water quality conditions for migrating aquatic species. This project monitored the complex three-dimensional hydrodynamic and thermal conditions at the Clearwater and Snake River confluence and the processes that led to stratification of Lower Granite Reservoir (LGR) during the late spring, summer, and fall of 2002. Hydrodynamic, water quality, and meteorological conditions around the reservoir were monitored at frequent intervals, and this effort is continuing in 2003. Monitoring of the reservoir is a multi-year endeavor, and this report spans only the first year of data collection. In addition to monitoring the LGR environment, a three-dimensional hydrodynamic and water quality model has been applied. This model uses field data as boundary conditions and has been applied to the entire 2002 field season. Numerous data collection sites were within the model domain and serve as both calibration and validation locations for the numerical model. Errors between observed and simulated data varied in magnitude from location to location and from one time to another. Generally, errors were small and within expected ranges, although, as additional 2003 field data becomes available, model parameters may be improved to minimize differences between observed and simulated values. A two-dimensional, laterally-averaged hydrodynamic and water quality model was applied to the three reservoirs downstream of LGR (the pools behind Little Goose, Lower Monumental, and Ice Harbor Dams). A two-dimensional model is appropriate for these reservoirs because observed lateral thermal variations during summer and fall 2002 were almost negligible; however, vertical thermal variations were quite large (see USACE 2003). The numerical

  14. A Genetic Monitoring and Evaluation Program for Supplemented Populations of Salmon and Steelhead in the Snake River Basin : 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Waples, Robin S.

    1993-07-01

    This is the second report of research for an ongoing study to evaluate the genetic effects of using hatchery-reared fish to supplement natural populations of chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) in the Snake River Basin. The study plan involves yearly monitoring of genetic and meristic characteristics in hatchery, natural (supplemented), and wild (unsupplemented) populations in four different drainages for each species. This report summarizes the first two years of electrophoretic data for chinook salmon and steelhead and the first two years of meristic data for chinook salmon. Results obtained to date include the following: (1) Genetic variation was detected at 35 gene loci in chinook salmon and 50 gene loci in steelhead, both considerable increases over the number of polymorphic loci reported previously for Snake River populations. No substantial differences in levels of genetic variability were observed between years or between hatchery and natural/wild populations in either species. (2) In both species, statistically significant differences in allele frequency were typically found between years within populations. However, the temporal changes within populations were generally smaller than differences between populations. (3) Differences between chinook salmon populations classified as spring-and summer-run accounted for little of the overall genetic diversity; in contrast, substantial genetic differences were observed between ''B'' run steelhead from Dworshak Hatchery and ''A'' run populations from other study sites. (4) Estimates of the effective number of breeders per year (N,) derived from genetic data suggest that N{sub b} in natural and wild Snake River spring/summer chinook salmon populations is generally about one-quarter to three-quarters of the estimated number of adult spawners. (5) Analysis of the effects on data quality of sampling juveniles indicates that the small size of some

  15. Concentrations, loads, and sources of polychlorinated biphenyls, Neponset River and Neponset River Estuary, eastern Massachusetts

    Science.gov (United States)

    Breault, Robert F.

    2011-01-01

    Polychlorinated biphenyls (PCBs) are known to contaminate the Neponset River, which flows through parts of Boston, Massachusetts, and empties into the Neponset River Estuary, an important fish-spawning area. The river is dammed and impassable to fish. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Fish and Game, Division of Ecological Restoration, Riverways Program, collected, analyzed, and interpreted PCB data from bottom-sediment, water, and (or) fish-tissue samples in 2002, 2004-2006. Samples from the Neponset River and Neponset River Estuary were analyzed for 209 PCB congeners, PCB homologs, and Aroclors. In order to better assess the overall health quality of river-bottom sediments, sediment samples were also tested for concentrations of 31 elements. PCB concentrations measured in the top layers of bottom sediment ranged from 28 nanograms per gram (ng/g) just upstream of the Mother Brook confluence to 24,900 ng/g measured in Mother Brook. Concentrations of elements in bottom sediment were generally higher than background concentrations and higher than levels considered toxic to benthic organisms according to freshwater sediment-quality guidelines defined by the U.S. Environmental Protection Agency. Concentrations of dissolved PCBs in water samples collected from the Neponset River (May 13, 2005 to April 28, 2006) averaged about 9.2 nanograms per liter (ng/L) (annual average of monthly values); however, during the months of August (about 16.5 ng/L) and September (about 15.6 ng/L), dissolved PCB concentrations were greater than 14 ng/L, the U.S. Environmental Protection Agency's freshwater continuous chronic criterion for aquatic organisms. Concentrations of PCBs in white sucker (fillets and whole fish) were all greater than 2,000 ng/g wet wt, the U.S. Environmental Protection Agency's guideline for safe consumption of fish: PCB concentrations measured in fish-tissue samples collected from the Tileston and Hollingsworth and

  16. Reproductive characteristics of pike-characids Boulengerella cuvieri (Ctenoluciidae) in the middle Xingu River, Eastern Amazon.

    Science.gov (United States)

    Mendes, Y A; Ferreira, M A P; Lobato, C M C; Silva, G M F; Montag, L F A; Rocha, R M

    2017-07-01

    This study evaluated the reproductive characteristics of pike-characids, Boulengerella cuvieri, during the hydrological cycle in the Xingu River, eastern Amazon. The sex ratio was 1:1 and the gonado-somatic index and relative frequency of maturation stages indicate a short breeding season of single phase spawning that coincides with a filling and flood period. Mean standard length at first sexual maturity for female B. cuvieri was estimated to be 22·9 cm. © 2017 The Fisheries Society of the British Isles.

  17. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms

    National Research Council Canada - National Science Library

    Margres, Mark J; Aronow, Karalyn; Loyacano, Jacob; Rokyta, Darin R

    2013-01-01

    Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype...

  18. Species composition of the vegetation along the Sherichhu River, lower montane area of Eastern Bhutan

    Directory of Open Access Journals (Sweden)

    Tenzin Jamtsho

    2017-06-01

    Full Text Available An investigation of the riparian vegetation along the Sherichhu River, lower montane area of Eastern Bhutan was conducted from April to December 2015 to explore the plant communities in terms of species composition. A total number of 18 plots were placed within the remnant patches of the vegetation on either side of the river. In total, 172 species of vascular plant has been recorded. The cluster analysis suggested four types of plant communities in the study area viz., the MallotusDesmodium-Rhus shrubland and the Syzygium venosum woodland communities, which are located in V-shaped valleys and the Albizia-Flueggea woodland and Quercus glauca woodland communities located in U-shaped valleys. In broad-spectrum, the topographic features and environmental variables i.e. litter accumulation and flooding condition might also have some impact on the species composition of the plant communities of this vegetation.

  19. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  20. Rheomorphic ignimbrites of the Rogerson Formation, central Snake River plain, USA: record of mid-Miocene rhyolitic explosive eruptions and associated crustal subsidence along the Yellowstone hotspot track

    Science.gov (United States)

    Knott, Thomas R.; Reichow, Marc K.; Branney, Michael J.; Finn, David R.; Coe, Robert S.; Storey, Michael; Bonnichsen, Bill

    2016-04-01

    Rogerson Graben, USA, is critically placed at the intersection between the Yellowstone hotspot track and the southern projection of the west Snake River rift. Eleven rhyolitic members of the re-defined, ≥420-m-thick, Rogerson Formation record voluminous high-temperature explosive eruptions, emplacing extensive ashfall and rheomorphic ignimbrite sheets. Yet, each member has subtly distinct field, chemical and palaeomagnetic characteristics. New regional correlations reveal that the Brown's View ignimbrite covers ≥3300 km2, and the Wooden Shoe ignimbrite covers ≥4400 km2 and extends into Nevada. Between 11.9 and ˜8 Ma, the average frequency of large explosive eruptions in this region was 1 per 354 ky, about twice that at Yellowstone. The chemistry and mineralogy of the early rhyolites show increasing maturity with time possibly by progressive fractional crystallisation. This was followed by a trend towards less-evolved rhyolites that may record melting and hybridisation of a mid-crustal source region. Contemporaneous magmatism-induced crustal subsidence of the central Snake River Basin is recorded by successive ignimbrites offlapping and thinning up the N-facing limb of a regional basin-margin monocline, which developed between 10.59 and 8 Ma. The syn-volcanic basin topography contrasted significantly with the present-day elevated Yellowstone hotspot plateau. Concurrent basin-and-range extension produced the N-trending Rogerson Graben: early uplift of the Shoshone Hills (≥10.34 Ma) was followed by initiation of the Shoshone Fault and an E-sloping half-graben (˜10.3-10.1 Ma). The graben asymmetry then reversed with initiation of the Brown's Bench Fault (≥8 Ma), which remained intermittently active until the Pliocene.

  1. Track of the Yellowstone hotspot: young and ongoing geologic processes from the Snake River Plain to the Yellowstone Plateau and Tetons

    Science.gov (United States)

    Morgan, Lisa A.; Pierce, Kenneth L.; Shanks, Pat; Raynolds, Robert G.H.

    2008-01-01

    This field trip highlights various stages in the evolution of the Snake River Plain–Yellowstone Plateau bimodal volcanic province, and associated faulting and uplift, also known as the track of the Yellowstone hotspot. The 16 Ma Yellowstone hotspot track is one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Recent interest in young and possible renewed volcanism at Yellowstone along with new discoveries and synthesis of previous studies, i.e., tomographic, deformation, bathymetric, and seismic surveys, provide a framework of evidence of plate motion over a mantle plume. This 3-day trip is organized to present an overview into volcanism and tectonism in this dynamically active region. Field trip stops will include the young basaltic Craters of the Moon, exposures of 12–4 Ma rhyolites and edges of their associated collapsed calderas on the Snake River Plain, and exposures of faults which show an age progression similar to the volcanic fields. An essential stop is Yellowstone National Park, where the last major caldera-forming event occurred 640,000 years ago and now is host to the world's largest concentration of hydrothermal features (>10,000 hot springs and geysers). This trip presents a quick, intensive overview into volcanism and tectonism in this dynamically active region. Field stops are directly linked to conceptual models related to hotspot passage through this volcano-tectonic province. Features that may reflect a tilted thermal mantle plume suggested in recent tomographic studies will be examined. The drive home will pass through Grand Teton National Park, where the Teton Range is currently rising in response to the passage of the North American plate over the Yellowstone hotspot.

  2. An Evaluation of the Effectiveness of Flow Augmentation in the Snake River, 1991-1995 : Phase I: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, Albert E.; Schlecte, J.Warren [Bio Analysts, Inc., Redmond, WA (United States)]|[HDR Engineering, Inc., Salt Lake City, UT (United States)

    1997-07-01

    The purpose of this evaluation was to estimate the volume and shape of flow augmentation water delivered in the Snake Basin during the years 1991 through 1995, and to assess the biological consequences to ESA-listed salmon stocks in that drainage. HDR Engineering, Inc. calculated flow augmentation estimates and compared their values to those reported by agencies in the Northwest. BioAnalysts, Inc. conducted the biological evaluation.

  3. Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island

    Science.gov (United States)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2013-06-01

    Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006-2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43- ranged from 37 to 1063, suggesting preferential PO43- relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 103 mol km-2 yr-1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be

  4. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea

    Science.gov (United States)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2014-01-01

    Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006-2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43-. High riverine concentrations of nitrate mainly originated from agricultural fertilizer inputs. The DIN : PO43- ratios ranged from 37 to 1063, suggesting preferential depletion of PO43- relative to nitrogen in rivers. Chemical weathering in the drainage area might explain the high levels of dissolved silicate. Aquaculture ponds contained high concentrations of NH4+ and dissolved organic nitrogen. The particulate phosphorus concentrations in the study area were lower than those reported for estuaries worldwide. The particulate silicate levels in rivers and lagoons were lower than the global average level. Nutrient biogeochemistry in coastal areas was affected by human activities (e.g., aquaculture, agriculture), and by natural phenomena including typhoons. The nutrient concentrations in coastal waters were low because of dispersion of land-derived nutrients in the sea. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes are magnified by estuarine processes (e.g., regeneration, desorption) in estuaries and Laoyehai Lagoon, but not in Xiaohai Lagoon. Riverine and groundwater inputs were the major sources of nutrients to Xiaohai and Laoyehai lagoons, respectively, and riverine inputs and aquaculture effluents were the major sources for the eastern coast of Hainan Island. Nutrient inputs to the coastal ecosystem increased with typhoon-induced runoff of rainwater, elucidating the important influence of typhoons on small tropical rivers.

  5. Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island

    Directory of Open Access Journals (Sweden)

    R. H. Li

    2013-06-01

    Full Text Available Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006–2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN. High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43− ranged from 37 to 1063, suggesting preferential PO43− relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi varied from 76 to 448 × 103 mol km−2 yr−1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM and DON (up to 130 μM. Particulate phosphorus concentrations (0.5 ∼1.4 μM were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture, as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom

  6. Annual Changes in Seasonal River Water Temperatures in the Eastern and Western United States

    Directory of Open Access Journals (Sweden)

    Tyler Wagner

    2017-02-01

    Full Text Available Changes in river water temperatures are anticipated to have direct effects on thermal habitat and fish population vital rates, and therefore, understanding temporal trends in water temperatures may be necessary for predicting changes in thermal habitat and how species might respond to such changes. However, many investigations into trends in water temperatures use regression methods that assume long-term monotonic changes in temperature, when in fact changes are likely to be nonmonotonic. Therefore, our objective was to highlight the need and provide an example of an analytical method to better quantify the short-term, nonmonotonic temporal changes in thermal habitat that are likely necessary to determine the effects of changing thermal conditions on fish populations and communities. To achieve this objective, this study uses Bayesian dynamic linear models (DLMs to examine seasonal trends in river water temperatures from sites located in the eastern and western United States, regions that have dramatically different riverine habitats and fish communities. We estimated the annual rate of change in water temperature and found little evidence of seasonal changes in water temperatures in the eastern U.S. We found more evidence of warming for river sites located in the western U.S., particularly during the fall and winter seasons. Use of DLMs provided a more detailed view of temporal dynamics in river thermal habitat compared to more traditional methods by quantifying year-to-year changes and associated uncertainty, providing managers with the information needed to adapt decision making to short-term changes in habitat conditions that may be necessary for conserving aquatic resources in the face of a changing climate.

  7. Environmental Sustainability of the Lopota River in Eastern Georgia against the Background of the Growing Anthropogenic Load

    Directory of Open Access Journals (Sweden)

    Tea T. Mchedluri

    2014-03-01

    Full Text Available We studied the ecological state of the Lopota River in Eastern Georgia. The study showed that the results of microbiological and chemical contamination do not experience significant changes, and mainly are within the acceptable range of concentration, although a pronounced difference is observed among individual performances over the entire flow. An increase in the anthropogenic pollution of the river is observed in summer time. Downstream the Alazani River the concentration of major cations ((K+,Na+,Mg2+,Ca2+, anions (SO42-, Cl- HCO3-, CO32- and biogenic elements (NO2, NO3-, NH4+, PO43- is increasing. As a result, the Lopota River is subjected to anthropogenic influence and faecal contamination. However, despite this, the ecological state of the river is satisfactory, due the turbulent flow of the river and good aeration. In addition, the increase in turbidity creates favourable conditions for sorption water purification. All this contributes to self-purification capacity of the river.

  8. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer, Idaho National Laboratory, Idaho, Emphasis 1999-2001

    Science.gov (United States)

    Davis, Linda C.

    2006-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from wells in the USGS ground-water monitoring networks during 1999-2001. Water in the Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. Water levels in wells rose in the northern and west-central parts of the INL by 1 to 3 feet, and declined in the southwestern parts of the INL by up to 4 feet during 1999-2001. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 1999-2001. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge. Tritium concentrations in water samples decreased as much as 8.3 picocuries per milliliter (pCi/mL) during 1999-2001, ranging from 0.43?0.14 to 13.6?0.6 pCi/mL in October 2001. Tritium concentrations in five wells near the Idaho Nuclear Technology and Engineering Center (INTEC) increased a few picocuries per milliliter from October 2000 to October 2001. Strontium-90 concentrations decreased or remained

  9. Human signatures derived from nighttime lights along the Eastern Alpine river network in Austria and Italy

    Science.gov (United States)

    Ceola, Serena; Montanari, Alberto; Parajka, Juraj; Viglione, Alberto; Blöschl, Günter; Laio, Francesco

    2016-05-01

    Understanding how human settlements and economic activities are distributed with reference to the geographical location of streams and rivers is of fundamental relevance for several issues, such as flood risk management, drought management related to increased water demands by human population, fluvial ecosystem services, water pollution and water exploitation. Besides the spatial distribution, the evolution in time of the human presence constitutes an additional key question. This work aims at understanding and analysing the spatial and temporal evolution of human settlements and associated economic activity, derived from nighttime lights, in the Eastern Alpine region. Nightlights, available at a fine spatial resolution and for a 22-year period, constitute an excellent data base, which allows one to explore in details human signatures. In this experiment, nightlights are associated to five distinct distance-from-river classes. Our results clearly point out an overall enhancement of human presence across the considered distance classes during the last 22 years, though presenting some differences among the study regions. In particular, the river network delineation, by considering different groups of river pixels based on the Strahler order, is found to play a central role in the identification of nightlight spatio-temporal trends.

  10. Morphological Snakes

    OpenAIRE

    Álvarez, Luis; Baumela Molina, Luis; Henríquez, Pedro; Márquez Neila, Pablo

    2010-01-01

    We introduce a morphological approach to curve evolution. The differential operators used in the standard PDE snake models can be approached using morphological operations on a binary level set. By combining the morphological operators associated to the PDE components we achieve a new snakes evolution algorithm. This new solution is based on numerical methods which are very simple, fast and stable. Moreover, since the level set is just a binary piecewise constant function, this approach does ...

  11. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G.; Muir, William D.; Marsh, Douglas M. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2005-10-01

    In 2004, the National Marine Fisheries Service and the University of Washington completed the twelfth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 19,621 hatchery steelhead, 8,128 wild steelhead, and 9,227 wild yearling Chinook salmon at Lower Granite Dam. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2004 were to (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon O. tshawytscha and steelhead O. mykiss; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2004 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures; details on methodology and statistical models used are provided in previous reports cited here. Survival and detection probabilities were estimated precisely for most of the 2004 yearling Chinook salmon and steelhead migrations. Hatchery and

  12. First documented case of snake fungal disease in a free-ranging wild snake in Louisiana

    Science.gov (United States)

    Glorioso, Brad M.; Waddle, J. Hardin; Green, David E.; Lorch, Jeffrey M.

    2016-01-01

    Snake fungal disease (SFD) is a recently documented mycotic disease characterized by scabs or crusty scales, subcutaneous nodules, abnormal molting, cloudiness of the eyes (not associated with molting), and localized thickening or crusting of the skin. SFD has been documented in many species in the Eastern and Midwestern United States within the last decade. SFD has proven lethal in many snakes, and the disease is recognized as an emerging threat to wild snake populations. Here, we describe the first documented case of SFD in Louisiana in a free-ranging wild snake.

  13. White sturgeon mitigation and restoration in the Columbia and Snake rivers upstream from Bonneville Dam Report C, Annual Progress Report April 2003 - March 2004

    Science.gov (United States)

    Parsley, Michael J.; Gadomski, Dena M.; Kofoot, Pete

    2005-01-01

    River discharge and water temperatures that occurred during April through July 2003 provided conditions suitable for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Although optimal spawning temperatures in the four tailraces occurred for less than two weeks, they coincided with a period of relatively high river discharge. Bottom-trawl sampling in Bonneville and The Dalles Reservoirs revealed the presence of young-of-the-year (YOY) white sturgeon in Bonneville Reservoir, but none were captured in The Dalles Reservoir. A comparison of five years of indices of abundance of YOY sturgeon from sampling done by ODFW with gillnets and the USGS with bottom trawls was completed. Despite obvious differences in gear sampling characteristics (e.g. one gear is actively fished, one passively fished), it appears that either gear can be used to assess relative trends in YOY white sturgeon abundance. The analyses suffered due to poor catches of YOY fish, as YOY were only captured in The Dalles Reservoir during three of the five years of comparison sampling, and during only one of four years in John Day Reservoir. However, both gears detected the presence or absence of YOY white sturgeon within a reservoir equally. That is, if any YOY white sturgeon were captured in any year in a reservoir, both gears captured at least one fish, and if one gear failed to collect any YOY white sturgeon, both gears failed. Concerns have been raised that the Wang et al. (1985) egg development relationships for Sacramento River white sturgeon may not be applicable to Columbia Basin stocks. However, using laboratory experiments with white sturgeon eggs incubated at 10, 12, 15, and 18o C, we found no significant differences in development rates of eggs of Columbia, Kootenai, Snake, and Sacramento river fish.

  14. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008 Report of Research.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E. [Northwest Fisheries Science Center

    2009-05-26

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008 are listed below: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during

  15. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River; 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connor, William P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-02-01

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001.

  16. Distinguishing and correlating deposits from large ignimbrite eruptions using paleomagnetism: The Cougar Point Tuffs (mid-Miocene), southern Snake River Plain, Idaho, USA

    Science.gov (United States)

    Finn, David R.; Coe, Robert S.; Brown, Ethan; Branney, Michael; Reichow, Marc; Knott, Thomas; Storey, Michael; Bonnichsen, Bill

    2016-09-01

    In this paper, we present paleomagnetic, geochemical, mineralogical, and geochronologic evidence for correlation of the mid-Miocene Cougar Point Tuff (CPT) in southwest Snake River Plain (SRP) of Idaho. The new stratigraphy presented here significantly reduces the frequency and increases the scale of known SRP ignimbrite eruptions. The CPT section exposed at the Black Rock Escarpment along the Bruneau River has been correlated eastward to the Brown's Bench escarpment (six common eruption units) and Cassia Mountains (three common eruption units) regions of southern Idaho. The CPT records an unusual pattern of geomagnetic field directions that provides the basis for robust stratigraphic correlations. Paleomagnetic characterization of eruption units based on geomagnetic field variation has a resolution on the order of a few centuries, providing a strong test of whether two deposits could have been emplaced from the same eruption or from temporally separate events. To obtain reliable paleomagnetic directions, the anisotropy of anhysteretic remanence was measured to correct for magnetic anisotropy, and an efficient new method was used to remove gyroremanence acquired during alternating field demagnetization.

  17. Movements and Distribution of Northern Squawfish Downstream of Lower Snake River Dams Relative to the Migration of Juvenile Salmonids, 1992-1993 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Isaak, D.J.; Bjornn, T.C. (University of Idaho, Idaho Cooperative Fish and Wildlife Research Unit, Moscow, ID)

    1996-03-01

    Northern squawfish Ptychocheilus oregonensis movements were monitored downstream of two lower Snake River dams during the juvenile salmonid migrations of 1992 and 1993. During a high flow year in 1993, the abundance of squawfish in the tailrace of Lower Granite Dam peaked in July, after the majority of juveniles had moved past Lower Granite Dam, and peak abundance was inversely related to river discharge. Few squawfish moved into the tailrace of Ice Harbor Dam in 1993 because of the extended period of spill. Distributions of squawfish in the tailrace of Lower Granite Dam varied between and within years and shifted in response to changing prey densities, flow patterns, water temperature, and diel cycles, but fish consistently used low velocity habitats. Data from Ice Harbor Dam is less extensive, but squawfish distributions there appeared to be affected by changing flow patterns and fish used low velocity habitats. The changes in distribution and abundance of squawfish in tailrace areas are evidence that predation on seaward migrating salmonids depends on the timing of migration and size and timing of runoff. Juvenile salmonids migrating in the spring and early summer will probably be less affected by squawfish predation in tailrace areas than salmon that migrate later in the summer.

  18. Conceptual Spawning Habitat Model to Aid in ESA Recovery Plans for Snake River Fall Chinook Salmon, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David (Pacific Northwest National Laboratory)

    2005-09-01

    The goal of this project is to develop a spawning habitat model that can be used to determine the physical habitat factors that are necessary to define the production potential for fall chinook salmon that spawn in large mainstem rivers like the Columbia River's Hanford Reach and Snake River. This project addresses RPA 155 in the NMFS 2000 Biological Opinion: Action 155: BPA, working with BOR, the Corps, EPA, and USGS, shall develop a program to: (1) Identify mainstem habitat sampling reaches, survey conditions, describe cause-and-effect relationships, and identify research needs; (2) Develop improvement plans for all mainstem reaches; and (3) Initiate improvements in three mainstem reaches. During FY 2003 we continued to collect and analyze information on fall chinook salmon spawning habitat characteristics in the Hanford Reach that will be used to address RPA 155, i.e., items 1-3 above. For example, in FY 2003: (1) We continued to survey spawning habitat in the Hanford Reach and develop a 2-dimensional hydraulic and habitat model that will be capable of predicting suitability of fall chinook salmon habitat in the Hanford Reach; (2) Monitor how hydro operations altered the physical and chemical characteristics of the river and the hyporheic zone within fall chinook salmon spawning areas in the Hanford Reach; (3) Published a paper on the impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon (Dauble et al. 2003). This paper was made possible with data collected on this project; (4) Continued to analyze data collected in previous years that will ultimately be used to identify cause-and-effect relationships and identify research needs that will assist managers in the improvement of fall chinook habitat quality in main-stem reaches. During FY 2004 we plan to: (1) Complete preliminary reporting and submit papers based on the results of the project through FY 2004. Although we have proposed additional analysis of data be

  19. Hydrothermal alteration and melting of the crust during the Columbia River Basalt-Snake River Plain transition and the origin of low-δ18O rhyolites of the central Snake River Plain

    Science.gov (United States)

    Colón, Dylan P.; Bindeman, Ilya N.; Ellis, Ben S.; Schmitt, Axel K.; Fisher, Christopher M.

    2015-05-01

    We present compelling isotopic evidence from ~15 Ma rhyolites that erupted coeval with the Columbia River Basalts in southwest Idaho's J-P Desert and the Jarbidge Mountains of northern Nevada at that suggests that the Yellowstone mantle plume caused hydrothermal alteration and remelting of diverse compositions of shallow crust in the area where they erupted. These rhyolites also constitute the earliest known Miocene volcanism in the vicinity of the Bruneau-Jarbidge and Twin Falls (BJTF) volcanic complexes, a major center of voluminous (103-104 km3) low-δ18O rhyolitic volcanism that was previously defined as being active from 13 to 6 Ma. The Jarbidge Rhyolite has above-mantle δ18O (δ18O of +7.9‰ SMOW) and extremely unradiogenic εHf (- 34.7) and εNd (- 24.0). By contrast, the J-P Desert units are lower in δ18O (+4.5 to 5.8‰), and have more moderately unradiogenic whole-rock εHf (- 20.3 to - 8.9) and εNd (- 13.4 to - 7.7). The J-P Desert rhyolites are geochemically and petrologically similar to the younger rhyolites of the BJTF center (the one exception being their high δ18O values), suggesting a common origin for J-P Desert and BJTF rhyolites. The presence of low-δ18O values and unradiogenic Nd and Hf isotopic compositions, both of which differ greatly from the composition of a mantle differentiate, indicate that some of these melts may be 50% or more melted crust by volume. Individual J-P Desert units have isotopically diverse zircons, with one lava containing zircons ranging from - 0.6‰ to + 6.5‰ in δ18O and from - 29.5 to - 2.8 in εHf. Despite this diversity, zircons all have Miocene U/Pb ages. The range of zircon compositions fingerprints the diversity of their source melts, which in turn allow us to determine the compositions of two crustal end-members which melted to form these rhyolites. These end-members are: 1) Archean basement with normal to high-δ18O and unradiogenic εHf and 2) hydrothermally altered, shallow, young crust with low

  20. Ambiguities of resistance and collaboration on the Eastern Cape frontier : the Kat River settlement 1829-1856

    NARCIS (Netherlands)

    Ross, R.; Abbink, J.; Bruijn, de M.E.; Walraven, van K.

    2003-01-01

    This chapter unravels the complexities of resistance to, and collaboration with, the British colonizers of the Eastern Cape, South Africa, by the inhabitants of the Upper Kat River Valley. Since the Khoikhoi landholders of the valley had received their land as a result of British action against the

  1. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rien, Thomas A.; Beiningen, Kirk T. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-07-01

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  2. Relationship between catchment characteristics and forms of nitrogen in Cao-E River Basin, Eastern China

    Institute of Scientific and Technical Information of China (English)

    JIN Shuquan; LU Jun; CHEN Dingjiang; SHEN Yena; SHI Yiming

    2009-01-01

    The distribution of different nitrogen forms and their spatial and temporal variations in different pollution types of tributaries or reaches were investigated. Based on the catchments characteristics the tributaries or reaches can be classified into 4 types including headwater in mountainous areas (type I), agricultural non-point source (NPS) pollution in rural areas (type II), municipal and industrial pollution in urban areas (type III), and combined pollution in the main stream (type IV). Water samples were collected monthly from July 2003 to June 2006 in the Cao-E River basin in Zhejiang, Eastern China. The concentrations of NO3-N, NH4+-N, and total nitrogen (TN) were measured. The mean concentrations of NO3-N were in the order type IV > type II> type III > type I, whereas, NH4+-N, total organic nitrogen (TON), and TN were in the order type III > type IV > type II> type I. In headwater and rural reaches, CNO3-N was much higher than CNH4+-N. In urban reaches, TON and NH4+-N were the main forms, accounting for 54.7% and 32.1% of TN, respectively. In the whole river system, CNH4+-N decrease with increasing distance from cities, and CNO3-N increased with the increasing area of farmland in the catchments. With increased river flow, the CNO3-N increased and the CNH4+-N decreased in all types of reaches, while the variations of CTON and CTN were different. For TN, the concentration may be decreased with the increase of river flow, but the export load always increased.

  3. White Sturgeon Management Plan in the Snake River between Lower Granite and Hells Canyon Dams; Nez Perce Tribe, 1997-2005 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe Resources Management Staff, (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2005-09-01

    White sturgeon in the Hells Canyon reach (HCR) of the Snake River are of cultural importance to the Nez Perce Tribe. However, subsistence and ceremonial fishing opportunities have been severely limited as a result of low numbers of white sturgeon in the HCR. Hydrosystem development in the Columbia River Basin has depressed numbers and productivity of white sturgeon in the HCR by isolating fish in impounded reaches of the basin, restricting access to optimal rearing habitats, reducing the anadromous forage base, and modifying early life-history habitats. Consequently, a proactive management plan is needed to mitigate for the loss of white sturgeon production in the HCR, and to identify and implement feasible measures that will restore and rebuild the white sturgeon population to a level that sustains viability and can support an annual harvest. This comprehensive and adaptive management plan describes the goals, objectives, strategies, actions, and expected evaluative timeframes for restoring the white sturgeon population in the HCR. The goal of this plan, which is to maintain a viable, persistent population that can support a sustainable fishery, is supported by the following objectives: (1) a natural, stable age structure comprising both juveniles and a broad spectrum of spawning age-classes; (2) stable or increasing numbers of both juveniles and adults; (3) consistent levels of average recruitment to ensure future contribution to reproductive potential; (4) stable genetic diversity comparable to current levels; (5) a minimum level of abundance of 2,500 adults to minimize extinction risk; and (6) provision of an annual sustainable harvest of 5 kg/ha. To achieve management objectives, potential mitigative actions were developed by a Biological Risk Assessment Team (BRAT). Identified strategies and actions included enhancing growth and survival rates by restoring anadromous fish runs and increasing passage opportunities for white sturgeon, reducing mortality rates

  4. Effects of streamflows on stream-channel morphology in the eastern Niobrara National Scenic River, Nebraska, 1988–2010

    Science.gov (United States)

    Schaepe, Nathaniel J.; Alexander, Jason S.; Folz-Donahue, Kiernan

    2016-03-09

    The Niobrara River is an important and valuable economic and ecological resource in northern Nebraska that supports ecotourism, recreational boating, wildlife, fisheries, agriculture, and hydroelectric power. Because of its uniquely rich resources, a 122-kilometer reach of the Niobrara River was designated as a National Scenic River in 1991, which has been jointly managed by the U.S. Fish and Wildlife Service and National Park Service. To assess how the remarkable qualities of the National Scenic River may change if consumptive uses of water are increased above current levels, the U.S. Geological Survey, in cooperation with the National Park Service, initiated an investigation of how stream-channel morphology might be affected by potential decreases in summer streamflows. The study included a 65-kilometer segment in the wide, braided eastern stretch of the Niobrara National Scenic River that provides important nesting habitat for migratory bird species of concern to the Nation.

  5. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2012 – 12/31/2013: Annual report, 1991-029-00

    Science.gov (United States)

    Connor, William P.; Mullins, Frank; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St. John, Scott J.; Bickford, Brad; Rhodes, Tobyn

    2014-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  6. Time-series studies of drainage pattern and morphological features along the Leitha river (Eastern Austria)

    Science.gov (United States)

    Zámolyi, A.; Draganits, E.; Doneus, M.; Fera, M.; Griebl, M.

    2009-04-01

    Geomorphologic mapping and drainage network analysis was conducted in the Southern Vienna Basin on the Leitha and Fischa rivers. The study area belongs to an active pull-apart basin between the Eastern Alps and the Carpathians that started to subside in Karpatian times (~ 17 Ma), but with still active faults, proven by fault scarps and earth quakes. The investigated rivers are important tributaries to the Danube river and run through a region that has been subject to settlement since Neoltihic times. Thus, interaction between land use, settlement pattern and river dynamics can be studied. Several datasets are integrated to perform a comprehensive overview of geomorphological, as well as river dynamic changes in the landscape. During an earlier stage of this investigation a map of paleochannel distribution including the location and shape of the paleochannels was extracted from color-infrared and RGB digital orthophotos. Based on this map the location, character and shape of palaeomeanders is studied on different georeferenced historic maps (Timár et al., 2006; Biszak et al., 2007) in order to derive a time-series study. The paleochannels extracted from the digital orthophotos show a good coincidence with the depicted rivers on the historic maps. This partly allows quite well constrained age estimates of the paleochannel sections. The investigated maps are the Walter maps, the First, Second and Third Military Survey of the Habsburg/Austro-Hungarian Empire. Mapping of the Walter maps was conducted 1754-56 (Ulbrich, 1952), the First, Second and Third Military Surveys were mapped in this area in the time-span of 1782-1785, 1819-1869, and 1872-1873, respectively (Kretschmer et al., 2004). This sequence of georeferenced historical maps allows to study only a very short time-span (1755 - 1873) compared to the geological time scale. However, the characteristics of river dynamics special for the study area can be derived and, considering certain assumptions, extrapolated

  7. Snake fungal disease: an emerging threat to wild snakes.

    Science.gov (United States)

    Lorch, Jeffrey M; Knowles, Susan; Lankton, Julia S; Michell, Kathy; Edwards, Jaime L; Kapfer, Joshua M; Staffen, Richard A; Wild, Erik R; Schmidt, Katie Z; Ballmann, Anne E; Blodgett, Doug; Farrell, Terence M; Glorioso, Brad M; Last, Lisa A; Price, Steven J; Schuler, Krysten L; Smith, Christopher E; Wellehan, James F X; Blehert, David S

    2016-12-05

    Since 2006, there has been a marked increase in the number of reports of severe and often fatal fungal skin infections in wild snakes in the eastern USA. The emerging condition, referred to as snake fungal disease (SFD), was initially documented in rattlesnakes, where the infections were believed to pose a risk to the viability of affected populations. The disease is caused by Ophidiomyces ophiodiicola, a fungus recently split from a complex of fungi long referred to as the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). Here we review the current state of knowledge about O. ophiodiicola and SFD. In addition, we provide original findings which demonstrate that O. ophiodiicola is widely distributed in eastern North America, has a broad host range, is the predominant cause of fungal skin infections in wild snakes and often causes mild infections in snakes emerging from hibernation. This new information, together with what is already available in the scientific literature, advances our knowledge of the cause, pathogenesis and ecology of SFD. However, additional research is necessary to elucidate the factors driving the emergence of this disease and develop strategies to mitigate its impacts.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.

  8. Snake fungal disease: An emerging threat to wild snakes

    Science.gov (United States)

    Lorch, Jeffrey M.; Knowles, Susan N.; Lankton, Julia S.; Michell, Kathy; Edwards, Jaime L.; Kapfer, Joshua M.; Staffen, Richard A.; Wild, Erik R.; Schmidt, Katie Z.; Ballmann, Anne; Blodgett, Doug; Farrell, Terence M.; Glorioso, Brad M.; Last, Lisa A.; Price, Steven J.; Schuler, Krysten L.; Smith, Christopher E.; Wellehan, James F. X.; Blehert, David S.

    2016-01-01

    Since 2006, there has been a marked increase in the number of reports of severe and often fatal fungal skin infections in wild snakes in the eastern USA. The emerging condition, referred to as snake fungal disease (SFD), was initially documented in rattlesnakes, where the infections were believed to pose a risk to the viability of affected populations. The disease is caused byOphidiomyces ophiodiicola, a fungus recently split from a complex of fungi long referred to as the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). Here we review the current state of knowledge about O. ophiodiicola and SFD. In addition, we provide original findings which demonstrate that O. ophiodiicola is widely distributed in eastern North America, has a broad host range, is the predominant cause of fungal skin infections in wild snakes and often causes mild infections in snakes emerging from hibernation. This new information, together with what is already available in the scientific literature, advances our knowledge of the cause, pathogenesis and ecology of SFD. However, additional research is necessary to elucidate the factors driving the emergence of this disease and develop strategies to mitigate its impacts.

  9. Dictionary Snakes

    DEFF Research Database (Denmark)

    Dahl, Anders Bjorholm; Dahl, Vedrana Andersen

    2014-01-01

    for image segmentation that operates without training data. Our method is based on a probabilistic dictionary of image patches coupled with a deformable model inspired by snakes and active contours without edges. We separate the image into two classes based on the information provided by the evolving curve...

  10. Precipitation phase separation schemes in the Naqu River basin, eastern Tibetan plateau

    Science.gov (United States)

    Liu, Shaohua; Yan, Denghua; Qin, Tianling; Weng, Baisha; Lu, Yajing; Dong, Guoqiang; Gong, Boya

    2016-11-01

    Precipitation phase has a profound influence on the hydrological processes in the Naqu River basin, eastern Tibetan plateau. However, there are only six meteorological stations with precipitation phase (rainfall/snowfall/sleet) before 1979 within and around the basin. In order to separate snowfall from precipitation, a new separation scheme with S-shaped curve of snowfall proportion as an exponential function of daily mean temperature was developed. The determinations of critical temperatures in the single/two temperature threshold (STT/TTT2) methods were explored accordingly, and the temperature corresponding to the 50 % snowfall proportion (SP50 temperature) is an efficiently critical temperature for the STT, and two critical temperatures in TTT2 can be determined based on the exponential function and SP50 temperature. Then, different separation schemes were evaluated in separating snowfall from precipitation in the Naqu River basin. The results show that the S-shaped curve methods outperform other separation schemes. Although the STT and TTT2 slightly underestimate and overestimate the snowfall when the temperature is higher and colder than SP50 temperature respectively, the monthly and annual separation snowfalls are generally consistent with the observed snowfalls. On the whole, S-shaped curve methods, STT, and TTT2 perform well in separating snowfall from precipitation with the Pearson correlation coefficient of annual separation snowfall above 0.8 and provide possible approaches to separate the snowfall from precipitation for hydrological modelling.

  11. Preferential Petroleum Migration Pathways in Eastern Pearl River Mouth Basin,Offshore South China Sea

    Institute of Scientific and Technical Information of China (English)

    Yu Jianning; Zou Huayao; Gong Zaisheng

    2009-01-01

    Secondary petroleum migration in the eastern Pearl River Mouth basin was modeled using the three-dimensional PATHWAYSTM model,which assumes that the positions of petroleum migration pathways are controlled by the morphology of the sealing surfaces.The modeling results have accurately predicted the petroleum occurrences.Most commercial petroleum accumulations are along the predicted preferential petroleum migration pathways (PPMP),and most large fields (petroleum reserves greater than 1×108 t) have more than one preferential petroleum migration pathways to convey petroleum to the traps.The lateral migration distance for oil in the LH11-1 field,the largest oilfield so far discovered in the Pearl River Mouth basin,was more than 80 km.The case study suggests that in lacustrine fault basins,petroleum can migrate over a long distance to form large oilfields without driving force from groundwater flow.The focusing of petroleum originating from a large area of the generative kitchens into restricted channels seems to be essential not only for long-range petroleum migration in hydrostatic conditions,but also for the formation of large oil or gas fields.The strong porosity and permeability heterogeneities of the carrier beds and the relatively high prediction accuracy by a model that does not take into consideration of the effect of heterogeneity suggest that the positions of petroleum migration pathways in heterogeneous carrier beds with relatively large dipping angles are determined primarily by the morphology of the sealing surfaces at regional scales.

  12. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River, Annual Report 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.; Burge, Howard L.

    1999-12-01

    This report summarizes results of research activities conducted primarily in 1997 and 1998. This report communicates significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin.

  13. Depositional and erosional dynamics of emergent sandbars: a case study of the Platte River, Eastern Nebraska.

    Science.gov (United States)

    Alexander, J. S.; Murr, M. L.; McElroy, B. J.

    2016-12-01

    Macroform sandbars (sandbars) are ubiquitous depositional features of sandy, braided rives. Sandbars formed during annual floods stall and emerge during flow recession, splitting flow, and producing the characteristic braiding pattern. Emergent sandbars are crucial components of riverine ecosystems, forming the foundation of the floodplain/braidplain, providing nesting, brooding, and foraging habitat for migratory and endemic animals, and shallow water aquatic habitat along their periphery. In the United States, substantial resources are being expended to recover and expand so-called emergent sandbar habitat (ESH) in large rivers of the Great Plains, where the natural extent and dynamism of ESH has been degraded due to construction of main-channel dams, navigation channels, and/or disruption of the natural hydrologic and sediment regimes. These programs are ultimately aimed at recovery and protection of populations of Federal and State-listed migratory bird species. Despite the importance of ESH, relatively little empirical information describing the natural temporal and spatial dynamics of sandbar geometries, erosion rates, and depositional controls is available for integrating into ecological and river management models. From 2011 to 2014, we monitored the geometry and fate of large emergent sandbars along 160 km of the sandy, braided Platte River in eastern Nebraska, a segment which retains a mostly natural sediment and hydrologic regime. We show that important descriptors of ESH quality, such as sandbar height, scale linearly with increases in flow stage, but the difference in elevation between sandbar height and formative stage also increases with increasing flow stage. Thus, the flood-hazard of natural sandbars may be much higher than current theory suggests. Our monitoring data indicates that emergent sandbars tend to erode within a year after deposition, and that the rate of erosion scales linearly with discharge. Finally, in agreement with previous work

  14. The effect of Congo River freshwater discharge on Eastern Equatorial Atlantic climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Materia, Stefano [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Gualdi, Silvio; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Terray, Laurent [Sciences de l' Univers au CERFACS, URA1875 CERFACS/CNRS, Toulouse (France)

    2012-11-15

    The surface ocean explains a considerable part of the inter-annual Tropical Atlantic variability. The present work makes use of observational datasets to investigate the effect of freshwater flow on sea surface salinity (SSS) and temperature (SST) in the Gulf of Guinea. In particular, the Congo River discharges a huge amount of freshwater into the ocean, affecting SSS in the Eastern Equatorial Atlantic (EEA) and stratifying the surface layers. The hypothesis is that an excess of river runoff emphasize stratification, influencing the ocean temperature. In fact, our findings show that SSTs in the Gulf of Guinea are warmer in summers following an anomalously high Congo spring discharge. Vice versa, when the river discharges low freshwater, a cold anomaly appears in the Gulf. The response of SST is not linear: temperature anomalies are considerable and long-lasting in the event of large freshwater flow, while in dry years they are less remarkable, although still significant. An excess of freshwater seems able to form a barrier layer, which inhibits vertical mixing and the entrainment of the cold thermocline water into the surface. Other processes may contribute to SST variability, among which the net input of atmospheric freshwater falling over EEA. Likewise the case of continental runoff from Congo River, warm anomalies occur after anomalously rainy seasons and low temperatures follow dry seasons, confirming the effect of freshwater on SST. However, the two sources of freshwater anomaly are not in phase, so that it is possible to split between atypical SST following continental freshwater anomalies and rainfall anomalies. Also, variations in air-sea fluxes can produce heating and cooling of the Gulf of Guinea. Nevertheless, atypical SSTs cannot be ascribed to fluxes, since the temperature variation induced by them is not sufficient to explain the SST anomalies appearing in the Gulf after anomalous peak discharges. The interaction processes between river runoff, sea

  15. Fish guild structure along a longitudinally-determined ecological zonation of Teesta, an eastern Himalayan river in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Chakrabarty, M

    2014-04-01

    Full Text Available The Eastern Himalaya Biodiversity Hotspot contains exceptional freshwater biodiversity and ecosystems that are of vital importance to local and regional livelihoods, but these are under threat from the developmental and anthropogenic pressures arising from the 62 million people living in the area. Therefore, monitoring the riverine health and considering future conservation approach, the study of fish biodiversity plays a significant role in this region. The River Teesta in the Brahmaputra basin in India forms one of the major rivers in the Eastern Himalayas. In the present investigation, we studied ecological fish guilds as they can enhance the usefulness of fish zonation concepts and serve as tools to assess and manage the ecological integrity of large rivers. We classified fish species according to their water flow preference and spawning substrate preference. Ten spawning habitats were identified, occurring in three water flow guilds. The most widely preferred habitat in upstream zones was lithophils while in lower stretches it was lithopleagophils. On applying predictions of the River Continuum Concept, our results indicated the presence of a zonation pattern based on fish species assemblage and their ecological attributes along the longitudinal stretch of the Teesta River in west Bengal. Along the longitudinal stretch of the river, species richness increased downstream, with maximum richness in the mid-reaches. However, species richness decreased further downstream. The number of ecological guilds also increased downstream, and there were clear shifts in the structure of the guilds.

  16. Evidence for a long-lived accommodation/transfer zone beneath the Snake River Plain: A possible influence on Neogene magmatism?

    Science.gov (United States)

    Konstantinou, Alexandros; Miller, Elizabeth

    2015-12-01

    Geochronologic data compiled from 12 metamorphic core complexes and their flanking regions outline important differences in tectonic and magmatic histories north and south of the Snake River Plain-Yellowstone Province (SRP-Y). Magmatism, crustal flow, metamorphism, and extensional exhumation of core complexes north of the SRP occurred mostly between 55 and 42 Ma as compared to 42-25 Ma south of the SRP, with final exhumation of the southern complexes occurring only during younger Miocene (20-0 Ma) Basin and Range faulting. These significant differences in the timing of events suggest that the now lava-covered SRP, which is at a high angle to Cordilleran trends, may have at times operated as a steep shear or transfer zone accommodating difference in strain to the north and south. Following previous suggestions, we infer that this proposed accommodation or transfer zone developed above an important lithospheric boundary localized above a tear in the subducting slab (shallower slab angle to the south) used to explain both the locus of Late Cretaceous-Paleocene magmatism and the different ages and mechanisms of slab reconfiguration and removal north and south of the SRP during the Cenozoic. The details of these different histories help outline the complex evolution of this zone and also suggest that this zone of lithospheric weakness may have subsequently focused Miocene SRP-Y hot spot magmatism.

  17. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers.

    Science.gov (United States)

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-11-06

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake's only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr.

  18. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers

    Science.gov (United States)

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-01-01

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake’s only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr. PMID:26561822

  19. Dictionary Snakes

    OpenAIRE

    Dahl, Anders Bjorholm; Dahl, Vedrana Andersen

    2014-01-01

    Visual cues like texture, color and context make objects appear distinct from the surroundings, even without gradients between regions. Texture-rich objects are often difficult to segment because algorithms need advanced features which are unique for the image. In this paper we suggest a method for image segmentation that operates without training data. Our method is based on a probabilistic dictionary of image patches coupled with a deformable model inspired by snakes and active contours wit...

  20. Forced Snaking

    Science.gov (United States)

    Ponedel, Benjamin; Knobloch, Edgar

    2016-11-01

    We study spatial localization in the real subcritical Ginzburg-Landau equation ut =m0 u +m1 cos2/π l x u +uxx +d | u | 2 u -| u | 4 u with spatially periodic forcing. When d > 0 and m1 = 0 this equation exhibits bistability between the trivial state u = 0 and a homogeneous nontrivial state u =u0 with stationary localized structures which accumulate at the Maxwell point m0 = - 3d2 / 16 . When spatial forcing is included its wavelength is imprinted on u0 creating conditions favorable to front pinning and hence spatial localization. We use numerical continuation to show that under appropriate conditions such forcing generates a sequence of localized states organized within a snakes-and-ladders structure centered on the Maxwell point, and refer to this phenomenon as forced snaking. We determine the stability properties of these states and show that longer lengthscale forcing leads to stationary trains consisting of a finite number of strongly localized, weakly interacting pulses exhibiting foliated snaking.

  1. SIR2012-5282 Surficial Geology: Hydrogeology of the Susquehanna River valley-fill aquifer system and adjacent areas in eastern Broome and southeastern Chenango Counties, New York

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The hydrogeology of the valley-fill aquifer system along a 32-mile reach of the Susquehanna River valley and adjacent areas was evaluated in eastern Broome and...

  2. Radio telemetry data - Characterizing migration and survival for juvenile Snake River sockeye salmon between the upper Salmon River basin and Lower Granite Dam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project estimates survival and characterizes the migration of juvenile sockeye salmon between the upper Salmon River basin in central Idaho and Lower Granite...

  3. Snake Worsbip among the Dong Nationality

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    THE beautiful area of mountains and rivers atthe juncture of Hunan, Gulzhou and GuangxiZhuang Autonomous Region is irthabited byover 1 million Dong people. Because of the area’sgeographic remoteness, this minority ethnic groupformed its own notions on nature over the centuries.The Dong ancestors worshiped snakes, a tradition thathas not entirely died out today.In the traditional concept of the Dong people,snakes are not ordinary reptiles but supernatural beings

  4. Experimental Infection of Snakes with Ophidiomyces ophiodiicola Causes Pathological Changes That Typify Snake Fungal Disease.

    Science.gov (United States)

    Lorch, Jeffrey M; Lankton, Julia; Werner, Katrien; Falendysz, Elizabeth A; McCurley, Kevin; Blehert, David S

    2015-11-17

    Snake fungal disease (SFD) is an emerging skin infection of wild snakes in eastern North America. The fungus Ophidiomyces ophiodiicola is frequently associated with the skin lesions that are characteristic of SFD, but a causal relationship between the fungus and the disease has not been established. We experimentally infected captive-bred corn snakes (Pantherophis guttatus) in the laboratory with pure cultures of O. ophiodiicola. All snakes in the infected group (n = 8) developed gross and microscopic lesions identical to those observed in wild snakes with SFD; snakes in the control group (n = 7) did not develop skin infections. Furthermore, the same strain of O. ophiodiicola used to inoculate snakes was recovered from lesions of all animals in the infected group, but no fungi were isolated from individuals in the control group. Monitoring progression of lesions throughout the experiment captured a range of presentations of SFD that have been described in wild snakes. The host response to the infection included marked recruitment of granulocytes to sites of fungal invasion, increased frequency of molting, and abnormal behaviors, such as anorexia and resting in conspicuous areas of enclosures. While these responses may help snakes to fight infection, they could also impact host fitness and may contribute to mortality in wild snakes with chronic O. ophiodiicola infection. This work provides a basis for understanding the pathogenicity of O. ophiodiicola and the ecology of SFD by using a model system that incorporates a host species that is easy to procure and maintain in the laboratory. Skin infections in snakes, referred to as snake fungal disease (SFD), have been reported with increasing frequency in wild snakes in the eastern United States. While most of these infections are associated with the fungus Ophidiomyces ophiodiicola, there has been no conclusive evidence to implicate this fungus as a primary pathogen. Furthermore, it is not understood why the

  5. Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Miller, Benjamin L.; O' Toole, Amanda C.; Niehus, Sara E.; Richmond, Marshall C.

    2013-03-15

    Water bodies, such as freshwater lakes, are known to be net emitters of carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes within xeric temperate locations in the northwestern United States. Sampling environments on the Snake (Lower Monumental Dam Complex) and Columbia Rivers (Priest Rapids Dam Complex) included tributary, mainstem, embayment, forebay, and tailrace areas during winter and summer 2012. At each sampling location, GHG measurement pathways included surface gas flux, degassing as water passed through dams during power generation, ebullition within littoral embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate unaltered conditions. Surface flux resulted in very low emissions, with reservoirs acting as a sink for CO2 (up to –262 mg m-2 d-1, which is within the range previously reported for similarly located reservoirs). Surface flux of methane remained below 1 mg CH4 m-2d-1, a value well below fluxes reported previously for temperate reservoirs. Water passing through hydroelectric projects acted as a sink for CO2 during winter and a small source during summer, with mean degassing fluxes of –117 and 4.5 t CO2 d-1, respectively. Degassing of CH4 was minimal, with mean fluxes of 3.1 × 10-6 and –5.6 × 10-4 t CH4 d-1 during winter and summer, respectively. Gas flux due to ebullition was greater in coves located within reservoirs than in coves within the free flowing Hanford Reach–and CH4 flux exceeded that of CO2. Methane emissions varied widely across sampling locations

  6. System-Wide Significance of Predation on Juvenile Salmonids in Columbia and Snake River Reservoirs : Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, James H.; Poe, Thomas P.

    1993-12-01

    Northern squawfish (Ptychocheilus oregonensis) predation on juvenile salmonids was characterized during 1992 at ten locations in the Columbia River below Bonneville Dam and at three locations in John Day Reservoir. During the spring and summer, 1,487 northern squawfish were collected in the lower Columbia River and 202 squawfish were sampled in John Day Reservoir. Gut content data, predator weight, and water temperature were used to compute a consumption index (CI) for northern squawfish, and overall diet was also described. In the Columbia River below Bonneville Dam, northern squawfish diet was primarily fish (spring 69%; summer 53%), most of which were salmonids. Salmonids were also the primary diet component in the Bonneville Dam tailrace, John Day Dam forebay, and the McNary Dam tailrace. Crustaceans were the dominant diet item at the John Day mid-reservoir location, although sample sizes were small. About half of the non-salmonid preyfish were sculpins. The consumption index (CI) of northern squawfish was generally higher during summer than during spring. The highest CI`s were observed during summer in the tailrace boat restricted zones of Bonneville Dam (CI = 7.8) and McNary Dam (CI = 4.6). At locations below Bonneville Dam, CI`s were relatively low near Covert`s Landing and Rooster Rock, higher at four locations between Blue Lake and St. Helens, and low again at three downriver sites (Kalama, Ranier, and Jones Beach). Northern squawfish catches and CI`s were noticeably higher throughout the lower Columbia compared to mid-reservoir sites further upriver sampled during 1990--92. Predation may be especially intense in the free-flowing section of the Columbia River below Bonneville Dam. Smallmouth bass (Micropterus dolomieui; N = 198) ate mostly fish -- 25% salmonids, 29% sculpins, and 46% other fish. Highest catches of smallmouth bass were in the John Day Dam forebay.

  7. Seasonal movement and distribution of fluvial adult bull trout in selected watersheds in the mid-Columbia River and Snake River basins.

    Directory of Open Access Journals (Sweden)

    Steven J Starcevich

    Full Text Available From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km and three Grande Ronde River tributaries, the Wenaha (56 km and Lostine (41 km rivers and Lookingglass Creek (47 km. Shorter migrations were observed in the John Day (8 km, Walla Walla (20 km and Umatilla river (22 km systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5-6.2 km. Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km. Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations.

  8. Unravelling recent environmental change in a lowland river valley, eastern Ireland: geoarchaeological applications

    Science.gov (United States)

    Foster, Gez; Turner, Jonathan

    2010-05-01

    This paper reports the preliminary findings of an Irish Heritage Council INSTAR funded research project on the geoarchaeology and fluvial geomorphology of the lower River Boyne valley, eastern Ireland. The nature and evolution of the contemporary Boyne floodplain at Dunmoe, Co. Meath (53° 40' 22.8" N, 6° 37' 54.7" W) has been investigated using a multi-technique approach combining field and terrestrial LiDAR-based geomorphological mapping, radiocarbon dating of channel migration activity, electrical resistivity tomography surveys of sub-surface topography and high-resolution X-ray and XRF geochemical characterisation of fine-grained sediment fill sequences. All of these lines of evidence support a tripartite sub-division of the floodplain. Valley marginal floodplain Zone 1 is characterised by a colluvial sediment fill which has buried an irregular ditch-basin-platform surface containing recent archaeological material. Subtle variations in mapped elevation suggest that the buried surface may represent the site of an abandoned river-side complex, possibly a small docking area or port. Geomorphological field relationships suggest that the possible archaeological site was connected to a former bank line position of the main River Boyne (floodplain Zone 2) via a small canal. Radiocarbon dating of Zone 2 channel gravels suggests that the channel associated with this bank position was abandoned some time before 1490-1610 AD. Subsequent vertical and lateral channel migration, the onset of which has been radiocarbon dated to the 17th or 18th century AD, led to the development of the lowest and most recent floodplain surface (Zone 3). The sedimentology and geochemistry of the Zone 2 and 3 fluvial sediment sequences suggests that recent centuries have involved an increase in fluvial flood risk, evidenced by the burial of alluvial soils by bedded, shell-rich sands. A more complete understanding of the timing and environmental drivers of increasing flood risk is anticipated

  9. Geologic Controls of Hydraulic Conductivity in the Snake River Plain Aquifer At and Near the Idaho National Engineering and Environmental Laboratory, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    S. R. Anderson; M. A. Kuntz; L. C. Davis

    1999-02-01

    The effective hydraulic conductivity of basalt and interbedded sediment that compose the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL) ranges from about 1.0x10 -2 to 3.2x10 4 feet per day (ft/d). This six-order-of-magnitude range of hydraulic conductivity was estimated from single-well aquifer tests in 114 wells, and is attributed mainly to the physical characteristics and distribution of basalt flows and dikes. Hydraulic conductivity is greatest in thin pahoehoe flows and near-vent volcanic deposits. Hydraulic conductivity is least in flows and deposits cut by dikes. Estimates of hydraulic conductivity at and near the INEEL are similar to those measured in similar volcanic settings in Hawaii. The largest variety of rock types and the greatest range of hydraulic conductivity are in volcanic rift zones, which are characterized by numerous aligned volcanic vents and fissures related to underlying dikes. Three broad categories of hydraulic conductivity corresponding to six general types of geologic controls can be inferred from the distribution of wells and vent corridors. Hydraulic conductivity of basalt flows probably is increased by localized fissures and coarse mixtures of interbedded sediment, scoria, and basalt rubble. Hydraulic conductivity of basalt flows is decreased locally by abundant alteration minerals of probable hydrothermal origin. Hydraulic conductivity varies as much as six orders of magnitude in a single vent corridor and varies from three to five orders of magnitude within distances of 500 to 1,000 feet. Abrupt changes in hydraulic conductivity over short distances suggest the presence of preferential pathways and local barriers that may greatly affect the movement of ground water and the dispersion of radioactive and chemical wastes downgradient from points of waste disposal.

  10. Mercury concentrations in water, and mercury and selenium concentrations in fish from Brownlee Reservoir and selected sites in Boise and Snake Rivers, Idaho and Oregon, 2013

    Science.gov (United States)

    MacCoy, Dorene E.

    2014-01-01

    Mercury (Hg) analyses were conducted on samples of sport fish and water collected from six sampling sites in the Boise and Snake Rivers, and Brownlee Reservoir to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho. A water sample was collected from each site during October and November 2013 by the City of Boise personnel and was analyzed by the Boise City Public Works Water Quality Laboratory. Total Hg concentrations in unfiltered water samples ranged from 0.73 to 1.21 nanograms per liter (ng/L) at five river sites; total Hg concentration was highest (8.78 ng/L) in a water sample from Brownlee Reservoir. All Hg concentrations in water samples were less than the EPA Hg chronic aquatic life criterion in Idaho (12 ng/L). The EPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). MeHg residue in fish tissue is considered to be equivalent to total Hg in fish muscle tissue and is referred to as Hg in this report. The Idaho Department of Environmental Quality adopted the EPA’s fish-tissue criterion and a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg wet weight Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to

  11. A Report of Archaeological Investigations at the Two Rivers Site (45BN14), at the Confluence of the Snake and Columbia Rivers.

    Science.gov (United States)

    1984-01-01

    Analysis of Occupation Surfaces .. ....... .... 26S 41.5 Lithic Analysis of Cascade Components at .- the Two Rivers Site...91F mag. N. *-scraper F920 3.00 plan map TPI 1 05/ 10W 1614/OOWbottom of level 14 -3 3- N" N-...r.- ,-..... . ... . ...- 4.5 Lithic Analysis of Cascade

  12. Digital modeling of radioactive and chemical waste transport in the aquifer underlying the Snake River Plain at the National Reactor Testing Station, Idaho

    Science.gov (United States)

    Robertson, J.B.

    1974-01-01

    Industrial and low-level radioactive liquid wastes at the National Reactor Testing Station (NRTS) in Idaho have been disposed to the Snake River Plain aquifer since 1952. Monitoring studies have indicated that tritium and chloride have dispersed over a 15-square mile (39-square kilometer) area of the aquifer in low but detectable concentrations and have only migrated as far as 5 miles (8 kilometers) downgradient from discharge points. The movement of cationic waste solutes, particularly 90Sr and 137Cs, has been significantly retarded due to sorption phenomena, principally ion exchange. 137Cs has shown no detectable migration in the aquifer and 90Sr has migrated only about 1.5 miles (2 kilometers) from the Idaho Chemical Processing Plant (ICPP) discharge well, and is detectable over an area of only 1.5 square miles ( 4 square kilometers) of the aquifer. Digital modeling techniques have been applied successfully to the analysis of the complex waste-transport system by utilizing numerical solution of the coupled equations of groundwater motion and mass transport. The model includes the effects of convective transport, flow divergence, two-dimensional hydraulic dispersion, radioactive decay, and reversible linear sorption. The hydraulic phase of the model uses the iterative, alternating direction, implicit finite-difference scheme to solve the groundwater flow equations, while the waste-transport phase uses a modified method of characteristics to solve the solute transport equations simulated by the model. The modeling results indicate that hydraulic dispersion (especially transverse) is a much more significant influence than previously suggested by earlier studies. The model has been used to estimate future waste migration patterns for varied assumed hydrological and waste conditions up through the year 2000. The hydraulic effects of recharge from the Big Lost River have an important (but not predominant) influence on the simulated future migration patterns. For the

  13. Sensitivity of SWAT simulated streamflow to climatic changes within the Eastern Nile River basin

    Directory of Open Access Journals (Sweden)

    D. T. Mengistu

    2012-02-01

    Full Text Available The hydrological model SWAT was run with daily station based precipitation and temperature data for the whole Eastern Nile basin including the three subbasins: the Abbay (Blue Nile, BaroAkobo and Tekeze. The daily and monthly streamflows were calibrated and validated at six outlets with station-based streamflow data in the three different subbasins. The model performed very well in simulating the monthly variability while the validation against daily data revealed a more diverse performance. The simulations indicated that around 60% of the average annual rainfalls of the subbasins were lost through evaporation while the estimated runoff coefficients were 0.24, 0.30 and 0.18 for Abbay, BaroAkobo and Tekeze subbasins, respectively. About half to two-thirds of the runoff could be attributed to surface runoff while the other contributions came from groundwater.

    Twenty hypothetical climate change scenarios (perturbed temperatures and precipitation were conducted to test the sensitivity of SWAT simulated annual streamflow. The result revealed that the annual streamflow sensitivity to changes in precipitation and temperature differed among the basins and the dependence of the response on the strength of the changes was not linear. On average the annual streamflow responses to a change in precipitation with no temperature change were 19%, 17%, and 26% per 10% change in precipitation while the average annual streamflow responses to a change in temperature and no precipitation change were −4.4% K−1, −6.4% K−1, and −1.3% K−1 for Abbay, BaroAkobo and Tekeze river basins, respectively.

    47 temperature and precipitation scenarios from 19 AOGCMs participating inCMIP3 were used to estimate future changes in streamflow due to climate changes. The climate models disagreed on both the strength and the direction of future precipitation changes. Thus, no clear conclusions could be made about future

  14. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Rebecca A.; Skalski, John R.

    2007-12-07

    In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from the

  15. Dangerous snakes, deadly snakes and medically important snakes

    OpenAIRE

    Silva, Anjana

    2013-01-01

    This correspondence argues that the dangerousness of a venomous snake species is not solely determined by the venom characteristics or the lethality of the snake, and recognizes that medical importance comprises a key variable as well. The medical importance of a snake is determined by several factors – including frequency of medical attention after a bite, local or systemic envenomation provoked by the bite, fatal bites, long term consequences, availability of antivenom therapy as well as th...

  16. Modelling the impacts of agricultural management practices on river water quality in Eastern England.

    Science.gov (United States)

    Taylor, Sam D; He, Yi; Hiscock, Kevin M

    2016-09-15

    Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km(2). A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of

  17. Two snakes from eastern Australia (Serpentes: Elapidae); a revised concept of Antaioserpens warro (De Vis) and a redescription of A. albiceps (Boulenger).

    Science.gov (United States)

    Couper, Patrick J; Peck, Stephen R; Emery, Jon-Paul; Keogh, J Scott

    2016-03-31

    Antaioserpens warro sensu lato is known from two populations, one in north-eastern Queensland (Qld), the other from south central Qld. Morphological and genetic assessments demonstrate that these widely separated populations represent two species. A re-examination of museum specimens and the type descriptions show that the name A. warro (De Vis) has been erroneously applied to the north-eastern Qld species. The type specimen of A. warro, from the Gladstone district in south-east Qld, is badly faded but the colour pattern as described by De Vis (1884a) is consistent with that of recently collected specimens from south central Qld and it is this species to which the name applies. The earliest available name for the species from north-eastern Qld is A. albiceps (Boulenger, 1898). Both A. warro and A. albiceps are redescribed herein.

  18. Flooding in the South Platte River and Fountain Creek Basins in eastern Colorado, September 9–18, 2013

    Science.gov (United States)

    Kimbrough, Robert A.; Holmes, Jr., Robert R.

    2015-11-25

    On September 9, 2013, rain began to fall in eastern Colorado as a large low-pressure system pulled plumes of tropical moisture northward from the Pacific Ocean and the Gulf of Mexico. By September 16, 2013, as much as 12 to 20 inches of rain had fallen in the foothills of the Front Range of the Southern Rocky Mountains and adjacent plains near Colorado Springs, Colorado, north to the Colorado-Wyoming border. The rain caused major flooding during September 9–18, 2013, in a large part of the South Platte River Basin and in the Fountain Creek Basin. The floods resulted in several fatalities, more than 31,000 damaged or destroyed structures, and an estimated 3 billion dollars in damages. The U.S. Geological Survey (USGS) documented peak stage, streamflow, or both from the flood event for 80 sites located on selected rivers and streams in the South Platte River and Fountain Creek Basins and on the Platte River in Nebraska. The majority of flood-peak streamflows occurred on September 12 or 13, 2013, coinciding with the period of maximum rainfall. The flood resulted in new record peak streamflows at 17 streamgages having at least 10 years of record; 13 in the South Platte River Basin and 4 in the Fountain Creek Basin.

  19. Ocean Carrying Capacity : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 6 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Lichatowich, Jim

    1993-06-01

    The northeast Pacific is comprised of four fishery production domains: The gulf of Alaska, a coastal downwelling zone, a coastal upwelling zone and a transition zone. Salmon from the Columbia River enter the sea in the upwelling zone. Marine survival of coho salmon in the Oregon Production Index area has been the subject of extensive study. Variability in marine survival of coho salmon appears to be determined in the first month at sea while the fish are still in local marine areas in the upwelling zone. There is stronger evidence that upwelling might influence vulnerability to predation. A broader ecosystem view which considers salmon as a member of a complex marine community offers additional insight and raises new questions regarding the marine mortality of salmon. The pelagic fish community in the upwelling zone has undergone dramatic change in the last 50 years. That change is consistent with the historical record, however, the system has not completed a full cycle of change (as it has in the past) since the stocks have been subjected to intense commercial and sport exploitation. Salmon seem to be responding to shifts in productivity in the coastal upwelling zone.

  20. Washington Department of Fish and Wildlife Smolt Monitoring Program; Lower Granite Dam on the Snake River, Washington, 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Verhey, Peter; Ross, Doug; Morrill, Charles (Washington Department of Fish and Wildlife, Olympia, WA)

    1996-10-01

    The 1996 fish collection season at Lower Granite was characterized by high spring flows, spill, cool spring and early summer water temperatures and comparatively low numbers of fish, particularly yearling chinook, collected and transported. A total of 5,227,672 juvenile salmonids were collected at Lower Granite, the fewest since 1986. Of these, 5,117,685 were transported to release sites below Bonneville Dam, 4,990,798 by barge and 126,887 by truck. An additional 102,430 fish were bypassed back to the river, most of these being part of the National Marine Fisheries Service transportation evaluation study. New extended length submersible bar screens (ESBS) and new vertical barrier screens were installed in all units and a prototype surface collector was installed in front of units 4, 5 and 6 and operated from 23 April through 3 June. Smolt Monitoring Program and National Biologic Survey biologists examined 4,581 fish, collected at the separator, for symptoms of Gas Bubble Disease.

  1. Snake River fall Chinook salmon life history investigations, 1/1/2013 – 12/31/2013

    Science.gov (United States)

    Tiffan, Kenneth F.; Connor, William P.

    2015-01-01

    Smallmouth bass predation on subyearling fall Chinook salmon was examined in the upper portion of Lower Granite Reservoir during 2013. During the time subyearlings were present in the reservoir, smallmouth bass were collected, their stomach contents removed for diet analysis, and their abundance estimated with mark-recapture techniques. In 2013, the greatest consumption of subyearlings by smallmouth bass occurred in late May and early June—as much as 50% of their diet by weight. Sand rollers were the most common non-salmonid fish consumed by smallmouth bass. In the section of the reservoir above the confluence with the Clearwater River, the abundance of bass was higher in non-riprap habitat than in riprap, but the opposite was true in the section below the confluence. We estimated that over 168,000 subyearlings were lost to smallmouth bass predation in 2013. Given the predominance of sand rollers in the diet of smallmouth bass, we believe this species reduces predation on subyearling fall Chinook salmon. A complete report of our findings is provided in the Appendix.

  2. Groundwater quality in the Columbia Plateau, Snake River Plain, and Oahu basaltic-rock and basin-fill aquifers in the Northwestern United States and Hawaii, 1992-2010

    Science.gov (United States)

    Frans, Lonna M.; Rupert, Michael G.; Hunt, Charles D.; Skinner, Kenneth D.

    2012-01-01

    This assessment of groundwater-quality conditions of the Columbia Plateau, Snake River Plain, and Oahu for the period 1992–2010 is part of the U.S. Geological Survey’s National Water Quality Assessment (NAWQA) program. It shows where, when, why, and how specific water-quality conditions occur in groundwater of the three study areas and yields science-based implications for assessing and managing the quality of these water resources. The primary aquifers in the Columbia Plateau, Snake River Plain, and Oahu are mostly composed of fractured basalt, which makes their hydrology and geochemistry similar. In spite of the hydrogeologic similarities, there are climatic differences that affect the agricultural practices overlying the aquifers, which in turn affect the groundwater quality. Understanding groundwater-quality conditions and the natural and human factors that control groundwater quality is important because of the implications to human health, the sustainability of rural agricultural economies, and the substantial costs associated with land and water management, conservation, and regulation.

  3. Use of geochemical tracers for estimating groundwater influxes to the Big Sioux River, eastern South Dakota, USA

    Science.gov (United States)

    Neupane, Ram P.; Mehan, Sushant; Kumar, Sandeep

    2017-09-01

    Understanding the spatial distribution and variability of geochemical tracers is crucial for estimating groundwater influxes into a river and can contribute to better future water management strategies. Because of the much higher radon (222Rn) activities in groundwater compared to river water, 222Rn was used as the main tracer to estimate groundwater influxes to river discharge over a 323-km distance of the Big Sioux River, eastern South Dakota, USA; these influx estimates were compared to the estimates using Cl- concentrations. In the reaches overall, groundwater influxes using the 222Rn activity approach ranged between 0.3 and 6.4 m3/m/day (mean 1.8 m3/m/day) and the cumulative groundwater influx estimated during the study period was 3,982-146,594 m3/day (mean 40,568 m3/day), accounting for 0.2-41.9% (mean 12.5%) of the total river flow rate. The mean groundwater influx derived using the 222Rn activity approach was lower than that calculated based on Cl- concentration (35.6 m3/m/day) for most of the reaches. Based on the Cl- approach, groundwater accounted for 37.3% of the total river flow rate. The difference between the method estimates may be associated with minimal differences between groundwater and river Cl- concentrations. These assessments will provide a better understanding of estimates used for the allocation of water resources to sustain agricultural productivity in the basin. However, a more detailed sampling program is necessary for accurate influx estimation, and also to understand the influence of seasonal variation on groundwater influxes into the basin.

  4. Experimental infection of snakes with Ophidiomyces ophiodiicola causes pathological changes that typify snake fungal disease

    Science.gov (United States)

    Lorch, Jeffrey M.; Lankton, Julia S.; Werner, Katrien; Falendysz, Elizabeth A.; McCurley, Kevin; Blehert, David S.

    2015-01-01

    Snake fungal disease (SFD) is an emerging skin infection of wild snakes in eastern North America. The fungus Ophidiomyces ophiodiicola is frequently associated with the skin lesions that are characteristic of SFD, but a causal relationship between the fungus and the disease has not been established. We experimentally infected captive-bred corn snakes (Pantherophis guttatus) in the laboratory with pure cultures of O. ophiodiicola. All snakes in the infected group (n = 8) developed gross and microscopic lesions identical to those observed in wild snakes with SFD; snakes in the control group (n = 7) did not develop skin infections. Furthermore, the same strain of O. ophiodiicola used to inoculate snakes was recovered from lesions of all animals in the infected group, but no fungi were isolated from individuals in the control group. Monitoring progression of lesions throughout the experiment captured a range of presentations of SFD that have been described in wild snakes. The host response to the infection included marked recruitment of granulocytes to sites of fungal invasion, increased frequency of molting, and abnormal behaviors, such as anorexia and resting in conspicuous areas of enclosures. While these responses may help snakes to fight infection, they could also impact host fitness and may contribute to mortality in wild snakes with chronic O. ophiodiicola infection. This work provides a basis for understanding the pathogenicity of O. ophiodiicola and the ecology of SFD by using a model system that incorporates a host species that is easy to procure and maintain in the laboratory.

  5. Records of human occupation from Pleistocene river terrace and aeolian sediments in the Arneiro depression (Lower Tejo River, central eastern Portugal)

    Science.gov (United States)

    Cunha, Pedro P.; Almeida, Nelson A. C.; Aubry, Thierry; Martins, António A.; Murray, Andrew S.; Buylaert, Jan-Pieter; Sohbati, Reza; Raposo, Luis; Rocha, Leonor

    2012-09-01

    In the uppermost reach of the Lower Tejo River (eastern central Portugal), where the river crosses two quartzite ridges that separate the Ródão (upstream) and Arneiro (downstream) depressions, Palaeolithic artefacts have been recovered from three lower river terrace levels and a cover unit of aeolian sands. This paper presents data on the discovery of archaeological artefacts from the terrace levels and the aeolian sands that can be linked to Middle and Upper Palaeolithic industries from new field sites at Tapada do Montinho and Castelejo. The archaeological data when placed in a geomorphological, sedimentary and chronological framework, contribute new information on the understanding of human occupation in western Iberia during cold-climate episodes of the last 62 to 12 ka; and especially during the cooler and driest conditions that occurred between 32 and 12 ka, when the climate favoured aeolian sediment transport. In the Lower Tejo River, the integration of absolute age datasets with archaeological, geomorphological and sedimentary data indicate that in westernmost Iberia the first appearance of artefacts in river terrace sediments suggests that the earliest marker for human occupation dates from the lower Acheulian (Lower Palaeolithic), probably corresponding to an age of ~ 340 ka. Data also suggest, for the first time, that Acheulian lithic industries were replaced by Middle Palaeolithic ones (namely the Levallois stone knapping technique) by ~ 160 ka (~ MIS6). Middle Palaeolithic industries were later replaced by Upper Palaeolithic industries at 32 ka. The post 32 ka period, dominated by aeolian sediment transport, is related to the onset of cold-dry climate conditions which resulted in low river flow discharges, floodplain exposure and reworking by NW winds. This cold-dry period is coeval with the disappearance of Megafauna and associated Neanderthal communities, and the replacement of the Middle Palaeolithic industries by Upper Palaeolithic ones in this

  6. Hydrogeology and water quality in the Snake River alluvial aquifer at Jackson Hole Airport, Jackson, Wyoming, water years 2011 and 2012

    Science.gov (United States)

    Wright, Peter R.

    2013-01-01

    The hydrogeology and water quality of the Snake River alluvial aquifer at the Jackson Hole Airport in northwest Wyoming was studied by the U.S. Geological Survey, in cooperation with the Jackson Hole Airport Board, during water years 2011 and 2012 as part of a followup to a previous baseline study during September 2008 through June 2009. Hydrogeologic conditions were characterized using data collected from 19 Jackson Hole Airport wells. Groundwater levels are summarized in this report and the direction of groundwater flow, hydraulic gradients, and estimated groundwater velocity rates in the Snake River alluvial aquifer underlying the study area are presented. Analytical results of groundwater samples collected from 10 wells during water years 2011 and 2012 are presented and summarized. The water table at Jackson Hole Airport was lowest in early spring and reached its peak in July or August, with an increase of 12.5 to 15.5 feet between April and July 2011. Groundwater flow was predominantly horizontal but generally had the hydraulic potential for downward flow. Groundwater flow within the Snake River alluvial aquifer at the airport was from the northeast to the west-southwest, with horizontal velocities estimated to be about 25 to 68 feet per day. This range of velocities slightly is broader than the range determined in the previous study and likely is due to variability in the local climate. The travel time from the farthest upgradient well to the farthest downgradient well was approximately 52 to 142 days. This estimate only describes the average movement of groundwater, and some solutes may move at a different rate than groundwater through the aquifer. The quality of the water in the alluvial aquifer generally was considered good. Water from the alluvial aquifer was fresh, hard to very hard, and dominated by calcium carbonate. No constituents were detected at concentrations exceeding U.S. Environmental Protection Agency maximum contaminant levels or health

  7. Simulation of daily streamflow for nine river basins in eastern Iowa using the Precipitation-Runoff Modeling System

    Science.gov (United States)

    Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.

    2015-10-14

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for nine river basins in eastern Iowa that drain into the Mississippi River. The models are part of a suite of methods for estimating daily streamflow at ungaged sites. The Precipitation-Runoff Modeling System is a deterministic, distributed- parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration and validation periods used in each basin mostly were October 1, 2002, through September 30, 2012, but differed depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.

  8. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Rebecca A.; Skalski, John R.

    2007-12-07

    In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from the

  9. Reproductive Disorders in Snakes.

    Science.gov (United States)

    Di Girolamo, Nicola; Selleri, Paolo

    2017-05-01

    Reproduction of snakes is one of the challenging aspects of herpetology medicine. Due to the complexity of reproduction, several disorders may present before, during, or after this process. This article describes the physical examination, and radiographic, ultrasonographic, and endoscopic findings associated with reproductive disorders in snakes. Surgical techniques used to resolve reproductive disorders in snakes are described. Finally, common reproductive disorders in snakes are individually discussed.

  10. Ecology of the macrophyte Podostemum ceratophyllum Michx. (Hornleaf riverweed), a widespread foundation species of eastern North American rivers

    Science.gov (United States)

    Wood, James; Freeman, Mary C.

    2017-01-01

    Podostemum ceratophyllum, commonly called Hornleaf Riverweed, occurs in mid-order montane and piedmont rivers of eastern North America, where the plant grows submerged and attached to rocks and stable substrates in swift, aerated water. Multiple studies, mostly conducted in the southern portions of the plant’s range, have shown that Podostemum can variously influence benthic communities in flowing waters. However, a synthetic review of the biology and ecology of the plant is needed to inform conservation, particularly because P. ceratophyllum is reported to be in decline in much of its range, for mostly unknown reasons. We have thus summarized the literature showing that Podostemum provides substantial habitat for invertebrates and fish, may be consumed by invertebrates, turtles, and other vertebrates, removes and sequesters dissolved elements (i.e., nitrogen, phosphorus, calcium, zinc, etc.) from the water column, and contributes organic matter to the detrital pool. Podostemum may be tolerant to some forms of pollution but appears vulnerable to sedimentation, epiphytic over-growth, and hydrologic changes that result in desiccation, and possibly increased herbivory pressure. Much remains unknown about Podostemum, including aspects of morphological variation, seed dispersal, and tolerance to changes in temperature and water chemistry. Nonetheless, Podostemum may be considered a foundation species, whose loss from eastern North American rivers is likely to affect higher trophic levels and ecosystem processes.

  11. Dangerous snakes, deadly snakes and medically important snakes

    Science.gov (United States)

    2013-01-01

    This correspondence argues that the dangerousness of a venomous snake species is not solely determined by the venom characteristics or the lethality of the snake, and recognizes that medical importance comprises a key variable as well. The medical importance of a snake is determined by several factors – including frequency of medical attention after a bite, local or systemic envenomation provoked by the bite, fatal bites, long term consequences, availability of antivenom therapy as well as the size of the population at risk – that may vary from one region to another. PMID:24099013

  12. Soil erosion on road and railways embankments in the Canyoles river Basin. Eastern Spain.

    Science.gov (United States)

    Cerdà, Artemi; Antonio, Giménez-Morera; Félix Ángel, González-Peñaloza; María, Burguet; Paulo, Pereira; José Reyes, Ruiz

    2013-04-01

    Mediterranean landscapes are man-made. Its human ecosystems are characterized by a high population density, a long history of human settlement and an intense exchange of goods and people (Cerdà et al., 2010). This was possible due to a dense road network, most of it created during the Roman Empire. Modern roads and railways increased drastically during the last 30 years in the Mediterranean. Spain is a clear example of the acceleration of the road and railway infrastructures (Bel, 2005), especially during the 1960s as the tourism started to become a big issue in this part of the World. The increase in road and railways during the last 30 years resulted in a new transport system in Spain, which is based on high-speed railways and motorways. The characteristic of these infrastructures is that they were built by means of embankments, and little is now about the erosional response of those embankments to rainfall. The objective of this research is to assess the soil losses measured in road and railway embankments. The Canyoles River watershed was selected as an example of a region with a dense and recently developed modern network of roads, motorways and railway. The Canyoles river watershed is the natural path between the Mediterranean coast and Central Spain, the capital of the country and the touristic regions. Two motorways and two railways were built or re-built during the last two years and this paper assesses their impact on soil and water losses. As soil erosion rates are dependent on the high intensity - low frequency rainfall events, rainfall simulation experiments (40 experiments) were conducted (1 m2 plots; 60 minutes duration; 78 mm h-1 intensity) were carried out over plots on 2 railway (n=10 + 10) and motorway (n=10 + 10) research sites in August 2011, under very dry conditions. Soil moisture was below 5 % in the top 2 cm soil layer. The vegetation cover was very low in the two road and two railway embankments as the average cover was 4.2 % ranging from

  13. River Basin Development and Human Rights in Eastern Africa — A Policy Crossroads

    National Research Council Canada - National Science Library

    Carr, Claudia J

    2017-01-01

    .... It examines major river basin development underway in the semi-arid borderlands of Ethiopia, Kenya and South Sudan and its disastrous human rights consequences for a half-million indigenous people...

  14. Energy - Water Nexus -- Meeting the Energy and Water Needs of the Snake/Columbia River Basin in the 21st CenturyScience and Technology SummitConference Results

    Energy Technology Data Exchange (ETDEWEB)

    Paul L. Wichlacz; Gerald Sehlke

    2008-02-01

    In June 2007, representatives from federal, state, and academic institutions met to discuss the role of innovative science, technology, and policy in meeting future energy and water demands in the Snake-Columbia River Basin. Conference members assessed the state-of-the-science, technology, and associated research to develop cost-effective and environmentally sound methodologies and technologies to maximize the production of energy and availability of water and to minimize the consumption of both water and energy in the Snake-Columbia River system. Information on all phases of science and technology development, theoretical analysis, laboratory experiments, pilot tests, and field applications were relevant topics for discussion. An overview of current management needs was presented the first day. On the second day, five focus groups were created: ? Energy Generation and Use ? Water Allocation and Use ? Energy/Water Storage ? Environmental Considerations ? Social, Economic, Political, and Regulatory Considerations. Each group started with a list of status items and trends, and discussed the future challenges and research needed to reach four goals: ? Balance energy production and resource consumption ? Balance water availability and competing needs ? Balance water consumption/energy production and competing needs ? Balance environmental impacts and water use/energy production ? Balance costs and benefits of water use. The resulting initiatives were further broken down into three categories of importance: critical, important, and nice to do but could be delayed. Each initiative was assigned a number of dots to show a more refined ranking. The results of each focus group are given in the pages that follow. These results are intended to help local and regional researchers 1. Develop a technical strategy for developing cost-effective science and technology to predict, measure, monitor, purify, conserve, and store water and to maximize power generation, storage, and

  15. Snakes and spin rotators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1990-06-18

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10{sup {minus}4} will be significant. 2 refs., 5 figs.

  16. Run-off analyses using isotopes and hydrochemistry in Yushugou River basin, eastern Tianshan Mountains

    Indian Academy of Sciences (India)

    Xiaoyan Wang; Zhongqin Li; Chanwen Jiang

    2017-08-01

    Yushugou River basin of East Tianshan Mountains receives water from melting glaciers. In recent years, the glaciers retreated strongly due to global warming which intensified the water cycle in the river basin. For this reason, the relation of water bodies based on hydrochemistry and isotope in the summer flood was carried out. Hydrochemistry research showed that there was frequent hydraulic interaction between river water and groundwater. Studying the isotopes and Cl− of river water, glacier meltwater, groundwater and precipitation, indicated that Yushugou River was recharged by the glacier meltwater, groundwater and precipitation during the summer flood period. The analysis result based on the three-component mixing model showed that Yushugou River was recharged by 54.9% of glacier meltwater, 37.6% of the run-off came from groundwater, while less than 8% was contributed by precipitation. The study suggests that the role of glacier meltwater and groundwater, especially glacier meltwater, should be specially concerned in water resource protection and reasonable utilization, and the injection of glacier meltwater is the main reason for run-off variation in this alpine basin during the summer flood period.

  17. 33 CFR 334.540 - Banana River at the Eastern Range, 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Science.gov (United States)

    2010-07-01

    ..., 45th Space Wing, Cape Canaveral Air Force Station, FL; restricted area. 334.540 Section 334.540... enforced by the Commander, 45th Space Wing, Patrick Air Force Base, Florida and/or such persons or agencies... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing,...

  18. Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes

    Science.gov (United States)

    Franklinos, Lydia H. V.; Lorch, Jeffrey M.; Bohuski, Elizabeth A.; Rodriguez-Ramos Fernandez, Julia; Wright, Owen; Fitzpatrick, Liam; Petrovan, Silviu; Durrant, Chris; Linton, Chris; Baláž, Vojtech; Cunningham, Andrew A; Lawson, Becki

    2017-01-01

    Snake fungal disease (SFD) is an emerging disease of conservation concern in eastern North America. Ophidiomyces ophiodiicola, the causative agent of SFD, has been isolated from over 30 species of wild snakes from six families in North America. Whilst O. ophiodiicola has been isolated from captive snakes outside North America, the pathogen has not been reported from wild snakes elsewhere. We screened 33 carcasses and 303 moulted skins from wild snakes collected from 2010–2016 in Great Britain and the Czech Republic for the presence of macroscopic skin lesions and O. ophiodiicola. The fungus was detected using real-time PCR in 26 (8.6%) specimens across the period of collection. Follow up culture and histopathologic analyses confirmed that both O. ophiodiicola and SFD occur in wild European snakes. Although skin lesions were mild in most cases, in some snakes they were severe and were considered likely to have contributed to mortality. Culture characterisations demonstrated that European isolates grew more slowly than those from the United States, and phylogenetic analyses indicated that isolates from European wild snakes reside in a clade distinct from the North American isolates examined. These genetic and phenotypic differences indicate that the European isolates represent novel strains of O. ophiodiicola. Further work is required to understand the individual and population level impact of this pathogen in Europe.

  19. Distribution of persistent organic pollutants and trace metals in surface waters in the Seversky Donets River basin (Eastern Ukraine)

    Science.gov (United States)

    Diadin, Dmytro; Celle-Jeanton, Hélène; Steinmann, Marc; Loup, Christophe; Crini, Nadia; Vystavna, Yuliya; Vergeles, Yuri; Huneau, Frédéric

    2017-04-01

    The paper is focused on surface water of the Seversky Donets River Basin in Eastern Ukraine which undergoes significant anthropogenic pressure due to municipal and industrial wastewater discharge, polluted runoff from both urban and agricultural areas, leakages at oil-gas extraction sites located in the region. In these conditions the Seversky Donets River is used for drinking water supply of the city of Kharkiv with 1.5 million inhabitants as well as other smaller settlements in the basin. The diversity of water pollution sources makes it reasonable to use complex indicators and assessment approaches such as combination of organic and inorganic pollutants. We have studied the distribution of major ions, metals and persistent organic compounds (PAHs and PCBs) in water of the Seversky Donets River and its tributaries. In total 20 sites have been sampled on the river catchment area as of 4.5 thousands km2. PAHs and PCBs were measured in surface water for the first time in the region. The most distinctive transformations of water composition have been found downstream wastewater treatment plants in the city of Kharkiv where treated mixture of municipal and industrial wastewater is discharged to the river. Such metals as Ni, Zn, Cr in combination with phosphates and nitrates has shown significant positive correlation indicating the common source of their input. Ten of sixteen total PAHs were detected in measurable concentrations in at least one sample of river water. Sum of PAHs ranged from 15.3 to 117.2 ng/L with mean of 43.8 ng/L. The ratios of PAHs have indicated rather pyrogenic than petrogenic inputs on all the studied sites. Elevated concentrations of low molecular weight PAHs in water were found close to a coal-burning power station and a coke chemical plant also confirming their origin from coal combustion and subsequent atmospheric deposition. PCBs distribution has appeared to be relatively uniform on the territory despite the vast area of the basin researched

  20. Examination of flood characteristics at selected streamgages in the Meramec River Basin, eastern Missouri, December 2015–January 2016

    Science.gov (United States)

    Holmes, Jr., Robert R.; Koenig, Todd A.; Rydlund, Jr., Paul H.; Heimann, David C.

    2016-09-13

    OverviewHeavy rainfall resulted in major flooding in the Meramec River Basin in eastern Missouri during late December 2015 through early January 2016. Cumulative rainfall from December 14 to 29, 2015, ranged from 7.6 to 12.3 inches at selected precipitation stations in the basin with flooding driven by the heaviest precipitation (3.9–9.7 inches) between December 27 and 29, 2015. Financial losses from flooding included damage to homes and other structures, damage to roads, and debris removal. Eight of 11 counties in the basin were declared a Federal Disaster Area.The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers and St. Louis Metropolitan Sewer District, operates multiple streamgages along the Meramec River and its primary tributaries including the Bourbeuse River and Big River. The period of record for streamflow at streamgages in the basin included in this report ranges from 24 to 102 years. Instrumentation in a streamgage shelter automatically makes observations of stage using a variety of methods (submersible pressure transducer, non-submersible pressure transducer, or non-contact radar). These observations are recorded autonomously at a predetermined programmed frequency (typically either 15 or 30 minutes) dependent on drainage-area size and concomitant flashiness of the stream. Although stage data are important, streamflow data are equally or more important for streamflow forecasting, water-quality constituent loads computation, flood-frequency analysis, and flood mitigation planning. Streamflows are computed from recorded stage data using an empirically determined relation between stage and streamflow termed a “rating.” Development and verification of the rating requires periodic onsite discrete measurements of streamflow throughout time and over the range of stages to define local hydraulic conditions.The purpose of this report is to examine characteristics of flooding that occurred in the Meramec River Basin in

  1. Distribution patterns of fish assemblages in an Eastern Mediterranean intermittent river

    Directory of Open Access Journals (Sweden)

    Vardakas L.

    2015-01-01

    Full Text Available The distribution patterns of fish assemblages within streams can provide insights for river type classifications and may warrant specific conservation actions. However, there is limited knowledge of how fish assemblages assort along a longitudinal axis in Mediterranean intermittent streams. Patterns in spatial and temporal distribution of fish communities were analysed in a Mediterranean intermittent river (Evrotas River located in Southern Greece, hosting three endemic range restricted species of high conservation concern, during the period 2007−2009, with 80% of the river’s total length desiccating in the 2007 and 2008 droughts. The general trend was an increase in fish density and species richness along an upstream-downstream gradient. Fish assemblages from upstream to downstream were characterized by a decrease of the most rheophilic species (Squalius keadicus and an increase of the most stagnophilic species (Tropidophoxinellus spartiaticus. Three river segments, characterized by a high degree of homogeneity were delineated. Habitat and environmental preferences for the studied fish species were identified, with elevation and low flowing habitats being the most important environmental factors affecting fish distribution patterns. The current study provides evidence that even in an intermittent river an assemblage pattern following a longitudinal gradient can be identified, mainly due to the lack of instream barriers that allows recolonization after flow resumption.

  2. Snake venoms and hemostasis

    National Research Council Canada - National Science Library

    LU, Q; CLEMETSON, J. M; CLEMETSON, K. J

    2005-01-01

    Snake venoms are complex mixtures of biologically active proteins and peptides. Many of them affect hemostasis by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium...

  3. Extension of Gundlakamma River Fault over eastern continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, K.V.L.N.S.; Subrahmanyam, V.; Subrahmanyam, A.S.; Murty, G.P.S.; Murthy, K.S.R.

    trending regional faults 1–3 . Ongole and the adjoining Nizampatnam Bay are controlled by several NE–SW trending depressions and ridges (Figure 1 b) 4 . The region around Ongole is drained by Gundlakamma, Musi, Palem and Man- neru rivers. The NW... Fault (Figure 1 b) acts as a crustal junction between ridge–depression con- figuration of Bapatla–Velupucherla ridge and the Krishna depression in the north and graben–ridge structure originating from the mouth of Manneru River, south of Ongole...

  4. Quantifying Microplastic Pollution in the Mohawk River, Eastern New York State

    Science.gov (United States)

    Smith, J. A.; Hodge, J.; Kurtz, B. G.; Garver, J. I.

    2016-12-01

    We are investigating the extent to which microplastic particles are reaching the Mohawk River in upstate New York. Microplastics are commonly defined as plastic particles less than 5 mm in diameter, whether deliberately manufactured to be that size or resulting from the fragmentation or erosion of larger pieces of plastic. Despite recent legislative bans, many personal care products such as facial scrubs still use tiny particles of plastic as abrasives. Plastic fibers also make up part of the microplastic load potentially reaching waterways. Microplastic particles are a health hazard for aquatic organisms and an undesirable component of public water supplies. The Mohawk River is the main tributary of the Hudson River, coinciding with the Erie Canal for stretches downriver from Rome, NY, and serves as both the outfall for wastewater treatment plants and the water supply for several municipalities. In some cities along the Mohawk River (e.g., Utica, NY), combined sewer overflows (CSOs) deliver untreated sewage and stormwater directly to the river during heavy rainfall events, increasing the likelihood of microplastic pollution. We used a manta trawl deployed from a rigid inflatable boat to collect 60 samples of planktonic material along the 112-mile section of the Mohawk River and/or Erie Canal between Rome, NY, and the Crescent Dam in Cohoes, NY. Each trawl lasted for 1 mile. We used an Ekman grab sampler to collect 64 samples of channel sediment along the same section of the Mohawk River and/or Erie Canal. Sample processing for planktonic samples includes sieving and wet peroxide oxidation to remove organic material. Sample processing for sediment grab samples includes drying, sieving, density separation, and wet peroxide oxidation. Anthropogenic particles that contain dye are easiest to spot under a microscope. Laboratory analyses indicate that the majority of the planktonic samples include dyed particles in addition to colorless particles likely to be plastic

  5. THE SOURCES OF NUTRIENTS IN WATERS OF RIVERS IN THE WETLAND AREAS OF NAREW NATIONAL PARK IN NORTH-EASTERN POLAND

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2013-07-01

    Full Text Available The study aimed at the attempt to identify and to evaluate the interaction intensity, and to classify the sources of river waters nutrients in the catchment of upper river Narew within Narew National Park (north-eastern Poland. The studies were carried out on Narew river within borders of Narew National Park, where 5 measurement-control points were localized as well as one near estuaries of its 5 tributaries (Awissa, Czaplinianka, Horodnianka, Turośnianka and Supraśl. Factor analysis (FA from multi-dimensional group was applied for statistical processing of study results, because it is commonly used to describe and explore a large number of data. concentrations of analyzed chemicals depended on a water sampling point that was under anthropopression and geogenic conditions. Studies and results from analyses (FA and CA allowed for identifying the main sources of river Narew nutrients within Narew National Park. These are: tributaries of river Narew, point and distributed runoffs, as well as shallow ground waters that transport components having anthropogenic and partially geogenic-lithologic origin. River Turośnianka supplies the largest loads of studied parameters to river Narew within Narew National Park boundaries. River Supraśl is the most contaminated tributary of river Narew.

  6. The phytogeography and ecotourism potential of the eastern province of lower part of the "Köprü river" basin.

    Science.gov (United States)

    Kaya, Bastürk; Akis, Ayhan

    2012-04-01

    Köprü River Basin is located in the western Taurus mountains in south-western Turkey. The area is in the Mediterranean phytogeographical region. The climate in the area is typically Mediterranean: mild and rainy in winter, hot and dry in summer. Xerophytic plants can easily grow in this climate. Pinus brutia forests are common in the study area. Maquis and garique elements with sclerophyll character also occur in the region. The study aims to determine the distribution of the vegetation in the eastern province of lower part of the "Köprü River" Basin. The factors which affect the distribution of vegetation are climate, landforms and soils. In order to determine the plant growth and climate relationship, the climatic data were analyzed. As well as the geological and geomorphological conditions, the soils were investigated and the effects of these factors on vegetation cover were analyzed. The region also has various attributes for the development of ecotourism, including canyons, forests and historical places. The region has a great potential for many different social, cultural, and scientific activities related to ecotourism. These are highland tourism, rafting, botanic tourism, trekking, and climbing. In order to make ecotourism available for local people to benefit, ecotourism should be developed and introduced to the world. Moreover, plans for the sustainability of the resources should be made. The study highlights the ecotourism potential of the area which is of social, economic, and ecological importance for the region.

  7. The influence of a river plume on the sea-ice meiofauna in south-eastern Hudson Bay

    Science.gov (United States)

    Grainger, E. H.

    1988-08-01

    Outflow from the Great Whale River produces a substantial freshwater layer (plume) beneath the winter ice cover and above water of higher salinity in south-eastern Hudson Bay. In 1983, samples of the lower-ice fauna and of zooplankton beneath the ice, were taken within, below and beyond the offshore reach of the plume. Nematodes accounted for the highest numbers (mean of 1956 1 1in the lower 3 cm of ice), and copepods, mainly Harpacticus and Halectinosoma with fewer Tisbe and Oithona, for the greatest biomass. All ice-inhabiting taxa were also found in the water below the ice, but many zooplankters occurring immediately beneath the ice did not form part of the ice fauna. No major qualitative differences were evident between the ice communities existing above the plume and offshore from it, but quantitative distinctions were readily apparent. Animals were consistently more concentrated (by 2-3 orders of magnitude) in the lower 3 cm of the ice than in the water immediately below, both over the plume and outside it. Except for the dominant rotifers in the plume, the concentration of zooplankton there was only 10% of that found in the surface water outside the plume. The river plume exerts a strong influence over the quantity of the fauna in the sea ice immediately above it. Changes in location and extent of the plume therefore may have an important effect on the food chain based in the sea ice.

  8. Fish gills alterations as potential biomarkers of environmental quality in a eutrophized tropical river in south-eastern Brazil.

    Science.gov (United States)

    Nascimento, A A; Araújo, F G; Gomes, I D; Mendes, R M M; Sales, A

    2012-06-01

    Gill anomalies in three common fish species of different taxonomic order, habitat dwelling and feeding habits (one Characiformes, Oligosarcus hepsetus; one Siluriformes, Hypostomus auroguttatus; and one Perciformes, Geophagus brasiliensis) from a eutrophized tropical river in south-eastern in Brazil were compared. The aim of this study was to search for sentinel species that could be used as potential biomarkers of environmental quality. Most fish had gills with histological changes, namely epithelial lifting, interstitial oedema, leucocyte infiltration, hyperplasia of the epithelial cells, lamellar fusion, vasodilatation and necrosis. On the other hand, lamellar blood congestion and lamellar aneurysm, which are more serious and often irreversible changes, were recorded for the water column carnivorous O. hepsetus and, to a lesser extent, for the bottom-dwelling detritivorous H. auroguttatus. A histopathological alteration index (HAI) based on the occurrence and severity of gills anomalies indicated that O. hepsetus (mean score = 11.4) had significantly higher values (Kruskall-Wallis H(2,41) = 15.95, P = 0.0003) compared with G. brasiliensis (mean score = 7.0). Overall, the omnivorous G. brasiliensis had comparatively lesser occurrence of most gill anomalies compared with other two species, being less suitable as biomarker of environmental quality. In contrast, the water column-dweller O. hepsetus (water column) and the bottom-dweller H. auroguttatus had gills most susceptible to changes, making them more suitable for using as histological biomarkers of the environmental quality in entrophized tropical rivers.

  9. The effects of river flooding on the fish populations of two eastern ...

    African Journals Online (AJOL)

    a few days during which times the river comes down in. 'heavy spate'. ... account of the disrupted distribution patterns of zooplankton in the Swartkops estuary is given ...... Tables I - 3 clearly show that the fish populations, sampled by gill-net, ...

  10. Characterization of fluvial islands along three different gravel-bed rivers of North-Eastern Italy

    Directory of Open Access Journals (Sweden)

    L. Picco

    2013-09-01

    Full Text Available River islands are defined as discrete areas of woodland vegetation located in the riverbed and surrounded by either water-filled channels or exposed gravels, exhibiting some stability and remaining exposed during bank-full flows. Islands are very important from both morphological and ecological points of view, representing the most natural condition of a fluvial system and are strongly influenced by human impacts. This study aims at analyzing the morphological and vegetation characteristics of three different typologies of islands (pioneer, young and stable in three distinct rivers in the NE of Italy, affected by different intensities of human pressure. The study was conducted on several sub-reaches of the Piave, Brenta and Tagliamento rivers. The first is a gravel-bed river, which suffered intense and multiple human impacts, especially due to dam building and in-channel gravel mining. The same alterations can also be observed in the Brenta river, which also presents bank protections, hydropower schemes and water diversions. On the other hand, the Tagliamento river is a gravel-bed river characterized by a high level of naturality and very low human pressures. The analyses were conducted using aerial photographs and LiDAR data acquired in 2010 in order to define and distinguish the three different island typologies and to obtain a characterization of ground and vegetation features. The results suggest that the fluvial islands lie at different elevations and this fact implies a different resistance capacity during flood events. Pioneer islands and young islands lie at lower elevations than stable islands causing a lower capacity to survive during considerable flood events, in fact in most cases those islands typologies were removed by ordinary floods. Stable islands lie at higher elevations and only intense and infrequent flood events (RI > 10-15 years are able to determine considerable erosions. Regarding the characteristics of vegetation, we can

  11. Tributary debris fans and the late Holocene alluvial chronology of the Colorado River, eastern Grand Canyon, Arizona

    Science.gov (United States)

    Hereford, R.; Thompson, K.S.; Burke, K.J.; Fairley, H.C.

    1996-01-01

    Bouldery debris fans and sandy alluvial terraces of the Colorado River developed contemporaneously during the late Holocene at the mouths of nine major tributaries in eastern Grand Canyon. The age of the debris fans and alluvial terraces contributes to understanding river hydraulics and to the history of human activity along the river, which has been concentrated on these surfaces for at least two to three millennia. Poorly sorted, coarse-grained debris-flow deposits of several ages are interbedded with, overlie, or are overlapped by three terrace-forming alluviums. The alluvial deposits are of three age groups: the striped alluvium, deposited from before 770 B.C. to about A.D. 300; the alluvium of Pueblo II age deposited from about A.D. 700 to 1200; and the alluvium of the upper mesquite terrace, deposited from about A.D. 1400 to 1880. Two elements define the geomorphology of a typical debris fan: the large, inactive surface of the fan and a smaller, entrenched, active debris-flow channel and fan that is about one-sixth the area of the inactive fan. The inactive fan is segmented into at least three surfaces with distinctive weathering characteristics. These surfaces are conformable with underlying debris-flow deposits that date from before 770 B.C. to around A.D. 660, A.D. 660 to before A.D. 1200, and from A.D. 1200 to slightly before 1890, respectively, based on late-19th-century photographs, radiocarbon and archaeologic dating of the three stratigraphically related alluviums, and radiocarbon dating of fine-grained debris-flow deposits. These debris flows aggraded the fans in at least three stages beginning about 2.8 ka, if not earlier in the late Holocene. Several main-stem floods eroded the margin of the segmented fans, reducing fan symmetry. The entrenched, active debris-flow channels contain deposits debris fans at the mouth of the channel adjacent to the river. Early and middle Holocene debris-flow and alluvial deposits have not been recognized, as they were

  12. Factors controlling phosphorus export from agricultural/forest and residential systems to rivers in eastern China, 1980-2011

    Science.gov (United States)

    Chen, Dingjiang; Hu, Minpeng; Wang, Jiahui; Guo, Yi; Dahlgren, Randy A.

    2016-02-01

    This study quantified long-term response of riverine total phosphorus (TP) export to changes in land-use, climate, and net anthropogenic phosphorus inputs to agricultural/forest (NAPIAF) and residential (NAPIR) systems for the upper Jiaojiang watershed in eastern China. Annual NAPIAF rose by 73% in 1980-1999 followed by a 41% decline in 2000-2011, while NAPIR continuously increased by 122% over the 1980-2011 period. Land-use showed a 63% increase in developed land area (D%) and a 91% increase in use of efficient drainage systems on agricultural land area (AD%) over the study period. Although no significant trends were observed in annual river discharge or precipitation, the annual number of storm events rose by 90% along with a 34% increase in the coefficient of variation of daily rainfall. In response to changes of NAPIAF, NAPIR, land-use and precipitation patterns, riverine TP flux increased 16.0-fold over the 32-year record. Phosphorus export via erosion and leaching was the dominant pathway for P delivery to rivers. An empirical model incorporating annual NAPIAF, NAPIR, precipitation, D%, and AD% was developed (R2 = 0.96) for apportioning riverine TP sources and predicting annual riverine TP fluxes. The model estimated that NAPIAF, NAPIR and legacy P sources contributed 19-56%, 16-67% and 13-32% of annual riverine TP flux in 1980-2011, respectively. Compared to reduction of NAPIAF, reduction of NAPIR was predicted to have a greater immediate impact on decreasing riverine TP fluxes. Changes in anthropogenic P input sources (NAPIAF vs. NAPIR), land-use, and precipitation patterns as well as the legacy P source can amplify P export from landscapes to rivers and should be considered in developing P management strategies to reduce riverine P fluxes.

  13. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume III : Evaluation of the 1997 Predictions of the Run-Timing of Wild Migrant Yearling and Subyearling Chinook and Sockeye in the Snake River Basin Using Program RealTime.

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Richard L.

    1998-07-01

    Since the 1994 outmigration, program RealTime has been applied to provide in-season predictions of smolt outmigration timing for individual and aggregates of listed threatened and endangered Snake River salmon stocks. Results from the 1997 smolt outmigrations of wild Snake River yearling and subyearling chinook show prediction of run-timing can be accurately forecasted. The number of release sites meeting previous years criteria for RealTime forecasts dropped to five for the wild spring/summer chinook parr PIT-tagged in 1996: Catherine Creek, Imnaha, Lostine, Minam and South Fork Salmon Rivers. An experiment in lessening previous RealTime requirements for forecasting a outmigration in progress added three release sites of chinook: Lake Creek, Secesh and South Fork Wenaha Rivers; and one release of age 1+ sockeye at Redfish Lake. Passage indices provided by the Fish Passage Center for Lower Granite Dam were monitored for the wild subyearling chinook outmigration. Investigation continued into basing predictions on historical years with similar flows as a way to improve forecasting performance for the wild subyearling outmigration. Program RealTime's output is a series of estimated percentages of the status of the smolt outmigration throughout the season. To compare the performance the program from year to year, or to compare various assumptions used set up the forecasting, the mean absolute deviance (MAD) of the daily predicted outmigration-proportion from the actual outmigration-proportion is calculated post-season. Furthermore, these MAD's are considered for three periods of the season: the first 50% of the season, the second 50%, and the entire season.

  14. Two Sri Lankan cases of identified sea snake bites, without envenoming.

    Science.gov (United States)

    Senanayake, Manouri P; Ariaratnam, C Ariaranee; Abeywickrema, Sudath; Belligaswatte, Ashanka

    2005-06-01

    Sea snakes are among the most venomous creatures encountered around coasts and reefs, in estuaries, rivers and at sea. Their venoms are more toxic than those of land snakes. However, they are rarely aggressive or menacing. Bites have become unusual with the advent of modern fishing methods but the two encounters we report, in the Indian Ocean off the shores of Sri Lanka, emphasise that sea snake bites may not result in envenoming.

  15. Surface water - groundwater relationship in the downstream part of the Komadougou Yobe River (Eastern Sahelian Niger)

    Science.gov (United States)

    Hector, B.; Genthon, P.; Luxereau, A.; Descloîtres, M.; Moumouni Moussa, A.; Abdou, H.

    2012-04-01

    The Komadougou Yobe (KY) is a temporary river meandering on nearly 100 km along the Niger/Nigeria border in its lower part, before reaching the endoreic Lake Chad. There, seasonal flow from July to January is related to rainfall amount on the upstream Jos Plateau, Nigeria. In the semi-arid downstream area (350 mm annual rainfall in Diffa, Niger) the KY is the main source of recharge for the sandy quaternary aquifer which is used both for irrigation and for drinking water supply. The borders of the KY in Niger are subjected to an agricultural development involving intensive irrigated cropping of sweet pepper mainly produced for sale in Nigeria. Irrigation waters are mainly extracted from the KY, and therefore irrigation must stop when the River runs dry, but irrigation from wells is now developing with an increased risk of soil salinization. The flow rate of the KY has been impacted both by the 80s and 90s droughts, also underwent by the entire Sahel, and by the building up of a series of dams starting from the 70s in Nigeria. Therefore the KY and its relations with the underlying groundwaters should be carefully monitored to provide guidelines for policy makers in charge of the development of this area. However, in this remote area, data are scarce and often discontinuous : there are for example no continuous groundwater level data from before the drought. As part of the Lake Chad French IRD project, series of campaigns involving water level, exploration geophysics, gravity, soil sampling and social studies have been carried out between 2008 and 2011. They allowed to build a numerical model for groundwater-river interactions which in some instances has been compared with previously recorded data. This model is then forced with theoretical climatic senarii based on humid 60s data and data from the drought period. This allows discussing the relationships between the river and groundwaters in a changing climate. Our results militate for the setting up of a limited

  16. Spatial and temporal variations of water quality in Cao-E River of eastern China

    Institute of Scientific and Technical Information of China (English)

    CHEN Ding-jiang; LU Jun; YUAN Shao-feng; JIN Shu-quan; SHEN Ye-na

    2006-01-01

    Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L,respectively. TN is the main polluted indices for Sub-watershed Ⅰ, Ⅱ, Ⅳ and Ⅴ (0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L),CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed Ⅲ.There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed Ⅰ and Ⅱ) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed Ⅲ, Ⅳ and Ⅴ) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water

  17. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume VI : Evaluation of the 2000 Predictions of the Run-Timing of Wild Migrant Chinook Salmon and Steelhead Trout, and Hatchery Sockeye Salmon in the Snake River Basin, and Combined Wild Hatchery Salminids Migrating to Rock Island and McNary Dams using Program RealTime.

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Caitlin

    1998-07-01

    Program RealTime provided tracking and forecasting of the 2000 in season outmigration via the internet for stocks of wild PIT-tagged spring/summer chinook salmon. These stocks were ESUs from nineteen release sites above Lower Granite dam, including Bear Valley Creek, Big Creek, Camas Creek (new), Cape Horn Creek, Catherine Creek, Elk Creek, Herd Creek, Imnaha River, Johnson Creek (new), Lake Creek, Loon Creek, Lostine River, Marsh Creek, Minam River, East Fork Salmon River (new), South Fork Salmon River, Secesh River, Sulfur Creek and Valley Creek. Forecasts were also provided for two stocks of hatchery-reared PIT-tagged summer-run sockeye salmon, from Redfish Lake and Alturas Lake (new); for a subpopulation of the PIT-tagged wild Snake River fall subyearling chinook salmon; for all wild Snake River PIT-tagged spring/summer yearling chinook salmon (new) and steelhead trout (new)detected at Lower Granite Dam during the 2000 outmigration. The 2000 RealTime project began making forecasts for combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout migrating to Rock Island and McNary Dams on the mid-Columbia River and the mainstem Columbia River. Due to the new (in 1999-2000) Snake River basin hatchery protocol of releasing unmarked hatchery-reared fish, the RealTime forecasting project no longer makes run-timing forecasts for wild Snake River runs-at-large using FPC passage indices, as it has done for the previous three years (1997-1999). The season-wide measure of Program RealTime performance, the mean absolute difference (MAD) between in-season predictions and true (observed) passage percentiles, improved relative to previous years for nearly all stocks. The average season-wide MAD of all (nineteen) spring/summer yearling chinook salmon ESUs dropped from 5.7% in 1999 to 4.5% in 2000. The 2000 MAD for the hatchery-reared Redfish Lake sockeye salmon ESU was the lowest recorded, at 6.0%, down

  18. PALEODRAINAGES OF THE EASTERN SAHARA - THE RADAR RIVERS REVISITED (SIR - A/B IMPLICATIONS FOR A MID - TERTIARY TRANS - AFRICAN DRAINAGE SYSTEM).

    Science.gov (United States)

    McCauley, John F.; Breed, Carlos S.; Schaber, Gerald G.; McHugh, William P.; Issawi, Bahay; Haynes, C. Vance; Grolier, Maurice J.; El Kilani, Ali

    1986-01-01

    A complex history of Cenozoic fluvial activity in the presently hyperarid eastern Sahara is inferred from Shuttle Imaging Radar (SIR) data and postflight field investigations in southwest Egypt and northwest Sudan. SIR images were coregistered with Landsat and existing maps as a guide to exploration of the buried paleodrainages (radar rivers) first discovered by SIR-A. Field observations explain the radar responses of three types of radar rivers: RR-1, RR-2, and RR-3. A generalized model of the radar rivers, based on field studies and regional geologic relations, shows apparent changes in river regimen since the large valleys were established during the late Paleogene-early Neogene eras. SIR-based mapping of these paleodrainages, although incomplete, reveals missing links in an area once thought to be devoid of master streams.

  19. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

    2008-12-03

    The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in this series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon

  20. Uranium and plutonium in anoxic marine sediments of the Santiago River mouth (Eastern Pacific, Mexico).

    Science.gov (United States)

    Almazán-Torres, María Guadalupe; Ordóñez-Regil, Eduardo; Ruiz-Fernández, Ana Carolina

    2016-11-01

    The uranium (U) and plutonium (Pu) content with depth in a sediment core collected in the continental shelf off the mouth of the Santiago River in the Mexican Pacific was studied to evaluate the contamination effects of the effluent of the Santiago-Lerma River as it moves into the sea. The large mass of terrestrial detritus delivered by the river influences the physicochemical and geochemical processes in the seafloor. Abnormal concentrations of U and Pu in sediments were examined as indicative of the effects of anoxic conditions. One of the indicators of pollution of seawater is the bacterial activity of the shallow seabed layer; and among the prevailing bacteria, the magnetotactic ones induce the formation of euhedral and framboidal shapes (pyrite). These pyrite entities are by-products of anoxic environments loaded with decomposing detrital material and are very abundant in the surface layers of the sediment core analyzed. The pyrite formation is the result of a biochemical reaction between iron and organic sulphur reduced by bacteria, and the pyrite entities precipitate to the seafloor. In the same upper zone of the profile, (238)U is readily immobilized, while (234)U is oxidized and dissolved in seawater by the effect of hot atom chemistry. This may cause the activity ratio (AR) (234)U/(238)U disequilibrium (near 0.41). Furthermore, in the shallow layer of the sediment core, an abnormally high concentration of (239+240)Pu was detected. In this upper layer, the activity concentrations found were 3.19 Bq kg(-1) for (238)U, 1.32 kg(-1) for (234)U and 2.78 Bq kg(-1) for (239+240)Pu. In the lower fractions of the sediment core, normal values of AR (234)U/(238)U (≈1) were found, with traces of (239+240)Pu.

  1. Microstructural and magnetic investigations of pseudotachylyte and ultracataclasite in the Hoping River, Tananao Complex, Eastern Taiwan

    Science.gov (United States)

    Kuo, Ruo-Lin; Chou, Yu-Min; Ferré, Eric. C.; Yeh, En-Chao; Chu, Hao-Tsu; Hu, Jyr-Ching

    2016-04-01

    Here we investigate seismic rupture processes through the microstructural and magnetic study of pseudotachylyte and ultracataclasite from the Hoping River area. Unlike other fault rocks, pseudotachylytes form through friction-related melting during an earthquake. Therefore, these rocks, regarded as earthquake fossils potentially hold valuable information on seismic deformation. Paradoxically, although Taiwan is a seismically active zone, reports of pseudotachylyte outcrops in Taiwan remain rare. Previous studies reported the first pseudotachylyte outcrop in the Hoping River from which the magnitude, direction and sense of seismic slip were subsequently determined. In this study, we apply new microstructural and magnetic approaches to investigate the pseudotachylyte veins. X- ray fluorescence (XRF) geochemical analyses show that the pseudotachylyte melt, formed by incongruent melting, is depleted in SiO2, Al2O3, Na2O and enriched in Fe2O3, K2O compared with the ultracataclasite and host rock. This observation suggests selective melting of biotite. Scanning electron microscopy (SEM) and transmission X-ray microscopy (TXM) supports the melt origin of the pseudotachylyte although melting occurred only in small spots, manifested by a few microcrystalline aggregates, with low melt percentage (≈10%). Small iron-oxide grains are discovered under TXM, which may be formed by the breakdown of biotite in the host rock during melting. The presence of iron oxide grains appears restricted to the pseudotachylyte. Since the iron content of the pseudotachylyte is slightly higher (4 wt. %) than the ultracataclasite and granitic host rock, magnetic hysteresis measurements were performed under high field (up to 1 Tesla) using a vibrating sample magnetometer (VSM) to determine the nature of ferromagnetic minerals. Magnetic hysteresis curves show the pseudotachylyte veins of the Hoping River are dominated by paramagnetic phases, with a very weak saturation isothermal remanent

  2. Magnetic Properties of a Fluvial Chronosequence From the Eastern Wind River Range, Wyoming

    Science.gov (United States)

    Quinton, E. E.; Dahms, D. E.; Geiss, C. E.

    2010-12-01

    In order to constrain the rate of magnetic enhancement in glacial fluvial sediments, we sampled modern soils from eight fluvial terraces in the East Wind River Range in Wyoming. Soil profiles up to 1.2 meters deep were described in the field and sampled in five cm intervals from a series of hand-dug pits or natural river-bank exposure. The age of the studied profiles are estimated to range from >600 ka to modern. They include Sacagawea Ridge, Bull Lake and Pinedale-age fluvial terraces as well as one Holocene profile. To characterize changes in magnetic properties we measured low-field magnetic susceptibility, anhysteretic remanent magnetization, isothermal remanent magnetization and S-ratios for all, and hysteresis loops for a selected sub-set of samples. Our measurements show no clear trend in magnetic enhancement with estimated soil age. The observed lack of magnetic enhancement in the older soils may be due to long-term deflation, which continuously strips off the magnetically enhanced topsoil. It is also possible that the main pedogenic processes, such as the development of well-expressed calcic horizons destroy or mask the effects of long-term magnetic enhancement.

  3. Drought assessment using a multivariate drought index in the Huaihe River basin of Eastern China

    Science.gov (United States)

    Li, Q.; Zeng, M.; Wang, H.; Li, P.; Wang, K.; Yu, M.

    2015-06-01

    The Huaihe River Basin having China's highest population density (662 persons per km2) lies in a transition zone between the climates of North and South China, and is thus prone to drought. Therefore, the paper aims to develop an appropriate drought assessment approach for drought assessment in the Huaihe River basin, China. Based on the Principal Component Analysis of precipitation, evapotranspiration, soil moisture and runoff, the three latter variables of which were obtained by use of the Xin'anjiang model, a new multivariate drought index (MDI) was formulated, and its thresholds were determined by use of cumulative distribution function. The MDI, the Standardized Precipitation Index (SPI) and the self-calibrating Palmer Drought Severity Index (sc-PDSI) time series on a monthly scale were computed and compared during 1988, 1999/2000 and 2001 drought events. The results show that the MDI exhibited certain advantages over the sc-PDSI and the SPI in monitoring drought evolution. The MDI formulated by this paper could provide a scientific basis for drought mitigation and management, and references for drought assessment elsewhere in China.

  4. Detection of Snake Fungal Disease Due to Ophidiomyces ophiodiicola in Virginia, USA.

    Science.gov (United States)

    Guthrie, Amanda L; Knowles, Susan; Ballmann, Anne E; Lorch, Jeffrey M

    2016-01-01

    Snake fungal disease (SFD) is an emerging disease of wildlife believed to be caused by Ophidiomyces ophiodiicola. Although geographic and host ranges have yet to be determined, this disease is characterized by crusty scales, superficial pustules, and subcutaneous nodules, with subsequent morbidity and mortality in some snake species. To confirm the presence of SFD and O. ophiodiicola in snakes of eastern Virginia, US, we clinically examined 30 free-ranging snakes on public lands from April to October 2014. Skin biopsy samples were collected from nine snakes that had gross lesions suggestive of SFD; seven of these biopsies were suitable for histologic interpretation, and eight were suitable for culture and PCR detection of O. ophiodiicola. Seven snakes had histologic features consistent with SFD and eight were positive for O. ophiodiicola by PCR or fungal culture.

  5. Source, composition and reactivity of sedimentary organic carbon in the river-dominated marginal seas: A study of the eastern Yellow Sea (the northwestern Pacific)

    Science.gov (United States)

    Yoon, Suk-Hee; Kim, Jung-Hyun; Yi, Hi-Il; Yamamoto, Masanobu; Gal, Jong-Ku; Kang, Sujin; Shin, Kyung-Hoon

    2016-08-01

    We investigated the source, composition and reactivity of sedimentary organic carbon (OC) in a river-dominated continental marginal sea, the eastern Yellow Sea. A multi-proxy approach was applied to 9 riverbank sediments and 69 marine surface sediments, combining bulk and molecular organic parameters. The riverbank sediments (n=9) have on average low C/N ratio (4.8±0.5) and enriched δ13CTOC values (-21.5±0.6%) while the BIT index is on average 0.27. The sedimentary OC in the marine surface sediments appears to have a predominantly marine origin (on average C/N ratio=7.0±0.6 and δ13CTOC=-21.9±0.5%, n=69) with minor contribution of continental (i.e. soil- and lake/river-derived) OC (on average BIT index=0.00±0.01, n=69). However, the Δ14C values were depleted (on average -227±53%, n=8). Accordingly, our results highlight that fossil OC, potentially derived from erosion of sedimentary bedrocks in the catchment areas and/or human activities is being contributed to the sedimentary OC pool in the eastern Yellow Sea. More work is needed to better constrain the source, composition, and age of the organic material supplied to the eastern Yellow Sea, given the lack of biogeochemical data from the Korean rivers.

  6. Snake evolution and prospecting of snake venom

    NARCIS (Netherlands)

    Vonk, Freek Jacobus

    2012-01-01

    in this thesis I have shown that snakes have undergone multiple changes in their genome and embryonic development that has provided them with the variation to which natural selection could act. This thesis provides evidence for the variable mechanisms of venom gene evolution, which presumably is muc

  7. Snake evolution and prospecting of snake venom

    NARCIS (Netherlands)

    Vonk, Freek Jacobus

    2012-01-01

    in this thesis I have shown that snakes have undergone multiple changes in their genome and embryonic development that has provided them with the variation to which natural selection could act. This thesis provides evidence for the variable mechanisms of venom gene evolution, which presumably is

  8. Snake evolution and prospecting of snake venom

    NARCIS (Netherlands)

    Vonk, Freek Jacobus

    2012-01-01

    in this thesis I have shown that snakes have undergone multiple changes in their genome and embryonic development that has provided them with the variation to which natural selection could act. This thesis provides evidence for the variable mechanisms of venom gene evolution, which presumably is muc

  9. Geological Features of the Eastern Sector of the Bangong Co-Nujiang River Suture Zone: Tethyan Evolution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    According to an analysis of the geological features in the eastern sector of the Bangong Co-Nujiang River suture zone, the Tethyan evolution can be divided into three stages. (1) The Embryo-Tethyan stage (Pz1): An immature volcanic arc developed in Taniantaweng (Tanen Taunggyi) Range, indicating the existence of an Embryo-Tethyan ocean. (2) The Palaeo-Tethyan stage (C-T2): During the Carboniferous the northern side of the Taniantaweng Range was the main domain of the Palaeo-Tethyan ocean, in which developed flysch sediments intercalated with bimodal volcanic rocks and oceanic tholeiite, and Pemian-Early Triassic arc granites were superimposed on the Taniantaweng magmatic arc; on the southern side the Dêngqên-Nujiang zone started secondary extension during the Carboniferous, in which the Nujiang ophiolite developed, and the Palaeo-Tethyan ocean closed before the Middle Triassic. (3) The Neo-Tethyan stage (T3-E): During the Late Triassic the Dêngqên zone developed into a relatively matural ocean basin, in which the Dêngqên ophiolite was formed. By the end of the Triassic intraocean subduction occurred, and the ocean domain was reduced gradually, and collided and closed by the end of the Early Jurassic, forming the Yazong mélange; then the Tethyan ocean was completely closed.

  10. The geochemistry characteristic and dating of cold seepage carbonates of the Pearl River Mouth Basin, eastern of South China Sea

    Science.gov (United States)

    Fang, Yunxin; Fu, Shaoying

    2015-04-01

    Cold seepage carbonates are usually formed by the interaction of methane oxidizing archaea, sulfate reducing bacteria and cold seepage which contain abundant venting hydrocarbon gases. The presence of cold seepage carbonates on the seabed is one of the evidences that the area exist venting hydrocarbon gases, which are usually result by the dissociation of gas hydrate. The cold seepage property and fluid flow rate can influence the oxidation-deoxidation environment of the bottom water and sediment. Many previous studies focused on the mineral composition, microstructure, elemental composition, isotope composition of the cold seepage carbonates and isotopic dating for the cold seepage carbonates. The isotopic dating for the cold seepage carbonates can provide the information of the gas hydrate formation and dissociation in some area of the South China Sea. High precision TIMS-U dating and 14C dating are used as routine method for the dating of the Quaternary carbonates and fossils. The cold seepage carbonates in the study include the samples collected by ROV on the seabed and the drilling for gas hydrate in the Pearl River Mouth Basin, eastern of the South China Sea. The authigenic carbonate occurred in different depth in the A, B and C drilling site. They may be represent different events of gas hydrate formation and dissociation in the Quaternary. The dating study for all the cold seepage carbonates can provide the relative accurate eras of the gas hydrate dissociation events in certain area of the South China Sea.

  11. Effects of the rate of releases from Sam Rayburn Reservoir on the Aeration Capacity of the Angelina River, eastern Texas

    Science.gov (United States)

    Rawson, Jack; Goss, Richard L.; Rathbun, Ira G.

    1980-01-01

    A three-phase study was conducted during July and August 1979 to determine the effects of varying release rates through the power-outlet works at Sam Rayburn Reservoir, eastern Texas, on aeration capacity of a 14-mile reach of the Angelina River below Sam Rayburn Dam. The dominant factors that affected the aeration capacity during the study time were time of travel and the dissolved-oxygen deficit of the releases. Aeration was low throughout the study but increased in response to increases in the dissolved-oxygen deficit and the duration of time that the releases were exposed to the atmosphere (time of travel). The average concentration of dissolved oxygen sustained by release of 8,800 cubic feet per second decreased from 5.0 milligrams per liter at a site near the power outlet to 4.8 milligrams per liter at a site about 14 miles downstream; the time of travel averaged about 8 hours. The average concentration of dissolved oxygen in flow sustained by releases of 2,200 cubic feet per second increased from 5.2 to 5.5 milligrams per liter; the time of travel averaged about 20 hours. (USGS)

  12. Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil

    Science.gov (United States)

    Melo, Davi de C. D.; Scanlon, Bridget R.; Zhang, Zizhan; Wendland, Edson; Yin, Lei

    2016-11-01

    Droughts are particularly critical for Brazil because of impacts on water supply and because most (70 %) of its electricity is derived from hydroelectric generation. The Paraná basin (PB), a major hydroelectric producing region with 32 % (60 million people) of Brazil's population, recently experienced the most severe drought since the 1960s, compromising the water supply for 11 million people in São Paulo. The objective of this study is to quantify linkages between meteorological and hydrological droughts based on remote sensing, modelling, and monitoring data using the Paraná River basin in south-eastern Brazil as a case study. Two major meteorological droughts were identified in the early 2000s and 2014, with precipitation 20-50 % below the long-term mean. Total water storage change estimated from the Gravity Recovery and Climate Experiment (GRACE) satellites declined by 150 km3 between April 2011 and April 2015. Simulated soil moisture storage declined during the droughts, resulting in decreased runoff into reservoirs. As a result, reservoir storage decreased by 30 % relative to the system's maximum capacity, with negative trends ranging from 17 (May 1997-April 2001) to 25 km3 yr-1 (May 2011-April 2015). Storage in upstream reservoirs is mostly controlled by natural climate forcing, whereas storage in downstream reservoirs also reflects dam operations. This study emphasizes the importance of integrating remote sensing, modelling, and monitoring data to evaluate droughts and to establish a preliminary understanding of the linkages between a meteorological and hydrological drought for future management.

  13. Field Review of Fish Habitat Improvement Projects in the Grande Ronde and John Day River Basins of Eastern Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Beschta, Robert L.; Platts, William S.; Kauffman, J. Boone

    1991-10-01

    The restoration of vegetation adapted to riparian environments and the natural succession of riparian plant communities is necessary to recreate sustainable salmonid habitat and should be the focal point for fish habitat improvement programs. In mid-August of 1991, a field review of 16 Salmon habitat improvement sites in the Grande Ronde and John Day River Basins in Eastern Oregon was undertaken. The review team visited various types of fish habitat improvements associated with a wide range of reach types, geology, channel gradients, stream sizes, and vegetation communities. Enhancement objectives, limiting factors, landuse history, and other factors were discussed at each site. This information, in conjunction with the reviewer's field inspection of portions of a particular habitat improvement project, provided the basis for the following report. This report that follows is divided into four sections: (1) Recommendations, (2) Objectives, (3) Discussion and Conclusions, and (4) Site Comments. The first section represents a synthesis of major recommendations that were developed during this review. The remaining sections provide more detailed information and comments related to specific aspects of the field review.

  14. Landform-related permafrost characteristics in the source area of the Yellow River, eastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Li, Jing; Sheng, Yu; Wu, Jichun; Feng, Ziliang; Ning, Zuojun; Hu, Xiaoying; Zhang, Xiumin

    2016-09-01

    The source area of the Yellow River (SAYR) lies in the eastern part of the Qinghai-Tibet Plateau (QTP). Glaciers are absent in the area, but permafrost is widespread because of the high elevations, typically 4200-5000 m a.s.l. Landforms in the SAYR were classified into seven basic types, based on their morphological characteristics and genesis, and further divided into 12 sub-classes based on geomorphic processes. Permafrost development and ground temperature in boreholes were analyzed on representative landforms in the SAYR. Permafrost was discontinuously distributed at 4300-4400 m a.s.l. in fluvial plains because of variations in local topography, sediments, vegetation and water content. In hills and low-relief mountains in the western part of the study area, permafrost is continuous above 4400 m a.s.l. even on unshaded south-facing slopes. In contrast, permafrost in the central part of the study area is discontinuous over this elevation range. Analysis of ground temperature measurements revealed that three macro-scale factors, latitude, longitude, and elevation, explain 72.8% of the variation in the measured mean annual ground temperature (MAGT). The remaining 27.2% can potentially be explained by variations in topography and land cover within the SAYR.

  15. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume V : Evaluation of the 1999 Predictions of the Run-Timing of Wild Migrant Yearling and Subyearling Chinook Salmon and Steelhead Trout, and Hatchery Sockeye Salmon in the Snake River Basin using Program RealTime.

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Caitlin

    1998-07-01

    Program RealTime provided tracking and forecasting of the 1999 inseason outmigration via the internet for stocks of wild PIT-tagged spring/summer chinook salmon. These stocks were ESUs from sixteen release sites above Lower Granite dam, including Bear Valley Creek, Big Creek, Cape Horn Creek, Catherine Creek, Elk Creek, Herd Creek, Imnaha River, Lake Creek, Loon Creek, Lostine River, Marsh Creek, Minam River, South Fork Salmon River, and Secesh River, Sulfur Creek and Valley Creek. Forecasts were also provided for a stock of hatchery-reared PIT-tagged summer-run sockeye salmon from Redfish Lake and for the runs-at-large of Snake River wild yearling chinook salmon, and steelhead trout. The 1999 RealTime project began making forecasts for a new stock of PIT-tagged wild fall subyearling chinook salmon, as a substitute for forecasts of the wild run-at-large, discontinued June 6. Forecasts for the run-at-large were discontinued when a large release of unmarked hatchery fish into the Snake River made identification of wild fish impossible. The 1999 Program RealTime performance was comparable to its performance in previous years with respect to the run-at-large of yearling chinook salmon (whole season MAD=3.7%), and the run of hatchery-reared Redfish Lake sockeye salmon (whole season MAD=6.7%). Season-wide performance of program RealTime predictions for wild Snake River yearling chinook salmon ESUs improved in 1999, with mean MADs from the first half of the outmigrations down from 15.1% in 1998 to 4.5% in 1999. RealTime performance was somewhat worse for the run-at-large of steelhead trout in 1999, compared to 1998, particularly during the last half of the outmigration when the MAD increased from 2.7% in 1998 to 6.1% in 1999. A pattern of over-predictions was observed in half of the yearling chinook salmon ESUs and the steelhead run-at-large during the month of May. Lower-than-average outflows were observed at Lower Granite dam during the first half of May, the only

  16. White sturgeon mitigation and restoration in the Columbia and Snake rivers upstream from Bonneville Dam, Annual Progress Report April 2006 - March 2007. Report C

    Science.gov (United States)

    Parsley, M.J.; Kofoot, P.

    2008-01-01

    Describe reproduction and early life history characteristics of white sturgeon populations in the Columbia River between Bonneville and Priest Rapids dams. Define habitat requirements for spawning and rearing white sturgeon and quantify the extent of habitat available in the Columbia River between Bonneville and Priest Rapids dams. Progress updates on young-of-the-year recruitment in Bonneville Reservoir and indices of white sturgeon spawning habitat for 2006 for McNary, John Day, The Dalles, and Bonneville dam tailrace spawning areas.

  17. Optimal operation of a multipurpose multireservoir system in the Eastern Nile River Basin

    Directory of Open Access Journals (Sweden)

    Q. Goor

    2010-07-01

    Full Text Available The upper Blue Nile River Basin in Ethiopia is a largely untapped resource despite its huge potential for hydropower generation and irrigated agriculture. Controversies exist as to whether the numerous infrastructural development projects that are on the drawing board in Ethiopia will generate positive or negative externalities downstream in Sudan and Egypt. This study attempts at 1 examining the (re-operation of infrastructures, in particular the proposed reservoirs in Ethiopia and the High Aswan Dam and 2 assessing the economic benefits and costs associated with the storage infrastructures in Ethiopia and their spatial and temporal distribution. To achieve this, a basin-wide integrated hydro-economic model has been developed. The model integrates essential hydrologic, economic and institutional components of the river basin in order to explore both the hydrologic and economic consequences of various policy options and planned infrastructural projects. Unlike most of the deterministic economic-hydrologic models reported in the literature, a stochastic programming formulation has been adopted in order to: i understand the effect of the hydrologic uncertainty on management decisions, ii determine allocation policies that naturally hedge against the hydrological risk, and iii assess the relevant risk indicators. The study reveals that the development of four mega dams in the upper part of the Blue Nile Basin would change the drawdown refill cycle of the High Aswan Dam. Should the operation of the reservoirs be coordinated, they would enable an average annual saving of at least 2.5 billion m3 through reduced evaporation losses from the Lake Nasser. Moreover, the new reservoirs (Karadobi, Beko-Abo, Mandaya and Border in Ethiopia would have significant positive impacts on hydropower generation and irrigation in Ethiopia and Sudan: at the basin scale, the annual energy generation is boosted by 38.5 TWh amongst which 14.2 TWh due to storage

  18. Optimal operation of a multipurpose multireservoir system in the Eastern Nile River Basin

    Directory of Open Access Journals (Sweden)

    Q. Goor

    2010-10-01

    Full Text Available The upper Blue Nile River Basin in Ethiopia is a largely untapped resource despite its huge potential for hydropower generation and irrigated agriculture. Controversies exist as to whether the numerous infrastructural development projects that are on the drawing board in Ethiopia will generate positive or negative externalities downstream in Sudan and Egypt. This study attempts at (1 examining the (re-operation of infrastructures, in particular the proposed reservoirs in Ethiopia and the High Aswan Dam and (2 assessing the economic benefits and costs associated with the storage infrastructures in Ethiopia and their spatial and temporal distribution. To achieve this, a basin-wide integrated hydro-economic model has been developed. The model integrates essential hydrologic, economic and institutional components of the river basin in order to explore both the hydrologic and economic consequences of various policy options and planned infrastructural projects. Unlike most of the deterministic economic-hydrologic models reported in the literature, a stochastic programming formulation has been adopted in order to: (i understand the effect of the hydrologic uncertainty on management decisions, (ii determine allocation policies that naturally hedge against the hydrological risk, and (iii assess the relevant risk indicators. The study reveals that the development of four mega dams in the upper part of the Blue Nile Basin would change the drawdown refill cycle of the High Aswan Dam. Should the operation of the reservoirs be coordinated, they would enable an average annual saving of at least 2.5 billion m3 through reduced evaporation losses from the Lake Nasser. Moreover, the new reservoirs (Karadobi, Beko-Abo, Mandaya and Border in Ethiopia would have significant positive impacts on hydropower generation and irrigation in Ethiopia and Sudan: at the basin scale, the annual energy generation is boosted by 38.5 TWh amongst which 14.2 TWh due to

  19. Nonreversible Homoclinic Snaking

    CERN Document Server

    Knobloch, Jürgen; Vielitz, Martin

    2010-01-01

    Homoclinic snaking refers to the sinusoidal snaking continuation curve of homoclinic orbits near a heteroclinic cycle connecting an equilibrium E and a periodic orbit P. Along this curve the homoclinic orbit performs more and more windings about the periodic orbit. Typically this behaviour appears in reversible Hamiltonian systems. Here we discuss this phenomenon in systems without any particular structure. We give a rigorous analytical verification of homoclinic snaking under certain assumptions on the behaviour of the stable and unstable manifolds of E and P. We show how the snaking behaviour depends on the signs of the Floquet multipliers of P. Further we present a nonsnaking scenario. Finally we show numerically that these assumptions are fulfilled in a model equation.

  20. 2006 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Eastern Washington and River Corridors

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WS) collected Light Detection and Ranging (LiDAR) data in eastern Washington, eastern Oregon, and southern Canada in October and November,...

  1. 2007 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Eastern Washington and River Corridors

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WS) collected Light Detection and Ranging (LiDAR) data in eastern Washington, eastern Oregon, and southern Canada in October and November,...

  2. 2007 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Eastern Washington and River Corridors

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WS) collected Light Detection and Ranging (LiDAR) data in eastern Washington, eastern Oregon, and southern Canada in October and November,...

  3. Pulmonoscopy of Snakes.

    Science.gov (United States)

    Knotek, Zdenek; Jekl, Vladimir

    2015-09-01

    Pulmonoscopy is a practical diagnostic tool for investigating respiratory diseases in snakes. Two different approaches exist for pulmonoscopy, tracheal and transcutaneous. The access to the proximal or distal lung is limited by the length and diameter of the endoscope when using the tracheal approach. The transcutaneous approach allows direct evaluation of the lung and distal trachea through the air sac. Both of the methods are safe, and specific contraindications for pulmonoscopy in snakes are not known except for any anesthesia contraindication.

  4. Spatial and environmental effects on plant communities in the Yellow River Delta, Eastern China

    Institute of Scientific and Technical Information of China (English)

    SONG Chuang-ye; LIU Gao-huan; LIU Qing-sheng

    2009-01-01

    Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspondence analyses (DCCAs) and a two-way indicator species analysis (TWINSPAN). The distribution pattern and influential factors of the plant communities were also analyzed by testing elevation, slope, soil characteristics, longitude and latitude of 134 vegetation samples collected by representative plot sampling methods. Results showed that all the 134 vegetation samples could be divided into seven vegetation groups, separately dominated by Robinia pseucdoacacia, Imperata cylindrical, Miscanthus saccharifleus, Suaeda salsa, Aeluropus sinensis, Phragmites australis and Tamarix chinensis. The vegetation distribution pattern was mainly related to elevation, ground water depth and soil characteristics such as salinity and soluble potassium. Among the factors affecting distribution pattern of the plant communities, the species matrix explained by non-spatial environmental variation accounts for 45.2% of total variation. Spatial variation and spatial-structured environmental variation explain 11.8%, and 2.2%, respectively. Remained 40.8% of undetermined variation is attributed to biological and stochastic factors.

  5. Mercury concentrations in water and mercury and selenium concentrations in fish from Brownlee Reservoir and selected sites in the Boise and Snake Rivers, Idaho and Oregon, 2013–15

    Science.gov (United States)

    Williams, Marshall L.; MacCoy, Dorene E.

    2016-06-30

    Mercury (Hg) analyses were conducted on samples of sport fish and water collected from selected sampling sites in Brownlee Reservoir and the Boise and Snake Rivers to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho, between 2013 and 2015. City of Boise personnel collected water samples from six sites between October and November 2013 and 2015, with one site sampled in 2014. Total Hg concentrations in unfiltered water samples ranged from 0.48 to 8.8 nanograms per liter (ng/L), with the highest value in Brownlee Reservoir in 2013. All Hg concentrations in water samples were less than the U.S. Environmental Protection Agency (USEPA) Hg chronic aquatic life criterion of 12 ng/L.The USEPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). The Idaho Department of Environmental Quality adopted the USEPA’s fish-tissue criterion and established a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg Hg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to advise allowable fish consumption from specific water bodies. The geometric mean Hg concentration of 10 fish of a single species collected from a single water body

  6. Field-trip guide to the vents, dikes, stratigraphy, and structure of the Columbia River Basalt Group, eastern Oregon and southeastern Washington

    Science.gov (United States)

    Camp, Victor E; Reidel, Stephen P.; Ross, Martin E.; Brown, Richard J.; Self, Stephen

    2017-06-22

    The Columbia River Basalt Group covers an area of more than 210,000 km2 with an estimated volume of 210,000 km3. As the youngest continental flood-basalt province on Earth (16.7–5.5 Ma), it is well preserved, with a coherent and detailed stratigraphy exposed in the deep canyonlands of eastern Oregon and southeastern Washington. The Columbia River flood-basalt province is often cited as a model for the study of similar provinces worldwide.This field-trip guide explores the main source region of the Columbia River Basalt Group and is written for trip participants attending the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon, USA. The first part of the guide provides an overview of the geologic features common in the Columbia River flood-basalt province and the stratigraphic terminology used in the Columbia River Basalt Group. The accompanying road log examines the stratigraphic evolution, eruption history, and structure of the province through a field examination of the lavas, dikes, and pyroclastic rocks of the Columbia River Basalt Group.

  7. TDS-Eh graph analysis: a new water quality index and rural water supply implications of a river affected by mining in south-eastern Nigeria

    Institute of Scientific and Technical Information of China (English)

    I.C.EZEKWE; A.O.AISUBEOGUN; G.N.CHIMA; E.ODUBO

    2012-01-01

    The Ivo River Basin of south-eastern Nigeria is a water scarce and mining region,which suffers from water scarcity.The influence of mining activities on the quality of the Ivo River and its capacity for community water supply was investigated.Also the efficacy of TDS-Eh graph in explaining water quality was presented.Results indicated that the TDS-Eh graph highlights subtle chemical relationships which control water quality and provide a simple but generic pollution index for rapid water quality assessment.It was also discovered that the Ivo River could become an adequate alternative to groundwater as a source of rural water supply in the study area with an estimated average daily discharge of 6726000L and a rural population of less than 200000 persons.The Ivo River meets the WHO drinking water standards in 20 physicochemical water quality paramcters (pH,temperature,conductivity,turbidity,salinity,TDS,Eh,alkalinity,chloride,nitrate,sulfate,phosphate,calcium,magnesium,iron,manganese,zinc,lead and cadmium) analyzed and can therefore (with little treatment) provide up to 133.4% of average community water demand and 83.8% of maximum community water demand.The.impact of mining on Ivo River quality was found to have been moderated by the presence of carbonate rocks which may have enhanced the precipitation of heavy metals from the river.

  8. TDS-Eh graph analysis: a new water quality index and rural water supply implications of a river affected by mining in south-eastern Nigeria

    Science.gov (United States)

    Ezekwe, I. C.; Aisubeogun, A. O.; Chima, G. N.; Odubo, E.

    2012-03-01

    The Ivo River Basin of south-eastern Nigeria is a water scarce and mining region, which suffers from water scarcity. The influence of mining activities on the quality of the Ivo River and its capacity for community water supply was investigated. Also the efficacy of TDS-Eh graph in explaining water quality was presented. Results indicated that the TDS-Eh graph highlights subtle chemical relationships which control water quality and provide