WorldWideScience

Sample records for east rift zone

  1. Seismic anisotropy and mantle dynamics beneath the Malawi Rift Zone, East Africa

    Science.gov (United States)

    Reed, Cory A.; Liu, Kelly H.; Yu, Youqiang; Gao, Stephen S.

    2017-07-01

    SKS, SKKS, and PKS splitting parameters measured at 34 seismic stations that we deployed in the vicinity of the Cenozoic Malawi Rift Zone (MRZ) of the East African Rift System demonstrate systematic spatial variations with an average splitting time of 1.0 ± 0.3 s. The overall NE-SW fast orientations are consistent with absolute plate motion (APM) models of the African Plate constructed under the assumption of no-net rotation of the global lithosphere and are inconsistent with predicted APM directions from models employing a fixed hot spot reference frame. They also depart considerably from the trend of most of the major tectonic features. These observations, together with the results of anisotropy depth estimation using the spatial coherency of the splitting parameters, suggest a mostly asthenospheric origin of the observed azimuthal anisotropy. The single-layered anisotropy observed at 30 and two-layered anisotropy observed at 4 of the 34 stations can be explained by APM-related simple shear within the rheologically transitional layer between the lithosphere and asthenosphere, as well as by the horizontal deflection of asthenospheric flow along the southern and western edges of a continental block with relatively thick lithosphere revealed by previous seismic tomography and receiver function investigations. This first regional-scale shear wave splitting investigation of the MRZ suggests the absence of rifting-related active mantle upwelling or small-scale mantle convection and supports a passive-rifting process for the MRZ.

  2. Is Kīlauea's East Rift Zone eruption running out of gas?

    Science.gov (United States)

    Sutton, A. J.; Elias, T.; Orr, T. R.; Patrick, M. R.; Poland, M. P.; Thornber, C. R.

    2015-12-01

    Gases exsolving from magma are a key force that drives eruptive activity, and emissions from Kīlauea's East Rift Zone (ERZ) dominated the volcano's gas release from the beginning of the long-running and voluminous Pu'u 'Ō'ō eruption in 1983, through February 2008. In the months prior to the March 2008 onset of eruptive activity within Halema'uma'u Crater, however, SO2 degassing at the summit climbed substantially, and summit gas release has remained elevated since. These unprecedented emissions associated with the new summit eruption effectively began robbing gas from magma destined for Kīlauea's ERZ. As a result, ERZ SO2discharge, which had averaged 1,700 +-380 t/d for the previous 15 years, declined sharply and steadily beginning in September, 2008, and reached a new steady low of 380 +- 100 t/d by early 2011. This level persisted through mid-2015. In the years since the late 2008 downturn in ERZ SO2 emissions, there has been an overall slowdown in ERZ eruptive activity. Elevated emissions and effusive activity occurred briefly during the 2011 Kamoamoa fissure eruption and two other outbreaks at Pu'u 'Ō'ō , but otherwise ERZ eruptive activity had waned by 2010, when effusion rates were measured at about half of the long-term rate. Also, the sulfur preserved in ERZ olivine melt-inclusions, which provides a record of pre-eruptive SO2degassing, has steadily declined along with equilibration temperatures of host olivine phenocrysts, since 2008. We suggest that the drop in gas content of magma reaching the ERZ, owing to summit pre-eruptive degassing, has contributed significantly to the downturn in ERZ activity. While SO2 emissions from the ERZ have dropped to sustained levels lower than anything seen in the past 20 years, summit emissions have remained some of the highest recorded since regular measurements began at Kīlauea in 1979. Overall, average total SO2 discharge from Kīlauea in 2014, summit and ERZ, is still about 50% higher than for the 15 years prior

  3. Puhimau thermal area: a window into the upper east rift zone of Kilauea Volcano, Hawaii?

    Science.gov (United States)

    McGee, K.A.; Sutton, A.J.; Elias, T.; Doukas, M.P.; Gerlach, T.M.

    2006-01-01

    We report the results of two soil CO2 efflux surveys by the closed chamber circulation method at the Puhimau thermal area in the upper East Rift Zone (ERZ) of Kilauea volcano, Hawaii. The surveys were undertaken in 1996 and 1998 to constrain how much CO2 might be reaching the ERZ after degassing beneath the summit caldera and whether the Puhimau thermal area might be a significant contributor to the overall CO2 budget of Kilauea. The area was revisited in 2001 to determine the effects of surface disturbance on efflux values by the collar emplacement technique utilized in the earlier surveys. Utilizing a cutoff value of 50 g m−2 d−1 for the surrounding forest background efflux, the CO2 emission rates for the anomaly at Puhimau thermal area were 27 t d−1 in 1996 and 17 t d−1 in 1998. Water vapor was removed before analysis in all cases in order to obtain CO2 values on a dry air basis and mitigate the effect of water vapor dilution on the measurements. It is clear that Puhimau thermal area is not a significant contributor to Kilauea's CO2 output and that most of Kilauea's CO2 (8500 t d−1) is degassed at the summit, leaving only magma with its remaining stored volatiles, such as SO2, for injection down the ERZ. Because of the low CO2 emission rate and the presence of a shallow water table in the upper ERZ that effectively scrubs SO2 and other acid gases, Puhimau thermal area currently does not appear to be generally well suited for observing temporal changes in degassing at Kilauea.

  4. Selected time-lapse movies of the east rift zone eruption of KĪlauea Volcano, 2004–2008

    Science.gov (United States)

    Orr, Tim R.

    2011-01-01

    Since 2004, the U.S. Geological Survey's Hawaiian Volcano Observatory has used mass-market digital time-lapse cameras and network-enabled Webcams for visual monitoring and research. The 26 time-lapse movies in this report were selected from the vast collection of images acquired by these camera systems during 2004–2008. Chosen for their content and broad aesthetic appeal, these image sequences document a variety of flow-field and vent processes from Kīlauea's east rift zone eruption, which began in 1983 and is still (as of 2011) ongoing.

  5. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    Science.gov (United States)

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    beneath Kīlauea’s east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.

  6. Reconnaissance gas measurements on the East Rift Zone of Kilauea Volcano, Hawai'i by Fourier transform infrared spectroscopy

    Science.gov (United States)

    McGee, Kenneth A.; Elias, Tamar; Sutton, A. Jefferson; Doukas, Michael P.; Zemek, Peter G.; Gerlach, Terrence M.

    2005-01-01

    We report the results of a set of measurements of volcanic gases on two small ground level plumes in the vicinity of Pu`u `O`o cone on the middle East Rift Zone (ERZ) of Kilauea volcano, Hawai`i on 15 June 2001 using open-path Fourier transform infrared (FTIR) spectroscopy. The work was carried out as a reconnaissance survey to assess the monitoring and research value of FTIR measurements at this volcano. Despite representing emissions of residual volatiles from lava that has undergone prior degassing, the plumes contained detectable amounts of CO2, CO, SO2, HCl, HF and SiF4. Various processes, including subsurface cooling, condensation of water in the atmospheric plume, oxidation, dissolution in water, and reactions with wall rocks at plume vents affect the abundance of these gases. Low concentrations of volcanic CO2 measured against a high ambient background are not well constrained by FTIR spectroscopy. Although there appear to be some differences between these gases and Pu`u `O`o source gases, ratios of HCl/SO2, HF/SO2 and CO/SO2 determined by FTIR measurements of these two small plumes compare reasonably well with earlier published analyses of ERZ vent samples. The measurements yielded emission rate estimates of 4, 11 and 4 t d-1

  7. Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island

    Energy Technology Data Exchange (ETDEWEB)

    Burtchard, G.C.; Moblo, P. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1994-07-01

    The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

  8. Fleeing to Fault Zones: Incorporating Syrian Refugees into Earthquake Risk Analysis along the East Anatolian and Dead Sea Rift Fault Zones

    Science.gov (United States)

    Wilson, B.; Paradise, T. R.

    2016-12-01

    The influx of millions of Syrian refugees into Turkey has rapidly changed the population distribution along the Dead Sea Rift and East Anatolian Fault zones. In contrast to other countries in the Middle East where refugees are accommodated in camp environments, the majority of displaced individuals in Turkey are integrated into cities, towns, and villages—placing stress on urban settings and increasing potential exposure to strong shaking. Yet, displaced populations are not traditionally captured in data sources used in earthquake risk analysis or loss estimations. Accordingly, we present a district-level analysis assessing the spatial overlap of earthquake hazards and refugee locations in southeastern Turkey to determine how migration patterns are altering seismic risk in the region. Using migration estimates from the U.S. Humanitarian Information Unit, we create three district-level population scenarios that combine official population statistics, refugee camp populations, and low, median, and high bounds for integrated refugee populations. We perform probabilistic seismic hazard analysis alongside these population scenarios to map spatial variations in seismic risk between 2011 and late 2015. Our results show a significant relative southward increase of seismic risk for this period due to refugee migration. Additionally, we calculate earthquake fatalities for simulated earthquakes using a semi-empirical loss estimation technique to determine degree of under-estimation resulting from forgoing migration data in loss modeling. We find that including refugee populations increased casualties by 11-12% using median population estimates, and upwards of 20% using high population estimates. These results communicate the ongoing importance of placing environmental hazards in their appropriate regional and temporal context which unites physical, political, cultural, and socio-economic landscapes. Keywords: Earthquakes, Hazards, Loss-Estimation, Syrian Crisis, Migration

  9. Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.T.K.; Burtchard, G.C. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1995-05-01

    This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone, Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.

  10. Rifts in the tectonic structure of East Antarctica

    Science.gov (United States)

    Golynsky, Dmitry; Golynsky, Alexander

    2010-05-01

    It was established that riftogenic and/or large linear tectonic structures in East Antarctica are distributed with a steady regularity with average distance between them about 650 km. All these structures (13) represent objects of undoubted scientific and practical interest and might be considered as immediate objects for conducting integrated geological and geophysical investigations. Analysis and generalization of the RADARSAT satellite system imagery and radio-echosounding survey data collected in the eastern part of Princess Elizabeth Land allow us to distinguish spatial boundaries of previously unknown continental rift system that was proposed to name Gaussberg (Golynsky & Golynsky, 2007). The rift is about 500 km long, and taking into consideration its western continuation in the form of short (fragmented) faults, may exceed 700 km. The elevation difference between depressions and horsts reaches 3 km. The rift structure consists of two sub-parallel depressions separated by segmented horst-like rises (escarpments). Deep depressions within the rift reach more than 800 m bsl near the West Ice Shelf and within the central graben occupied by the Phillipi Glacier. The width of the Gaussberg Rift system varies from 60 km in the south-western area to 150 km near the West Ice Shelf. The Gaussberg rift is considered as a part of the Lambert rift system, which has a complicated structure clearly recognized over both the continent and also its margin. The Gaussberg rift probably exploited a weak zone between the Proterozoic mobile belt and the Archaean Vestfold-Rauer cratonic block. Supposedly it initiated at the turn of Jurassic and Permian epoch or a little bit earlier as in case of the Lambert rift where the Permian graben formation with coal-bearing deposits predetermined the subsequent development of submeridional rift zone. The Gaussberg and also the Scott rift developed in the Queen Marie Land, may be considered as continuations of the Mahanadi Valley rift and

  11. Classification of the rift zones of venus: Rift valleys and graben belts

    Science.gov (United States)

    Guseva, E. N.

    2016-05-01

    The spatial distribution of rift zones of Venus, their topographic configuration, morphometric parameters, and the type of volcanism associating with rifts were analyzed. This allowed the main characteristic features of rifts to be revealed and two different types of rift-forming structures, serving for classification of rift zones as rift valleys and graben belts, to be isolated. These structural types (facies) of rift zones are differently expressed in the relief: rift valleys are individual deep (several kilometers) W-shaped canyons, while graben belts are clusters of multiple V-shaped and rather shallow (hundreds of meters) depressions. Graben belts are longer and wider, as compared to rift valleys. Rift valleys are spatially associated with dome-shaped volcanic rises and large volcanos (concentrated volcanic sources), while graben belts do not exhibit such associations. Volcanic activity in the graben belts are presented by spacious lava fields with no apparent sources of volcanism. Graben belts and rift valleys were formed during the Atlian Period of geologic history of Venus, and they characterized the tectonic style of the planet at the late stages of its geologic evolution. Formation of this or that structural facies of the rift zones of Venus were probably governed by the thickness of the lithosphere, its rheological properties, and the development degree of the mantle diapirs associating with rift zones.

  12. Rifting and lower crustal reflectivity: A case study of the intracratonic Dniepr-Donets rift zone, Ukraine

    Science.gov (United States)

    Lyngsie, Stig B.; Thybo, Hans; Lang, Rasmus

    2007-12-01

    Intracratonic rifting, caused by late Devonian extensional stresses in the East European Craton, created the largest rift zone in Europe, the Pripyat-Dniepr-Donets rift (southeast Ukraine). The rift basin is approximately 2000 km long, up to 170 km wide, and 22 km deep. Wide-angle refraction and reflection seismic data from the Donbas Basin deep seismic Refraction and Reflection Experiments (DOBRE'99) project together with gravity and magnetic data are analyzed for the structure and evolution of the Donbas Fold Belt, which is the uplifted and deformed part of the Dniepr-Donets Basin. The seismic data are used for identification of large-scale crustal structures and modeling of the seismic velocities of the crust and uppermost mantle. A ray-trace-based velocity and density model is derived by joint inversion of gravity and traveltime data. The inversion result reveals a zone of high density and velocity beneath the basin at middle to lower crustal levels, slightly offset to the NE of the rift axis. Full waveform synthetic seismograms, matching the observed data, show high-amplitude and low-frequency arrivals from this high-density body as well as from the Moho. We interpret the high-amplitude, low-frequency signals as reflections from layered magmatic rocks, which intruded into the ductile lower crust during the main rift phase and subsequently were sorted by fractional crystallization. The intrusive material thickened the lower crust by approximately 50%. This may explain the enigmatic flat Moho topography across the rift zone which has been significantly stretched (β = 1.3). The rifting initiated in the late Devonian (Frasnien) as a consequence of back-arc extension in relation to subduction of the Paleo-Tethys Ocean. The subducting oceanic slab may have enriched the mantle with volatiles and created convection, leading to strong partial melting, upwelling, and continued rifting in the Famennien. We interpret the asymmetrical rift geometry as a combination of

  13. Seismicity of the Earth 1900-2013 East African Rift

    Science.gov (United States)

    Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio; Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2014-01-01

    The East African Rift system (EARS) is a 3,000-km-long Cenozoic age continental rift extending from the Afar triple junction, between the horn of Africa and the Middle East, to western Mozambique. Sectors of active extension occur from the Indian Ocean, west to Botswana and the Democratic Republic of the Congo (DRC). It is the only rift system in the world that is active on a continent-wide scale, providing geologists with a view of how continental rifts develop over time into oceanic spreading centers like the Mid-Atlantic Ridge.

  14. The Importance of Magmatic Fluids in Continental Rifting in East Africa

    Science.gov (United States)

    Muirhead, J.; Kattenhorn, S. A.; Ebinger, C. J.; Lee, H.; Fischer, T. P.; Roecker, S. W.; Kianji, G.

    2015-12-01

    The breakup of strong continental lithosphere requires more than far-field tectonic forces. Growing evidence for early-stage cratonic rift zones points to the importance of heat, magma and volatile transfer in driving lithospheric strength reduction. The relative contributions of these processes are fundamental to our understanding of continental rifting. We present a synthesis of results from geological, geochemical and geophysical studies in one of the most seismically and volcanically active sectors of the East African Rift (Kenya-Tanzania border) to investigate the role of fluids during early-stage rifting (integrated with subsurface imaging and fault kinematic data derived from the 38-station CRAFTI broadband seismic array. Teleseismic and abundant local earthquakes enable assessment of the state-of-stress and b-values as a function of depth. High Vp/Vs ratios and tomographic imaging suggest the presence of fluids in the crust, with high pore fluid pressures driving failure at lower tectonic stress. Together, these cross-disciplinary data provide compelling evidence that early-stage rifting in East Africa is assisted by fluids exsolved from deep magma bodies, some of which are imaged in the lower crust. We assert that the flux of deep magmatic fluids during rift initiation plays a key role in weakening lithosphere and localizing strain. High surface gas fluxes, fault-fed hydrothermal springs and persistent seismicity highlight the East African Rift as the ideal natural laboratory for investigating fluid-driven faulting processes in extensional tectonic environments.

  15. East Antarctic rifting triggers uplift of the Gamburtsev Mountains.

    Science.gov (United States)

    Ferraccioli, Fausto; Finn, Carol A; Jordan, Tom A; Bell, Robin E; Anderson, Lester M; Damaske, Detlef

    2011-11-16

    The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 1958. The preservation of Alpine topography in the Gamburtsevs may reflect extremely low long-term erosion rates beneath the ice sheet, but the mountains' origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere.

  16. Magma-compensated crustal thinning in continental rift zones.

    Science.gov (United States)

    Thybo, H; Nielsen, C A

    2009-02-12

    Continental rift zones are long, narrow tectonic depressions in the Earth's surface where the entire lithosphere has been modified in extension. Rifting can eventually lead to rupture of the continental lithosphere and creation of new oceanic lithosphere or, alternatively, lead to formation of wide sedimentary basins around failed rift zones. Conventional models of rift zones include three characteristic features: surface manifestation as an elongated topographic trough, Moho shallowing due to crustal thinning, and reduced seismic velocity in the uppermost mantle due to decompression melting or heating from the Earth's interior. Here we demonstrate that only the surface manifestation is observed at the Baikal rift zone, whereas the crustal and mantle characteristics can be ruled out by a new seismic profile across southern Lake Baikal in Siberia. Instead we observe a localized zone in the lower crust which has exceptionally high seismic velocity and is highly reflective. We suggest that the expected Moho uplift was compensated by magmatic intrusion into the lower crust, producing the observed high-velocity zone. This finding demonstrates a previously unknown role for magmatism in rifting processes with significant implications for estimation of stretching factors and modelling of sedimentary basins around failed rift structures.

  17. Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland)

    Science.gov (United States)

    Guarnieri, Pierpaolo; Brethes, Anaïs.; Rasmussen, Thorkild M.

    2017-04-01

    The Triassic rift basin along the east Greenland margin described in this paper is represented by NE-SW trending basins and highs segmented by NW-SE trending transfer zones. Coarse-grained sediments along the eastern side of Jameson Land are shown to be hosted in half-graben structures belonging to the Carlsberg Fjord Basin that is bounded by NW dipping normal faults mapped and described after fieldwork in the Klitdal area in Liverpool Land. New aeromagnetic and electromagnetic data together with new drill cores allow the reinterpretation of available seismic lines showing the continuation of the Triassic rift basin toward the SW where it is buried under the Upper Triassic postrift sediments and the Jurassic successions of the Jameson Land Basin. The N-S trending Liverpool Land, interpreted as the boundary block of the Triassic basin, is shown to represent a structural high inherited from the Late Carboniferous tectonics and faulted during the Triassic rifting. The Carlsberg Fjord Basin and the Klitdal Fault System described in this paper should be seen as analogues to the Helgeland Basin in the Norwegian offshore that is bounded by the Ylvingen Fault Zone and to the Papa and West of Shetlands Basins that are bounded by the Spine Fault. The Triassic rift zone and transfer faults on both conjugate margins show a straightforward correlation with the trends of the initial spreading line and fracture zones of the northeast Atlantic indicating a possible inheritance of the Triassic rifting.

  18. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    Science.gov (United States)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  19. The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift

    Science.gov (United States)

    Smets, Benoît; Delvaux, Damien; Ross, Kelly Ann; Poppe, Sam; Kervyn, Matthieu; d'Oreye, Nicolas; Kervyn, François

    2016-06-01

    The study of rift basin's morphology can provide good insights into geological features influencing the development of rift valleys and the distribution of volcanism. The Kivu rift segment represents the central section of the western branch of the East African Rift and displays morphological characteristics contrasting with other rift segments. Differences and contradictions between several structural maps of the Kivu rift make it difficult to interpret the local geodynamic setting. In the present work, we use topographic and bathymetric data to map active fault networks and study the geomorphology of the Kivu basin. This relief-based fault lineament mapping appears as a good complement for field mapping or mapping using seismic reflection profiles. Results suggest that rifting reactivated NE-SW oriented structures probably related to the Precambrian basement, creating transfer zones and influencing the location and distribution of volcanism. Both volcanic provinces, north and south of the Kivu basin, extend into Lake Kivu and are connected to each other with a series of eruptive vents along the western rift escarpment. The complex morphology of this rift basin, characterized by a double synthetic half-graben structure, might result from the combined action of normal faulting, magmatic underplating, volcanism and erosion processes.

  20. Seismic hazard of the Kivu rift (western branch, East African Rift system): new neotectonic map and seismotectonic zonation model

    Science.gov (United States)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi Mwene Ntabwoba, Stanislas; Fiama Bondo, Silvanos; Kervyn, François; Havenith, Hans-Balder

    2017-04-01

    The first detailed probabilistic seismic hazard assessment has been performed for the Kivu and northern Tanganyika rift region in Central Africa. This region, which forms the central part of the Western Rift Branch, is one of the most seismically active part of the East African rift system. It was already integrated in large scale seismic hazard assessments, but here we defined a finer zonation model with 7 different zones representing the lateral variation of the geological and geophysical setting across the region. In order to build the new zonation model, we compiled homogeneous cross-border geological, neotectonic and sismotectonic maps over the central part of East D.R. Congo, SW Uganda, Rwanda, Burundi and NW Tanzania and defined a new neotectonic sheme. The seismic risk assessment is based on a new earthquake catalogue, compiled on the basis of various local and global earthquake catalogues. The use of macroseismic epicenters determined from felt earthquakes allowed to extend the time-range back to the beginning of the 20th century, spanning 126 years, with 1068 events. The magnitudes have been homogenized to Mw and aftershocks removed. From this initial catalogue, a catalogue of 359 events from 1956 to 2015 and with M > 4.4 has been extracted for the seismic hazard assessment. The seismotectonic zonation includes 7 seismic source areas that have been defined on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of thermal springs and earthquake epicenters. The Gutenberg-Richter seismic hazard parameters were determined using both the least square linear fit and the maximum likelihood method (Kijko & Smit aue program). Seismic hazard maps have been computed with the Crisis 2012 software using 3 different attenuation laws. We obtained higher PGA values (475 years return period) for the Kivu rift region than the previous estimates (Delvaux et al., 2016). They vary laterally in function of the tectonic

  1. Incipient continental rifting: Insights from the Okavango Rift Zone, northwestern Botswana

    Science.gov (United States)

    Kinabo, Baraka Damas

    In this dissertation aeromagnetic, gravity, and Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) data from the Okavango Rift Zone in northwest Botswana are used to map the distribution of rift and basement structures. The distribution of these structures provide useful insights into the early stages of continental rifting. The objectives of this study are (1) assessing the role of pre-existing structures on rift basin development, (2) characterizing the geometry of the nascent rift basins, (3) documenting fault growth and propagation patterns, and (4) investigating the border fault development. Potential field data especially aeromagnetic data are used to map out structures in the sediment covered basement, whereas SRTM DEM data express the surface morphology of the structures. The azimuth of rift faults parallel the orientation of the fold axes and the prominent foliation directions of the basement rocks. This indicates that pre-existing structures in the basement influenced the development of the rift structures. NE dipping faults consistently exhibit greater displacements than SE dipping faults, suggesting a developing half-graben geometry. Individual faults grow by along axis linkage of small segments that develop from soft linkage (under lapping to overlapping segments) to hard linkage (hooking, fused segments). Major rifts faults are also linking through transfer zones by the process of "fault piracy" to establish an immature border fault system. The relationships between scam heights and vertical throws reveal that the young and active faults are located outside the rift while the faults with no recent activities are in the middle suggesting that the rift is also growing in width. This study demonstrates the utility of potential field data and SRTM DEM to provide a 3-D view of incipient continental rifting processes such as fault growth and propagation.

  2. Structure and evolution of the volcanic rift zone at Ponta de São Lourenço, eastern Madeira

    Science.gov (United States)

    Klügel, Andreas; Schwarz, Stefanie; van den Bogaard, Paul; Hoernle, Kaj A.; Wohlgemuth-Ueberwasser, Cora C.; Köster, Jana J.

    2009-08-01

    Ponta de São Lourenço is the deeply eroded eastern end of Madeira’s east-west trending rift zone, located near the geometric intersection of the Madeira rift axis with that of the Desertas Islands to the southeast. It dominantly consists of basaltic pyroclastic deposits from Strombolian and phreatomagmatic eruptions, lava flows, and a dike swarm. Main differences compared to highly productive rift zones such as in Hawai’i are a lower dike intensity (50-60 dikes/km) and the lack of a shallow magma reservoir or summit caldera. 40Ar/39Ar age determinations show that volcanic activity at Ponta de São Lourenço lasted from >5.2 to 4 Ma (early Madeira rift phase) and from 2.4 to 0.9 Ma (late Madeira rift phase), with a hiatus dividing the stratigraphy into lower and upper units. Toward the east, the distribution of eruptive centers becomes diffuse, and the rift axis bends to parallel the Desertas ridge. The bending may have resulted from mutual gravitational influence of the Madeira and Desertas volcanic edifices. We propose that Ponta de São Lourenço represents a type example for the interior of a fading rift arm on oceanic volcanoes, with modern analogues being the terminations of the rift zones at La Palma and El Hierro (Canary Islands). There is no evidence for Ponta de São Lourenço representing a former central volcano that interconnected and fed the Madeira and Desertas rifts. Our results suggest a subdivision of volcanic rift zones into (1) a highly productive endmember characterized by a central volcano with a shallow magma chamber feeding one or more rift arms, and (2) a less productive endmember characterized by rifts fed from deep-seated magma reservoirs rather than from a central volcano, as is the case for Ponta de São Lourenço.

  3. Seismic evidence for a crustal magma reservoir beneath the upper east rift zoneof Kilauea volcano, Hawaii

    Science.gov (United States)

    Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.

    2014-01-01

    An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.

  4. Sensitivity of the East African rift lakes to climate variability

    Science.gov (United States)

    Olaka, L.; Trauth, M. H.

    2009-04-01

    Lakes in the East African Rift have provided excellent proxies to reconstruct past climate changes in the low latitudes. The lakes occupy volcano-tectonic depressions with highly variable climate and hydrological setting, that present a good opportunity to study the climatic and hydrogeological influences on the lake water budget. Previous studies have used lake floor sediments to establish the sensitivity of the East African rift lakes. This study focuses on geomorphology and climate to offer additional or alternative record of lake history that are key to quantifying sensitivity of these lakes as archives to external and internal climatic forcings. By using the published Holocene lake areas and levels, we analyze twelve lakes on the eastern arm of the East African rift; Ziway, Awassa, Turkana, Suguta, Baringo, Nakuru, Elmenteita, Naivasha, Natron, Manyara and compare with Lake Victoria, that occupies the plateau between the east and the western arms of the rift. Using the SRTM data, Hypsometric (area-altitude) analysis has been used to compare the lake basins between latitude 80 North and 30 South. The mean elevation for the lakes, is between 524 and 2262 meters above sea level, the lakes' hypsometric integrals (HI), a measure of landmass volume above the reference plane, vary from 0.31 to 0.76. The aridity index (Ai), defined as Precipitation/ Evapotranspiration, quantifies the water available to a lake, it encompasses land cover and climatic effects. It is lowest (arid) in the basin between the Ethiopian rift and the Kenyan rift and at the southern termination of the Kenyan Rift in the catchments of lake Turkana, Suguta, Baringo and Manyara with values of 0.55, 0.43, 0.43 and 0.5 respectively. And it is highest (wet) in the catchments of, Ziway, Awassa, Nakuru and Naivasha as 1.33,1.03 and 1.2 respectively, which occupy the highest points of the rift. Lake Victoria has an index of 1.42 the highest of these lakes and receives a high precipitation. We use a

  5. Structure and kinematics of the Livingstone Mountains border fault zone, Nyasa (Malawi) Rift, southwestern Tanzania

    Science.gov (United States)

    Wheeler, Walter H.; Karson, Jeffrey A.

    Reconnaissance mapping of the Livingstone Mountains border fault zone (LMBFZ) at the northern end of the Nyasa (Malawi) Rift in SW Tanzania constrains the geometry and movement history of this typical rift border fault. The fault is a narrow zone of complex brittle deformation, striking 320°, that overprints and reactivates an older ductile shear zone. Long, straight, NW-trending border fault segments are offset by minor NE-trending faults. These two orthogonal fault sets integrate along strike to produce an overall curved fault trace that is concave towards a major depositional basin in the rift. A typical section through the fault zone shows an E to W progression from gneissic country rock through ductilely deformed country rock, into a zone overprinted by closely spaced fractures and grading into an intensely fractured, massive, flinty, aphanitic mylonite band at the lakeshore. Pseudotachylite veins, probably generated during seismic movement on the border fault, are common within and near the aphanitic mylonite. Slickensides indicate dextral oblique-slip, whereas shear belts and rolled porphyroclasts with complex tails in the older ductile shear zone indicate sub-horizontal sinistral motion. The adjacent rift basin is typical of other East African Rift Basins, and contains at least 4 km of Recent to perhaps Mesozoic sediment. Whereas the minimum net slip on the LMBFZ, in the dominant slickenside direction, is on the order of 10 km, regional geologic considerations suggest that dominantly strike-slip motion preceded the oblique-slip phase that produced the LMBFZ and the adjacent rift basin.

  6. Assessment of conventional oil resources of the East African Rift Province, East Africa, 2016

    Science.gov (United States)

    Brownfield, Michael E.; Schenk, Christopher J.; Klett, Timothy R.; Mercier, Tracey J.; Gaswirth, Stephanie B.; Marra, Kristen R.; Finn, Thomas M.; Le, Phuong A.; Leathers-Miller, Heidi M.

    2017-03-27

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean conventional resources of 13.4 billion barrels of oil and 4.6 trillion cubic feet of gas in the East African Rift Province of east Africa.

  7. Magma ascent and emplacement in a continental rift setting: lessons from alkaline complexes in active and ancient rift zones

    Science.gov (United States)

    Hutchison, William; Lloyd, Ryan; Birhanu, Yelebe; Biggs, Juliet; Mather, Tamsin; Pyle, David; Lewi, Elias; Yirgu, Gezahgen; Finch, Adrian

    2017-04-01

    A key feature of continental rift evolution is the development of large chemically-evolved alkaline magmatic systems in the shallow crust. At active alkaline systems, for example in the East African Rift, the volcanic complexes pose significant hazards to local populations but can also sustain major geothermal resources. In ancient rifts, for example the Gardar province in Southern Greenland, these alkaline magma bodies can host some of the world's largest rare element deposits in resources such as rare earths, niobium and tantalum. Despite their significance, there are major uncertainties about how such magmas are emplaced, the mechanisms that trigger eruptions and the magmatic and hydrothermal processes that generate geothermal and mineral resources. Here we compare observations from active caldera volcanoes in the Ethiopian Rift with compositionally equivalent ancient (1300-1100 Ma) plutonic systems in the Gardar Rift province (Greenland). In the Ethiopian Rift Valley we use InSAR and GPS data to evaluate the temporal and spatial evolution of ground deformation at Aluto and Corbetti calderas. We show that unrest at Aluto is characterized by short (3-6 month) accelerating uplift pulses likely caused by magmatic fluid intrusion at 5 km. At Corbetti, uplift is steady ( 6.6 cm/yr) and sustained over many years with analytical source models suggesting deformation is linked to sill intrusion at depths of 7 km. To evaluate the validity of these contrasting deformation mechanisms (i.e. magmatic fluid intrusion and sill emplacement) we carried out extensive field, structural and geochemical analysis in the roof zones of two alkaline plutons (Ilímaussaq and Motzfeldt) in Greenland. Our results show that the volatile contents (F, Cl, OH and S) of these magmas were exceptionally high and that there is evidence for ponding of magmatic fluids in the roof zone of the magma reservoir. We also identified extensive sill networks at the contact between the magma reservoir and the

  8. The East Greenland rifted volcanic margin

    Directory of Open Access Journals (Sweden)

    C. Kent Brooks

    2011-12-01

    Full Text Available The Palaeogene North Atlantic Igneous Province is among the largest igneous provinces in the world and this review of the East Greenland sector includes large amounts of information amassed since previous reviews around 1990.The main area of igneous rocks extends from Kangerlussuaq (c. 67°N to Scoresby Sund (c. 70°N, where basalts extend over c. 65 000 km2, with a second area from Hold with Hope (c. 73°N to Shannon (c. 75°N. In addition, the Ocean Drilling Project penetrated basalt at five sites off South-East Greenland. Up to 7 km thickness of basaltic lavas have been stratigraphically and chemically described and their ages determined. A wide spectrum of intrusions are clustered around Kangerlussuaq, Kialeeq (c. 66°N and Mesters Vig (c. 72°N. Layered gabbros are numerous (e.g. the Skaergaard and Kap Edvard Holm intrusions, as are under- and oversaturated syenites, besides small amounts of nephelinite-derived products, such as the Gardiner complex (c. 69°N with carbonatites and silicate rocks rich in melilite, perovskite etc. Felsic extrusive rocks are sparse. A single, sanidine-bearing tuff found over an extensive area of the North Atlantic is thought to be sourced from the Gardiner complex.The province is famous for its coast-parallel dyke swarm, analogous to the sheeted dyke swarm of ophiolites, its associated coastal flexure, and many other dyke swarms, commonly related to central intrusive complexes as in Iceland. The dyke swarms provide time markers, tracers of magmatic evolution and evidence of extensional events. A set of dykes with harzburgite nodules gives unique insight into the Archaean subcontinental lithosphere.Radiometric dating indicates extrusion of huge volumes of basalt over a short time interval, but the overall life of the province was prolonged, beginning with basaltic magmas at c. 60 Ma and continuing to the quartz porphyry stock at Malmbjerg (c. 72°N at c. 26 Ma. Indeed, activity was renewed in the Miocene with

  9. Hydrothermal vents in Lake Tanganyika, East African, Rift system

    Science.gov (United States)

    Tiercelin, Jean-Jacques; Pflumio, Catherine; Castrec, Maryse; Boulégue, Jacques; Gente, Pascal; Rolet, Joël; Coussement, Christophe; Stetter, Karl O.; Huber, Robert; Buku, Sony; Mifundu, Wafula

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 °C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza,active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO3-enriched fluid similar to the NaHCO3 thermal fluids from lakes Magadi and Bogoria in the eastern branch off the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction off 219 and 179 °C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130 °N normal-dextral faults that intersect the north- south major rift trend. The source of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza.

  10. Ambient noise tomography of the East African Rift in Mozambique

    Science.gov (United States)

    Domingues, Ana; Silveira, Graça; Ferreira, Ana M. G.; Chang, Sung-Joon; Custódio, Susana; Fonseca, João F. B. D.

    2016-03-01

    Seismic ambient noise tomography is applied to central and southern Mozambique, located in the tip of the East African Rift (EAR). The deployment of MOZART seismic network, with a total of 30 broad-band stations continuously recording for 26 months, allowed us to carry out the first tomographic study of the crust under this region, which until now remained largely unexplored at this scale. From cross-correlations extracted from coherent noise we obtained Rayleigh wave group velocity dispersion curves for the period range 5-40 s. These dispersion relations were inverted to produce group velocity maps, and 1-D shear wave velocity profiles at selected points. High group velocities are observed at all periods on the eastern edge of the Kaapvaal and Zimbabwe cratons, in agreement with the findings of previous studies. Further east, a pronounced slow anomaly is observed in central and southern Mozambique, where the rifting between southern Africa and Antarctica created a passive margin in the Mesozoic, and further rifting is currently happening as a result of the southward propagation of the EAR. In this study, we also addressed the question concerning the nature of the crust (continental versus oceanic) in the Mozambique Coastal Plains (MCP), still in debate. Our data do not support previous suggestions that the MCP are floored by oceanic crust since a shallow Moho could not be detected, and we discuss an alternative explanation for its ocean-like magnetic signature. Our velocity maps suggest that the crystalline basement of the Zimbabwe craton may extend further east well into Mozambique underneath the sediment cover, contrary to what is usually assumed, while further south the Kaapval craton passes into slow rifted crust at the Lebombo monocline as expected. The sharp passage from fast crust to slow crust on the northern part of the study area coincides with the seismically active NNE-SSW Urema rift, while further south the Mazenga graben adopts an N-S direction

  11. Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (western branch, East African Rift system)

    Science.gov (United States)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi, Mwene Ntabwoba Stanislas; Bondo, Silvanos Fiama; Kervyn, François; Havenith, Hans-Balder

    2017-10-01

    In the frame of the Belgian GeoRisCA multi-risk assessment project focusing on the Kivu and northern Tanganyika rift region in Central Africa, a new probabilistic seismic hazard assessment has been performed for the Kivu rift segment in the central part of the western branch of the East African rift system. As the geological and tectonic setting of this region is incompletely known, especially the part lying in the Democratic Republic of the Congo, we compiled homogeneous cross-border tectonic and neotectonic maps. The seismic risk assessment is based on a new earthquake catalogue based on the ISC reviewed earthquake catalogue and supplemented by other local catalogues and new macroseismic epicenter data spanning 126 years, with 1068 events. The magnitudes have been homogenized to Mw and aftershocks removed. The final catalogue used for the seismic hazard assessment spans 60 years, from 1955 to 2015, with 359 events and a magnitude of completeness of 4.4. The seismotectonic zonation into 7 seismic source areas was done on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of thermal springs and earthquake epicenters. The Gutenberg-Richter seismic hazard parameters were determined by the least square linear fit and the maximum likelihood method. Seismic hazard maps have been computed using existing attenuation laws with the Crisis 2012 software. We obtained higher PGA values (475 years return period) for the Kivu rift region than the previous estimates. They also vary laterally in function of the tectonic setting, with the lowest value in the volcanically active Virunga - Rutshuru zone, highest in the currently non-volcanic parts of Lake Kivu, Rusizi valley and North Tanganyika rift zone, and intermediate in the regions flanking the axial rift zone.

  12. Lower crustal intrusions beneath the southern Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its...... centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities...... of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal seismic...

  13. No Moho uplift below the Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    The late Cenozoic Baikal Rift Zone (BRZ) in southern Siberia is composed of several individual topographic depressions and half grabens with the deep Lake Baikal at its center. We have modeled the seismic velocity structure of the crust and uppermost mantle along a 360 km long profile of the Baikal...... Explosion Seismic Transects (BEST) project across the rift zone in the southern part of Lake Baikal. The seismic velocity structure along the profile is determined by tomographic inversion of first arrival times and 2-D ray tracing of first arrivals and reflections. The velocity model shows a gently...... deepening Moho from the Siberian Platform (41 km depth) into the Sayan-Baikal Fold Belt (46 km depth). We can exclude the presence of any Moho uplift around the ~10 km deep sedimentary graben structure of southern Lake Baikal. The lower crust includes a distinct 50-80 km wide high-velocity anomaly (7...

  14. The development of the East African Rift system in north-central Kenya

    Science.gov (United States)

    Hackman, B. D.; Charsley, T. J.; Key, R. M.; Wilkinson, A. F.

    1990-11-01

    Between 1980 and 1986 geological surveying to produce maps on a scale of 1:250,000 was completed over an area of over 100,000 km 2 in north-central Kenya, bounded by the Equator, the Ethiopian border and longitudes 36° and 38 °E. The Gregory Rift, much of which has the structure of an asymmetric half-graben, is the most prominent component of the Cenozoic multiple rift system which extends up to 200 km to the east and for about 100 km to the west, forming the Kenya dome. On the eastern shoulder and fringes two en echelon arrays of late Tertiary to Quaternary multicentre shields can be recognized: to the south is the Aberdares-Mount Kenya-Nyambeni Range chain and, to the north the clusters of Mount Kulal, Asie, Huri Hills and Marsabit, with plateau lavas and fissure vents south of Marsabit in the Laisamis area. The Gregory Rift terminates at the southern end of Lake Turkana. Further north the rift system splays: the arcuate Kinu Sogo fault zone forms an offset link with the central Ethiopian Rift system. In the rifts of north-central Kenya volcanism, sedimentation and extensional tectonics commenced and have been continuous since the late Oligocene. Throughout this period the Elgeyo Fault acted as a major bounding fault. A comparative study of the northern and eastern fringes of the Kenya dome with the axial graben reinforces the impression of regional E-W asymmetry. Deviations from the essential N-trend of the Gregory Rift reflect structural weaknesses in the underlying Proterozoic basement, the Mozambique Orogenic Belt: thus south of Lake Baringo the swing to the southeast parallels the axes of the ca. 620 Ma phase folds. Secondary faults associated with this flexure have created a "shark tooth" array, an expression of en echelon offsets of the eastern margin of the Gregory Rift in a transtensional stress regime: hinge zones where major faults intersect on the eastern shoulder feature intense box faulting and ramp structures which have counterparts in the rift

  15. Historical volcanism and the state of stress in the East African Rift System

    Directory of Open Access Journals (Sweden)

    Geoffrey Wadge

    2016-09-01

    Full Text Available Crustal extension at the East African Rift System (EARS should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800 and find that 7 match the (approximate geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement, transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale, suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days, but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002 due to major along-rift

  16. Historical volcanism and the state of stress in the East African Rift System

    Science.gov (United States)

    Wadge, Geoffrey; Biggs, Juliet; Lloyd, Ryan; Kendall, Michael

    2016-09-01

    Crustal extension at the East African Rift System (EARS) should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800) and find that 7 match the (approximate) geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic) variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement), transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief) and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone) and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale), suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days), but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002) due to major along-rift dyking

  17. Hydrothermal vents is Lake Tanganyika, East African Rift system

    Energy Technology Data Exchange (ETDEWEB)

    Tiercelin, J.J. [Universite de Bretagne Occidentale, Brest (France); Pflumio, C.; Castrec, M. [Universite Paris VI, Paris (France)] [and others

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  18. Fault Growth and Propagation and its Effect on Surficial Processes within the Incipient Okavango Rift Zone, Northwest Botswana, Africa (Invited)

    Science.gov (United States)

    Atekwana, E. A.

    2010-12-01

    The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.

  19. Transition from a localized to wide deformation along Eastern branch of Central East African Rift: Insights from 3D numerical models

    Science.gov (United States)

    Leroy, S. D.; Koptev, A.; Burov, E. B.; Calais, E.; Gerya, T.

    2015-12-01

    The Central East African Rift (CEAR) bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding strong Tanzanian craton. Intensive magmatism and continental flood basalts are largely present in many of the eastern rift segments, but other segments, first of all the western branch, exhibit very small volcanic activity. The Eastern rift is characterized by southward progression of the onset of volcanism, the extensional features and topographic expression of the rift vary significantly north-southward: in northern Kenya the deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south the deformation widens again in the so-called Tanzania divergence zone. Widening of the Eastern branch within its southern part is associated with the impingement of the southward-propagating rift on the strong Masai block situated to east of the Tanzanian craton. To understand the mechanisms behind this complex deformation distribution, we implemented a 3Dl ultra-high resolution visco-plastic thermo-mechanical numerical model accounting for thermo-rheological structure of the lithosphere and hence captures essential features of the CEAR. The preferred model has a plume seeded slightly to the northeast of the craton center, consistent with seismic tomography, and produces surface strain distribution that is in good agreement with observed variation of deformation zone width along eastern side of Tanzanian craton: localized above bulk of mantle material deflected by cratonic keel narrow high strain zone (Kenia Rift) is replaced by wide distributed deformations within areas situated to north (northern Kenya, Turkana Rift) and to south (Tanzania divergence, Masai block) of it. These results demonstrate significant differences in the impact of the rheological profile on rifting style in case of dominant active rifting compared to dominant passive rifting. Narrow rifting, conventionally attributed to

  20. Deformation Sources in Kīlauea's Southwest Rift Zone Inferred from the Modeling of Geodetic and Seismic Data

    Science.gov (United States)

    Wauthier, C.; Roman, D. C.; Poland, M. P.; Miklius, A.; Fukushima, Y.; Hooper, A. J.; Cayol, V.

    2014-12-01

    For much of the first 20 years of Kīlauea's 1983-present ERZ (East Rift Zone) eruption, deformation was characterized by subsidence at the summit and along both rift zones. We speculate that subsidence of the rift zones was caused by deep rift opening and basal fault slip. A 3D Mixed-Boundary Element model including deep rift-zone opening (running from ~3 to 9 km depth beneath Kīlauea's East and Southwest Rift Zones) as well as slip on the décollement fault that underlies the volcano's south flank (at ~9 km depth) can indeed explain most of the deformation imaged by InSAR data from RADARSAT-1 and JERS-1 spanning two distinct background periods: 1993-1997 and 2000-2003, respectively. At the end of 2003, however, Kīlauea's summit began a 4-year-long period of inflation that culminated in an ERZ dike intrusion and small eruption during 17-19 June 2007—the "Father's Day" (FD) event. On the basis of deformation, seismicity, effusion rate, and lava chemistry and temperature, the FD event was interpreted as the result of forcible intrusion of magma driven by high pressure within the summit magma storage area, as opposed to a passive response to deep rift zone opening. This period of summit inflation is particularly interesting in 2006. According to daily GPS data, two distinct periods can be defined, spanning January to March 2006 and March to end of 2006. A major seismic swarm occurred during the first period while the south caldera area was inflating. The beginning of the second period corresponds to a switch from subsidence to inflation of the SWRZ (Southwest Rift Zone). The SWRZ had been subsiding since the last eruptive episode there in 1974, with the exception of a few dike injections in 1981-82. To investigate the magmatic processes which occurred during 2006 and their implications in terms of the magma plumbing system and local stress field, we integrate contemporary geodetic data from InSAR and GPS with seismic and geologic observations of the SWRZ.

  1. Geodynamic setting and geochemical signatures of Cambrian?Ordovician rift-related igneous rocks (Ossa-Morena Zone, SW Iberia)

    Science.gov (United States)

    Sánchez-García, T.; Bellido, F.; Quesada, C.

    2003-04-01

    An important rifting event, accompanied by massive igneous activity, is recorded in the Ossa-Morena Zone of the SW Iberian Massif (European Variscan Orogen). It likely culminated in the formation of a new oceanic basin (Rheic ocean?), remnants of which appear presently accreted at the southern margin of the Ossa-Morena Zone. Rifting propagated diachronously across the zone from the Early Cambrian to the Late Ordovician, but by Early Ordovician time, the existence of a significant tract of new ocean is evidenced by a breakup unconformity. Although early stages of rifting were not accompanied by mantle-derived igneous activity, a pronounced increase of the geothermal gradient is indicated by partial melting of metasedimentary protoliths in the upper and middle crust, and by coeval core-complex formation. Geochemistry of the main volume of igneous rocks, emplaced some million years later during more mature stages of rifting, suggests an origin in a variably enriched asthenospheric source, similar to that of many OIB, from which subsequent petrogenetic processes produced a wide range of compositions, from basalt to rhyolite. A tectonic model involving collision with, and subsequent overriding of, a MOR is proposed to account for the overall evolution, a present-day analogue for which lies in the overriding of the East Pacific Rise by North America and the rifting of Baja California.

  2. Inter-rifting Deformation in an Extensional Rift Segment; the Northern Volcanic Zone, Iceland

    Science.gov (United States)

    Pedersen, R.; Masterlark, T.; Sigmundsson, F.; Arnadottir, T.; Feigl, K. L.

    2006-12-01

    The Northern Volcanic Zone (NVZ) in Iceland is an extensional rift segment, forming a sub-aerial exposure of a part of the Mid-Atlantic ridge. The NVZ is bounded to the south by the Icelandic mantle plume, currently beneath the Vatnajökull ice cap, and to the north by the Tjörnes Fracture zone, a transform zone connecting the offset on- and offshore rift segments of the Mid-Atlantic ridge. Based on geologic and tectonic mapping, the NVZ has been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. The two fissure swarms with known activity in historic time are, based on geodetic and seismic data, interpreted to have associated shallow crustal magma chambers. These central volcanoes are furthermore the only with caldera collapses associated, reflecting on the maturity of the systems. A series of newly formed InSAR images of the NVZ, spanning the interval from 1993-2006, have been formed, revealing a complex interplay of several tectonic and magmatic processes. Deformation from two subsiding shallow sources appear at the sites of the known crustal magma chambers. Furthermore, subsidence is occurring at varying degrees within the associated relatively narrow fissure swarms (15-20 km). However, the horizontal plate spreading signal is not confined to the fissure systems, and appears to be distributed over a much wider zone (about 100 km). This wide zone of horizontal spreading has previously been measured with campaign GPS surveys. A broad area of uplift situated about 18 km to the north of one of the subsidence centres (Krafla) suggests a deep seated pressurization source near the crust mantle boundary. Movements on previously unrecognized faults are apparent in the data, correlating well with the location of earthquake epicentres from minor seismic activity. Finally, utilization of geothermal resources in the Krafla area affects the deformation fields created by magmatic and tectonic processes, further

  3. Zoning, 2004, East Baton Rouge Parish, Louisiana

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a graphical polygon dataset depicting the zoning boundaries of the East Baton Rouge Parish of the State of Louisiana. Zoning can be defined as the range of...

  4. Tectonics and Petroleum Potential of the East China Sea Shelf Rift Basin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There are two Cenozoic sedimentary basins in the East China Sea. They are the East China Sea shelf basin and the Okinawa Trough basin. The former can be divided into a western and an eastern rift region. The development of the shelf basin underwent continental-margin fault depression, post-rift and then tectonic inversion stages. Available exploration results show that the distribution of source rocks is controlled by the basin architecture and its tectonic evolution. In the Xihu depression, mudstones and coals are the main source rocks. The eastern rift region has good geological conditions for the formation of large oil and gas fields.

  5. Buried Rift Zones and Seamounts in Hawaii: Implications for Volcano Tectonics

    Science.gov (United States)

    Park, J.; Morgan, J. K.; Zelt, C. A.; Okubo, P. G.

    2005-12-01

    below sea level), the high velocities are sharply truncated to the south. However, at greater depths, the anomalously high velocities extend another 20 km into the submarine flank, distinguishing this feature as a once extensive rift zone. The presence of dense, coherent intrusive rock may have anchored Mauna Loa's southeastern flank, such that much of the volcano's recent deformation has occurred along the west flank of Mauna Loa. This massive rift zone may also impede the propagation of Kilauea's southwest rift zone, accounting for its lesser development relative to Kilauea's east rift zone. The velocity highs beneath Kilauea's submarine flank likely represent buried seamounts that might obstruct the seaward migration of volcano's south flank, causing the bench uplift at the toe of flank. These new observations lead us to propose that previously unrecognized intrusive complexes within Mauna Loa and Kilauea have significantly affected the past evolution of these volcanoes in the Island of Hawaii, and are likely responsible for the present patterns of deformation on these active volcanoes.

  6. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure

    Science.gov (United States)

    Samant, Hrishikesh; Pundalik, Ashwin; D'souza, Joseph; Sheth, Hetu; Lobo, Keegan Carmo; D'souza, Kyle; Patel, Vanit

    2017-02-01

    The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dipping steeply east-southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag-Uran fault zone previously described. This and two other known regional faults (Nhava-Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.

  7. Tectonic inheritance in the development of the Kivu - north Tanganyika rift segment of the East African Rift System: role of pre-existing structures of Precambrian to early Palaeozoic origin.

    Science.gov (United States)

    Delvaux, Damien; Fiama Bondo, Silvanos; Ganza Bamulezi, Gloire

    2017-04-01

    The present architecture of the junction between the Kivu rift basin and the north Tanganyika rift basin is that of a typical accommodation zone trough the Ruzizi depression. However, this structure appeared only late in the development of the Western branch of the East African Rift System and is the result of a strong control by pre-existing structures of Precambrian to early Palaeozoic origin. In the frame of a seismic hazard assessment of the Kivu rift region, we (Delvaux et al., 2016) constructed homogeneous geological, structural and neotectonic maps cross the five countries of this region, mapped the pre-rift, early rift and Late Quaternary faults and compiled the existing knowledge on thermal springs (assumed to be diagnostic of current tectonic activity along faults). We also produced also a new catalogue of historical and instrumental seismicity and defined the seismotectonic characteristics (stress field, depth of faulting) using published focal mechanism data. Rifting in this region started at about 11 Ma by initial doming and extensive fissural basaltic volcanism along normal faults sub-parallel to the axis of the future rift valley, as a consequence of the divergence between the Nubia and the Victoria plate. In a later stage, starting around 8-7 Ma, extension localized along a series of major border faults individualizing the subsiding tectonic basins from the uplifting rift shoulders, while lava evolved towards alkali basaltic composition until 2.6 Ma. During this stage, initial Kivu rift valley was extending linearly in a SSW direction, much further than its the actual termination at Bukavu, into the Mwenga-Kamituga graben, up to Namoya. The SW extremity of this graben was linked via a long oblique transfer zone to the central part of Lake Tanganyika, itself reactivating an older ductile-brittle shear zone. In the late Quaternary-early Holocene, volcanism migrated towards the center of the basin, with the development of the Virunga volcanic massif

  8. Seismotectonics of the transitional region from the Baikal Rift Zone to orogenic rise of the Stanovoi range

    Science.gov (United States)

    Ovsyuchenko, A. N.; Trofimenko, S. V.; Marakhanov, A. V.; Karasev, P. S.; Rogozhin, E. A.

    2010-01-01

    This paper is based on the data obtained during the field study of active faults carried out in 2005-2006 in the Chita and Amur oblast and South Yakutia in connection with detailed seismic demarcation of the projected East Siberia-Pacific Ocean pipeline route. The comprehensive geomorphic and geophysical fieldwork was focused on paleoseismogeology and accompanied by trenching in the zones of reactivated faults. These works allowed us to specify the available information on the present-day structure, seismotectonic regime, and potential seismic hazard of the conjugation of the Baikal Rift Zone and the arched-block rise of the Stanovoi Ridge.

  9. The Lake Albert Rift (uganda, East African Rift System): Deformation, Basin and Relief Evolution Since 17 Ma

    Science.gov (United States)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Olivier, Dauteuil; Thierry, Nalpas; Martin, Pickford; Brigitte, Senut; Philippe, Lays; Philippe, Bourges; Martine, Bez

    2016-04-01

    This study is based on a coupled basin infilling study and a landforms analysis of the Lake Albert Rift located at the northern part of the western branch of the East African Rift. The basin infilling study is based on both subsurface data and outcrops analysis. The objective was to (1) obtain an age model based on onshore mammals biozones, (2) to reconstruct the 3D architecture of the rift using sequence stratigraphy correlations and seismic data interpretation, (3) to characterize the deformation and its changes through times and (4) to quantify the accommodation for several time intervals. The infilling essentially consists of isopach fault-bounded units composed of lacustrine deposits wherein were characterized two major unconformities dated at 6.2 Ma (Uppermost Miocene) and 2.7 Ma (Pliocene-Pleistocene boundary), coeval with major subsidence and climatic changes. The landforms analysis is based on the characterization and relative dating (geometrical relationships with volcanism) of Ugandan landforms which consist of stepped planation surfaces (etchplains and peplians) and incised valleys. We here proposed a seven-steps reconstruction of the deformation-erosion-sedimentation relationships of the Lake Albert Basin and its catchments: - 55-45 Ma: formation of laterites corresponding to the African Surface during the very humid period of the Lower-Middle Eocene; - 45-22: stripping of the African Surface in response of the beginning of the East-African Dome uplift and formation of a pediplain which associated base level is the Atlantic Ocean; - 17-2.5 Ma: Initiation of the Lake Albert Basin around 17 Ma and creation of local base levels (Lake Albert, Edward and George) on which three pediplains tend to adapt; - 18 - 16 Ma to 6.2 Ma: "Flexural" stage (subsidence rate: 150-200 m/Ma; sedimentation rate 1.3 km3/Ma between 17 and 12 Ma and 0.6 km3/Ma from 12 to 6 Ma) - depocenters location (southern part of Lake Albert Basin) poorly controlled by fault; - 6.2 Ma to 2

  10. East Antarctic Rift Systems - key to understanding of Gondwana break-up

    Science.gov (United States)

    Golynsky, D. A.; Golynsky, A. V.

    2012-04-01

    The results of analysis of radio-echo sounding surveys, the RADARSAT satellite data, magnetic and gravity information give evidence that East Antarctica contains 13 riftogenic systems and/or large linear tectonic structures. Among known and suggested rifts of East Antarctica the Lambert rift has a pivotal position and it manifests oneself as symmetry axis. Six additional systems are revealed on both sides of it and any one of them possesses special features in geologic and geomorphologic aspects. In most cases they inherited the anisotropy of long-lived cratonic blocks. Riftogenic and/or large linear tectonic structures along the East Antarctica coastal regions are distributed with a steady regularity with average distance between them about 650 km. For six (7) structures from 13 (Lambert, Jutulstraumen-Pencksökket, Vestfjella, Mellor-Slessor (Bailey), Wilkes Basin, Gaussberg (?) and Rennick) there is a distinct spatial coupling with trough complexes of the Beacon Supergroup and their subsequent reactivation in Late Jurassic - Permian time when the East Gondwana started break-up. Rift system of the Lambert-Amery Glaciers and Prydz Bay is related to Mesozoic extension events and it inherited structures of Paleozoic grabens. The total length of the rift system exceeds 4000 km of the same scale as largest the World rift belts. The length of the western branch of the Lambert rift that includes the Mellor rift and graben-like structures of the Bailey and Slessor glaciers exceeds 2300 km. Results of radio-echo sounding investigation of the subglacial Aurora Basin allow to suggest that this large basin of sub-meridian extension is underlain by an extensive (> 1000 km) riftogenic structure that is running towards the Transantarctic Mountains where it forms a triple junction with the eastern branch of the Lambert rift and structures of the Wilkes Basin. It is hereby proposed that Aurora-Scott rift is formed by complex system of sub-parallel depressions divided by

  11. The seismotectonics of Southeastern Tanzania: Implications for the propagation of the eastern branch of the East African Rift

    Science.gov (United States)

    Mulibo, Gabriel D.; Nyblade, Andrew A.

    2016-04-01

    Seismicity patterns and focal mechanisms in southeastern Tanzania, determined from data recorded on temporary and permanent AfricaArray seismic stations, have been used to investigate the propagation direction of the Eastern branch of the East African Rift System southward from the Northern Tanzania Divergence Zone (NTDZ). Within the NTDZ, the rift zone is defined by three segments, the Eyasi segment to the west, the Manyara segment in the middle, and the Pangani segment to the east. Results show that most of the seismicity (~ 75%) extends to the south of the Manyara segment along the eastern margin of the Tanzania Craton, and at ~ 6-7° S latitude trends to the SE along the northern boundary of the Ruvuma microplate, connecting with a N-S zone of seismicity offshore southern Tanzania and Mozambique. A lesser amount of seismicity (~ 25%) is found extending from the SE corner of the Tanzania Craton at ~ 6-7° S latitude southwards towards Lake Nyasa. This finding supports a model of rift propagation via the Manyara segment to the southeast of the Tanzania Craton along the northern boundary of the Ruvuma microplate. However, given the limited duration of the seismic recordings used in this study, the possibility of another zone of extension developing to the south towards Lake Nyasa (Malawi) cannot be ruled out. Focal mechanisms along the boundary between the Victoria and the Ruvuma microplates and offshore southeastern Tanzania show a combination of normal and strike slip faulting indicating mainly extension with some sinistral motion, consistent with the mapped geologic faults and a clockwise rotation of the Ruvuma microplate.

  12. Deformation and seismicity associated with continental rift zones propagating toward continental margins

    Science.gov (United States)

    Lyakhovsky, V.; Segev, A.; Schattner, U.; Weinberger, R.

    2012-01-01

    We study the propagation of a continental rift and its interaction with a continental margin utilizing a 3-D lithospheric model with a seismogenic crust governed by a damage rheology. A long-standing problem in rift-mechanics, known as thetectonic force paradox, is that the magnitude of the tectonic forces required for rifting are not large enough in the absence of basaltic magmatism. Our modeling results demonstrate that under moderate rift-driving tectonic forces the rift propagation is feasible even in the absence of magmatism. This is due to gradual weakening and "long-term memory" of fractured rocks that lead to a significantly lower yielding stress than that of the surrounding intact rocks. We show that the style, rate and the associated seismicity pattern of the rift zone formation in the continental lithosphere depend not only on the applied tectonic forces, but also on the rate of healing. Accounting for the memory effect provides a feasible solution for thetectonic force paradox. Our modeling results also demonstrate how the lithosphere structure affects the geometry of the propagating rift system toward a continental margin. Thinning of the crystalline crust leads to a decrease in the propagation rate and possibly to rift termination across the margin. In such a case, a new fault system is created perpendicular to the direction of the rift propagation. These results reveal that the local lithosphere structure is one of the key factors controlling the geometry of the evolving rift system and seismicity pattern.

  13. Mapping landslide processes in the North Tanganyika - Lake Kivu rift zones: towards a regional hazard assessment

    Science.gov (United States)

    Dewitte, Olivier; Monsieurs, Elise; Jacobs, Liesbet; Basimike, Joseph; Delvaux, Damien; Draida, Salah; Hamenyimana, Jean-Baptiste; Havenith, Hans-Balder; Kubwimana, Désiré; Maki Mateso, Jean-Claude; Michellier, Caroline; Nahimana, Louis; Ndayisenga, Aloys; Ngenzebuhoro, Pierre-Claver; Nkurunziza, Pascal; Nshokano, Jean-Robert; Sindayihebura, Bernard; Philippe, Trefois; Turimumahoro, Denis; Kervyn, François

    2015-04-01

    The mountainous environments of the North Tanganyika - Lake Kivu rift zones are part of the West branch of the East African Rift. In this area, natural triggering and environmental factors such as heavy rainfalls, earthquake occurrences and steep topographies favour the concentration of mass movement processes. In addition anthropogenic factors such as rapid land use changes and urban expansion increase the sensibility to slope instability. Until very recently few landslide data was available for the area. Now, through the initiation of several research projects and the setting-up of a methodology for data collection adapted to this data-poor environment, it becomes possible to draw a first regional picture of the landslide hazard. Landslides include a wide range of ground movements such as rock falls, deep failure of slopes and shallow debris flows. Landslides are possibly the most important geohazard in the region in terms of recurring impact on the populations, causing fatalities every year. Many landslides are observed each year in the whole region, and their occurrence is clearly linked to complex topographic, lithological and vegetation signatures coupled with heavy rainfall events, which is the main triggering factor. Here we present the current knowledge of the various slope processes present in these equatorial environments. A particular attention is given to urban areas such as Bukavu and Bujumbura where landslide threat is particularly acute. Results and research perspectives on landslide inventorying, monitoring, and susceptibility and hazard assessment are presented.

  14. Mechanical strength of extended continental lithosphere: Constraints from the Western Rift System, East Africa

    Science.gov (United States)

    Ebinger, Cynthia J.; Karner, Garry D.; Weissel, Jeffrey K.

    1991-12-01

    Although regional isostasy generally is associated with continental lithospheric compression and foreland basin formation, local isostatic compensation commonly is assumed in models of extensional basin formation. The assumption of negligible lithospheric strength during rifting often is justified on the basis of: (1) high heat flow and temperatures produced by elevating the lithosphere - asthenosphere boundary and (2) fracturing of the crust and lithosphere by normal faults. By modeling the development of rift basins within the Western rift system of East Africa and their associated free air gravity anomalies, we assess the role of basin-producing normal faults in modifying the flexural strength of extended lithosphere. Heat flow and seismicity data from the East African plateau region indicate that the Western rift system located on the western side of the plateau developed in old, cold continental lithosphere. These relatively narrow (40-70 km wide), but deep, basins are bounded along one side by high-angle border faults that penetrate to lower crustal levels, as indicated by seismicity data. Along the length of the Western rift system, depth to pre-rift basement and rift flank topography vary between basins from 1 to 8 km and from 1 to 2 km respectively, with deeper basins generally correlating with higher flanks. Comparison of model predictions with topography and free air gravity profiles reveals that the basin depth and the flank height in the majority of the Western rift basins studied can be explained simply by small heaves (3-10 km) across the border fault and with significant flexural strength of the lithosphere maintained during extension. Where both observed basin depth and flank height could not be reproduced, basins were located adjacent to eruptive volcanic centers active in Miocene-Recent times. In these areas, basin depth, rift flank elevation, and free air gravity anomaly may be modified by magmatic underplating of the crust. Estimates of

  15. Quantifying the morphometric variability of monogenetic cones in volcanic fields: the Virunga Volcanic Province, East African Rift

    Science.gov (United States)

    Poppe, Sam; Grosse, Pablo; Barette, Florian; Smets, Benoît; Albino, Fabien; Kervyn, François; Kervyn, Matthieu

    2016-04-01

    Volcanic cone fields are generally made up of tens to hundreds of monogenetic cones, sometimes related to larger polygenetic edifices, which can exhibit a wide range of morphologies and degrees of preservation. The Virunga Volcanic Province (VVP) developed itself in a transfer zone which separates two rift segments (i.e. Edward and Kivu rift) within the western branch of the East-African Rift. As the result of volcanic activity related to this tectonic regime of continental extension, the VVP hosts eight large polygenetic volcanoes, surrounded by over 500 monogenetic cones and eruptive fissures, scattered over the vast VVP lava flow fields. Some cones lack any obvious geo-structural link to a specific Virunga volcano. Using recent high-resolution satellite images (SPOT, Pléiades) and a newly created 5-m-resolution digital elevation model (TanDEM-X), we have mapped and classified all monogenetic cones and eruptive fissures of the VVP. We analysed the orientation of all mapped eruptive fissures and, using the MORVOLC program, we calculated a set of morphometric parameters to highlight systematic spatial variations in size or morphometric ratios of the cones. Based upon morphological indicators, we classified the satellite cones into 4 categories: 1. Simple cones with one closed-rim crater; 2. Breached cones with one open-rim crater; 3. Complex cones with two or more interconnected craters and overlapping cones; 4. Other edifices without a distinguishable crater or cone shape (e.g. spatter mounds and levees along eruptive fissures). The results show that cones are distributed in clusters and along alignments, in some cases parallel with the regional tectonic orientations. Contrasts in the volumes of cones positioned on the rift shoulders compared to those located on the rift valley floor can possibly be attributed to contrasts in continental crust thickness. Furthermore, higher average cone slopes in the East-VVP (Bufumbira zone) and central-VVP cone clusters suggest

  16. Teleseismic Investigations of the Malawi and Luangwa Rift Zones: Ongoing Observations From the SAFARI Experiment

    Science.gov (United States)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.; Chindandali, P. R. N.; Massinque, B.; Mdala, H. S.; Mutamina, D. M.

    2015-12-01

    In order to evaluate the influence of crustal and mantle heterogeneities upon the initiation of the Malawi rift zone (MRZ) and reactivation of the Zambian Luangwa rift zone (LRZ) subject to Cenozoic plate boundary stress fields and mantle buoyancy forces, we installed and operated 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia from 2012 to 2014. During the twenty-four month acquisition period, nearly 6200 radial receiver functions (RFs) were recorded. Stations situated within the MRZ, either along the coastal plains or within the Shire Graben toward the south, report an average crustal thickness of 42 km relative to approximately 46 km observed at stations located along the rift flanks. This implies the juvenile MRZ is characterized by a stretching factor not exceeding 1.1. Meanwhile, P-to-S velocity ratios within the MRZ increase from 1.71 to 1.82 in southernmost Malawi, indicating a substantial modification of the crust during Recent rifting. Time-series stacking of approximately 5500 RFs recorded by the SAFARI and 44 neighboring network stations reveals an apparent uplift of 10 to 15 km along both the 410- and 660-km mantle transition zone (MTZ) discontinuities beneath the MRZ and LRZ which, coupled with an apparently normal 250-km MTZ thickness, implies a first-order high-velocity contribution from thickened lithosphere. Preliminary manual checking of SAFARI shear-wave splitting (SWS) measurements provides roughly 650 high-quality XKS phases following a component re-orientation to correct station misalignments. Regional azimuthal variations in SWS fast orientations are observed, from rift-parallel in the vicinity of the LRZ to rift-oblique in the MRZ. A major 60° rotation in the fast orientation occurs at approximately 31°E, possibly resulting from the modulation of mantle flow around a relatively thick lithospheric keel situated between the two rift zones.

  17. Strain Localisation at Rift Segment Boundaries: An Example from the Bocana Transfer Zone in Central Baja California, Mexico

    Science.gov (United States)

    Seiler, C.; Gleadow, A. J.; Kohn, B. P.

    2012-12-01

    Rifts are commonly segmented into several hundred kilometre long zones of opposing upper-plate transport direction with boundaries defined by accommodation and transfer zones. A number of such rift segments have been recognized in the northern Gulf of California, a youthful oceanic basin that is currently undergoing the rift-drift transition. However, detailed field studies have so far failed to identify suitable structures that could accommodate the obvious deformation gradients between different rift segments, and the nature of strain transfer at segment boundaries remains enigmatic. The situation is even less clear in central and southern Baja California, where a number of rift segments have been hypothesized but it is unknown whether the intervening segment boundaries facilitate true reversals in the upper-plate transport direction, or whether they simply accommodate differences in the timing, style or magnitude of deformation. The Bocana transfer zone (BTZ) in central Baja California is a linear, WNW-ESE striking structural discontinuity separating two rift segments with different magnitudes and styles of extensional deformation. North of the BTZ, the Libertad fault is part of the Main Gulf Escarpment, which represents the breakaway fault that separates the Gulf of California rift to the east from the relatively stable western portion of the Baja peninsula. The N-striking Libertad escarpment developed during the Late Miocene (~10-8Ma) and exhibits a topographic relief of ca. 1,000m along a strike-length of ca. 50km. Finite displacement decreases from ~1000m in the central fault segment to ~500m further south, where the fault bends SE and merges with the BTZ. In the hanging wall of the Libertad fault, a series of W-tilted horsts are bound along their eastern margins by two moderate-displacement E-dipping normal faults. South of the BTZ, extension was much less than further north, which explains the comparatively subdued relief and generally shallower tilt of

  18. Landform development in a zone of active Gedi Fault, Eastern Kachchh rift basin, India

    Science.gov (United States)

    Kothyari, Girish Ch.; Rastogi, B. K.; Morthekai, P.; Dumka, Rakesh K.

    2016-02-01

    An earthquake of 2006 Mw 5.7 occurred along east-west trending Gedi Fault (GF) to the north of the Kachchh rift basin in western India which had the epicenter in the Wagad upland, which is approximately 60 km northeast of the 2001 Mw 7.7 earthquake site (or epicenter). Development of an active fault scarp, shifting of a river channel, offsetting of streams and uplift of the ground indicate that the terrain is undergoing active deformation. Based on detailed field investigations, three major faults that control uplifts have been identified in the GF zone. These uplifts were developed in a step-over zone of the GF, and formed due to compressive force generated by left-lateral motion within the segmented blocks. In the present research, a terrace sequence along the north flowing Karaswali river in a tectonically active GF zone has been investigated. Reconstructions based on geomorphology and terrace stratigraphy supported by optical chronology suggest that the fluvial aggradation in the Wagad area was initiated during the strengthening (at ~ 8 ka) and declining (~ 4 ka) of the Indian Summer Monsoon (ISM). The presence of younger valley fill sediments which are dated ~ 1 ka is ascribed to a short lived phase of renewed strengthening of ISM before present day aridity. Based on terrace morphology two major phases of enhanced uplift have been estimated. The older uplift event dated to 8 ka is represented by the Tertiary bedrock surfaces which accommodated the onset of valley-fill aggradation. The younger event of enhanced uplift dated to 4 ka was responsible for the incision of the older valley fill sediments and the Tertiary bedrock. These ages suggest that the average rate of uplift ranges from 0.3 to 1.1 mm/yr during the last 9 ka implying active nature of the area.

  19. Crustal Structure Across the Okavango Rift Zone, Botswana: Initial Results From the PRIDE-SEISORZ Active-Source Seismic Profile

    Science.gov (United States)

    Canales, J. P.; Moffat, L.; Lizarralde, D.; Laletsang, K.; Harder, S. H.; Kaip, G.; Modisi, M.

    2015-12-01

    The PRIDE project aims to understand the processes of continental rift initiation and evolution by analyzing along-axis trends in the southern portion of the East Africa Rift System, from Botswana through Zambia and Malawi. The SEISORZ active-source seismic component of PRIDE focused on the Okavango Rift Zone (ORZ) in northwestern Botswana, with the main goal of imaging the crustal structure across the ORZ. This will allow us to estimate total crustal extension, determine the pattern and amount of thinning, assess the possible presence of melt within the rift zone, and assess the contrasts in crustal blocks across the rift, which closely follows the trend of a fold belt. In November 2014 we conducted a crustal-scale, 450-km-long seismic refraction/wide-angle reflection profile consisting of 19 sources (shots in 30-m-deep boreholes) spaced ~25 km apart from each other, and 900 receivers (IRIS/PASSCAL "Texan" dataloggers and 4.5Hz geophones) with ~500 m spacing. From NW to SE, the profile crosses several tectonic domains: the Congo craton, the Damara metamorphic belt and the Ghanzi-Chobe fold belt where the axis of the ORZ is located, and continues into the Kalahari craton. The record sections display clear crustal refraction (Pg) and wide-angle Moho reflection (PmP) phases for all 17 of the good-quality shots, and a mantle refraction arrival (Pn), with the Pg-PmP-Pn triplication appearing at 175 km offset. There are distinct changes in the traveltime and amplitude of these phases along the transect, and on either side of the axis, that seem to correlate with sharp transitions across tectonic terrains. Initial modeling suggests: (1) the presence of a sedimentary half-graben structure at the rift axis beneath the Okavango delta, bounded to the SE by the Kunyere-Thamalakane fault system; (2) faster crustal Vp in the domains to the NW of the ORZ; and (3) thicker crust (45-50 km) at both ends of the profile within the Congo and Kalahari craton domains than at the ORZ and

  20. The crust and upper mantle of central East Greenland - implications for continental accretion and rift evolution

    Science.gov (United States)

    Schiffer, Christian; Balling, Niels; Ebbing, Jörg; Holm Jacobsen, Bo; Bom Nielsen, Søren

    2016-04-01

    The geological evolution of the North Atlantic Realm during the past 450 Myr, which has shaped the present-day topographic, crustal and upper mantle features, was dominated by the Caledonian orogeny and the formation of the North Atlantic and associated igneous activity. The distinct high altitude-low relief landscapes that accompany the North Atlantic rifted passive margins are the focus of a discussion of whether they are remnant and modified Caledonian features or, alternatively, recently uplifted peneplains. Teleseismic receiver function analysis of 11 broadband seismometers in the Central Fjord Region in East Greenland indicates the presence of a fossil subduction complex, including a slab of eclogitised mafic crust and an overlying wedge of hydrated mantle peridotite. This model is generally consistent with gravity and topography. It is shown that the entire structure including crustal thickness variations and sub-Moho heterogeneity gives a superior gravity and isostatic topographic fit compared to a model with a homogeneous lithospheric layer (1). The high topography of >1000 m in the western part of the area is supported by the c. 40 km thick crust. The eastern part requires buoyancy from the low velocity/low density mantle wedge. The geometry, velocities and densities are consistent with structures associated with a fossil subduction zone. The spatial relations with Caledonian structures suggest a Caledonian origin. The results indicate that topography is isostatically compensated by density variations within the lithosphere and that significant present-day dynamic topography seems not to be required. Further, this structure is suggested to be geophysically very similar to the Flannan reflector imaged north of Scotland, and that these are the remnants of the same fossil subduction zone, broken apart and separated during the formation of the North Atlantic in the early Cenozoic (2). 1) Schiffer, C., Jacobsen, B.H., Balling, N., Ebbing, J. and Nielsen, S

  1. Cenozoic extension in the Kenya Rift from low-temperature thermochronology: Links to diachronous spatiotemporal evolution of rifting in East Africa

    Science.gov (United States)

    Torres Acosta, Verónica; Bande, Alejandro; Sobel, Edward R.; Parra, Mauricio; Schildgen, Taylor F.; Stuart, Finlay; Strecker, Manfred R.

    2015-12-01

    The cooling history of rift shoulders and the subsidence history of rift basins are cornerstones for reconstructing the morphotectonic evolution of extensional geodynamic provinces, assessing their role in paleoenvironmental changes and evaluating the resource potential of their basin fills. Our apatite fission track and zircon (U-Th)/He data from the Samburu Hills and the Elgeyo Escarpment in the northern and central sectors of the Kenya Rift indicate a broadly consistent thermal evolution of both regions. Results of thermal modeling support a three-phased thermal history since the early Paleocene. The first phase (~65-50 Ma) was characterized by rapid cooling of the rift shoulders and may be coeval with faulting and sedimentation in the Anza Rift basin, now located in the subsurface of the Turkana depression and areas to the east in northern Kenya. In the second phase, very slow cooling or slight reheating occurred between ~45 and 15 Ma as a result of either stable surface conditions, very slow exhumation, or subsidence. The third phase comprised renewed rapid cooling starting at ~15 Ma. This final cooling represents the most recent stage of rifting, which followed widespread flood-phonolite emplacement and has shaped the present-day landscape through rift shoulder uplift, faulting, basin filling, protracted volcanism, and erosion. When compared with thermochronologic and geologic data from other sectors of the East African Rift System, extension appears to be diachronous, spatially disparate, and partly overlapping, likely driven by interactions between mantle-driven processes and crustal heterogeneities, rather than the previously suggested north-south migrating influence of a mantle plume.

  2. Chronology and volcanology of the 1949 multi-vent rift-zone eruption on La Palma (Canary Islands)

    Science.gov (United States)

    Klügel, A.; Schmincke, H.-U.; White, J. D. L.; Hoernle, K. A.

    1999-12-01

    The compositionally zoned San Juan eruption on La Palma emanated from three eruptive centers located along a north-south-trending rift zone in the south of the island. Seismic precursors began weakly in 1936 and became strong in March 1949, with their foci progressing from the north of the rift zone towards its south. This suggests that magma ascended beneath the old Taburiente shield volcano and moved southward along the rift. The eruption began on June 24, 1949, with phreatomagmatic activity at Duraznero crater on the ridgetop (ca. 1880 m above sea level), where five vents erupted tephritic lava along a 400-m-long fissure. On June 8, the Duraznero vents shut down abruptly, and the activity shifted to an off-rift fissure at Llano del Banco, located at ca. 550 m lower elevation and 3 km to the northwest. This eruptive center issued initially tephritic aa and later basanitic pahoehoe lava at high rates, producing a lava flow that entered the sea. Two days after basanite began to erupt at Llano del Banco, Hoyo Negro crater (ca. 1880 m asl), located 700 m north of Duraznero along the rift, opened on July 12 and produced ash and bombs of basanitic to phonotephritic composition in violent phreatomagmatic explosions ( White and Schmincke, 1999). Llano del Banco and Hoyo Negro were simultaneously active for 11 days and showed a co-variance of their eruption rates indicating a shallow hydraulic connection. On July 30, after 3 days of quiescence at all vents, Duraznero and Hoyo Negro became active again during a final eruptive phase. Duraznero issued basanitic lava at high rates for 12 h and produced a lava flow that descended towards the east coast. The lava contains ca. 1 vol.% crustal and mantle xenoliths consisting of 40% tholeiitic gabbros from the oceanic crust, 35% alkaline gabbros, and 20% ultramafic cumulates. The occurrence of xenoliths almost exclusively in the final lava is consistent with their origin by wall-rock collapse at depth near the end of the eruption

  3. Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G.; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    A. K. Eisses, A. M. Kell, G. Kent, N. W. Driscoll, R. E. Karlin, R. L. Baskin, J. N. Louie, S. Pullammanappallil, 2010, Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada: Abstract T33C-2278 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec.

  4. Sismotectonics in the western branch of the East African Rift System

    Science.gov (United States)

    Delvaux, Damien; Kervyn, François; Mulumba, Jean-Luc; Kipata, Louis; Sebagenzi, Stanislas; Mavonga, Georges; Macheyeki, Athanas; Temu, Elly Bryan

    2013-04-01

    The western branch of the East African rift system is known of its particular seismic activity with larger magnitude (up to Ms 7.3) and more frequent destructive earthquakes than in the eastern branch. As a contribution to the IGCP 601 project Seismotectonic Map of Africa, we compiled the known active faults, thermal springs and historical seismicity in Central Africa. Using the rich archives of the Royal Museum for Central Africa, publications and own field observations, we present a compilation of available data relative to the current seismotectonic activity along the western branch of the East African rift system, in DRC, Rwanda, Burundi and Tanzania. Neotectonic activity related to the western rift branch is in general well expressed and relatively well studied in the eastern flank of this rift branch, in Uganda, Rwanda, Burundi and Tanzania. In contrast, the western flank of this rift branch, largely exposed in the DRC, has attracted less attention. However, data collected during the colonial times show significant sismotectonic activity in East DRC, not only in the western flank of the western rift branch, but extending far westwards up to the margin of the Congo basin. In particular, our predecessors paid a special attention to the mapping and description of thermal springs, noticing that they are often controlled by active faults. In addition, the operators of the relatively dense network of meteorological stations installed in the DRC, Rwanda and Burundi also recorded were with variable level of completeness and detail the earthquakes that they could felt. This provides a rich database that is used to complete the existing knowledge on historical seismicity. An important effort has still to be paid to identify and map potentially active fault due to poor field accessibility, tropical climate weathering and vegetation coverage. The main problem in the compilation of active fault data is that very few of them have been investigated by paleoseismic trenching

  5. Is the Okavango Delta the terminus of the East African Rift System? Towards a new geodynamic model: Geodetic study and geophysical review

    Science.gov (United States)

    Pastier, Anne-Morwenn; Dauteuil, Olivier; Murray-Hudson, Michael; Moreau, Frédérique; Walpersdorf, Andrea; Makati, Kaelo

    2017-08-01

    The Okavango Graben (OG) has been considered as the terminus of the southwestern branch of the East African Rift System (EARS) since the 1970s based on fault morphology and early seismic and geophysical data. Thus it has been assumed to be an incipient rifting zone, analogous to the early stage of mature rifts in the EARS. Recent geodetic data and geophysical studies in the area bring new insights into the local crust and lithosphere, mantle activity and fault activity. In this study, we computed the velocities for three permanent GPS stations surrounding the graben and undertook a review of the new geophysical data available for the area. The northern and southern blocks of the graben show an exclusively low strike-slip displacement rate of about 1mm/year, revealing the transtensional nature of this basin. The seismic record of central and southern Africa was found to be instrumentally biased for the events recorded before 2004 and the OG may not represent the most seismically active area in Botswana anymore. Moreover, no significant lithosphere and crustal thinning is found in the tectonic structure nor any strong negative Bouguer anomaly and surface heat flux. Thus the OG does not match the classical model for a rifting zone. We propose a new geodynamic model for the deformation observed west of the EARS based on accommodation of far-field deformation due to the differential extension rates of the EARS and the displacement of the Kalahari craton relative to the Nubian plate.

  6. A refinement of the chronology of rift-related faulting in the Broadly Rifted Zone, southern Ethiopia, through apatite fission-track analysis

    Science.gov (United States)

    Balestrieri, Maria Laura; Bonini, Marco; Corti, Giacomo; Sani, Federico; Philippon, Melody

    2016-03-01

    To reconstruct the timing of rift inception in the Broadly Rifted Zone in southern Ethiopia, we applied the fission-track method to basement rocks collected along the scarp of the main normal faults bounding (i) the Amaro Horst in the southern Main Ethiopian Rift and (ii) the Beto Basin in the Gofa Province. At the Amaro Horst, a vertical traverse along the major eastern scarp yielded pre-rift ages ranging between 121.4 ± 15.3 Ma and 69.5 ± 7.2 Ma, similarly to two other samples, one from the western scarp and one at the southern termination of the horst (103.4 ± 24.5 Ma and 65.5 ± 4.2 Ma, respectively). More interestingly, a second traverse at the Amaro northeastern terminus released rift-related ages spanning between 12.3 ± 2.7 and 6.8 ± 0.7 Ma. In the Beto Basin, the ages determined along the base of the main (northwestern) fault scarp vary between 22.8 ± 3.3 Ma and 7.0 ± 0.7 Ma. We ascertain through thermal modeling that rift-related exhumation along the northwestern fault scarp of the Beto Basin started at 12 ± 2 Ma while in the eastern margin of the Amaro Horst faulting took place later than 10 Ma, possibly at about 8 Ma. These results suggest a reconsideration of previous models on timing of rift activation in the different sectors of the Ethiopian Rift. Extensional basin formation initiated more or less contemporaneously in the Gofa Province (~ 12 Ma) and Northern Main Ethiopian Rift (~ 10-12 Ma) at the time of a major reorganization of the Nubia-Somalia plate boundary (i.e., 11 ± 2 Ma). Afterwards, rift-related faulting involved the Southern MER (Amaro Horst) at ~ 8 Ma, and only later rifting seemingly affected the Central MER (after ~ 7 Ma).

  7. Local stresses, dyke arrest and surface deformation in volcanic edificesand rift zones

    Directory of Open Access Journals (Sweden)

    L. S. Brenner

    2004-06-01

    Full Text Available Field studies indicate that nearly all eruptions in volcanic edifices and rift zones are supplied with magma through fractures (dykes that are opened by magmatic overpressure. While (inferred dyke injections are frequent during unrest periods, volcanic eruptions are, in comparison, infrequent, suggesting that most dykes become arrested at certain depths in the crust, in agreement with field studies. The frequency of dyke arrest can be partly explained by the numerical models presented here which indicate that volcanic edifices and rift zones consisting of rocks of contrasting mechanical properties, such as soft pyroclastic layers and stiff lava flows, commonly develop local stress fields that encourage dyke arrest. During unrest, surface deformation studies are routinely used to infer the geometries of arrested dykes, and some models (using homogeneous, isotropic half-spaces infer large grabens to be induced by such dykes. Our results, however, show that the dyke-tip tensile stresses are normally much greater than the induced surface stresses, making it difficult to explain how a dyke can induce surface stresses in excess of the tensile (or shear strength while the same strength is not exceeded at the (arrested dyke tip. Also, arrested dyke tips in eroded or active rift zones are normally not associated with dyke-induced grabens or normal faults, and some dykes arrested within a few metres of the surface do not generate faults or grabens. The numerical models show that abrupt changes in Young's moduli(stiffnesses, layers with relatively high dyke-normal compressive stresses (stress barriers, and weak horizontal contacts may make the dyke-induced surface tensile stresses too small for significant fault or graben formation to occur in rift zones or volcanic edifices. Also, these small surface stresses may have no simple relation to the dyke geometry or the depth to its tip. Thus, for a layered crust with weak contacts, straightforward

  8. Sediment infill within rift basins: Facies distribution and effects of deformation: Examples from the Kenya and Tanganyika Rifts, East Africa

    Energy Technology Data Exchange (ETDEWEB)

    Tiercelin, J.J.; Lezzar, K.E. (Universite de Bretagne Occidentale, Brest (France)); Richert, J.P. (Elf Aquitaine, Pau (France))

    1994-07-01

    Oil is known from lacustrine basins of the east African rift. The geology of such basins is complex and different depending on location in the eastern and western branches. The western branch has little volcanism, leading to long-lived basins, such as Lake Tanganyika, whereas a large quantity of volcanics results in the eastern branch characterized by ephemeral basins, as the Baringo-Bogoria basin in Kenya. The Baringo-Bogoria basin is a north-south half graben formed in the middle Pleistocene and presently occupied by the hypersaline Lake Bogoria and the freshwater Lake Baringo. Lake Bogoria is fed by hot springs and ephemeral streams controlled by grid faults bounding the basin to the west. The sedimentary fill is formed by cycles of organic oozes having a good petroleum potential and evaporites. On the other hand, and as a consequence of the grid faults, Lake Baringo is fed by permanent streams bringing into the basin large quantities of terrigenous sediments. Lake Tanganyika is a meromictic lake 1470 m deep and 700 km long, of middle Miocene age. It is subdivided into seven asymmetric half grabens separated by transverse ridges. The sedimentary fill is thick and formed by organic oozes having a very good petroleum potential. In contrast to Bogoria, the lateral distribution of organic matter is characterized by considerable heterogeneity due to the existence of structural blocks or to redepositional processes.

  9. Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism

    Science.gov (United States)

    Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.

    2016-07-01

    The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.

  10. The Jurassic of East Greenland: a sedimentary record of thermal subsidence, onset and culmination of rifting

    Energy Technology Data Exchange (ETDEWEB)

    Surlyk, F. [Univ. of Copenhagen, Copenhagen (Denmark)]. Geological Inst.

    2003-07-01

    The Late Palaeozoic - Mesozoic extensional basin complex of East Greenland contains a record of deposition during a period of Rhaetian - Early Bajocian thermal subsidence, the onset of rifting in the Late Bajocian, its growth during the Bathonian-Kimmeridgian, culmination of rifting in the Volgian - Early Ryazanian, and waning in the Late Ryazanian - Hauterivian.,The area was centred over a palaeolatitude of about 45 deg C N in the Rhaetian and drifted northwards to about 50 deg C N in the Hauterivian. A major climate change from arid to humid subtropical conditions took place at the Norian-Rhaetian transition. Deposition was in addition governed by a long-term sea-level rise with highstands in the Toarcian-Aalenian, latest Callovian and Kimmeridgian, and lowstands in the latest Bajocian - earliest Bathonian, Middle Oxfordian and Volgian. The Rhaetian - Lower Bajocian succession is considered the upper part of a megasequence, termed Jl, with its base in the upper Lower Triassic, whereas the Upper Bajocian - Hauterivian succession forms a complete, syn-rift megasequence, termed J2. The southem part of the basin complex in Jameson Land contains a relatively complete Rhaetian-Ryazanian succession and underwent only minor tilting during Middle Jurassic - earliest Cretaceous rifting. Rhaetian - Lower Jurassic deposits are absent north of Jameson Land and this region was fragmented into strongly tilted fault blocks during the protracted rift event. The syn-rift successions of the two areas accordingly show different long-term trends in sedimentary facies. In the southern area, the J2 syn-rift megasequence forms a symmetrical regressive-transgressive-regressive cycle, whereas the J2 megasequence in the northem area shows an asymmetrical, stepwise deepening trend. A total of eight tectonostratigraphic sequences are recognised in the Rhaetian-Hauterivian interval. They reflect major changes in basin configuration, drainage systems, sediment transport and distribution

  11. Structure and genetic mechanisms of the Precambrian rifts of the East-European Platform in Russia by integrated study of seismic, gravity, and magnetic data

    Science.gov (United States)

    Kostyuchenko, S. L.; Egorkin, A. V.; Solodilov, L. N.

    1999-11-01

    Integrated models of the deep structure and origin of rifts located within the Russian portion of the East-European Platform have been developed from recent DSS results, new gravity and magnetic modelling, and geological and older geophysical data acquired over the last 50 years. The Mezen rift province, the Middle-Russian rift, the Valday rift, the Pachelma rift, and the rifts within the Pre-Caspian depression were studied. All of these rifts were affected by extension and filled with syn-rift sediments at different times through the Riphean (1650-650 Ma). Post-rift sedimentary basins developed from the end of the Neoproterozoic until the Cenozoic. The models indicate that the crustal structure and genesis of the individual rifts are different. The Mezen rift province was formed under a condition of limited extension of the continental crust. The McKenzie pure strain mechanism is acceptable for lithosphere extension in the Middle-Russian rift. The Wernicke model best expresses the Valday and Pachelma rifts. The rift process in the Pre-Caspian area is explained in terms of large-scale sliding apart of lithospheric plates, and approached the stage of development of oceanic crust.

  12. Sedimentation History and Provenance Analysis of a Late Mesozoic Rifting Event at Tavan Har, East Gobi, Mongolia

    Science.gov (United States)

    Davidson, Sarah Cain

    2005-01-01

    The East Gobi Basin (EGB), which covers over 1.5 million square kilometers in southeastern Mongolia, is one of several basins in eastern China and Mongolia that was formed by extension and intracontinental rifting during the late Mesozoic. For reasons that are poorly understood, the continental lithosphere covering areas that are now known as…

  13. The Jurassic of Denmark and Greenland: Shallow marine syn-rift sedimentation: Middle Jurassic Pelion Formation, Jameson Land, East Greenland

    Directory of Open Access Journals (Sweden)

    Engkilde, Michael

    2003-10-01

    Full Text Available The Middle Jurassic Pelion Formation – Fossilbjerget Formation couplet of Jameson Land, East Greenland, is a well-exposed example of the Middle Jurassic inshore–offshore successions characteristicof the rifted seaways in the Northwest European – North Atlantic region. Early Jurassic deposition took place under relatively quiet tectonic conditions following Late Permian – earliest Triassic and Early Triassic rift phases and the Lower Jurassic stratal package shows an overall layer-cake geometry. A long-term extensional phase was initiated in Middle Jurassic (Late Bajocian time, culminated in the Late Jurassic (Kimmeridgian–Volgian, and petered out in the earliest Cretaceous (Valanginian. The Upper Bajocian – Middle Callovian early-rift succession comprises shallow marine sandstones of the Pelion Formation and correlative offshore siltstones of theFossilbjerget Formation. Deposition was initiated by southwards progradation of shallow marine sands of the Pelion Formation in the Late Bajocian followed by major backstepping in Bathonian–Callovian times and drowning of the sandy depositional system in the Middle–Late Callovian. Six facies associations are recognised in the Pelion–Fossilbjerget couplet, representing estuarine, shoreface, offshore transition zone and offshore environments. The north–southtrendingaxis of the Jameson Land Basin had a low inclination, and deposition was sensitive to even small changes in relative sea level which caused the shorelines to advance or retreat over tens to several hundreds of kilometres. Eight composite sequences, termed P1–P8, are recognised and are subdivided into a total of 28 depositional sequences. The duration of the two orders of sequences was about 1–2 Ma and 360,000 years, respectively. The Upper Bajocian P1–2 sequencesinclude the most basinally positioned shallow marine sandstones, deposited during major sealevel lowstands. The lowstands were terminated by significant marine

  14. Post-Pan-African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems

    Science.gov (United States)

    Castaing, C.

    1991-05-01

    Structural studies conducted in the Lengwe and Mwabvi Karroo basins and in the basement in South Malawi, using regional maps and published data extended to cover Southeast Africa, serve to propose a series of geodynamic reconstructions which reveal the persistence of an extensional tectonic regime, the minimum stress σ3 of which has varied through time. The period of Karroo rifting and the tholeiitic and alkaline magmatism which terminated it, were controlled by NW-SE extension, which resulted in the creation of roughly NE-SW troughs articulated by the Tanganyika-Malawi and Zambesi pre-transform systems. These were NW-SE sinistral-slip systems with directions of movement dipping slightly to the Southeast, which enabled the Mwanza fault to play an important role in the evolution of the Karroo basins of the Shire Valley. The Cretaceous was a transition period between the Karroo rifting and the formation of the Recent East African Rift System. Extension was NE-SW, with some evidence for a local compressional episode in the Lengwe basin. Beginning in the Cenozoic, the extension once more became NW-SE and controlled the evolution in transtension of the Recent East African Rift System. This history highlights the major role of transverse faults systems dominated by strike-slip motion in the evolution and perpetuation of the continental rift systems. These faults are of a greater geological persistence than the normal faults bounding the grabens, especially when they are located on major basement anisotropies.

  15. Discussion on final rifting evolution and breakup : insights from the Mid Norwegian - North East Greenland rifted system

    Science.gov (United States)

    Peron-Pinvidic, Gwenn; Terje Osmundsen, Per

    2016-04-01

    In terms of rifted margin studies, the characteristics of the distal and outer domains are among the today's most debated questions. The architecture and composition of deep margins are rarely well constrained and hence little understood. Except from in a handful number of cases (eg. Iberia-Newfoundland, Southern Australia, Red Sea), basement samples are not available to decipher between the various interpretations allowed by geophysical models. No consensus has been reached on the basement composition, tectonic structures, sedimentary geometries or magmatic content. The result is that non-unique end-member interpretations and models are still proposed in the literature. So, although these domains mark the connection between continents and oceans, and thus correspond to unique stages in the Earth's lithospheric life cycle, their spatial and temporal evolution are still unresolved. The Norwegian-Greenland Sea rift system represents an exceptional laboratory to work on questions related to rifting, rifted margin formation and sedimentary basin evolution. It has been extensively studied for decades by both the academic and the industry communities. The proven and expected oil and gas potentials led to the methodical acquisition of world-class geophysical datasets, which permit the detailed research and thorough testing of concepts at local and regional scales. This contribution is issued from a three years project funded by ExxonMobil aiming at better understanding the crustal-scale nature and evolution of the Norwegian-Greenland Sea. The idea was to take advantage of the data availability on this specific rift system to investigate further the full crustal conjugate scale history of rifting, confronting the various available datasets. In this contribution, we will review the possible structural and sedimentary geometries of the distal margin, and their connection to the oceanic domain. We will discuss the definition of 'breakup' and introduce a first order conceptual

  16. The East African Rift System and the impact of orographic changes on regional climate and the resulting aridification

    Science.gov (United States)

    Sommerfeld, Anja; Prömmel, Kerstin; Cubasch, Ulrich

    2016-09-01

    Several proxy data indicate an aridification of the East African climate during the Neogene, which might be influenced by the orographic changes of the East African Rift System (EARS) induced by tectonic forcing during the last 20 million years. To investigate the impact of the orography and especially of the rifts, the regional climate model CCLM is used, covering the EARS with Lake Victoria in the centre of the model domain. CCLM is driven by the ERA-Interim reanalysis and applied with a double-nesting method resulting in a very high spatial resolution of 7 km. The resolution clearly shows the shoulders and rifts of the western and eastern branch of the EARS and the Rwenzoris within the western branch. To analyse the orographic influence on climate, a new technique of modifying the orography is used in this sensitivity study. The shoulders of the branches are lowered and the rifts are elevated, resulting in a smoothed orography structure with less altitude difference between the shoulders and rifts. The changes in 2 m-temperature are very local and associated with the changes in the orography. The vertically integrated moisture transport is characterised by less vortices, and its zonal component is increased over the branches. The resulting amount of precipitation is mainly decreased west of the western branch and increased in the rift of the western branch. In the eastern branch, however, the changes in the amount of precipitation are not significant. The changes in the precipitation and temperature patterns lead to a shift of biomes towards a vegetation coverage characterised by more humid conditions in the northern part of the model domain and more arid conditions in the South. Thus, the aridification found in the proxy data can be attributed to the orographic changes of the rifts only in the northern model domain.

  17. Minimal Role of Basal Shear Tractions in Driving Nubia-Somalia Divergence Across the East African Rift System

    Science.gov (United States)

    Stamps, D. S.; Calais, E.; Iaffaldano, G.; Flesch, L. M.

    2012-12-01

    The Nubian and Somalian plates actively diverge along the topographically high, ~5000 km long East African Rift System (EARS). As no major subduction zones bound Africa, one can assume that the forces driving the Nubia-Somalia plate system result primarily from mantle buoyancies and lateral variation in lithospheric gravitational potential energy. Images from seismic tomography and convection models suggest active mantle flow beneath Africa. However, the contribution from large-scale convection to the force balance driving plate divergence across the EARS remains in question. In this work we investigate the impact of mantle shear tractions on the dynamics of Nubia-Somalia divergence across the EARS. We compare surface motions inferred from GPS observations with strain rates and velocities predicted from dynamic models where basal shear stresses are (1) derived from forward mantle circulation models and (2) inferred from stress field boundary conditions that balance buoyancy forces in the African lithosphere. Upper mantle anisotropy derived from seismic observations beneath Africa provide independent constraints for the latter. Preliminary results suggest that basal shear tractions play a minor role in the dynamics of Nubia-Somalia divergence along the EARS. This result implies mantle-lithosphere decoupling, possibly promoted by a low viscosity asthenosphere. We corroborate the robustness of our results with estimates of upper mantle viscosity based on local upper mantle temperature estimates and rheological parameters obtained from laboratory experiments.

  18. Giant seismites and megablock uplift in the East African Rift: evidence for Late Pleistocene large magnitude earthquakes.

    Science.gov (United States)

    Hilbert-Wolf, Hannah Louise; Roberts, Eric M

    2015-01-01

    In lieu of comprehensive instrumental seismic monitoring, short historical records, and limited fault trench investigations for many seismically active areas, the sedimentary record provides important archives of seismicity in the form of preserved horizons of soft-sediment deformation features, termed seismites. Here we report on extensive seismites in the Late Quaternary-Recent (≤ ~ 28,000 years BP) alluvial and lacustrine strata of the Rukwa Rift Basin, a segment of the Western Branch of the East African Rift System. We document examples of the most highly deformed sediments in shallow, subsurface strata close to the regional capital of Mbeya, Tanzania. This includes a remarkable, clastic 'megablock complex' that preserves remobilized sediment below vertically displaced blocks of intact strata (megablocks), some in excess of 20 m-wide. Documentation of these seismites expands the database of seismogenic sedimentary structures, and attests to large magnitude, Late Pleistocene-Recent earthquakes along the Western Branch of the East African Rift System. Understanding how seismicity deforms near-surface sediments is critical for predicting and preparing for modern seismic hazards, especially along the East African Rift and other tectonically active, developing regions.

  19. Gas-oil fluids in the formation of travertines in the Baikal rift zone

    Science.gov (United States)

    Tatarinov, A. A.; Yalovik, L. I.; Shumilova, T. G.; Kanakin, S. V.

    2016-07-01

    Active participation of gas-oil fluids in the processes of mineral formation and petrogenesis in travertines of the Arshan and Garga hot springs is substantiated. The parageneses of the products of pyrolytic decomposition and oxidation of the gas-oil components of hydrothermal fluids (amorphous bitumen, graphite-like CM, and graphite) with different genetic groups of minerals crystallized in a wide range of P-T conditions were established. Travertines of the Baikal rift zone were formed from multicomponent hydrous-gas-oil fluids by the following basic mechanisms of mineral formation: chemogenic, biogenic, cavitation, fluid pyrometamorphism, and pyrolysis.

  20. East Mariana Basin tholeiites: Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?

    Science.gov (United States)

    Castillo, P.R.; Pringle, M.S.; Carlson, R.W.

    1994-01-01

    basement in the Nauru and East Mariana Basins is Jurassic in age, the geochemical and chronological results discussed here suggest that the basement formed during a Cretaceous rifting event within the Jurassic crust. This magmatic and tectonic event was created by the widespread volcanism responsible for the genesis of the large oceanic plateaus of the western Pacific. ?? 1994.

  1. India-East Antarctica conjugate margins: rift-shear tectonic setting inferred from gravity and bathymetry data

    Science.gov (United States)

    Chand, Shyam; Radhakrishna, M.; Subrahmanyam, C.

    2001-02-01

    The Eastern Continental Margin of India (ECMI) has evolved as a consequence of breakup of India from East Antarctica during the Early Cretaceous (ca. 130 Ma). The conjugate margin of ECMI in East Antarctica is represented by the margin extending from Gunneris Ridge in the west to about 95°E in the east. To understand the isostatic compensation mechanism operating beneath these conjugate margins, we have examined the cross spectral correlation between gravity and bathymetry along 21 profiles across the ECMI and 16 profiles across the conjugate East Antarctica Margin using both ship and satellite-derived gravity data. The ECMI is considered as a composite of two segments, one north of 16°N extending beyond 20°N, which is based on its rifted margin character, and the other, south of 16°N extending up to Sri Lanka, which has a transform-rift character. Similarly, the conjugate margin of East Antarctica is also considered to be a composite of two segments, west and east of the central bulge at 50-55°E. Admittance analysis and comparison with various isostatic models suggest a flexural plate model with an elastic thickness of 10-25 km for the northern segment of ECMI and its conjugate segment which is the east Enderby land Margin, comparable to results obtained from the eastern North American Margin. For the southern segment of ECMI, low elastic plate thickness of less than 5 km or a local compensation is obtained with matching results for the west Enderby land Margin. These, in turn, appear comparable to the low Te values inferred for the Ghana transform margin of North Africa and Grand Banks Margin of eastern Canada, thereby indicating that the southern segment of ECMI and its conjugate in East Antarctica have developed as a consequence of shearing rather than rifting in the early stages of continental separation.

  2. Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone, Lake Baikal Rift, Siberia

    Science.gov (United States)

    Scholz, C.A.; Hutchinson, D.R.

    2000-01-01

    Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700 km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian–American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9 km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by

  3. Holocene phreatomagmatic eruptions alongside the densely populated northern shoreline of Lake Kivu, East African Rift: timing and hazard implications

    Science.gov (United States)

    Poppe, Sam; Smets, Benoît; Fontijn, Karen; Rukeza, Montfort Bagalwa; De Marie Fikiri Migabo, Antoine; Milungu, Albert Kyambikwa; Namogo, Didier Birimwiragi; Kervyn, François; Kervyn, Matthieu

    2016-11-01

    The Virunga Volcanic Province (VVP) represents the most active zone of volcanism in the western branch of the East African Rift System. While the VVP's two historically active volcanoes, Nyamulagira and Nyiragongo, have built scoria cones and lava flows in the adjacent lava fields, several small phreatomagmatic eruptive centers lie along Lake Kivu's northern shoreline, highlighting the potential for explosive magma-water interaction. Their presence in the densely urbanized Sake-Goma-Gisenyi area necessitates an assessment of their eruptive mechanisms and chronology. Some of these eruptive centers possess multiple vents, and depositional contacts suggest distinct eruptive phases within a single structure. Depositional facies range from polymict tuff breccia to tuff and loose lapilli, often impacted by blocks and volcanic bombs. Along with the presence of dilute pyroclastic density current (PDC) deposits, indicators of magma-water interaction include the presence of fine palagonitized ash, ash aggregates, cross-bedding, and ballistic impact sags. We estimate that at least 15 phreatomagmatic eruptions occurred in the Holocene, during which Lake Kivu rose to its current water level. Radiocarbon dates of five paleosols in the top of volcanic tuff deposits range between ˜2500 and ˜150 cal. year bp and suggest centennial- to millennial-scale recurrence of phreatomagmatic activity. A vast part of the currently urbanized zone on the northern shoreline of Lake Kivu was most likely impacted by products from phreatomagmatic activity, including PDC events, during the Late Holocene, highlighting the need to consider explosive magma-water interaction as a potential scenario in future risk assessments.

  4. An interdisciplinary approach for groundwater management in area contaminated by fluoride in East African Rift System

    Science.gov (United States)

    Da Pelo, Stefania; Melis, M. Teresa; Dessì, Francesco; Pistis, Marco; Funedda, Antonio; Oggiano, Giacomo; Carletti, Alberto; Soler Gil, Albert; Barbieri, Manuela; Pittalis, Daniele; Ghiglieri, Giorgio

    2017-04-01

    Groundwater is the main source of fresh water supply for most of the rural communities in Africa (approximately 75% of Africans has confidence in groundwater as their major source of drinking water). Many African countries has affected by high fluoride concentration in groundwater (up to 90 mg/L), generating the contamination of waters, soils and food, in particular in the eastern part of the continent. It seems that fluoride concentration is linked to geology of the Rift Valley: geogenic occurrence of fluoride is often connected to supergenic enrichment due to the weathering of alkaline volcanic rocks, fumaric gases and presence of thermal waters. The H2020 project FLOWERED (de-FLuoridation technologies for imprOving quality of WatEr and agRo-animal products along the East African Rift Valley in the context of aDaptation to climate change) wish to address environmental and health (human and animal) issues associated to the fluoride contamination in the African Rift Valley, in particular in three case study area located in Ethiopia, Tanzania and Kenya. FLOWERED aims to develop an integrated, sustainable and participative water and agriculture management at a cross-boundary catchment scale through a strong interdisciplinary research approach. It implies knowledge of geology, hydrogeology, mineralogy, geochemistry, agronomy, crop and animal sciences, engineering, technological sciences, data management and software design, economics and communication. The proposed approach is based on a detailed knowledge of the hydrogeological setting, with the identification and mapping of the specific geological conditions of water contamination and its relation with the different land uses. The East African Rift System (EARS) groundwater circulation and storage, today already poorly understood, is characterized by a complex arrangement of aquifers. It depends on the type of porosity and permeability created during and after the rock formation, and is strongly conditioned by the

  5. Early-stage rifting in the southwest East African Rift: Insights from new reflection seismic data from Lakes Tanganyika and Malawi (Nyasa)

    Science.gov (United States)

    Scholz, C. A.; Wood, D. A.; Shillington, D. J.; McCartney, T.; Accardo, N. J.

    2015-12-01

    The western branch of the East African Rift is characterized by modest amounts of mainly amagmatic extension; deeply-subsided, fault-controlled basins; and large-magnitude, deep seismicity. Lakes Tanganyika and Malawi are two of the world's largest lakes, with maximum water depths of 1450 and 700 m respectively. Newly acquired seismic reflection data, along with newly reprocessed legacy data reveal thick sedimentary sections, in excess of 5 km in some localities. The 1980's vintage legacy data from Project PROBE have been reprocessed through pre-stack depth migration in Lake Tanganyika, and similar reprocessing of legacy data from Lake Malawi is forthcoming. New high-fold and large-source commercial and academic data have recently been collected in southern Lake Tanganyika, and in the northern and central basins of Lake Malawi as part of the 2015 SEGMeNT project. In the case of Lake Tanganyika, new data indicate the presence of older sediment packages that underlie previously identified "pre-rift" basement (the "Nyanja Event"). These episodes of sedimentation and extension may substantially predate the modern lake. These deep stratal reflections are absent in many localites, possibly on account of attenuation of the acoustic signal. However in one area of southern Lake Tanganyika, the newly-observed deep strata extend axially for ~70 km, likely representing deposits from a discrete paleolake. The high-amplitude Nyanja Event is interpreted as the onset of late-Cenozoic rifting, and the changing character of the overlying depositional sequences reflects increasing relief in the rift valley, as well as the variability of fluvial inputs, and the intermittent connectivity of upstream lake catchments. Earlier Tanganyika sequences are dominated by shallow lake and fluvial-lacustrine facies, whereas later sequences are characterized by extensive gravity flow deposition in deep water, and pronounced erosion and incision in shallow water depths and on littoral platforms. The

  6. Analogy between natural gas found in lakes of rift valley system of east Africa and its allied gas in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Fukuta, O.

    1984-09-01

    The Afar triangle in northeastern Ethiopia is where the Red Sea rift, the Carlsberg Ridge of the Indian Ocean, and the Rift Valley system of east Africa meet. In 1979, J. Welhan and H. Craig reported that hydrothermal vents at 21/sup 0/N, on the East Pacific Rise, are discharging turbid waters. Mixtures of the plumes with ambient seawater contain significant amounts of dissolved H/sub 2/ and CH/sub 4/ as well as mantel-derived /sup 3/He-rich helium. The /sup 3/He//sup 4/He ratios of rock samples obtained earlier by J. Lupton and H. Craig from the Mid-Oceanic Ridge, including the Mid-Atlantic Ridge and the east Pacific Rise, are extremely high at an almost constant value of (1.3 +/- 0.2) x 10/sup -5/, which they defined as the MOR-type helium. However, the deep brines of the Red Sea contain about 1,000 times more methane than normal seawater does, according to Gold and Soter in 1980. Much evidence leads us to believe that large amounts of /sup 3/He-rich helium-bearing natural gas have been gushing out in many places of the Rift Valley of east Africa for a long time. In 1980, Gold and Soter stated that Lake Kivu, which occupies part of the East African rift valley, contains 50 million tons of dissolved methane for which there is no adequate microbial source. The Japanese Islands began to separate from the Asian continent during the early Miocene. The early Miocene was characterized by intensive volcanic activity that produced large amounts of pyroclastics and other volcanic rocks, generally called green tuff in Japan. It has been suggested that oil and gas in green tuff is derived from the upper mantle.

  7. Magma Rich Events at Magma-Poor Rifted Margins: A South-East Indian Example

    Science.gov (United States)

    Harkin, Caroline; Kusznir, Nick; Tugend, Julie; Manatschal, Gianreto; Horn, Brian

    2016-04-01

    The south-east Indian continental rifted margin, as imaged by the INE1-1000 deep long-offset seismic reflection section by ION Geophysical, is a classic example of a magma-poor rifted margin, showing highly thinned continental crust, or possibly exhumed mantle, within the ocean-continent transition (OCT). Outboard, the steady-state oceanic crust is between 4 and 5 km thickness, consistent with magma-poor continental breakup and sea-floor spreading. It is therefore surprising that between the hyper-extended crust showing thin or absent continental crust (of approximately 75 km width) and the anomalously thin steady-state oceanic crust, there appears to be a region of thicker magmatic crust of approximately 11 km thickness and 100 km width. Magmatic events, at or just after continental breakup, have also been observed at other magma-poor rifted margins (e.g. NE Brazil). This interpretation of magma-poor OCT structure and thinner than global average oceanic crust separated by thicker magmatic crust on the SE Indian margin is supported by gravity inversion; which uses a 3D spectral technique and includes a lithosphere thermal gravity anomaly correction. Residual depth anomaly (RDA) analysis corrected for sediment loading using flexural backstripping, gives a small negative value (approximately -0.1 km) over the steady-state oceanic crust compared with a positive value (approximately +0.3 km) over the thicker magmatic crust. This RDA difference is consistent with the variation in crustal thickness seen by the seismic reflection interpretation and gravity inversion. We use joint inversion of the time domain seismic reflection and gravity data to investigate the average basement density and seismic velocity of the anomalously thick magmatic crust. An initial comparison of Moho depth from deep long-offset seismic reflection data and gravity inversion suggests that its basement density and seismic velocity are slightly less than that of the outboard steady-state oceanic

  8. Evolution of an Interbasin Mountain-Block Extensional Accommodation Zone Within the Central Colorado Rio Grande Rift, USA

    Science.gov (United States)

    Minor, S. A.; Caine, J. S.; Fridrich, C.; Hudson, M. R.

    2015-12-01

    Our understanding of extensional strain transfer and accommodation in continental rifts has grown considerably, but few studied transfer zones exhibit high internal topographic and structural relief. In the Rio Grande rift of Colorado the WNW-trending northern tip of the Sangre de Cristo Range separates the opposite-tilted Upper Arkansas River (UAR) and San Luis half grabens. We have investigated the development and role of faults flanking this "Poncha" intrarift mountain block in transferring extension between rift basins, mountain block surface uplift, and landscape evolution. The topographically rugged Poncha block consists of Proterozoic metamorphic and plutonic rocks overlain on its west and southwest flanks by 34.5-33-Ma volcanic rocks and alluvial deposits of the Mio-Pliocene Dry Union Formation. Similar Dry Union sediments underlie a moderately elevated, strongly dissected older piedmont along the northern front of the mountain block. All of these units are tilted 10-35º to the W and SW. A WNW-trending, right-stepping fault system > 25 km in length separates the piedmont and UAR basin from the steep northern Poncha mountain front. Slip measurements along this fault system, cutting deposits as young as ~200 ka, indicate dextral-normal oblique movement. The NNW-striking, down-to-E southern Sawatch range-front fault system forms the western terminus of the Poncha block where it juxtaposes Dry Union deposits against Sawatch Proterozoic basement rocks. Gently tilted proximal diamicton and alluvial deposits on the downthrown blocks of both range-front faults likely mark Plio-Pleistocene(?) mountain block uplift. Arrays of NNW- to WNW-striking faults cutting volcanic and Dry Union units on the flanks of the Poncha block commonly have normal-oblique slip, with greater tendency for dextral strike-slip components on WNW-striking faults. Preliminary paleomagnetic data from the volcanic rocks detect no significant vertical-axis rotation that accompanied oblique

  9. Tectonic localization of multi-plume hydrothermal fluid flow in a segmented rift system, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Rowland, J. V.; Downs, D. T.; Scholz, C.; de P. S. Zuquim, M.

    2013-05-01

    High-temperature (>250°C) multi-plume hydrothermal systems occur in a range of tectonic settings, though most are extensional or transtensional. A key feature of such settings is their tendency to partition into discrete structural elements that scale with the thickness of the seismogenic zone. The late Miocene to present record of arc magmatism and rifting in the North Island of New Zealand illustrates the importance of structural segmentation and reactivation of inherited basement fabrics on the localisation of hydrothermal upflow. The 15 My record of similarly-oriented magmatism, rifting and hydrothermal activity associated with subduction of the Pacific Plate beneath the North Island of New Zealand. Lateral migration of the locus of arc magmatism, concomitant with roll-back of the subducting slab, is supported by the SE-directed younging of: 1) volcanism; 2) fault-controlled rift basins; and 3) hydrothermal activity, represented by the distribution of epithermal mineralisation within the ~15-3 Ma Coromandel Volcanic Zone (CVZ), and geothermal activity within the TVZ. Currently the TVZ is extending in a NW-SE direction at a rate that varies from ~3 mm/yr to ~15 mm/yr from SW to NE, respectively. The TVZ is partitioned into discrete rift segments, comprising arrays of NE-striking normal faults of ~20 km in length, as expected on mechanical grounds for the 6-8 km-thick seismogenic zone. Transfer zones between rift segments coincide with N-to-NW-trending alignments of geothermal fields, spaced ~ 30 km apart can be recognized elsewhere within the CVZ. The most productive epithermal deposits to date are localised where these inferred transfer zones intersect arc-parallel fault arrays. A similar tectonic configuration occurs in the Deseado Massif, Argentinian Patagonia, where interplay between transfer and rift faults is inferred to have localized hydrothermal fluids in small pull-apart basins and arrays of extension veins for durations >30 My.

  10. Lu-Hf garnet geochronology applied to plate boundary zones: Insights from the (U)HP terrane exhumed within the Woodlark Rift

    Science.gov (United States)

    Zirakparvar, N. A.; Baldwin, S. L.; Vervoort, J. D.

    2011-09-01

    High-pressure and ultra high-pressure (U)HP metamorphic rocks occur in many of the world's major orogenic belts, suggesting that subduction of continental lithosphere is a geologically important process. Despite the widespread occurrence of these rocks, relatively little is known about the timescales associated with (U)HP metamorphism. This is because most (U)HP terranes are tectonically overprinted and juxtaposed against rocks with a different history. An exception to this are the Late Miocene (U)HP metamorphic rocks found in active metamorphic core complexes (MCC) in the Woodlark Rift of southeastern Papua New Guinea. This region provides a rare opportunity to study the garnet Lu-Hf isotopic record of (U)HP metamorphism in a terrane that is not tectonically overprinted. In order to constrain the timing of garnet growth relative to the history of (U)HP metamorphism and the evolution of the Woodlark Rift, Lu-Hf ages were determined, in conjunction with measurements of Lu and major element zoning, for garnets from three metamorphic rocks. Garnets from the three samples yielded different ages that, instead of recording the spatial and temporal evolution associated with a single metamorphic event, provide information on the timing of three separate plate boundary events. The youngest Lu-Hf age determined was 7.1 ± 0.7 Ma for garnets in a Late Miocene coesite eclogite. The age is interpreted to record the time when a garnet-bearing partial melt of the mantle crystallized within subducted continental lithosphere at (U)HP conditions. The young Lu-Hf age from the coesite eclogite is in contrast to a 68 ± 3.6 Ma Lu-Hf age obtained on large (1-2 cm) garnet porphyroblasts, from within the Pleistocene amphibolite facies shear zone carapace bounding exposures of (U)HP rocks in the D'Entrecasteaux Islands. This older age records the growth of garnet in response to continental subduction and ophiolite obduction in the region north and east of Australia during late Mesozoic

  11. Volcanic activities in the Southern part of East African rift initiation: Melilitites and nephelinites from the Manyara Basin (North Tanzania rift axis)

    Science.gov (United States)

    Baudouin, Celine; Parat, Fleurice; Tiberi, Christel; Gautier, Stéphanie; Peyrat, Sophie

    2016-04-01

    The East African Rift exposes different stages of plate boundary extension, from the initiation of the rift (North (N) Tanzania) to oceanic accretion (Afar). The N Tanzania rift-axis (north-south (S) trend) is divided into 2 different volcanic and seismic activities: (1) the Natron basin (N) with shallow seismicity and intense volcanism and (2) the Manyara basin (S) with deep crustal earthquakes and sparse volcanism. The Natron basin is characterized by extinct volcanoes (2 Ma-0.75 Ma) and active volcano (Oldoinyo Lengai) and a link between seismicity and volcanism has been observed during the Oldoinyo Lengai crisis in 2007. In the S part of the N Tanzanian rift, volcanoes erupted in the Manyara basin between 0.4 and 0.9 Ma. In this study, we used geochemical signature of magmas and deep fluids that percolate into the lithosphere beneath Manyara basin, to define the compositions of magmas and fluids at depth beneath the S part of the N Tanzania rift, compare to the Natron basin and place constrain on the volcanic and seismic activities. The Manyara basin has distinct volcanic activities with mafic magmas as melilitites (Labait) and Mg-nephelinites (carbonatite, Kwaraha), and more differentiated magmas as Mg-poor nephelinites (Hanang). Melilitites and Mg-nephelinites are primary magmas with olivine, clinopyroxene (cpx), and phlogopite recording high-pressure crystallization environment, (melilitites >4 GPa and Mg-nephelinites>1 GPa) with high volatile contents (whole rock: 0.7-4.6 wt% CO2, 0.1-0.3 wt% F and 0.1 wt% Cl). FTIR analyses of olivine constrained the water content of Labait and Kwaraha magmas at 0.1 and 0.4 wt% H2O, respectively. Geochemical modelling suggests that mafic magmas result from a low degree of partial melting (1-2%) of a peridotitic source with garnet and phlogopite (high Tb/Yb (>0.6) and Rb/Sr (0.03-0.12) ratio). Mg-poor nephelinites from Hanang volcano crystallized cpx, Ti-garnet, and nepheline as phenocrysts. Magmas result from fractional

  12. Kinematics and dynamics of Nubia-Somalia divergence along the East African rift

    Science.gov (United States)

    Stamps, Dorothy Sarah

    Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition

  13. Evolution of the western East African Rift System reflected in provenance changes of Miocene to Pleistocene synrift sediments (Albertine Rift, Uganda)

    Science.gov (United States)

    Schneider, Sandra; Hornung, Jens; Hinderer, Matthias

    2016-08-01

    Miocene to Pleistocene synrift sediments in the Albertine Graben reflect the complex geodynamic evolution in the Western branch of the East African Rift System. In this study we focus on the provenance of these siliciclastic deposits to identify sediment sources and supply paths with the ultimate goal to reconstruct the exhumation history of different tectonic blocks during prolonged rifting, with specific focus on the uplift of the Rwenzori Mountains in Uganda. We present framework and heavy mineral petrographic data combined with varietal studies of detrital garnet and rutile, based on logged sediment sections on the Ugandan side of Lake Albert (Kisegi-Nyabusosi area). The analyzed sedimentary units have a feldspatho-quartzose composition and distinct variations in heavy mineral assemblages and mineral chemical composition indicating two provenance changes. The Miocene part of the stratigraphy is dominated by garnet, zircon, tourmaline and rutile, whereas Pliocene to Pleistocene sediment yields high amounts of less stable amphibole and epidote. An abrupt switch in heavy mineral assemblages occurs during the early Pliocene (~ 5.5-5.0 Ma) and clearly postdates the formation of Palaeolake Obweruka at ~ 8 Ma. Provenance signatures point to major sediment supply from the northeast and subsequently from the southeast. We interpret this first shift as transition from the pre-rift to the syn-rift stage. In this scenario, formation of Palaeolake Obweruka is due to higher humidity in the upper Miocene, rather than forced rifting. A second change of sediment composition is documented by mineral geochemistry and coincides with fragmentation of Palaeolake Obweruka starting at ~ 2.5 Ma. Detrital garnet in sediment of Miocene to Pliocene age is rich in pyrope and almandine and calculated Zr-in-rutile temperatures range between ~ 550 and 950 °C. In contrast, garnet occurring in Pleistocene sediment (Nyabusosi Formation) has a higher spessartine component and rutile thermometry

  14. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure

    Indian Academy of Sciences (India)

    Hrishikesh Samant; Ashwin Pundalik; Joseph D’souza; Hetu Sheth; Keegan Carmo Lobo; Kyle D’souza; Vanit Patel

    2017-02-01

    The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dippingsteeply east–southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag–Uran fault zone previously described. This and two other known regional faults (Nhava–Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.

  15. MORPHOSTRUCTURE OF THE KODAR-UDOKAN SECTION OF THE BAIKAL RIFT ZONE

    Directory of Open Access Journals (Sweden)

    Andrey A. Lukashov

    2014-01-01

    Full Text Available The morphostructure of the region is a natural result of active geodynamics in the eastern Stanovoe Upland. Extreme seismic conditions become apparent in rare devastating earthquakes (up to 10-11 in the Mercally scale, as well as in frequent slight ones. Seismic events affect topography and produce seismic deformations of different scale and morphology. Areal disturbances (like the New Namarakit Lake in the South-Muya Mountains origin and, more often, local deformations (like destructions of the Kodar ridge rocky saddles or clamms [gorges] opening are evident. Using morphotectonic analysis methods the morphostructural scheme of the Kodar-Udocan section of the Baikal rift zone (perhaps pull-apart basin is done. In our model piedmont and mountain territories are divided in five level groups of blocks. Neotectonic movements’ amplitude is estimated at 5000 m.

  16. THE VELOCITY STRUCTURE OF THE UPPER MANTLE AND REGIONAL DEEP THERMODYNAMICS OF THE BAIKAL RIFT ZONE

    Directory of Open Access Journals (Sweden)

    Alexander V. Pospeev

    2015-10-01

    Full Text Available The article is aimed at discussion of geological and geophysical aspects of the ‘asthenospheric’ interpretation of the ‘anomalous’ mantle layer that is revealed in the Baikal rift zone by deep seismic sounding (DSS methods. Based on the analysis of the geoelectrical model, estimations of rheological properties, regional geothermal and deep petrological data, it is concluded that the ‘anomalous’ mantle phenomenon should be interpreted within the framework of solid-phase models. It is shown that the actual minimum depth to the top of the asthenosphere is about 60–70 km in the region under study, and temperatures at the surface of the Earth’s mantle varies from 600 to 900 °С. It is most probable that velocities are reduced in the ‘anomalous’ mantle layer due to the presence of hightemperature spinel-pyroxene facies of the mantle rocks.

  17. IDENTIFICATION OF EARTHQUAKE AFTERSHOCK AND SWARM SEQUENCES IN THE BAIKAL RIFT ZONE

    Directory of Open Access Journals (Sweden)

    N. A. Radziminovich

    2015-09-01

    Full Text Available The catalog of earthquakes (КR³6.6 which occurred in the Baikal rift zone (BRZ was declastered, and the results are presented in the article. Aftershocks of seismic events (КR³12.5 were determined by the software developed by V.B. Smirnov (Lomonosov Moscow State University with application of the algorithm co-authored by G.M. Molchan and O.E. Dmitrieva. To ensure proper control of the software application, aftershocks were also selected manually. The results of declustering show that aftershocks of the earthquakes (КR³12.5 account for about 25 per cent of all seismic events in the regional catalog. Aftershocks accompanied 90 per cent of all the earthquakes considered as main shocks. Besides, earthquake swarms, including events with КR³11, were identified. The results of this study show that, in the BRZ, the swarms and strong events with aftershocks are not spatially separated, and this conclusion differs from the views of the previous studies that reviewed data from a shorter observation period. Moreover, it is noted that the swarms may consist of several main shocks accompanied by aftershocks. The data accumulated over the last fifty years of instrumental observations support the conclusion made earlier that the swarms in BRZ occur mainly in the north-eastward direction from Lake Baikal and also confirm the trend of a small number of aftershocks accompanying earthquakes in the south-western part of the Baikal rift zone.

  18. Reactivation of a segmented hyper-extended rift system: the example of the Pamplona transfer zone in the western Pyrenees

    Science.gov (United States)

    Lescoutre, Rodolphe; Schaeffer, Frédéric; Masini, Emmanuel; Manatschal, Gianreto

    2016-04-01

    Numerous studies have revealed the importance of rift-inheritance on the formation of orogens but little consideration was given to rift segmentation and the role of transfer zones on the architecture of mountain chains. Indeed, structural mapping of passive margins pointed out the occurrence of a strong variability in the rift architecture along the margin when crossing through peculiar features that represent transfer zones. These transfer zones are generally oriented in the extension direction and relay the deformation between rift segments. The aim of this study is twofold: 1) characterize and define the Pamplona fault system as well as the structures and architecture of the basins bounding this major paleo-transfer fault located in the Western Pyrenees, and 2) understand its role during the subsequent Pyrenean convergence. The influence of the Pamplona fault system on the structuration of the Mauléon basin to the northeast and the Basque-Cantabrian basin to the southwest is substantial as expressed by their large offset and the occurrence of exhumed deep crustal and mantle rocks flooring the two basins. On the one hand, field work in the Labourd Massif and the western termination of the Mauléon basin enabled to describe faults and their relations to sedimentary sequences. This work also allowed describing the formation and reactivation of faults according to their orientation and their activity with respect to key markers (pre-Trias and post-Cenomanian). A strong relationship between rift architecture (proximal to distal domains) and structural inheritance is suggested. On the other hand, preliminary results from fieldwork, literature compilation and new tomographic imaging enable to determine the role and the history of the Pamplona fault system during Late Cretaceous compression. A significant work of this starting PhD project will be to determine the rift structures that have been reactivated and to assess their influence on the final architecture of the

  19. Seismic hazard assessment of the Kivu rift segment based on a new sismo-tectonic zonation model (Western Branch of the East African Rift system)

    Science.gov (United States)

    Havenith, Hans-Balder; Delvaux, Damien

    2015-04-01

    In the frame of the Belgian GeoRisCA multi-risk assessment project focused on the Kivu and Northern Tanganyika Region, a seismic hazard map has been produced for this area. It is based on a on a recently re-compiled catalogue using various local and global earthquake catalogues. The use of macroseismic epicenters determined from felt earthquakes allowed to extend the time-range back to the beginning of the 20th century, thus spanning about 100 years. The magnitudes have been homogenized to Mw and the coherence of the catalogue has been checked and validated. The seismo-tectonic zonation includes 10 seismic source areas that have been defined on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of earthquake epicenters. The seismic catalogue was filtered by removing obvious aftershocks and Gutenberg-Richter Laws were determined for each zone. On the basis of this seismo-tectonic information and existing attenuation laws that had been established by Twesigomwe (1997) and Mavonga et al. (2007) for this area, seismic hazard has been computed with the Crisis 2012 (Ordaz et al., 2012) software. The outputs of this assessment clearly show higher PGA values (for 475 years return period) along the Rift than the previous estimates by Twesigomwe (1997) and Mavonga (2007) while the same attenuation laws had been used. The main reason for these higher PGA values is likely to be related to the more detailed zonation of the Rift structure marked by a strong gradient of the seismicity from outside the rift zone to the inside. Mavonga, T. (2007). An estimate of the attenuation relationship for the strong ground motion in the Kivu Province, Western Rift Valley of Africa. Physics of the Earth and Planetary Interiors 62, 13-21. Ordaz M, Martinelli F, Aguilar A, Arboleda J, Meletti C, D'Amico V. (2012). CRISIS 2012, Program for computing seismic hazard. Instituto de Ingeniería, Universidad Nacional Autónoma de M

  20. Diffuse CO2 emission from the NE volcanic rift-zone of Tenerife (Canary Islands, Spain): a 15 years geochemical monitoring

    Science.gov (United States)

    Padilla, Germán; Alonso, Mar; Shoemaker, Trevor; Loisel, Ariane; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    The North East Rift (NER) volcanic zone of Tenerife Island is one of the three volcanic rift-zones of the island (210 km2). The most recent eruptive activity along the NER volcanic zone took place in the 1704-1705 period with the volcanic eruptions of Siete Fuentes, Fasnia and Arafo volcanoes. The aim of this study was to report the results of a soil CO2 efflux survey undertaken in June 2015, with approximately 580 measuring sites. In-situ measurements of CO2 efflux from the surface environment of NER volcanic zone were performed by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. To quantify the total CO2 emission from NER volcanic zone, soil CO2 efflux contour maps were constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CO2 emission rate was estimated in 1209 t d-1, with CO2 efflux values ranging from non-detectable (˜0.5 g m-2 d-1) up to 123 g m-2 d-1, with an average value of 5.9 g m-2 d-1. If we compare these results with those obtained in previous surveys developed in a yearly basis, they reveal slightly variations from 2006 to 2015, with to pulses in the CO2 emission observed in 2007 and 2014. The main temporal variation in the total CO2 output does not seem to be masked by external variations. First peak precedes the anomalous seismicity registered in and around Tenerife Island between 2009 and 2011, suggesting stress-strain changes at depth as a possible cause for the observed changes in the total output of diffuse CO2 emission. Second peak could be related with futures changes in the seismicity. This study demonstrates the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool.

  1. Millennial-scale cyclicity in the Pliocene: Evidence from the East African Rift Valley

    Science.gov (United States)

    Wilson, K. E.; Leng, M. J.; Edgar, R. K.; Deino, A. L.; Kingston, J. D.; Maslin, M. A.; Mackay, A. W.

    2010-12-01

    Superimposed on the long-term trend of aridification in East Africa were a series of humid episodes, coincident with major transitions in global climate during the Plio-Pleistocene. The period of climatic variability between 2.7 and 2.5 Ma is coeval with the amplification of ice sheet growth and cooling in the Northern Hemisphere, however climate change in the low latitudes remains poorly understood. In the Tugen Hills, a well-dated package of fluviolacustrine sediments, characterised by five diatomite units, records the precessionally-driven cycling of a major freshwater lake system in the Baringo-Bogoria basin within the Central Kenyan Rift between 2.68 and 2.55 Ma. We use stable oxygen isotope measurements of diatom silica (δ18Odiatom), combined with the analysis of whole-sample geochemistry by x-ray fluorescence, to investigate potential palaeoenvironmental signals recorded in the best dated of these diatomite deposits spanning the period between 2.606 Ma and 2.617 Ma (40Ar/39Ar chronology normalised to Astronomical Polarity Time Scale). Geochemical results were modelled using multivariate statistics, and mass-balance calculations were applied to the isotope values to correct for the effects of residual contamination within the purified diatom samples. The modelled δ18Odiatom values, coupled with diatom assemblage counts, reveal a series of millennial-scale climate oscillations throughout the period of diatomite deposition. Six negative excursions in the δ18Odiatom signal of up to 5 per mil represent periods of enhanced precipitation and indicate that wet-dry cycles occur, on average, every 1,400 years. Such high-resolution cycles are rarely found in records from this time, thus giving a valuable insight to the nature of short-term fluctuations in Pliocene climate.

  2. Controls on alkylphenol occurrence and distribution in oils from lacustrine rift basins in East China

    Institute of Scientific and Technical Information of China (English)

    ZHOU ShuQing; HUANG HaiPing

    2008-01-01

    Oils from two lacustrine rift basins in east China are thoroughly investigated using geochemical method to understand controls on alkylphenol occurrence and distribution in oils. Oils in the Lujiapu Depression,Kailu Basin are derived from the Cretaceous source rocks,and those in the Dongying Depression,Bohai Bay Basin,from the Tertiary source rocks. All oils are experienced relatively short distance of migration and have similar maturity in each basin. Differences in homologue distributions from different oilfields are most likely caused by organic facies variation of source rocks. The oils in the Lujiapu Depression are characterized by high proportion of C3 alkylphenols (prefixes refer to the number of alkylcarbons joined to the aromatic ring of the phenol molecule) and low proportion of cresols and C2 alkylphenols compared to oils from the Dongying Depression. Alkylphenol isomer distribution is possibly affected by depositional environment especially for C3 alkylphenols. Dysoxic freshwater environment is favorable for the formation of propyl or isopropyl substituted C3 alkylphenols,while highly reducing saline water is more suitable for trimethyl substituted C3 alkylphenols. Variations in alkylphenol concentrations within a petroleum system are controlled mainly by secondary migration processes with alkylphenol concentrations decreasing along migration direction. Interestingly,coupled with geological factors,a subtle change of alkylphenol concentrations can be applied to differentiate carrier systems. When oil migrates through sandy beds,concentrations of total alkylphenols decrease dramatically with migration distance,while such change is less significant when oil migrates vertically along faults. However,most isomer ratios potentially related to migration distance are not as effective as those alkylcarbazoles in migration diagnosis due to complicated affecting factors.

  3. Controls on alkylphenol occurrence and distribution in oils from lacustrine rift basins in East China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Oils from two lacustrine rift basins in east China are thoroughly investigated using geochemical method to understand controls on alkylphenol occurrence and distribution in oils. Oils in the Lujiapu Depression, Kailu Basin are derived from the Cretaceous source rocks, and those in the Dongying De- pression, Bohai Bay Basin, from the Tertiary source rocks. All oils are experienced relatively short distance of migration and have similar maturity in each basin. Differences in homologue distributions from different oilfields are most likely caused by organic facies variation of source rocks. The oils in the Lujiapu Depression are characterized by high proportion of C3 alkylphenols (prefixes refer to the number of alkylcarbons joined to the aromatic ring of the phenol molecule) and low proportion of cre- sols and C2 alkylphenols compared to oils from the Dongying Depression. Alkylphenol isomer distri- bution is possibly affected by depositional environment especially for C3 alkylphenols. Dysoxic fresh- water environment is favorable for the formation of propyl or isopropyl substituted C3 alkylphenols, while highly reducing saline water is more suitable for trimethyl substituted C3 alkylphenols. Variations in alkylphenol concentrations within a petroleum system are controlled mainly by secondary migration processes with alkylphenol concentrations decreasing along migration direction. Interestingly, coupled with geological factors, a subtle change of alkylphenol concentrations can be applied to differentiate carrier systems. When oil migrates through sandy beds, concentrations of total alkylphenols decrease dramatically with migration distance, while such change is less significant when oil migrates vertically along faults. However, most isomer ratios potentially related to migration distance are not as effective as those alkylcarbazoles in migration diagnosis due to complicated affecting factors.

  4. Geochemistry and petrology of andesites from the north rift zone of Axial Seamount, Juan de Fuca Ridge

    Science.gov (United States)

    Smithka, I. N.; Perfit, M. R.; Clague, D. A.; Wanless, V. D.

    2014-12-01

    In 2013, the ROV Doc Ricketts onboard R/V Western Flyer explored ~4 km of an elongate pillow ridge up to ~300 m high along the eastern edge of the north rift zone of Axial Seamount. The steep-sided volcanic ridge is constructed of large pillow lavas up to 2-3 m in diameter and smaller elongated pillow tubes. Of the 27 samples collected during dive D526, all but one are andesites making it one of the largest confirmed high-silica exposures along a mid-ocean ridge (MOR). Based on radiocarbon ages of sediment on top of flows, the mounds are at least ~1390 years old. This minimum age is much younger than the 56 Ka age calculated based on distance from the rift axis, indicating eruption off-axis through older, colder crust and supporting the hypothesis and model calculations that extensive fractional crystallization (>85%) caused the high silica content. The andesitic lavas are primarily glassy, highly vesicular, crusty, and sparsely phyric with small (~1 mm) plagioclase crystals and olivine, clinopyroxene, and Fe-Ti oxide microphenocrysts. Microprobe analyses of glasses are similar to wax-core samples previously collected from this area but are more compositionally variable. Excluding one basalt (7.7 wt% MgO) sampled between mounds, the lavas are basaltic andesites and andesites (53-59 wt% SiO2) with <3 wt% MgO and 12.8-15.7 wt% FeO concentrations. Incompatible trace element abundances are ~4-6 times more enriched than in Axial Seamount T-MORB. Primitive mantle-normalized patterns are similar to those of high-silica lavas from other MORs (southern Juan de Fuca Ridge, 9N East Pacific Rise) with significant positive U anomalies, large negative Sr anomalies, small negative Eu anomalies, and slight positive Zr-Hf anomalies. The andesites are more enriched in light rare earth elements than basalts from Axial Seamount ((La/Yb)N 1.35-1.4 vs. 0.7-1.27) and N-MORB from the southern Juan de Fuca Ridge. The andesites also have high Cl (~0.3-0.6 wt%) and H2O (~1.60-1.71 wt

  5. Aeromagnetic signatures reveal a back-arc basin imposed upon the inherited rifted margin of the East Antarctic craton

    Science.gov (United States)

    Armadillo, E.; Ferraccioli, F.; Jordan, T. A.; Bozzo, E.

    2009-12-01

    The Wilkes Subglacial Basin (WSB) represents a largely unexplored, approximately 1400 km-long and up to 600 km-wide subglacial depression, buried beneath the over 3 km-thick East Antarctic Ice Sheet. During the 2005-06 austral summer an extensive aerogeophysical survey was flown to investigate the WSB adjacent to northern Victoria Land (NVL), and included the acquisition of new airborne radar, aeromagnetic and aerogravity data. Several contrasting models for the origin of the basin have been previously proposed, and are based primarily on relatively sparse gravity data. These range from Cenozoic flexure, to distributed crustal extension of unknown age (possibly Mesozoic to Cenozoic), and even compression along the margin of craton. Our recent aeromagnetic data reveal that the basin is structurally controlled and has a tectonic origin, at least adjacent to NVL. The eastern margin of the basin is imposed upon an Early Paleozoic thrust fault belt, which can be traced under the ice using aeromagnetic signatures from exposures in Oates Land and the Ross Sea coast. Aeromagnetic patterns reveal that the western margin of the basin is imposed upon a Proterozoic-age shear zone mapped in the Mertz Glacier, and that is interpreted from geological studies to represent the continuation of a coeval shear zone in Australia. The broad aeromagnetic and satellite magnetic low over the WSB contrasts with the high over the un-reworked Proterozoic craton to the west of the basin, and is interpreted to reflect Neoproterozoic-age sediments deposited along the rifted margin of the craton. Magnetic intrusions within the WSB are interpreted as back-arc plutons that formed later in response to Cambrian-Ordovician age subduction along the paleo-Pacific margin of Gondwana. The aeromagnetic interpretation for a former broad back-arc basin in the WSB is supported by the occurrence of low-grade metasedimentary rocks of back-arc affinity in Oates Land, and also by the similarity in long

  6. The Salton Seismic Imaging Project (SSIP): Active Rift Processes in the Brawley Seismic Zone

    Science.gov (United States)

    Han, L.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Rymer, M. J.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Gonzalez-Fernandez, A.; Lazaro-Mancilla, O.

    2011-12-01

    The Salton Seismic Imaging Project (SSIP), funded by NSF and USGS, acquired seismic data in and across the Salton Trough in southern California and northern Mexico in March 2011. The project addresses both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. Seven lines of onshore refraction and low-fold reflection data were acquired in the Coachella, Imperial, and Mexicali Valleys, two lines and a grid of airgun and OBS data were acquired in the Salton Sea, and onshore-offshore data were recorded. Almost 2800 land seismometers and 50 OBS's were used in almost 5000 deployments at almost 4300 sites, in spacing as dense as 100 m. These instruments received seismic signals from 126 explosive shots up to 1400 kg and over 2300 airgun shots. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. Based primarily on a 1979 seismic refraction project, the 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. Active rifting of this new crust is manifested by shallow (geothermal energy production. This presentation is focused on an onshore-offshore line of densely sampled refraction and low-fold reflection data that crosses the Brawley Seismic Zone and Salton Buttes in the direction of plate motion. At the time of abstract submission, data analysis was very preliminary, consisting of first-arrival tomography of the onshore half of the line for upper crustal seismic velocity. Crystalline basement (>5 km/s), comprised of late-Pliocene to Quaternary sediment metamorphosed by the high heat flow, occurs at ~2 km depth beneath the Salton Buttes and geothermal field and ~4 km depth south of the BSZ. Preliminary result suggests that the velocity of basement is lower in the BSZ than to the south, which may result from fracturing. Basement velocity appears to be

  7. Miocene Onset of Extension in the Turkana Depression, Kenya: Implications for the Geodynamic Evolution of the East African Rift System

    Science.gov (United States)

    Boone, S.; Gleadow, A. J. W.; Kohn, B. P.; Seiler, C.

    2015-12-01

    The Paleogene-Recent East African Rift System (EARS) is the foremost modern example of continental rifting, providing much of our understanding of the early stages of continental breakup. The EARS traverses two regions of crustal uplift, the Ethiopian and East African Domes, separated by the Turkana Depression. This wide region of subdued topography coincides with the NW-SE trend of the Jurassic-Paleogene Anza Rift. Opinions on the fundamental geodynamic driver for EARS rifting are divided, however, principally between models involving migrating plume(s) and a single elongated 'superplume'. While competing models have similar topographic outcomes, they predict different morphotectonic evolutions for the Turkana Depression. Models inferring southward plume-migration imply that the plume must have passed below the Turkana Depression during the Paleogene, in order to have migrated to the East African Dome by the Miocene. The possible temporal denudational response to such plume activity is testable using low temperature thermochronology. We present apatite fission track (AFT) and (U-Th)/He (AHe), and zircon (U-Th)/He (ZHe) data from the Lapurr Range, an uplifted Precambrian basement block in northern Turkana. Low radiation damage ZHe results displaying an age range of ~70-210 Ma, and combined with stratigraphic evidence, suggest ~4-6 km of Jurassic-Early Cretaceous denudation, probably associated with early Anza Rift tectonism. AFT ages of ~9-15 Ma imply subsequent burial beneath no more than ~4 km of overburden, thus preserving the Jurassic-Cretaceous ZHe ages. Together with AFT results, AHe data (~3-19 Ma) support ~2-4 km of Miocene-Pliocene uplift of the Lapurr Range in the footwall of the E-dipping Lapurr normal fault. Miocene AFT and AHe ages are interpreted to reflect the initiation of the EARS in the Turkana Depression. If extension is associated with plume activity, then upwelling in the Turkana region is unlikely to have started prior to the Miocene, much

  8. A shifting rift—Geophysical insights into the evolution of Rio Grande rift margins and the Embudo transfer zone near Taos, New Mexico

    Science.gov (United States)

    Grauch, V.J.S.; Bauer, Paul W.; Drenth, Benjamin J.; Kelson, Keith I.

    2017-01-01

    We present a detailed example of how a subbasin develops adjacent to a transfer zone in the Rio Grande rift. The Embudo transfer zone in the Rio Grande rift is considered one of the classic examples and has been used as the inspiration for several theoretical models. Despite this attention, the history of its development into a major rift structure is poorly known along its northern extent near Taos, New Mexico. Geologic evidence for all but its young rift history is concealed under Quaternary cover. We focus on understanding the pre-Quaternary evidence that is in the subsurface by integrating diverse pieces of geologic and geophysical information. As a result, we present a substantively new understanding of the tectonic configuration and evolution of the northern extent of the Embudo fault and its adjacent subbasin.We integrate geophysical, borehole, and geologic information to interpret the subsurface configuration of the rift margins formed by the Embudo and Sangre de Cristo faults and the geometry of the subbasin within the Taos embayment. Key features interpreted include (1) an imperfect D-shaped subbasin that slopes to the east and southeast, with the deepest point ∼2 km below the valley floor located northwest of Taos at ∼36° 26′N latitude and 105° 37′W longitude; (2) a concealed Embudo fault system that extends as much as 7 km wider than is mapped at the surface, wherein fault strands disrupt or truncate flows of Pliocene Servilleta Basalt and step down into the subbasin with a minimum of 1.8 km of vertical displacement; and (3) a similar, wider than expected (5–7 km) zone of stepped, west-down normal faults associated with the Sangre de Cristo range front fault.From the geophysical interpretations and subsurface models, we infer relations between faulting and flows of Pliocene Servilleta Basalt and older, buried basaltic rocks that, combined with geologic mapping, suggest a revised rift history involving shifts in the locus of fault activity as

  9. Coulomb Stress Change and Seismic Hazard of Rift Zones in Southern Tibet after the 2015 Mw7.8 Nepal Earthquake and Its Mw7.3 Aftershock

    Science.gov (United States)

    Dai, Z.; Zha, X.; Lu, Z.

    2015-12-01

    In southern Tibet (30~34N, 80~95E), many north-trending rifts, such as Yadong-Gulu and Lunggar rifts, are characterized by internally drained graben or half-graben basins bounded by active normal faults. Some developed rifts have become a portion of important transportation lines in Tibet, China. Since 1976, eighty-seven >Mw5.0 earthquakes have happened in the rift regions, and fifty-five events have normal faulting focal mechanisms according to the GCMT catalog. These rifts and normal faults are associated with both the EW-trending extension of the southern Tibet and the convergence between Indian and Tibet. The 2015 Mw7.8 Nepal great earthquake and its Mw7.3 aftershock occurred at the main Himalayan Thrust zone and caused tremendous damages in Kathmandu region. Those earthquakes will lead to significant viscoelastic deformation and stress changes in the southern Tibet in the future. To evaluate the seismic hazard in the active rift regions in southern Tibet, we modeled the slip distribution of the 2015 Nepal great earthquakes using the InSAR displacement field from the ALOS-2 satellite SAR data, and calculated the Coulomb failure stress (CFS) on these active normal faults in the rift zones. Because the estimated CFS depends on the geometrical parameters of receiver faults, it is necessary to get the accurate fault parameters in the rift zones. Some historical earthquakes have been studied using the field data, teleseismic data and InSAR observations, but results are in not agreement with each other. In this study, we revaluated the geometrical parameters of seismogenic faults occurred in the rift zones using some high-quality coseismic InSAR observations and teleseismic body-wave data. Finally, we will evaluate the seismic hazard in the rift zones according to the value of the estimated CFS and aftershock distribution.

  10. Geomorphologic proxies for bedrock rivers: A case study from the Rwenzori Mountains, East African Rift system

    Science.gov (United States)

    Xue, Liang; Gani, Nahid D.; Abdelsalam, Mohamed G.

    2017-05-01

    Geomorphic proxies yield useful insights into understanding long-term endogenic and exogenic response to erosion and/or rock uplift rates. By evaluating areal proxies (including asymmetry factor (AF), mountain front sinuosity (Smf), hypsometric integral (HI), geophysical relief, and shape factor (Shp), and linear proxies (including normalized steepness index (ksn), length-gradient index (SLk) and Chi gradient (Mχ), the erosion and/or rock uplift rates can be quantified. We carried out morphotectonic analysis in the Rwenzori Mountains, which represents an anomalously uplifted Precambrian horst within the western branch of the East African Rift system (EARS). This study aims to: (1) evaluate the relationship between geomorphic proxies and drainage basin's maturity; (2) evaluate the usefulness of geomorphic proxies as recorders of erosion and/or rock uplift rates; (3) evaluate the sensitivity of each geomorphic proxy to the drainage basin size and geometry, stream order, glaciers extent, and local structures; (4) explore internal correlation within the geomorphic proxies; and (5) contribute to the understanding of morphotectonic evolution of the Rwenzori Mountains. For this, we computed the stream's 'Good of Fitness' (R2, an indicator of the drainage basin's maturity) and geomorphic proxies for the drainage basins and their streams in the Rwenzori Mountains from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM). Subsequently, we correlated the areal geomorphic proxies with each other and with R2. Also, we correlated the linear geomorphic proxies with each other and with published erosion rates obtained from cosmogenic 10Be analysis. Our results show that the areal geomorphic proxies (AF, Smf, HI, relief, and Shp) - considering the drainage basin size and geometry, stream order, glacier extent, and local structures - can be applied to locally evaluate the maturity of the drainage basin. We also found that the

  11. The post-Mazama northwest rift zone eruption at Newberry Volcano, Oregon

    Science.gov (United States)

    McKay, Daniele; Donnelly-Nolan, Julie M.; Madin, Ian P.; Champion, Duane E.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian P.

    2009-01-01

    The northwest rift zone (NWRZ) eruption took place at Newberry Volcano ~7000 years ago after the volcano was mantled by tephra from the catastrophic eruption that destroyed Mount Mazama and produced the Crater Lake caldera. The NWRZ eruption produced multiple lava flows from a variety of vents including cinder cones, spatter vents, and fissures, possibly in more than one episode. Eruptive behaviors ranged from energetic Strombolian, which produced significant tephra plumes, to low-energy Hawaiian-style. This paper summarizes and in part reinterprets what is known about the eruption and presents information from new and ongoing studies. Total distance spanned by the eruption is 32 km north-south. The northernmost flow of the NWRZ blocked the Deschutes River upstream from the city of Bend, Oregon, and changed the course of the river. Renewed mafic activity in the region, particularly eruptions such as the NWRZ with tephra plumes and multiple lava flows from many vents, would have significant impacts for the residents of Bend and other central Oregon communities.

  12. Microstructural evolution and seismic anisotropy of upper mantle rocks in rift zones. Geologica Ultraiectina (300)

    NARCIS (Netherlands)

    Palasse, L.N.

    2008-01-01

    This thesis investigates field-scale fragments of subcontinental upper mantle rocks from the ancient Mesozoic North Pyrenean rift and Plio-Pleistocene xenoliths from the active Baja California rift, in order to constrain the deformation history of the uppermost mantle. The main focus of the study is

  13. Microstructural evolution and seismic anisotropy of upper mantle rocks in rift zones. Geologica Ultraiectina (300)

    NARCIS (Netherlands)

    Palasse, L.N.

    2008-01-01

    This thesis investigates field-scale fragments of subcontinental upper mantle rocks from the ancient Mesozoic North Pyrenean rift and Plio-Pleistocene xenoliths from the active Baja California rift, in order to constrain the deformation history of the uppermost mantle. The main focus of the study is

  14. Spatio-temporal trends in normal-fault segmentation recorded by low-temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System

    Science.gov (United States)

    Mortimer, Estelle; Kirstein, Linda A.; Stuart, Finlay M.; Strecker, Manfred R.

    2016-12-01

    The evolution of through-going normal-fault arrays from initial nucleation to growth and subsequent interaction and mechanical linkage is well documented in many extensional provinces. Over time, these processes lead to predictable spatial and temporal variations in the amount and rate of displacement accumulated along strike of individual fault segments, which should be manifested in the patterns of footwall exhumation. Here, we investigate the along-strike and vertical distribution of low-temperature apatite (U-Th)/He (AHe) cooling ages along the bounding fault system, the Livingstone fault, of the Karonga Basin of the northern Malawi Rift. The fault evolution and linkage from rift initiation to the present day has been previously constrained through investigations of the hanging wall basin fill. The new cooling ages from the footwall of the Livingstone fault can be related to the adjacent depocentre evolution and across a relay zone between two palaeo-fault segments. Our data are complimented by published apatite fission-track (AFT) data and reveal significant variation in rock cooling history along-strike: the centre of the footwall yields younger cooling ages than the former tips of earlier fault segments that are now linked. This suggests that low-temperature thermochronology can detect fault interactions along strike. That these former segment boundaries are preserved within exhumed footwall rocks is a function of the relatively recent linkage of the system. Our study highlights that changes in AHe (and potentially AFT) ages associated with the along-strike displacement profile can occur over relatively short horizontal distances (of a few kilometres). This is fundamentally important in the assessment of the vertical cooling history of footwalls in extensional systems: temporal differences in the rate of tectonically driven exhumation at a given location along fault strike may be of greater importance in controlling changes in rates of vertical exhumation

  15. The effect of an East Pacific Rise offset on the formation of secondary cracks ahead of the Cocos-Nazca Rift at the Galapagos Triple Junction

    Science.gov (United States)

    Smith, D. K.; Montesi, L. G.; Schouten, H.; Zhu, W.

    2011-12-01

    A succession of short-lived, E-W trending cracks at the Galapagos Triple Junction north and south of the Cocos-Nazca (C-N) Rift, has been explained by a simple crack interaction model. The locations of where the cracks initiate are controlled by tensile stresses generated at the East Pacific Rise (EPR) by two interacting cracks: One representing the north-south trending EPR, and the other the large, westward propagating C-N Rift, whose tip is separated from the EPR by a distance D. The model predicts symmetric cracking at the EPR north and south of the C-N Rift tip. Symmetry in the distribution of cracks north and south of the C-N Rift is observed and especially remarkable between 2.5 and 1.5 Ma when the rapid jumping of cracks toward the C-N Rift appears synchronous. The rapid jumping can be explained by decreasing D, which means that the tip of the C-N Rift was moving closer to the EPR. Symmetry of cracking breaks down at 1.5 Ma, however, with the establishment of the Dietz Deep Rift, the southern boundary of the Galapagos microplate. Symmetry of cracking also breaks down on older crust to the east between about 100 35'W and 100 45'W (about 2.6 Ma) where a rapid jumping of cracks toward the C-N Rift is observed in the south cracking region. There is no evidence of similar rapid jumping in the north cracking region. It could be simply that the response to changing the value of D is not always as predicted. It could also be that the shape of the EPR has not always been symmetric about the C-N Rift, as assumed in the model. Currently, an overlapping spreading center with a 15 km east-west offset between the limbs of the EPR has formed at 1 50'N. We assess the importance of the geometry of the EPR on the crack interaction model. The model has been modified to include a ridge offset similar to what is observed today. We find that the region of stress enhancement at the EPR (where cracks initiate) is subdued south of the C-N Rift tip because of the EPR offset. It is

  16. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts

    Science.gov (United States)

    Schulte, S.M.; Mooney, W.D.

    2005-01-01

    We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) ??? 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M ??? 6.0) earthquakes are considered. The largest events (M ??? 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the

  17. Causes of unrest at silicic calderas in the East African Rift: New constraints from InSAR and soil-gas chemistry at Aluto volcano, Ethiopia

    Science.gov (United States)

    Hutchison, William; Biggs, Juliet; Mather, Tamsin A.; Pyle, David M.; Lewi, Elias; Yirgu, Gezahegn; Caliro, Stefano; Chiodini, Giovanni; Clor, Laura E.; Fischer, Tobias P.

    2016-08-01

    Restless silicic calderas present major geological hazards, and yet many also host significant untapped geothermal resources. In East Africa, this poses a major challenge, although the calderas are largely unmonitored their geothermal resources could provide substantial economic benefits to the region. Understanding what causes unrest at these volcanoes is vital for weighing up the opportunities against the potential risks. Here we bring together new field and remote sensing observations to evaluate causes of ground deformation at Aluto, a restless silicic volcano located in the Main Ethiopian Rift (MER). Interferometric Synthetic Aperture Radar (InSAR) data reveal the temporal and spatial characteristics of a ground deformation episode that took place between 2008 and 2010. Deformation time series reveal pulses of accelerating uplift that transition to gradual long-term subsidence, and analytical models support inflation source depths of ˜5 km. Gases escaping along the major fault zone of Aluto show high CO2 flux, and a clear magmatic carbon signature (CO2-δ13C of -4.2‰ to -4.5‰). This provides compelling evidence that the magmatic and hydrothermal reservoirs of the complex are physically connected. We suggest that a coupled magmatic-hydrothermal system can explain the uplift-subsidence signals. We hypothesize that magmatic fluid injection and/or intrusion in the cap of the magmatic reservoir drives edifice-wide inflation while subsequent deflation is related to magmatic degassing and depressurization of the hydrothermal system. These new constraints on the plumbing of Aluto yield important insights into the behavior of rift volcanic systems and will be crucial for interpreting future patterns of unrest.

  18. Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone

    Science.gov (United States)

    Byzov, Leonid; San'kov, Vladimir

    2014-05-01

    Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example

  19. Off-axis magmatism along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand.

    Science.gov (United States)

    Hamling, Ian J; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville

    2016-06-01

    Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system.

  20. Fault growth and propagation during incipient continental rifting: Insights from a combined aeromagnetic and Shuttle Radar Topography Mission digital elevation model investigation of the Okavango Rift Zone, northwest Botswana

    Science.gov (United States)

    Kinabo, B. D.; Hogan, J. P.; Atekwana, E. A.; Abdelsalam, M. G.; Modisi, M. P.

    2008-06-01

    Digital Elevation Models (DEM) extracted from the Shuttle Radar Topography Mission (SRTM) data and high-resolution aeromagnetic data are used to characterize the growth and propagation of faults associated with the early stages of continental extension in the Okavango Rift Zone (ORZ), northwest Botswana. Significant differences in the height of fault scarps and the throws across the faults in the basement indicate extended fault histories accompanied by sediment accumulation within the rift graben. Faults in the center of the rift either lack topographic expressions or are interpreted to have become inactive, or have large throws and small scarp heights indicating waning activity. Faults on the outer margins of the rift exhibit either (1) large throws or significant scarp heights and are considered older and active or (2) throws and scarp heights that are in closer agreement and are considered young and active. Fault linkages between major fault systems through a process of "fault piracy" have combined to establish an immature border fault for the ORZ. Thus, in addition to growing in length (by along-axis linkage of segments), the rift is also growing in width (by transferring motion to younger faults along the outer margins while abandoning older faults in the middle). Finally, utilization of preexisting zones of weakness allowed the development of very long faults (>100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift. This study clearly demonstrates that the integration of the SRTM DEM and aeromagnetic data provides a 3-D view of the faults and fault systems, providing new insight into fault growth and propagation during the nascent stages of continental rifting.

  1. Diachronism in the late Neoproterozoic-Cambrian arc-rift transition of North Gondwana: A comparison of Morocco and the Iberian Ossa-Morena Zone

    Science.gov (United States)

    Álvaro, J. Javier; Bellido, Félix; Gasquet, Dominique; Pereira, M. Francisco; Quesada, Cecilio; Sánchez-García, Teresa

    2014-10-01

    In the northwestern border of the West African craton (North Gondwana), a transition from late Neoproterozoic subduction/collision to Cambrian rift processes was recorded in the Anti-Atlas (Morocco) and in the Ossa-Morena Zone (Iberia). Cambrian rifting affected both Pan-African and Cadomian basements in a stepwise and diachronous way. Subsequently, both areas evolved into a syn-rift margin episodically punctuated by uplift and tilting that precluded Furongian sedimentation. A comparison of sedimentary, volcanic and geodynamic evolution is made in the late Neoproterozoic (Pan-African and Cadomian) belts and Cambrian rifts trying to solve the apparent diachronous (SW-NE-trending) propagation of an early Palaeozoic rifting regime that finally led to the opening of the Rheic Ocean.

  2. Basaltic Martian analogues from the Baikal Rift Zone and Mongolian terranes

    Science.gov (United States)

    Gurgurewicz, J.; Kostylew, J.

    2007-08-01

    In order to compare the results of studies of the western part of the Valles Marineris canyon on Mars there have been done field works on terrestrial surface areas similar with regard to geological setting and environmental conditions. One of the possible terrestrial analogues of the Valles Marineris canyon is the Baikal Rift Zone [1]. Field investigations have been done on the south end of the Baikal Lake, in the Khamar-Daban massif, where the outcrops of volcanic rocks occur. The second part of the field works has been done in the Mongolian terranes: Mandalovoo, Gobi Altay and Bayanhongor, because of environmental conditions being similar to those on Mars. The Mandalovoo terrane comprises a nearly continuous Paleozoic islandarc sequence [2]. In the Gobi Altay terrane an older sequence is capped by younger Devonian-Triassic volcanic-sedimentary deposits [2]. The Bayanhongor terrane forms a northwest-trending, discontinuous, narrow belt that consists of a large ophiolite allochton [3]. The collected samples of basalts derive from various geologic environments. The CORONA satellite-images have been used for the imaging of the Khamar-Daban massif and the Mandalovoo terrane. These images have the same spatial resolution and range as the Mars Orbiter Camera images of the Mars Global Surveyor mission. In the Mandalovoo terrane these images allowed to find an area with large amounts of tectonic structures, mainly faults (part of the Ongi massif), similar to the studied area on Mars. Microscopic observations in thin sections show diversification of composition and structures of basalts. These rocks have mostly a porphyric structure, rarely aphyric. The main components are plagioclases, pyroxenes and olivines phenocrysts, in different proportions. The groundmass usually consist of plagioclases, pyroxenes and opaques. The most diversified are basalts from the Mandalovoo terrane. Infrared spectroscopy has been used to analyse the composition of the rock material and compare

  3. Trace element and Sr-Nd-Pb isotope geochemistry of Rungwe Volcanic Province, Tanzania: Implications for a superplume source for East Africa Rift magmatism

    Directory of Open Access Journals (Sweden)

    Paterno R Castillo

    2014-09-01

    Full Text Available The recently discovered high, plume-like 3He/4He ratios at Rungwe Volcanic Province (RVP in southern Tanzania, similar to those at the Main Ethiopian Rift in Ethiopia, strongly suggest that magmatism associated with continental rifting along the entire East African Rift System (EARS has a deep mantle contribution (Hilton et al., 2011. New trace element and Sr-Nd-Pb isotopic data for high 3He/4He lavas and tephras from RVP can be explained by binary mixing relationships involving Early Proterozoic (+/- Archaean lithospheric mantle, present beneath the southern EARS, and a volatile-rich carbonatitic plume with a limited range of compositions and best represented by recent Nyiragongo lavas from the Virunga Volcanic Province also in the Western Rift. Other lavas from the Western Rift and from the southern Kenya Rift can also be explained through mixing between the same endmember components. In contrast, lavas from the northern Kenya and Main Ethiopian rifts can be explained through variable mixing between the same mantle plume material and the Middle to Late Proterozoic lithospheric mantle, present beneath the northern EARS. Thus, we propose that the bulk of EARS magmatism is sourced from mixing among three endmember sources: Early Proterozoic (+/- Archaean lithospheric mantle, Middle to Late Proterozoic lithospheric mantle and a volatile-rich carbonatitic plume with a limited range of compositions. We propose further that the African Superplume, a large, seismically anomalous feature originating in the lower mantle beneath southern Africa, influences magmatism throughout eastern Africa with magmatism at RVP and Main Ethiopian Rift representing two different heads of a single mantle plume source. This is consistent with a single mantle plume origin of the coupled He-Ne isotopic signatures of mantle-derived xenoliths and/or lavas from all segments of the EARS (Halldorsson et al., 2014.

  4. 78 FR 13811 - Safety Zone; Underwater Escape Event, Seaport, East River, NY

    Science.gov (United States)

    2013-03-01

    ...: All waters of the East River south of the Brooklyn Bridge and north of a line drawn from the southwest corner of Pier 3, Brooklyn, to the southeast corner of Pier 6 Manhattan. Seaport, East River Safety Zone...

  5. Stable isotope-based Plio-Pleistocene ecosystem reconstruction of some of the earliest hominid fossil sites in the East African Rift System (Chiwondo Beds, N Malawi)

    Science.gov (United States)

    Lüdecke, Tina; Thiemeyer, Heinrich; Schrenk, Friedemann; Mulch, Andreas

    2014-05-01

    The isotope geochemistry of pedogenic carbonate and fossil herbivore enamel is a powerful tool to reconstruct paleoenvironmental conditions in particular when climate change plays a key role in the evolution of ecosystems. Here, we present the first Plio-Pleistocene long-term carbon (δ13C), oxygen (δ18O) and clumped isotope (Δ47) records from pedogenic carbonate and herbivore teeth in the Malawi Rift. These data represent an important southern hemisphere record in the East African Rift System (EARS), a key region for reconstructing vegetation patterns in today's Zambezian Savanna and correlation with data on the evolution and migration of early hominids across the Inter-Tropical Convergence Zone. As our study site is situated between the well-known hominid-bearing sites of eastern and southern Africa in the Somali-Masai Endemic Zone and Highveld Grassland it fills an important geographical gap for early hominid research. 5.0 to 0.6 Ma fluviatile and lacustrine deposits of the Chiwondo Beds (NE shore of Lake Malawi) comprise abundant pedogenic carbonate and remains of a diverse fauna dominated by large terrestrial mammals. These sediments are also home to two hominid fossil remains, a mandible of Homo rudolfensis and a maxillary fragment of Paranthropus boisei, both dated around 2.4 Ma. The Chiwondo Beds therefore document early co-existence of these two species. We evaluate δ13C data from fossil enamel of different suid, bovid, and equid species and contrast these with δ13C and δ18O values of pedogenic carbonate. We complement the latter with clumped isotope soil temperature data. Results of almost 800 pedogenic carbonate samples from over 20 sections consistently average δ13C = -8.5 ‰ over the past 5 Ma with no significant short-term δ13C excursions or long-term trends. The data from molar tooth enamel of nine individual suids of the genera Metridiochoerus, Notochoerus and Nyanzachoerus support these findings with average δ13C = -10.0 ‰. The absence

  6. Root zone of a continental rift: the Neoproterozoic Kebnekaise Intrusive Complex, northern Swedish Caledonides

    DEFF Research Database (Denmark)

    Kirsch, Moritz; Svenningsen, Olaf

    2016-01-01

    Mafic magmatic rocks formed between ca. 615 and 560 Ma along the Neoproterozoic margins of Baltica and Laurentia are classically attributed to continental rifting heralding the opening of the Iapetus Ocean. We report new data for the Kebnekaise Intrusive Complex (KIC) exposed in the Seve Nappes i...

  7. Significant Cenozoic faulting, east margin of the Española Basin, Rio Grande rift, New Mexico

    Science.gov (United States)

    Vernon, James H.; Riecker, Robert E.

    1989-03-01

    Tectonic interpretation of the east margin of the Española Basin, Rio Grande rift, New Mexico, has been controversial. Previous authors have disagreed as to whether significant faulting defines the boundary between the basin and the Sangre de Cristo Mountains. A more recent geophysical basin transect that suggests no significant faulting and held observation of faceted spurs along the western Sangre de Cristo Mountain front indicating a faulted margin motivate our study. The east margin of the Española Basin for about 37 km north of Santa Fe, New Mexico, is marked by a complex array of significant, late Cenozoic high-angle faults. Locally, three parallel, north-trending, high-angle faults cut Precambrian basement and Tertiary basin-fill rocks along the basin margin. Elsewhere along the margin, tilted fault blocks and intersecting faults occur. Fault area, fault attitude with depth, magnitude of fault motion, and timing of fault motion remain uncertain. However, faults studied in detail are 1-2 km long, have minimum dip-slip motion of 33-100 m, and underwent movement during the late Cenozoic. Potentially significant tectonic and seismic hazard implications arise from the possibility of post-150 ka fault motion.

  8. The Teisseyre-Tornquist Zone - early Palaeozoic strike-slip plate boundary or Ediacaran rifted margin of Baltica?

    Science.gov (United States)

    Mazur, Stanislaw; Krzywiec, Piotr; Malinowski, Michal; Lewandowski, Marek; Buffenmeyer, Vinton; Green, Christopher

    2016-04-01

    The Teisseyre-Tornquist Zone (TTZ) is the longest European tectonic and geophysical lineament extending from the Baltic Sea in the northwest to the Black Sea in the southeast. This tectonic feature defines a transition between the thick crust of the East European Craton (EEC) and the thinner crust of the Palaeozoic Platform to the southwest. Being a profound zone of crustal and lithospheric thickness perturbation, the TTZ has usually been considered a Caledonian tectonic suture formed due to the closure of the Tornquist Ocean. The suture was hypothesised to originate from the collision between Baltica and Avalonia or large-scale strike-slip displacement along strike of the Caledonian Orogen. However, some minority views postulated the continuation of Baltica crystalline basement farther to the southwest up to the Elbe Lineament and the margin of the Variscan Belt. We studied the ION Geophysical PolandSPAN survey that consists of 10 regional, seismic depth profiles covering the SW margin of the EEC and the TTZ in Poland. Since the PolandSPAN profiles image to ~30 km depth their interpretation was integrated with the potential fields data and earlier results of refraction sounding to better image the deep structure of the TTZ. Our data show that the NW and central sections of the TTZ correspond, at the Moho level, to a relatively narrow crustal keel and a significant Moho step at the transition from the EEC to the Palaeozoic Platform. However, top of basement above the TTZ is smooth and moderately sloping towards the southwest. In the central part of the TTZ, top of Precambrian is covered by undisturbed lower Palaeozoic sediments. In contrast, the lower Palaeozoic sediments are involved in a latest Silurian, thin-skinned fold-and-thrust belt along the NW section of the TTZ, where the sharply defined Caledonian Deformation Front adjoins a rigid basement buttress above the TTZ. Finally, the crustal keel is mostly missing from the SE section of the TTZ. Instead, this

  9. Geothermal potential and origin of natural thermal fluids in the northern Lake Abaya area, Main Ethiopian Rift, East Africa

    Science.gov (United States)

    Minissale, A.; Corti, G.; Tassi, F.; Darrah, T. H.; Vaselli, O.; Montanari, D.; Montegrossi, G.; Yirgu, G.; Selmo, E.; Teclu, A.

    2017-04-01

    In this study, the occurrence, chemical composition, origin and geothermal significance of thermal springs and fumaroles naturally discharging in the area located north of the Lake Abaya (western margin of the Main Ethiopian Rift, East Africa) are reviewed in relation with recent tectonics. All thermal springs showed a dominantly Na-HCO3 composition, consistent with observations dating from at least 1972, and most of them displayed a narrow range of δD and δ18O isotopic compositions for water similar to regional meteoric origins. These observations suggest that water-rock interaction processes occur in all aquifers and dominate the contributions of water that actively circulate within thermal fluids, and also suggest a similar elevation of groundwater recharge throughout the study area. Most of the thermal springs are dominated by a CO2-rich gas phase and discharge along the active faults bordering the western edge of the Main Ethiopian Rift valley. The δ13C values of CO2 and the 3He/4He isotopic ratios are consistent with the presence of mantle-derived fluids similar to what is observed in many other areas along the kinematically active African Rift, especially within Ethiopia. The application of geothermometric techniques in the liquid and the gas phases suggests the presence of a deep reservoir in which the fluids equilibrated at a maximum temperature of approximately 180 °C. Additionally, the presence of fumaroles at boiling temperatures and water/mud boiling pools in several places suggests that the geothermal reservoir is positioned at a relatively shallow depth and likely located in the western side of the study area. The analysis of data collected throughout time reveals that the waters of Lake Abaya have experienced an increase in salinity of 20% paralleled contemporaneously with a decrease in pH and δ18O and δD of water in the last 40 years; these changes do not appear to be related to climate change-induced increases in temperature or evaporation

  10. Analysis of Marine Gravity Anomalies in the Ulleung Basin (East Sea/Sea of Japan) and Its Implications for the Architecture of Rift-Dominated Backarc Basin

    Science.gov (United States)

    Lee, Sang-Mook; Kim, Yoon-Mi

    2016-04-01

    Marginal basins locate between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center (manifested by the presence of distinct seafloor magnetic anomaly patterns) to those with less obvious zones of extension and a broad magmatic emplacement most likely in the lower crust. Such difference in the style of back-arc basin formation may lead to marked difference in crustal structure in terms of its overall thickness and spatial variations. The Ulleung Basin, one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental rifting end-member of back-arc opening. Although a great deal of work has been conducted on the sedimentary sections in the last several decades, the deep crustal sections have not been systematically investigated for long time, and thus the structure and characteristics of the crust remain poorly understood. This study examines the marine gravity anomalies of the Ulleung Basin in order to understand the crustal structure using crucial sediment-thickness information. Our analysis shows that the Moho depth in general varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust is more or less the same (10-12 km), thus by varying only about 10-20% of the total thickness, contrary to the previous impression. The almost-uniformly-thick crust that is thicker than a normal oceanic crust (~ 7 km) is consistent with previous observations using ocean bottom seismometers and recent deep seismic results from the nearby Yamato Basin. Another important finding is that small residual mantle gravity anomaly highs exist in the northern part of the basin. These highs are aligned in the NNE-SSW direction which correspond to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that, though by a small degree, they are a

  11. [Rift Valley fever: sporadic infection of French military personnel outside currently recognized epidemic zones].

    Science.gov (United States)

    Durand, J P; Richecoeur, L; Peyrefitte, C; Boutin, J P; Davoust, B; Zeller, H; Bouloy, M; Tolou, H

    2002-01-01

    For three years the arbovirus surveillance unit of the Tropical Medicine Institute of the French Army Medical Corps (French acronym IMTSSA) in Marseille, France has been investigating causes of benign non-malarial febrile syndromes in French military personnel serving outside mainland France. The methodology used in N'Djamena consisted of sending frozen specimens collected concomitant with viremia, to Marseille for culture. During the rainy season of 2001, specimens were collected from a total of 50 febrile soldiers. Cultures allowed isolation and identification of two strains of Rift Valley virus. The risk of contamination exists not only in the field but also in mainland hospital departments treating infected patients. Routine serological diagnosis for Rift Valley fever must be DISCUSSED for all patients in the field or returning from Africa.

  12. Analysis of gravity anomalies in the Ulleung Basin (East Sea/Sea of Japan) and its implications for the architecture of rift-dominated back-arc basin

    Science.gov (United States)

    Kim, Y. M.; Lee, S. M.

    2016-12-01

    Marginal basins located between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center to those with less obvious zones of extension and a broad magmatic emplacement in the lower crust. The difference in the mode of back-arc opening may lead to a marked difference in crustal structure including its overall thickness and mechanical strength. The Ulleung Basin (UB) in the East Sea/Sea of Japan is considered to represent a continental rifting end-member of back-arc opening. However, compared to nearby Yamato Basin (YB) and Japan Basin (JB) in the NE corner of the sea, its structure and crustal characteristics are less well understood. This study examines the marine gravity anomalies of the UB in order to delineate the variations in crustal structure. Our analysis shows that the Moho depth from the sea surface varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust not including sediment is more or less the same (10-12 km), by varying only about 10-20% of the total thickness, contrary to the previous suggestions. The revelation that the UB has a thick but uniform thickness crust is consistent with previous observations using ocean bottom seismometers and is similar recent findings from the nearby YB. Another important feature is that small residual mantle gravity anomaly highs (40 mGal) exist in the northern part of the basin. These small highs trend in the NNE-SSW direction and thus corresponding to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that they are the result of localized extension and extra crustal thinning at the time of basin formation. Alternatively, the presence of small magmatic underplating at the base of the crust, perhaps similar to high velocity region in the lower crust of YB, was also considered. According to our study

  13. Mercury in fish from three rift valley lakes (Turkana, Naivasha and Baringo), Kenya, East Africa.

    Science.gov (United States)

    Campbell, L M; Osano, O; Hecky, R E; Dixon, D G

    2003-01-01

    Total mercury (THg) concentrations were measured for various fish species from Lakes Turkana, Naivasha and Baringo in the rift valley of Kenya. The highest THg concentration (636 ng g(-1) wet weight) was measured for a piscivorous tigerfish Hydrocynus forskahlii from Lake Turkana. THg concentrations for the Perciformes species, the Nile perch Lates niloticus from Lake Turkana and the largemouth bass Micropterus salmoides from Lake Naivasha ranged between 4 and 95 ng g(-1). The tilapiine species in all lakes, including the Nile tilapia Oreochromis niloticus, had consistently low THg concentrations ranging between 2 and 25 ng g(-1). In Lake Naivasha, the crayfish species, Procambrus clarkii, had THg concentrations similar to those for the tilapiine species from the same lake, which is consistent with their shared detritivore diet. THg concentrations in all fish species were usually consistent with their known trophic position, with highest concentrations in piscivores and declining in omnivores, insectivores and detritivores. One exception is the detritivore Labeo cylindricus from Lake Baringo, which had surprisingly elevated THg concentrations (mean=75 ng g(-1)), which was similar to those for the top trophic species (Clarias and Protopterus) in the same lake. Except for two Hydrocynus forskahlii individuals from Lake Turkana, which had THg concentrations near or above the international marketing limit of 500 ng g(-1), THg concentrations in the fish were generally below those of World Health Organization's recommended limit of 200 ng g(-1) for at-risk groups.

  14. Planation surfaces as a record of medium to large wavelength deformation: the example of the Lake Albert Rift (Uganda) on the East African Dome

    Science.gov (United States)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Jean, Braun; Olivier, Dauteuil; Massimo, Dall'Asta

    2016-04-01

    African relief is characterized by planation surfaces, some of them of continental scale. These surfaces are slightly deformed according to different wavelengths (x10 km; x100 km, x1000 km) which record both mantle dynamics (very long wavelength, x 1000 km) and lithosphere deformation (long wavelength deformation, x 100 km). Different types of these planation surfaces are recognized: - Etchplains capped by iron-duricrust which correspond to erosional nearly flat weathered surfaces resulting from the growth of laterites under warm and humid conditions. - Pediments which define mechanical erosional surfaces with concave or rectilinear profiles delimited by upslope scarps connected upstream with the upper landforms. We here focused on the Lake Albert Rift at the northern termination of the western branch of the East African Rift System of which the two branches are surimposed on the East-African Dome. Different wavelengths of deformation were characterized based on the 3D mapping of stepped planation surfaces: (1) very long wavelength deformations resulting from the uplift of the East African Dome; (2) long wavelength deformations resulting from the opening of the eastern branch and (3) medium wavelength deformations represented by the uplift of rift shoulders like the Rwenzori Mountains. The paleo-landscape reconstruction of Uganda shows the existence of four generations of landforms dated according to their geometrical relationships with volcanic rocks. A four stepped evolution of the Ugandan landforms is proposed: • 70 - 22 Ma: generation of two weathered planation surfaces (etchplain Uw and Iw). The upper one (Uw) records a very humid period culminating at time of the Early Eocene Climatic Optimum (70-45 Ma). It corresponds to the African Surface. A first uplift of the East African Dome generates a second lower planation surface (Iw) connected to the Atlantic Ocean base level; • 17-2.7 Ma: planation of large pediplains connected to the local base level induced

  15. Mercury in fish from three rift valley lakes (Turkana, Naivasha and Baringo), Kenya, East Africa

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, L.M.; Osano, O.; Hecky, R.E.; Dixon, D.G

    2003-09-01

    Mercury concentrations in Kenyan fish vary with tropic position but, in general, do not pose an unacceptable risk to human consumers of wildlife. -Total mercury (THg) concentrations were measured for various fish species from Lakes Turkana, Naivasha and Baringo in the rift valley of Kenya. The highest THg concentration (636 ng g{sup -1} wet weight) was measured for a piscivorous tigerfish Hydrocynus forskahlii from Lake Turkana. THg concentrations for the Perciformes species, the Nile perch Lates niloticus from Lake Turkana and the largemouth bass Micropterus salmoides from Lake Naivasha ranged between 4 and 95 ng g{sup -1}. The tilapiine species in all lakes, including the Nile tilapia Oreochromis niloticus, had consistently low THg concentrations ranging between 2 and 25 ng g{sup -1}. In Lake Naivasha, the crayfish species, Procambrus clarkii, had THg concentrations similar to those for the tilapiine species from the same lake, which is consistent with their shared detritivore diet. THg concentrations in all fish species were usually consistent with their known trophic position, with highest concentrations in piscivores and declining in omnivores, insectivores and detritivores. One exception is the detritivore Labeo cylindricus from Lake Baringo, which had surprisingly elevated THg concentrations (mean=75 ng g{sup -1}), which was similar to those for the top trophic species (Clarias and Protopterus) in the same lake. Except for two Hydrocynus forskahlii individuals from Lake Turkana, which had THg concentrations near or above the international marketing limit of 500 ng g{sup -1}, THg concentrations in the fish were generally below those of World Health Organization's recommended limit of 200 ng g{sup -1} for at-risk groups.

  16. Elements redistribution between organic and mineral parts of microbial mats: SR-XRF research (Baikal Rift Zone)

    Energy Technology Data Exchange (ETDEWEB)

    Lazareva, E.V. [Institute of Geology and Mineralogy SB RAS, pr. Ac. Koptug, 3, 630090 Novosibirsk (Russian Federation)], E-mail: lazareva@uiggm.nsc.ru; Bryanskaya, A.V. [Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk (Russian Federation); Zhmodik, S.M.; Kolmogorov, Y.P. [Institute of Geology and Mineralogy SB RAS, pr. Ac. Koptug, 3, 630090 Novosibirsk (Russian Federation); Pestunova, O.P. [Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090 (Russian Federation); Barkhutova, D.D. [Institute of General and Experimental Biology SB RAS, Ulan-Ude (Russian Federation); Zolotarev, K.V.; Shaporenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation)

    2009-05-11

    In article minerals formation and elements accumulation in microbial mats of some hot springs of the Barguzin basin (Baikal Rift Zone) is discussed. The content of a wide spectrum of elements in microbial mats is studied by means of the method SR-XRF. Regularity of elements accumulation by community depending on geochemical features of hot spring's waters are discussed. These elements are distributed in different ways between organic and mineral substance of the microbial mats. The distribution of K, Mn, Ni, Cu, Zn, Fe is regular, Ca, Rb, Sr are almost totally related with the mats mineral part, while Ga, Ge and Br are accumulated in mats organic substance. Germanium element is concentrated in considerable amounts in the cyanobacterial communities, that develop in sulphideless springs with a higher radon concentration.

  17. Podoconiosis in East and West Gojam Zones, northern Ethiopia.

    Directory of Open Access Journals (Sweden)

    Yordanos B Molla

    Full Text Available BACKGROUND: Podoconiosis is a neglected tropical disease (NTD that is prevalent in red clay soil-covered highlands of tropical Africa, Central and South America, and northern India. It is estimated that up to one million cases exist in Ethiopia. This study aimed to estimate the prevalence of podoconiosis in East and West Gojam Zones of Amhara Region in northern Ethiopia. METHODOLOGY/PRINCIPAL FINDINGS: A cross-sectional household survey was conducted in Debre Eliyas and Dembecha woredas (districts in East and West Gojam Zones, respectively. The survey covered all 17,553 households in 20 kebeles (administrative subunits randomly selected from the two woredas. A detailed structured interview was conducted on 1,704 cases of podoconiosis identified in the survey. RESULTS: The prevalence of podoconiosis in the population aged 15 years and above was found to be 3.3% (95% CI, 3.2% to 3.6%. 87% of cases were in the economically active age group (15-64 years. On average, patients sought treatment five years after the start of the leg swelling. Most subjects had second (42.7% or third (36.1% clinical stage disease, 97.9% had mossy lesions, and 53% had open wounds. On average, patients had five episodes of acute adenolymphangitis (ALA per year and spent a total of 90 days per year with ALA. The median age of first use of shoes and socks were 22 and 23 years, respectively. More men than women owned more than one pair of shoes (61.1% vs. 50.5%; χ(2 = 11.6 p = 0.001. At the time of interview, 23.6% of the respondents were barefoot, of whom about two-thirds were women. CONCLUSIONS: This study showed high prevalence of podoconiosis and associated morbidities such as ALA, mossy lesions and open wounds in northern Ethiopia. Predominance of cases at early clinical stage of podoconiosis indicates the potential for reversing the swelling and calls for disease prevention interventions.

  18. INTERBLOCK ZONES IN THE CRUST OF THE SOUTHERN REGIONS OF EAST SIBERIA: TECTONOPHYSICAL INTERPRETATION OF GEOLOGICAL AND GEOPHYSICAL DATA

    Directory of Open Access Journals (Sweden)

    K. Zh. Seminsky

    2015-09-01

    Full Text Available The zone-block structure of the lithosphere is represented by a hierarchically organized pattern of stable blocks and mobile zones which border such blocks and contain highly dislocated geological medium (Fig. 1. Today, different specialists adhere to different concepts of blocks and zones, which are two main elements of the lithosphere structure. Differences are most significant in determinations of ‘interblock zones’ that are named as deformation / destructive / contact / mobile / fracture zones etc. due to their diversity in different conditions of deformation. One of the most effective approaches to studying the zone-block structure of the lithosphere is a combination of geological and geophysical studies of interblock zones tectonic features on various scales, which can make it possible to reveal the most common patterns of the interblock zones, general regularities of their development and relationships between the interblock zones.The main objectives of our study were (1 to identify the zone-block structure of the crust in the southern regions of East Siberia from tectonophysical analysis of geological and geophysical surveys conducted on four different scales along the 500 km long Shertoy-Krasny Chikoy transect crossing the marginal segment of the Siberian block, the Baikal rift and the Transbaikalian block (Fig. 2; (2 to clarify structural features of the central part of the Baikal rift (representing the tectonic type of interblock extension zone by applying new research methods, such as radon emanation survey, to the Shertoy-Krasny Chikoy transect and using the previously applied methods, such as magnetotelluric sounding, on a smaller scale; and (3 to study manifestation of interblock zones of various ranks in different geological and geophysical fields, to reveal common specific features of their structural patterns for the upper crust, and to establish regularities of hierarchic and spatial relationships between the interblock

  19. Rift Valley fever in a zone potentially occupied by Aedes vexans in Senegal: dynamics and risk mapping

    Directory of Open Access Journals (Sweden)

    Cécile Vignolles

    2009-05-01

    Full Text Available This paper presents an analysis of the interaction between the various variables associated with Rift Valley fever (RVF such as the mosquito vector, available hosts and rainfall distribution. To that end, the varying zones potentially occupied by mosquitoes (ZPOM, rainfall events and pond dynamics, and the associated exposure of hosts to the RVF virus by Aedes vexans, were analyzed in the Barkedji area of the Ferlo, Senegal, during the 2003 rainy season. Ponds were identified by remote sensing using a high-resolution SPOT-5 satellite image. Additional data on ponds and rainfall events from the Tropical Rainfall Measuring Mission were combined with in-situ entomological and limnimetric measurements, and the localization of vulnerable ruminant hosts (data derived from QuickBird satellite. Since “Ae. vexans productive events” are dependent on the timing of rainfall for their embryogenesis (six days without rain are necessary to trigger hatching, the dynamic spatio-temporal distribution of Ae. vexans density was based on the total rainfall amount and pond dynamics. Detailed ZPOM mapping was obtained on a daily basis and combined with aggressiveness temporal profiles. Risks zones, i.e. zones where hazards and vulnerability are combined, are expressed by the percentages of parks where animals are potentially exposed to mosquito bites. This new approach, simply relying upon rainfall distribution evaluated from space, is meant to contribute to the implementation of a new, operational early warning system for RVF based on environmental risks linked to climatic and environmental conditions.

  20. Twenty-five years of geodetic measurements along the Tadjoura-Asal rift system, Djibouti, East Africa

    Science.gov (United States)

    Vigny, Christophe; de Chabalier, Jean-Bernard; Ruegg, Jean-Claude; Huchon, Philippe; Feigl, Kurt L.; Cattin, Rodolphe; Asfaw, Laike; Kanbari, Khaled

    2007-06-01

    Since most of Tadjoura-Asal rift system sits on dry land in the Afar depression near the triple junction between the Arabia, Somalia, and Nubia plates, it is an ideal natural laboratory for studying rifting processes. We analyze these processes in light of a time series of geodetic measurements from 1978 through 2003. The surveys used triangulation (1973), trilateration (1973, 1979, and 1981-1986), leveling (1973, 1979, 1984-1985, and 2000), and the Global Positioning System (GPS, in 1991, 1993, 1995, 1997, 1999, 2001, and 2003). A network of about 30 GPS sites covers the Republic of Djibouti. Additional points were also measured in Yemen and Ethiopia. Stations lying in the Danakil block have almost the same velocity as Arabian plate, indicating that opening near the southern tip of the Red Sea is almost totally accommodated in the Afar depression. Inside Djibouti, the Asal-Ghoubbet rift system accommodates 16 ± 1 mm/yr of opening perpendicular to the rift axis and exhibits a pronounced asymmetry with essentially null deformation on its southwestern side and significant deformation on its northeastern side. This rate, slightly higher than the large-scale Arabia-Somalia motion (13 ± 1 mm/yr), suggests transient variations associated with relaxation processes following the Asal-Ghoubbet seismovolcanic sequence of 1978. Inside the rift, the deformation pattern exhibits a clear two-dimensional pattern. Along the rift axis, the rate decreases to the northwest, suggesting propagation in the same direction. Perpendicular to the rift axis, the focus of the opening is clearly shifted to the northeast, relative to the topographic rift axis, in the "Petit Rift," a rift-in-rift structure, containing most of the active faults and the seismicity. Vertical motions, measured by differential leveling, show the same asymmetric pattern with a bulge of the northeastern shoulder. Although the inner floor of the rift is subsiding with respect to the shoulders, all sites within the

  1. The mesoproterozoic midcontinent rift system, Lake Superior region, USA

    Science.gov (United States)

    Ojakangas, R.W.; Morey, G.B.; Green, J.C.

    2001-01-01

    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ??? 1109-1087 Ma, the age span of the most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance. ?? 2001 Elsevier Science B.V. All rights reserved.

  2. Fault zone architecture within Miocene–Pliocene syn-rift sediments, Northwestern Red Sea, Egypt

    Indian Academy of Sciences (India)

    Khairy S Zaky

    2017-04-01

    The present study focusses on field description of small normal fault zones in Upper Miocene–Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW–SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE–SW. The minimum (σ3) and intermediate (σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis (σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ∼0.5 to ∼8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement <1 m have fault cores ranging from 0.5 to 4.0 cm, while the faults with displacements of >2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses’ structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.

  3. Fault zone architecture within Miocene-Pliocene syn-rift sediments, Northwestern Red Sea, Egypt

    Science.gov (United States)

    Zaky, Khairy S.

    2017-04-01

    The present study focusses on field description of small normal fault zones in Upper Miocene-Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW-SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE-SW. The minimum ( σ3) and intermediate ( σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis ( σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ˜0.5 to ˜8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement 2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses' structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.

  4. Evolution of the Lake Victoria basin in the context of coeval rift initiation in East Africa: a 3D numerical model approach

    Science.gov (United States)

    Wichura, Henry; Quinteros, Javier; Melnick, Daniel; Brune, Sascha; Schwanghart, Wolfgang; Strecker, Manfred R.

    2015-04-01

    Over the last four years sedimentologic and thermochronologic studies in the western and eastern branches of the Cenozoic East African Rift System (EARS) have supported the notion of a broadly contemporaneous onset of normal faulting and rift-basin formation in both segments. These studies support previous interpretations based on geophysical investigations from which an onset of rifting during the Paleogene had been postulated. In light of these studies we explore the evolution of the Lake Victoria basin, a shallow, unfaulted sedimentary basin centered between both branches of the EARS and located in the interior of the East African Plateau (EAP). We quantify the fluvial catchment evolution of the Lake Victoria basin and assess the topographic response of African crust to the onset of rifting in both branches. Furthermore, we evaluate and localize the nature of strain and flexural rift-flank uplift in both branches. We use a 3D numerical forward model that includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology. The model is able to reproduce the flexural response of variably thick lithosphere to rift-related deformation processes such as lithospheric thinning and asthenospheric upwelling. The model domain covers the entire EAP and integrates extensional processes in a heterogeneous, yet cold and thick cratonic block (Archean Tanzania craton), which is surrounded by mechanically weaker Proterozoic mobile belts, which are characterized by thinner lithosphere ("thin spots"). The lower limits of the craton (170 km) and the mobile belts (120 km) are simulated by different depths of the 1300 °C lithosphere-asthenosphere boundary. We assume a constant extension rate of 4 mm/a throughout the entire simulation of 30 Ma and neglect the effect of dynamic topography and magmatism. Even though the model setup is very simple and the resolution is not high enough to calculate realistic rift-flank uplift, it intriguingly reveals important topographic

  5. Magma genesis of the acidic volcanism in the intra-arc rift zone of the Izu volcanic arc, Japan

    Science.gov (United States)

    Haraguchi, S.; Tokuyama, H.; Ishii, T.

    2010-12-01

    The Izu volcanic arc extends over 550 km from the Izu Peninsula, Japan, to the Nishinoshima Trough or Sofugan tectonic line. It is the northernmost segment of the Izu-Bonin-Mariana arc system, which is located at the eastern side of the Philippine Sea Plate. The recent magmatism of the Izu arc is bimodal and characterized by basalt and rhyolite (e.g. Tamura and Tatsumi 2002). In the southern Izu arc, volcanic front from the Aogashima to the Torishima islands is characterized by submarine calderas and acidic volcanisms. The intra-arc rifting, characterized by back-arc depressions, small volcanic knolls and ridges, is active in this region. Volcanic rocks were obtained in 1995 during a research cruise of the R/V MOANA WAVE (Hawaii University, cruise MW9507). Geochemical variation of volcanic rocks and magma genesis was studied by Hochstaedter et al. (2000, 2001), Machida et al (2008), etc. These studies focused magma and mantle dynamics of basaltic volcanism in the wedge mantle. Acidic volcanic rocks were also dredged during the curies MW9507. However, studies of these acidic volcanics were rare. Herein, we present petrographical and chemical analyses of these acidic rocks, and compare these results with those of other acidic rocks in the Izu arc and lab experiments, and propose a model of magma genesis in a context of acidic volcanism. Dredge sites by the cruise MW9507 are 120, and about 50 sites are in the rift zone. Recovered rocks are dominated by the bimodal assemblage of basalt-basaltic andesite and dacite-rhyolite. The most abundant phase is olivine basalt, less than 50 wt% SiO2. Andesites are minor in volume and compositional gap from 56 to 65 wt% SiO2 exists. The across-arc variation of the HFSE contents and ratios, such as Zr/Y and Nb/Zr of rhyolites exhibit depleted in the volcanic front side and enriched in reararc side. This characteristic is similar to basaltic volcanism pointed out by Hochstaedter et al (2000). The petrographical features of rhyolites

  6. Isotopic Ages of the Carbonatitic Volcanic Rocks in the Kunyang Rift Zone in Central Yunnan,China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yongbei; WANG Guilan; NIE Jianfeng; ZHAO Chongshun; XU Chengyan; QIU Jiaxiang; Wang Hao

    2003-01-01

    The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zone in China. The Mesoproterozoic Wulu (Wuding(Lufeng) basin in the middle of the rift is an elliptic basin controlled by a ring fracture system. Moreover, volcanic activities in the basin display zonation of an outer ring, a middle ring and an inner ring with carbonatitic volcanic rocks and sub-volcanic dykes discovered in the outer and middle rings. The Sm-Nd isochron ages have been determined for the outer-ring carbonatitic lavas (1685 Ma) and basaltic porphyrite of the radiating dyke swarm (1645 Ma) and the Rb-Sr isochron ages for the out-ring carbonatitic lavas (893 Ma) and the middle-ring dykes (1048 Ma). In combination of the U-Pb concordant ages of zircon (1743 Ma) in trachy-andesite of the corresponding period and stratum (1569 Ma) of the Etouchang Formation, as well as the Rb-Sr isochron age (1024 Ma) and K-Ar age (1186 Ma) of the dykes in the middle ring, the age of carbonatites in the basin is preliminarily determined. It is ensured that all of these carbonatites were formed in the Mesoproterozoic period, whereby two stages could be identified as follows: in the first stage, carbonatitic volcanic groups, such as lavas, pyroclastic rocks and volcaniclastic sedimentary rocks, were formed in the outer ring; in the second stage, carbonatitic breccias and dykes appeared in the middle ring. The metamorphic age of the carbonatitic lavas in the outer ring was determined to be concurrent with the end of the first stage of the Neoproterozoic period, corresponding to the Jinning movement in central Yunnan.

  7. Early Cambrian granitoids of North Gondwana margin in the transition from a convergent setting to intra-continental rifting (Ossa-Morena Zone, SW Iberia)

    Science.gov (United States)

    Sánchez-García, T.; Pereira, M. F.; Bellido, F.; Chichorro, M.; Silva, J. B.; Valverde-Vaquero, P.; Pin, Ch.; Solá, A. R.

    2014-07-01

    Two distinct Cambrian magmatic pulses are recognized in the Ossa-Morena Zone (SW Iberia): an early rift-(ER) and a main rift-related event. This Cambrian magmatism is related to intra-continental rifting of North Gondwana that is thought to have culminated in the opening of the Rheic Ocean in Lower Ordovician times. New data of whole-rock geochemistry (19 samples), Sm-Nd-Sr isotopes (4 samples) and ID-TIMS U-Pb zircon geochronology (1 sample) of the Early Cambrian ER plutonic rocks of the Ossa-Morena Zone are presented in this contribution. The ER granitoids (Barreiros, Barquete, Calera, Salvatierra de los Barros and Tablada granitoid Massifs) are mostly peraluminous granites. The Sm-Nd isotopic data show moderate negative ɛNdt values ranging from -3.5 to +0.1 and TDM ages greatly in excess of emplacement ages. Most ER granitoids are crustal melts. However, a subset of samples shows a transitional anorogenic alkaline tendency, together with more primitive isotopic signatures, documenting the participation of lower crust or mantle-derived sources and suggesting a local transient advanced stage of rifting. The Barreiros granitoid is intrusive into the Ediacaran basement of the Ossa-Morena Zone (Série Negra succession) and has yielded a crystallization age of 524.7 ± 0.8 Ma consistent with other ages of ER magmatic pulse. This age: (1) constrains the age of the metamorphism developed in the Ediacaran back-arc basins before the intrusion of granites and (2) defines the time of the transition from the Ediacaran convergent setting to the Lower Cambrian intra-continental rifting in North Gondwana.

  8. Distribution of hydromedusae from the exclusive economic zone of the west and east coasts of India

    Digital Repository Service at National Institute of Oceanography (India)

    Santhakumari, V.; Nair, V.R.

    Distribution and abundance of hydromedusae from the exclusive economic zone of the west and east coasts of India is carried out based on zooplankton collections (on board FORV Sagar Sampada) during the period 1985-1990. The 661 samples collected...

  9. The Stock Potency of Demersal Fish Resource at The Coastal Zone, East Kutai District in East Kalimantan

    Directory of Open Access Journals (Sweden)

    Juliani Juliani

    2014-04-01

    Full Text Available The objective of this research was to estimate the potency of demersal fish resource spread over three sub-districts i.e. Sangkulirang, Sandaran and Kaliorang in Kutai district, East Kalimantan province. The result showed that the highest total biomass was produced by aquatic zone of Sandaran sub-district with 1,763,713.6 ton/zone and the density stock was 13,566.5 kg/km2. It was followed by Sangkulirang sub-district with 264,653.3 ton/zone and 6,640.4 kg/km2, respectively and then by Kaliorang sub-district with 58.086,5 ton/zone and 2,768.0 kg/km2, respectively. In term of species particularly from crustaseaae family, the most economic aquatic zone was found in Sangkulirang sub-district. The export product species Penaeus sp was obtained from Penaeus monodon, Metapenaeus monoceros, Metapenaeus sp, Parapenaeopsis sculptilis, Penaeus sp, and lobster which was accounted by 3,381.6 tons/zone, 83,199 tons/zone, 14,492.7 tons/zone, 24,691.3 tons/zone, 41,331.1 tons/zone, and 1,073.5 tons/zone, respectively. It was followed by Sandaran sub-district with export product species was Penaeus merguensis 33,495.7 tons/zone and non-export products were Parapenaeopsis sculptilis 63,641.7 tons/zone, Penaeus sp 16,747.8 tons/zone, Metapenaeus sp 1.674,8 tons/zone, Caridina sp 1.562.572,2 tons/zone, and Scylla serrata 3,349.6 tons/zone. Next was Kaliorang sub-district which accounted by Penaeus merguensis 62.2 tons/zone and Metapenaeus monoceros 49.7 tons/zone. In situ measurement on seven physical-chemical quality parameters of water which compared to the standardized of sea water showed that water quality found in coastal zone of Kaliorang, Sangkulirang and Sandaran sub-district, East Kutai province was suitable and feasible for the aquatic and living of marine habitats Normal 0 false false false IN X-NONE X-NONE

  10. Predicting distribution of Aedes aegypti and Culex pipiens complex, potential vectors of Rift Valley fever virus in relation to disease epidemics in East Africa

    Directory of Open Access Journals (Sweden)

    Clement Nyamunura Mweya

    2013-10-01

    Full Text Available Background: The East African region has experienced several Rift Valley fever (RVF outbreaks since the 1930s. The objective of this study was to identify distributions of potential disease vectors in relation to disease epidemics. Understanding disease vector potential distributions is a major concern for disease transmission dynamics. Methods: Diverse ecological niche modelling techniques have been developed for this purpose: we present a maximum entropy (Maxent approach for estimating distributions of potential RVF vectors in un-sampled areas in East Africa. We modelled the distribution of two species of mosquitoes (Aedes aegypti and Culex pipiens complex responsible for potential maintenance and amplification of the virus, respectively. Predicted distributions of environmentally suitable areas in East Africa were based on the presence-only occurrence data derived from our entomological study in Ngorongoro District in northern Tanzania. Results: Our model predicted potential suitable areas with high success rates of 90.9% for A. aegypti and 91.6% for C. pipiens complex. Model performance was statistically significantly better than random for both species. Most suitable sites for the two vectors were predicted in central and northwestern Tanzania with previous disease epidemics. Other important risk areas include western Lake Victoria, northern parts of Lake Malawi, and the Rift Valley region of Kenya. Conclusion: Findings from this study show distributions of vectors had biological and epidemiological significance in relation to disease outbreak hotspots, and hence provide guidance for the selection of sampling areas for RVF vectors during inter-epidemic periods.

  11. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone,northeastern China

    Institute of Scientific and Technical Information of China (English)

    CHEN; Jiangfeng; YU; Gang; XUE; Chunji; QIAN; Hui; HE; Jian

    2005-01-01

    33 Pb isotopic analyses were reported for sulfide and hydrothermal carbonate minerals and marble of the Xiquegou lead-zinc, the Zhenzigou zinc-lead and the Gaojiapuzi silver deposits from the Qingchengzi ore field and the Beiwagou zinc-lead deposit in the west, Proterozoic Liaodong rift zone. Pb isotopic ratios of the marble from the Qingchengzi ore field range from 18.24 to 30.63 for 206Pb/204Pb, 15.59 to 17.05 for 207Pb/204Pb and 37.43 to 38.63 for 208Pb/204Pb. The marble gives a Pb-Pb isochron age of 1822±92 Ma, which is interpreted as the age of the metamorphism of the marble. Ore Pb, including Pb of sulfide and hydrothermal carbonate minerals, from the Qingchengzi ore field shows limited variation with 206Pb/204Pb=17.66-17.96, 207Pb/204Pb=15.60-15.74 and 208Pb/204Pb=37.94-38.60. In contrast, ore Pb from the Beiwagou deposit gives different Pb isotopic ratios with 206Pb/204Pb=15.68-15.81, 207Pb/204Pb= 15.34-15.45 and 208Pb/204Pb=35.30-35.68. Pb of all deposits from the Liaodong rift zone is derived from the upper crust. Ore Pb of the Qingchengzi deposits is derived from a young upper crust. The model Th/U ratios of 4.40 to 4.74 for ore Pb are significantly different from that of 1.7 to 4.4 given by the marble of the Qingchengzi ore field, suggesting that marble is not the source of the ore Pb. Ore Pb of the Beiwagou deposit is extracted from its source and the deposit is formed at the Paleoproterozoic era. Different Pb isotopic ratios of the Qingchengzi ore field and the Beiwagou deposit are due to different ages of the deposits and suggest that the two types of deposits are derived from different sources and are possibly formed by different ore-forming processes.

  12. The genus Atheris (Serpentes: Viperidae) in East Africa: phylogeny and the role of rifting and climate in shaping the current pattern of species diversity.

    Science.gov (United States)

    Menegon, M; Loader, S P; Marsden, S J; Branch, W R; Davenport, T R B; Ursenbacher, S

    2014-10-01

    Past climatic and tectonic events are believed to have strongly influenced species diversity in the Eastern Afromontane Biodiversity Hotspot. We investigated the phylogenetic relationships and historical biogeography of the East African genus Atheris (Serpentes: Viperidae), and explored temporal and spatial relationships between Atheris species across Africa, and the impact of palaeoclimatic fluctuations and tectonic movements on cladogenesis of the genus. Using mitochondrial sequence data, the phylogeny of East African species of Atheris shows congruent temporal patterns that link diversification to major tectonic and aridification events within East Africa over the last 15million years (my). Our results are consistent with a scenario of a delayed direct west-east colonisation of the Eastern Arc Mountains of Atheris by the formation of the western rift. Based on the phylogenetic patterns, this terrestrial, forest-associated genus has dispersed into East Africa across a divided route, on both west-southeasterly and west-northeasterly directions (a C-shaped route). Cladogenesis in the Eastern Arc Mountains and Southern Highlands of Tanzania corresponds to late Miocene and Plio-Pleistocene climatic shifts. Taxonomically, our data confirmed the monophyly of Atheris as currently defined, and reveal four major East African clades, three of which occur in discrete mountain ranges. Possible cryptic taxa are identified in the Atheris rungweensis and A. ceratophora clades. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. 76 FR 23708 - Safety Zone; Pierce County Department of Emergency Management Regional Water Exercise, East...

    Science.gov (United States)

    2011-04-28

    ... Management Regional Water Exercise, East Passage, Tacoma, WA AGENCY: Coast Guard, DHS. ACTION: Temporary... of Emergency Management is sponsoring a Regional Water Rescue Exercise in the waters of East Passage..., Washington for a Regional Water Rescue Exercise near Browns Point. A safety zone is necessary to ensure...

  14. 77 FR 21436 - Safety Zone, East River, Brooklyn Bridge Scaffolding Repair, Brooklyn, NY

    Science.gov (United States)

    2012-04-10

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone, East River, Brooklyn Bridge Scaffolding... in the vicinity of the Brooklyn Bridge where damaged corrugated metal scaffoldings and loosely... and their occupants transiting the East River in the vicinity of the Brooklyn Bridge. Therefore, a...

  15. Field guide to summit area and upper east rift zone, Kilauea Volcano, Hawaii

    Science.gov (United States)

    1974-01-01

    The field trip is divided into two sections: (1) Crater Rim Road; and (2) Chain of Craters Road. Most bibliographic references are omitted from the text, but a selected list of references to recent Hawaiian volcanic activity and to special studies is included.

  16. Lake-groundwater relationships and fluid-rock interaction in the East African Rift Valley: isotopic evidence

    Science.gov (United States)

    Darling, W. George; Gizaw, Berhanu; Arusei, Musa K.

    1996-05-01

    The assessment of water resources in the Rift Valley environment is important for population, agriculture and energy-related issues and depends on a good understanding of the relationship between freshwater lakes and regional groundwater. This can be hampered by the amount of fluid-rock interaction which occurs throughout the rift, obscuring original hydrochemical signatures. However, O and H stable isotope ratios can be used as tracers of infiltration over sometimes considerable distances, while showing that the volcanic edifices of the rift floor have varying effects on groundwater flow patterns. Specific cases from Kenya and Ethiopia are considered, including Lakes Naivasha, Baringo, Awasa and Zwai. In addition to their physical tracing role, stable isotopes can reveal information about processes of fluid-rock interaction. The general lack of O isotope shifting in rift hydrothermal systems suggests a high water:rock ratio, with the implication that these systems are mature. Carbon isotope studies on the predominantly bicarbonate waters of the rift show how they evolve from dilute meteoric recharge to highly alkaline waters, via the widespread silicate hydrolysis promoted by the flux of mantle carbon dioxide which occurs in most parts of the rift. There appears to be only minor differences in the C cycle between Kenya and Ethiopia.

  17. Role of Variscan tectonics inheritance in the Jurassic rifting of the passive margin of Adria: insights from the Canavese Zone (Western Southern Alps, Italy)

    Science.gov (United States)

    De Caroli, Sara; Succo, Andrea; Centelli, Arianna; Barbero, Edoardo; Borghi, Alessandro; Balestro, Gianni; Festa, Andrea

    2017-04-01

    The formation of rifted continental margins by extension of continental lithosphere leading to seafloor spreading is a complex component of the plate tectonic cycle. Geological mapping, supported by multidisciplinary analyses of rifted continental margins may thus provide significant information to better understand and model the related processes, and explain the geometry of those margins as observed by means of seismic imaging. We present here our new findings on the Canavese Zone (Italian Western Alps), which is inferred to represent the remnant of the Jurassic syn-rift stretching, thinning and dismemberment of the distal passive margin of Adria, occurred during the opening of the Northern Alpine Tethys. Through multiscale and multidisciplinary, field- and laboratory-based structural, stratigraphic and petrographic studies (from geological map scale to mesoscale and microscope scale), we document that the tectonic dismemberment of the rifted continental margin of Adria did not simply result from the syn-rift Jurassic extension, but was strongly favored by the inheritance of older (Variscan and post-Variscan) tectonic stages, which controlled earlier lithospheric weakness. Our findings show the existence of two different tectonic units of the pre-Variscan basement, which were deformed, juxtaposed and exhumed already during the Variscan orogeny as constraint by (i) intrusion of early Permian granitoids, (ii) emplacement of volcanic rocks and (iii) unconformable overlie of Permian deposits on those metamorphic units. The syn-extensional (syn-rift) Jurassic faults, which affect the Mesozoic sedimentary succession, show only limited vertical displacement that was ineffective in producing and justifying the crustal thinning observed in pre-Variscan basement units. Finally, Late Cretaceous-Early Paleocene and Late Cenozoic strike-slip faulting (i.e. Alpine and Insubric tectonic stages) reactivated previously formed faults, leading to the formation of a complex tectonic

  18. Modeling the distribution of the West Nile and Rift Valley Fever vector Culex pipiens in arid and semi-arid regions of the Middle East and North Africa.

    Science.gov (United States)

    Conley, Amy K; Fuller, Douglas O; Haddad, Nabil; Hassan, Ali N; Gad, Adel M; Beier, John C

    2014-06-24

    The Middle East North Africa (MENA) region is under continuous threat of the re-emergence of West Nile virus (WNV) and Rift Valley Fever virus (RVF), two pathogens transmitted by the vector species Culex pipiens. Predicting areas at high risk for disease transmission requires an accurate model of vector distribution, however, most Cx. pipiens distribution modeling has been confined to temperate, forested habitats. Modeling species distributions across a heterogeneous landscape structure requires a flexible modeling method to capture variation in mosquito response to predictors as well as occurrence data points taken from a sufficient range of habitat types. We used presence-only data from Egypt and Lebanon to model the population distribution of Cx. pipiens across a portion of the MENA that also encompasses Jordan, Syria, and Israel. Models were created with a set of environmental predictors including bioclimatic data, human population density, hydrological data, and vegetation indices, and built using maximum entropy (Maxent) and boosted regression tree (BRT) methods. Models were created with and without the inclusion of human population density. Predictions of Maxent and BRT models were strongly correlated in habitats with high probability of occurrence (Pearson's r=0.774, r=0.734), and more moderately correlated when predicting into regions that exceeded the range of the training data (r=0.666,r=0.558). All models agreed in predicting high probability of occupancy around major urban areas, along the banks of the Nile, the valleys of Israel, Lebanon, and Jordan, and southwestern Saudi Arabia. The most powerful predictors of Cx. pipiens habitat were human population density (60.6% Maxent models, 34.9% BRT models) and the seasonality of the enhanced vegetation index (EVI) (44.7% Maxent, 16.3% BRT). Maxent models tended to be dominated by a single predictor. Areas of high probability corresponded with sites of independent surveys or previous disease outbreaks. Cx

  19. Inferno Chasm Rift Zone, Idaho: A Terrestrial Analog for Plains-style Volcanism in Southeastern Mare Serenitatis on the Moon

    Science.gov (United States)

    Garry, W. B.; Hughes, S. S.; Kobs-Nawotniak, S. E.

    2015-12-01

    Volcanic features aligned along a linear graben in southeastern Mare Serenitatis (19°N, 27.5°E) on the Moon resemble a series of effusive basaltic landforms erupted along the Inferno Chasm rift zone within Craters of the Moon National Monument and Preserve (COTM), Idaho (42°58'00"N, 113°11'25"W). This region in Idaho is the type-locale for terrestrial plains-style volcanism. Examples of lunar plains-style volcanism have previously been described within Orientale Basin at Lacus Veris and Lacus Autumni, but this eruption style has not been used to describe the site in Mare Serenitatis. The SSERVI FINESSE team (Field Investigations to Enable Solar System Science and Exploration) has documented the features along Inferno Chasm rift using a LiDAR, Differential Global Positioning Systems, and Unmanned Aerial Vehicles (UAV) to compare with Lunar Reconnaissance Orbiter Narrow-Angle Camera images and digital terrain models. The region in southeastern Mare Serenitatis provides one of the best concentrations of features representative of lunar plains-style volcanism. On the Moon, these features include a cone (Osiris), a flat-topped dome, a rille-like channel (Isis), a vent, and a possible perched lava pond. In Idaho, the analog features include a dome (Grand View Crater), a rille-like channel (Inferno Chasm), vents (Cottrells Blowout, Horse Butte), and a perched lava pond (Papadakis). Both the scale and morphology of the features on the Moon are similar to the features in Idaho. For example, the channel in Isis is ~3 km long, 283 m-wide, and 25 m deep compared to Inferno Chasm which is ~1.7 km long, 100 m wide, and 20 m deep. The slope of the channel in Isis is -1.2°, while the channel in Inferno Chasm has a slope of -0.33°. The alignment of landforms on the Moon and Idaho are both consistent with dike emplacement. Observations of the flow stratigraphy for features in Idaho will inform the potential eruption conditions of the individual features on the Moon.

  20. Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts

    Science.gov (United States)

    Laó-Dávila, Daniel A.; Al-Salmi, Haifa S.; Abdelsalam, Mohamed G.; Atekwana, Estella A.

    2015-12-01

    We used detailed analysis of Shuttle Radar Topography Mission-digital elevation model and observations from aeromagnetic data to examine the influence of inherited lithospheric heterogeneity and kinematics in the segmentation of largely amagmatic continental rifts. We focused on the Cenozoic Malawi Rift, which represents the southern extension of the Western Branch of the East African Rift System. This north trending rift traverses Precambrian and Paleozoic-Mesozoic structures of different orientations. We found that the rift can be hierarchically divided into first-order and second-order segments. In the first-order segmentation, we divided the rift into Northern, Central, and Southern sections. In its Northern Section, the rift follows Paleoproterozoic and Neoproterozoic terrains with structural grain that favored the localization of extension within well-developed border faults. The Central Section occurs within Mesoproterozoic-Neoproterozoic terrain with regional structures oblique to the rift extent. We propose that the lack of inherited lithospheric heterogeneity favoring extension localization resulted in the development of the rift in this section as a shallow graben with undeveloped border faults. In the Southern Section, Mesoproterozoic-Neoproterozoic rocks were reactivated and developed the border faults. In the second-order segmentation, only observed in the Northern Section, we divided the section into five segments that approximate four half-grabens/asymmetrical grabens with alternating polarities. The change of polarity coincides with flip-over full-grabens occurring within overlap zones associated with ~150 km long alternating border faults segments. The inherited lithospheric heterogeneity played the major role in facilitating the segmentation of the Malawi Rift during its opening resulting from extension.

  1. Contact and hybrid zone hotspots and evolution of birds in the Middle East

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Middle East is an important contact zone for a considerable number of bird taxa from the western and eastern Palearctic and from the great Saharo-Sindian jesert belt. Using WORLDMAP software, we analyzed the geographical distribution of secondary contact zones for parapatric species pairs of birds in the Middle East. We identified 56 species (29 species pairs) that make contact in the Middle East. The species pairs belong to three orders, i.e. Falconiformes, Piciformes, and Passeriformes. Almost half (46%) of these species pairs hybridize in their contact zones. Although contact zones occur over a large part of northern Middle East, spatially they were not evenly distributed. Contact zone richness was highest in the mountain ranges south of the Caspian Sea and the Caucasus. The hottest hotspots, where up to nine bird species pairs occur sympatrically, are situated in north-eastern Iran and Azerbaijan. We discuss the relevance of these hotspots for improving our understanding of the biogeography and evolution of the avifauna in the Middle East.

  2. Rift brittle deformation of SE-Brazilian continental margin: Kinematic analysis of onshore structures relative to the transfer and accommodation zones of southern Campos Basin

    Science.gov (United States)

    Savastano, Vítor Lamy Mesiano; Schmitt, Renata da Silva; Araújo, Mário Neto Cavalcanti de; Inocêncio, Leonardo Campos

    2017-01-01

    High-resolution drone-supported mapping and traditional field work were used to refine the hierarchy and kinematics of rift-related faults in the basement rocks and Early Cretaceous mafic dikes onshore of the Campos Basin, SE-Brazil. Two sets of structures were identified. The most significant fault set is NE-SW oriented with predominantly normal displacement. At mesoscale, this fault set is arranged in a rhombic pattern, interpreted here as a breached relay ramp system. The rhombic pattern is a penetrative fabric from the thin-section to regional scale. The second-order set of structures is an E-W/ESE-WNW system of normal faults with sinistral component. These E-W structures are oriented parallel with regional intrabasinal transfer zones associated with the earliest stages of Campos Basin's rift system. The crosscutting relationship between the two fault sets and tholeiitic dikes implies that the NE-SW fault set is the older feature, but remained active until the final stages of rifting in this region as the second-order fault set is older than the tholeiitic dikes. Paleostresses estimated from fault slip inversion method indicated that extension was originally NW-SE, with formation of the E-W transfer, followed by ESE-WNW oblique opening associated with a relay ramp system and related accommodation zones.

  3. Thermo-rheological aspects of crustal evolution during continental breakup and melt intrusion : The Main Ethiopian Rift, East Africa

    NARCIS (Netherlands)

    Lavecchia, Alessio; Beekman, Fred; Clark, Stuart R.; Cloetingh, Sierd A P L

    2016-01-01

    The Cenozoic-Quaternary Main Ethiopian Rift (MER) is characterized by extended magmatic activity. Although magmatism has been recognized as a key element in the process of continental breakup, the interaction between melts and intruded lithosphere is still poorly understood. We have performed a 2D t

  4. Age and isotopic marks of K-rich Manning Massif trachybasalts: an evidence for Lambert-Amery rift-system initiation (East Antarctica)

    Science.gov (United States)

    Leitchenkov, German; Belyatsky, Boris; Lepekhina, Elena; Antonov, Anton; Krymsky, Robert; Andronikov, Alex; Sergeev, Sergey

    2017-04-01

    Volcanic rocks from the Manning Massif, which is situated in the western flank of the Paleozoic-Late Mesozoic Lambert Rift (East Antarctica), belong to a rare type of alkaline magmatism within the Precambrian East Antarctic Craton. K-rich olivine trachybasalts compose some flows resting upon a surface of Precambrian granulite terrain, each flow of 2.5-7 m in thickness and total section not less than 30 m. Each flow sequence comprises of glassy chilled base with vitroporphyritic texture, fine-plated vesicular basalt with interstitial texture, massive fine-grained basalt with porphyritic microlitic texture, amigdaloidal aphanitic basalt with poikilophytic texture, and vesicular mandelstone of slag crust with vitroporphyritic texture [Andronikov et al., 1998]. Rb-Sr and K-Ar isotopic age of this eruption was estimated as 40-50 Ma and the main reason for this Cenozoic continental volcanism was supposed the post-rift tectonic activity [Andronikov et al., 1998]. But the isotopic characteristics of these trachybasalts are very similar to those obtained for the part of spinel lherzolite and spinel-garnet lherzolite xenoliths from the Mesozoic alkaline picrite of the adjacent Jetty Peninsula region. That could be evidence of the trachybasalt mantle source in long-lived enriched upper mantle beneath the region, either under the lowermost levels of spinel lherzolite facies or on the highest levels of garnet lherzolite facies conditions. To reveal tectonic position of these enigmatic volcanics, we have studied 16 samples from different parts of basaltic flows for U-Pb geochronology and Pb-Sr-Nd-Os isotopic characteristics. U-Pb SIMS SHRIMP-II analysis was performed for 68 apatite grains from 5 samples. All obtained data-points are approximated by discordia line (MSWD=1.6) on Tera-Wasserburg diagram, corresponding to the age of 346±46 Ma. Common Pb isotope composition of these apatites differs from the model by increased 206Pb/204Pb (19.8) and 207Pb/204Pb (18.3) that means the

  5. The Jurassic of Denmark and Greenland: The Jurassic of East Greenland: a sedimentary record of thermal subsidence, onset and culmination of rifting

    Directory of Open Access Journals (Sweden)

    Surlyk, Finn

    2003-10-01

    Full Text Available The Late Palaeozoic – Mesozoic extensional basin complex of East Greenland contains a record of deposition during a period of Rhaetian – Early Bajocian thermal subsidence, the onset of riftingin the Late Bajocian, its growth during the Bathonian–Kimmeridgian, culmination of rifting in the Volgian – Early Ryazanian, and waning in the Late Ryazanian – Hauterivian. The area was centred over a palaeolatitude of about 45°N in the Rhaetian and drifted northwards to about 50°N in the Hauterivian. A major climate change from arid to humid subtropical conditions took place at the Norian–Rhaetian transition. Deposition was in addition governed by a long-term sea-level rise with highstands in the Toarcian–Aalenian, latest Callovian and Kimmeridgian, and lowstands in the latest Bajocian – earliest Bathonian, Middle Oxfordian and Volgian.The Rhaetian – Lower Bajocian succession is considered the upper part of a megasequence, termed J1, with its base in the upper Lower Triassic, whereas the Upper Bajocian – Hauterivian succession forms a complete, syn-rift megasequence, termed J2. The southern part of the basin complex in Jameson Land contains a relatively complete Rhaetian–Ryazanian succession and underwent only minor tilting during Middle Jurassic – earliest Cretaceous rifting. Rhaetian – Lower Jurassic deposits are absent north of Jameson Land and this region was fragmented into strongly tilted fault blocks during the protracted rift event. The syn-rift successions of the two areas accordingly show different long-term trends in sedimentary facies. In the southern area, the J2 syn-rift megasequence forms a symmetrical regressive–transgressive–regressive cycle, whereas the J2 megasequence in the northern area shows an asymmetrical, stepwise deepening trend.A total of eight tectonostratigraphic sequences are recognised in the Rhaetian–Hauterivian interval. They reflect major changes in basin configuration, drainage systems

  6. Orthorhombic fault fracture patterns and non-plane strain in a synthetic transfer zone during rifting: Lennard shelf, Canning basin, Western Australia

    Science.gov (United States)

    Miller, John McL.; Nelson, E. P.; Hitzman, M.; Muccilli, P.; Hall, W. D. M.

    2007-06-01

    A complex series of faults occur within transfer zones normal to the WNW-trending rifted northern margin of the Canning basin (Western Australia). These zones controlled basinal fluid flow and the formation of some carbonate-hosted Mississippi Valley-type Zn-Pb deposits along the basin margin during Devonian to Carboniferous rifting. The study area has a regional fault geometry similar to a synthetic overlapping transfer zone. Surface and underground mapping in this transfer zone, combined with 3D modelling, indicate the faults and related extension fractures have an orthorhombic geometry. The orthorhombic fault-fracture mesh developed in response to three-dimensional non-plane strain in which the intermediate finite extension magnitude was non-zero. Pre-mineralisation marine calcite fill in the fault-fracture mesh indicates that it formed early in the deformation history. Later deformation that overprints the Zn-Pb mineralisation and fault-fracture mesh, was associated with a different maximum extension direction and this modified and reactivated the faults with both dip-slip and oblique-slip movement and tilting of earlier structures. The orthorhombic geometry is not observed at a regional scale (>10 × 10 km), indicating probable scale-dependant behaviour. This study indicates that this transfer zone developed either by (1) strain partitioning with synchronous strike-slip structures and adjacent zones of non-plane extension, or (2) by a component of non-plane extension sub-parallel to the basin margin followed by subsequent transtensional overprint of the system (preferred model). Synthetic overlapping transfer zones are inferred to be key regions where orthorhombic fault geometries may develop.

  7. The Olorgesailie Drilling Project (ODP): a high-resolution drill core record from a hominin site in the East African Rift Valley

    Science.gov (United States)

    Dommain, R.; Potts, R.; Behrensmeyer, A. K.; Deino, A. L.

    2014-12-01

    The East African rift valley contains an outstanding record of hominin fossils that document human evolution over the Plio-Pleistocene when the global and regional climate and the rift valley itself changed markedly. The sediments of fossil localities typically provide, however, only short time windows into past climatic and environmental conditions. Continuous, long-term terrestrial records are now becoming available through core drilling to help elucidate the paleoenvironmental context of human evolution. Here we present a 500,000 year long high-resolution drill core record obtained from a key fossil and archeological site - the Olorgesailie Basin in the southern Kenya Rift Valley, well known for its sequence of archeological and faunal sites for the past 1.2 million years. In 2012 two drill cores (54 and 166 m long) were collected in the Koora Plain just south of Mt. Olorgesailie as part of the Olorgesailie Drilling Project (ODP) to establish a detailed climate and ecological record associated with the last evidence of Homo erectus in Africa, the oldest transition of Acheulean to Middle Stone Age technology, and large mammal species turnover, all of which are documented in the Olorgesailie excavations. The cores were sampled at the National Lacustrine Core Facility. More than 140 samples of tephra and trachytic basement lavas have led to high-precision 40Ar/39Ar dating. The cores are being analyzed for a suite of paleoclimatic and paleoecological proxies such as diatoms, pollen, fungal spores, phytoliths, ostracodes, carbonate isotopes, leaf wax biomarkers, charcoal, and clay mineralogy. Sedimentological analyses, including lithological descriptions, microscopic smear slide analysis (242 samples), and grain-size analysis, reveal a highly variable sedimentary sequence of deep lake phases with laminated sediments, diatomites, shallow lake and near shore phases, fluvial deposits, paleosols, interspersed carbonate layers, and abundant volcanic ash deposits. Magnetic

  8. Spatial and Temporal Population Genetics at Deep-Sea Hydrothermal Vents Along the East Pacific Rise and Galapagos Rift

    Science.gov (United States)

    2008-09-01

    Rift id’s population density and mean dispersal distances (O. Puebla , OSM 2008). Models of dispersal in all marine habitats should integrate larval...Inference of population structure using multilocus genotype data. Genetics, 155, 945-959. Puebla O (2008) Genetic signature of the spatial scale...in concert with other population processes (O. Puebla , OSM 2008; North et al. 2008; also see Denny et al. 2004 for discussion of scale in ecology

  9. A Review of New and Anticipated High-Resolution Paleoclimate Records from the East African Rift System and Their Implications for Hominin Evolution and Demography

    Science.gov (United States)

    Cohen, A. S.

    2014-12-01

    Our understanding of Late Tertiary/Quaternary climate and environmental history in East Africa has, to date, largely been based on outcrop and marine drill core records. Although these records have proven extremely valuable both in reconstructing environmental change and placing human evolution in an environmental context, their quality is limited by resolution, continuity, uncertainties about superposition and outcrop weathering. To address this problem, long drill core records from extant ancient lakes and lake beds are being collected by several research groups. Long cores (up to 100s of m.) from basin depocenters in both the western and eastern rifts are now available spanning nearly the entire latitudinal range of the East Africa Rift. This network of core records, especially when coupled with outcrop data, is providing an opportunity to compare the nature of important global climate transitions (especially glacial/interglacial events and precessional cycles) across the continent, thereby documenting regional heterogeneity in African climate history. Understanding this heterogeneity is critical for realistically evaluating competing hypotheses of environmental forcing of human evolution, and especially ideas about the dispersal of anatomically modern humans out of Africa in the early Late Pleistocene. In particular, understanding the hydrological and paleoecological history of biogeographic corridors linking eastern Africa, the Nile River Valley and the Levant is likely to be vastly improved through comparative analysis of these new drill cores over the next few years. Because we do not a priori know the primary forcing factors affecting this environmental history, it will essential to develop the best possible age models, employing multiple and novel geochronometric tools to make these comparisons.

  10. Monitoring the NW volcanic rift-zone of Tenerife, Canary Islands, Spain: sixteen years of diffuse CO_{2} degassing surveys

    Science.gov (United States)

    Rodríguez, Fátima; Halliwell, Simon; Butters, Damaris; Padilla, Germán; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria, is the only one that has developed a central volcanic complex characterized by the eruption of differentiated magmas. At present, one of the most active volcanic structures in Tenerife is the North-West Rift-Zone (NWRZ), which has hosted two historical eruptions: Arenas Negras in 1706 and Chinyero in 1909. Since the year 2000, 47 soil CO2 efflux surveys have been undertaken at the NWRZ of Tenerife Island to evaluate the temporal and spatial variations of CO2 efflux and their relationships with the volcanic-seismic activity. We report herein the last results of diffuse CO2 efflux survey at the NWRZ carried out in July 2015 to constrain the total CO2 output from the studied area. Measurements were performed in accordance with the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. During 2015 survey, soil CO2 efflux values ranged from non-detectable up to 103 g m-2 d-1. The total diffuse CO2 output released to atmosphere was estimated at 403 ± 17 t d-1, values higher than the background CO2 emission estimated on 143 t d-1. For all campaigns, soil CO2 efflux values ranged from non-detectable up to 141 g m-2 d-1, with the highest values measured in May 2005. Total CO2 output from the studied area ranged between 52 and 867 t d-1. Temporal variations in the total CO2 output showed a temporal correlation with the onsets of seismic activity, supporting unrest of the volcanic system, as is also suggested by anomalous seismic activity recorded in the area during April 22-29, 2004. Spatial distribution of soil CO2 efflux values also showed changes in magnitude and amplitude, with higher CO2 efflux values located along a trending WNW-ESE area. Subsurface magma movement is proposed as a cause for the observed changes in the total output of diffuse CO2 emission, as well as for the spatial distribution of soil CO2 efflux

  11. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); O' Connor, Ben L. [Argonne National Lab. (ANL), Argonne, IL (United States); Tompson, Andrew F.B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  12. 77 FR 43167 - Safety Zone; Electric Zoo Fireworks, East River, Randall's Island, NY

    Science.gov (United States)

    2012-07-24

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Electric Zoo Fireworks, East River, Randall... prior notice and opportunity to comment when the agency for good cause finds that those procedures are... finds that good cause exists for not publishing a notice of proposed rulemaking (NPRM) with respect...

  13. From the Palaeozoic collapse of the East African-Antarctic Orogen to Gondwana rifting in NE Mozambique

    OpenAIRE

    Jacobs, J; Emmel, B.; Ueda, K.; Thomas, R J; Kosler, J.; Horstwood, M.; Jordan, F.; Kleinhanns, I.; Engvik, A.; B. Bingen; Daudi, E.X.

    2011-01-01

    The East African passive margin resulted from complex reactivation of the ca. 600–500 Ma East African-Antarctic Orogen (EAAO). With the help of a large set of new thermochronological data (U-Pb titanite, Ar-Ar hornblende and biotite, as well as zircon, titanite and apatite fission-track analyses) we have modelled the tectono-thermal history of NE Mozambique from the late (Lower Palaeozoic) stages of the East African-Antarctic Orogeny to its transformation into a passive margin in the Mesozoic.

  14. The role of Variscan to pre-Jurassic active extension in controlling the architecture of the rifted passive margin of Adria: the example of the Canavese Zone (Western Southern Alps, Italy)

    Science.gov (United States)

    Succo, Andrea; De Caroli, Sara; Centelli, Arianna; Barbero, Edoardo; Balestro, Gianni; Festa, Andrea

    2016-04-01

    The Canavese Zone, in the Italian Western Southern Alps, represents the remnant of the Jurassic syn-rift stretching, thinning and dismemberment of the distal passive margin of Adria during the opening of the Penninic Ocean (i.e., Northern Alpine Tethys). Our findings, based on detailed geological mapping, structural analysis and stratigraphic and petrographic observations, document however that the inferred hyper-extensional dismemberment of this distal part of the passive margin of Adria, up to seafloor spreading, was favored by the inherited Variscan geometry and crustal architecture of the rifted margin, and by the subsequent Alpine-related strike-slip deformation. The new field data document, in fact, that the limited vertical displacement of syn-extensional (syn-rift) Jurassic faults was ineffective in producing and justifying the crustal thinning observed in the Canavese Zone. The deformation and thinning of the continental basement of Adria are constrained to the late Variscan time by the unconformable overlying of Late Permian deposits. Late Cretaceous-Early Paleocene and Late Cenozoic strike-slip faulting (i.e., Alpine and Insubric tectonic stages) reactivated previously formed faults, leading to the formation of a complex tectonic jigsaw which only partially coincides with the direct product of the Jurassic syn-rift dismemberment of the distal part of the passive margin of Adria. Our new findings document that this dismemberment of the rifted continental margin of Adria did not simply result from the syn-rift Jurassic extension, but was strongly favored by the inheritance of older (Variscan and post-Variscan) tectonic stages, which controlled earlier lithospheric weakness. The formation of rifted continental margins by extension of continental lithosphere leading to seafloor spreading is a complex and still poorly understood component of the plate tectonic cycle. Geological mapping of rifted continental margins may thus provide significant information to

  15. Seismicity of the northern part of the Kenya Rift Valley

    Science.gov (United States)

    Pointing, A. J.; Maguire, P. K. H.; Khan, M. A.; Francis, D. J.; Swain, C. J.; Shah, E. R.; Griffiths, D. H.

    1985-07-01

    During the first eight months of 1981 earthquake data were recorded during a passive seismic experiment (KRISP 81) in northern Kenya. An eight station, small aperture, short period seismic array was located on the eastern margin of the Rift at 1.7°N, 37.3°E. Two single-point, three component stations were also located north and west of the array, forming a triangular network with approximately 150 km length sides. 2329 events were recorded during the 231 days of recording. A preliminary micro-earthquake seismicity map of the central and northern parts of the country has been produced, using a uniform half space velocity model derived from the analysis of apparent velocities, azimuths and P-S times of event arrivals at the small aperture array. Events located within the Rift show a marked north-south linearity extending from Lakes Bogoria and Baringo in the south, into the Sugata Valley to the north. Around the southern part of Lake Turkana the seismicity becomes more diffuse. However, there is little seismic activity associated with the broad zone of splay faulting that exists in northern Kenya. The seismicity observed along the axis of the Rift suggests a continuation to about 2.5°N of the tectonic style observed over the apex of the Kenya dome. A relatively quiet zone separates the activity within the Rift from a second, diffuse, north-south zone of seismicity approximately 150 km further to the east.

  16. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    Science.gov (United States)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m-2 d-1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  17. Structural control of the Gagua "Wedge" Zone east of Taiwan Island on the southern Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yanpeng; LIU Baohua; WU Jinlong; LIANG Ruicai; LIU Chenguang; ZHANG Zhengmin

    2005-01-01

    Based on compositive analysis and interpretation of the observed and historical data, the geophysical field characters and structural properties of the Gagua "Wedge" Zone of the sea area east of Taiwan Island and the primary tectonic stress direction and its variabilities of backarc spreading in the southern Okinawa Trough are studied. It is concluded from the study results that the Gagua "Wedge" Zone is structurally consistent with the Gagua ridge and two fault basins on both sides of the Gagua ridge, and adjusts the moving direction and distance of the western Philippine Sea plate to make the northwestward motion of the plate on its east side change to the northward subduction of the plate on its west side so that the primary tectonic stress direction of the Okinawa Trough changed from NW-SE to nearly N-S, which provided the stress source for the Okinawa Trough to enter the second spreading stage.

  18. Plate kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression, Ethiopia

    Science.gov (United States)

    Bottenberg, Helen Carrie

    This work utilizes the Four-Dimensional Plates (4DPlates) software, and Differential Interferometric Synthetic Aperture Radar (DInSAR) to examine plate-scale, regional-scale and local-scale kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression in Ethiopia. First, the 4DPlates is used to restore the Red Sea, the Gulf of Aden, the Afar Depression and the Main Ethiopian Rift to development of a new model that adopts two poles of rotation for Arabia. Second, the 4DPlates is used to model regional-scale and local-scale kinematics within the Afar Depression. Most plate reconstruction models of the Afro-Arabian Rift System relies on considering the Afar Depression as a typical rift-rift-rift triple junction where the Arabian, Somali and Nubian (African) plates are separating by the Red Sea, the Gulf of Aden and the Main Ethiopian Rift suggesting the presence of "sharp and rigid" plate boundaries. However, at the regional-scale the Afar kinematics are more complex due to stepping of the Red Sea propagator and the Gulf of Aden propagator onto Afar as well as the presence of the Danakil, Ali Sabieh and East Central Block "micro-plates". This study incorporates the motion of these micro-plates into the regional-scale model and defined the plate boundary between the Arabian and the African plates within Afar as likely a diffused zone of extensional strain within the East Central Block. Third, DInSAR technology is used to create ascending and descending differential interferograms from the Envisat Advanced Synthetic Aperture Radar (ASAR) C-Band data for the East Central Block to image active crustal deformation related to extensional tectonics and volcanism. Results of the DInSAR study indicate no strong strain localization but rather a diffused pattern of deformation across the entire East Central Block.

  19. Water balance modelling in a semi-arid environment with limited in-situ data: remote sensing coupled with satellite gravimetry, Lake Manyara, East African Rift, Tanzania

    Directory of Open Access Journals (Sweden)

    D. Deus

    2011-09-01

    Full Text Available Accurate and up to date information on the status and trends of water balance is needed to develop strategies for conservation and the sustainable management of water resources. The purpose of this research is to estimate water balance in a semi-arid environment with limited in-situ data by using a remote sensing approach. We focus on the Lake Manyara catchment, located within the East African Rift of northern Tanzania. We use remote sensing and a semi-distributed hydrological model to study the spatial and temporal variability of water balance parameters within Manyara catchment. Satellite gravimetry GRACE data is used to verify the trend of the water balance result. The results show high spatial and temporal variations and characteristics of a semi-arid climate with high evaporation and low rainfall. We observe that the Lake Manyara water balance and GRACE equivalent water depth show comparable trends a decrease after 2002 followed by a sharp increase in 2006–2007. Despite the small size of Lake Manyara, GRACE data are useful and show great potential for hydrological research on smaller un-gauged lakes and catchments in semi-arid environments. Our modelling confirms the importance of the 2006–2007 Indian Ocean Dipole fluctuation in replenishing the groundwater reservoirs of East Africa. The water balance information can be used for further analysis of lake variations in relation to soil erosion, climate and land cover/land use change as well as different lake management and conservation scenarios. We demonstrate that water balance modelling can be performed accurately using remote sensing data even in complex climatic settings.

  20. 3D object-oriented image analysis in 3D geophysical modelling: Analysing the central part of the East African Rift System

    Science.gov (United States)

    Fadel, I.; van der Meijde, M.; Kerle, N.; Lauritsen, N.

    2015-03-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D interactive modelling environment IGMAS+, and their density contrast values were calculated using an object-based inversion technique to calculate the forward signal of the objects and compare it with the measured satellite gravity. Thus, a new object-based approach was implemented to interpret and extract the 3D subsurface objects from 3D geophysical data. We also introduce a new approach to constrain the interpretation of the satellite gravity measurements that can be applied using any 3D geophysical model.

  1. The 1170 and 1202 CE Dead Sea Rift earthquakes and long-term magnitude distribution of the Dead Sea Fault zone

    Science.gov (United States)

    Hough, S.E.; Avni, R.

    2009-01-01

    In combination with the historical record, paleoseismic investigations have provided a record of large earthquakes in the Dead Sea Rift that extends back over 1500 years. Analysis of macroseismic effects can help refine magnitude estimates for large historical events. In this study we consider the detailed intensity distributions for two large events, in 1170 CE and 1202 CE, as determined from careful reinterpretation of available historical accounts, using the 1927 Jericho earthquake as a guide in their interpretation. In the absence of an intensity attenuation relationship for the Dead Sea region, we use the 1927 Jericho earthquake to develop a preliminary relationship based on a modification of the relationships developed in other regions. Using this relation, we estimate M7.6 for the 1202 earthquake and M6.6 for the 1170 earthquake. The uncertainties for both estimates are large and difficult to quantify with precision. The large uncertainties illustrate the critical need to develop a regional intensity attenuation relation. We further consider the distribution of magnitudes in the historic record and show that it is consistent with a b-value distribution with a b-value of 1. Considering the entire Dead Sea Rift zone, we show that the seismic moment release rate over the past 1500 years is sufficient, within the uncertainties of the data, to account for the plate tectonic strain rate along the plate boundary. The results reveal that an earthquake of M7.8 is expected within the zone on average every 1000 years. ?? 2011 Science From Israel/LPPLtd.

  2. Two-step magma flooding of the upper crust during rifting: The Early Paleozoic of the Ossa Morena Zone (SW Iberia)

    Science.gov (United States)

    Sánchez-García, T.; Quesada, C.; Bellido, F.; Dunning, G. R.; González del Tánago, J.

    2008-12-01

    The Ossa Morena Zone of SW Iberia represents a continental arc accreted to the Iberian Autochthon during the Late Proterozoic-Early Cambrian Cadomian orogeny. A subsequent Cambrian-Ordovician rifting event is recorded in this zone, which was accompanied by intrusion/eruption of large volumes of igneous rocks. Exposed crustal segments show both volcanic and shallow plutonic rocks that according to their relationship with coeval sedimentary successions can be assigned to one of two periods of magma emplacement: i) an Early Igneous Event, exclusively comprised of acid peraluminous rocks associated with migmatite formation during development of core-complex structures in mid-upper crust environments; and ii) a Main Igneous Event, which produced predominantly basaltic and acid (rhyolite) rocks and minor amounts of intermediate (trachyte) rocks. Tholeiites and alkaline rocks predominate in this suite but minor calcalkaline peraluminous compositions are also present. Besides, a volumetrically unimportant but petrologically significant group of Mg-rich rocks also occurs within the Main Igneous Event. These latter rocks are interpreted to reflect high partial melting rates of a protolith similar to the primitive mantle. All the outlined characteristics provide evidence for large heterogeneity within the rift-related association that may be due to several causes, such as the involvement of various magma sources (asthenospheric, lithospheric, crustal) and/or involvement of various petrogenetic processes in their generation and evolution. Radiometric (U-Pb zircon) dating yielded c. 530 ± 5 Ma ages for the Early Igneous Event and a longer duration, 517-502 ± 2 Ma, for the Main Igneous Event. The large volume of magma emplaced into upper crustal environments, along with the presence of abundant dikes, suggest that magma ascent benefited from coeval extensional tectonism. It is suggested that they represent the igneous expression of rifting in connection with a severe thermal

  3. Mid-lithospheric Discontinuity Beneath the Malawi Rift, Deduced from Gravity Studies and its Relation to the Rifting Process.

    Science.gov (United States)

    Njinju, E. A.; Atekwana, E. A.; Mickus, K. L.; Abdelsalam, M. G.; Atekwana, E. A.; Laó-Dávila, D. A.

    2015-12-01

    The World Gravity Map satellite gravity data were used to investigate the lithospheric structure beneath the Cenozoic-age Malawi Rift which forms the southern extension of the Western Branch of the East African Rift System. An analysis of the data using two-dimensional (2D) power spectrum methods indicates the two distinctive discontinuities at depths of 31‒44 km and 64‒124 km as defined by the two steepest slopes of the power spectrum curves. The shallower discontinuity corresponds to the crust-mantle boundary (Moho) and compares well with Moho depth determined from passive seismic studies. To understand the source of the deeper discontinuity, we applied the 2D power spectrum analysis to other rift segments of the Western Branch as well as regions with stable continental lithospheres where the lithospheric structure is well constrained through passive seismic studies. We found that the deeper discontinuity corresponds to a mid-lithospheric discontinuity (MLD), which is known to exist globally at depths between 60‒150 km and as determined by passive seismic studies. Our results show that beneath the Malawi Rift, there is no pattern of N-S elongated crustal thinning following the surface expression of the Malawi Rift. With the exception of a north-central region of crustal thinning (Malawi Rift forming a N-S trending zone with depths of 64‒80 km, showing a broad and gentle topography. We interpret the MLD as representing a sharp density contrast resulting from metasomatized lithosphere due to lateral migration along mobile belts of hot mantle melt or fluids from a distant plume and not from an ascending asthenosphere. These fluids weaken the lithosphere enhancing rift nucleation. The availability of satellite gravity worldwide makes gravity a promising technique for determining the MLD globally.

  4. Mantle Flow Across the Baikal Rift Constrained With Integrated Seismic Measurements

    Science.gov (United States)

    Lebedev, S.; Meier, T.; van der Hilst, R. D.

    2005-12-01

    The Baikal Rift is located at the boundary of the stable Siberian Craton and deforming central Mongolia. The origin of the late Cenozoic rifting and volcanism are debated, as is the mantle flow beneath the rift zone. Here we combine new evidence from azimuthally-anisotropic upper-mantle tomography and from a radially-anisotropic inversion of interstation surface-wave dispersion curves with previously published shear-wave-splitting measurements of azimuthal anisotropy across the rift (Gao et al. 1994). While our tomographic model maps isotropic and anisotropic shear-velocity heterogeneity globally, the inversion of interstation phase-velocity measurements produces a single, radially-anisotropic, shear-velocity profile that averages from the rift to 500 km SE of it. The precision and the broad band (8-340 s) of the Rayleigh and Love wave curves ensures high accuracy of the profile. Tomography and shear-wave splitting both give a NW-SE fast direction (perpendicular to the rift) in the vicinity of the rift, changing towards W-E a few hundred kilometers from it. Previously, this has been interpreted as evidence for mantle flow similar to that beneath mid-ocean ridges, with deeper vertical flow directly beneath the rift also proposed. Our radially anisotropic profile, however, shows that while strong anisotropy with SH waves faster than SV waves is present in the thin lithosphere and upper asthenosphere beneath and SE of the rift, no anisotropy is required below 110 km. The tomographic model shows thick cratonic lithosphere north of the rift. These observations suggest that instead of a flow diverging from the rift axis in NW and SE directions, the most likely pattern is the asthenospheric flow in SE direction from beneath the Siberian lithosphere and across the rift. Possible driving forces of the flow are large-scale lithospheric deformation in East Asia and the draining of asthenosphere at W-Pacific subduction zones; a plume beneath the Siberian craton also cannot be

  5. Rifts in spreading wax layers

    CERN Document Server

    Ragnarsson, R; Santangelo, C D; Bodenschatz, E; Ragnarsson, Rolf; Ford, J Lewis; Santangelo, Christian D; Bodenschatz, Eberhard

    1995-01-01

    We report experimental results on the rift formation between two freezing wax plates. The plates were pulled apart with constant velocity, while floating on the melt, in a way akin to the tectonic plates of the earth's crust. At slow spreading rates, a rift, initially perpendicular to the spreading direction, was found to be stable, while above a critical spreading rate a "spiky" rift with fracture zones almost parallel to the spreading direction developed. At yet higher spreading rates a second transition from the spiky rift to a zig-zag pattern occurred. In this regime the rift can be characterized by a single angle which was found to be dependent on the spreading rate. We show that the oblique spreading angles agree with a simple geometrical model. The coarsening of the zig-zag pattern over time and the three-dimensional structure of the solidified crust are also discussed.

  6. Cenozoic rift formation in the northern Caribbean

    Science.gov (United States)

    Mann, P.; Burke, K.

    1984-01-01

    Rifts form in many different tectonic environments where the lithosphere is put into extension. An outline is provided of the distribution, orientation, and relative ages of 16 Cenozoic rifts along the northern edge of the Caribbean plate and it is suggested that these structures formed successively by localized extension as the Caribbean plate moved eastward past a continental promontory of North America. Evidence leading to this conclusion includes (1) recognition that the rifts become progressively younger westward; (2) a two-phase subsidence history in a rift exposed by upthrusting in Jamaica; (3) the absence of rifts east of Jamaica; and (4) the observation that removal of 1400 km of strike-slip displacement on the Cayman Trough fault system places the Paleogene rifts of Jamaica in an active area of extension south of Yucatan where the rifts of Honduras and Guatemala are forming today.

  7. Greenland Fracture Zone-East Greenland Ridge(s) revisited: Indications of a C22-change in plate motion?

    DEFF Research Database (Denmark)

    Døssing, Arne; Funck, T.

    2012-01-01

    Fracture Zone and separation of the 200-km-long, fracture-zone-parallel continental East Greenland Ridge from the Eurasia plate is thought to be related to a major change in relative plate motions between Greenland and Eurasia during the earliest Oligocene (Chron 13 time). This study presents...... a reinterpretation of the Greenland Fracture Zone -East Greenland Ridge based on new and existing geophysical data. Evidence is shown for two overstepping ridge segments (Segments A and B) of which Segment A corresponds to the already known East Greenland Ridge while Segment B was not detected previously....... Interpretation of sonobuoy data and revised modeling of existing OBS data across Segment B indicate a continental composition of the segment. This interpretation is supported by magnetic anomaly data. The Segments A and B are bounded by portions of the Greenland Fracture Zone with a distinct similar to 10...

  8. Changes of the transitional climate zone in East Asia: past and future

    Science.gov (United States)

    Wang, Lin; Chen, Wen; Huang, Gang; Zeng, Gang

    2016-10-01

    The transitional climate zone (TCZ) between humid and arid regions in East Asia is characterized by sharp climate and biome gradients, interaction between the East Asian summer monsoon and the mid-latitude westerly winds and mixed agriculture-pasture activities. Consequently, it is highly vulnerable to natural disturbances and particularly human-driven global change. This study aims to illuminate the spatial and temporal variation of TCZ across both the retrospective and the prospective periods. In the historical period, both the front and rear edges of TCZ exhibit wide year-to-year excursions and have experienced coastward migration with increasing aridity throughout TCZ. Furthermore, precipitation fluctuation mainly contributes to interannual variability of TCZ whereas potential evaporation behavior dominates the long-term trends of TCZ. Models are capable of largely reproducing the shape and orientation of TCZ, although northwestward bias is apparent. In global warming scenario period, there will be continuing southeastward displacement for the front edge but the opposite northwestward movement is projected for the rear one, as a consequence of significant drying trends in the humid zone together with regime shifts towards humid conditions in the arid zone. Despite expanded TCZ sector, however, the available water resources inside it suffer little magnitude changes without preferential tendency towards either drier or wetter conditions, implying neither deleterious nor beneficial effects on the TCZ environment. Moreover, interannual variability of TCZ is expected to become stronger, resulting in more frequent occurrences of extreme swings. Finally, it is noted that uncertainty arising from climate models dominates in the TCZ than dispersed emission scenarios, in contrast to the situation in humid and arid zones.

  9. Changes of the transitional climate zone in East Asia: past and future

    Science.gov (United States)

    Wang, Lin; Chen, Wen; Huang, Gang; Zeng, Gang

    2017-08-01

    The transitional climate zone (TCZ) between humid and arid regions in East Asia is characterized by sharp climate and biome gradients, interaction between the East Asian summer monsoon and the mid-latitude westerly winds and mixed agriculture-pasture activities. Consequently, it is highly vulnerable to natural disturbances and particularly human-driven global change. This study aims to illuminate the spatial and temporal variation of TCZ across both the retrospective and the prospective periods. In the historical period, both the front and rear edges of TCZ exhibit wide year-to-year excursions and have experienced coastward migration with increasing aridity throughout TCZ. Furthermore, precipitation fluctuation mainly contributes to interannual variability of TCZ whereas potential evaporation behavior dominates the long-term trends of TCZ. Models are capable of largely reproducing the shape and orientation of TCZ, although northwestward bias is apparent. In global warming scenario period, there will be continuing southeastward displacement for the front edge but the opposite northwestward movement is projected for the rear one, as a consequence of significant drying trends in the humid zone together with regime shifts towards humid conditions in the arid zone. Despite expanded TCZ sector, however, the available water resources inside it suffer little magnitude changes without preferential tendency towards either drier or wetter conditions, implying neither deleterious nor beneficial effects on the TCZ environment. Moreover, interannual variability of TCZ is expected to become stronger, resulting in more frequent occurrences of extreme swings. Finally, it is noted that uncertainty arising from climate models dominates in the TCZ than dispersed emission scenarios, in contrast to the situation in humid and arid zones.

  10. Magmatism in rifting and basin formation

    Science.gov (United States)

    Thybo, H.

    2008-12-01

    Whether heating and magmatism cause rifting or rifting processes cause magmatic activity is highly debated. The stretching factor in rift zones can be estimated as the relation between the initial and the final crustal thickness provided that the magmatic addition to the crust is insignificant. Recent research demonstrates substantial magmatic intrusion into the crust in the form of sill like structures in the lowest crust in the presently active Kenya and Baikal rift zones and the DonBas palaeo-rift zone in Ukraine. This result may be surprising as the Kenya Rift is associated with large amounts of volcanic products, whereas the Baikal Rift shows very little volcanism. Identification of large amounts of magmatic intrusion into the crust has strong implications for estimation of stretching factor, which in the case of Baikal Rift Zone is around 1.7 but direct estimation gives a value of 1.3-1.4 if the magmatic addition is not taken into account. This may indicate that much more stretching has taken place on rift systems than hitherto believed. Wide sedimentary basins may form around aborted rifts due to loading of the lithosphere by sedimentary and volcanic in-fill of the rift. This type of subsidence will create wide basins without faulting. The Norwegian- Danish basin in the North Sea area also has subsided gradually during the Triassic without faulting, but only few rift structures have been identified below the Triassic sequences. We have identified several mafic intrusions in the form of large batholiths, typically more than 100 km long, 20-40 km wide and 20 km thick. The associated heating would have lifted the surface by about 2 km, which may have been eroded before cooling. The subsequent contraction due to solidification and cooling would create subsidence in a geometry similar to basins that developed by loading. These new aspects of magmatism will be discussed with regard to rifting and basin formation.

  11. Differences in sedimentary filling and its controlling factors in rift lacustrine basins, East China: A case study from Qikou and Nanpu sags

    Institute of Scientific and Technical Information of China (English)

    Hua WANG; Shu JIANG; Chuanyan HUANG; Hua JIANG; Huajun GAN

    2011-01-01

    The riff lacustrine basin is characterized by a variety of sediment sources, multiple sedimentary systems,and complex filling, and its sediment supply is largely influenced by climate change. The sedimentary filling and its controlling factors have always been the focuses in basin analysis. This paper first reviews the recent advancement in riff lacustrine basin investigations with an emphasis on the structural controlling on lacustrine configuration, accommodation, and directly structural controlling on basin filling characteristics. The paleogeography resulted from spatial configuration of structural styles, and the sediment supplies synergically determine the types and distribution of depositional systems. The sedimentary filling characteristics of the fourth-order sequence record the evolution of cyclic climate. The case studies are followed on the basis of the sedimentary filling analysis in typical Nanpu sag and Qikou sag in Huanghua riff lacustrine basins in East China. The comparison of sedimentary fillings within sequence stratigraphic frameworks in the two sags shows the different episodic tectonic activities, and their resulting structural frameworks mainly controlled the different sequence stratigraphic developments, their internal architectures, and depositional systems distribution. Qikou sag has more complicate sedimentary filling controlled by episodic activities of boundary and intrabasin secondary faults and sediment supplies. Based on the studies from our own and the formers, we suggest that the sedimentary filling study in rift lacustrine basin should be under the guidance of sequence stratigraphy, use high resolution seismic and all available geological data, combine tectonic evolution and structural styles to build the sequence framework, and then reconstruct the paleo-structure and paleogeography. Studying the relationship between paleogeography and paleosedimentary filling can favor the understanding of the characteristics of sedimentary

  12. A new fossil cichlid from the Middle Miocene in the East African Rift Valley (Tugen Hills, Central Kenya: First record of a putative Ectodini

    Directory of Open Access Journals (Sweden)

    Melanie Altner

    2015-11-01

    Full Text Available Identification of fossil cichlids is difficult, because the currently used diagnostic morphological characters for living cichlids are mostly soft tissue based and such characters are hardly preserved in fossils. During our recent fieldwork in the Central Kenya Rift (E-Africa, we discovered several exceptionally well-preserved fossil cichlids, which can be assigned to different lineages among the African Pseudocrenilabrinae. Here we present one of those new specimens. Its most conspicuous character is a lateral line divided into three segments. This specimen was found in the lacustrine sediments of the Middle Miocene site Waril, Tugen Hills, Kenya. The site represents the deposits of an ancient freshwater lake ca. 9-10 million years ago. Previous work on fossil leaves from the same site allow for the reconstruction of open vegetation surrounding the lake and pronounced dry seasons. Among the main further characteristics of the new fossil cichlid is a lachrimal with six lateral line canals, big cycloid scales and a low number of dorsal fin spines (XIII. The latter two characters are traceable in several members of tribes within the Pseudocrenilabrinae. However, a lachrimal with six lateral line canals is exclusively found in certain tribes of the EAR (East African Radiation within the Pseudocrenilabrinae. Moreover, the unique lateral line pattern is solely present in two genera of the EAR tribe Ectodini. However, the fossil shows cycloid scales, while modern Ectodini have ctenoid scales. Taken all evidence together, this fossil may perhaps represent an ancient lineage related to the Ectodini. Up to date, there is no definite fossil record of the members of the EAR. Our fossil may represent the first reliable calibration point for this group, which would be consistent with the previously reconstructed diversification time of the H-lineage (EAR tribes, except Boulengerochromini, Bathybatini, Trematocarini and Lamprologini and the Lamprologini ca

  13. The Intertropical Convergence Zone over the Middle East and North Africa: Detection and Trends

    KAUST Repository

    Scott, Anna A.

    2013-05-01

    This thesis provides an overview of identifying the Intertropical Convergence Zone (ITCZ) in the Middle East and North Africa (MENA) region. The ITCZ is a zone of wind convergence around the equator that coincides with an area of intense precipitation that is commonly termed a tropical rainbelt. In Africa, these two concepts are frequently confounded. This work studies the correlation between precipitation and commonly used ITCZ indicators. A further attempt is made to detect movement in the African ITCZ, based on earlier paleontological studies showing historical changes in precipitation. Zonally averaged wind convergence is found to be the most reliable indicator of the African ITCZ, one having a low correlation with zonally averaged precipitation. Precipitation is found only to be a reliable indicator for the African ITCZ in zones near the wind convergence, which reaches as far north as 20_N in the summer. No secular change in location of the African ITCZ is found for the time of available data. Finally, historical data shows that any increase in precipitation in the Sahel, a region where precipitation is driven by the ITCZ, is mildly negatively correlated with precipitation in the rainbelt area, suggesting that shifts in the ITCZ result in a widening of the precipitation profile as well as a shift of the entire zone.

  14. Neogene Development of the Terror Rift, western Ross Sea, Antarctica

    Science.gov (United States)

    Sauli, C.; Sorlien, C. C.; Busetti, M.; De Santis, L.; Wardell, N.; Henrys, S. A.; Geletti, R.; Wilson, T. J.; Luyendyk, B. P.

    2015-12-01

    Terror Rift is a >300 km-long, 50-70 km-wide, 14 km-deep sedimentary basin at the edge of the West Antarctic Rift System, adjacent to the Transantarctic Mountains. It is cut into the broader Victoria Land Basin (VLB). The VLB experienced 100 km of mid-Cenozoic extension associated with larger sea floor spreading farther north. The post-spreading (Neogene) development of Terror Rift is not well understood, in part because of past use of different stratigraphic age models. We use the new Rossmap seismic stratigraphy correlated to Cape Roberts and Andrill cores in the west and to DSDP cores in the distant East. This stratigraphy, and new fault interpretations, was developed using different resolutions of seismic reflection data included those available from the Seismic Data Library System. Depth conversion used a new 3D velocity model. A 29 Ma horizon is as deep as 8 km in the south, and a 19 Ma horizon is >5 km deep there and 4 km-deep 100 km farther north. There is a shallower northern part of Terror Rift misaligned with the southern basin across a 50 km right double bend. It is bounded by steep N-S faults down-dropping towards the basin axis. Between Cape Roberts and Ross Island, the Oligocene section is also progressively-tilted. This Oligocene section is not imaged within northern Terror Rift, but the simplest hypothesis is that some of the Terror Rift-bounding faults were active at least during Oligocene through Quaternary time. Many faults are normal separation, but some are locally vertical or even reverse-separation in the upper couple of km. However, much of the vertical relief of the strata is due to progressive tilting (horizontal axis rotation) and not by shallow faulting. Along the trend of the basin, the relief alternates between tilting and faulting, with a tilting margin facing a faulted margin across the Rift, forming asymmetric basins. Connecting faults across the basin form an accommodation zone similar to other oblique rifts. The Neogene basin is

  15. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    Science.gov (United States)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  16. Multispectral Thermal Infrared Mapping of Sulfur Dioxide Plumes: A Case Study from the East Rift Zone of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Realmuto, V. J.; Sutton, A. J.; Elias, T.

    1996-01-01

    The synoptic perspective and rapid mode of data acquisition provided by remote sensing are well-suited for the study of volcanic SO2 plumes. In this paper we describe a plume-mapping procedure that is based on image data acquired with NASA's airborne Thermal Infrared Multispectral Scanner (TIMS).

  17. Two-stage rifting of Zealandia-Australia-Antarctica: Evidence from 40Ar/39Ar thermochronometry of the Sisters shear zone, Stewart Island, New Zealand

    Science.gov (United States)

    Kula, Joseph; Tulloch, Andy; Spell, Terry L.; Wells, Michael L.

    2007-05-01

    The Sisters shear zone is a newly discovered Late Cretaceous detachment fault system exposed for 40 km along the southeast coast of Stewart Island, southernmost New Zealand. Footwall rocks consist of variably deformed ca. 310 and 105 Ma granites that range from undeformed to protomylonite, mylonite, and ultramylonite. The hanging wall includes non-marine conglomerate and brittley deformed granite. K-feldspar thermochronometry of the footwall indicates moderately rapid cooling (20 30 C°/m.y.) due to tectonic denudation over the interval ca. 89 82 Ma. Return to slow cooling at 82 Ma coincides with the age of the oldest seafloor adjacent to the Campbell Plateau and reflects the mechanical transition from continental extension to lithospheric rupture and formation of the Pacific-Antarctic Ridge. Our findings support a two-stage rift model for continental breakup of this part of the Gondwana margin. Stage one (ca. 101 88 Ma) is the northward propagation of continental extension and the Tasman Ridge as recorded in mylonite dredged from the Ross Sea and the Paparoa core complex. Stage two (ca. 89 82 Ma) is extension between the Campbell Plateau and West Antarctica leading to formation of the Pacific-Antarctic Ridge.

  18. Cambrian rift-related magmatism in the Ossa-Morena Zone (Iberian Massif): Geochemical and geophysical evidence of Gondwana break-up

    Science.gov (United States)

    Sarrionandia, F.; Carracedo Sánchez, M.; Eguiluz, L.; Ábalos, B.; Rodríguez, J.; Pin, C.; Gil Ibarguchi, J. I.

    2012-10-01

    Volcanic rocks of Cambrian age from Zafra (Ossa-Morena Zone, Iberian Massif) are the result of rift processes that affected Cadomian arc units accreted to the NW edge of Gondwana during the Neoproterozoic-Early Cambrian transition. Tephrite to rhyolite volcanics define an alkaline transitional association (Coombs type). Basic-ultrabasic rocks exhibit typical alkaline REE-patterns, strongly enriched in LREE with respect to HREE. Two parental magmas are identified, one with a mantle signature, lack of Nb negative anomaly and εNd500Ma + 3.8 to + 4.2; another with crustal contribution, minor Nb negative anomaly and εNd500Ma + 0.8 to + 1.8. Intermediate-acid rocks show variable REE fractionation and share geochemical characteristics of both basic-ultrabasic groups with restricted εNd500Ma + 2.2 to 3.1 and general absence of Nb negative anomaly. Basic-ultrabasic melts resulted from different amounts of partial melting of a homogeneous source and segregation at the garnet-spinel transition zone. We argue that the "Hales transition" recently recognized in reflection seismic experiments of SW Iberia might image such a source region. Mantle-derived magmas ponded at the base of the crust and weakly interacted with crustal rocks/melts, whilst intermediate-acid rocks were generated by plagioclase ± clinopyroxene ± amphibole fractionation. Melt ascent took place through fractures, with limited crustal interaction. Based upon the new geochemical results and complementary cartographic and geophysical data, a model is presented for the Cambrian break-up of North Gondwana due to magma ascent from the mantle.

  19. Application of chaos analyses methods on East Anatolian Fault Zone fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kamışlıoğlu, Miraç, E-mail: m.kamislioglu@gmail.com; Külahcı, Fatih, E-mail: fatihkulahci@firat.edu.tr [Nuclear Physics Division, Department of Physics, Faculty of Science, Fırat University, Elazig, TR-23119 (Turkey)

    2016-06-08

    Nonlinear time series analysis techniques have large application areas on the geoscience and geophysics fields. Modern nonlinear methods are provided considerable evidence for explain seismicity phenomena. In this study nonlinear time series analysis, fractal analysis and spectral analysis have been carried out for researching the chaotic behaviors of release radon gas ({sup 222}Rn) concentration occurring during seismic events. Nonlinear time series analysis methods (Lyapunov exponent, Hurst phenomenon, correlation dimension and false nearest neighbor) were applied for East Anatolian Fault Zone (EAFZ) Turkey and its surroundings where there are about 35,136 the radon measurements for each region. In this paper were investigated of {sup 222}Rn behavior which it’s used in earthquake prediction studies.

  20. Physics-based and statistical earthquake forecasting in a continental rift zone: the case study of Corinth Gulf (Greece)

    Science.gov (United States)

    Segou, Margarita

    2016-01-01

    I perform a retrospective forecast experiment in the most rapid extensive continental rift worldwide, the western Corinth Gulf (wCG, Greece), aiming to predict shallow seismicity (depth ETAS) statistics, four physics-based (CRS) models, combining static stress change estimations and the rate-and-state laboratory law and one hybrid model. For the latter models, I incorporate the stress changes imparted from 31 earthquakes with magnitude M ≥ 4.5 at the extended area of wCG. Special attention is given on the 3-D representation of active faults, acting as potential receiver planes for the estimation of static stress changes. I use reference seismicity between 1990 and 1995, corresponding to the learning phase of physics-based models, and I evaluate the forecasts for six months following the 1995 M = 6.4 Aigio earthquake using log-likelihood performance metrics. For the ETAS realizations, I use seismic events with magnitude M ≥ 2.5 within daily update intervals to enhance their predictive power. For assessing the role of background seismicity, I implement a stochastic reconstruction (aka declustering) aiming to answer whether M > 4.5 earthquakes correspond to spontaneous events and identify, if possible, different triggering characteristics between aftershock sequences and swarm-type seismicity periods. I find that: (1) ETAS models outperform CRS models in most time intervals achieving very low rejection ratio RN = 6 per cent, when I test their efficiency to forecast the total number of events inside the study area, (2) the best rejection ratio for CRS models reaches RN = 17 per cent, when I use varying target depths and receiver plane geometry, (3) 75 per cent of the 1995 Aigio aftershocks that occurred within the first month can be explained by static stress changes, (4) highly variable performance on behalf of both statistical and physical models is suggested by large confidence intervals of information gain per earthquake and (5) generic ETAS models can

  1. Rare earth elements as indicators of hydrothermal processes within the East Scotia subduction zone system

    Science.gov (United States)

    Cole, Catherine S.; James, Rachael H.; Connelly, Douglas P.; Hathorne, Ed C.

    2014-09-01

    The East Scotia subduction zone, located in the Atlantic sector of the Southern Ocean, hosts a number of hydrothermal sites in both back-arc and island-arc settings. High temperature (>348 °C) 'black smoker' vents have been sampled at three locations along segments E2 and E9 of the East Scotia back-arc spreading ridge, as well as 'white smoker' (Mg = 0 mmol/kg) is markedly different, with pH ranging from andesite-hosted, providing an ideal opportunity for investigating the geochemical controls on rare earth element (REE) behaviour. Endmember hydrothermal fluids from E2 and E9 have total REE concentrations ranging from 7.3 to 123 nmol/kg, and chondrite-normalised distribution patterns are either light REE-enriched (LaCN/YbCN = 12.8-30.0) with a positive europium anomaly (EuCN/Eu∗CN = 3.45-59.5), or mid REE-enriched (LaCN/NdCN = 0.61) with a negative Eu anomaly (EuCN/Eu∗CN = 0.59). By contrast, fluids from the Kemp Caldera have almost flat REE patterns (LaCN/YbCN = 2.1-2.2; EuCN/Eu∗CN = 1.2-2.2). We demonstrate that the REE geochemistry of fluids from the East Scotia back-arc spreading ridge is variably influenced by ion exchange with host minerals, phase separation, competitive complexation with ligands, and anhydrite deposition, whereas fluids from the Kemp submarine volcano are also affected by the injection of magmatic volatiles which enhances the solubility of all the REEs. We also show that the REE patterns of anhydrite deposits from Kemp differ from those of the present-day fluids, potentially providing critical information about the nature of hydrothermal activity in the past, where access to hydrothermal fluids is precluded.

  2. Chemical composition of aerosol in the atmospheric surface layer of the East Antarctica coastal zone

    Directory of Open Access Journals (Sweden)

    L. P. Golobokova

    2016-01-01

    Full Text Available Chemical composition of aerosol in the ground layer of the coastal zone in East Antarctica is analyzed in the article. The aerosol samples were taken in 2006–2015 during seasonal works of the Russian Antarctic Expeditions (RAE, namely, these were 52nd–53rd, 55th, and 58th–60th expeditions. Samples were taken in the 200‑km band of the sea-shore zone along routes of the research vessels (REV «Akademik Fedorov» and «Akademik Treshnikov» as well as on territories of the Russian stations Molodezhnaya and Mirny. Although the results obtained did show the wide range of the aerosol concentrations and a certain variability of their chemical composition, some common features of the variability were revealed. Thus, during the period from 2006 to 2014 a decrease of average values of the sums were noted. Spatially, a tendency of decreasing of the ion concentrations was found in the direction from the station Novolazarevskaya to the Molodezhnaya one, but the concentrations increased from the Molodezhnaya to the station Mirny. The sum of ions of the aerosol in the above mentioned coastal zone was, on the average, equal to 2.44 μg/m3, and it was larger than that on the territory of the Antarctic stations Molodezhnaya (0,29 μg/m3 and Mirny (0,50 ág / m3. The main part to the sum of the aerosol ions on the Antarctic stations was contributed by Na+, Ca2+, Cl−, SO4 2−. The main ions in aerosol composition in the coastal zone are ions Na+ and Cl−. The dominant contribution of the sea salt and SO4 2− can be traced in not only the composition of atmospheric aerosols, but also in the chemical composition of the fresh snow in the coastal areas of East Antarctica: at the Indian station Maitri, on the Larsemann Hills, and in a boring located in 55.3 km from the station Progress (K = 1.4÷6.1. It was noted that values of the coefficient of enrichment K of these ions decreases as someone moves from a shore to inland. Estimation of

  3. Hydrological Features on Subalpine Forest Zone in the East of Qinghai-Tibet Plateau

    Science.gov (United States)

    Zhong, X.; Cheng, G.; Guo, W.

    2008-12-01

    The Hengduan mountain chains of China is situated on the east of Qinghai-Tibet Plateau with area of more than 400,000 km2. Mountains and rivers run through in north-south direction, and are collocated side by side on east-west. Elevation difference between ridges and valleys has great disparity, normally of 1000-2500m, so the vertical zones of vegetation are very distinct. Subalpine coniferous forest zone, mainly composed of fir (Abies) and spruce (Picea), is on altitude of 2800-4200m, which is a chief component of the forested area in southwest China, and an important region for water conservation of several international rivers inlcuding Nujiang River and Lancangjiang River, as well as the world-famous Changjiang River. Thus, it has both theoretical and practical significance to study hydrological process and laws of forest in this region. The study area is located at the Gongga Mountain, on the east edge of the Hengduan mountain chains. Elevation of the main peak is 7556m, and elevation difference between ridge and valley on the eastern slope is 6400m. An ecological observation station was built at altitude of 3000m on the eastern slope of Gongga Mountain in 1988, mainly for alpine ecology and forest hydrology research. Based on the analysis of 20- years observation data from this station, it is revealed that hydrological process of forest in this area has several features as follows: (1) Canopy interception of primitive fir (Abies) forest is obviously greater than other tree species, and interception rate is 30-40%. Maximal canopy interception of one-time precipitation of primitive fir forest is commonly 2-5mm. According to observation data of canopy interception, a conceptual model of canopy interception of fir forest is established: R=1.69[(1-exp(-0.41P))+0.19P (P is precipitation in mm); (2) Natural valid moisture holding capacity in layer of moss-decayed wood and leaves beneath trees is up to 5.6mm. Porosity in soil surface layer and non-capillary porosity

  4. Mapping of zones potentially occupied by Aedes vexans and Culex poicilipes mosquitoes, the main vectors of Rift Valley fever in Senegal

    Directory of Open Access Journals (Sweden)

    Yves M. Tourre

    2008-11-01

    Full Text Available A necessary condition for Rift Valley fever (RVF emergence is the presence of Aedes (Aedimorphus vexans and Culex (Culex poicilipes mosquitoes carrying the arbovirus and responsible for the infection. This paper presents a detailed mapping in the Sahelian region of Senegal of zones potentially occupied by these mosquitoes (ZPOMs whose population density is directly linked to ecozones in the vicinity of small ponds. The vectors habitats and breeding sites have been characterized through an integrated approach combining remote sensing technology, geographical information systems, geographical positioning systems and field observations for proper geo-referencing. From five SPOT-5 images (~10 m spatial resolution with appropriate channels, a meridional composite transect of 290 x 60 km was first constructed at the height of the summer monsoon. Subsequent ZPOMs covered major ecozones from north to south with different hydrological environments and different patterns pond distributions. It was found that an overall area of 12,817 ha ± 10% (about 0.8% of the transect is occupied by ponds with an average ZPOM 17 times larger than this (212,813 ha ± 10% or about 14% of the transect. By comparing the very humid year of 2003 with 2006 which had just below normal rainfall, the ZPOMs inter-annual variability was analyzed in a sandy-clayey ecozone with an important hydrofossil riverbed within the Ferlo region of Senegal. Very probably contributing to an increased abundance of vectors by the end of August 2003, it was shown that the aggregate pond area was already about 22 times larger than in August 2006, corresponding to an approximately five times larger total ZPOM. The results show the importance of pin-pointing small ponds (sizes down to 0.1 ha and their geographical distribution in order to assess animal exposure to the RVF vectors.

  5. Geochemical characteristics and zones of surface snow on east Antarctic Ice Sheet

    Institute of Scientific and Technical Information of China (English)

    KANG Jiancheng; LIU Leibao; QIN Dahe; WANG Dali; WEN Jiahong; TAN Dejun; LI Zhongqin; LI Jun; ZHANG Xiaowei

    2004-01-01

    The surface-snow geochemical characteristics are discussed on the East Antarctic Ice Sheet, depending on the stable isotopes ratios of oxygen and hydrogen, concentration of impurities (soluble-ions and insoluble micro-particle) in surface snow collected on the ice sheet. The purpose is to study geochemical zones on the East Antarctic Ice Sheet and to research sources and transportation route of the water vapor and the impurities in surface snow. It has been found that the ratio coefficients, as S1, d1 in the equation δD = S1δ18O + d1, are changed near the elevation 2000 m on the ice sheet. The weight ratio of Cl(-)/Na+ at the area below the elevation of 2000 m is close to the ratio in the sea salt; but it is about 2 times that of the sea salt, at the inland area up to the elevation of 2000 m. The concentrations of non-sea-salt Ca2+ ion (nssCa2+) and fine-particle increase at the interior up to the elevation 2000 m. At the region below the elevation of 2000 m, the impurity concentration is decreasing with the elevation increasing. Near coastal region, the surface snow has a high concentration of impurity, where the elevation is below 800 m. Combining the translating processes of water-vapor and impurities, it suggests that the region up to the elevation 2000 m is affected by large-scale circulation with longitude-direction, and that water-vapor and impurities in surface snow come from long sources. The region below the elevation 2000 m is affected by some strong cyclones acting at peripheral region of the ice sheet, and the sources of water and impurities could be at high latitude sea and coast. The area below elevation 800 m is affected by local coastal cyclones.

  6. 3D features of delayed thermal convection in fault zones: consequences for deep fluid processes in the Tiberias Basin, Jordan Rift Valley

    Science.gov (United States)

    Magri, Fabien; Möller, Sebastian; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Kühn, Michael

    2015-04-01

    It has been shown that thermal convection in faults can also occur for subcritical Rayleigh conditions. This type of convection develops after a certain period and is referred to as "delayed convection" (Murphy, 1979). The delay in the onset is due to the heat exchange between the damage zone and the surrounding units that adds a thermal buffer along the fault walls. Few numerical studies investigated delayed thermal convection in fractured zones, despite it has the potential to transport energy and minerals over large spatial scales (Tournier, 2000). Here 3D numerical simulations of thermally driven flow in faults are presented in order to investigate the impact of delayed convection on deep fluid processes at basin-scale. The Tiberias Basin (TB), in the Jordan Rift Valley, serves as study area. The TB is characterized by upsurge of deep-seated hot waters along the faulted shores of Lake Tiberias and high temperature gradient that can locally reach 46 °C/km, as in the Lower Yarmouk Gorge (LYG). 3D simulations show that buoyant flow ascend in permeable faults which hydraulic conductivity is estimated to vary between 30 m/yr and 140 m/yr. Delayed convection starts respectively at 46 and 200 kyrs and generate temperature anomalies in agreement with observations. It turned out that delayed convective cells are transient. Cellular patterns that initially develop in permeable units surrounding the faults can trigger convection also within the fault plane. The combination of these two convective modes lead to helicoidal-like flow patterns. This complex flow can explain the location of springs along different fault traces of the TB. Besides being of importance for understanding the hydrogeological processes of the TB (Magri et al., 2015), the presented simulations provide a scenario illustrating fault-induced 3D cells that could develop in any geothermal system. References Magri, F., Inbar, N., Siebert, C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient

  7. Investigation of Icelandic rift zones reveals systematic changes in hydrothermal outflow in concert with seismic and magmatic events: Implications for investigation of Mid-Ocean Ridge hydrothermal systems

    Science.gov (United States)

    Curewitz, D.; Karson, J. A.

    2010-12-01

    Co-registration of several generations of geological data was carried out for hydrothermal fields along active rift zones of the Iceland plate boundary zone. Significant short- and long-term changes in vent locations, flow rates and styles, and fluid characteristics over short periods take place in concert with recorded earthquakes, dike intrusions, and fissure eruptions. Higher resolution, more detailed analysis of the Icelandic hydrothermal sites will inform investigation of similar data from mid-ocean ridge hydrothermal systems along the RIDGE 2000 focus sites. Initial results from the Hengill and Krafla geothermal areas covering a time-span of nearly 40 years at ~10 year intervals reveal limited changes in the surface expression of fault populations, with the exception of local fault and fracture systems. The location and population density of individual vents and groups of vents underwent significant changes over the same time period, with either vents shifting location, or new vents opening and old vents closing. Registration of changes in vent fluid temperatures, vent field ground temperatures, fluid flow rates, and vent eruptive styles reveal changes in hydrothermal flow systematics in concert with the observed changes in vent location and vent population density. Significant local seismic and volcanological events (earthquakes, earthquake swarms, dike intrusions, eruptions, inflation/deflation) that are potential triggers for the observed changes take place in intervening years between production of successive maps. Changes in modeled stress intensities and local fracture/fault density and geometry associated with these tectono-magmatic events correspond well to inferred locations of increased or decreased shallow permeability thought to control hydrothermal outflow behavior. Recent seismic events are strongly linked to well-mapped changes in fracture/fault population and hydrothermal flow behavior in the Hveragerdi region, near Hengill, and provide higher

  8. Tectonic Framework of the Kachchh Rift Basin

    Science.gov (United States)

    Talwani, P.; Gangopadhyay, A. K.

    2001-05-01

    Evaluation of available geological data has allowed us to determine the tectonic framework of the Kachchh rift basin (KRB), the host to the 1819 Kachchh (MW 7.8), 1956 Anjar ( M 6.0) and the recent January 26, 2001 Bhachau (MW 7.6) earthquakes. The ~ 500 km x 200 km east-west trending KRB was formed during the Mesozoic following the break-up of Gondwanaland. It is bounded to the north and south by the Nagar Parkar and Kathiawar faults which separate it from the Precambrian granitic rocks of the Indian craton. The eastern border is the Radanpur-Barmer arch (defined by an elongate belt of gravity highs) which separates it from the early Cretaceous Cambay rift basin. KRB extends ~ 150 km offshore to its western boundary, the continental shelf. Following India's collision with Eurasia, starting ~ 50 MY ago, there was a stress reversal, from an extensional to the (currently N-S) compressional regime. Various geological observations attest to continuous tectonic activity within the KRB. Mesozoic sediments were uplifted and folded and then intruded by Deccan trap basalt flows in late Cretaceous. Other evidence of continuous tectonic activity include seismically induced soft sediment deformation features in the Upper Jurassic Katrol formation on the Kachchh Mainland and in the Holocene sequences in the Great Rann. Pleistocene faulting in the fluvial sequence along the Mahi River (in the bordering Cambay rift) and minor uplift during late Quaternary at Nal Sarovar, prehistoric and historic seismicity associated with surface deformation further attest to ongoing tectonic activity. KRB has responded to N-S compressional stress regime by the formation of east-west trending folds associated with Allah Bund, Kachchh Mainland, Banni, Vigodi, Katrol Hills and Wagad faults. The Allah Bund, Katrol Hill and Kachchh Mainland faults were associated with the 1819, 1956 and 2001 earthquakes. Northeast trending Median High, Bhuj fault and Rajkot-Lathi lineament cut across the east

  9. TDRS satellite over African Rift Valley, Kenya, Africa

    Science.gov (United States)

    1983-01-01

    This post deploy view of a TDRS satellite shows a segment of the African Rift Valley near Lake Baringo, Kenya, Africa (3.0S, 36.0E). The African Rift Valley system is a geologic fault having its origins in southern Turkey, through the near east forming the bed of the Jordan River, Gulf of Aqaba, the Red Sea and down through east Africa. The line of lakes and valleys of east Africa are the result of the faulting activity.

  10. Immunizing nomadic children and livestock--Experience in North East Zone of Somalia.

    Science.gov (United States)

    Kamadjeu, Raoul; Mulugeta, Abraham; Gupta, Dhananjoy; Abshir Hirsi, Abdirisak; Belayneh, Asalif; Clark-Hattingh, Marianne; Adams, Clement; Abed, Payenda; Kyeyune, Brenda; Ahmed, Tajudin; Salih, Mohamed; Biaou, Cyprien; Toure, Brigitte

    2015-01-01

    Nomads and pastoralists represent around 30% of the population of North East zone of Somalia (Puntland) and have very limited access to basic health including immunization. During the 2013-2014 polio outbreak in Somalia, an increase number of polio cases notified health services among these underserved communities highlighted the urgent need to devise innovative strategies to reach them. Harnessing the high demand for veterinary services among pastoralist communities, the Ministry of Health and the Ministry of Livestock, with support from UNICEF, WHO and FAO launched an integrated human and animal vaccination campaign on 19 October 2014. Over 30 days, 20 social mobilizers conducted shelter to shelter social mobilization and interpersonal communication for nomadic/pastoralist hamlets, 20 human vaccination teams, accompanied by local community elders, traveled with animal vaccination teams to administer polio and measles vaccination to pastoralist communities in the 5 regions of Puntland. 26,393 children (0 to 10 years) received Oral Polio Vaccine (OPV) out of which 34% for the first time ever; 23,099 were vaccinated against measles. and 12,556 Vitamin A. Despite various operational challenges and a significantly higher operational cost of $6.2 per child reached with OPV, the integrated human and animal vaccination campaign was effective in reaching the unvaccinated children from nomadic and pastoralist communities of Somalia.

  11. Structure and regeneration status of Komto Afromontane moist forest,East Wollega Zone, west Ethiopia

    Institute of Scientific and Technical Information of China (English)

    Fekadu Gurmessa; Teshome Soromessa; Ensermu Kelbessa

    2012-01-01

    We conducted a study in Komto Forest in East Wollega Zone,Oromia National Regional State,West Ethiopia for determining vegetation structure and regeneration status in this forest.We systematically sampled 53 quadrats (20 m × 20 m) along line transects radiating from the peak of Komto Mountain in eight directions.Vegetation parameters such as DBH,height,seedling and sapling density of woody species,and location and altitude of each quadrat were recorded.In total,103 woody plant species of 87 genera and 45 families were identified.Analysis of selected tree species revealed different population structures.Generally,the forest was dominated by small trees and shrubs characteristic of secondary regeneration.Observations on the regeneration of the forest indicated that there are woody species that require urgent conservation measures.Based on the results of this study,we recommend detailed ecological studies of various environmental factors such as soil type and properties,and ethnobotanical studies to explore indigenous knowledge on uses of plants.

  12. Prograde and retrograde metamorphic processes in high-pressure subduction zone serpentinites from East Thessaly, Greece

    Science.gov (United States)

    Koutsovitis, Petros

    2016-04-01

    The East Thessaly region, Central Greece, includes metaophiolitic mélange formations which extend from the eastern foothills of Mt. Olympus and Ossa, throughout the Agia basin, Mt. Mavrovouni (Sklithro region), South Pelion and reaching up to northeast Othris (regions of Aerino and Velestino). They appear in the form of dispersed and deformed thrust sheets having been variably emplaced onto Mesozoic platform series rocks of the Pelagonian tectonostratigraphic zone[1]. These formations consist mainly of serpentinites, as well as metasediments, metagabbros, metadolerites, rodingites, ophicalcites, talc-schists and chromitites. Based upon petrographic observations, mineral chemistry data and XRD patterns, the subduction zone-related serpentinites from the regions of Potamia, Anavra, Aetolofos and Kalochori-Chasanbali (Agia basin), as well as from the regions of Aerino and Velestino, are characterized by the progressive transformation of lizardite to antigorite and are distinguished into two groups. The first group includes serpentinites from the metaophiolitic formations of Potamia, Anavra, Aerino and Velestino, which are marked by destibillization of lizardite to antigorite, mostly along the grain boundaries of the lizardite mesh textured relics. The presence of lizardite and antigorite in almost equal amounts indicates medium-temperature blueschist facies metamorphic conditions (˜340-370 ° C; P≈10-11 kbar)[2,3,4]. The second serpentinite group appears in the regions of Aetolofos and Kalochori, characterized by the predominance of antigorite, the minor occurrence of lizardite and the complete replacement of spinel by Cr-magnetite. The absence of metamorphic olivine suggests that these serpentinites were most likely formed at slightly higher temperature and pressure conditions compared to the first serpentinite group, corresponding to medium or high temperature blueschist facies metamorphism (˜360-380 ° C; P≈12 kbar)[2,3,4]. These metamorphic conditions are

  13. 33 CFR 165.166 - Safety Zone: Macy's July 4th Fireworks, East River, NY.

    Science.gov (United States)

    2010-07-01

    ... faces on the east bank of the East River between the Williamsburg Bridge and North 9th Street, Brooklyn... southwest corner of Pier 9A, Brooklyn; south of a line drawn from East 47th Street, Manhattan through the... Bascule Bridge. (b) Activation period. This section is activated annually from 6:30 p.m. until 11:30 p.m...

  14. INDEPENDENT VERIFICATION SURVEY REPORT FOR ZONE 1 OF THE EAST TENNESSEE TECHNOLOGY PARK IN OAK RIDGE, TENNESSEE

    Energy Technology Data Exchange (ETDEWEB)

    King, David A.

    2012-08-16

    Oak Ridge Associated Universities (ORAU) conducted in-process inspections and independent verification (IV) surveys in support of DOE's remedial efforts in Zone 1 of East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Inspections concluded that the remediation contractor's soil removal and survey objectives were satisfied and the dynamic verification strategy (DVS) was implemented as designed. Independent verification (IV) activities included gamma walkover surveys and soil sample collection/analysis over multiple exposure units (EUs).

  15. Mapping Precambrian Basement Fabric with Magnetic Data in the Karonga Basin Area and its Control on the Development of the Malawi Rift.

    Science.gov (United States)

    Johnson, T.; Abdelsalam, M. G.; Atekwana, E. A.; Chindandali, P. R. N.; Clappe, B.; Laó-Dávila, D. A.; Dawson, S.; Hull, C. D.; Nyalugwe, V.; Salima, J.

    2015-12-01

    The Malawi Rift forms the southern termination of the western branch of the East African Rift System. It is suggested that it propagates from the Rungwe Volcanic Province in the north for ~700 km into Mozambique in the south. The northern portion of the Malawi Rift is dominated by the Mesoproterozoic basement rocks of the Ubendian-Usagaran belts to the north and west and the Irumide Belt in the south. The Mugese shear zone (MSZ) forms the boundary between the Ubendian-Usagaran and Irumide Belts. We used magnetic data to determine the relationship between the geology of the nascent Malawi Rift and the strong magnetic fabric observed in the Mugese shear zone from aeromagnetic maps. We integrated the aeromagnetic data with ground magnetic data acquired along two W-E transects using a cesium vapor magnetometer at a nominal station spacing of 500 m. We also acquired kinematic data (strike and dip) on exposed basement geology and Karoo sediments. Both transects extend from the uplifted basement areas cutting across the MSZ into the rift floor sediments. Our results show that the MSZ is characterized by a prominent WNW-ESE magnetic anomaly that is parallel to the basement fabric north of the town of Karonga but changes orientation to NNW-SSE south of Karonga. This shear zone is composed of gneisses in amphibolite to granulite facies that are steeply dipping (50-80°) to the west. The strong magnetization and magnetic lineation of the MSZ results from alternating light and dark colored gneissic bands. This magnetization is strongest in unweathered basement rocks and lowest in weathered basement rocks and Karoo sediments. The orientation of the strong magnetic fabric of the Mugese shear zone may play an important role on the accommodation of strain within the rift basin. Detailed mapping of the magnetic fabric can improve our understanding of the formation of faults in the nascent Malawi Rift.

  16. Influence of the inherited lithospheric structure on the interaction between the Kenyan and Ethiopian rifts across the Turkana depression: analog and numerical models

    Science.gov (United States)

    Corti, Giacomo; Brune, Sascha; Ranalli, Giorgio

    2017-04-01

    Rifting processes result from the application of extensional stresses to a pre-deformed, and thus already structured, anisotropic lithosphere; consequently, the pre-rift lithospheric rheological structure and its along-axis variations play a major role in controlling the evolution and architecture of continental rifts. The East African Rift is a classic example of this process. The rift system developed within a region that has experienced several deformation events, which have given rise to significant variations in the rheological structure of the lithosphere. These variations -in turn- have played a major role on rift evolution, as clearly testified by the localisation and propagation of major rift segments within weak Proterozoic mobile belts surrounding cratonic areas. Linkage and mechanical interaction between adjacent rift segments typically occurred in correspondence to transverse pre-existing fabrics, where structurally complex areas (transfer zones) allowed significant along-axis variations in subsidence of grabens and elevation of uplifted flanks. One of these complex areas is the Turkana depression where the Ethiopian and Kenyan rifts interact. The region is characterised by anomalous morphology and distribution of deformation with respect to the rift valleys in Kenya and Ethiopia. In this work we investigate whether these anomalies result from the presence of a pre-existing Mesozoic graben, transverse to the trend of the rift valleys and characterized by thin crust and lithosphere. To this aim, we integrate crustal-scale, isothermal analog experiments with lithospheric-scale, thermo-mechanical numerical models. The two different methodologies generate very similar results, reproducing the along-axis transition from narrow rift valleys in Ethiopia/Kenya to a distributed deformation within the Turkana depression. Modeling results indicate that this variation results from the inherited distribution of lithospheric strength and -in particular- from the

  17. Kinematics of the Ethiopian Rift and Absolute motion of Africa and Somalia Plates

    Science.gov (United States)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.

    2013-12-01

    The Ethiopian Rift (ER), in the northern part of East African Rift System (EARS), forms a boundary zone accommodating differential motion between Africa and Somalia Plates. Its orientation was influenced by the inherited Pan-African collisional system and related lithospheric fabric. We present the kinematics of ER derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis, and construction of geological profiles. GPS velocity field shows a systematic eastward magnitude increase in NE direction in the central ER. In the same region, incremental extensional strain axes recorded by earthquake focal mechanism and fault slip inversion show ≈N1000E orientation. This deviation between GPS velocity trajectories and orientation of incremental extensional strain is developed due to left lateral transtensional deformation. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, the distribution of the volcanic centers, and the asymmetry of the rift itself. Small amount of vertical axis blocks rotation, sinistral strike slip faults and dyke intrusions in the rift accommodate the transtensional deformation. We analyzed the kinematics of ER relative to Deep and Shallow Hot Spot Reference Frames (HSRF). Comparison between the two reference frames shows different kinematics in ER and also Africa and Somalia plate motion both in magnitude and direction. Plate spreading direction in shallow HSRF (i.e. the source of the plumes locates in the asthenosphere) and the trend of ER deviate by about 27°. Shearing and extension across the plate boundary zone contribute both to the style of deformation and overall kinematics in the rift. We conclude that the observed long wavelength kinematics and tectonics are consequences of faster SW ward motion of Africa than Somalia in the shallow HSRF. This reference frame seems more consistent with the geophysical and geological constraints in the Rift. The

  18. Coastal Change Analysis Program (C-CAP) U.S. East Coast zone 60 2001-2005-era land cover change analysis (NODC Accession 0043161)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the 2001-era and 2005-era classifications of US East Coast, zone 60 and can be used to analyze change. This imagery was collected as part of...

  19. An Angus/Argo study of the neovolcanic zone along the East Pacific rise from the Clipperton fracture zone to 12°N

    Science.gov (United States)

    Uchupi, E.; Schwab, W. C.; Ballard, R. D.; Cheminee, J. L.; Francheteau, J.; Hekinian, R.; Blackman, D. K.; Sigurdsson, H.

    1988-09-01

    Still photographs and video images collected along the Neovolcanic Zone of the East Pacific Rise from 10°15'N to 11°53'N show that recent volcanic sheet flows, possibly less than 100 years old, are superimposed on an older sediment-laden pillow terrane. This recent activity is restricted to a narrow zone that crosses two topographic highs at 10°55'N and 11°26'N and diminishes along-axis away from these highs. The association of recent sheet flows with older flows and collapse structures on the overlapping spreading centers at 11°45'N supports the evolutionary model for the occurrence and evolution of overlapping spreading centers by MacDonald and others (1986, 1988).

  20. Recognition of hyper-extended rifted margin remnants in the internal zone of the Alpine belt: A tribute to Marco Beltrando

    Science.gov (United States)

    Mohn, Geoffroy; Manatschal, Gianreto

    2016-04-01

    Marco Beltrando was part of the young generation of Alpine geologists who challenged the interpretation of the Western Alps by combining a classical field approach and modern techniques (e.g. 40Ar/39Ar and (U-Th)/He thermochronology). His work provides the foundation to re-interpret some of the classical sections through the Alpine belt and may impact the way of thinking about the nature and structure of internal parts of collisional orogens. This contribution will present the main outcomes of the work of Marco Beltrando and their implications for the understanding of Alpine type orogens. Since his PhD, Marco Beltrando focused most of his work on the study of the internal parts of the Western Alps. He investigated in great details the complex, multiphase structural and metamorphic evolution of the Penninic units in the Western Alps. He concluded that these units went through several cycles of shortening and extension during the Alpine orogeny, with major implications for the Alps but also other orogenic belts. After his PhD, he focused his research on the pre-orogenic evolution of the Alpine belt. He first worked on the Petit St. Bernard area, where he identified relics of the former hyper-extended Tethyan rifted margin. Thanks to his work and his amazing knowledge of the Western Alps, he understood the potential importance of rift-inheritance in controlling the architecture and evolution of the Alpine belt. In parallel to the study of the orogenic evolution, he developed a new methodology to recognize rift-related lithostratigraphic units in highly deformed and metamorphosed parts of the Alps. His innovative work allowed a re-assessment of several areas in the Western Alps and demonstrates the importance of rift inheritance. Recently, he started a new research project on the evolution of the Southern Alps highlighting the importance of heating and cooling cycles resulting from complex successions of rifting events. In spite of his young age, Marco Beltrando was at

  1. Structure of the central Terror Rift, western Ross Sea, Antarctica

    Science.gov (United States)

    Hall, Jerome; Wilson, Terry; Henrys, Stuart

    2007-01-01

    The Terror Rift is a zone of post-middle Miocene faulting and volcanism along the western margin of the West Antarctic Rift System. A new seismic data set from NSF geophysical cruise NBP04-01, integrated with the previous dataset to provide higher spatial resolution, has been interpreted in this study in order to improve understanding of the architecture and history of the Terror Rift. The Terror Rift contains two components, a structurally-controlled rollover anticlinal arch intruded by younger volcanic bodies and an associated synclinal basin. Offsets and trend changes in fault patterns have been identified, coincident with shifts in the location of depocenters that define rift sub-basins, indicating that the Terror Rift is segmented by transverse structures. Multiple phases of faulting all post-date 17 Ma, including faults cutting the seafloor surface, indicating Neogene rifting and possible modern activity.

  2. The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece

    Science.gov (United States)

    Taylor, Brian; Weiss, Jonathan R.; Goodliffe, Andrew M.; Sachpazi, Maria; Laigle, Mireille; Hirn, Alfred

    2011-06-01

    A multichannel seismic and bathymetry survey of the central and eastern Gulf of Corinth (GoC), Greece, reveals the offshore fault geometry, seismic stratigraphy and basin evolution of one of Earths most active continental rift systems. Active, right-stepping, en-echelon, north-dipping border faults trend ESE along the southern Gulf margin, significantly overlapping along strike. The basement offsets of three (Akrata-Derveni, Sithas and Xylocastro) are linked. The faults are biplanar to listric: typically intermediate angle (˜35° in the centre and 45-48° in the east) near the surface but decreasing in dip and/or intersecting a low- or shallow-angle (15-20° in the centre and 19-30° in the east) curvi-planar reflector in the basement. Major S-dipping border faults were active along the northern margin of the central Gulf early in the rift history, and remain active in the western Gulf and in the subsidiary Gulf of Lechaio, but unlike the southern border faults, are without major footwall uplift. Much of the eastern rift has a classic half-graben architecture whereas the central rift has a more symmetric w- or u-shape. The narrower and shallower western Gulf that transects the >40-km-thick crust of the Hellenides is associated with a wider distribution of overlapping high-angle normal faults that were formerly active on the Peloponnesus Peninsula. The easternmost sector includes the subsidiary Gulfs of Lechaio and Alkyonides, with major faults and basement structures trending NE, E-W and NW. The basement faults that control the rift architecture formed early in the rift history, with little evidence (other than the Vrachonisida fault along the northern margin) in the marine data for plan view evolution by subsequent fault linkage. Several have maximum offsets near one end. Crestal collapse graben formed where the hanging wall has pulled off the steeper onto the shallower downdip segment of the Derveni Fault. The dominant strikes of the Corinth rift faults

  3. The Role of Rift Obliquity During Pangea Fragmentation

    Science.gov (United States)

    Brune, S.; Butterworth, N. P.; Williams, S.; Müller, D.

    2014-12-01

    Does supercontinent break-up follow specific laws? What parameters control the success and the failure of rift systems? Recent analytical and geodynamic modeling suggests that oblique rifting is energetically preferred over orthogonal rifting. This implies that during rift competition, highly oblique branches proceed to break-up while less oblique ones become inactive. These models predict that the relative motion of Earth's continents during supercontinent break-up is affected by the orientation and shape of individual rift systems. Here, we test this hypothesis based on latest plate tectonic reconstructions. Using PyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates, we quantify rift obliquity, extension velocity and their temporal evolution for continent-scale rift systems of the past 200 Myr. Indeed we find that many rift systems contributing to Pangea fragmentation involved strong rift obliquity. East and West Gondwana for instance split along the East African coast with a mean obliquity of 55° (measured as the angle between local rift trend normal and extension direction). While formation of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. Rifting between Australia and Antarctica involved two stages with 25° prior to 100 Ma followed by 50° obliquity and distinct increase of extension velocity. Analyzing the entire passive margin system that formed during Pangea breakup, we find a mean obliquity of 40°, with a standard deviation of 20°. Hence 50% of these margins formed with an angle of 40° or more. Considering that many conceptual models of rifting and passive margin formation assume 2D deformation, our study quantifies the degree to which such 2D models are globally applicable, and highlights the importance of 3D models where oblique rifting is the dominant mode of deformation.

  4. Glimpses of East Antarctica: Aeromagnetic and satellite magnetic view from the central Transantarctic Mountains of East Antarctica

    Science.gov (United States)

    Finn, Carol A.; Goodge, John W.

    2010-01-01

    Aeromagnetic and satellite magnetic data provide glimpses of the crustal architecture within the Ross Sea sector of the enigmatic, ice-covered East Antarctic shield critical for understanding both global tectonic and climate history. In the central Transantarctic Mountains (CTAM), exposures of Precambrian basement, coupled with new high-resolution magnetic data, other recent aeromagnetic transects, and satellite magnetic and seismic tomography data, show that the shield in this region comprises an Archean craton modified both by Proterozoic magmatism and early Paleozoic orogenic basement reactivation. CTAM basement structures linked to the Ross Orogeny are imaged 50–100 km farther west than previously mapped, bounded by inboard upper crustal Proterozoic granites of the Nimrod igneous province. Magnetic contrasts between craton and rift margin sediments define the Neoproterozoic rift margin, likely reactivated during Ross orogenesis and Jurassic extension. Interpretation of satellite magnetic and aeromagnetic patterns suggests that the Neoproterozoic rift margin of East Antarctica is offset by transfer zones to form a stepwise series of salients tracing from the CTAM northward through the western margin of the Wilkes Subglacial Basin to the coast at Terre Adélie. Thinned Precambrian crust inferred to lie east of the rift margin cannot be imaged magnetically because of modification by Neoproterozoic and younger tectonic events.

  5. Shallow seismic reflection profiling over a Mylonitic Shear Zone, Ruby Mountains-East Humboldt Range Metamorphic Core Complex, NE Nevada

    Science.gov (United States)

    Hawman, Robert B.; Ahmed, Hishameldin O.

    Seismic reflection profiling carried out with a sledgehammer source has imaged Tertiary extensional structures over a depth range of 45-500 m within lower plate rocks of the Ruby Mountains-East Humboldt Range metamorphic core complex. The 400-m CMP profile straddles an exposed contact between tectonic slices of dolomitic marble and metaquartzite emplaced by low-angle ductile-brittle normal faulting. Subhorizontal reflections from layering within the tectonic slices give way at 160 ms (160-220 m depth) to reflections that dip 15-45° to the east, in contrast with dips indicated in a poorly imaged segment of a coincident regional seismic line but in agreement with dips of foliation mapped for nearby up-plunge exposures of a late Proterozoic - early Cambrian sequence of metaquartzites, marbles, schists, and granitic rocks that forms the bulk of the underlying shear zone. Differences with the regional profile are attributed to the higher frequencies (30-100 Hz) generated by the smaller hammer source and the enhanced lateral resolution provided by the straighter profile and much smaller shot-receiver offsets (46-157 m) contributing to the stack for each CMP. The results suggest that the near-surface, east-dipping component of the anastomozing shear zone extends at least 2 km farther east than previously interpreted. Rough estimates of interval velocities (1500-4500 m/s) inferred from stacking velocities are consistent with velocities of mylonitic rocks measured perpendicular to foliation at low confining pressures when the effects of macroscopic fractures and joints are taken into account. Peaks in amplitude spectra of stacked traces suggest long-wavelength components of layering resolved at scales from 5-8 m (depth: 50 m) to 15-25 m (depth: 500 m).

  6. The Legal Basis of the People’s Republic of China’s East China Sea Air Defense Identification Zone

    Directory of Open Access Journals (Sweden)

    Ching Chang

    2016-04-01

    Full Text Available As the People’s Republic of China defined its East China Sea Air Defense Identification Zone (ADIZ on November 23, 2013, there were three legal decrees, the Law of the People’s Republic of China on National Defense established on March 14, 1997, the Law of the People’s Republic of China on Civil Aviation established on October 30, 1995, and the Basic Rules on Flight of the People’s Republic of China established on July 27, 2001, which have been quoted as the legal basis to define the airspace within the area enclosed by China’s outer limit of the territorial sea and another six geographical points specified by the statement as the PRC East China Sea ADIZ. Following the government statement, another announcement of the aircraft identification rules for the East China Sea Air Defense Identification Zone of the People’s Republic of China was immediately issued by the PRC Ministry of National Defense. The purpose of this paper is to explore various key legal issues to ascertain the legal basis of this East China Sea ADIZ. Besides, the paper will further compare the air defense identification zone with airspaces such as aerodrome flight airspace, airway, air route, prohibited area, restricted area and danger area as well as air corridor, fuel dumping area and temporary flight airspace defined by the previously mentioned PRC legal decrees in order to identify their differences and similarities. It may also be assessed by the factual consequences after establishing the air defense identification zone to decide whether treating the measures of defining air defense identification as the attempt of claiming sovereignty, expanding sovereign territory or sphere of influence, enlarging air defense region, increasing the coverage of air military activities or even using it to present national strength and establishing pride or to test the responses of other states around the disputed territories is eventually reasonable judgments or overstated

  7. New perspectives on the geometry of the Albuquerque Basin, Rio Grande rift, New Mexico: Insights from geophysical models of rift-fill thickness

    Science.gov (United States)

    Grauch, V. J.; Connell, Sean D.

    2013-01-01

    Discrepancies among previous models of the geometry of the Albuquerque Basin motivated us to develop a new model using a comprehensive approach. Capitalizing on a natural separation between the densities of mainly Neogene basin fill (Santa Fe Group) and those of older rocks, we developed a three-dimensional (3D) geophysical model of syn-rift basin-fill thickness that incorporates well data, seismic-reflection data, geologic cross sections, and other geophysical data in a constrained gravity inversion. Although the resulting model does not show structures directly, it elucidates important aspects of basin geometry. The main features are three, 3–5-km-deep, interconnected structural depressions, which increase in size, complexity, and segmentation from north to south: the Santo Domingo, Calabacillas, and Belen subbasins. The increase in segmentation and complexity may reflect a transition of the Rio Grande rift from well-defined structural depressions in the north to multiple, segmented basins within a broader region of crustal extension to the south. The modeled geometry of the subbasins and their connections differs from a widely accepted structural model based primarily on seismic-reflection interpretations. Key elements of the previous model are an east-tilted half-graben block on the north separated from a west-tilted half-graben block on the south by a southwest-trending, scissor-like transfer zone. Instead, we find multiple subbasins with predominantly easterly tilts for much of the Albuquerque Basin, a restricted region of westward tilting in the southwestern part of the basin, and a northwesterly trending antiform dividing subbasins in the center of the basin instead of a major scissor-like transfer zone. The overall eastward tilt indicated by the 3D geophysical model generally conforms to stratal tilts observed for the syn-rift succession, implying a prolonged eastward tilting of the basin during Miocene time. An extensive north-south synform in the

  8. Volcanic rifts bracketing volcanoes: an analogue answer to an old unsolved problem

    Science.gov (United States)

    Mussetti, Giulio; van Wyk de Vries, Benjamin; Corti, Giacomo; Hagos, Miruts

    2015-04-01

    It has been observed in Central America that many volcanoes have volcanic alignments and faults at their east and west feet. A quick look at many rifts indicates that this also occurs elsewhere. While this feature has been noted for at least 30 years, no explanation has ever really been convincingly put forward. During analogue experiments on rifting volcanoes we have mixed the presence of a volcanic edifice with an underlying intrusive complex. The models use a rubber sheet that is extended and provides a broad area of extension (in contrast to many moving plate models that have one localised velocity discontinuity). This well suits the situation in many rifts and diffuse strike-slip zones (i.e. Central America and the East African Rift). We have noted the formation of localised extension bracketing the volcano, the location of which depends on the position of the analogue intrusion. Thus, we think we have found the answer to this long standing puzzle. We propose that diffuse extension of a volcano and intrusive complex generates two zones of faulting at the edge of the intrusion along the axis of greatest extensional strain. These serve to create surface faulting and preferential pathways for dykes. This positioning may also create craters aligned along the axis of extension, which is another notable feature of volcanoes in Central America. Paired volcanoes and volcanic uplifts in the Danakil region of Ethiopia may also be a consequence of such a process and lead us to draw some new preliminary cross sections of the Erta Ale volcanic range.

  9. Rift Valley fever: A neglected zoonotic disease?

    Science.gov (United States)

    Rift Valley fever (RVF) is a serious viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. First isolated in Kenya during an outbreak in 1930, subsequent outbreaks have had a significant impact on animal and human health, as well as national economies. ...

  10. Tectonic Evolution of Mozambique Ridge in East African continental margin

    Science.gov (United States)

    Tang, Yong

    2017-04-01

    Tectonic Evolution of Mozambique Ridge in East African continental margin Yong Tang He Li ES.Mahanjane Second Institute of Oceanography,SOA,Hangzhou The East Africa passive continental margin is a depression area, with widely distributed sedimentary wedges from southern Mozambique to northern Somali (>6500km in length, and about 6km in thickness). It was resulted from the separation of East Gondwana, and was developed by three stages: (1) rifting in Early-Middle Jurassic; (2) spreading from Late Jurassic to Early Cretaceous; (3) drifting since the Cretaceous period. Tectonic evolution of the Mozambique continental margin is distinguished by two main settings separated by a fossil transform, the Davie Fracture Zone; (i) rifting and transform setting in the northern margin related to opening of the Somali and Rovuma basins, and (ii) rifting and volcanism setting during the opening of the Mozambique basin in the southern margin. 2D reflection seismic investigation of the crustal structure in the Zambezi Delta Depression, provided key piece of evidence for two rifting phases between Africa and Antarctica. The magma-rich Rift I phase evolved from rift-rift-rift style with remarkable emplacement of dyke swarms (between 182 and 170 Ma). Related onshore outcrops are extensively studied, the Karoo volcanics in Mozambique, Zimbabwe and South Africa, all part of the Karoo "triple-junction". These igneous bodies flow and thicken eastwards and are now covered by up to 5 km of Cretaceous and Tertiary sediments and recorded by seismic and oil exploration wells. Geophysical and geological data recorded during oceanographic cruises provide very controversial results regarding the nature of the Mozambique Ridge. Two conflicting opinions remains open, since the early expeditions to the Indian Ocean, postulating that its character is either magmatic (oceanic) or continental origin. We have carried out an China-Mozambique Joint Cruise(CMJC) on southern Mozambique Basin on 1st June to

  11. Morphotectonics of the Tunka rift and its bordering mountains in the Baikal rift system, Russia

    Science.gov (United States)

    Shchetnikov, Alexander

    2016-11-01

    The Tunka section of the Baikal rift system presents a uniform alternation of the following neostructural forms: tilted horsts and asymmetrical block uplifts on the northern flank; the central system of the rift valleys; and the arched uplift of the southern flank. This is a standard set of morphostructural elements for the Baikal rift system. The main morphological feature of the Tunka rift is the strong inclination of its floor, ranging from 900 m to 200 km in general elevation above Lake Baikal. Such traits of recent geodynamics as volcanism, thermal activity, and seismicity are also different from other parts of the rift zone. All of these features of the Tunka rift are related to the deep structure of the rift zone. The peculiarities of the neotectonic structure of the Tunka rift, which are clearly expressed morphologically as is typical of the Baikal rift system, as well as its unique features are in accordance with deep geodynamic processes of the region. On the other hand, the development of the rift basin structures of the southwestern area near Baikal is complicated by inversion deformations. Local uplifts followed by deformations of the basin sedimentary cover and inverted morphostructures expressed in relief are fixed against the background of the general subsidence of blocks of the pre-Cenozoic basement grabens. The Tunka rift has repeatedly experienced inversion deformations throughout its history. The last wave of such deformations involved the southwestern region near Baikal in the second half of the late Pleistocene. During the Quaternary, the positive component prevailed in the whole range of vertical movements of the inter-rift and interbasin blocks; since the late Neogene, these structures have experienced a slow but steady uplift, accompanied by their extension at the expense of the bordering basins. The remote influence of the India-Asia collision on the formation of the southwestern section of the Baikal rift system is very significant and

  12. A fossil subduction zone in the East Greenland Caledonides revealed by a Receiver Function analysis

    DEFF Research Database (Denmark)

    Schiffer, Christian; Jacobsen, B. H.; Balling, N.;

    evidence for the processes before and under the Caledonian orogeny. We performed a Receiver Function analysis of data from 11 seismological broadband stations forming the Ella-Øarray. This array, maintained by Aarhus University, covered an approximately 270 km long profile, spanning the East Greenland...

  13. interpretation of reflection seismic data from the usangu basin, east

    African Journals Online (AJOL)

    Basin parameters to those estimated from outcrop, gravity and ... the East African Rift System (EARS) in Tanzania. .... In the north, the Usangu Basin is flanked .... the isostatic response of the eastern bounding fault of the Malawi rift and the.

  14. Oceanographic validity of buffer zones for the east coast of India: A hydrometeorological perspective

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    the inherent functional potential of ecosystems and correspondingly enhance the degree of risk. Abandoning vulnerable coasts, managed retreat, or safer setback with intervening forested landforms are feasible long-term options. The Coastal Regulation Zone dos...

  15. A Human Exploration Zone on the East Rim of Hellas Basin, Mars: Mesopotamia

    Science.gov (United States)

    Gallegos, Z. E.; Newsom, H. E.

    2015-10-01

    This abstract highlights a previously unexplored area in the Hellas Planitia region of Mars. The exploration zone proposed offers scientifically compelling regions of interest, as well as abundant resources for reoccurring human missions.

  16. Torque exerted on the side of crustal blocks controls the kinematics of Ethiopian Rift

    Science.gov (United States)

    Muluneh, Ameha A.; Kidane, Tesfaye; Cuffaro, Marco; Doglioni, Carlo

    2016-04-01

    Plate tectonic stress at active plate boundary can arises from 1) a torque applied on the side of lithospheric blocks and 2) a torque at the base of the lithosphere due to the flow of the underlying mantle. In this paper we use a simple force balance analysis to compare side and basal shear stresses and their contribution in driving kinematics and deformation in the Ethiopian Rift (ER), in the northern part of the East African Rift System (EARS). Assuming the constraints of the ER given by the dimension of the lithospheric blocks, the strain rate, the viscosity of the low velocity zone (LVZ) and the depth of the brittle-ductile transition zone, the lateral torque is several orders of magnitude higher than the basal torque. The minor contribution of basal torque might be due to low viscosity in the LVZ. Both Africa and Somalia plates are moving to the "west" relative to the mantle and there are not slabs that can justify this pull and consequent motion. Therefore, we invoke that westerly oriented tidal torque on Africa and Somalia plates in providing the necessary side torque in the region. This plate motion predicts significant sinistral transtension along the ER and rift parallel strike-slip faulting similar to the estimated angular velocity vector for tectonic blocks and GPS observations. Vertical axis block rotations are observed in areas where the lithospheric mantle is removed and strain is widely distributed.

  17. Microstructures, deformation mechanisms and seismic properties of a Palaeoproterozoic shear zone: The Mertz shear zone, East-Antarctica

    Science.gov (United States)

    Lamarque, Gaëlle; Bascou, Jérôme; Maurice, Claire; Cottin, Jean-Yves; Riel, Nicolas; Ménot, René-Pierre

    2016-06-01

    The Mertz shear zone (MSZ) is a lithospheric scale structure that recorded mid-crustal deformation during the 1.7 Ga orogeny. We performed a microstructural and crystallographic preferred orientation (CPO) study of samples from both mylonites and tectonic boudins that constitute relics of the Terre Adélie Craton (TAC). The deformation is highly accommodated in the MSZ by anastomosed shear bands, which become more scattered elsewhere in the TAC. Most of the MSZ amphibolite-facies mylonites display similar CPO, thermal conditions, intensity of deformation and dominant shear strain. Preserved granulite-facies boudins show both coaxial and non-coaxial strains related to the previous 2.45 Ga event. This former deformation is more penetrative and less localized and shows a deformation gradient, later affected by a major phase of recrystallization during retrogression at 2.42 Ga. Both MSZ samples and granulite-facies tectonic boudins present microstructures that reflect a variety of deformation mechanisms associated with the rock creep that induce contrasted CPO of minerals (quartz, feldspar, biotite, amphibole and orthopyroxene). In particular, we highlight the development of an "uncommon" CPO in orthopyroxene from weakly deformed samples characterized by (010)-planes oriented parallel to the foliation plane, [001]-axes parallel to the stretching lineation and clustering of [100]-axes near the Y structural direction. Lastly, we computed the seismic properties of the amphibolite and granulite facies rocks in the MSZ area in order to evaluate the contribution of the deformed intermediate and lower continental crust to the seismic anisotropy recorded above the MSZ. Our results reveal that (i) the low content of amphibole and biotite in the rock formations of the TAC, and (ii) the interactions between the CPO of the different mineralogical phases, generate a seismically isotropic crust. Thus, the seismic anisotropy recorded by the seismic stations of the TAC, including the

  18. Characterization of Fe-S Minerals influenced by buried ancient woods in the intertidal zone,East China Sea

    Institute of Scientific and Technical Information of China (English)

    YUAN LinXi; SUN LiGuang; FORTIN Danielle; WANG YuHong; WU ZiJun; YIN XueBin

    2009-01-01

    An ancient wood layer dated at about 5600 cal. a BP by AMS14C dating was discovered in the intertidal zone, East China Sea. Samples affected by ancient woods, including fresh coast bedrock, weathering bedrock, seepage water from coast, seepage water from ancient wood layer, intertidal seawater, fresh water, beach mud, ancient wood barks and ancient peat, were collected for geochemical analysis. The beach mud and the bacteriogenic iron oxides (BIOS) in coastal seepage water were analyzed by min-eralogical and high-resolution transmission electron microscopy (HRTEM)-selected area electron dif-fraction (SAED) analysis. Inorganic sulfur compositions and δ34S of the ancient peat and the beach mud were determined. The results showed that Fe, Mn, S (SO42-) were enriched in the intertidal area at different levels, very likely caused by fermentation of ancient woods. The presence of abundant iron-oxidizing bacteria (FeOB) and sulfate-reducing bacteria (SRB) in this intertidal zone was confirmed by HRTEM-SAED observation, and these bacteria were involved in Fe-S cycle to induce extracellular biomineralization. The negative δ34Sv-CDT (-2.9%.) likely indicated the biogenic origin of iron-sulfide minerals in the beach mud at high sulfate reduction rate (SRR). These findings are helpful for under-standing the biogeochemical Fe-S cycle and biomineralization process at high organic matter deposition rate and high SRR in the intertidal zone, estuary, or near shoreline.

  19. Changing theory, changing role of Coriolis effect - The East-West asymmetry of the Wadati-Benioff seismic zones

    Science.gov (United States)

    Scalera, Giancarlo

    2014-05-01

    It is a long history the tale of the recognized asymmetries of the Earth. In 1600 William Gilbert (1544-1603) published De Magnete in which the North and South geomagnetic pole are described. In 1620 Francis Bacon (1561-1628) in the XXVIIth aphorism of the Novum Organum (second part) describes the southern tips of the continents, and many other asymmetries were later described. In 1975 Samuel Warren Carey (1911-2002) stated: Neither north and south, nor east and west are tectonically equivalent. A non exhaustive list of asymmetries of the Earth is: The magnetic polarity; The land-hemisphere and the water-hemisphere; Southern tips of the continents; Larger extension of expanding mid-oceanic ridges on the southern hemisphere; South-eastward trend of younger ages in the long Pacific seafloor volcanic chains; A larger width of the seafloor isochrones bands on the Nazca region; A pear-shaped Earth; etc. It is a few decades that the different slopes of the Wadati-Benioff zones oriented towards the east and west has been enclosed in the list. Under the Americas they have angles of about 30 degrees, while under the Pacific east coasts (Asia, Japan) the angles are steeper (Luyendyk, 1970; Isacks & Barazangi, 1977; and many others). The cause of this difference has been identified in the tidal drag that would cause a global shift of the lithosphere towards west - the so called westward drift (Bostrom, 1971; Stevenson & Turner, 1977; among others). This solution has been many times criticized on the basis of the irrelevance of the tidal forces with respect to viscous friction (Jordan, 1974; Ranalli, 2000; Caputo & Caputo, 2012). Moreover, a simplistic evaluation of the regime of the convective motion in the mantle and of the order of magnitude of the involved forces (viscous, buoyancy, inertial) hastily judges as negligible the role of the Coriolis effect in producing the observed slope differences of the Wadati-Benioff regions. Instead, it is possible to show that changing

  20. Spatiotemporal Variability and Trends of Extreme Precipitation in the Huaihe River Basin, a Climatic Transitional Zone in East China

    Directory of Open Access Journals (Sweden)

    Zhengwe Ye

    2017-01-01

    Full Text Available Precipitation data from 30 stations in the Huaihe River basin (HRB, a climatic transitional zone in east China, were used to investigate the spatiotemporal variability and trends of extreme precipitation on multitimescales for the period 1961–2010. Results indicated that (1 the spatial pattern of the annual precipitation, rainy days, extreme precipitation, and maximum daily precipitations shows a clear transitional change from the south (high to the north (low in the HR; it confirmed the conclusion that the HRB is located in the transitional zone of the 800 mm precipitation contour in China, where the 800 mm precipitation contour is considered as the geographical boundary of the south and the north. (2 Higher value of the extreme precipitation intensity mainly occurs in the middle of the east and the central part of the basin; it reveals a relatively distinct west-east spatial disparity, and this is not in line with the spatial pattern of the extreme precipitation total, the sum of the precipitation in 95th precipitation days. (3 Annual precipitation of 22 stations exhibits increasing trend, and these 22 stations are located from the central to the northern part. There is no significant trend detected for the seasonal precipitation. The summer precipitation exhibits a larger change range; this might cause the variation of the flood and drought in the HBR. However, the increasing trend in winter precipitation may be beneficial to the relief of winter agricultural drought. Rainy days in 12 stations, mostly located in and around the central northeastern part, experienced significant decreasing trend. Extreme precipitation days and precipitation intensity have increasing trends, but no station with significant change trend is detected for the maximum precipitation of the basin. (4 The spatiotemporal variability in the HRB is mainly caused by the geographic differences and is largely influenced by the interdecadal variations of East Asian

  1. Meiofaunal distribution across the oxygen minimum zone of continental margin, North East Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Badesab, S.; Singh, R.; Kitazato, H.

    A quantitative study of metazoan meiofauna across the oxygen minimum zone (OMZ) of continental margin in the N-E Arabian Sea in the depth range 500-1965 m was carried out in September-November 2008. Bottom water oxygen and sediment organic carbon...

  2. Niche partitioning of marine group I Crenarchaeota in the euphotic and upper mesopelagic zones of the East China Sea.

    Science.gov (United States)

    Hu, Anyi; Jiao, Nianzhi; Zhang, Rui; Yang, Zao

    2011-11-01

    Marine group I Crenarchaeota (MGI) represents a ubiquitous and numerically predominant microbial population in marine environments. An understanding of the spatial dynamics of MGI and its controlling mechanisms is essential for an understanding of the role of MGI in energy and element cycling in the ocean. In the present study, we investigated the diversity and abundance of MGI in the East China Sea (ECS) by analysis of crenarchaeal 16S rRNA gene, the ammonia monooxygenase gene amoA, and the biotin carboxylase gene accA. Quantitative PCR analyses revealed that these genes were higher in abundance in the mesopelagic than in the euphotic zone. In addition, the crenarchaeal amoA gene was positively correlated with the copy number of the MGI 16S rRNA gene, suggesting that most of the MGI in the ECS are nitrifiers. Furthermore, the ratios of crenarchaeal accA to amoA or to MGI 16S rRNA genes increased from the euphotic to the mesopelagic zone, suggesting that the role of MGI in carbon cycling may change from the epipelagic to the mesopelagic zones. Denaturing gradient gel electrophoretic profiling of the 16S rRNA genes revealed depth partitioning in MGI community structures. Clone libraries of the crenarchaeal amoA and accA genes showed both "shallow" and "deep" groups, and their relative abundances varied in the water column. Ecotype simulation analysis revealed that MGI in the upper ocean could diverge into special ecotypes associated with depth to adapt to the light gradient across the water column. Overall, our results showed niche partitioning of the MGI population and suggested a shift in their ecological functions between the euphotic and mesopelagic zones of the ECS.

  3. Periodical mixing of MORB magmas near East Pacific Rise 13°N: Evidence from modeling and zoned plagioclase phenocrysts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Thirty-six basalt samples from near East Pacific Rise 13°N are analyzed for major and trace elements. Different types of zoned plagioclase phenocrysts in basalts are also backscatter imaged, and major element profiles scanned and analyzed for microprobe. Basalts dredged from a restricted area have evolved to different extents (MgO=9.38wt%—6.76wt%). High MgO basalts are modeled for crystalliza-tion to MgO of about 7wt%, and resulted in the Ni contents (≈28 ppm) that are generally lower than that in observed basalts (>60 ppm). It suggests that low MgO basalts may have experienced more intensive magma mixing. High MgO (9.38wt%) basalt is modeled for self-"mixing-crystallization", and the high Ni contents in low MgO basalts can be generated in small scale and periodical self-mixing of new magma (high MgO). "Mixing-crystallization" processes that low MgO magmas experienced accord with recent 226Ra/230Th disequilibria studies for magma residence time, in which low MgO magmas have experi-enced more circles of "mixing-crystallization" in relatively longer residence time. Magma mixing is not homogeneous in magma chamber, however, low MgO magmas are closer to stable composition pro-duced by periodical "mixing-crystallization", which is also an important reason for magma diversity in East Pacific Rise. Zoned plagioclase phenocrysts can be divided into two types: with and without high An# cores, both of which have multiple reversed An# zones, suggesting periodical mixing of their host magmas. Cores of zoned plagioclase in low MgO (7.45wt%) basalt differ significantly with their mantle in An#, but are similar in An# with microlite cores (products of equilibrium crystallization) in high MgO (9.38wt%) basalt, which further shows that plagioclase phenocryst cores in low MgO basalts may have formed in their parental magmas before entering into the magma chamber.

  4. New aerogeophysical evidences of riftogenic crust over Princess Elizabeth Land, East Antarctica

    Science.gov (United States)

    Golynsky, Dmitry; Golynsky, Alexander; Kiselev, Alexander

    2014-05-01

    Analysis of radio-echosounding and RADARSAT mosaic data by Golynsky & Golynsky (2007) reveals at least 500 km long structure called the Gaussberg rift over the eastern part of Princess Elizabeth Land, East Antarctica. This previously unknown continuous structure consists of two sub-parallel depressions separated by segmented horst-like escarpments that are largely hidden under the East Antarctic Ice Sheet. One of these segments is Mount Brown escarpment, which reaches a height of 1982 m. It was suggested that the rift was probably initiated at the same time as the Lambert graben, marked by the deposition of coal-bearing Permian sediment and probably inherited the tectonically weak zone of the Proterozoic igneous belt along its boundary with the Vestfold-Rauer Archean cratonic block. The Gaussberg rift may be considered as a hypothetical accommodation zone of the Carboniferous-Permian intracontinental rift along 4000 km of the West Australian and East Indian margins, which filled with thick Permian-Triassic sediment including alluvial coals (Harrowfield et al., 2005). Supposedly, the Gaussberg rift corresponds to the Mahanadi Valley of East India and the Lambert rift system has across-rift alignment with Godavari Valley. New Russian ice penetrating radar data collected in 2012-13 over western part of the suggested rift shows that in places the floor of the central depression is more than 1000 m below sea level. Horst and graben systems are heavily segmented by N-S running transverse lineaments that in addition clearly discernible in the RADARSAT data. New high-quality magnetic data show that severe changes in the magnetic fabric observed in vicinity, along strike and over borders of the structure are though to be due to the tectonic nature. Interruption of the long wavelength high-intensity magnetic anomaly belt associated with southern boundary of the Vestfold-Rauer cratonic block near the western depression can't be explained by a subglacial erosion, in our

  5. Identification of suitable housing system for dairy cattle in North East Zone of Tamil Nadu, India, with respect to microclimate

    Science.gov (United States)

    Sivakumar, T.; Suraj, P. T.; Yasotha, A.; Phukon, Jayashree

    2017-01-01

    Aim: To identify the suitable roofing pattern for dairy cattle in North East Zone of Tamil Nadu, India, based on micro climatic conditions. Materials and Methods: Initially, survey was conducted to identify and categorize the major housing patterns existing in the region for further detailed investigation. In total, 30 farmers/farms consisting of five housing types with six replicates were selected. Temperature and temperature humidity index (THI) were recorded using the maximum-minimum thermometer and digital thermo-hygrometers. The study was conducted for 1 year covering four seasons namely South West monsoon (June-August), North East monsoon (September-November), cold season (December-February), and summer season (April-May). The data were statistically analyzed using statistical package SPSS 17. Results: Animal shelters with cement sheets recorded the highest temperature (26.71±1.13°C) and THI (77.23±1.76) at 8.00 am, whereas the lowest temperature (24.83±1.17°C) and THI (74.54±1.72) were recorded in the thatched shed. There was significant difference (p<0.01) in temperature and THI at 8.00 am during South West monsoon and North East monsoon seasons between the housing types. During cold and summer seasons, there was no significant difference (p≥0.05) in the environmental variables among various shelter systems. Conclusion: Thatched housing is found to be the suitable one with respect to the climatic variables, followed by tile roof and metal roof. The cement sheet roofed housing is found to be the most unsuitable one in the region for dairy cattle.

  6. Crustal thinning in the northern Tyrrhenian Rift: Insights from multichannel and wide-angle seismic data across the basin

    Science.gov (United States)

    Moeller, S.; Grevemeyer, I.; Ranero, C. R.; Berndt, C.; Klaeschen, D.; Sallares, V.; Zitellini, N.; Franco, R.

    2014-03-01

    Extension of the continental lithosphere leads to the formation of rift basins or rifted continental margins if breakup occurs. Seismic investigations have repeatedly shown that conjugate margins have asymmetric tectonic structures and different amount of extension and crustal thinning. Here we compare two coincident wide-angle and multichannel seismic profiles across the northern Tyrrhenian rift system sampling crust that underwent different stages of extension from north to south and from the flanks to the basin center. Tomographic inversion reveals that the crust has thinned homogeneously from ~24 km to ~17 km between the Corsica Margin and the Latium Margin implying a β factor of ~1.3-1.5. On the transect 80 km to the south, the crust thinned from ~24 km beneath Sardinia to a maximum of ~11 km in the eastern region near the Campania Margin (β factor of ~2.2). The increased crustal thinning is accompanied by a zone of reduced velocities in the upper crust that expands progressively toward the southeast. We interpret that the velocity reduction is related to rock fracturing caused by a higher degree of brittle faulting, as observed on multichannel seismic images. Locally, basalt flows are imaged intruding sediment in this zone, and heat flow values locally exceed 100 mW/m2. Velocities within the entire crust range 4.0-6.7 km/s, which are typical for continental rocks and indicate that significant rift-related magmatic underplating may not be present. The characteristics of the pre-tectonic, syn-tectonic and post-tectonic sedimentary units allow us to infer the spatial and temporal evolution of active rifting. In the western part of the southern transect, thick postrift sediments were deposited in half grabens that are bounded by large fault blocks. Fault spacing and block size diminish to the east as crustal thinning increases. Recent tectonic activity is expressed by faults cutting the seafloor in the east, near the mainland of Italy. The two transects show

  7. From rifting to passive margin: the examples of the Red Sea, Central Atlantic and Alpine Tethys

    Science.gov (United States)

    Favre, P.; Stampfli, G. M.

    1992-12-01

    Evolution of the Red Sea/Gulf of Suez and the Central Atlantic rift systems shows that an initial, transtensive rifting phase, affecting a broad area around the future zone of crustal separation, was followed by a pre-oceanic rifting phase during which extensional strain was concentrated on the axial rift zone. This caused lateral graben systems to become inactive and they evolved into rift-rim basins. The transtensive phase of diffuse crustal extension is recognized in many intra-continental rifts. If controlling stress systems relax, these rifts abort and develop into palaeorifts. If controlling stress systems persist, transtensive rift systems can enter the pre-oceanic rifting stage, during which the rift zone narrows and becomes asymmetric as a consequence of simple-shear deformation at shallow crustal levels and pure shear deformation at lower crustal and mantle-lithospheric levels. Preceding crustal separation, extensional denudation of the lithospheric mantle is possible. Progressive lithospheric attenuation entails updoming of the asthenosphere and thermal doming of the rift shoulders. Their uplift provides a major clastic source for the rift basins and the lateral rift-rim basins. Their stratigraphic record provides a sensitive tool for dating the rift shoulder uplift. Asymmetric rifting leads to the formation of asymmetric continental margins, corresponding in a simple-shear model to an upper plate and a conjugate lower plate margin, as seen in the Central Atlantic passive margins of the United States and Morocco. This rifting model can be successfully applied to the analysis of the Alpine Tethys palaeo-margins (such as Rif and the Western Alps).

  8. Fiscal Year 2009 Phased Construction Completion Report for EU Z2-36 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2009-02-10

    The purpose of this Phased Construction Completion Report (PCCR) is to present fiscal year (FY) 2009 results of Dynamic Verification Strategy (DVS) characterization activities for exposure unit (EU) Z2-36 in Zone 2 at the East Tennessee technology Park (ETTP). The ETTP is located in the northwest corner of the US Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee and encompasses approximately 5000 acres that have been subdivided into three zones--Zone 1 ({approx} 1400 acres), Zone 2 ({approx} 800 acres), and the Boundary Area ({approx} 2800 acres). Zone 2 comprises the highly industrial portion of ETTP and consists of all formerly secured areas of the facility, including the large processing buildings and direct support facilities; experimental laboratories and chemical and materials handling facilities; materials storage and waste disposal facilities; secure document records libraries; and shipping and receiving warehouses. The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005) (Zone 2 ROD) specifies the future end use for Zone 2 acreage as uncontrolled industrial for the upper 10 ft of soils. Characterization activities in these areas were conducted in compliance with the Zone 2 ROD and the DVS and data quality objectives (DQOs) presented in the Main Plant Group DQO Scoping Package (July 2006) and the Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2007a) (Zone 2 RDR/RAWP). The purpose of this PCCR is to address the following: (1) Document EU Z2-36 DVS characterization results; (2) Describe and document the risk evaluation and determine if the EU meets the Zone 2 ROD requirements for unrestricted industrial use to 10 ft bgs, and (3) Identify additional areas not defined in the Zone 2 ROD that require remediation based on the DVS

  9. Structural and Geomorphic Controls on Dryland Salinity and Regolith Distribution in the Critical Zone, North-east Tasmania, Australia.

    Science.gov (United States)

    Sweeney, M. E.; Moore, C. L.

    2015-12-01

    Salinity occurs in the drier and flatter Australian landscapes because there is insufficient rain to flush salts from critical zone. Changes in land use due to agriculture and urbanisation can accelerate salinity effects, leading to soil and water degradation and threatening infrastructure and ecosystems. The dominant lithology in the salt affected regions of North-east Tasmania is dolerite. The geochemistry of dolerite regolith has been examined in order to understand the association between salinity and weathered dolerite. The electrical conductivity of 1:5 soil-waters is higher in the more weathered material (maximum 4.9 dS/m). This confirms field observations that highly weathered dolerite can serve as a significant store for salt in the landscape. However, the clay content and salinity varies, depending on the local geomorphic context. Dolerite weathering on well-drained slopes has favoured the formation of 1:1 kaolinite clays, and sometimes bauxite formation. Kaolinite-bearing regolith can store salt via matrix diffusion processes. However, there are fault-bounded pockets of colluvium and highly-weathered in situmaterial, where the supply of cations has not been diminished and 2:1 montmorillonite clays dominate. These regions have the capacity to store large volumes of salts. The geomorphology also affects the volume of rain and flux of salt from windblown dust and oceanic aerosols. The chemistry of rainwater from an array of bulk deposition collectors was studied from Spring 2013 to Winter 2014. The average salt flux was 79± 10 kg/ha/yr in the study region, ranging from 170± 12 kg/ha/yr in the north to 42 ± 6 kg/ha/yr inland. To assist in understanding why salt is found in certain parts of the landscape but not in others, it is essential to model how water moves through the critical zone and geological structures. By exploring the complex interactions of geomorphology and other biophysical parameters the study area has been divided into Hydrogeological

  10. Crustal structure and rift tectonics across the Cauvery–Palar basin, Eastern Continental Margin of India based on seismic and potential field modelling

    Indian Academy of Sciences (India)

    D Twinkle; G Srinivasa Rao; M Radhakrishna; K S R Murthy

    2016-03-01

    The Cauvery–Palar basin is a major peri-cratonic rift basin located along the Eastern Continental Margin of India (ECMI) that had formed during the rift-drift events associated with the breakup of eastern Gondwanaland (mainly India–Sri Lanka–East Antarctica). In the present study, we carry out an integrated analysis of the potential field data across the basin to understand the crustal structure and the associated rift tectonics. The composite-magnetic anomaly map of the basin clearly shows the onshore-tooffshore structural continuity, and presence of several high-low trends related to either intrusive rocks or the faults. The Curie depth estimated from the spectral analysis of offshore magnetic anomaly data gave rise to 23 km in the offshore Cauvery–Palar basin. The 2D gravity and magnetic crustal models indicate several crustal blocks separated by major structures or faults, and the rift-related volcanic intrusiverocks that characterize the basin. The crustal models further reveal that the crust below southeast Indian shield margin is ∼36 km thick and thins down to as much as 13–16 km in the Ocean Continent Transition (OCT) region and increases to around 19–21 km towards deep oceanic areas of the basin. Thefaulted Moho geometry with maximum stretching in the Cauvery basin indicates shearing or low angle rifting at the time of breakup between India–Sri Lanka and the East Antarctica. However, the additional stretching observed in the Cauvery basin region could be ascribed to the subsequent rifting of Sri Lanka from India. The abnormal thinning of crust at the OCT is interpreted as the probable zone of emplaced Proto-Oceanic Crust (POC) rocks during the breakup. The derived crustal structure along with other geophysical data further reiterates sheared nature of the southern part of the ECMI.

  11. The Kenya rift axial gravity high: a re-interpretation

    Science.gov (United States)

    Swain, C. J.

    1992-03-01

    Since KRISP 85 did not provide overwhelming evidence for the massive intrusion that was originally suggested to explain the axial gravity high yet did provide a velocity section for the upper crust along the axis of the Kenya Rift, it is appropriate to use this section to control a re-interpretation of the gravity anomalies. A 2 {1}/{2} D inversion procedure has been used to model a number of isostatic anomaly profiles between Lake Baringo and Suswa. There are too many unknowns and gravity station coverage is too sparse for the results to be unique. Nevertheless, certain conclusions can be drawn. One of those is that some relatively dense material exists within the basement all along the Rift axis, since the axial isostatic anomalies are positive even though they occur where there are several thousand metres of Cenozoic volcanics of relatively low density (inferred from their seismic velocity of 3.7-5.1 km/s). The dense material is envisaged as a zone of dyke injection and assigned a density of 2.75-2.76 g/cm 3 (corresponding to its 6.05 km/s velocity) compared to a normal basement density of 2.70 g/cm 3. It is assumed to extend down to 22 km—the top of the 7.1 km/s layer. The KRISP 85 line passed just east of Menengai, where the basement velocity increases to about 6.6 km/s over a distance of about 20 km. On an east-west gravity profile through Menengai there is a gravity high corresponding to this velocity increase which has been modelled as a basic intrusion (density 2.93 g/cm 3) underlying the caldera.

  12. A new species of Parodontophora (Nematoda: Axonolaimidae) from the intertidal zone of the East China Sea

    Science.gov (United States)

    Wang, Haixia; Huang, Yong

    2016-02-01

    This study described a new species of free-living nematode discovered in the intertidal mudflat of Ximen Island, East China Sea. The new species, designated Parodontophora longiamphidata sp. nov., was characterized by a cylindrical body with tapering extremeties; cuticle smooth without somatic setae; four short cephalic setae; cylindrical buccal cavity with six clawlike teeth at the top of stoma; pharynx cylindrical with widened base; amphidial fovea crook-shaped with elongated scalariform branch extending past level of base of pharynx and ventral gland; ventral gland cell long-oval shaped located posterior to pharyngo-intestinal junction; excretory pore at level of middle of buccal cavity; tail conico-cylindrical with enlarged tip; three caudal gland cells, male spicules arched with cephalic proximal end and tapered distal end; gubernaculum with dorso-caudal apophysis; female with two opposed outstretched ovaries; and vulva at slightly post-midpoint of body length. This new species was close to P. wuleidaowanensis Zhang, 2005 and P. polita Gerlach, 1955 in terms of long amphidial fovea branch. The newly found species was easily distinguishable from the two documented; its amphidial fovea branch (255-290 µm versus 72-106 and 125-150 µm) was obviously longer. Key to the Parodontophora species with a longer amphidial fovea branch was given.

  13. Haemoragisk Rift Valley Fever

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Thybo, Søren

    2007-01-01

    A case of fatal hemorrhagic Rift Valley fever during an epidemic in Kenya's North Eastern Province in January 2007 is described.......A case of fatal hemorrhagic Rift Valley fever during an epidemic in Kenya's North Eastern Province in January 2007 is described....

  14. Rift Valley Fever Virus

    Science.gov (United States)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  15. Land - Ocean Climate Linkages and the Human Evolution - New ICDP and IODP Drilling Initiatives in the East African Rift Valley and SW Indian Ocean

    Science.gov (United States)

    Zahn, R.; Feibel, C.; Co-Pis, Icdp/Iodp

    2009-04-01

    The past 5 Ma were marked by systematic shifts towards colder climates and concomitant reorganizations in ocean circulation and marine heat transports. Some of the changes involved plate-tectonic shifts such as the closure of the Panamanian Isthmus and restructuring of the Indonesian archipelago that affected inter-ocean communications and altered the world ocean circulation. These changes induced ocean-atmosphere feedbacks with consequences for climates globally and locally. Two new ICDP and IODP drilling initiatives target these developments from the perspectives of marine and terrestrial palaeoclimatology and the human evolution. The ICDP drilling initiative HSPDP ("Hominid Sites and Paleolakes Drilling Project"; ICDP ref. no. 10/07) targets lacustrine depocentres in Ethiopia (Hadar) and Kenya (West Turkana, Olorgesailie, Magadi) to retrieve sedimentary sequences close to the places and times where various species of hominins lived over currently available outcrop records. The records will provide a spatially resolved record of the East African environmental history in conjunction with climate variability at orbital (Milankovitch) and sub-orbital (ENSO decadal) time scales. HSPDP specifically aims at (1) compiling master chronologies for outcrops around each of the depocentres; (2) assessing which aspects of the paleoenvironmental records are a function of local origin (hydrology, hydrogeology) and which are linked with regional or larger-scale signals; (3) correlating broad-scale patterns of hominin phylogeny with the global beat of climate variability and (4) correlating regional shifts in the hominin fossil and archaeological record with more local patterns of paleoenvironmental change. Ultimately the aim is to test hypotheses that link physical and cultural adaptations in the course of the hominin evolution to local environmental change and variability. The IODP initiative SAFARI ("Southern African Climates, Agulhas Warm Water Transports and Retroflection

  16. European Cenozoic rift system

    Science.gov (United States)

    Ziegler, Peter A.

    1992-07-01

    The European Cenozoic rift system extends from the coast of the North Sea to the Mediterranean over a distance of some 1100 km; it finds its southern prolongation in the Valencia Trough and a Plio-Pleistocene volcanic chain crossing the Atlas ranges. Development of this mega-rift was paralleled by orogenic activity in the Alps and Pyrenees. Major rift domes, accompanied by subsidence reversal of their axial grabens, developed 20-40 Ma after beginning of rifting. Uplift of the Rhenish Shield is related to progressive thermal lithospheric thinning; the Vosges-Black Forest and the Massif Central domes are probably underlain by asthenoliths emplaced at the crust/mantle boundary. Evolution of this rift system, is thought to be governed by the interaction of the Eurasian and African plates and by early phases of a plate-boundary reorganization that may lead to the break-up of the present continent assembly.

  17. A Cambrian Arc Built on the Neoproterozoic Rifted Margin of Gondwana

    Science.gov (United States)

    Musgrave, R. J.

    2009-12-01

    Cambrian convergence along the northeastern side of the Curnamona Craton, the Gondwana margin in southeastern Australia, resulted in the development of the Delamerian Orogen. A Neoproterozoic rifted margin, marked by the alkalic Mount Arrowsmith Volcanics, forms the substrate on which is built a NE-facing Cambrian arc, complete with a clearly delineated inner imbricate accretionary prism (the Wonnaminta Zone) and outer thin-skinned wedge (the Kayrunnera Zone). Arc volcanism, represented by the calc-alkaline Mount Wright Volcanics, exhibits mixed arc-rift geochemistry. Interpretation and modelling of magnetic data reveals a chain of volcanic edifices of the Mount Wright Arc, now below 3 to 7 km of Devonian sandstones in the Bancannia Trough. Remarkably, a simple rotation around an Euler pole reconstructs the Wonnaminta Zone against the craton, and aligns structural elements on the two sides of the trough. Arc volcanism evidently occupied a rift in marginal continental crust, and the geometry, geochemistry and geophysical properties of the Mount Wright Arc are closely analogous to the Taupo Zone of New Zealand. Rifting of the arc divided Delamerian structures, indicating that at least part of the Delamerian deformation developed in a subduction accretion setting, rather than in some terminal collision. Below the Wonnaminta Zone a 3 to 5 km thick body can be traced as a large magnetic source along the length of the zone. Overridden by the thrust stack of the accretionary prism, this body is mostly planar and dips towards the east, although it is deformed into a broad antiform in the central part of the zone. Physical properties suggest that this body may be a thick rift-volcanic pile equivalent to the Mount Arrowsmith Volcanics. In the southern part of the belt a re-entrant in the Wonnaminta Zone faces a large magnetic anomaly sourced in the basement of the Kayrunnera Zone. The geometry of the re-entrant, and the development of Silurian and Devonian basins over the

  18. The Restraining Stepovers And Releasing Bends Along The Active East Anatolian Fault Zone, Turkey: Celikhan Region As A Case Study

    Science.gov (United States)

    Isik, V.; Seyitoglu, G.; Herece, E.; Saber, R.; Caglayan, A.

    2013-12-01

    The Arabia-Eurasia convergence involves intracontinental shortening in SW Turkey. Two active fault zones in Turkey, the North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ), divide the area into the Anatolian micro-plate accommodating SSW-directed movement. The EAFZ is a crustal-scale strike-slip fault, represents a sinistral NE-striking zone, characterized by numerous, complex faults and segmented surface ruptures. The Celikhan region, selected for this study, is located approximately 30 kilometers north of the city of Adiyaman. Although two segments representing the latest seismic activity of the EAFZ have been mapped, named Siro and Erkenek segments, the region contains many segments that become more complex fault pattern. The Celikhan region form part of geology of SE Turkey and is hosted by metamorphic rocks (Poturge metamorphites and Malatya metamorphites), ophiolitic and volcanic units (Kocali complex and Maden complex), limestone with fossils (Midyat formation) and Plio-Quaternary deposits. These rocks are transected by series of steeply dipping to subvertical the EAFZ preserving good indications to sinistral displacement with or/and without normal and reverse component associated with fault rock development. In the northern portion of the study area, the EAFZ is defined by relatively straight, polished recrystallized limestone of the Malatya metamorphites slip surface, which strike N50°-55°E and dip 80°-88° NW. Well-develeoped slickenlines with rakes between 10°-15°, corrugations and some brittle kinematic indicators marks on the slip-surface, indicating strike-slip displacement with minor dip-slip component. This fault create a restraining stepover with the fault near to Celikhan and Akdag can be interpreted as push up structure. At the southwest of Celikhan, the EAFZ create a releasing bend and several strike-slip fault strands with normal component striking N40°-60°E. These subsidiary faults containing centimeter

  19. Not only in the temperate zone: independent gametophytes of two vittarioid ferns (Pteridaceae, Polypodiales) in East Asian subtropics.

    Science.gov (United States)

    Kuo, Li-Yaung; Chen, Cheng-Wei; Shinohara, Wataru; Ebihara, Atsushi; Kudoh, Hiroshi; Sato, Hirotoshi; Huang, Yao-Moan; Chiou, Wen-Liang

    2017-03-01

    Independent gametophyte ferns are unique among vascular plants because they are sporophyteless and reproduce asexually to maintain their populations in the gametophyte generation. Such ferns had been primarily discovered in temperate zone, and usually hypothesized with (sub)tropical origins and subsequent extinction of sporophyte due to climate change during glaciations. Presumably, independent fern gametophytes are unlikely to be distributed in tropics and subtropics because of relatively stable climates which are less affected by glaciations. Nonetheless, the current study presents cases of two independent gametophyte fern species in subtropic East Asia. In this study, we applied plastid DNA sequences (trnL-L-F and matK + ndhF + chlL datasets) and comprehensive sampling (~80%) of congeneric species for molecular identification and divergence time estimation of these independent fern gametophytes. The two independent gametophyte ferns were found belonging to genus Haplopteris (vittarioids, Pteridaceae) and no genetic identical sporophyte species in East Asia. For one species, divergence times between its populations imply recent oversea dispersal(s) by spores occurred during Pleistocene. By examining their ex situ and in situ fertility, prezygotic sterility was found in these two Haplopteris, in which gametangia were not or very seldom observed, and this prezygotic sterility might attribute to their lacks of functional sporophytes. Our field observation and survey on their habitats suggest microhabitat conditions might attribute to this prezygotic sterility. These findings point to consideration of whether recent climate change during the Pleistocene glaciation resulted in ecophysiological maladaptation of non-temperate independent gametophyte ferns. In addition, we provided a new definition to classify fern gametophyte independences at the population level. We expect that continued investigations into tropical and subtropical fern gametophyte floras will

  20. INTERNAL STRUCTURES OF FAULT ZONES IN THE PRIOLKHONIE AND EVOLUTION OF THE STATE OF STRESSES OF THE UPPER CRUST OF THE BAIKAL RIFT

    Directory of Open Access Journals (Sweden)

    Alexander V. Cheremnykh

    2015-09-01

    Full Text Available The Priolkhonie is a tectonic block located in the central part of the Baikalsky Ridge; it was shifted in the Cenozoic, yet remains above the water level of Lake Baikal. In view of its unique positioning and abundant rock outcropped sites, especially at shorelines, we conducted studies of internal structures of the main fault zones and reconstructed the states of stresses associated with formation of such zones.The studies were conducted along the profile which goes across the Priolkhonie, from the Primorsky Ridge near the Sarma River to the Tutai Bay in the Olkhonskie Vorota Strait (Fig. 1. Detailed cross-sections are constructed to characterize the internal structures of the fault zones striking of the NE-strike, that are located in highly outcropped sites at the shorelines of the Mukhor, Kurkut and other bays.The state of stresses in the fault zones and their vicinities are studied (Fig. 2, 3 by the structural paragenesis analysis of the second-rank ruptures and fracturing nearby the fault planes [Seminsky, Burzunova, 2007]. As possible, the obtained results are checked by the kinematic method which provides for reconstruction of the main axes of normal stresses [Parfenov, 1984].Most of the fault zones are complicated in structure (Fig. 4–7: the fault is typically represented by alternating areas, wherein tectonites of the main fault are developed, and areas of high fracturing at the periphery of the fault zone. With this approach, the fault zone’s boundaries are defined by quantitative indicators of tectonic fracturing, being abundantly manifested in the rocks.Our solutions give evidence that extension (Fig. 8 and shear fractures are abundant in the area under study, while fractures caused by compression are revealed quite rarely. The faults of the above mentioned morpho-genetic types have been revealed in the studied outcrops in the following ratio: 55 %, 27 %, 10 %, and 8 %. Our study gives grounds to conclude that the state of

  1. Structure and kinematics of the Taupo Rift, New Zealand

    Science.gov (United States)

    Seebeck, Hannu; Nicol, Andrew; Villamor, Pilar; Ristau, John; Pettinga, Jarg

    2014-06-01

    The structure and kinematics of the continental intra-arc Taupo Rift have been constrained by fault-trace mapping, a large catalogue of focal mechanisms (N = 202) and fault slip striations. The mean extension direction of ~137° is approximately orthogonal to the regional trend of the rift and arc front (α = 84° and 79°, respectively) and to the strike of the underlying subducting Pacific Plate. Bending and rollback of the subduction hinge strongly influence the location, orientation, and extension direction of intra-arc rifting in the North Island. In detail, orthogonal rifting (α = 85-90°) transitions northward to oblique rifting (α = 69-71°) across a paleovertical-axis rotation boundary where rift faults, extension directions, and basement fabric rotate by ~20-25°. Toward the south, extension is orthogonal to normal faults which are parallel to, and reactivate, steeply dipping basement fabric. Basement reactivation facilitates strain partitioning with a portion of margin-parallel motion in the overriding plate mainly accommodated east of the rift by strike-slip faults in the North Island Fault System (NIFS). Toward the north where the rift and NIFS intersect, ~4 mm/yr strike slip is transferred into the rift with net oblique extension accommodating a component of margin-parallel motion. The trend and kinematics of the Taupo Rift are comparable to late Miocene-Pliocene intra-arc rifting in the Taranaki Basin, indicating that the northeast strike of the subducting plate and the southeast extension direction have been uniform since at least 4 Ma.

  2. Community knowledge and the role of health extension workers on integrated diseases among households in East Hararghe Zone, Ethiopia

    Science.gov (United States)

    Seyoum, Ayichew; Urgessa, Kedir; Gobena, Tesfaye

    2016-01-01

    Background Ethiopia constitutes approximately 1% of the world’s population but it contributes to 7% of the world’s HIV/AIDS cases. Malaria is the most important disease of humans in terms of mortality, morbidity, and long-term effects upon quality of life, especially in Ethiopia. Despite the ongoing efforts and progress in fighting HIV/AIDS and malaria, these diseases remain the leading cause of morbidity and mortality in the country. In this study, we assessed community knowledge and the role of health extension workers on integrated diseases among households in East Hararghe Zone, Ethiopia. Methods A community-based multistage stratified cross-sectional study was conducted from February to March 2014 among six woredas of the East Hararghe Zone, Ethiopia. The data were collected from 2,319 households using structured questionnaires. A total of 12 well trained data collectors conducted a face-to-face interview with the head female of each household. The data entered on Epi-Data version 3 were then exported for analysis on STATA version 11. Results Multivariable logistic regression showed that among the 1,967 (92.7%) study participants who scored above the mean value in regard to the overall knowledge of HIV/AIDS, study participants who could read/write (adjusted odd ratios [AOR] =2.54, 95% confidence interval [CI]: 1.15–5.61, P=0.021) and worked as a daily laborer (AOR =0.40, 95% CI: 0.17–0.91, P=0.029) were significantly associated with comprehensive knowledge about HIV/AIDS. Meanwhile, out of the 2,172 eligible study participants for the malaria interview, 934 (43%) scored above the mean in regard to the overall knowledge about malaria. Rural residents (AOR =0.27, 95% CI: 0.17–0.44, P45 years of age (AOR =1.44, 95% CI: 1.04–1.99, P=0.030), and single marital status (AOR =3.81, 95% CI: 1.97–7.37, P<0.005) were significantly associated with comprehensive knowledge about malaria. Conclusion Based on the findings of this study, health extension workers

  3. The 1996 Mw 6.6 Lijiang earthquake: Application of JERS-1 SAR interferometry on a typical normal-faulting event in the northwestern Yunnan rift zone, SW China

    Science.gov (United States)

    Ji, Lingyun; Wang, Qingliang; Xu, Jing; Feng, Jiangang

    2017-09-01

    The northwestern Yunnan rift zone in the Yunnan Province of China is a seismically active region located along the western boundary of the Sichuan-Yunnan Block on the eastern margin of the Qinghai-Tibetan Plateau. An earthquake with a magnitude of 6.6 (Mw) occurred in this region on February 3, 1996. The Lijiang earthquake was the largest normal-faulting event to occur along the western boundary of the Sichuan-Yunnan Block in the last 40 years. In this study, we used L-band JERS-1 (Japanese Earth Resources Satellite-1) SAR data sets from two descending orbits to detect surface deformation signals surrounding the epicentral region in order to estimate the source parameters through an inversion of the displacement fields. The results indicated that the earthquake can be explained by slip along two segments of the ∼N-S trending listric normal fault, named the Lijiang-Daju fault. Coseismic deformation patterns and slip distributions revealed that the earthquake consisted of two sub-events, which were also suggested by seismological results. Based on an analysis of the static Coulomb stress change, the second sub-event was likely triggered by the first sub-event. The central segment of the Lijiang-Daju fault, which has an eastward-convex geometry, did not rupture during the earthquake. This phenomenon was probably related to a geometrical discontinuity at the fault-bend area of the Lijiang-Daju fault.

  4. On the Interaction of a Vigorous Hydrothermal System with an Active Magma Chamber: The Puna Magma Chamber, Kilauea East Rift, Hawaii

    Science.gov (United States)

    Gregory, R. T.; Marsh, B. D.; Teplow, W.; Fournelle, J.

    2009-12-01

    of dacitic composition of ~67 wt.% SiO2. The melt flowed up the borehole, quenched, and was repeatedly re-drilled over a depth interval of ~8 m, producing several kilograms of clear, colorless vitric cuttings. The melt is of low crystallinity, vesicle-free, at a minimum temperature of ~865°C, and with an apparent viscosity of ~106.5 Pa-s. The magma is separated from the deepest hydrothermal regime at 356°C by 526 m of sealed rock. Heat flux from the magma into the overlying geothermal reservoir at ~2784 mW/m2 is an order of magnitude greater than that for mid-ocean ridges. Typical Hawaiian basalt contains ~0.25 wt.% water. The dacite melt contains ~2.44 wt.% water, and is of normal magmatic δ18O (5.4 ‰) and δD (-61.8‰), which is in contrast to the surrounding hydrothermal waters. A similar preliminary analysis of the water content in the altered basalt just outside the sealed zone shows it to heavily hydrated (~4.94 wt.%) and altered by the hydrothermal field. This suggests that volatile under-saturated magmas are sealed with respect to hydrothermal fields and deeper systems may be even more strongly sealed.

  5. Kinematics of the South Atlantic rift

    Directory of Open Access Journals (Sweden)

    C. Heine

    2013-01-01

    Full Text Available The South Atlantic rift basin evolved as branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final breakup of western Gondwana. While the relative motions between South America and Africa for post-breakup times are well resolved, many issues pertaining to the fit reconstruction and particular the relation between kinematics and lithosphere dynamics during pre-breakup remain unclear in currently published plate models. We have compiled and assimilated data from these intraplated rifts and constructed a revised plate kinematic model for the pre-breakup evolution of the South Atlantic. Based on structural restoration of the conjugate South Atlantic margins and intracontinental rift basins in Africa and South America, we achieve a tight fit reconstruction which eliminates the need for previously inferred large intracontinental shear zones, in particular in Patagonian South America. By quantitatively accounting for crustal deformation in the Central and West African rift zone, we have been able to indirectly construct the kinematic history of the pre-breakup evolution of the conjugate West African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic Pre-salt sag basin and the São Paulo High. We model an initial E–W directed extension between South America and Africa (fixed in present-day position at very low extensional velocities until Upper Hauterivian times (≈126 Ma when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial ≈17 Myr-long stretching episode the Pre-salt basin width on the conjugate Brazilian and West African margins is generated. An intermediate stage between 126.57 Ma and Base Aptian is characterised by strain localisation, rapid lithospheric weakening in the

  6. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence

    Science.gov (United States)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-05-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  7. Evaluating the patterns of spatiotemporal trends of root zone soil moisture in major climate regions in East Asia

    Science.gov (United States)

    Zohaib, Muhammad; Kim, Hyunglok; Choi, Minha

    2017-08-01

    Root zone soil moisture (RZSM) is a crucial variable in land-atmosphere interactions. Evaluating the spatiotemporal trends and variability patterns of RZSM are essential for discerning the anthropogenic and climate change effects on the regional and global hydrological cycles. In this study, the trends of RZSM, computed by the exponential filter from the European Space Agency's Climate Change Initiative soil moisture, were evaluated in major climate regions of East Asia from 1982 to 2014. Moreover, the trends of RZSM were compared to the trends of precipitation (P), skin temperature (Tskin), and actual evapotranspiration (AET) to investigate how they influence the RZSM trends in each climate region. Drying trends were predominant in arid and continental regions, whereas wetting trends were found in the tropical and temperate regions. The increasing trends of Tskin and AET cause drying in arid and continental regions, whereas in tropical regions, these cause wetting trends, which might be due to convective P. In temperate regions, despite decreasing P and increasing Tskin, the RZSM trend was increasing, attributed to the intensive irrigation activities in these regions. This is probably the first time to analyze the long-term trends of RZSM in different climate regions. Hence, the results of this study will improve our understanding of the regional and global hydrological cycles. Despite certain limitations, the results of this study may be useful for improving and developing climate models and predicting long-term vast scale natural disasters such as drought, dust outbreaks, floods, and heat waves.

  8. Augmented Reality Oculus Rift

    OpenAIRE

    Höll, Markus; Heran, Nikolaus; Lepetit, Vincent

    2016-01-01

    This paper covers the whole process of developing an Augmented Reality Stereoscopig Render Engine for the Oculus Rift. To capture the real world in form of a camera stream, two cameras with fish-eye lenses had to be installed on the Oculus Rift DK1 hardware. The idea was inspired by Steptoe \\cite{steptoe2014presence}. After the introduction, a theoretical part covers all the most neccessary elements to achieve an AR System for the Oculus Rift, following the implementation part where the code ...

  9. Geothermal resources of rifts: A comparison of the rio grande rift and the salton trough

    Science.gov (United States)

    Swanberg, Chandler A.

    1983-05-01

    The Rio Grande Rift and the Salton Trough are the best developed rift systems in the United States and both share many features common to rifts in general, including geothermal resources. These two rifts have different tectonic and magmatic histories, however, and these differences are reflected in the nature of their geothermal resources. The Salton Trough is a well developed and successful rift. It is the landward extension of the Gulf of California spreading center, which has separated Baja, California, from the remainder of Mexico. Quaternary silicic magmatization has occurred and several of the geothermal resources are associated with recent rhyolitic intrusions. Such resources tend to be high temperature (> 200°C). Greenschist facies metamorphism has been observed in several of the geothermal wells. Localized upper crustal melting is a distinct possibility and there is increasing speculation that very high temperature (> 300°C) geothermal fluids may underlie a large portion of the central trough at depths in excess of 4 km. Low temperature geothermal resources associated with shallow hydrothermal convection are less common and tend to be located on the flanks of the trough or in the Coachella Valley to the north of the zone of active rifting. In contrast, the Rio Grande Rift is less well developed. Recent volcanism consists primarily of mantle-derived basalts, which have not had sufficient residence time within the crust to generate significant crustal melting. The geothermal resources within the Rio Grande Rift do not correlate well with these young basalts. Rather, the quantity of geothermal resources are low temperature (geothermal exploration targets.

  10. Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    RSI

    2008-03-01

    The purpose of this Phased Construction Completion Report (PCCR) is to present the fiscal year (FY) 2007 results of characterization activities and recommended remedial actions (RAs) for 11 exposure units (EUs) in Zone 2 (Z2-01, Z2-03, Z2-08, Z2-23, Z2-24, Z2-28, Z2-34, Z2-37, Z2-41, Z2-43, and Z2-44) at the East Tennessee Technology Park (ETTP), which is located in the northwest corner of the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee (Fig. 1). ETTP encompasses a total land area of approximately 5000 acres that has been subdivided into three zones--Zone 1 ({approx}1400 acres), Zone 2 ({approx}800 acres), and the Boundary Area ({approx}2800 acres). Zone 2, which encompasses the highly industrialized portion of ETTP shown in Fig. 1, consists of all formerly secured areas of the facility, including the large processing buildings and direct support facilities; experimental laboratories and chemical and materials handling facilities; materials storage and waste disposal facilities; secure document records libraries; and shipping and receiving warehouses. The Zone 2 Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005) (Zone 2 ROD) specifies the future end use for Zone 2 acreage as uncontrolled industrial for the upper 10 ft of soils. Characterization activities in these areas were conducted in compliance with the Zone 2 ROD and the Dynamic Verification Strategy (DVS) and data quality objectives (DQOs) presented in the Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2007) (Zone 2 RDR/RAWP). The purpose of this PCCR is to address the following: (1) Document DVS characterization results for the accessible EUs in FY 2007; (2) Describe and document the risk evaluation for each EU, and determine if the EU met the Zone 2 ROD requirements

  11. Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho

    Science.gov (United States)

    Drew, Dana L.; Bindeman, Ilya N.; Watts, Kathryn E.; Schmitt, Axel K.; Fu, Bin; McCurry, Michael

    2013-01-01

    followed by rapid batch assembly prior to eruption. However, due to the greater abundance of low-δ18O rhyolites at Picabo, the eruptive framework may reflect an intertwined history of caldera collapse and coeval Basin and Range rifting and hydrothermal alteration. We speculate that the source rocks with pre-existing low-δ18O alteration may be related to: (1) deeply buried and unexposed older deposits of Picabo-age or Twin Falls-age low-δ18O volcanics; and/or (2) regionally-abundant late Eocene Challis volcanics, which were hydrothermally altered near the surface prior to or during peak Picabo magmatism. Basin and Range extension, specifically the formation of metamorphic core complexes exposed in the region, could have facilitated the generation of low-δ18O magmas by exhuming heated rocks and creating the large water-rock ratios necessary for shallow hydrothermal alteration of tectonically (rift zones) and volcanically (calderas) buried volcanic rocks. These interpretations highlight the major processes by which supereruptive volumes of magma are generated in the SRP, mechanisms applicable to producing rhyolites worldwide that are facilitated by plume driven volcanism and extensional tectonics.

  12. Kinematics of the South Atlantic rift

    CERN Document Server

    Heine, Christian; Müller, R Dietmar

    2013-01-01

    The South Atlantic rift basin evolved as branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final breakup of western Gondwana. By quantitatively accounting for crustal deformation in the Central and West African rift zone, we indirectly construct the kinematic history of the pre-breakup evolution of the conjugate West African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic Pre-salt sag basin and the S\\~ao Paulo High. We model an initial E-W directed extension between South America and Africa (fixed in present-day position) at very low extensional velocities until Upper Hauterivian times ($\\approx$126 Ma) when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial $\\approx$17 Myr-long stretching episode the Pre-salt basin width on the conjugate Br...

  13. Lithospheric thinning beneath rifted regions of Southern California.

    Science.gov (United States)

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.

  14. [Specific Features of Radioactive Pollution of Soils of Catchment Areas of Lake Shablish (Distant Zone of the East Ural Radioactive Trace)].

    Science.gov (United States)

    Deryagin, V V; Levina, S G; Sutyagin, A A; Parfilova, N S

    2015-01-01

    Specific features of 90Sr and 137Cs distribution and accumulation in soil cuts of superaqueous and eluvial positions of catchment areas of Lake Shablish located in a distant zone of the East Ural radioactive trace are considered. Some physical and chemical characteristics of the soils were defined. It is established that the signs typical for the lake ecosystems of distant East-Ural radioactive trace zone which underwent impact of technogenic influence are common for soils of catchment areas of Lake Shablish. The distinctions in some characteristic features of the specific activity of long-living radionuclides for the soils of superaqueous and eluvial positions of catchment areas connected with the character of the water regime of soils are shown.

  15. The metallogenic role of east-west fracture zones in South America with regard to the motion of lithospheric plates (with an example from Brazil)

    Science.gov (United States)

    Kutina, J.; Carter, William D.; Lopez, F.X.

    1978-01-01

    The role of east-west fracture zones in South America is discussed with regard to global fracturing and the motion of lithospheric plates. A set of major NW-trending lineaments has been derived which show a tendency to be spaced equidistantly and may correspond to a set of east-west fractures in the "pre-drift" position of the South American plate. Statistical analysis of linears in the ERTS-mosaics shows that NW-fractures are also among the most important ones in the Andes region, suggesting that the above major lineaments extend into the basement of the Andes. Some of the old major fractures, trending east-west in the present orientation of South America, are discussed and their NE orientation in the pre-drift position of the plate is considered. An example of structural control of ore deposition in the Brazilian Shield is presented, using the maps of the RADAM Project. It is concluded that the small tin-bearing granitic bodies concentrated in the region of Sao Felix do Xingu in the state of Para represent upper parts of an unexposed granitoid massif which is controlled by the intersection of a major east-west fracture zone probably represents westward extension of the Patos Lineament of the easternmost part of Brazil, connected with the east-west fracture zone of the Para state through the basement of the Maranhao Basin (Sineclise do Maranhao-Piaui). It is expected that the proposed "Patos-Para Lineament" extends further westward and may similarly control, at intersections with fractures of other trends, some mineralization centers in the western part of the state of Para and in the state of Amazonas.

  16. Transfer/transform relationships in continental rifts and margins and their control on syn- and post-rift denudation: the case of the southeastern Gulf of Aden, Socotra Island, Yemen

    Science.gov (United States)

    Pik, Raphael; Bellahsen, Nicolas; Leroy, Sylvie; Denele, Yoann; Razin, Philippe; Ahmed, Abdulhakim; Khanbari, Khaled

    2013-04-01

    Transfer zones are ubiquist features in continental rifts and margins, as well as transform faults in oceanic lithosphere. Here, we present the structural study of such a structure (the Hadibo Transfer Zone, HTZ) from the southeastern Gulf of Aden, in Socotra Island, Yemen. There, from field data, the HTZ is interpreted as being reactivated, obliquely to divergence, since early rifting stages. Then, from a short review of transfer/transform fault zone geometries worldwide, we derive a classification in terms of relative importance (1st, 2nd, 3rd order), geometry, and location. We suggest that the HTZ is a 1st order transfer fault zone as it controls the initiation of a 1st order oceanic transform fault zone. We then investigate the denudation history of the region surrounding the HTZ in order to highlight the interplay of normal and transfer/transform tectonic structures in the course of rift evolution. Samples belong from two distinct East and West domains of the Socotra Island, separated by the (HTZ). Tectonic denudation started during the Priabonian-Rupelian along flat normal faults and removed all the overlying sedimentary formations, allowing basement exhumation up to the surface (~ 1.2 - 1.6 km of exhumation). Forward t-T modelling of the data requires a slightly earlier date and shorter period for development of rifting in the E-Socotra domain (38 - 34 Ma), compared to the W-Socotra domain (34 - 25 Ma), which suggests that the HTZ was already active at that time. A second major event of basement cooling and exhumation (additional ~ 0.7 - 1 km), starting at about ~ 20 Ma, has only been recorded on the E-Socotra domain. This second denudation phase significantly post-dates local rifting period but appears synchronous with Ocean Continent Transition (OCT: 20 - 17.6 Ma). This late syn-OCT uplift is maximum close to the HTZ, in the wedge of hangingwall delimited by this transfer system and the steep north-dipping normal faults that accommodated the vertical

  17. The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions

    Science.gov (United States)

    Pouclet, A.; Bellon, H.; Bram, K.

    2016-09-01

    The Kivu rift is part of the western branch of the East African Rift system. From Lake Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures which developed during the late Cenozoic rifting and controlled the volcanic activity. From Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern. Development of tension gashes in the Virunga area indicates a clockwise rotation of the constraint linked to dextral oblique motion of crustal blocks. The extensional direction was W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time. The volcanic rocks are assigned to three groups: (1) tholeiites and sodic alkali basalts in the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu magmas were generated by melting of spinel + garnet lherzolite from two sources: an enriched lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The latter source was implied in the genesis of the tholeiitic lavas at the beginning of the South-Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the asthenospheric contribution and a change of the rifting process. The sodic nephelinites of the northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-continental mantle due to pressure release during swell initiation. The Virunga potassic magmas resulted from the melting of garnet peridotite with an increasing degree of melting from nephelinite to basanite. They originated from a lithospheric source enriched in both K and Rb, suggesting the

  18. Sutures, Sinkers, Shear zones and Sills: Cryptic Targets and Explicit Strategies for EARTHSCOPE FlexArray in the East

    Science.gov (United States)

    Brown, L. D.

    2006-05-01

    Given the 3D framework represented by EarthScope's USArray as it scans eastward, the strategic challenge falls to defining cost-effective deployments of FlexArray to address specific lithospheric targets. Previous deep geophysical surveys (e.g. COCORP, USGS, GLIMPCE, et al.) provide guidance not only in framing the geological issues involved, but in designing field experiments that overcome the limitations of previous work. Opportunities highlighted by these precursor studies include: a) Collisional sutures (e.g. Brunswick Anomaly/Suwannee terrane) which lie buried beneath overthrust terranes/ younger sedimentary covers. Signal penetration in previous controlled source surveys has been insufficient. High resolution passive surveys designed to map intralithospheric detachments, Moho, and mantle subduction scars is needed to validate the extrapolations of the existing upper crustal information; b) Intracratonic basins and domes (e.g. Michigan Basin, Adirondack Dome) are perhaps the greatest geological mystery hosted in the east. Previous geophysical studies have lacked the resolution or penetration needed to identify the buoyancy drivers presumed to be responsible for such structures. It is likely that these drivers lie in the upper mantle and will require detailed velocity imaging to recognized. c) Distributed shear fabrics are a defining characteristic of the deep crust in many deformation zones (e.g. Grenville Front). Detailed mapping of crustal anisotropy associated with such shear zones should help delineate ductile flow directions associated with the orogenies that accreted the eastern U.S. 3 component, 3D active+passive surveys are needed to obtain definitive remote measures of such vector characteristics in the deep crust. d) Extensive reflectors in the central U.S. may mark important buried Precambrian basins and/or sill complexes. If the latter, the magmatic roots of those systems remain unrecognized, as does their volumetric contribution to crustal growth

  19. Socio-economic impacts of Parthenium hysterophorus L. in East Shewa and West Arsi zones of Ethiopia

    Directory of Open Access Journals (Sweden)

    Niguse Hundessa

    2016-12-01

    Full Text Available Parthenium hysterophorus L. is non-native invasive plant species belongs to the family Asteraceae. Currently it is a notorious weed in Ethiopia. Socio-economic impacts as well as the local people’s perception towards P. hysterophorus are poorly understood. Thus, the aim of this study was to generate information for a better understanding of the means of dispersal, source introduction and socio-economic impacts, of P. hysterophorus in East shewa and West arsi Zones of the Oromia Regional State of Ethiopia. The study revealed that parthenium was introduced mainly by following vehicles road and railways. This weed grows throughout the year. This results in its fast dispersal. Many mechanisms were assumed by respondents for fast distribution of P. hysterophorus in the study zones. Among these vehicles and wind are the major agents, which proliferate the seeds of the weed. Based on the study it grows in roadsides, grazing land, cropland, village sides and wastelands. Most of respondents also indicated that the weed first appeared on roadside and propagated to other habitats. This finding indicated that the weed high in disturbed habitats. Control methods, which are mostly practiced by local people, were tillage and hand weeding. However, these methods were not an efficient to control the weed distribution; rather it is expanding from time to time since its invasions. P. hysterophorus has a number of socioeconomic impacts that include effect on crop and livestock production, human health, soil fertility and biodiversity. This finding showed that it competes and suppress the growth of crops due its allelopathic nature. Seeds of this weed changes the normal flavor of food when mix with it. It also colonized grazing fields, thus causing animal food scarcity, animals’ health defect. This finding also reported that P. hysterophorus has health hazards on human being, which include allergic, skin itching (irritation, cough and hemorrhage. Generally, P

  20. Community knowledge and the role of health extension workers on integrated diseases among households in East Hararghe Zone, Ethiopia

    Directory of Open Access Journals (Sweden)

    Seyoum A

    2016-07-01

    Full Text Available Ayichew Seyoum,1 Kedir Urgessa,1 Tesfaye Gobena2 1Department of Medical Laboratory Sciences, 2Department of Environmental Health Sciences, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia Background: Ethiopia constitutes approximately 1% of the world’s population but it contributes to 7% of the world’s HIV/AIDS cases. Malaria is the most important disease of humans in terms of mortality, morbidity, and long-term effects upon quality of life, especially in Ethiopia. Despite the ongoing efforts and progress in fighting HIV/AIDS and malaria, these diseases remain the leading cause of morbidity and mortality in the country. In this study, we assessed community knowledge and the role of health extension workers on integrated diseases among households in East Hararghe Zone, Ethiopia. Methods: A community-based multistage stratified cross-sectional study was conducted from February to March 2014 among six woredas of the East Hararghe Zone, Ethiopia. The data were collected from 2,319 households using structured questionnaires. A total of 12 well trained data collectors conducted a face-to-face interview with the head female of each household. The data entered on Epi-Data version 3 were then exported for analysis on STATA version 11. Results: Multivariable logistic regression showed that among the 1,967 (92.7% study participants who scored above the mean value in regard to the overall knowledge of HIV/AIDS, study participants who could read/write (adjusted odd ratios [AOR] =2.54, 95% confidence interval [CI]: 1.15–5.61, P=0.021 and worked as a daily laborer (AOR =0.40, 95% CI: 0.17–0.91, P=0.029 were significantly associated with comprehensive knowledge about HIV/AIDS. Meanwhile, out of the 2,172 eligible study participants for the malaria interview, 934 (43% scored above the mean in regard to the overall knowledge about malaria. Rural residents (AOR =0.27, 95% CI: 0.17–0.44, P<0.005, >45 years of age (AOR =1.44, 95

  1. Argon systematics of neutron irradiated submarine basalt glasses from the deep south rift zone of Loihi seamount and the {sup 40}Ar/{sup 36}Ar ratio of the Hawaiian plume source

    Energy Technology Data Exchange (ETDEWEB)

    Trieloff, M.; Falter, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Jessberger, E.K. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)]|[Muenster Univ. (Germany). Inst. fuer Planetologie

    1998-12-31

    Submarine basalt glasses from Loihi seamount dredged at the southern rift zone between 3 and 5 km depth were studied. These glasses contain neon with the highest {sup 20}Ne/{sup 22}Ne ratios measured so far in submarine volcanics and constrain a well defined correlation line in a Ne-3-isotope plot (Valbracht et al., 1997). Within this study that focussed on argon isotopes an increased resolution regarding temperature and crushing steps was used: High {sup 40}Ar/{sup 36}Ar ratios at intermediate temperatures and in several crushing steps were measured which are related to argon from vesicle populations containing the most pristine mantle signature. This argon is highly improbable to be related to olivine phenocrysts and a possible contamination by MORB type noble gases. Our best constraint on the argon isotopic composition of the Loihi glasses is {sup 40}Ar/{sup 36}Ar=6590{+-}840, providing a lower limit of >5750 for the Hawaiian lower mantle source, further attesting its partially degassed nature concerning primordial noble gases. The argon distribution in the investigated Loihi glasses shows characteristic features very similar to MORB glasses. The isotopic composition of vesicle argon released by crushing covers the complete range between the atmospheric and the mantle endmember. In low vesicularity glasses mantle argon shows a nearly perfect correlation with the glass dissolved, neutron induced argon isotopes in the course of stepheating, while in glasses of higher vesicularity mantle argon partitioned into the vesicles. This is independently confirmed by the comparison of the argon yield by crushing and heating. On the other hand, the stepheating release pattern of the atmospheric component does hardly correlate with glass dissolved argon, independent on vesicularity. A significant fraction of the atmospheric contaminant is related to vesicles and pyroxene microlites, and is moreover associated with microdefects or, alternatively, is inhomogeneously distributed

  2. Seismic multi-arch structures in East China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In previous papers (Wencai, 2002, 2003), the author has analyzed the deep seismic reflection profiles along some of the Mesozoic plutons in East China, and has pointed out that the crustal structures around these intrusions usually correlate with a special seismic fabric called the seismic multi-arch structure. This paper will continue to show main characteristics of the seismic multi-arch structures and discuss their relationship with mantle-origin magmatism and the lithospheric thinning process. Calibration of seismic reflectors in Chinese continental drilling sites shows that small-scale arch-like reflectors can be generated by fractured eclogites or other plutons, they do not belong to the multi-arch structure specially discussed in the paper. The multi-arch structure is characterized by several arch-like reflectors distributed in both the upper and lower crust with granitoid plutons or stocks exposed on the surface, which do not have obvious negative Europium anomalies. Based on the distribution pattern of arch reflectors, the multi-arch magmatic structures can be divided into three main types, namely the simple vertical combination type, the spread arch magmatic structure and the arch-bouquet structure. All of them correlate to mantle-origin magmatism, but occur in different places. The spread arch magmatic structures occur within a Mesozoic/Cenozoic rift zone with very thin and hot lithosphere. The vertical combination type of the multi-arch structures occurred near the rift zones where lithosphere was thin and hot. The arch-bouquet magmatic structures occur far from the rift zones where the lithosphere is not hot. The continental rifting acted as the late episode of the lithospheric thinning process seeing that the rift zones usually coincide with the thinnest parts of the lithosphere in East China. In different locations within the lithospheric thinning areas, mantle-origin magmatic activities have different characteristics, which might generate different

  3. New insights into continental rifting from a damage rheology modeling

    Science.gov (United States)

    Lyakhovsky, Vladimir; Segev, Amit; Weinberger, Ram; Schattner, Uri

    2010-05-01

    Previous studies have discussed how tectonic processes could produce relative tension to initiate and propagate rift zones and estimated the magnitude of the rift-driving forces. Both analytic and semi-analytic models as well as numerical simulations assume that the tectonic force required to initiate rifting is available. However, Buck (2004, 2006) estimated the minimum tectonic force to allow passive rifting and concluded that the available forces are probably not large enough for rifting of thick and strong lithosphere in the absence of basaltic magmatism (the "Tectonic Force" Paradox). The integral of the yielding stress needed for rifting over the thickness of the normal or thicker continental lithosphere are well above the available tectonic forces and tectonic rifting cannot happen (Buck, 2006). This conclusion is based on the assumption that the tectonic stress has to overcome simultaneously the yielding stress over the whole lithosphere thickness and ignore gradual weakening of the brittle rocks under long-term loading. In this study we demonstrate that the rifting process under moderate tectonic stretching is feasible due to gradual weakening and "long-term memory" of the heavily fractured brittle rocks, which makes it significantly weaker than the surrounding intact rock. This process provides a possible solution for the tectonic force paradox. We address these questions utilizing 3-D lithosphere-scale numerical simulations of the plate motion and faulting process base on the damage mechanics. The 3-D modeled volume consists of three main lithospheric layers: an upper layer of weak sediments, middle layer of crystalline crust and lower layer of the lithosphere mantle. Results of the modeling demonstrate gradual formation of the rift zone in the continental lithosphere with the flat layered structure. Successive formation of the rift system and associated seismicity pattern strongly depend not only on the applied tectonic force, but also on the healing

  4. Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone (Évora Aracena metamorphic belt, SW Iberian Massif): Sm Nd isotopes and SHRIMP zircon U Th Pb geochronology

    Science.gov (United States)

    Chichorro, M.; Pereira, M. F.; Díaz-Azpiroz, M.; Williams, I. S.; Fernández, C.; Pin, C.; Silva, J. B.

    2008-12-01

    The Late Ediacaran (c. 560-550 Ma) Série Negra sediments of the Évora-Aracena metamorphic belt, Ossa-Morena Zone, SW Iberian Massif, preserve a record of the erosion of an Avalonian-Cadomian magmatic arc and subsequent related turbiditic sedimentation. Detrital zircon from the Série Negra is characterized by predominantly Ediacaran and Cryogenian ages, with few Paleoproterozoic and Archean cores, and a marked lack of Grenvillian ages. These features, when combined with the metasediments' enrichment in LREE (La/Yb = 14), negative Eu-anomalies, low 147Sm/ 144Nd values (0.121) and negative ɛNd 550 = - 5.5, indicate that the protolith Série Negra sediments were derived from a continental magmatic arc. A period of Late Cadomian (ca. 560-540 Ma) tectonism was followed by an extended episode of widespread bimodal magmatism related to Cambrian (ca. 540-500 Ma) rifting. This tectonic inversion is expressed in the geological record by a regional Early Cambrian unconformity. SHRIMP zircon U-Th-Pb ages from four felsic orthogneisses from the Évora Massif record Cambrian (527 ± 10 Ma, 522 ± 5 Ma, 517 ± 6 Ma and 505 ± 5 Ma) crystallization ages for their igneous protoliths. This confirms the existence of widespread Lower Paleozoic igneous activity in the Ossa-Morena Zone: (i) a Lower Cambrian (ca. 535-515 Ma) igneous-felsic dominated-sedimentary complex (with calc-alkaline signature and associated carbonate and siliciclastic deposition), and (ii) a Middle Cambrian-?Ordovician (ca. 515-490 Ma) igneous-bimodal-sedimentary complex (with calc-alkaline and tholeiitic signatures and associated dominant siliciclastic deposition, but also carbonate sediments). The Cambrian felsic magmatism was characterized by negative Eu-anomalies, (La/Lu) N = 0.8-11, 147Sm/ 144Nd = 0.1289-0.1447 and ɛNd 500 ranging from - 1.5 to - 0.8. A tendency towards peraluminous compositions suggests late fractionation, low degrees of partial melting, or the mixing of crustal and mantle

  5. Facies, stratal and stacking patterns of syn-rift sequences along present-day and fossil hyperextended rifted margins

    Science.gov (United States)

    Ribes, Charlotte; Epin, Marie-Eva; Gillard, Morgane; Chenin, Pauline; Ghienne, Jean-Francois; Manatschal, Gianreto; Karner, Garry D.; Johnson, Christopher A.

    2017-04-01

    Research on the formation and evolution of deep-water rifted margins has undergone a major paradigm shift in recent years. An increasing number of studies of present-day and fossil rifted margins allows us to identify and characterize the architecture of hyperextended rifted margins. However, at present, little is known about the depositional environments, sedimentary facies and stacking and stratal patterns in syn-rift sequences within these domains. In this context, characterizing and understanding the spatial and temporal evolution of the stratal and stacking patterns is a new challenge. The syn-rift sequence at rifted margins is deposited during the initial stages of stretching to the onset of oceanic accretion and comprises pre-, syn- and post-kinematic deposits along the margin. A difficulty arises from the fact that the observed stratigraphic geometries and facies relationships result from the complex interplay between sediment supply and creation of accommodation, which in turn are controlled by regional synchronous events (i.e. crustal necking and onset of seafloor spreading) and diachronous events (i.e. migration of deformation during rifting, lags in sediment input to the distal margin). These parameters are poorly constrained in hyperextended rift systems. Indeed, the complex structural evolution of hyperextended systems include an evolution from initially distributed to localized extension (i.e. necking) and the development of poly-phase in-sequence and/or out of sequence extensional faulting associated with mantle exhumation and magmatic activity. This multiphase structural evolution can generate complex accommodation patterns over a highly structured top basement but can only be recognized if there is sufficient sediment input to record the events. In our presentation, we show preliminary results for fossil Alpine Tethys margins exposed in the Alps and seismic examples of the present-day deep water rifted margins offshore Australian-Antarctica, East

  6. Has The Sea Changed? Qualitative Analyses on the Views of Fishermen in the east coast zone of Peninsular

    Directory of Open Access Journals (Sweden)

    Hayrol A.M. Shaffril

    2011-01-01

    Full Text Available Problem statement: Pressure from the uncontrolled human activities has caused damages to our environment. The sea, as one of the environment components has also suffered from these activities. Fishermen, whom depend on the sea for their income and sources of protein, can be one of the groups who are suffering the most. This study intends to discover the perception of this group on the current situation of the sea, their perception on the quantity and the quality of the sea fauna, their perception on the possible factors that contribute to these changes and the impacts of these changes on their socio-economic activities. Approach: This is a qualitative study whereby four in-depth interviews were conducted with the fishermen of the east coast zone of Peninsular Malaysia whom their main fishing area is on the South China Sea. The data then were transcribed verbatim and analyzed. Results: Data gained have proven that the fishermen agreed that the current situation on the South China Sea is not anymore similar to their early day as a fisherman. The weather nowadays is difficult to be predicted as there are changes in the trend of sea current, waves and temperature. They also agreed that the quality and the quantity of the flora and fauna in their catching areas are lesser compared to the past. According to them, there are number of possibilities that can contribute to these changes which are illegal bottom trawling, foreign fishermen intrusion, climate change and fishing pressure. All of these according to them are affecting their socio-economic activities. Conclusion/Recommendation: Based on the data gained, it is recommended that more monitoring programs can be conducted to reduced illegal bottom trawling activities; Program such as Rakan Cop which is introduced by Royal Police of Malaysia can be practiced among the concern agencies and fishermen. Furthermore, a number of programs to increase awareness among the fishermen on the danger of illegal

  7. Linking deep earth to surface processes in the Woodlark Rift of Papua New Guinea; a framework for understanding (U)HP exhumation globally

    Science.gov (United States)

    Baldwin, S.; Fitzgerald, P. G.; Bermudez, M. A.; Webb, L. E.; Moucha, R.; Miller, S. R.; Catalano, J. P.; Zirakparvar, N. A.

    2012-12-01

    During the Cenozoic the leading edge of the AUS plate was subducted northwards beneath the forearc of oceanic island arc(s), during its north-northeast passage over a complexly structured mantle. Sediments and basalts were metamorphosed under (U)HP conditions to form blueschists and eclogites, and lower-grade metamorphic rocks that are now exposed throughout New Guinea, primarily south of, and structurally beneath, obducted ophiolites. In the Woodlark Rift the youngest (2-8 Ma) (U)HP rocks on Earth were exhumed from mantle depths (>90 km) at plate tectonic rates (1-4 cm yr-1) west of the active Woodlark Basin seafloor spreading center rift tip. How these (U)HP rocks were exhumed is the focus of an ongoing collaborative multidisciplinary project which aims to understand linkages between deep earth, plate tectonic, and surface processes in the Woodlark Rift. Since the Late Miocene, a regionally extensive subduction complex was exhumed on the southern-rifted margin of the Woodlark Basin (Pocklington Rise), and in the lower plates of the D'Entrecasteaux, Misima, and Dayman dome metamorphic core complexes. Late Miocene-to-Pliocene metamorphism of sediments and basalts preceded diachronous exhumation from east to west, in the same direction as rift propagation. In contrast the northern-rifted margin (Woodlark Rise) comprises mid-Miocene to Pliocene volcanic flows and pyroclastic material ranging in composition from basalt to rhyolite, with capping limestone. The age of volcanic rocks on the northern-rifted margin also youngs from east to west. Pliocene to active syn-rift volcanism on the Woodlark Rise and in the D'Entrecasteaux Islands is synchronous with (U)HP exhumation, and results from decompression melting of a relict mantle wedge. As lithospheric extension proceeds, volcanic compositions evolve from subduction zone geochemical signatures (i.e., negative HFSE anomalies) toward E-MORB. Preliminary mantle convection models investigate large-scale background mantle

  8. Fundamental Flaws in the Architecture of the European Central Bank: The Possible End of the Euro Zone and its Effects to East African Community (EAC Countries

    Directory of Open Access Journals (Sweden)

    Nothando Moyo

    2014-09-01

    Full Text Available European countries embarked on a European integration programme that saw the formation of the Euro, which has emerged as a major currency (Blair, 1999 that was introduced in 1998. With the Euro, came the establishment of the European Central Bank. Thus this study seeks to investigate the flaws in the formation of the European Central Bank that surfaced during the major economic crisis in Europe. The crisis revealing the gaps in the formation and structure of the European central bank have created major challenges for the Economic and Monetary Union (EMU. Through an extant review of literature the study will examine the East African Community Countries, investigating the ties they have to the euro zone to analyse how the crisis has affected them. Furthermore, the study will analyse what would happen to the growth patterns of the East African Countries and the various prospects they may have should the Eurozone come to an end.

  9. Tectono-magmatic evolution of the younger Gardar southern rift, South Greenland

    Directory of Open Access Journals (Sweden)

    Brian G.J. Upton

    2013-11-01

    Full Text Available The 1300–1140 Ma Gardar period in South Greenland involved continental rifting, sedimentation and alkaline magmatism. The latest magmatism was located along two parallel rift zones, Isortoq–Nunarsuit in the north and the Tuttutooq–Ilimmaasaq–Narsarsuaq zone in the south addressed here. The intrusive rocks crystallised at a depth of <4 km and are essentially undisturbed by later events. Magmatism in the southern zone began with the emplacement of two giant, ≤800 m wide dykes and involved intrusion of transitional olivine basaltic, high Al/Ca magmas crystallising to troctolitic gabbros. These relatively reduced magmas evolved through marked iron enrichment to alkaline salic differentiates. In the Older giant dyke complex, undersaturated augite syenites grade into sodalite foyaite. The larger, c. 1163 Ma Younger giant dyke complex (YGDC mainly consists of structureless troctolite with localised developments of layered cumulates. A layered pluton (Klokkenis considered to be coeval and presumably comagmatic with the YGDC. At the unconformitybetween the Ketilidian basement and Gardar rift deposits, the YGDC expanded into a gabbroic lopolith. Its magma may represent a sample from a great, underplated mafic magma reservoir, parental to all the salic alkaline rocks in the southern rift. The bulk of these are silica undersaturated; oversaturated differentiates are probably products of combined fractional crystallisation and crustalassimilation.A major dyke swarm 1–15 km broad was intruded during declining crustal extension, with decreasing dyke widths and increasing differentiation over time. Intersection of the dyke swarm and E–W-trending sinistral faults controlled the emplacement of at least three central complexes (Narssaq, South Qôroq and early Igdlerfigssalik. Three post-extensional complexes (Tugtutôq,Ilímaussaq and late Igdlerfigssalik along the former rift mark the end of magmatism at c. 1140 Ma. The latter two complexes have

  10. Continental Rifts and Resources

    Science.gov (United States)

    Stein, Holly J.

    2017-04-01

    Nearly all resource-forming systems involve upward mobility of fluids and melts. In fact, one of the most effective means of chemically transforming the earth's crust can be readily observed in the rift environment. Imposition of rifting is based on deeper stresses that play out in the crust. At its most fundamental level, rifting transfers heat and fluids to the crust. Heat delivered by fluids aids both in transport of metal and maturation of hydrocarbons. The oxidizing capacity of fluids on their arrival in the deep crust, whether derived from old slabs, depleted upper mantle and/or deeper, more primitive mantle, is a fundamental part of the resource-forming equation. Oxidizing fluids transport some metals and breakdown kerogen, the precursor for oil. Reducing fluids transport a different array of metals. The tendency is to study the resource, not the precursor or the non-economic footprint. In doing so, we lose the opportunity to discover the involvement and significance of initiating processes; for example, externally derived fluids may produce widespread alteration in host rocks, a process that commonly precedes resource deposition. It is these processes that are ultimately the transferable knowledge for successful mineral and hydrocarbon exploration. Further limiting our understanding of process is the tendency to study large, highly complex, and economically successful ore-forming or petroleum systems. In order to understand their construction, however, it is necessary to put equal time toward understanding non-economic systems. It is the non-economic systems that often clearly preserve key processes. The large resource-forming systems are almost always characterized by multiple episodes of hydrothermal overprints, making it difficult if not impossible to clearly discern individual events. Understanding what geologic and geochemical features blocked or arrested the pathway to economic success or, even worse, caused loss of a resource, are critical to

  11. Fiscal Year 2008 Phased Construction Completion Report for EU Z2-33 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2008-09-11

    The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2161&D2) (Zone 2 ROD) acknowledged that most of the 800 acres in Zone 2 were contaminated, but that sufficient data to confirm the levels of contamination were lacking. The Zone 2 ROD further specified that a sampling strategy for filling the data gaps would be developed. The Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2224&D3) (Zone 2 RDR/RAWP) defined the sampling strategy as the Dynamic Verification Strategy (DVS), generally following the approach used for characterization of the Zone 1 exposure units (EUs). The Zone 2 ROD divided the Zone 2 area into seven geographic areas and 44 EUs. To facilitate the data quality objectives (DQOs) of the DVS process, the Zone 2 RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together and allowing identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program and remedial actions (RAs) were completed for EU Z2-33. Remedial action was also performed at two additional areas in adjacent EU Z2-42 because of their close proximity and similar nature to a small surface soil RA in EU Z2-33. Remedial actions for building slabs performed in EU Z2-33 during fiscal year (FY) 2007 were reported in the Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2723&D1). Recommended RAs for EU Z2-42 were described in the Fiscal Year 2006 Phased Construction

  12. Geophysical evidence of pre-sag rifting and post-rifting fault reactivation in the Parnaíba basin, Brazil

    Science.gov (United States)

    Lopes de Castro, David; Hilário Bezerra, Francisco; Adolfo Fuck, Reinhardt; Vidotti, Roberta Mary

    2016-04-01

    This study investigated the rifting mechanism that preceded the prolonged subsidence of the Paleozoic Parnaíba basin in Brazil and shed light on the tectonic evolution of this large cratonic basin in the South American platform. From the analysis of aeromagnetic, aerogravity, seismic reflection and borehole data, we concluded the following: (1) large pseudo-gravity and gravity lows mimic graben structures but are associated with linear supracrustal strips in the basement. (2) Seismic data indicate that 120-200 km wide and up to 300 km long rift zones occur in other parts of the basins. These rift zones mark the early stage of the 3.5 km thick sag basin. (3) The rifting phase occurred in the early Paleozoic and had a subsidence rate of 47 m Myr-1. (4) This rifting phase was followed by a long period of sag basin subsidence at a rate of 9.5 m Myr-1 between the Silurian and the late Cretaceous, during which rift faults propagated and influenced deposition. These data interpretations support the following succession of events: (1) after the Brasiliano orogeny (740-580 Ma), brittle reactivation of ductile basement shear zones led to normal and dextral oblique-slip faulting concentrated along the Transbrasiliano Lineament, a continental-scale shear zone that marks the boundary between basement crustal blocks. (2) The post-orogenic tectonic brittle reactivation of the ductile basement shear zones led to normal faulting associated with dextral oblique-slip crustal extension. In the west, pure-shear extension induced the formation of rift zones that crosscut metamorphic foliations and shear zones within the Parnaíba block. (3) The rift faults experienced multiple reactivation phases. (4) Similar processes may have occurred in coeval basins in the Laurentia and Central African blocks of Gondwana.

  13. North America's Midcontinent Rift: when Rift MET Lip

    Science.gov (United States)

    Stein, C. A.; Stein, S. A.; Kley, J.; Keller, G. R., Jr.; Bollmann, T. A.; Wolin, E.; Zhang, H.; Frederiksen, A. W.; Ola, K.; Wysession, M. E.; Wiens, D.; Alequabi, G.; Waite, G. P.; Blavascunas, E.; Engelmann, C. A.; Flesch, L. M.; Rooney, T. O.; Moucha, R.; Brown, E.

    2015-12-01

    Rifts are segmented linear depressions, filled with sedimentary and igneous rocks, that form by extension and often evolve into plate boundaries. Flood basalts, a class of Large Igneous Provinces (LIPs), are broad regions of extensive volcanism due to sublithospheric processes. Typical rifts are not filled with flood basalts, and typical flood basalts are not associated with significant crustal extension and faulting. North America's Midcontinent Rift (MCR) is an unusual combination. Its 3000-km length formed as part of the 1.1 Ga rifting of Amazonia (Precambrian NE South America) from Laurentia (Precambrian North America) and became inactive once seafloor spreading was established, but contains an enormous volume of igneous rocks. MCR volcanics are significantly thicker than other flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift geometry but a LIP's magma volume. Structural modeling of seismic reflection data shows an initial rift phase where flood basalts filled a fault-controlled extending basin, and a postrift phase where volcanics and sediments were deposited in a thermally subsiding basin without associated faulting. The crust thinned during rifting and rethickened during the postrift phase and later compression, yielding the present thicker crust. The coincidence of a rift and LIP yielded the world's largest deposit of native copper. This combination arose when a new rift associated with continental breakup interacted with a mantle plume or anomalously hot or fertile upper mantle. Integration of diverse data types and models will give insight into questions including how the magma source was related to the rifting, how their interaction operated over a long period of rapid plate motion, why the lithospheric mantle below the MCR differs only slightly from its surroundings, how and why extension, volcanism, and compression varied along the rift arms, and how successful seafloor spreading ended the rift phase. Papers

  14. Evolution of the Latir volcanic field, Northern New Mexico, and its relation to the Rio Grande Rift, as indicated by potassium-argon and fission track dating

    Science.gov (United States)

    Lipman, Peter W.; Mehnert, Harald H.; Naeser, Charles W.

    1986-05-01

    Remnants of the Latir volcanic field and cogenetic plutonic rocks are exceptionally exposed along the east margin of the present-day Rio Grande rift by topographic and structural relief in the Sangre de Cristo Mountains of northern New Mexico. Evolution of the magmatic system associated with the Latir field, which culminated in eruption of a regional ash flow sheet (the Amalia Tuff) and collapse of the Questa caldera 26 m.y. ago, has been documented by 74 new potassium-argon (K-Ar) and fission track (F-T) ages. The bulk of the precaldera volcanism, ash flow eruptions and caldera formation, and initial crystallization of the associated shallow granitic batholith took place between 28 and 25 Ma; economically important molybdenum mineralization is related to smaller granitic intrusions along the south margin of the Questa caldera at about 23 Ma. Interpretation of the radiogenic ages within this relatively restricted time span is complicated by widespread thermal resetting of earlier parts of the igneous sequence by later intrusions. Many samples yielded discordant ages for different mineral phases. Thermal blocking temperatures decrease in the order: K-Ar sanidine > K-Ar biotite > F-T zircon ≫ F-T apatite. The F-T results are especially useful indicators of cooling and uplift rates. Upper portions of the subvolcanic batholith, that underlay the Questa caldera, cooled to about 100°C within about a million years of emplacement; uplift of the batholith increases to the south along this segment of the Sangre de Cristo Mountains. Activity in the Latir volcanic field was concurrent with southwest directed extension along the early Rio Grande rift zone in northern New Mexico and southern Colorado. The geometry of this early rifting is compatible with interpretation as back arc extension related to a subduction system dipping gently beneath the cordilleran region of the American plate. The Latir field lies at the southern end of a southward migrating Tertiary magmatic

  15. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes

    Science.gov (United States)

    L., Passarelli; E., Rivalta; A., Shuler

    2014-01-01

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260

  16. Using earthquake clusters to identify fracture zones at Puna geothermal field, Hawaii

    Science.gov (United States)

    Lucas, A.; Shalev, E.; Malin, P.; Kenedi, C. L.

    2010-12-01

    The actively producing Puna geothermal system (PGS) is located on the Kilauea East Rift Zone (ERZ), which extends out from the active Kilauea volcano on Hawaii. In the Puna area the rift trend is identified as NE-SW from surface expressions of normal faulting with a corresponding strike; at PGS the surface expression offsets in a left step, but no rift perpendicular faulting is observed. An eight station borehole seismic network has been installed in the area of the geothermal system. Since June 2006, a total of 6162 earthquakes have been located close to or inside the geothermal system. The spread of earthquake locations follows the rift trend, but down rift to the NE of PGS almost no earthquakes are observed. Most earthquakes located within the PGS range between 2-3 km depth. Up rift to the SW of PGS the number of events decreases and the depth range increases to 3-4 km. All initial locations used Hypoinverse71 and showed no trends other than the dominant rift parallel. Double difference relocation of all earthquakes, using both catalog and cross-correlation, identified one large cluster but could not conclusively identify trends within the cluster. A large number of earthquake waveforms showed identifiable shear wave splitting. For five stations out of the six where shear wave splitting was observed, the dominant polarization direction was rift parallel. Two of the five stations also showed a smaller rift perpendicular signal. The sixth station (located close to the area of the rift offset) displayed a N-S polarization, approximately halfway between rift parallel and perpendicular. The shear wave splitting time delays indicate that fracture density is higher at the PGS compared to the surrounding ERZ. Correlation co-efficient clustering with independent P and S wave windows was used to identify clusters based on similar earthquake waveforms. In total, 40 localized clusters containing ten or more events were identified. The largest cluster was located in the

  17. Age, tectonic evolution and origin of the Aswa Shear Zone in Uganda: Activation of an oblique ramp during convergence in the East African Orogen

    Science.gov (United States)

    Saalmann, K.; Mänttäri, I.; Nyakecho, C.; Isabirye, E.

    2016-05-01

    The Aswa Shear Zone (ASZ) is a major NW-SE trending structure of over 1000 km length in East Africa. In Uganda, the ASZ is a steeply NE-dipping, up to 11 km wide mylonitic shear zone that shows multiple stage brittle reactivation. On outcrop-scale, the fabric in the ASZ is characterized by a well-developed NW-SE striking and subvertical or steeply NE or SW dipping mylonitic foliation and a subhorizontal to moderately NW- or SE-plunging stretching lineation. Sinistral kinematics and fabric are very consistent along strike. The strain is heterogeneously distributed and partitioned into lens-shaped lower strain zones dominated by folding and characterized by pure shear, which are surrounded by high strain zones, some of them thick ultramylonites, with intense simple shear combined with flattening and strong transposition of pre-existing fabrics. Ductile shearing occurred during bulk E-W shortening, commenced at amphibolite facies conditions and continued with similar kinematics at greenschist and even lower grade conditions. A number of (sub-)parallel shear zones occur to the NE and SW of the main zone at a distance of up to 20-45 km. They show similar fabrics and kinematics and are thus related to activity along ASZ reflecting strain partitioning into simple shear and pure shear domains on a regional scale. Samples of mylonitic gneisses from the shear zone have been analyzed with U-Pb LA-MC-ICPMS and show Neoarchaean crystallisation ages between 2.66 and 2.61 Ga. Timing of ductile sinistral shearing is poorly constrained by lower intercept ages of 686 ± 62 and 640 ± 44 Ma. The fabric and structural relationship of the ca. 660 Ma Adjumani Granite exposed in the northern segment of ASZ suggest that the age of shear activity can be further limited to ca. 685 and 655 Ma. The Aswa Shear Zone is interpreted as an intra-cratonic, crustal-scale structure close to the northeastern margin of the Congo Craton, possibly inherited from previous continental extension. Early Aswa

  18. Graben formation during the Bárðarbunga rifting event in central Iceland

    KAUST Repository

    Ruch, Joel

    2015-04-01

    On the 16th of August 2014, an intense seismic swarm was detected at the Bárðarbunga caldera (central Iceland), which migrated to the east and then to the northeast during the following days. The swarm, highlighting magma propagation pathway from the caldera, migrated laterally during the following two weeks over 40 km. By the end of August, a volcanic eruption had started along a north-south oriented fissure located ~45 km from the caldera. Here we focus on the near-field deformation related to the dike emplacement in the shallow crust, which generated in few days an 8 km long by 0.8 km wide graben (depression) structure. The new graben extends from the northern edge of the Vatnajökull glacier and to the north to the eruptive fissure. We analyze the temporal evolution of the graben by integrating structural mapping using multiple acquisitions of TerraSAR-X amplitude radar images, InSAR and ground-truth data with GPS and structural measurements. Pixel-offset tracking of radar amplitude images shows clearly the graben subsidence, directly above the intrusion pathway, of up to 6 meters in the satellite line-of-sight direction. We installed a GPS profile of 15 points across the graben in October 2014 and measured its depth up to 8 meters, relative to the flanks of the graben. Field structural observations show graben collapse structures that typically accompany dike intrusions, with two tilted blocks dipping toward the graben axis, bordered by two normal faults. Extensive fractures at the center of the graben and at the graben edges show a cumulative extension of ~8 meters. The formation of the graben was also accompanied by strong seismic activity locally, constraining the time frame period of the main graben formation subsidence. Our results show a rare case of a graben formation captured from space and from ground observations. Such structures are the dominant features along rift zones, however, their formation remain poorly understood. The results also provide

  19. Hydrothermal Petroleum in Active Continental Rift: Lake Chapala, Western Mexico, Initial Results.

    Science.gov (United States)

    Zarate-del Valle, P. F.; Simoneit, B. R.; Ramirez-Sanchez, H. U.

    2003-12-01

    Lake Chapala in western Mexico is located partially in the Citala Rift, which belongs to the well-known neotectonic Jalisco continental triple junction. The region is characterized by active volcanism (Ceboruco, Volcan de Fuego), tectonic (1995 earthquake, M=8, 40-50 mm to SW) and hydrothermal (San Juan Cosala & Villa Corona spas and La Calera sinter deposit) activities. Hydrothermal petroleum has been described in active continental rift (East African Rift) and marine spreading zones (Guaymas Basin, Gulf of California). In 1868 the Mexican local press reported that manifestations of bitumen were appearing in front of the Columba Cap on the mid south shore of Lake Chapala. This bitumen is linked to the lake bottom and when the water level decreases sufficiently it is possible to access these tar bodies as islands. Because of these manifestations the Mexican oil company (PEMEX) drilled an exploration well (2,348m) at Tizapan El Alto without success. Hydrothermal activity is evident in the tar island zone as three in-shore thermal springs (26.8 m depth, 48.5° C, pH 7.8 and oriented N-S). The preliminary analyses by GC-MS of the tar from these islands indicate hydrothermal petroleum derived from lake sedimentary organic matter, generated at low temperatures (150° -200° C). The tars contain no n-alkanes, no PAH or other aromatics, but a major UCM of branched and cyclic hydrocarbons and mature biomarkers derived from lacustrine biota. The biomarkers consist of mainly 17α (H),21β (H)-hopanes ranging from C27 to C34 (no C28), gammacerane, tricyclic terpanes (C20-C26), carotane and its cracking products, and drimanes (C14-C16). The biomarker composition indicates an organic matter source from bacteria and algae, typical of lacustrine ecosystems. 14C dating of samples from two tar islands yielded ages exceeding 40 kyrs, i.e., old carbon from hydrothermal/tectonic remobilization of bitumen from deeper horizons to the surface. The occurrence of hydrothermal petroleum in

  20. The Thinning of the lithosphere before Magmatic Spreading is Established at the Western End of the Cocos-Nazca Rift

    Science.gov (United States)

    Smith, D. K.; Schouten, H.

    2015-12-01

    The transition from rifting of oceanic lithosphere to full magmatic spreading is examined at the Galapagos triple junction (GTJ) where the tip of the Cocos-Nazca spreading center (called C-N Rift) is propagating westward and breaking apart 0.5 Ma lithosphere formed at the East Pacific Rise near 2 15'N. Bathymetric mapping of the western section of the C-N Rift is limited, but sufficient to obtain a first-order understanding of how seafloor spreading is established. An initial rifting stage is followed by rifting with magma supply and lastly, full magmatic spreading is established. The flexural rotation of normal faults that border the rift basins is used to document thinning of the effective elastic thickness of the lithosphere before magmatic spreading begins. The earliest faults show small outward rotation (1-5 degrees) for their offset suggesting that they cut thick lithosphere. Subsequent faults closer to the axis have larger outward rotations (up to 35-40 degrees) with larger offset indicating that the lithosphere was much thinner at the time of faulting and that low-angle detachment faults are forming. It is during late stage rifting and prior to full magmatic spreading that detachment faults such as the Intrarift ridge along Hess Deep rift are observed. Studies of low-angle detachment faulting during continental breakup at the Woodlark Basin suggest that their formation signals the input of magma beneath the rift. If this also is the case at the C-N Rift then magma is being supplied beneath Hess Deep rift. The axis of the segment immediately east of Hess Deep rift is characterized by a shallow graben with small seamounts scattered along it, typical of segments farther to the east, and we infer that full magmatic seafloor spreading has been established here. Our results provide new information on the formation of divergent boundaries in oceanic lithosphere, and place constraints on the supply of magma to a newly developing plate boundary.

  1. West-east transition from underplating to steep subduction in the India-Tibet collision zone revealed by receiver-function profiles

    Science.gov (United States)

    Shi, Danian; Zhao, Wenjin; Klemperer, Simon L.; Wu, Zhenhan; Mechie, James; Shi, Jianyu; Xue, Guangqi; Su, Heping

    2016-10-01

    Closely-spaced receiver-function profiles in the east-central India-Tibet collision zone reveal drastic west-east changes of the crustal and upper mantle structure. West of ∼91.5°E, we show the Indian crust-mantle boundary (Moho) extending subhorizontally from ∼50 km depth below sea level under the High Himalaya to ∼90 km under the central Lhasa terrane. Further north, this boundary transitions to become the top of the Indian lithospheric mantle and, becoming faint but still observable, it can be tracked continuously to ∼135 km depth near ∼31.5°N. The top of the Indian lithospheric mantle is clearly beneath the Tibetan Moho that is also a conspicuous boundary, undulatory at 60-75 km depth from the central Lhasa terrane to the north end of our profile at ∼34°N. This geometry is consistent with underthrusting of Indian lower crust and underplating of the Indian plate directly beneath southern Tibet. In contrast, east of ∼91.5°E, the Indian Moho is only seen under the southernmost margin of the Tibetan plateau, and eludes imaging from ∼50 km south of the Yarlung-Zangbo suture to the north. The Indian lower crust thins greatly and in places lacks a clear Moho. This is in contrast to our observation west of ∼91.5°E, that the Indian lower crust thickens northwards. A clear depression of the top of the Indian lower crust is also observed along west-east oriented profiles, centered above the region where the Indian Moho is not imaged. Our observations suggest that roll-back of the Indian lithospheric mantle has occurred east of ∼91.5°E, likely due to delamination associated with density instabilities in eclogitized Indian lower crust, with the center of foundering beneath the southern Lhasa terrane slightly east of 91.5°E.

  2. Rifting, rotation, detachment faulting, and sedimentation: Miocene evolution of the southern California margin

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, S.B.; Crouch, J.K. (Crouch, Bachman, and Associates, Inc., Santa Barbara, CA (USA))

    1990-05-01

    The evolution of the Los Angeles and adjacent offshore Santa Monica and San Pedro basins of southern California began during the earliest Miocene. The basins formed as the result of rifting and subsequent large scale rotation of segments within a preexisting Mesozoic-Paleogene forearc basin. Clockwise rotation (less than 90{degree}) of the outer two-thirds of this fore-arc basin during the early and middle Miocene moved these once north-trending forearc strata into an east-west trend (the modern Transverse Ranges). The eastern margin of the initial rift remains in its original location and is best documented from outcrop and subsurface data in the San Joaquin Hills. What was once the western margin of the rift has been rotated to a position north of the rift, along the southern Santa Monica Mountains. The early Miocene Vaqueros sandstones. which that are entirely shallow-marine and thousands of feet thick provide evidence for initial subsidence of the rift. Widening of the rift and separation of the Santa Monica Mountains and the San Joaquin Hills in the early and middle Miocene was accompanied by detachment faulting and volcanism along the rift margins. These detachment faults can be documented in the subsurface of the San Joaquin Hills and in outcrop in the Santa Monica Mountains. A unique aspect of this inner borderland rift is the rapid uplift, exposure, erosion, and then subsidence of high pressure/temperature metamorphic basement blocks (Catalina schist) within the rift itself. These basement rocks were buried 20 to 30 km beneath the ancestral fore arc prior to rifting. They were uplifted, perhaps due to thermal effects, during pervasive early and middle Miocene volcanism within the rift. Evidence of these dramatic events is provided by the distinctive San Onofre breccia deposit exposed along the margins of the rift.

  3. Structural inheritance versus magmatic weakening: What controls the style of deformation at rift segment boundaries in the Gulf of California, Mexico?

    Science.gov (United States)

    Seiler, Christian; Gleadow, Andrew; Kohn, Barry

    2013-04-01

    Rifts are commonly segmented into several hundred kilometre long zones of opposing upper-plate transport direction with boundaries defined by accommodation and transfer zones. A number of such rift segments have been recognized in the Gulf of California, a youthful oceanic basin that is currently undergoing the rift-drift transition. However, detailed field studies have so far failed to identify suitable structures that could accommodate the obvious deformation gradients between different rift segments, and the nature of strain transfer at segment boundaries remains enigmatic. The Bocana transfer zone (BTZ) in central Baja California is a linear, WNW striking structural discontinuity separating two rift segments with different magnitudes and styles of extensional deformation. North of the BTZ, the Libertad fault is part of the Main Gulf Escarpment, which represents the breakaway fault that separates the Gulf of California rift to the east from the relatively stable western portion of the Baja peninsula. The N-striking Libertad escarpment developed during the Late Miocene (~10-8Ma) and exhibits a topographic relief of ca. 1,000m along a strike-length of ca. 50km. Finite displacement decreases from ~1000m in the central fault segment to ~500m further south, where the fault bends SE and merges with the BTZ. In the hanging wall of the Libertad fault, a series of W-tilted horsts are bound along their eastern margins by two moderate-displacement E-dipping normal faults. South of the BTZ, extension was much less than further north, which explains the comparatively subdued relief and generally shallower tilt of pre-rift strata in this area. The BTZ itself is characterized by two en echelon WNW-ESE striking dextral-oblique transfer faults with a significant down-to-the-NNE extensional component. Strain is transferred from the Libertad breakaway fault onto the transfer faults over a distance of >20km through a network of interacting normal, oblique and strike-slip faults

  4. Microscale characterization and trace element distribution in bacteriogenic ferromanganese coatings on sand grains from an intertidal zone of the East China Sea.

    Directory of Open Access Journals (Sweden)

    Linxi Yuan

    Full Text Available An ancient wood layer dated at about 5600 yr BP by accelerator mass spectrometry (AMS 14C was discovered in an intertidal zone of the East China Sea. Extensive and horizontally stratified sediments with black color on the top and yellowish-red at the bottom, and some nodule-cemented concretions with brown surface and black inclusions occurred in this intertidal zone. Microscale analysis methods were employed to study the microscale characterization and trace element distribution in the stratified sediments and concretions. Light microscopy, scanning electron microscopy (SEM and backscattered electron imaging (BSE revealed the presence of different coatings on the sand grains. The main mineral compositions of the coatings were ferrihydrite and goethite in the yellowish-red parts, and birnessite in the black parts using X-ray powder diffraction (XRD. SEM observations showed that bacteriogenic products and bacterial remnants extensively occurred in the coatings, indicating that bacteria likely played an important role in the formation of ferromanganese coatings. Post-Archean Australian Shale (PAAS-normalized middle rare earth element (MREE enrichment patterns of the coatings indicated that they were caused by two sub-sequential processes: (1 preferentially release of Fe-Mn from the beach rocks by fermentation of ancient woods and colloidal flocculation in the mixing water zone and (2 preferential adsorption of MREE by Fe-Mn oxyhydroxides from the seawater. The chemical results indicated that the coatings were enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Ba, especially with respect to Co, Ni. The findings of the present study provide an insight in the microscale features of ferromanganese coatings and the Fe-Mn biogeochemical cycling during the degradation of buried organic matter in intertidal zones or shallow coasts.

  5. Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia

    Science.gov (United States)

    Neumann, Else-Ragnhild; Svensen, Henrik H.; Polozov, Alexander G.; Hammer, Øyvind

    2017-03-01

    Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. "Breccia coating" magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.

  6. ETHIOPIAN RIFT AND ADJACENT HIGHLANDS

    African Journals Online (AJOL)

    of the kinetic temperature of the central Ethiopian rift lakes and adjacent highlands. ... component of the surface radiation balance from only one surface measurement derived from NOAA. TM and ... The basin studied is part of the Ethiopian Rift system bounded within the limits .... Topographic conditions, which determine ...

  7. Geometry and evolution of low-angle normal faults (LANF) within a Cenozoic high-angle rift system, Thailand: Implications for sedimentology and the mechanisms of LANF development

    Science.gov (United States)

    Morley, Chris K.

    2009-10-01

    At least eight examples of large (5-35 km heave), low-angle normal faults (LANFs, 20°-30° dip) occur in the Cenozoic rift basins of Thailand and laterally pass into high-angle extensional fault systems. Three large-displacement LANFs are found in late Oligocene-Miocene onshore rift basins (Suphan Buri, Phitsanulok, and Chiang Mai basins), they have (1) developed contemporaneous with, or after the onset of, high-angle extension, (2) acted as paths for magma and associated fluids, and (3) impacted sedimentation patterns. Displacement on low-angle faults appears to be episodic, marked by onset of lacustrine conditions followed by axial progradation of deltaic systems that infilled the lakes during periods of low or no displacement. The Chiang Mai LANF is a low-angle (15°-25°), high-displacement (15-35 km heave), ESE dipping LANF immediately east of the late early Miocene Doi Inthanon and Doi Suthep metamorphic core complexes. Early Cenozoic transpressional crustal thickening followed by the northward motion of India coupled with Burma relative to east Burma and Thailand (˜40-30 Ma) caused migmatization and gneiss dome uplift in the late Oligocene of the core complex region, followed by LANF activity. LANF displacement lasted 4-6 Ma during the early Miocene and possibly transported a late Oligocene-early Miocene high-angle rift system 35 km east. Other LANFs in Thailand have lower displacements and no associated metamorphic core complexes. The three LANFs were initiated as low-angle faults, not by isostatic rotation of high-angle faults. The low-angle dips appear to follow preexisting low-angle fabrics (thrusts, shear zones, and other low-angle ductile foliations) predominantly developed during Late Paleozoic and early Paleogene episodes of thrusting and folding.

  8. Three-dimensional frictional plastic strain partitioning during oblique rifting

    Science.gov (United States)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2017-04-01

    Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.

  9. Phanerozoic Rifting Phases And Mineral Deposits

    Science.gov (United States)

    Hassaan, Mahmoud

    2016-04-01

    In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely

  10. Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback

    Science.gov (United States)

    Martin, A. K.

    2007-12-01

    attached to Southern Patagonia/West Antarctic Peninsula, while the Ellsworth Whitmore Terrane is combined with the Thurston Island Block; paleogeographies demonstrate rifting and extension in a backarc environment relative to a Pacific margin subduction zone/accretionary wedge where simultaneous crustal shortening occurs; a ridge jump towards the subduction zone from east of the Falkland Islands to the Rocas Verdes Basin evinces subduction rollback; this ridge jump combined with backarc extension isolated an area of thicker continental crust — The Falkland Islands Block; well-documented EW oriented seafloor spreading anomalies in the Weddell Sea are perpendicular to the subduction zone and propagate in the opposite direction to rollback; the dextral strike-slip Gastre and sub-parallel faults form one boundary of the Gondwana subduction rollback, whereas the other boundary may be formed by inferred sinistral strike-slip motion between a combined Thurston Island/Ellsworth Whitmore Terrane and Marie Byrd Land/East Antarctica.

  11. The Manda—Inakir rift, republic of Djibouti: A comparison with the Asal rift and its geodynamic interpretation

    Science.gov (United States)

    Vellutini, P.

    1990-01-01

    Asal-Ghoubbet and Manda-Inakir, two axial zones, and the Mak'Arrassou N—S strike-slip zone, are located between the Afar Depression where significant crustal thinning is shown by geophysical data and the relatively thicker continental crust of the "Danakil horst". These three active structures were formed in response to the counterclockwise motion of the Danakil horst. The two modes of response (rift and strike-slip faults) are related to the orientation of the horst boundaries. The boundaries perpendicular to the opening direction lead to extensional zones and rifts (Asal and Manda-lnakir). The parallel boundaries give strike-slip faults (Mak'Arrassou). The two narrow subsided "axial structures" (rift in rift), located on the crustal discontinuity, seem to represent a stage where, after crustal thinning between 4 and 1 Ma (when the "stratoid series" was erupted), the breaking point was reached. These two axes, though not genuine oceanic crust (the older continental series are found under the Axial series), represent a proto-oceanic stage and foreshadow the future ridges. They also indicate the southwest border of the Arabian plate, including the "Danakil horst".

  12. Active fault segments as potential earthquake sources: Inferences from integrated geophysical mapping of the Magadi fault system, southern Kenya Rift

    Science.gov (United States)

    Kuria, Z. N.; Woldai, T.; van der Meer, F. D.; Barongo, J. O.

    2010-06-01

    Southern Kenya Rift has been known as a region of high geodynamic activity expressed by recent volcanism, geothermal activity and high rate of seismicity. The active faults that host these activities have not been investigated to determine their subsurface geometry, faulting intensity and constituents (fluids, sediments) for proper characterization of tectonic rift extension. Two different models of extension direction (E-W to ESE-WNW and NW-SE) have been proposed. However, they were based on limited field data and lacked subsurface investigations. In this research, we delineated active fault zones from ASTER image draped on ASTER DEM, together with relocated earthquakes. Subsequently, we combined field geologic mapping, electrical resistivity, ground magnetic traverses and aeromagnetic data to investigate the subsurface character of the active faults. Our results from structural studies identified four fault sets of different age and deformational styles, namely: normal N-S; dextral NW-SE; strike slip ENE-WSW; and sinistral NE-SW. The previous studies did not recognize the existence of the sinistral oblique slip NE-SW trending faults which were created under an E-W extension to counterbalance the NW-SE faults. The E-W extension has also been confirmed from focal mechanism solutions of the swarm earthquakes, which are located where all the four fault sets intersect. Our findings therefore, bridge the existing gap in opinion on neo-tectonic extension of the rift suggested by the earlier authors. Our results from resistivity survey show that the southern faults are in filled with fluid (0.05 and 0.2 Ωm), whereas fault zones to the north contain high resistivity (55-75 Ωm) material. The ground magnetic survey results have revealed faulting activity within active fault zones that do not contain fluids. In addition, the 2D inversion of the four aero-magnetic profiles (209 km long) revealed: major vertical to sub vertical faults (dipping 75-85° east or west); an

  13. [Distribution and seasonal dynamics of meiofauna in intertidal zone of Qingdao sandy beaches, Shandong Province of East China].

    Science.gov (United States)

    Li, Ha; Hua, Er; Zhang, Zhi-Nan

    2012-12-01

    An investigation was conducted on the abundance, group composition, and distribution of meiofauna at the Second Beach of Taiping Bay and the Shilaoren Beach in Qingdao in January, April, July, and October 2008, aimed to analyze the distribution and seasonal dynamics of meiofauna in the intertidal zone of Qingdao sandy beaches. The measurements of environmental factors, including sediment grain size, interstitial water salinity, interstitial water temperature, organic matter content (TOC), and chlorophyll a (Chl a) content, were made simultaneously. There existed obvious seasonal differences in the environment factors, which could be clustered into two groups, i. e. , spring-winter group (January and April) and summer-autumn group (July and October). At the Second Beach of Taiping Bay, the mean annual abundance of meiofauna was (1167.3 +/- 768.3) ind x 10 cm(-2), and the most dominant group was Nematoda, accounting for 91% of the total. The meiofaunal group composition and abundance at the Second Beach differed horizontally, with the abundance ranked as high tide zone high values in spring/winter and low values in summer/autumn (spring > winter > autumn > summer). The vertical distribution of the meiofauna in the high and middle tide zones of the Second Beach varied seasonally too. The meiofauna migrated downward with increasing temperature, concentrated in surface layer in winter and migrated downward in summer. At the Shilaoren Beach, the mean annual abundance of meiofauna was (1130.2 +/- 1419.1) ind x 10 cm(-2), and Nematoda accounted for 85% of the total. There was a great similarity of the environmental factors in the middle tide zone of the Second Beach and Shilaoren Beach, which led to no differences in the meiofaunal group composition and abundance. However, the vertical distribution of the meiofauna differed between the two beaches. When the temperature decreased, the meiofauna at Shilaoren Beach migrated downward. The ANOVA and BIOENV analyses showed that

  14. Routine health information system utilization and factors associated thereof among health workers at government health institutions in East Gojjam Zone, Northwest Ethiopia.

    Science.gov (United States)

    Shiferaw, Atsede Mazengia; Zegeye, Dessalegn Tegabu; Assefa, Solomon; Yenit, Melaku Kindie

    2017-08-07

    Using reliable information from routine health information systems over time is an important aid to improving health outcomes, tackling disparities, enhancing efficiency, and encouraging innovation. In Ethiopia, routine health information utilization for enhancing performance is poor among health workers, especially at the peripheral levels of health facilities. Therefore, this study aimed to assess routine health information system utilization and associated factors among health workers at government health institutions in East Gojjam Zone, Northwest Ethiopia. An institution based cross-sectional study was conducted at government health institutions of East Gojjam Zone, Northwest Ethiopia from April to May, 2013. A total of 668 health workers were selected from government health institutions, using the cluster sampling technique. Data collected using a standard structured and self-administered questionnaire and an observational checklist were cleaned, coded, and entered into Epi-info version 3.5.3, and transferred into SPSS version 20 for further statistical analysis. Variables with a p-value of less than 0.05 at multiple logistic regression analysis were considered statistically significant factors for the utilization of routine health information systems. The study revealed that 45.8% of the health workers had a good level of routine health information utilization. HMIS training [AOR = 2.72, 95% CI: 1.60, 4.62], good data analysis skills [AOR = 6.40, 95%CI: 3.93, 10.37], supervision [AOR = 2.60, 95% CI: 1.42, 4.75], regular feedback [AOR = 2.20, 95% CI: 1.38, 3.51], and favorable attitude towards health information utilization [AOR = 2.85, 95% CI: 1.78, 4.54] were found significantly associated with a good level of routine health information utilization. More than half of the health workers working at government health institutions of East Gojjam were poor health information users compared with the findings of others studies. HMIS training, data

  15. The Fenwei rift and its recent periodic activity

    Science.gov (United States)

    Wang, Jing-Ming

    1987-02-01

    The Fenwei rift on the southern sector of the Jin—Shaan rift system of China is marked by a crescent-shaped valley 600 km in length and 30-90 km in width depressed up to 10 km and filled with about 7000 m of Cenozoic deposits, bounded on both northern and southern sides by majestic mountain ranges. The geometry of the rift valley is characterized by six branch depressions and five intervening swells extending east-northeastward in a dextral en-echelon pattern and bounded on both sides by abrupt topographic slopes reflecting the underlying faults. These are typically a system of growth faults having downthrows ranging from 800 m to 10 km and dipping toward the centre of the valley forming an asymmetric graben structure. The geometry, kinematics and evolution of these faults have had controlling influences on the neotectonic movement of the rift and its recent periodic activity as the present overall form of the rift valley. Estimates of the amount of extension across the rift for various recent geological periods were obtained from calculations made on the fault separation of corresponding stratigraphie horizons. The total amount of extension in response to tensile stresses, acting in a direction varying from 25° NW on the west to 70° NW on the northeast is estimated to be 9065 m, since the beginning of the rift formation in the Eocene whereas the rate of extension in the Recent is 4.5 mm/yr and in modern times it is 8-24 mm/yr. The amount of left-lateral displacement across the rift during various stages of its development was also calculated from the observed effects of strike-slip movement on the drainage system. The left-lateral offset since the mid-Pleistocene is approximately 7170 m and the offset rate in modern times is 6 mm/yr. These estimates suggest that the Fenwei rift has been a place of intense neotectonic activity. Details of more recent activity of the rift were investigated in terms of the various rift-related phenomena such as seismic events

  16. The distribution of volcanism in the Beta-Atla-Themis region of Venus: Its relationship to rifting and implications for global tectonic regimes

    Science.gov (United States)

    Airey, M. W.; Mather, T. A.; Pyle, D. M.; Ghail, R. C.

    2017-08-01

    A new analysis of the spatial relationships between volcanic features and rifts on Venus provides new constraints on models of planetary evolution. We developed a new database of volcanic features for the Beta-Atla-Themis (BAT) region and used nearest neighbor measurements to determine relationships between different types of volcanic features and the rifts. Nearest neighbor analysis shows that all the dome-type and corona-type subpopulations tend to cluster. Rift associations were inferred from the deviation of a feature's population distribution (as a function of distance from rift) from that of a random population. Dome-type features in general have no discernible relationship with rifts. Most corona-type features have a strong association with rifts, with intermediate and large volcanoes also tending to occur close to or on rifts. Shield fields, on the other hand, tend to occur away from rifts. Our new evidence supports classifications of rifts on Venus into different types, possibly by age, with a shift from globally dispersed (more uniform) volcanism toward the more rift-focused distribution, which suggests a shift in tectonic regime. Our observations are consistent with recent models proposing the evolution of Venus from a stagnant lid regime to a subcrustal spreading regime. We also present evidence for a failed rift on Venus and note that this process may be analogous, albeit on a larger scale, to a proposed model for the evolution of the East African rift system.

  17. Temporal and spatial constraints on the evolution of a Rio Grande rift sub-basin, Guadalupe Mountain area, northern New Mexico

    Science.gov (United States)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.; Hudson, M. R.; Lee, J.

    2013-12-01

    The Taos Plateau volcanic field (TPVF) in the southern San Luis Valley of northern New Mexico is the most voluminous of the predominantly basaltic Neogene (6-1 Ma) volcanic fields of the Rio Grande rift. Volcanic deposits of the TPVF are intercalated with alluvial deposits of the Santa Fe Group and compose the N-S-trending San Luis Basin, the largest basin of the northern rift (13,500 km2 in area). Pliocene volcanic rocks of the Guadalupe Mountain area of northern New Mexico are underlain by the southern end of one of the larger sub-basins of the San Luis Valley, the Sunshine sub-basin (~ 450 km2 in area) juxtaposed against the down-to-west frontal fault of the Precambrian-cored Sangre de Cristo Range. The sub-basin plunges northward and extends to near the Colorado-New Mexico border. The western margin (~15 km west of the Sangre de Cristo fault) is constrained by outcrops of Oligocene to Miocene volcanic rocks of the Latir volcanic field, interpreted here as a broad pre-Pliocene intra-rift platform underlying much of the northern TPVF. The southern sub-basin border is derived, in part, from modeling of gravity and aeromagnetic data and is interpreted as a subsurface extension of this intra-rift platform that extends southeastward to nearly the Sangre de Cristo range front. Broadly coincident with this subsurface basement high is the northwest-trending, curvilinear terminus of the down-to-northeast Red River fault zone. South of the gravity high, basin-fill alluvium and ~3.84 Ma Servilleta basalt lava flows thicken along a poorly exposed, down-to-south, basin-bounding fault of the northern Taos graben, the largest of the San Luis Valley sub-basins. The uppermost, western sub-basin fill is exposed along steep canyon walls near the confluence of the Rio Grande and the Red River. Unconformity-bound, lava flow packages are intercalated with paleo Red River fan alluvium and define six eruptive sequences in the Guadalupe Mountain area: (1) Guadalupe Mtn. lavas (dacite ~5

  18. Fiscal Year 2010 Phased Construction Completion Report for EU Z2-32 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2010-02-01

    The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOEIORJO 1-2161 &D2) (Zone 2 ROD) acknowledged that most of the 800 acres in Zone 2 were contaminated, but that sufficient data to confirm the levels of contamination were lacking. The Zone 2 ROD further specified that a sampling strategy for filling the data gaps would be developed. The Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOEIORIO 1 -2224&D3) (RDRJRAWP) defined the sampling strategy as the Dynamic Verification Strategy (DVS), generally following the approach used for characterization of the Zone I exposure units (EUs). The Zone 2 ROD divided the Zone 2 area into seven geographic areas and 44 EUs. To facilitate the data quality objectives (DQOs) of the DVS process, the RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together, which allowed identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program was completed for the EU addressed in this document (EU Z2-32). The purpose of this Phased Construction Completion Report (PCCR) is to address the following: (1) Document DVS characterization results for EU Z2-32. (2) Describe and document the risk evaluation and determine if the EU meets the Zone 2 ROD requirements for unrestricted industrial use to 10 ft bgs. (3) Identify additional areas not defined in the Zone 2 ROD that require remediation based on the DVS evaluation results. (4) Describe the remedial action performed in the K-1066-G Yard in EU Z2-32. Approximately 18.4 acres are included in the EU

  19. Negative cerium anomalies in the saprolite zone of serpentinite lateritic profiles in the Lomié ultramafic complex, South-East Cameroon

    Science.gov (United States)

    Ndjigui, Paul-Désiré; Bilong, Paul; Bitom, Dieudonné

    2009-01-01

    Strong negative cerium anomalies are developed in the saprolite zone of two serpentinite lateritic profiles in the Mada region of the Kongo-Nkamouma massif in the Lomié ultramafic complex (South-East Cameroon). The total lanthanide contents increase strongly from the parent rock (1.328 ppm) to the weathered materials (ranging from 74.32 to 742.18 ppm); the highest value is observed in the black nodules from the western weathering profile and the lowest one in the top of the clayey surface soil from the same profile. The lanthanide contents, except cerium, are highest in the saprolite and decrease along the profile. The light REE contents are very high compared to those of the heavy REE (LREE/HREE ranging from 3.21 to 44.37). The lanthanides normalized with respect to the parent rock reveal: (i) strong negative Ce anomalies with [Ce/Ce ∗] ranging from 0.006 to 0.680 in the saprolite zone; (ii) strong positive Ce anomalies with [Ce/Ce ∗] ranging from 1.23 to 23.96 from the top of the saprolite to the clayey surface horizon; (iii) positive Eu anomalies with [Eu/Eu ∗] ranging from 2.09 to 2.41 in all the weathered materials. Mass balance evaluation shows that, except cerium, lanthanides have been highly accumulated in the saprolite zone and moderately concentrated in the upper part of both profiles. Cerium has been highly accumulated in the nodules of the West Mada profile. The presence of negative Ce anomalies is confirmed by its low degree of accumulation whereas the positive ones are related to its high degree of accumulation.

  20. Diking-induced moderate-magnitude earthquakes on a youthful rift border fault: The 2002 Nyiragongo-Kalehe sequence, D.R. Congo

    Science.gov (United States)

    Wauthier, C.; Smets, B.; Keir, D.

    2015-12-01

    On 24 October 2002, Mw 6.2 earthquake occurred in the central part of the Lake Kivu basin, Western Branch of the East African Rift. This is the largest event recorded in the Lake Kivu area since 1900. An integrated analysis of radar interferometry (InSAR), seismic and geological data, demonstrates that the earthquake occurred due to normal-slip motion on a major preexisting east-dipping rift border fault. A Coulomb stress analysis suggests that diking events, such as the January 2002 dike intrusion, could promote faulting on the western border faults of the rift in the central part of Lake Kivu. We thus interpret that dike-induced stress changes can cause moderate to large-magnitude earthquakes on major border faults during continental rifting. Continental extension processes appear complex in the Lake Kivu basin, requiring the use of a hybrid model of strain accommodation and partitioning in the East African Rift.

  1. Fluid flow and permeabilities in basement fault zones

    Science.gov (United States)

    Hollinsworth, Allan; Koehn, Daniel

    2017-04-01

    Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault

  2. Treatment-seeking for febrile illness in north-east India: an epidemiological study in the malaria endemic zone

    Directory of Open Access Journals (Sweden)

    Mahanta Jagadish

    2009-12-01

    Full Text Available Abstract Background This paper studies the determinants of utilization of health care services, especially for treatment of febrile illness in the malaria endemic area of north-east India. Methods An area served by two districts of Upper Assam representing people living in malaria endemic area was selected for household survey. A sample of 1,989 households, in which at least one member of household suffered from febrile illness during last three months and received treatment from health service providers, were selected randomly and interviewed by using the structured questionnaire. The individual characteristics of patients including social indicators, area of residence and distance of health service centers has been used to discriminate or group the patients with respect to their initial and final choice of service providers. Results Of 1,989 surveyed households, initial choice of treatment-seeking for febrile illness was self-medication (17.8%, traditional healer (Vaidya(39.2%, government (29.3% and private (13.7% health services. Multinomial logistic regression (MLR analysis exhibits the influence of occupation, area of residence and ethnicity on choice of health service providers. The traditional system of medicine was commonly used by the people living in remote areas compared with towns. As all the febrile cases finally received treatment either from government or private health service providers, the odds (Multivariate Rate Ratio was almost three-times higher in favour of government services for lower households income people compared to private. Conclusion The study indicates the popular use of self-medication and traditional system especially in remote areas, which may be the main cause of delay in diagnosis of malaria. The malaria training given to the paramedical staff to assist the health care delivery needs to be intensified and expanded in north-east India. The people who are economically poor and living in remote areas mainly

  3. Explanation of Significant Differences for the Record of Decision for Interim Actions in Zone 1, East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2011-02-01

    Zone 1 is a 1400-acre area outside the fence of the main plant at The East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. The Record of Decision for Interim Actions in Zone, ETTP (Zone 1 Interim ROD) (DOE 2002) identifies the remedial actions for contaminated soil, buried waste, and subsurface infrastructure necessary to protect human health and to limit further contamination of groundwater. Since the Zone 1 Interim Record of Decision (ROD) was signed, new information has been obtained that requires the remedy to be modified as follows: (1) Change the end use in Contractor's Spoil Area (CSA) from unrestricted industrial to recreational; (2) Remove Exposure Units (EU5) ZI-50, 51, and 52 from the scope of the Zone I Interim ROD; (3) Change the end use of the duct bank corridor from unrestricted industrial to restricted industrial; and (4) Remove restriction for the disturbance of soils below 10 feet in Exposure Unit (EU) Z1-04. In accordance with 40 Code of Federal Regulations (CFR) 300.435, these scope modifications are a 'significant' change to the Zone 1 Interim ROD. In accordance with CERCLA Sect. 117 (c) and 40 CFR 300.435 (c)(2)(i), such a significant change is documented with an Explanation of Significant Differences (ESD). The purpose of this ESD is to make the changes listed above. This ESD is part of the Administrative Record file, and it, and other information supporting the selected remedy, can be found at the DOE Information Center, 475 Oak Ridge Turnpike, Oak Ridge, Tennessee 37830, from 8:00 a.m. to 5:00 p.m., Monday through Friday. The ORR is located in Roane and Anderson counties, within and adjacent to the corporate city limits of Oak Ridge, Tennessee. ETTP is located in Roane County near the northwest corner of the ORR. ETTP began operation during World War II as part of the Manhattan Project. The original mission of ETTP was to produce enriched uranium for use in atomic weapons. The plant produced enriched uranium from

  4. Rifting processes in the centre of Siberia revealed by BEST (Baikal Explosion Seismic Transects)

    Science.gov (United States)

    Nielsen, C. A.; Thybo, H.; Jensen, M. M.; Ross, A.; Suvorov, V. D.; Emanov, A.; Seleznev, V.; Tatkov, G.; Perchuc, E.; Gazcynski, E.

    2003-12-01

    The Baikal Rift Zone is located in Siberia at the centre of the world's largest continental area. It offers a unique opportunity for studying the processes of intra-cratonic rifting. The BEST project (Baikal Explosion Seismic Transects) comprises two deep seismic profiles at the southern end of Lake Baikal. The field project was carried out in October 2002 after a pilot project in September 2001. The aim of the project is to determine the crustal and upper mantle seismic velocity structure. The two profiles are: (1) a 360 km long, NS-trending profile across the rift zone from the Mongolian border to Cheremhovo, and (2) a 360 km long EW-trending profile along-strike of the rift zone at the northern shore of the lake into the Tunka depression to the Mongolian border. 180 Texan one-component seismographs were deployed along each profile. The primary seismic sources were 13 explosions in boreholes, each with a 500 to 3000 kg charge. Supplementary sources were airgun shots in the lake (one 100 l airgun on profile 1, one 30 l airgun on profile 2) and the supervibrator located at Babushkin near the cross point between the two profiles at the shore of the lake. We present the preliminary modelling results of the BEST data from tomographic inversion of first arrival times and 2D ray tracing modelling of the seismic velocity structure of the crust and uppermost mantle. The models show: (1) A pronounced sedimentary graben structure to depths of at least 10 km; (2) No significant crustal thinning below the rift zone; (3) Strong seismic reflectivity underneath the rift zone, indicative of pronounced magmatic intrusion into the lower crust, despite the non-volcanic appearance of much of the rift zone; (4) No sign of significant reduction of the seismic Pn wave velocity; and (5) No clear indication of continuation of the cratonic crust underneath the rift zone in disagreement with a recently published model of the rifting process. Instead the model is in agreement with a model in

  5. Modern contraceptive utilization and associated factors among married pastoralist women in Bale eco-region, Bale Zone, South East Ethiopia.

    Science.gov (United States)

    Belda, Semere Sileshi; Haile, Mekonnen Tegegne; Melku, Abulie Takele; Tololu, Abdurehaman Kalu

    2017-03-14

    Women who live in remote rural areas encounter different challenges against contraception and often deny the use of modern contraceptive methods. The predictors of modern contraceptive utilization by pastoralist women in the Bale eco-region could be specific and are not well known. Therefore, this study aims to assess modern contraceptive utilization and its determinants among married pastoralist women in Bale eco-region, Oromia regional state, South East Ethiopia. A community-based cross-sectional study was conducted from 20th November 2015 to 30th February 2016. A structured questionnaire was used to interview 549 married pastoralist women who were selected by multistage sampling technique. The data were analyzed by SPSS - 21 software, multivariate logistic regression analysis was used to identify predictors of modern contraceptive use at (P-value eco-region. The study identified lower modern contraceptive method utilization by pastoralist women, and the majority of the contraceptive users rely on short- acting contraceptive methods. The uncomplimentary perceptions towards religious and cultural acceptability of modern contraceptive method were among the major reasons for lesser utilization of the methods. Family planning programs should be tailored to actively involve pastoralist women, husbands, and religious leaders in pastoralist communities.

  6. Origin of three-armed rifts in volcanic islands: the case of El Hierro (Canary Islands)

    Science.gov (United States)

    Galindo Jiménez, Inés; Becerril Carretero, Laura; Martí Molist, Joan; Gudmundsson, Agust

    2015-04-01

    Rifts zones in volcanic oceanic islands are common structures that have been explained through several theories/models. However, despite all these models it is as yet unclear whether it is the intense intrusive activity or the sector collapses that actually control the structural evolution and geometry of oceanic-island rift zones. Here we provide a new hypothesis to explain the origin and characteristics of the feeding system of oceanic-island rift zones based on the analysis of more than 1700 surface, subsurface (water galleries), and submarine structural data from El Hierro (Canary Islands). El Hierro's geological structure is primarily controlled by a three-armed rift-zone, the arms striking NE, WSW and S. Between the rift axes there are three valleys formed during huge landslides: El Golfo, El Julan, and Las Playas. Our results show: (1) a predominant NE-SW strike of structural elements, which coincides with the main regional trend of the Canary Archipelago as a whole; (2) a clear radial strike distribution of structural elements for the whole volcanic edifice (including submarine flanks) with respect to the centre of the island; (3) that the rift zones are mainly subaerial structures and do not propagate through the submarine edifice; (4) that it is only in the NE rift that structures have a general strike similar to that of the rift as a whole, and; (5) that in the W and S rifts there is not clear main direction, showing the structural elements in the W rift a fan distribution coinciding with the general radial pattern in the island as a whole. Based on these data, we suggest that the radial-striking structures reflect comparatively uniform stress fields that operated during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses. By contrast, in the shallower parts of the edifice, that is, the NE-SW, N-S and WNW-ESE-striking structures, reflect local stress fields related

  7. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: implications for adakite and magmas from the MASH Zone

    Science.gov (United States)

    Yuan, Chao; Sun, Min; Xiao, Wenjiao; Wilde, Simon; Li, Xianhua; Liu, Xiaohan; Long, Xiaoping; Xia, Xiaoping; Ye, Kai; Li, Jiliang

    2009-09-01

    A garnet-bearing tonalitic porphyry from the Achiq Kol area, northeast Tibetan Plateau has been dated by SHRIMP U-Pb zircon techniques and gives a Late Triassic age of 213 ± 3 Ma. The porphyry contains phenocrysts of Ca-rich, Mn-poor garnet (CaO > 5 wt%; MnO 17 wt%) contents, and is metaluminous to slightly peraluminous (ACNK = 0.89-1.05). The rock samples are enriched in LILE and LREE but depleted in Nb and Ti, showing typical features of subduction-related magmas. The relatively high Sr/Y (~38) ratios and low HREE (Yb residual phase, while suppressed crystallization of plagioclase and lack of negative Eu anomalies indicate a high water fugacity in the magma. Nd-Sr isotope compositions of the rock (ɛNdT = -1.38 to -2.33; 87Sr/86Sri = 0.7065-0.7067) suggest that both mantle- and crust-derived materials were involved in the petrogenesis, which is consistent with the reverse compositional zoning of plagioclase, interpreted to indicate magma mixing. Both garnet phenocrysts and their ilmenite inclusions contain low MgO contents which, in combination with the oxygen isotope composition of garnet separates (+6.23‰), suggests that these minerals formed in a lower crust-derived felsic melt probably in the MASH zone. Although the rock samples are similar to adakitic rocks in many aspects, their moderate Sr contents (residual melt. It is suggested that extensive crystallization of apatite as an early phase may prevent some arc magmas from evolving into adakitic rocks even under high water fugacity.

  8. Stress perturbation associated with the Amazonas and other ancient continental rifts

    Science.gov (United States)

    Zoback, M.L.; Richardson, R.M.

    1996-01-01

    rift case, because the observed stress rotation only weakly constrains the ratio of the regional horizontal stress difference to the rift-normal compression to be between 0.25 and 1.0, our analysis is inconclusive because the resultant normalized horizontal shear stress may be reduced (for ratios >0.5) or enhanced (for ratios Amazonas rift. A rift-normal stress associated with the seismically active New Madrid ancient rift may be sufficient to rotate the horizontal stress field consistent with strike-slip faults parallel to the axis of the rift, although this results in a 20-40% reduction in the local horizontal shear stress within the seismic zone. Sparse stress data in the vicinity of the seismically quiescent Midcontinent rift of the central United States suggest a stress state similar to that of New Madrid, with the local horizontal shear stress potentially reduced by as much as 60%. Thus the markedly different levels of seismic activity associated with these two subparallel ancient rifts is probably due to other factors than stress perturbations due to dense rift pillows. The modeling and analysis here demonstrate that rift-normal compressive stresses are a significant source of stress acting on the lithosphere and that in some cases may be a contributing factor to the association of intraplate seismicity with old zones of continental extension.

  9. Tectonic focusing of voluminous basaltic eruptions in magma-deficient backarc rifts

    Science.gov (United States)

    Anderson, Melissa O.; Hannington, Mark D.; Haase, Karsten; Schwarz-Schampera, Ulrich; Augustin, Nico; McConachy, Timothy F.; Allen, Katie

    2016-04-01

    The Coriolis Troughs of the New Hebrides subduction zone are among the youngest backarc rifts in the world. They reach depths of >3 km, despite their small size (Pacific, occur on the youngest lava flows. Comparison with similar axial volcanoes on the mid-ocean ridges suggests that the 46 ×106 m3 of sheet flows in the caldera could have been erupted in ridge. This study shows that the upper plate stresses can result in dramatic variability in magma supply and hydrothermal activity at the earliest stages of arc rifting and could explain the wide range of melt compositions, volcanic styles and mineral deposit types found in nascent backarc rifts.

  10. Rio Grande Rift GPS Measurements 2006-2009

    Science.gov (United States)

    Berglund, H.; Sheehan, A. F.; Nerem, R.; Choe, J.; Lowry, A. R.; Roy, M.; Blume, F.; Murray, M.

    2009-12-01

    We use three years of measurements from 25 continuous GPS stations across the Rio Grande Rift in New Mexico and Colorado to estimate surface velocities, time series, baselines, and strain rates. The stations are part of the EarthScope Rio Grande Rift experiment, a collaboration between researchers at the University of Colorado at Boulder, the University of New Mexico, and Utah State University. The network includes 5 east-west station profiles transecting the rift, with the southernmost line in southern New Mexico and the northernmost line in northern Colorado. Most of the stations have shallow-drilled braced monuments installed in 2006-2007 and will remain occupied until 2010-2011 or longer. We also estimate station coordinates and velocities from the 2001 and 2008 High Accuracy Reference Network (HARN) campaigns conducted in Colorado. Initial 72-hour observations were made in the summer of 2001 and were repeated in the summer of 2008. Data from regional Plate Boundary Observatory (PBO) GPS stations are included in the processing to increase station density and extend profiles further to the east and west of the Rio Grande Rift. We use GAMIT/GLOBK to process regional sub-networks that share several common sites well determined in the Stable North America Reference Frame (SNARF). These common sites are used as a tie between the sub-networks and SNARF. Our time series from the first three years of the experiment show excellent monument stability. We have solved for baseline distance as a function of time across each of these lines. Despite what might be expected for a rigid Colorado Plateau moving away from rigid North America about a pole near Colorado, we find no evidence of an increase in Rio Grande Rift opening to the south. Our results suggest that steady-state extension across the rift from northern Colorado to southern New Mexico has an upper bound less than ~1 mm/yr with strain rates less than ~20 nanostrain/yr, although these results are still preliminary

  11. Integrated Remote Sensing and Geophysical Investigations of the Geodynamic Activities at Lake Magadi, Southern Kenyan Rift

    Directory of Open Access Journals (Sweden)

    Akinola Adesuji Komolafe

    2012-01-01

    Full Text Available The tectonic lineaments and thermal structure of Lake Magadi, southern Kenyan rift system, were investigated using ASTER data and geophysical methods. Five N-S faults close to known hot springs were identified for geoelectric ground investigation. Aeromagnetic data were employed to further probe faults at greater depths and determine the Curie-point depth. Results indicate a funnel-shaped fluid-filled (mostly saline hydrothermal zone with relatively low resistivity values of less than 1 Ω-m, separated by resistive structures to the west and east, to a depth of 75 m along the resistivity profiles. There was evidence of saline hydrothermal fluid flow toward the surface through the fault splays. The observed faults extend from the surface to a depth of 7.5 km and are probably the ones that bound the graben laterally. They serve as major conduits for the upward heat flux in the study area. The aeromagnetics spectral analysis also revealed heat source emplacement at a depth of about 12 km. The relative shallowness implies a high geothermal gradient evidenced in the surface manifestations of hot springs along the lake margins. Correlation of the heat source with the hypocenters showed that the seismogenetic zone exists directly above the magmatic intrusion, forming the commencement of geodynamic activities.

  12. Deformation during the 1975–1984 Krafla rifting crisis, NE Iceland, measured from historical optical imagery

    OpenAIRE

    Hollingsworth, James; Leprince, Sébastien; Ayoub, François; Avouac, Jean-Philippe

    2012-01-01

    We measure the displacement field resulting from the 1975–1984 Krafla rifting crisis, NE Iceland, using optical image correlation. Images are processed using the COSI-Corr software package. Surface extension is accommodated on normal faults and fissures which bound the rift zone, in response to dike injection at depth. Correlation of declassified KH-9 spy and SPOT5 satellite images reveals extension between 1977–2002 (2.5 m average opening over 80 km), while correlation of aerial photos betwe...

  13. Groundwater flow dynamics in the complex aquifer system of Gidabo River Basin (Ethiopian Rift): a multi-proxy approach

    Science.gov (United States)

    Mechal, Abraham; Birk, Steffen; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra; Kebede, Seifu

    2017-03-01

    Hydrochemical and isotope data in conjunction with hydraulic head and spring discharge observations were used to characterize the regional groundwater flow dynamics and the role of the tectonic setting in the Gidabo River Basin, Ethiopian Rift. Both groundwater levels and hydrochemical and isotopic data indicate groundwater flow from the major recharge area in the highland and escarpment into deep rift floor aquifers, suggesting a deep regional flow system can be distinguished from the shallow local aquifers. The δ18O and δ2H values of deep thermal (≥30 °C) groundwater are depleted relative to the shallow (floor. Based on the δ18O values, the thermal groundwater is found to be recharged in the highland around 2,600 m a.s.l. and on average mixed with a proportion of 30 % shallow groundwater. While most groundwater samples display diluted solutions, δ13C data of dissolved inorganic carbon reveal that locally the thermal groundwater near fault zones is loaded with mantle CO2, which enhances silicate weathering and leads to anomalously high total dissolved solids (2,000-2,320 mg/l) and fluoride concentrations (6-15 mg/l) exceeding the recommended guideline value. The faults are generally found to act as complex conduit leaky barrier systems favoring vertical mixing processes. Normal faults dipping to the west appear to facilitate movement of groundwater into deeper aquifers and towards the rift floor, whereas those dipping to the east tend to act as leaky barriers perpendicular to the fault but enable preferential flow parallel to the fault plane.

  14. Late Paleozoic sedimentation and tectonics of rift and limited ocean basin at southern margin of the Qinling

    Institute of Scientific and Technical Information of China (English)

    孟庆任; 张国伟; 于在平; 梅志超

    1996-01-01

    The rifting and occurrence of limited oceanic basin at southern margin of Qinling separated south Qinling from Yangtze Block in late Paleozoic. Detailed sedimentary studies were carried out at two localities at southern flank of this rift-limited oceanic basin zone. and depositional architectures were then established accordingly. The results show that tectono-sedimentary stories are differing in different positions but clearly demonstrate spatial development of the rift. It is obvious that the rift in west part of Mianlue underwent two developmentary phases, early rapid subsidence and late slow subsidence, and there occurred breakup unconformity between the seccessions of the two subsidence phases. Combined with the data of structural, geochemical and chronological studies on the ophiolitic complex within the Mianlue zone. it is demonstrated that the rifting-drifting transition occurred, leading to the development of limited oceanic basin during the late Paleazoic. Spatial and temporal evolution of the

  15. Rift architecture and evolution: The Sirt Basin, Libya: The influence of basement fabrics and oblique tectonics

    Science.gov (United States)

    Abdunaser, K. M.; McCaffrey, K. J. W.

    2014-12-01

    zones and adjoining highs. Late Eocene rocks exposed in the western part of the basin exhibit a complex network of branching segmented normal and strike-slip faults, generally with a NNW-SSE structural orientations. Many surface structural features have been interpreted from satellite images which confirm sinistral strike-slip kinematics. Relay ramp structures, numerous elongate asymmetric synclines associated with shallow west limbs and steeper dipping east limbs are developed in the hangingwalls adjacent to west downthrowing normal faults. These structural patterns reflect Cretaceous/Tertiary extensional tectonics with additional control by underlying pre-existing Pan-African basement fabrics and ENE-WSW trending Hercynian structures. We relate the Sirt Basin rift development as exemplified in our study area to the break-up of Gondwana represented by the structural evolution of the West-Central African rift system, and the South and Central Atlantic, the Tethys and the Indian Oceans.

  16. Formation processes of sea ice floe size distribution in the interior pack and its relationship to the marginal ice zone off East Antarctica

    Science.gov (United States)

    Toyota, Takenobu; Kohout, Alison; Fraser, Alexander D.

    2016-09-01

    To understand the behavior of the Seasonal Ice Zone (SIZ), which is composed of sea-ice floes of various sizes, knowledge of the floe size distribution (FSD) is important. In particular, FSD in the Marginal Ice Zone (MIZ), controlled by wave-ice interaction, plays an important role in determining the retreating rates of sea-ice extent on a global scale because the cumulative perimeter of floes enhances melting. To improve the understanding of wave-ice interaction and subsequent effects on FSD in the MIZ, FSD measurements were conducted off East Antarctica during the second Sea Ice Physics and Ecosystems eXperiment (SIPEX-2) in late winter 2012. Since logistical reasons limited helicopter operations to two interior ice regions, FSD in the interior ice region was determined using a combination of heli-photos and MODIS satellite visible images. The possible effect of wave-ice interaction in the MIZ was examined by comparison with past results obtained in the same MIZ, with our analysis showing: (1) FSD in the interior ice region is basically scale invariant for both small- (large- (>1 km) scale regimes; (2) although fractal dimensions are quite different between these two regimes, they are both rather close to that in the MIZ; and (3) for floes <100 m in diameter, a regime shift which appeared at 20-40 m in the MIZ is absent. These results indicate that one role of wave-ice interaction is to modulate the FSD that already exists in the interior ice region, rather than directly determine it. The possibilities of floe-floe collisions and storm-induced lead formation are considered as possible formation processes of FSD in the interior pack.

  17. Stunting Is Associated with Food Diversity while Wasting with Food Insecurity among Underfive Children in East and West Gojjam Zones of Amhara Region, Ethiopia.

    Directory of Open Access Journals (Sweden)

    Achenef Motbainor

    Full Text Available Food insecurity has detrimental effects in protecting child undernutrition.This study sought to determine the level of child undernutrition and its association with food insecurity.A community based comparative cross-sectional study design involving multistage sampling technique was implemented from 24th of May to 20th of July 2013. Using two population proportion formula, a total of 4110 randomly selected households were included in the study. Availability of the productive safety net programme was used for grouping the study areas. A multiple linear regression model was used to assess the association between food insecurity and child malnutrition. Clustering effects of localities were controlled during analysis.Stunting (37.5%, underweight (22.0% and wasting (17.1% were observed in East Gojjam zone, while 38.3% stunting, 22.5% underweight, and 18.6% wasting for the West Gojjam zone. Food insecurity was significantly associated with wasting (β = - 0.108, P < 0.05.Food diversity and number of meals the child ate per day significantly associated with stunting (β = 0.039, P < 0.01 and underweight (β = 0.035, P < 0.05 respectively. Residential area was the significant predictor of all indices.The magnitude of child undernutrition was found to be very high in the study areas. Food insecurity was the significant determinant of wasting. Food diversity and number of meals the child ate per day were the significant determinants of stunting and underweight respectively. Child nutrition intervention strategies should take into account food security, dietary diversity, and carefully specified with regard to residential locations. Addressing food insecurity is of paramount importance.

  18. How sedimentation affects rift segment interaction during oblique extension: a 4D analogue modelling study

    Science.gov (United States)

    Zwaan, Frank; Schreurs, Guido; Adam, Jürgen

    2017-04-01

    During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. Previous modelling of rift interaction structures has shown the dominant influence of oblique extension, promoting rift segment linkage (e.g. Zwaan et al., 2016) and eventual continent break-up (Brune et al., 2012). However, these studies did not incorporate sedimentation, which can have important implications for rift evolution (e.g. Bialas and Buck, 2009). Here we present a series of analogue model experiments investigating the influence of sedimentation on rift interaction structures under oblique extension conditions. Our set-up involves a base of compressed foam and plexiglass that forces distributed extension in the overlying analogue materials when the model sidewalls move apart. A sand layer simulates the brittle upper crust and a viscous sand/silicone mixture the ductile lower crust. One of the underlying base plates can move laterally allowing oblique extension. Right-stepping offset and disconnected lines of silicone (seeds) on top of the basal viscous serve as inherited structures since the strong sand cover is locally thinner. We apply syn-rift sediments by filling in the developing rift and transfer zone basins with sand at fixed time steps. Models are run either with sedimentation or without to allow comparison. The first results suggest that the gross structures are similar with or without sedimentation. As seen by Zwaan et al. (2016), dextral oblique extension promotes rift linkage because rift propagation aligns itself perpendicular to the extension direction. This causes the rift segments to grow towards each other and to establish a continuous rift structure. However, the structures within the rift segments show quite different behaviour when sedimentation is applied. The extra sediment loading in the rift basin

  19. Structural interpretation of El Hierro (Canary Islands) rifts system from gravity inversion modelling

    Science.gov (United States)

    Sainz-Maza, S.; Montesinos, F. G.; Martí, J.; Arnoso, J.; Calvo, M.; Borreguero, A.

    2017-08-01

    Recent volcanism in El Hierro Island is mostly concentrated along three elongated and narrow zones which converge at the center of the island. These zones with extensive volcanism have been identified as rift zones. The presence of similar structures is common in many volcanic oceanic islands, so understanding their origin, dynamics and structure is important to conduct hazard assessment in such environments. There is still not consensus on the origin of the El Hierro rift zones, having been associated with mantle uplift or interpreted as resulting from gravitational spreading and flank instability. To further understand the internal structure and origin of the El Hierro rift systems, starting from the previous gravity studies, we developed a new 3D gravity inversion model for its shallower layers, gathering a detailed picture of this part of the island, which has permitted a new interpretation about these rifts. Previous models already identified a main central magma accumulation zone and several shallower high density bodies. The new model allows a better resolution of the pathways that connect both levels and the surface. Our results do not point to any correspondence between the upper parts of these pathways and the rift identified at the surface. Non-clear evidence of progression toward deeper parts into the volcanic system is shown, so we interpret them as very shallow structures, probably originated by local extensional stresses derived from gravitational loading and flank instability, which are used to facilitate the lateral transport of magma when it arrives close to the surface.

  20. Mesozoic rifting and basin inversion along the northern African Tethyan margin: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, R. [Universite de Montpellier II (France). Laboratoire de Geophysique et Tectonique

    1998-12-31

    The northern African Tethyan margin registered three major rifting episodes from the latest Palaeozoic-earliest Mesozoic to the earliest Cenozoic. Break-up of Gondwana was initiated in the late Carboniferous. Along the northern African-Arabian plate margin rifting propagated westward from the northeastern Arabian margin to Morocco during the Permian and Triasssic, and was accompanied by Mid-Late triassi-earliest Liassic extensive alkaline flow basalts. Rifting continued during the Liassic, e.g. in the Moghrebian Atlas troughs. A second stage of rifting occurred in the Late Jurassic and continued into, or was rejuvenated during the Early Cretaceous. Along the east Mediterranean margin, some large E-W trending rifts formed often with associated volcanism, e.g. southern Sirt and Abu Gharadig. Most researchers believe the oceanization of the eastern Mediterranean basin occurred at this time. During the Mesozoic, therefore, the northern margin of the African-Arabian plate registered both rifting resulting in the oceanization of the Tethys and rifting resulting from the initiation of the closure of the Tethys. The intraplate domain exhibited echoes of the tectonic events affecting the margin. (author)

  1. The evolution of the western rift area of the Fimbul Ice Shelf, Antarctica

    Directory of Open Access Journals (Sweden)

    A. Humbert

    2011-10-01

    Full Text Available This paper studies the evolution of a zone in the Fimbul Ice Shelf that is characterised by large crevasses and rifts west of Jutulstraumen, an outlet glacier flowing into Fimbulisen. High-resolution radar imagery and radio echo sounding data were used to study the surface and internal structure of this rift area and to define zones of similar characteristics. The western rift area is dominated by two factors: a small ice rumple that leads to basal crevasses and disturbs the homogeneity of the ice, and a zone with fibre-like blocks. Downstream of the rumple we found down-welling of internal layers and local thinning, which we explain as a result of basal crevasses due to the basal drag at the ice rumple. North of Ahlmannryggen the ice loses its lateral constraint and forms individual blocks, which are deformed like fibres under shear, where the ice stream merges with slower moving ice masses of the western side. There, the ice loses its integrity, which initiates the western rift system. The velocity difference between the slow moving western part and the fast moving extension of Jutulstraumen produces shear stress that causes the rifts to form tails and expand them to the major rifts of up to 30 km length.

  2. DOBRE studies the evolution of inverted intracratonic rifts in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Grad, M.; Gryn, D.; Guterch, A. [and others

    2003-07-01

    DOBRE is a multinational study of the Donbas Foldbelt (DF) of Ukraine. The DF is the uplifted and deformed part of the more than 20-km thick Dniepr-Donets Basin (DDB) that formed as the result of rifting of the Eastern European Craton (EEC) in the late Devonian in what is now eastern Ukraine and southern Russia. The DF, especially its southern margin, was uplifted in Early Permian times, in a (trans)tensional tectonic stress regime while folding and reverse faulting occurred later, during the Triassic and late Cretaceous. In order to investigate this classic example of the tectonic inversion of a continental rift zone, DOBRE includes seismic refraction and reflection profiling as well as new geological mapping and geochemical studies. DOBRE is aimed at the study in general of the processes governing intracratonic rifting and inversion (uplift and shortening) of intracratonic rift basins and the DF displays exceptional characteristics for the study of the destabilisation of cratonic interiors, both extensionally and compressionally. Thus, DOBRE is expected to elucidate the evolution (destruction/replacement or deformation) of the Moho as well as other lower crustal/upper mantle processes that occur during rifting and rift reactivation and basin uplift and inversion. Furthermore, DOBRE should clarify the relationship between the craton and accreted terranes to the south, and evolutionary connection of these to central Europe. Finally, DOBRE can provide fundamental background information in support of further oil and gas exploration in Ukraine and the definition of environmental problems within the coal-mining province of the Donbas region. In this regard, preliminary findings of the highly complementary DOBRE datasets indicate that the basic crustal structure of the DF and the tectonic processes involved in its formation require fundamental revision. (BA)

  3. Rayleigh-wave imaging of upper-mantle shear velocities beneath the Malawi Rift; Preliminary results from the SEGMeNT experiment

    Science.gov (United States)

    Accardo, N. J.; Gaherty, J. B.; Shillington, D. J.; Nyblade, A.; Ebinger, C. J.; Mbogoni, G. J.; Chindandali, P. R. N.; Mulibo, G. D.; Ferdinand-Wambura, R.; Kamihanda, G.

    2015-12-01

    The Malawi Rift (MR) is an immature rift located at the southern tip of the Western branch of the East African Rift System (EARS). Pronounced border faults and tectonic segmentation are seen within the upper crust. Surface volcanism in the region is limited to the Rungwe volcanic province located north of Lake Malawi (Nyasa). However, the distribution of extension and magma at depth in the crust and mantle lithosphere is unknown. As the Western Rift of the EARS is largely magma-poor except for discrete volcanic provinces, the MR presents the ideal location to elucidate the role of magmatism in early-stage rifting and the manifestation of segmentation at depth. This study investigates the shear velocity of the crust and mantle lithosphere beneath the MR to constrain the thermal structure, the amount of total crustal and lithospheric thinning, and the presence and distribution of magmatism beneath the rift. Utilizing 55 stations from the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) passive-source seismic experiment operating in Malawi and Tanzania, we employed a multi-channel cross-correlation algorithm to obtain inter-station phase and amplitude information from Rayleigh wave observations between 20 and 80 s period. We retrieve estimates of phase velocity between 9-20 s period from ambient noise cross-correlograms in the frequency domain via Aki's formula. We invert phase velocity measurements to obtain estimates of shear velocity (Vs) between 50-200 km depth. Preliminary results reveal a striking low-velocity zone (LVZ) beneath the Rungwe volcanic province with Vs ~4.2-4.3 km/s in the uppermost mantle. Low velocities extend along the entire strike of Lake Malawi and to the west where a faster velocity lid (~4.5 km/s) is imaged. These preliminary results will be extended by incorporating broadband data from seven "lake"-bottom seismometers (LBS) to be retrieved from Lake Malawi in October of this year. The crust and mantle modeling will be

  4. Identifying deformation styles and causes at two deforming volcanoes of the Central Main Ethiopian Rift with seismic anisotropy

    Science.gov (United States)

    Nowacki, Andy; Wilks, Matthew; Kendall, J.-Michael; Biggs, Juliet; Ayele, Atalay; Tulu, Beshahe; James, Wookey

    2016-04-01

    shown. Little evidence for a 'mushy', aseismic zone is found where geodetic studies have suggested a magma chamber is present. Hydrothermal processes may be responsible for much of the edifice loading, and we observe a positive correlation between rainfall and seismicity. At Corbetti, a completely different pattern emerges. Anisotropy is largest (up to 0.3 s) within the caldera, and weak outside. Fast shear waves are oriented northwest (NW), strongly oblique to Wonji or border faults, but parallel to a cross-rift structure, the Wendo Genet scarp, whose surface expression ends east of the caldera. Deep (20 km) earthquakes are located on this feature using the Corbetti and Aluto seismic arrays alongside Addis Ababa University stations. Intriguingly, shear wave splitting patterns are totally different for a few ray paths which avoid the Wendo Genet fault, indicating that away from this zone of deformation, the usual, rift-parallel faulting behaviour again holds sway. In this instance, the presence of anisotropy strong enough to overprint the background trend may require the alignment of fluids, and possibly melt. We suggest that this is evidence of a nascent transform zone within the rift.

  5. Middle Tertiary continental rift and evolution of the Red Sea in southwestern Saudi Arabia

    Science.gov (United States)

    Schmidt, Dwight Lyman; Hadley, Donald G.; Brown, Glen F.

    1983-01-01

    Middle Tertiary rift volcanism in a continental-rift valley in the Arabian-Nubian Shield was the first surface expression of active mantle convection beneath an axis that was to become the Red Sea. Investigation of the coastal plain of southwestern Saudi Arabia suggests that the rift valley was filled with basaltic and felsic to rhyolitic volcanic rocks (Ad Darb and Damad formations), cherty tuffaceous siltstones (Baid formation), and subordinate Nubian-type quartz sandstone (Ayyanah sandstone) between about 30 and 20 Ma ago. These rocks are named herein the Jizan group. At the same time, alkali-olivine basalt was erupted on the stable Precambrian craton at locations 100 to 200 km east of the rift valley axis.

  6. Estimation of present-day inter-seismic deformation in Kopili fault zone of north-east India using GPS measurements

    Directory of Open Access Journals (Sweden)

    Prakash Barman

    2016-03-01

    Full Text Available Current study reports the present-day inter-seismic deformation of Kopili fault zone of north-east India and slip rate estimate of Kopili fault using five epochs of global positioning system (GPS data collected from seven campaigns and five permanent sites. The rate of baseline length change of the GPS sites across the Kopili fault indicates ∼2.0 mm/yr E–W convergence across the fault. The fault parallel GPS site velocities clearly indicate dextral slip of the Kopili fault. The fault normal velocities show convergence across the Kopili fault, suggesting it to be a transpressional fault. The fault parallel velocities are inverted for fault slip and locking depth using an elastic dislocation model. The first-order, best-fit elastic dislocation model suggest average right lateral slip of 2.62 ± 0.79 mm/yr and a shallow locking depth (3 ± 2 km of the Kopili Fault. The slip of the Kopili fault is contributing to seismic moment accumulation (∼70.74 × 1015 Nm/yr, sufficient to drive possible future earthquakes (Mw ≥ 5.17.

  7. Paleostress Determination Based on Multiple-Inverse Method using Calcite Twins and Fault-Slip Data in the East Walanae Fault Zone South Sulawesi, Indonesia

    Science.gov (United States)

    Jaya, Asri; Nishikawa, Osamu

    2013-04-01

    Paleostress reconstructions from calcite twin and fault-slip data were performed to constrain the activity of the East Walanae Fault (EWF) South Sulawesi, Indonesia. The multiple-inverse method, which has been widely used with fault-slip data, was applied to calcite twin data in this study. Both independent data sets yield consistent stress states and provides a reliable stress tensors (maximum and minimum principal stresses: ?1and ?3, and stress ratio: ?), a predominance of NE-SW trending ?1and vertical to moderately-south-plunging ?3 with generally low ?. These stress states could have activated the EWF as a reverse fault with a dextral shear component and account for contractional deformation structures and landform around the trace of the fault. Most of the calcite twins and mesoscale faults were activated during the latest stage of folding or later. Based on the morphology and width of twin lamellae in the carbonate rocks, twinning of calcite in the deformation zone along the EWF may have occurred under the temperature of 200° C or lower. Inferred paleostress states around the EWF were most likely generated under the tectonic conditions influenced by the collision of Sulawesi with the Australian fragments since the Late Miocene. Radiocarbon dating from sheared soil collected from the outcrop along a major fault yielded ages between 3050 cal BP and 3990 cal BP suggesting a present activity of the EWF.

  8. Ocean bottom pressure variability in the Antarctic Divergence Zone off Lützow-Holm Bay, East Antarctica

    Science.gov (United States)

    Hayakawa, Hideaki; Shibuya, Kazuo; Aoyama, Yuichi; Nogi, Yoshifumi; Doi, Koichiro

    2012-01-01

    We analyzed bottom pressure recorder (BPR) data obtained by the Japanese Antarctic Research Expedition (JARE) from 4500 m depth off Lützow-Holm Bay (66°50'S, 37°50'E) in the Antarctic Divergence Zone (ADZ). Data collected between December 16, 2004 and February 22, 2008 were processed after removing the tidal constituents with periods shorter than 1 month. The time series of monthly mean equivalent water height (OBP height) has a clear annual period. We correlated monthly GRACE Tellus OBP data with the JARE BPR heights. The GRACE data can account for about 38% of the variance of ocean signal observed by the JARE BPR. The variability in OBP height within the ADZ shows a maximum (2-4 cm) in the austral summer and a minimum (-2 to -4 cm) in the austral winter. In contrast, data from the coastal Syowa Station Tide Gauge (Syowa TG; 69.0°S, 39.6°E) have a maximum (7-8 cm) at the austral winter and a minimum (-5 to -6 cm) at the austral summer (opposite phase). We explained these OBP height variations in terms of the Ekman divergence mechanism using the wind velocity grids (2.5°×2.5°) of the NCEP/NCAR Reanalysis data. The monthly average of the vertical velocity (Ekman pumping) in the area of 65-67.5°S, 35-40°E is positive (upwelling) in all months, but varies seasonally, with its maximum in the austral winter and its minimum in the austral summer. This annual property is consistent with the variable differences observed between the JARE BPR and Syowa TG OBP heights. We subtracted this annual variation from the OBP monthly time series to obtain the non-seasonal OBP variability, and examined its correlation with the AAO index. The non-seasonal OBP variability of Syowa TG shows similar correlation strength (the coefficients of -0.50 to -0.52) for the short period (ADZ had stronger correlation for the long period (-0.79), compared with that for the short period (-0.32); this characteristic is attributed to zonal long-period response of the southern mode in the

  9. Lower Paleozoic Continuity of the East Gondwanan Margin and Implications for Interpretation of Tectonostratigraphic Zones of the Himalaya

    Science.gov (United States)

    Myrow, P.; Hughes, N.; Fanning, C. M.; Banerjee, D.; Dipietro, J. A.

    2009-12-01

    Qualitative and quantitative study of the tectonic and erosional history of the Himalayan orogen requires knowledge of the geology prior to major unroofing. Our studies of sedimentary successions in the Lesser (LH) and Tethyan Himalaya (TH)support depositional and stratigraphic continuity of the lower Paleozoic Indian Gondwanan margin across the various lithotectonic zones of the Himalaya, and along strike, from beyond the western Himalayan syntaxis in Pakistan, to Arunachal Pradesh, adjacent to the eastern syntaxis. Across-strike continuity is supported by (1) the presence of a distinctive Cambrian-Permian unconformity in the Salt Range (south of the Main Boundary Thrust), LH of India, and northern Tethyan part of Pakistan, and (2) correlative Neoproterozoic diamictite units in both the TH and LH. In addition, lithofacies changes support northward deepening across the northern Indian margin from the LH to the TH. Cambrian rocks extended south of the MBT in the Salt Range of Pakistan and are also exposed on cratonic India, south of the Himalayan Frontal Thrust in the Marwar basin of Rajasthan. Correlations indicate that the Neoproterozoic-Cambrian blanket extended far onto the Indian craton, just as on other paleocontinents at this time. Along-strike stratigraphic relationships also support the existence this extensive blanket, from which the outer Lesser Himalaya is a remnant. Similarities in stratigraphic successions, depositional ages, and geochemical deposits (e.g., phosphate) of the LH and TH between the central Himalaya and Pakistan, as well as correlative Neoproterozoic carbonate in Arunachal Pradesh (Buxa Formation), indicate that this blanket extended from west of the western syntax of the Himalaya across to the eastern syntaxis. Detrital zircon age spectra from Cambrian and Ordovician samples across the ancient northern Indian Himalayan margin show uniform signatures that include age ranges from Archean to Ordovician, with dominant of 1.3-0.9 Ga, ~0

  10. The Central Lake Malawi (Nyasa) Rift: single or multiple rift segments?

    Science.gov (United States)

    McCartney, T.; Scholz, C. A.; Shillington, D. J.; Accardo, N. J.; Chindandali, P. R. N.; Kamihanda, G.

    2015-12-01

    Accommodation zones connect rift segments, which are fundamental elements of continental rift architecture. The sedimentary record aids our assessment of the evolution of this linkage. The central basin of Lake Malawi is one of the most structurally complex regions of the Malawi Rift. Border fault margins have been interpreted on both shorelines; three structures within the basin have been interpreted as segments of a corresponding accommodation zone. We investigate these structures by integrating single- and multi-channel reflection seismic data, including new MCS acquired in 2015 for the SEGMeNT project. The stratigraphic record in the central basin, inferred from seismic reflection profiles, provides compelling evidence that most fault-related subsidence is accommodated by the western border fault. Strata on both sides of all three structures dip to the west. The pre-rift basement in the sub-basin west of the central structure is considerably deeper (~ 4 s TWTT sub-bottom) than that in the broader eastern sub-basin (~ 2.5 s TWTT sub-bottom). A syncline in the eastern sub-basin shows little variation in seismic facies, particularly over the last 1.3 m.y. In contrast, the western sub-basin exhibits seismic facies indicative of fluvial input from two major rivers, siliciclastic input from the border fault footwall rising > 1000 m above lake level, and mud diapirs in the deepest part of the sub-basin. Horizons pierced by these diapirs onlap the central structure, suggesting diapir rise postdates relative uplift of the structure. Correlations with the age model from a 2005 scientific drilling project will better constrain this timing. The structural high helps focus siliciclastic sediments into the sub-basin, resulting in the overpressure conditions required for mud diapirism. We hypothesize that the diapirs are the result of sediment loading in the deep main depocenter of the central basin rather than fault mechanisms. The basement highs in the central basin control

  11. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic

    DEFF Research Database (Denmark)

    Døssing Andreasen, Arne; Japsen, Peter; Watts, Anthony B.

    2016-01-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to ...... by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.......Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses...... to inner margin episodic uplift, including the formation of coastal mountains. The origin of these events remains enigmatic. We present a seismic reflection study from the Greenland Fracture ZoneEast Greenland Ridge (GFZ-EGR) and the NE Greenland shelf. We document a regional intra-Miocene seismic...

  12. Metamorphic Tectonites and Differential Exhumation Reveal 3D Nature of Extension and Lower Crustal Flow in the Active Woodlark Rift, Papua New Guinea

    Science.gov (United States)

    Little, T. A.; Baldwin, S. L.; Fitzgerald, P. G.; Monteleone, B. D.; Peters, K. J.

    2004-12-01

    The D'Entrecasteaux Islands metamorphic core complexes (MCCs) occur in the Woodlark rift, a continental region where ˜200 km of extension since ˜6 Ma has been focused into a relatively small number of normal faults, some dipping at 12 mm/yr. To the east, an MCC on eastern Normanby Island has top-north footwall mylonites that dip gently SW and that were exhumed during the Pliocene as part of a northward progression of normal faulting that did not arrive at the offshore Moresby Seamount until ˜1.2 Ma (ODP Leg 180 site), relationships that suggest a rolling-hinge style uplift. Importantly, its detachment exposes no rocks deeper than blueschist-facies. Ductile deformation fabrics in the MCCs reveal patterns of lower crustal motion that can be evaluated against seafloor spreading-derived plate motions. Shear fabrics in MCCs closest to the Woodlark spreading ridges, including Normanby and Misima Islands are parallel to the NNE direction of 0.5-3.6 Ma Solomon Sea-Australia spreading. Farther west, lineations in the lower plates of the D'Entrecasteaux MCCs locally deflect ˜40-50° clockwise from this direction. This obliquity is interpreted to reflect inhomogeneous lower crustal extension to the west of the Woodlark spreading ridges. A rift corridor extending ˜100 km to the north of Goodenough and Fergusson Islands is defined by active normal faulting and subsidence of the Trobriand margin. We infer that a previously subducted, locally eclogite-bearing, slab of thinned Australian lower crust to the north of the islands is being pulled out from beneath this zone as it is being sinistrally sheared along its eastern edge. Today the rift zone steps ˜70 km south towards the Papuan Peninsula to define a right-step, an asymmetry that is enhanced by seafloor spreading east of ˜151.4° E. Published focal mechanisms suggest that N-S sinistral shear along the northern Woodlark rift is continuing. In central Normanby Island, ˜2 Ma andesites may have erupted along a transverse

  13. Stress perturbation associated with the Amazonas and other ancient continental rifts

    Science.gov (United States)

    Zoback, Mary Lou; Richardson, Randall M.

    1996-03-01

    rift case, because the observed stress rotation only weakly constrains the ratio of the regional horizontal stress difference to the rift-normal compression to be between 0.25 and 1.0, our analysis is inconclusive because the resultant normalized horizontal shear stress may be reduced (for ratios >0.5) or enhanced (for ratios pillows. The modeling and analysis here demonstrate that rift-normal compressive stresses are a significant source of stress acting on the lithosphere and that in some cases may be a contributing factor to the association of intraplate seismicity with old zones of continental extension.

  14. New Views of East Antarctica- from Columbia to Gondwana

    Science.gov (United States)

    Ferraccioli, F.; Forsberg, R.; Aitken, A.; Young, D. A.; Blankenship, D. D.; Bell, R. E.; Finn, C.; Martos, Y. M.; Armadillo, E.; Jacobs, J.; Ebbing, J.; Eagles, G.; Jokat, W.; Jordan, T. A.; Ruppel, A.; Läufer, A.; Dalziel, I. W. D.

    2015-12-01

    East Antarctica is a keystone in the Gondwana, Rodinia and the Columbia supercontinents. Recent aerogeophysical research, augmented by satellite magnetic, gravity and seismological data is unveiling the crustal architecture of the continent. This is helping comprehend the impact of supercontinental processes such as subduction, accretion, rifting and intraplate tectonics on its evolution. A mosaic of Precambrian basement provinces is apparent in interior East Antarctica (Ferraccioli et al., 2011, Nature). A major suture separates the Archean-Neoproterozoic Ruker Province from an inferred Grenvillian-age orogenic Gamburtsev Province with remarkably thick crust (up to 60 km thick) and thick lithosphere (over 200 km thick). The age of the suturing and its linkages with supercontinental assembly is debated with both Rodinia and Gondwana candidates being proposed. Further east, magnetic highs delineate a Paleo to Mesoproterozoic Nimrod-South Pole igneous province (Goodge and Finn, 2010 JGR) that flanks a composite Mawson Continent- including the Gawler Craton of South Australia (Aitken et al., 2014 GRL). An over 1,900 km long magnetic and gravity lineament is imaged along the western flank of the Wilkes Subglacial Basin and is interpreted here as a major Paleoproterozoic suture zone linked to the collision of Laurentia and East Antarctica within Columbia. The proposed suture played a pivotal role helping localise Neoproterozoic Rodinia rifted margin evolution and forming a backstop for the Ross-Delamerian cycle of Gondwana amalgamation. Aeromagnetic and gravity imaging help determine the extent of a Keweenawan-age (ca 1.1 Ga) large igneous province in the Coats Land Block -isotopically tied with the Mid-Continent Rift System of Laurentia (Loewy et al., 2011 Geology). Imprints of Grenvillian magmatic arc accretion link together the Namaqua-Natal and Maud belts in South Africa and Dronning Maud Land within Rodinia. The aeromagnetically distinct Southeast Dronning Maud

  15. Distributed deformation ahead of the Cocos-Nazca Rift at the Galapagos triple junction

    Science.gov (United States)

    Smith, Deborah K.; Schouten, Hans; Zhu, Wen-lu; Montési, Laurent G. J.; Cann, Johnson R.

    2011-11-01

    The Galapagos triple junction is not a simple ridge-ridge-ridge (RRR) triple junction. The Cocos-Nazca Rift (C-N Rift) tip does not meet the East Pacific Rise (EPR). Instead, two secondary rifts form the link: Incipient Rift at 2°40‧N and Dietz Deep volcanic ridge, the southern boundary of the Galapagos microplate (GMP), at 1°10‧N. Recently collected bathymetry data are used to investigate the regional tectonics prior to the establishment of the GMP (∼1.5 Ma). South of C-N Rift a band of northeast-trending cracks cuts EPR-generated abyssal hills. It is a mirror image of a band of cracks previously identified north of C-N Rift on the same age crust. In both areas, the western ends of the cracks terminate against intact abyssal hills suggesting that each crack initiated at the EPR spreading center and cut eastward into pre-existing topography. Each crack formed a short-lived triple junction until it was abandoned and a new crack and triple junction initiated nearby. Between 2.5 and 1.5 Ma, the pattern of cracking is remarkably symmetric about C-N Rift providing support for a crack interaction model in which crack initiation at the EPR axis is controlled by stresses associated with the tip of the westward-propagating C-N Rift. The model also shows that offsets of the EPR axis may explain times when cracking is not symmetric. South of C-N Rift, cracks are observed on seafloor as old as 10.5 Ma suggesting that this triple junction has not been a simple RRR triple junction during that time.

  16. The Gibraltar Arc seismogenic zone (part 2): Constraints on a shallow east dipping fault plane source for the 1755 Lisbon earthquake provided by tsunami modeling and seismic intensity

    Science.gov (United States)

    Gutscher, M.-A.; Baptista, M. A.; Miranda, J. M.

    2006-10-01

    The Great Lisbon earthquake has the largest documented felt area of any shallow earthquake and an estimated magnitude of 8.5-9.0. The associated tsunami ravaged the coast of SW Portugal and the Gulf of Cadiz, with run-up heights reported to have reached 5-15 m. While several source regions offshore SW Portugal have been proposed (e.g.— Gorringe Bank, Marquis de Pombal fault), no single source appears to be able to account for the great seismic moment as well as all the historical tsunami amplitude and travel time observations. A shallow east dipping fault plane beneath the Gulf of Cadiz associated with active subduction beneath Gibraltar, represents a candidate source for the Lisbon earthquake of 1755. Here we consider the fault parameters implied by this hypothesis, with respect to total slip, seismic moment, and recurrence interval to test the viability of this source. The geometry of the seismogenic zone is obtained from deep crustal studies and can be represented by an east dipping fault plane with mean dimensions of 180 km (N-S) × 210 km (E-W). For 10 m of co-seismic slip an Mw 8.64 event results and for 20 m of slip an Mw 8.8 earthquake is generated. Thus, for convergence rates of about 1 cm/yr, an event of this magnitude could occur every 1000-2000 years. Available kinematic and sedimentological data are in general agreement with such a recurrence interval. Tsunami wave form modeling indicates a subduction source in the Gulf of Cadiz can partly satisfy the historical observations with respect to wave amplitudes and arrival times, though discrepancies remain for some stations. A macroseismic analysis is performed using site effect functions calculated from isoseismals observed during instrumentally recorded strong earthquakes in the region (M7.9 1969 and M6.8 1964). The resulting synthetic isoseismals for the 1755 event suggest a subduction source, possibly in combination with an additional source at the NW corner of the Gulf of Cadiz can satisfactorily

  17. Unveiling subglacial geology and crustal architecture in the Recovery frontier of East Antarctica with recent aeromagnetic and airborne gravity imaging

    Science.gov (United States)

    Ferraccioli, F.; Forsberg, R.; Jordan, T. A.; Matsuoka, K.; Olsen, A.; King, O.; Ghidella, M.

    2014-12-01

    East Antarctica is the least known continent, despite being a keystone in the Gondwana, Rodinia and Columbia supercontinents. Significant progress has been made in recent years in exploring East Antarctica using aeromagnetic and airborne gravity together with radar. Major aerogeophysical campaigns over the Wilkes Subglacial Basin (Ferraccioli et al., 2009 Tectonophysics), the Aurora Subglacial Basin (Aitken et al., 2014 GRL) and the Gamburtsev Subglacial Mountains (Ferraccioli et al., 2011, Nature) provide new glimpses into the crustal architecture of East Antarctica. However, a major sector of the continent that includes key piercing points for reconstructing linkages between East Antarctica and Laurentia within Rodinia, and also the inferred remnants of a major suture zone active during Gondwana amalgamation in Pan-African times (ca 500 Ma), has remained largely terra incognita. Here we present the results of a major aerogeophysical survey flown over this sector of East Antarctica, named the Recovery Frontier, from the major ice stream flowing in the region. The survey was flown during the IceGRAV 2012-13 field season, as part of a Danish-Norwegian-UK and Argentine collaboration and led to the collection of 29,000 line km of radar, laser altimetry, gravity and magnetic data. We present the new aeromagnetic anomaly, Bouguer and residual and enhanced anomaly maps for the region. Using these images we trace the extent of major subglacial faults and interpret these to delineate the tectonic boundaries separating the Coast block, the Shackleton Range and the Dronning Maud Land crustal provinces. Forward magnetic and gravity modelling enables us to examine the inferred Pan-African age suture zone in the Shackleton Range and address its tectonic relationships with older terranes of the Mawson Craton and Grenvillian-age terranes of Dronning Maud Land and interior East Antarctica. Finally, we present new models to test our hypothesis that Paleozoic to Mesozoic rift basins

  18. Venus: Geology of Beta Regio rift system

    Science.gov (United States)

    Nikishin, A. M.; Borozdin, V. K.; Bobina, N. N.

    1992-01-01

    Beta Regio is characterized by the existence of rift structures. We compiled new geologic maps of Beta Regio according to Magellan data. There are many large uplifted tesserae on beta upland. These tesserae are partly buried by younger volcanic cover. We can conclude, using these observations, that Beta upland formed mainly due to lithospheric tectonic uplifting and was only partly constructed by volcanism. Theia Mons is the center of the Beta rift system. Many rift belts are distributed radially to Theia Mons. Typical widths of rifts are 40-160 km. Rift valleys are structurally represented by crustal grabens or half-grabens. There are symmetrical and asymmetrical rifts. Many rifts have shoulder uplifts up to 0.5-1 km high and 40-60 km wide. Preliminary analysis for rift valley structural cross sections lead to the conclusion that rifts originated due to 5-10 percent crustal extension. Many rifts traverse Beta upland and spread to the surrounding lowlands. We can assume because of these data that Beta rift system has an active-passive origin. It formed due to regional tectonic lithospheric extension. Rifting was accelerated by upper-mantle hot spot origination under the center of passive extension (under the Beta Regio).

  19. Tonalites and plagiogranites of the Char suture-shear zone in East Kazakhstan:Implications for the Kazakhstan-Siberia collision

    Institute of Scientific and Technical Information of China (English)

    M.L. Kuibida; I.Yu. Safonova; P.V. Yermolov; A.G. Vladimirov; N.N. Kruk; S. Yamamoto

    2016-01-01

    The paper presents first UePb zircon ages and geochemical data from Carboniferous granitoids (tonalites and plagiogranites) of the Char sutureeshear zone in East Kazakhstan, which is located in the north-western Central Asian Orogenic Belt (CAOB). The study included analysis of geological setting, major and trace elements, and rock petrogenesis. The Char tonalites and plagiogranites occur as NW-striking linear chains inside Visean serpentinite mélange. Petrographycally, the tonalites show signs of syntec-tonic deformation, and the plagiogranites are less deformed suggesting their later intrusion. The tonalites yielded a LA-ICP-MS zircon age of ca. 323 Ma, i.e. exactly at the boundary between the early and late Carboniferous. Compositionally, the tonalites and plagiogranites are characterized, respectively, by high SiO2 (67e70 and 73e74 wt.%) and Al2O3 (17e19 and 14e15 wt.%), Sr/Y>40 and low Yb ¼ 0.2e0.5 ppm. Their multi-element patterns show clear Nb-Ta negative anomalies. The low Nb/Ta ratios (7e15) and Zr (114e191 ppm) suggest a MORB-type protolith (amphibolite) with subchondritic Nb/Ta (8e17) and low Zr (1e72 ppm). The low contents of K and Rb suggest weak assimilation of the melts by island arc felsic crust. The subchondritic Nb/Ta ratios exclude their derivation by the melting of subducted/dehydrated MORB. We argue that the Char high-Al tonalites and plagiogranites formed by the melting of hydrated MORB at the base of the mafic lower crust at pressures of 10e15 kbar. The occurrences of the Char tonalites and plagiogranites inside the Visean serpentinite mélange overlapped by Serpukhovian con-glomerates, their alignment parallel to deformation zones, and their geochemical features suggest their origin by the melting of mafic lower crust in relation to the collision of the Siberian and Kazakhstan continents.

  20. The seismicity in Kenya (East Africa) for the period 1906-2010: A review

    Science.gov (United States)

    Mulwa, J. K.; Kimata, F.; Suzuki, S.; Kuria, Z. N.

    2014-01-01

    Kenya has had a seismic station since 1963 as part of the World Wide Standardized Seismograph Network (WWSSN). In 1990, the University of Nairobi in collaboration with GeoForschungsZentrum (GFZ) started to build up a local seismological network, the Kenya National Seismic Network (KNSN), which operated for about ten years between 1993-2002. This, however, experienced a myriad of problems ranging from equipment breakdown, vandalism and lack of spares. Kenya is seismically active since the Kenya rift valley traverses through the country from north to south bisecting the country into eastern and western regions. In the central part, the Kenya rift branches to form the NW-SE trending Kavirondo (Nyanza) rift. The Kenya rift valley and the Kavirondo (Nyanza) rift are the most seismically active where earthquakes of local magnitude (Ml) in the order of ⩽2.0-5.0 occur. Furthermore, historical records show that earthquakes of magnitudes of the order of Ml ⩾ 6.0 have occurred in Kenya. Such large magnitude earthquakes include the January 6, 1928 Subukia earthquake (Ml 7.1) and an aftershock (Ml 6.2) four days later, as well as the 1913 Turkana region earthquake (Ml 6.2). Since early 1970's, numerous seismic investigations have been undertaken in Kenya in order to understand the formation and structure of the Kenyan part of the East African rift valley. Earthquake data from these studies is, however, rather disorganized and individual datasets, including that acquired during the period 1993-2002, cannot furnish us with comprehensive information on the seismicity of Kenya for the past ∼100 years. The purpose of this paper is, therefore, to review the seismicity in Kenya for the period 1906-2010 by utilizing data and results from different sources. The general seismicity of Kenya has been evaluated using historical data, data recorded by local seismic networks, the United States Geological Survey catalogue as well as earthquake data from the numerous seismic

  1. Knowledge about Danger Signs of Obstetric Complications and Associated Factors among Postnatal Mothers of Mechekel District Health Centers, East Gojjam Zone, Northwest Ethiopia, 2014.

    Science.gov (United States)

    Amenu, Gedefa; Mulaw, Zerfu; Seyoum, Tewodros; Bayu, Hinsermu

    2016-01-01

    Background. Developing countries like Ethiopia contributed highest level of maternal mortality due to obstetric complications. Women awareness of obstetric danger sign to recognize complications to seek medical care early is the first intervention in an effort to decrease maternal death. Objective. To assess knowledge about danger signs of obstetric complications and associated factors among postnatal mothers at Mechekel district health centers, East Gojjam zone, Northwest Ethiopia, 2014. Methods. An institution based cross-sectional study was conducted from August to October, 2014, in Mechekel district health centers. Systematic random sampling was used to select four hundred eleven study participants. A pretested structured questionnaire was used to collect data. Data were entered to Epi Info version 3.5.3 and exported to SPSS 20.0 for further analysis. Descriptive and summary statistics were done. Logistic regression analyses were used to see the association of different variables. Odds ratios and 95% confidence interval were computed to determine the presence and strength of association. Results. According to this study, 55.1% participants were knowledgeable about danger signs of obstetric complications. Maternal and husband educational level ((AOR = 1.977, 95% CI: 1.052, 3.716) and (AOR = 3.163, 95% CI: 1.860, 5.3770), resp.), family monthly income ≥ 1500 (AOR = 2.954, 95% CI: 1.289, 6.770), being multipara (AOR = 7.463, 95% CI: 1.301, 12.800), ANC follow-up during last pregnancy (AOR = 2.184, 95% CI: 1.137, 4.196), and place of last delivery (AOR = 1.955, 95% CI: 1.214, 3.150) were variables found to be significantly associated with women's knowledge on danger signs of obstetric complications. Conclusion. Significant proportion of respondents were not knowledgeable about obstetric danger signs and factors like educational status, place of last delivery, and antenatal follow-up were found to be associated.

  2. Acceptance of Provider Initiated HIV Testing and Counseling among Tuberculosis Patients in East Wollega Administrative Zone, Oromia Regional State, Western Ethiopia

    Directory of Open Access Journals (Sweden)

    Wakjira Kebede

    2014-01-01

    Full Text Available Human immunodeficiency virus (HIV is a powerful risk factor for the development of tuberculosis. This study assessed the acceptance and associated factors that can affect provider initiated HIV testing and counseling (PITC among tuberculosis patients at the East Wollega administrative zone, Oromia regional state, western Ethiopia, from January to August, 2010. A single population proportion formula is used to calculate the total sample size of 406 and the cluster sampling technique was used to select 13 health centers that provide PITC services. The sample size was proportionally allocated to each health center. The study participants were selected using a simple random sampling technique using the lottery method. Structured questionnaire was used for collection of sociodemographic data. From the total of study subjects, 399 (98.2% TB patients were initiated for HIV test and 369 (92.5% patients accepted the initiation. Of those, 353 (95.5% patients had taken HIV test and received their results. According to the reviewed documents, the prevalence of HIV among tuberculosis (TB patients in the study area was 137 (33.7%. The logistic regression result showed the PITC was significantly associated with their knowledge about HIV (AOR = 3.22, 95% CI: 1.3–7.97, self-perceived risk (AOR = 2.93, 95% CI: 1.12–7.66, educational status (AOR = 3.51, 95% CI: 1.13–10.91, and knowledge on transmission of HIV/AIDS (AOR = 7.56, 95% CI: 1.14–40.35 which were significantly associated with the acceptance of PITC among TB patients. Therefore, this study’s results showed, the prevalence of HIV among TB patient was high; to enhance the acceptance of PITC among TB patients, health extension workers must provide health education during home-to-home visiting. TB treatment supervisors also provide counseling intensively for all forms of TB patients during their first clinical encounter.

  3. Geodynamics and synchronous filling of rift-type basin evolved through compression tectonics

    Science.gov (United States)

    Papdimitriou, Nikolas; Nader, Fadi; Gorini, Christian; Deschamps, Remy

    2016-04-01

    The Levant Basin falls in the category of frontier basins, and is bounded by the Eratosthenes seamount to the West, the Nile cone delta to the south, Cyprus to the north and Lebanon to the east. The Levant Basin was initially a rift type basin, which is located at a major plate boundary since the Late Triassic. It evolved later on through compression tectonics. The post-rift phase prevailed since the Late Jurassic and is expressed by the gradual initiation of a passive margin. A thick infill, mostly of deep water sediments (about 12 km thick) is accounted for the Levant Basin. The post-rift sediments are pinching-out along the slope of the well preserved (and imaged) eastern margin of the Eratosthenes seamount, which is essentially made up of Mesozoic platform carbonates (about 5 km). Thus, the Eratosthenes carbonate platform was adjacent to the deep marine facies of the Levant Basin until the late Cretaceous/Cenozoic. At that time, both the Eratosthenes seamount and the Levant Basin became part of a foreland basin along the Cyprus Arc zone as a result of the collision of the African and Eurasian plates. The objective of this contribution is to investigate the timing and the mechanisms of flexural subsidence as well as the sedimentary filling of Levant Basin (through a source-to-sink approach) in a well-deformed tectonic region. The interpretation of twenty-four 2D seismic profiles coupled with the available ODP wells, offshore Cyprus, aims to define the primary reflectors and seismic packages. Then, concepts of seismic stratigraphy and sequence stratigraphy are applied to achieve a better understanding of the tectonostratigraphy and sedimentary architecture of the Eratosthenes seamount (as an isolated carbonate platform) and its surroundings. Recent offshore discoveries south of the Eratosthenes seamount (e.g., Zhor) have confirmed the presence of gas accumulations exceeding 30Tcf in subsalt Lower Miocene carbonate buildups, making out the understanding of the

  4. Petrological and Geochemical characterization of central Chihuahua basalts: a possible local sign of rifting activity

    Science.gov (United States)

    Espejel-Garcia, V. V.; Garcia-Rascon, M.; Villalobos-Aragon, A.; Morton-Bermea, O.

    2012-12-01

    The central part of the mexican state, Chihuahua, is the oriental border of the Sierra Madre Occidental (silicic large igneous province), which consist of series of ignimbrites divided into two volcanic groups of andesites and rhyolites. In the central region of Chihuahua, the volcanic rocks are now part of the Basin and Range, allowing the presence of mafic rocks in the lower areas. The study area is located approximately 200 km to the NW of Chihuahua city near to La Guajolota town, in the Namiquipa County. There are at least 5 outcrops of basalts to the west of the road, named Puerto de Lopez, Malpaises, El Tascate, Quebrada Honda, and Carrizalio, respectively. These outcrops have only been previously described by the Mexican Geologic Survey (SGM) as thin basaltic flows, with vesicles filled with quartz, and phenocrystals of labradorite, andesine, oligoclase and olivine. Petrologically, the basalts present different textures, from small phenocrysts of plagioclase in a very fine matrix to large, zoned and sometimes broken phenocrysts of plagioclase in a coarser matrix. All samples have olivine in an advanced state of alteration, iddingsite. The geochemical analyses report that these basaltic flows contain characteristics of rift basalts. The rocks have a normative olivine values from 5.78 to 27.26 and nepheline values from 0 to 2.34. In the TAS diagram the samples straddle the join between basalt and trachy-basalt, reflecting a high K2O content. The Mg# average is 0.297, a value that suggests that the basalts do not come from a primitive magma. The basalts have high values of Ba (945-1334 ppm), Cu (54-147 ppm), and Zn (123-615 ppm). The contents of Rb (23-57 ppm), Sr (659-810 ppm), Y (26-33 ppm), Zr (148-217 ppm) and Cr (79-98 ppm) are characteristics of rift basalts. Using discrimination diagrams, the basalts plot in the field of within plate, supporting the rifting origin. Outcrops of other basalts, at about 80 to 100 km to the east of the study area, Lomas El

  5. Two-Dimensional Numerical Modeling of Intracontinental Extension: A Case Study Of the Baikal Rift Formation

    DEFF Research Database (Denmark)

    Yang, H.; Chemia, Zurab; Artemieva, Irina

    The Baikal Rift zone (BRZ) is a narrow ( 10 km) active intra-continental basin, located at the boundary between the Amurian and Eurasian Plates. Although the BRZ is one of the major tectonically active rift zones in the world andit has been a subject of numerous geological...... on topography,basin depth, the structure of the crust, lithosphere thickness, and the location of major tectonic faults. Our goal is to determine the physical models that reproduce reasonably well the ob-served deformation patterns of the BRZ.We perform a systematic analysis of the pa-rameter space in order...

  6. The NE Rift of Tenerife: towards a model on the origin and evolution of ocean island rifts; La dorsal NE de Tenerife: hacia un modelo del origen y evolucion de los rifts de islas oceanicas

    Energy Technology Data Exchange (ETDEWEB)

    Carracedo, J. C.; Guillou, H.; Rodriguez Badiola, E.; Perez-Torrado, F. J.; Rodriguez Gonzalez, A.; Peris, R.; Troll, V.; Wiesmaier, S.; Delcamp, A.; Fernandez-Turiel, J. L.

    2009-07-01

    , plume-related fractures acting throughout the entire growth of the islands. Basaltic volcanism forms the bulk of the islands and rift zones. However, collapses of the flanks of the rifts disrupt their established fissural feeding system, frequently favouring magma accumulation and residence at shallow emplacements, leading to differentiation of magmas, and intermediate to felsic nested eruptions. Rifts and their collapse may therefore act as an important factor in providing petrological variability to oceanic volcanoes. Conversely, the possibility exists that the presence of important felsic volcanism may indicate lateral collapses in oceanic shields and ridge-like volcanoes, even if they are concealed by post-collapse volcanism or partially mass-wasted by erosion. (Author) 76 refs.

  7. A preliminary description of the Gan-Hang failed rift, southeastern china

    Science.gov (United States)

    Goodell, P. C.; Gilder, S.; Fang, X.

    1991-10-01

    The Gan-Hang failed rift, as defined by present-day topography, extends at least 450 km in length and 50 km in width. It is a northeast-southwest trending series of features spanning from Hangzhou Bay in Zhejiang province into Jiangxi province through Fuzhou City. Southwest of Fuzhou, the rift splits into two portions: one continuing along the southwestern trend, and the other diverging westward. The total extent of the rift cannot be defined at this time. The rift is superimposed upon a major suture zone of Caledonian or early Mesozoic age. The suture represents the fusing of the South China (Huanan) and Yangtze cratons. Perhaps in Late Triassic, but for sure by Late-Middle Jurassic time, the rifting was initiated and followed this older suture, in part. This time corresponds roughly to the middle stage of the Yanshanian orogeny and to the subduction of the postulated Pacific- Kula ridge southeast of the continental margin. The total thickness of the sediments and volcanics filling the rift valley reaches more than 10,000 m. Peak intensity of extension was between Late-Middle Jurassic and Middle to Late Cretaceous. Sedimentation within the rift was not continuous and is marked with periodic unconformities. Sediments within the rift include red beds, sandstones, siltstones, mudstones, conglomerates, breccias, tuffs, and ignimbrites. Vertebrate fossils and dinosaur eggs are also found. Contemporaneous volcanics within and flanking the rift include basalts, rhyolites, granites, gabbros, dacites, and andesites. Silicic volcanics are mostly attributed to caldera systems. Early basalts are tholeiitic and later change to alkaline-olivine basalt. Bimodal volcanism is recognized. Peak intensity of volcanism ranges between 135 and 75 Ma. In Early Cenozoic time, the area was a topographic low. Paleocene- Eocene sediments and evaporites are the last rocks to be deposited in the rift. Today the rift is delineated by major, high-angle faults (the Pingxiang-Guangfeng deep fault

  8. Perched Lava Pond Complex on South Rift of Axial Volcano Revealed in AUV Mapping

    Science.gov (United States)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    An extraordinary lava pond complex is located on Axial Volcano's distal south rift. It was discovered in EM300 multibeam bathymetry collected in 1998, and explored and sampled with ROVs Tiburon in 2005 and Doc Ricketts in 2013. It was surveyed with the MBARI Mapping AUV D. Allan B. in 2011, in a complicated mission first flying above the levees at constant depth, then skimming ~5 m over the levees at a different constant depth to survey the floors, then twice switching to constant altitude mode to map outside the ponds. The AUV navigation was adjusted using the MB-System tool mbnavadjust so that bathymetric features match in overlapping and crossing swaths. The ~1-m resolution AUV bathymetry reveals extremely rough terrain, where low-resolution EM300 data had averaged acoustic returns and obscured details of walls, floors, a breach and surrounding flows, and gives context to the ROV observations and samples. The 6 x 1.5 km pond complex has 4 large and several smaller drained ponds with rims 67 to 106 m above the floors. The combined volume before draining was 0.56 km3. The ponds overflowed to build lobate-flow levees with elongate pillows draping outer flanks, then drained, leaving lava veneer on vertical inner walls. Levee rim depths vary by only 10 m and are deeper around the southern ponds. Deep collapse-pits in the levees suggest porosity of pond walls. The eastern levee of the northeastern pond breached, draining the interconnected ponds, and fed thick, rapidly-emplaced, sheet-flows along the complex's east side. These flows travelled at least 5.5 km down-rift and have 19-33 m deep drained ponds. They extended up-rift as well, forming a 10 x 2.5 km ponded flow with level 'bathtub rings' as high as 35 m above the floor marking that flow's high-stand. Despite the breach, at least 0.066 km3 of the molten interior of the large ponds also drained back down the eruptive fissures, as the pond floors are deeper than the sill and sea floor outside the complex. Tumulus

  9. Simple shear detachment fault system and marginal grabens in the southernmost Red Sea rift

    Science.gov (United States)

    Tesfaye, Samson; Ghebreab, Woldai

    2013-11-01

    The NNW-SSE oriented Red Sea rift, which separates the African and Arabian plates, bifurcates southwards into two parallel branches, southeastern and southern, collectively referred to as the southernmost Red Sea rift. The southern branch forms the magmatically and seismo-tectonically active Afar rift, while the less active southeastern branch connects the Red Sea to the Gulf of Aden through the strait of Bab el Mandeb. The Afar rift is characterized by lateral heterogeneities in crustal thickness, and along-strike variation in extension. The Danakil horst, a counterclockwise rotating, narrow sliver of coherent continental relic, stands between the two rift branches. The western margin of the Afar rift is marked by a series of N-S aligned right-lateral-stepping and seismo-tectonically active marginal grabens. The tectonic configuration of the parallel rift branches, the alignment of the marginal grabens, and the Danakil horst are linked to the initial mode of stretching of the continental crust and its progressive deformation that led to the breakup of the once contiguous African-Arabian plates. We attribute the initial stretching of the continental crust to a simple shear ramp-flat detachment fault geometry where the marginal grabens mark the breakaway zone. The rift basins represent the ramps and the Danakil horst corresponds to the flat in the detachment fault system. As extension progressed, pure shear deformation dominated and overprinted the initial low-angle detachment fault system. Magmatic activity continues to play an integral part in extensional deformation in the southernmost Red Sea rift.

  10. Transient cracks and triple junctions induced by Cocos-Nazca propagating rift

    Science.gov (United States)

    Schouten, H.; Smith, D. K.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.; Cann, J. R.

    2009-12-01

    The Galapagos triple junction is a ridge-ridge-ridge triple junction where the Cocos, Nazca, and Pacific plates meet around the Galapagos microplate (GMP). On the Cocos plate, north of the large gore that marks the propagating Cocos-Nazca (C-N) Rift, a 250-km-long and 50-km-wide band of NW-SE-trending cracks crosscuts the N-S-trending abyssal hills of the East Pacific Rise (EPR). These appear as a succession of minor rifts, accommodating some NE-SW extension of EPR-generated seafloor. The rifts successively intersected the EPR in triple junctions at distances of 50-100 km north of the tip of the C-N Rift. We proposed a simple crack interaction model to explain the location of the transient rifts and their junction with the EPR. The model predicts that crack locations are controlled by the stress perturbation along the EPR, induced by the dominant C-N Rift, and scaled by the distance of its tip to the EPR (Schouten et al., 2008). The model also predicts that tensile stresses are symmetric about the C-N Rift and thus, similar cracks should have occurred south of the C-N Rift prior to formation of the GMP about 1 Ma. There were no data at the time to test this prediction. In early 2009 (AT 15-41), we mapped an area on the Nazca plate south of the C-N rift out to 4 Ma. The new bathymetric data confirm the existence of a distinctive pattern of cracks south of the southern C-N gore that mirrors the pattern on the Cocos plate until about 1 Ma, and lends support to the crack interaction model. The envelope of the symmetric cracking pattern indicates that the distance between the C-N Rift tip and the EPR varied between 40 and 65 km during this time (1-4 Ma). The breakdown of the symmetry at 1 Ma accurately dates the onset of a southern plate boundary of the GMP, now Dietz Deep Rift. At present, the southern rift boundary of the GMP joins the EPR with a steep-sided, 80 km long ridge. This ridge releases the stress perturbation otherwise induced along the EPR by elastic

  11. First manned submersible dives on the East Pacific Rise at 21°N (project RITA): general results

    Science.gov (United States)

    Francheteau, Jean; Needham, H.D.; Choukroune, P.; Juteau, Tierre; Seguret, M.; Ballard, Richard D.; Fox, P.J.; Normark, W.R.; Carranza, A.; Cordoba, D.; Guerrero, J.; Rangin, C.

    1981-01-01

    A submersible study has been conducted in February–March 1978 at the axis of the East Pacific Rise near 21°N. The expedition CYAMEX, the first submersible program to be conducted on the East Pacific Rise, is part of the French-American-Mexican project RITA (Rivera-Tamayo), a 3-year study devoted to detailed geological and geophysical investigations of the East Pacific Rise Crest. On the basis of the 15 dives made by CYANA in the axial area of the Rise, a morphological and tectonic zonation can be established for this moderately-fast spreading center. A narrow, 0.6 to 1.2 km wide zone of extrusion (zone 1), dominated by young lava flows, is flanked by a highly fissured and faulted zone of extension (zone 2) with a width of 1 to 2 km. Further out, zone 3 is dominated by outward tilted blocks bounded by inward-facing fault scarps. Active or recent faults extend up to 12 km from the axis of extrusion of the East Pacific Rise. This represents the first determination from direct field evidence of the width of active tectonism associated with an accreting plate boundary. Massive sulfide deposits, made principally of zinc, copper and iron, were found close to the axis of the Rise. Other signs of the intense hydrothermal activity included the discovery of benthic fauna of gian size similar to that found at the axis of the Galapagos Rift. We emphasize the cyclic character of the volcanicity. The main characteristics of the geology of this segment of the East Pacific Rise can be explained by the thermal structure at depth below this moderately-fast spreading center. The geological observations are compatible with the existence of a shallow magma reservoir centered at the axis of the Rise with a half-width of the order of 10 km.

  12. Middle Jurassic - Early Cretaceous rifting on the Chortis Block in Honduras: Implications for proto-Caribbean opening (Invited)

    Science.gov (United States)

    Rogers, R. D.; Emmet, P. A.

    2009-12-01

    Regional mapping integrated with facies analysis, age constraints and airborne geophysical data reveal WNW and NE trends of Middle Jurassic to Early Cretaceous basins which intersect in southeast Honduras that we interpret as the result of rifting associated with the breakup of the Americas and opening of the proto-Caribbean seaway. The WNW-trending rift is 250 km long by 90 km wide and defined by a basal 200 to 800 m thick sequence of Middle to Late Jurassic fluvial channel and overbank deposits overlain by transgressive clastic shelf strata. At least three sub-basins are apparent. Flanking the WNW trending rift basins are fault bounded exposures of the pre-Jurassic continental basement of the Chortis block which is the source of the conglomeratic channel facies that delineate the axes of the rifts. Cretaceous terrigenous strata mantle the exposed basement-cored rift flanks. Lower Cretaceous clastic strata and shallow marine limestone strata are dominant along this trend indicating that post-rift related subsidence continued through the Early Cretaceous. The rifts coincide with a regional high in the total magnetic intensity data. We interpret these trends to reflect NNE-WSW extension active from the Middle Jurassic through Early Cretaceous. These rifts were inverted during Late Cretaceous shortening oriented normal to the rift axes. To the east and at a 120 degree angle to the WNW trending rift is the 300 km long NE trending Guayape fault system that forms the western shoulder of the Late Jurassic Agua Fria rift basin filled by > 2 km thickness of clastic marine shelf and slope strata. This NE trending basin coincides with the eastern extent of the surface exposure of continental basement rocks and a northeast-trending fabric of the Jurassic (?) metasedimentary basement rocks. We have previously interpreted the eastern basin to be the Jurassic rifted margin of the Chortis block with the Guayape originating as a normal fault system. These two rifts basin intersect

  13. Rifting, landsliding and magmatic variability in the Canary Islands

    Science.gov (United States)

    Carracedo, J. C.; Troll, V. R.; Guillou, H.; Badiola, E. R.; Pérez-Torrado, F. J.; Wiesmaier, S.; Delcamp, A.; Gonzalez, A. R.

    2009-04-01

    overburden of dense basaltic and ankaramitic lavas, the plumbing system increasingly favours shallow emplacement of new magma batches and subsequent differentiation, leading to intermediate and felsic nested eruptions. In contrast, a pure gravitational collapse will unload the edifice and allow for a limited amount of dense and primitive magma to erupt that may otherwise have been stored and solidified at depth, e.g. in upper mantle underplating zones. Rifts and their collapse may therefore act as an important factor in providing petrologic variability to oceanic volcanoes. Ad contrarium, it can be argued that felsic nested volcanoes in the Canaries frequently form because giant landslides provide the particular conditions required for primitive rift magmas to differentiate.

  14. Rayleigh Wave Tomography of Mid-Continent Rift (MCR) using Earthquake and Ambient Noise Data

    Science.gov (United States)

    Aleqabi, G. I.; Wiens, D.; Wysession, M. E.; Shen, W.; van der Lee, S.; Revenaugh, J.; Frederiksen, A. W.; Darbyshire, F. A.; Stein, S. A.; Jurdy, D. M.; Wolin, E.; Bollmann, T. A.

    2015-12-01

    The structure of the North American Mid-Continent Rift Zone (MCRZ) is examined using Rayleigh waves from teleseismic earthquakes and ambient seismic noise recorded by the Superior Province Rifting EarthScope Experiment (SPREE). Eighty-four broadband seismometers were deployed during 2011-2013 in Minnesota and Wisconsin, USA, and Ontario, CA, along three lines; two across the rift axis and the third along the rift axis. These stations, together with the EarthScope Transportable Array, provided excellent coverage of the MCRZ. The 1.1 Ga Mesoproterozoic failed rift consists of two arms, buried under post-rifting sedimentary formations that meet at Lake Superior. We compare two array-based tomography methods using teleseismic fundamental mode Rayleigh waves phase and amplitude measurements: the two-plane wave method (TPWM, Forsyth, 1998) and the automated surface wave phase velocity measuring system (ASWMS, Jin and Gaherty, 2015). Both array methods and the ambient noise method give relatively similar results showing low velocity zones extending along the MCRZ arms. The teleseismic Rayleigh wave results from 18 - 180 s period are combined with short period phase velocity results (period 8-30 s) obtained from ambient noise by cross correlation. Phase velocities from the methods are very similar at periods of 18-30 where results overlap; in this period range we use the average of the noise and teleseismic results. Finally the combined phase velocity curve is inverted using a Monte-Carlo inversion method at each geographic point in the model. The results show low velocities at shallow depths (5-10 km) that are the result of very deep sedimentary fill within the MCRZ. Deeper-seated low velocity regions may correspond to mafic underplating of the rift zone.

  15. Miocene extension and extensional folding in an anticlinal segment of the Black Mountains accommodation zone, Colorado River extensional corridor, southwestern United States

    Science.gov (United States)

    Varga, Robert J.; Faulds, James E.; Snee, Lawrence W.; Harlan, Stephen S.; Bettison-Varga, Lori

    2004-02-01

    Recent studies demonstrate that rifts are characterized by linked tilt domains, each containing a consistent polarity of normal faults and stratal tilt directions, and that the transition between domains is typically through formation of accommodation zones and generally not through production of throughgoing transfer faults. The mid-Miocene Black Mountains accommodation zone of southern Nevada and western Arizona is a well-exposed example of an accommodation zone linking two regionally extensive and opposing tilt domains. In the southeastern part of this zone near Kingman, Arizona, east dipping normal faults of the Whipple tilt domain and west dipping normal faults of the Lake Mead domain coalesce across a relatively narrow region characterized by a series of linked, extensional folds. The geometry of these folds in this strike-parallel portion of the accommodation zone is dictated by the geometry of the interdigitating normal faults of opposed polarity. Synclines formed where normal faults of opposite polarity face away from each other whereas anticlines formed where the opposed normal faults face each other. Opposed normal faults with small overlaps produced short folds with axial trends at significant angles to regional strike directions, whereas large fault overlaps produce elongate folds parallel to faults. Analysis of faults shows that the folds are purely extensional and result from east/northeast stretching and fault-related tilting. The structural geometry of this portion of the accommodation zone mirrors that of the Black Mountains accommodation zone more regionally, with both transverse and strike-parallel antithetic segments. Normal faults of both tilt domains lose displacement and terminate within the accommodation zone northwest of Kingman, Arizona. However, isotopic dating of growth sequences and crosscutting relationships show that the initiation of the two fault systems in this area was not entirely synchronous and that west dipping faults of the

  16. Rifted Continental Margins: The Case for Depth-Dependent Extension

    Science.gov (United States)

    Huismans, Ritske S.; Beaumont, Christopher

    2016-04-01

    Even though many basic properties of non-volcanic rifted margins are predicted by uniform extension of the lithosphere, uniform extension fails to explain other important characteristics. Particularly significant discrepancies are observed at: 1) the Iberia-Newfoundland conjugate margins (Type I), where large tracts of continental mantle lithosphere are exposed at the seafloor, and at; 2) ultra-wide central South Atlantic margins (Type II) where continental crust spans wide regions below which it appears that lower crust and mantle lithosphere were removed. Neither corresponds to uniform extension in which crust and mantle thin by the same factor. Instead, either the crust or mantle lithosphere has been preferentially removed during extension. We show that the Type I and II styles are respectively reproduced by dynamical numerical lithospheric stretching models (Models I-A/C and II-A/C) that undergo depth-dependent extension. In this notation A and C imply underplating of the rift zone during rifting by asthenosphere and lower cratonic lithosphere, respectively. We also present results for models with a weak upper crust and strong lower crust, Models III-A/C, to show that lower crust can also be removed from beneath the rift zone by horizontal advection with the mantle lithosphere. From the model results we infer that these Types I, II, and III margin styles are controlled by the strength of the mid/lower crust, which determines the amount of decoupling between upper and lower lithosphere during extension and the excision of crust or mantle. We also predict the styles of sedimentary basins that form on these margins as a test of the concepts presented

  17. Stable isotope variation in tooth enamel from Neogene hippopotamids: monitor of meso and global climate and rift dynamics on the Albertine Rift, Uganda

    Science.gov (United States)

    Brachert, Thomas Christian; Brügmann, Gerhard B.; Mertz, Dieter F.; Kullmer, Ottmar; Schrenk, Friedemann; Jacob, Dorrit E.; Ssemmanda, Immaculate; Taubald, Heinrich

    2010-10-01

    The Neogene was a period of long-term global cooling and increasing climatic variability. Variations in African-Asian monsoon intensity over the last 7 Ma have been deduced from patterns of eolian dust export into the Indian Ocean and Mediterranean Sea as well as from lake level records in the East African Rift System (EARS). However, lake systems not only depend on rainfall patterns, but also on the size and physiography of river catchment areas. This study is based on stable isotope proxy data (18O/16O, 13C/12C) from tooth enamel of hippopotamids (Mammalia) and aims in unravelling long-term climate and watershed dynamics that control the evolution of palaeolake systems in the western branch of the EARS (Lake Albert, Uganda) during the Late Neogene (7.5 Ma to recent). Having no dietary preferences with respect to wooded (C3) versus grassland (C4) vegetation, these territorial, water-dependant mammals are particularly useful for palaeoclimate analyses. As inhabitants of lakes and rivers, hippopotamid tooth enamel isotope data document mesoclimates of topographic depressions, such as the rift valleys and, therefore, changes in relative valley depth instead of exclusively global climate changes. Consequently, we ascribe a synchronous maximum in 18O/16O and 13C/12C composition of hippopotamid enamel centred around 1.5-2.5 Ma to maximum aridity and/or maximum hydrological isolation of the rift floor from rift-external river catchment areas in response to the combined effects of rift shoulder uplift and subsidence of the rift valley floor. Structural rearrangements by ~2.5 Ma within the northern segment of the Albertine Rift are well constrained by reversals in river flow, cannibalisation of catchments, biogeographic turnover and uplift of the Rwenzori horst. However, a growing rain shadow is not obvious in 18O/16O signatures of the hippopotamid teeth of the Albertine Rift. According to our interpretation, this is the result of the overriding effect of evaporation on 18

  18. Prograde infiltration of Cl-rich fluid into the granulitic continental crust from a collision zone in East Antarctica (Perlebandet, Sør Rondane Mountains)

    Science.gov (United States)

    Kawakami, Tetsuo; Higashino, Fumiko; Skrzypek, Etienne; Satish-Kumar, M.; Grantham, Geoffrey; Tsuchiya, Noriyoshi; Ishikawa, Masahiro; Sakata, Shuhei; Hirata, Takafumi

    2017-03-01

    Utilizing microstructures of Cl-bearing biotite in pelitic and felsic metamorphic rocks, the timing of Cl-rich fluid infiltration is correlated with the pressure-temperature-time (P-T-t) path of upper amphibolite- to granulite-facies metamorphic rocks from Perlebandet, Sør Rondane Mountains (SRM), East Antarctica. Microstructural observation indicates that the stable Al2SiO5 polymorph changed from sillimanite to kyanite + andalusite + sillimanite, and P-T estimates from geothermobarometry point to a counterclockwise P-T path characteristic of the SW terrane of the SRM. In situ laser ablation inductively coupled plasma mass spectrometry for U-Pb dating of zircon inclusions in garnet yielded ca. 580 Ma, likely representing the age of garnet-forming metamorphism at Perlebandet. Inclusion-host relationships among garnet, sillimanite, and Cl-rich biotite (Cl > 0.4 wt%) reveal that formation of Cl-rich biotite took place during prograde metamorphism in the sillimanite stability field. This process probably predated partial melting consuming biotite (Cl = 0.1-0.3 wt%). This was followed by retrograde, moderately Cl-bearing biotite (Cl = 0.1-0.3 wt%) replacing garnet. Similar timings of Cl-rich biotite formation in different samples, and similar f(H2O)/f(HCl) values of coexisting fluid estimated for each stage can be best explained by prograde Cl-rich fluid infiltration. Fluid-present partial melting at the onset of prograde metamorphism probably contributed to elevate the Cl concentration (and possibly salinity) of the fluid, and consumption of the fluid resulted in the progress of dehydration melting. The retrograde fluid was released from crystallizing Cl-bearing partial melts or derived externally. The prograde Cl-rich fluid infiltration in Perlebandet presumably took place at the uppermost part of the footwall of the collision boundary. Localized distribution of Cl-rich biotite and hornblende along large-scale shear zones and detachments in the SRM supports external

  19. Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?

    DEFF Research Database (Denmark)

    Artemieva, Irina; Shulgin, Alexey

    2015-01-01

    The southern part of the Baltic Shield hosts a series of mafic dykes and sills of Mesoproterozoic ages, including a ca. 1.53-1.46 Ga sheet-like gabbro-dolerite sills and the Salmi plateau-basalts from the Lake Ladoga region. Based on chiefly geochemical data, the region is conventionally interpre......The southern part of the Baltic Shield hosts a series of mafic dykes and sills of Mesoproterozoic ages, including a ca. 1.53-1.46 Ga sheet-like gabbro-dolerite sills and the Salmi plateau-basalts from the Lake Ladoga region. Based on chiefly geochemical data, the region is conventionally...... interpreted as an intracratonic Ladoga rift (graben). We question the validity of this geodynamic interpretation by analyzing regional geophysical data (crustal structure, heat flow, Bouguer gravity anomalies, magnetic anomalies, and mantle Vs velocities). We provide a complete list of tectonic, magmatic......, and geophysical characteristics typical of continental rifts in general and demonstrate that, except for magmatic and, perhaps, some gravity signature, the Lake Ladoga region lacks any other rift features. We also compare the geophysical data from the Lake Ladoga region with similar in age Midcontinent and Valday...

  20. Coastal and submarine instabilities distribution in the tectonically active SW margin of the Corinth Rift (Psathopyrgos, Achaia, Greece)

    Science.gov (United States)

    Simou, Eirini; Papanikolaou, Dimitrios; Lykousis, Vasilios; Nomikou, Paraskevi; Vassilakis, Emmanuel

    2014-05-01

    The Corinth Rift, one of the most active rifts in the world as local extension trending NE-SW reaches the amount of 14±2 mm/yr, corresponds to one of the largest zones of seismically active normal faulting. The formation, growth and migration southwards of the prevailing fault systems, which evolve simultaneously with the intense morphogenetic processes, are overprinted in the age, facies and thickness of the Plio-Pleistocene sequences constructing the south margin of the western Gulf of Corinth. The dominant fault blocks, defined by east-west trending, north dipping normal faults, are accompanied by several morphological features and anomalies, noticed in both the terrestrial and the marine environment. Our main aim has been to examine how the tectonic evolution, in combination with the attendant fierce erosional and sedimentary processes, has affected the morphology through geodynamic processes expressed as failures in the wider coastal area. High resolution multibeam bathymetry in combination with the available land surface data have contributed to submarine and subaerial morphological mapping. These have been used as a basis for the detection of all those geomorphic features that indicate instabilities probably triggered, directly or indirectly, by the ongoing active tectonic deformation. The interpretation of the combined datasets shows that the southwestern margin of the Corinth Rift towards Psathopyrgos fault zone is characterized by intense coastal relief and a narrow, almost absent, continental shelf, which passes abruptly to steep submarine slopes. These steep slope values denote the effects of the most recent brittle deformation and are related to coastal and submarine instabilities and failures. High uplift rates and rapid sedimentation, indicative of the regional high-energy terrestrial and submarine environment, are subsequently balanced by the transportation of the seafloor currents, especially where slope gradients decrease, disintegrating the

  1. From hyper-extended rifts to orogens: the example of the Mauléon rift basin in the Western Pyrenees (SW France)

    Science.gov (United States)

    Masini, E.; Manatschal, G.; Tugend, J.

    2011-12-01

    An integral part of plate tectonic theory is that the fate of rifted margins is to be accreted into mountain belts. Thus, rift-related inheritance is an essential parameter controlling the evolution and architecture of collisional orogens. Although this link is well accepted, rift inheritance is often ignored. The Pyrenees, located along the Iberian and European plate boundary, can be considered as one of the best places to study the reactivation of former rift structures. In this orogen the Late Cretaceous and Tertiary convergence overprints a Late Jurassic to Lower Cretaceous complex intracontinental rift system related to the opening of the North Atlantic. During the rifting, several strongly subsiding basins developed in the axis of the Pyrenees showing evidence of extreme crustal extension and even locale mantle exhumation to the seafloor. Although the exact age and kinematics of rifting is still debated, these structures have an important impact in the subsequent orogenic overprint. In our presentation we discuss the example of the Mauléon basin, which escaped from the most pervasive deformations because of its specific location at the interface between the western termination of the chain and the Bay of Biscay oceanic realm. Detailed mapping combined with seismic reflection, gravity data and industry wells enabled to determine the 3D rift architecture of the Mauléon basin. Two major diachronous detachment systems can be mapped and followed through space. The Southern Mauléon Detachment (SMD) develops first, starts to thin the crust and floors the Southern Mauléon sub-Basin (SMB). The second, the Northern Mauléon Detachment (SMD) is younger and controls the final crustal thinning and mantle exhumation to the north. Both constitute the whole Mauléon basin. Like at the scale of the overall Pyrenees, the reactivation of the Mauléon Basin increases progressively from west to east, which enables to document the progressive reactivation of an aborted hyper

  2. The Transition from Initial Rifting to Ultra-Slow Seafloor Spreading within Endeavor Deep

    Science.gov (United States)

    Pockalny, R. A.; Larson, R. L.; Popham, C. T.; Natland, J. H.

    2004-12-01

    Endeavor Deep is a NW-SE trending, 3 km-deep rift basin located along the divergent portion of the Nazca/Juan Fernandez plate boundary. The rift basin is the result of the propagation of the East Ridge toward the northwest with relative motion across the ridge defined by a rapidly rotating (5.5 degrees/myr) Euler Pole located ~100 km to the northwest. The close proximity of Endeavor Deep to this Euler Pole results in a rapidly varying velocity field along the length of the deep and represents a unique location to study the effect of varying divergence rates on initial crustal extension. Recently collected EM300 bathymetry, DSL120 sidescan, surface-towed magnetics and JASON II observations have documented 4 distinct stages of rifting along the 70 km length of Endeavor Deep. These stages include (from NW to SE): amagmatic rifting, distributed initial volcanism, centralized waxing volcanism, and crustal formation by ultra-slow seafloor spreading. Amagmatic extension, evolving to rifting, occurs at spreading rates less than 13 km/myr and is characterized by rapidly deepening rift depths from NW to SE with an overall increase in depth of about 2.5 km. Extension is accommodated over a width of about 10-15 km and some flexural uplift of the defining scarps is observed. Distributed initial volcanism occurs at spreading rates from 13-14 km/myr and is characterized by coalesced volcanic constructs (100-200 m-high, 1-2 km-wide) across the width of the rift floor. The depth of the rift basin becomes fairly constant, but the cross-sectional area of the deep continues to increase. Centralized waxing volcanism occurs at spreading rates from 14-17 km/myr and is characterized by pillow ridges and tectonic lineations along the central portion of the rift floor which are oriented parallel to the long axis of the rift basin (orthogonal to the direction of extension). The floor of the rift basin begins to shoal and the cross-sectional area of the deep decreases initially and then

  3. Reservoir engineering assessment of Dubti geothermal field, Northern Tendaho Rift, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, A.; Ferragina, C. [Aquater S.p.A. (ENI Group), San Lorenzo in Campo (Italy); Yiheyis, A.; Abatneh, W. [Ethiopian Institute of Geological Surveys, Addis Ababa (Ethiopia); Calore, C. [International Institute for Geothermal Research, Pisa (Italy)

    2002-06-01

    Following on from surface exploration surveys performed during the 1970s and early 1980s, exploration drilling was carried out in the Tendaho Rift, in Central Afar (Ethiopia), from October 1993 to June 1995. Three deep and one shallow well were drilled in the central part of the Northern Tendaho Rift to verify the existence of a geothermal reservoir and its possible utilisation for electric power generation. The project was jointly financed by the Ethiopian Ministry of Mines and Energy and the Italian Ministry for Foreign Affairs. Project activities were performed by the Ethiopian Institute of Geological Surveys and Aquater SpA. The main reservoir engineering data discussed in this paper were collected during drilling and testing of the above four wells, three of which are located inside the Dubti Cotton Plantation, in which a promising hydrothermal area was identified by surface exploration surveys. Drilling confirmed the existence of a liquid-dominated shallow reservoir inside the Dubti Plantation, characterised by a boiling -point-for-depth temperature distribution down to about 500 m depth. The main permeable zones in the Sedimentary Sequence, which is made up of lacustrine deposits, are located in correspondence to basalt lava flow interlayerings, or at the contact between volcanic and sedimentary rocks. At depth, the basaltic lava flows that characterise the Afar Stratoid Series seem to have low permeability, with the exception of fractured zones associated with sub-vertical faults. Two different upflows of geothermal fluids have been inferred: one flow connected to the Dubti fault feeds the shallow reservoir crossed by wells TD-2 and TD-4, where a maximum temperature of 245{sup o}C was recorded; the second flow seems to be connected with a fault located east of well TD-1, where the maximum recorded temperature was 270{sup o}C. A schematic conceptual model of the Dubti hydrothermal area, as derived from reservoir engineering studies integrated with geological

  4. Pressure and temperature evolution of upper mantle under the Rio Grande Rift

    Science.gov (United States)

    Kil, Y.; Wendlandt, R. F.

    2004-11-01

    Spinel peridotite xenoliths associated with the Rio Grande Rift axis (Potrillo and Elephant Butte volcanic fields) and the western rift shoulder (Adam’s Diggings) have been investigated to correlate pre-eruptive pressure and temperature conditions with xenolith deformation textures and rift location. Temperatures of xenolith equilibration at the rift shoulder are 100 250°C cooler for a given pressure than the temperatures at the rift axis. Undeformed xenoliths (protogranular texture) are derived from higher temperature and higher pressure conditions than deformed xenoliths (porphyroclastic and equigranular textures) in the rift axis. Exsolution lamellae in pyroxenes, small decreases in Al contents of orthopyroxenes from core to rim, and small differences in porphyroclastic orthopyroxene compositions versus neoblastic orthopyroxene compositions indicate high temperatures followed by cooling and a larger cooling interval in deformed rocks than in undeformed rocks. These features, along with thermal histories based on calcium zoning in olivine rims, indicate that the upper mantle under Adam’s Diggings and Elephant Butte has undergone cooling from an initial high temperature state followed by a late heating event, and the upper mantle under Potrillo has undergone cooling, reheating, and late heating events.

  5. Tracking the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada and Utah

    Science.gov (United States)

    Rodriguez, B.D.; Williams, J.M.

    2008-01-01

    It is important to know whether major mining districts in north-central Nevada are underlain by crust of the Archean Wyoming craton, known to contain major orogenic gold deposits or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between these provinces is also important because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The suture zone is exposed in northeastern Utah and south-western Wyoming and exhibits a southwest strike. In the Great Basin, the suture zone strike is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and Cenozoic basin fill. Two-dimensional resistivity modeling of three regional north-south magnetotelluric sounding profiles in western Utah, north-central Nevada, and northeastern Nevada, and one east-west profile in northeastern Nevada, reveals a deeply penetrating (>10 km depth), broad (tens of kilometers) conductor (1-20 ohm-meters) that may be the Archean-Proterozoic suture zone, which formed during Early Proterozoic rifting of the continent and subsequent Proterozoic accretion. This major crustal conductor changes strike direction from southwest in Utah to northwest in eastern Nevada, where it broadens to ???100 km width that correlates with early Paleozoic rifting of the continent. Our results suggest that the major gold belts may be over-isolated blocks of Archean crust, so Phanerozoic mineral deposits in this region may be produced, at least in part, from recycled Archean gold. Future mineral exploration to the east may yield large gold tonnages. ?? 2008 Geological Society of America.

  6. Petrogenesis and tectonic setting of an basalt-Trachyte-Rhyolite suite in the Spilli area (south of Siahkal, north of Iran: evidences of continental rift-related bimodal magmatism in Alborz

    Directory of Open Access Journals (Sweden)

    Shahrooz Haghnazar

    2016-09-01

    Full Text Available The spilli volcanic rocks suite consisting of Basalt- Trachyte- Rhyolite with upper Cretaceous, outcrop in the northern part of Alborz and south of Siahkal area (east of the Guilan province. Based on geochemical data, the studied suite attributed to transitional to alkali series. Negative correlation of Al2O3, CaO, P2O5 and positive correlation of Rb and Th versus SiO2 reveal the occurrence of fractional crystallization process. Also, the negative correlation of Sr versus Y, Sr/Zr versus Sr and CaO/Al2O3 versus SiO2 show that fractionation of plagioclase has played an important role in petrogenesis of the spilli Suite. The hypotheses is supported by the negative anomalies of Eu, Ba and Sr. The overall geochemical evidences indicate that the basic rocks belong to intra-continental rift zone whereas the felsic rocks are classified as A1 type derived from parent basaltic magmas via fractional crystallization in an anorogenic setting. The studied magmatism share many similarities with bimodal magmatism in continental rift zones.

  7. The Mesozoic rift basins of eastern North America: Potential reservoir or Explorationist's folly

    Energy Technology Data Exchange (ETDEWEB)

    Pyron, A.

    1991-08-01

    Mesozoic rift basins are found on the East Coast of North America from Georgia to Nova Scotia. The basins formed as a result of extensional activity associated with the breakup of Pangaea. The internal geometry of the basins includes a depositional sequence ranging from coarse fanglomerates to fine-grained siltstones and argillites. Since these Mesozoic rift basins were first studied, they have not been considered to be likely spots for hydrocarbon accumulations. Recently, geologists have reconsidered these Mesozoic basins and have developed a more synergistic approach that suggests that many of these rift basins might be suitable targets for exploration. By analogy, these Mesozoic basins are correlative to similar basins in northwestern Africa, where significant reserved of oil and natural gas have been developed. The similarity between the productive basins in northwestern Africa and the Mesozoic basins of North America and their proximity to major markets provides sufficient rationale to further investigate these basins.

  8. Interaction between transform faults and rift systems: a combined field and experimental approach

    Directory of Open Access Journals (Sweden)

    Alessandro eTibaldi

    2016-04-01

    Full Text Available We present a detailed field structural survey of the area of interaction between the active NW-striking transform Husavik-Flatey Fault (HFF and the N-S Theystareykir Fissure Swarm (TFS, in North Iceland, integrated by analogue scaled models. Field data contribute to a better understanding of how transform faults work, at a much higher detail than classical marine geophysical studies. Analogue experiments are conducted to analyse the fracture patterns resulting from different possible cases where transform faulting accompanies or postpones the rift motions; different tectonic block configurations are also considered. West of the intersection between the transform fault (HFF and the rift zone (TFS, the former splays with a gradual bending giving rise to a leading extensional imbricate fan. The westernmost structure of the rift, the N-S Gudfinnugja Fault (GF, is divided into two segments: the southern segment makes a junction with the HFF and is part of the imbricate fan; north of the junction instead, the northern GF appears right-laterally offset by about 20 m. Southeast of the junction, along the possible prolongation of the HFF across the TFS, the strike of the rift faults rotates in an anticlockwise direction, attaining a NNW-SSE orientation. Moreover, the TFS faults north of the HFF prolongation are fewer and have smaller offsets than those located to the south. Through the comparison between the structural data collected in the field at the HFF-TFS connection zone and a set of scaled experiments, we confirm a prolongation of the HFF through the rift, although here the transform fault has a much lower slip-rate than west of the junction. Our data suggest that transform fault terminations may be more complex than previously known, and propagate across a rift through a modification of the rift pattern.

  9. Investigating the Influence of Pre-Existing Basement Structures on the Propagation of the Malawi Rift using SRTM, RADARSAT, and Aeromagnetic Data

    Science.gov (United States)

    Robertson, K.; Atekwana, E. A.; Abdelsalam, M. G.; Laó-Dávila, D. A.

    2015-12-01

    The Malawi rift is a Neogene, amagmatic rift located where the Western Branch of the East Africa Rift System (EARS) terminates. In more mature rifts, magmatism is frequently recognized as a driving factor in rift propagation; however, the amagmatic nature of the Malawi rift permits investigation into the relationship between pre-existing structures and current rift propagation, without the influence of magmatism. To map surface structures, we used Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and RADARSAT imagery over southern Malawi. To process the SRTM data, we applied edge enhancing filters and derivatives, and extracted topographic profiles to examine scarp height and minimum vertical exposed displacement. We mapped morphologically-defined structures by filtering the RADARSAT imagery using an enhanced lee filter to reduce noise and a Laplacian filter for edge enhancement. To examine Precambrian basement structures, we filtered aeromagnetic data using vertical and horizontal derivatives, tilt derivative, and analytic signal to create magnetic anomaly maps. Surface mapping indicated three primary trends in the southern Malawi rift: NW-SE (dominant), NE-SW, both of which are most likely the remnants of Mesozoic Karoo rifting, and a NNE-SSW trend seen in Neogene rifting. The Precambrian basement structural mapping also reveals three primary trends: WNW-ESE, NE-SW, and NW-SE. Ductile deformation causes the dominant basement fabric to change, switching polarity as the rift propagated southward from NE-SW orientation to NW-SE and WNW-ESE orientations, and back to a NE-SW orientation. In general, the surficial structures follow this trend. In some areas, however, the more recent rifting cut across pre-existing basement structures, possibly due to rheological heterogeneities or selective strain partitioning. Nonetheless, pre-existing basement structures played a critical role in strain localization and fault propagation in Malawi. However

  10. Abrupt plate accelerations shape rifted continental margins

    Science.gov (United States)

    Brune, Sascha; Williams, Simon E.; Butterworth, Nathaniel P.; Müller, R. Dietmar

    2016-08-01

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth’s major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength-velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  11. Abrupt plate accelerations shape rifted continental margins.

    Science.gov (United States)

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.

  12. GPS measurements of deformation near the Rio Grande rift: Evidence for variations in the rate of extension

    Science.gov (United States)

    Murray, M. H.; Murray, K. D.; Sheehan, A. F.; Nerem, R. S.; van Wijk, J.; Axen, G. J.

    2015-12-01

    We use data from 215 continuous GPS stations, including 26 stations installed in 2006-2007 as part of a collaborative EarthScope experiment, to investigate how deformation is distributed near the Rio Grande rift (RGR) in New Mexico (NM) and Colorado (CO), USA. Our previous analysis, using data from 2006-2010, found nearly uniform 1.2±0.2 nanostrain/yr (nɛ/yr) east-west extensional strain rate along 5 profiles spanning a ~1000 km region (Berglund et al., 2012). We have included data from 1996-2015, and more formally account for correlated noise in the time series, which reduces horizontal velocity uncertainties to ~0.06 mm/yr. Strain rate along the profiles across the RGR increases from 0.55±0.06 nɛ/yr in southern NM to as much as 1.05±0.06 nɛ/yr in southern CO before dropping to ~0 nɛ/yr, within error, in northern CO. In all 5 east-west profiles across the RGR, strain rate is higher along the profiles west of the fault-defined rift zone than it is to the east—an increase to 1.65±0.1 nɛ/yr in southern CO, for example. Results from Euler pole analysis of sites within the Colorado Plateau relative to stable North America are consistent with significant internal deformation within the plateau, and using a subset of sites, we infer an Euler pole located in northern Utah that is roughly consistent with geologically derived estimates of a Miocene clockwise rotation (Chapin and Cather, 1994). A 2-dimensional strain rate field shows little evidence for higher extensional rates directly across the surface faults bounding the RGR, but does suggest a higher concentration along the Jemez lineament, which is a linear series of the youngest volcanic activity in NM located primarily at the SE edge of the Colorado Plateau. Two zones of possible contraction exist north and south of the Jemez lineament, which may reflect uplift from the NE section of the Jemez lineament due to upper mantle buoyancy.

  13. Seroprevalence of Sheep and Goat Pox, Peste Des Petits Ruminants and Rift Valley Fever in Saudi Arabia.

    Directory of Open Access Journals (Sweden)

    Hani Boshra

    Full Text Available Sheep and goat pox, peste des petits ruminants and Rift Valley fever are important diseases of small ruminant livestock. Sheep and goat pox, along with peste des petits ruminants, are endemic throughout most of Africa, Asia and the Middle East. Whereas Rift Valley fever is endemic in Africa, outbreaks in the Middle East have been reported over the past decade, including the Arabian Peninsula. Saudi Arabia is a major importer of livestock, and understanding the prevalence of these viral infections would be useful for disease control. In this study, sera from sheep and goats were collected from 3 regions in Saudi Arabia. They were evaluated for antibodies specific to sheep and goat pox, peste des petits ruminants and Rift Valley fever by virus neutralization assays. To the best of our knowledge, this is the first study to evaluate the seroprevalence of these viruses in sheep and goats.

  14. Seroprevalence of Sheep and Goat Pox, Peste Des Petits Ruminants and Rift Valley Fever in Saudi Arabia.

    Science.gov (United States)

    Boshra, Hani; Truong, Thang; Babiuk, Shawn; Hemida, Maged Gomaa

    2015-01-01

    Sheep and goat pox, peste des petits ruminants and Rift Valley fever are important diseases of small ruminant livestock. Sheep and goat pox, along with peste des petits ruminants, are endemic throughout most of Africa, Asia and the Middle East. Whereas Rift Valley fever is endemic in Africa, outbreaks in the Middle East have been reported over the past decade, including the Arabian Peninsula. Saudi Arabia is a major importer of livestock, and understanding the prevalence of these viral infections would be useful for disease control. In this study, sera from sheep and goats were collected from 3 regions in Saudi Arabia. They were evaluated for antibodies specific to sheep and goat pox, peste des petits ruminants and Rift Valley fever by virus neutralization assays. To the best of our knowledge, this is the first study to evaluate the seroprevalence of these viruses in sheep and goats.

  15. Combining hydrologic and groundwater modelling to characterize a regional aquifer system within a rift setting (Gidabo River Basin, Main Ethiopian Rift)

    Science.gov (United States)

    Birk, Steffen; Mechal, Abraham; Wagner, Thomas; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra

    2016-04-01

    heads measured in 72 wells. To account for the incomplete knowledge of the aquifer system several model set-ups differing in the number of transmissivity zones as well as in the implementation of fault zones, rivers, and model boundaries were evaluated using information criteria. The general pattern of the hydraulic-head distribution resulting from the plausible model set-ups agrees reasonably well with that obtained from the observations. Likewise the simulated baseflow is similar (though slightly higher) to that obtained by baseflow separation from measured discharge. The estimated transmissivity increases from the highland (in the order of 10-100 m²/day) toward the rift floor (in the order of 100-1000 m²/day). Although the rift-floor aquifers are mainly (65%) supplied by recharge from precipitation, groundwater flow from the highland (mountain block recharge) is found to provide a significant contribution (35%). At present, less than 1% of the groundwater flow is abstracted by pumping wells, suggesting a high potential for groundwater development both in the highland and the rift floor. With regard to the rift floor, potential effects of climate change on groundwater resources deserve further investigation, as the hydrological model suggests a high sensitivity of groundwater recharge to changes of precipitation and air temperature particularly within this part of the watershed.

  16. Seismic anisotropy of the lithosphere/asthenosphere system beneath the Rwenzori region of the Albertine Rift

    Science.gov (United States)

    Homuth, B.; Löbl, U.; Batte, A. G.; Link, K.; Kasereka, C. M.; Rümpker, G.

    2016-09-01

    Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  17. PRE-RIFT COMPRESSIONAL STRUCTURES AS A CONTROL ON PASSIVE MARGIN FORMATION

    DEFF Research Database (Denmark)

    Schiffer, Christian; Petersen, Kenni Dinesen

    underlain by high-velocity and density bodies (“Lower Crustal Bodies”, LCBs). A widely accepted theory of the origin of LCBs is that they were emplaced by magmatic underplating at volcanic margins. At the same time mantle serpentinization is thought to create geophysically similar structures at non...... and shows that such structures can ‘survive’ subsequent rifting and continental break up. Our model is a simple alternative that explains observations at passive margins and rift zones by accounting for the observation that most passive margins are sub-parallel to earlier shortening and extension events...

  18. Stratigraphic Modelling of Continental Rifting

    Science.gov (United States)

    Mondy, Luke; Duclaux, Guillaume; Salles, Tristan; Thomas, Charmaine; Rey, Patrice

    2013-04-01

    Interlinks between deformation and sedimentation have long been recognised as an important factor in the evolution of continental rifts and basins development. However, determining the relative impact of tectonic and climatic forcing on the dynamics of these systems remains a major challenge. This problem in part derives from a lack of modelling tools capable of simulated high detailed surface processes within a large scale (spatially and temporally) tectonic setting. To overcome this issue an innovative framework has been designed using two existing numerical forward modelling codes: Underworld, capable of simulating 3D self-consistent tectonic and thermal lithospheric processes, and Tellus, a forward stratigraphic and geomorphic modelling framework dedicated to simulating highly detailed surface dynamics. The coupling framework enables Tellus to use Underworld outputs as internal and boundary conditions, thereby simulating the stratigraphic and geomorphic evolution of a realistic, active tectonic setting. The resulting models can provide high-resolution data on the stratigraphic record, grain-size variations, sediment provenance, fluvial hydrometric, and landscape evolution. Here we illustrate a one-way coupling method between active tectonics and surface processes in an example of 3D oblique rifting. Our coupled model enables us to visualise the distribution of sediment sources and sinks, and their evolution through time. From this we can extract and analyse at each simulation timestep the stratigraphic record anywhere within the model domain. We find that even from a generic oblique rift model, complex fluvial-deltaic and basin filling dynamics emerge. By isolating the tectonic activity from landscape dynamics with this one-way coupling, we are able to investigate the influence of changes in climate or geomorphic parameters on the sedimentary and landscape record. These impacts can be quantified in part via model post-processing to derive both instantaneous and

  19. [Variability of enzyme systems in the coenopopulation of Taraxacum officinale s.l. from the zone of East-Ural- radioactive trace].

    Science.gov (United States)

    Ul'ianova, E V; Pozolotina, V N

    2004-01-01

    Levels of soil contamination with 90Sr and 137Cs radionuclides on the plots within the zone of Eastern-Ural radioactive trace exceed values of the global level 4-240 times. We have carried out allozyme analysis of apomict species Taraxacum officinale s.l. from this zone. Zimogrammes were interpreted as allozyme phenotypes. In condition of chronic irradiation the plants had increased phenogenetic variability of majority enzymes systems and high frequency of rare morphs. Thus, in plant coenopopoulations situated in radioactive-polluted zone, genomic recombination processes show higher intensity. High enzymatic variability provides the material for natural selection and increase the adaptive potential of coenopopulations.

  20. Rift Valley fever outbreak, southern Mauritania, 2012.

    Science.gov (United States)

    Sow, Abdourahmane; Faye, Ousmane; Ba, Yamar; Ba, Hampathé; Diallo, Diawo; Faye, Oumar; Loucoubar, Cheikh; Boushab, Mohamed; Barry, Yahya; Diallo, Mawlouth; Sall, Amadou Alpha

    2014-02-01

    After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September-November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.

  1. Estuarine Salinity Zones in US East Coast, Gulf of Mexico, and US West Coast from 1999-01-01 to 1999-12-31 (NCEI Accession 0127396)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These unprojected (geographic coordinates) 3-Zone Average Annual Salinity Digital Geographies are based on analysis of long-term salinity data for 147 estuaries of...

  2. Compilation of the GSHAP regional seismic hazard for Europe, Africa and the Middle East

    Directory of Open Access Journals (Sweden)

    D. Mayer-Rosa

    1999-06-01

    Full Text Available The seismic hazard map of the larger Europe-Africa-Middle East region has been generated as part of the global GSHAP hazard map. The hazard, expressing Peak Ground Acceleration (PGA expected at 10% probability of exceedance in 50 years, is obtained by combining the results of 16 independent regional and national projects; among these is the hazard assessment for Libya and for the wide sub-Saharan Western African region, specifically produced for this regional compilation and here discussed to some length. Features of enhanced seismic hazard are observed along the African rift zone and in the Alpine-Himalayan belt, where there is a general eastward increase in hazard with peak levels in Greece, Turkey, Caucasus and Iran.

  3. Mapping hyper-extended rift systems offshore and onshore: insights from the Bay of Biscay- Western Pyrenees

    Science.gov (United States)

    Tugend, Julie; Manatschal, Gianreto; Kusznir, Nicolas J.; Masini, Emmanuel; Thinon, Isabelle

    2013-04-01

    . Results from both the interpretation of Bay of Biscay rift system and of the crustal thickness map suggest that (1) the spatial evolution of the hyper-extended rift system is more complex than previously assumed and (2) the rift system is strongly segmented at different scales by inherited transfer faults and shear zones bounding different rift basins (e.g. the Pamplona fault, onshore) or delimiting major changes of architecture (e.g. the South Armorican Shear Zone, offshore). Through this work, we aim to illustrate and investigate the processes related to the formation the Bay of Biscay-Western Pyrenees rift system. Moreover, the mapping methods used in this study may be applied to better understand other hyper-extended rift systems.

  4. Thermo-mechanical modeling of continental rift evolution over mantle upwelling in presence of far-field stresses

    Science.gov (United States)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras

    2016-04-01

    We conducted fully-coupled high resolution rheologically consistent 3D thermo-mechanical numerical models to investigate the processes of mantle-lithosphere interaction (MLI) in presence of preexisting far-field tectonic stresses. MLI-induced topography exhibits strongly asymmetric small-scale 3D features, such as rifts, flexural flank uplifts and complex faults structures. This suggests a dominant role of continental rheological structure and intra-plate stresses in controlling continental rifting and break-up processes above mantle upwelling while reconciling the passive (far-field tectonic stresses) versus active (plume-activated) rift concepts as our experiments show both processes in action. We tested different experiments by varying two principal controlling parameters: 1) horizontal extension velocity and 2) Moho temperature used as simplified indicator of the thermal and rheological lithosphere layering. An increase in the applied extension expectedly gives less localized deformation at lithospheric scale: the growth of external velocity from 1.5 mm/years to 6 mm/years leads to enlargement of the rift zones from 75-175 km to 150-425 km width. On the contrary, increasing of the lithospheric geotherm has an opposite effect leading to narrowing of the rift zone: the change of the Moho isotherm from 600°C to 800°C causes diminution of the rift width from 175-425 km to 75-150 km. Some of these finding are contra-intuitive in terms of usual assumptions. The models refer to strongly non-linear impact of far-field extension rates on timing of break-up processes. Experiments with relatively fast far-field extension (6 mm/years) show intensive normal fault localization in crust and uppermost mantle above the plume head at 15-20 Myrs after the onset of the experiment. When plume head material reaches the bottom of the continental crust (at 25 Myrs), the latter is rapidly ruptured (crust bottom). We conclude from our modeling that localization of large-scale linear

  5. Fylla Bank: structure and evolution of a normal-to-shear rifted margin in the northern Labrador Sea

    DEFF Research Database (Denmark)

    Døssing, Arne

    2011-01-01

    of the Moho topography and crustal thickness which were compiled from results of pseudo‐3‐D gravity modelling. The maps show minimum crustal thicknesses (11 km) and maximum Moho uplifts in areas where the NNW‐/NW‐ and NNE‐striking structures interact. Moreover, a strong correlation is found between Moho...... in the Davis Strait, in particular expressed by the ∼1000‐km‐long Ungava Fault Zone. Fylla Bank, part of the southern West Greenland continental margin, is located in the northernmost Labrador Sea at the transition between the normal and shear rifting regimes of the Labrador Sea and Davis Strait. As such...... are interpreted to be the result of an initial late‐Early Cretaceous rift phase, which mainly resulted in the formation of the NNW‐/NW‐striking structures, and a subsequent early Campanian rift phase, mainly resulting in the formation of large NNE‐striking rotated fault blocks. Resumed rifting in the early...

  6. A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans

    Science.gov (United States)

    Hutchison, William; Fusillo, Raffaella; Pyle, David M.; Mather, Tamsin A.; Blundy, Jon D.; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E.; Brooker, Richard A.; Barfod, Dan N.; Calvert, Andrew T.

    2016-10-01

    The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations.

  7. The Role of Rift Obliquity in Formation of the Gulf of California

    Science.gov (United States)

    Bennett, Scott Edmund Kelsey

    The Gulf of California illustrates how highly oblique rift geometries, where transform faults are kinematically linked to large-offset normal faults in adjacent pull-apart basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new oceanic basins. The Gulf of California rift has accommodated oblique divergence of the Pacific and North America tectonic plates in northwestern Mexico since Miocene time. Due to its infancy, the rifted margins of the Gulf of California preserve a rare onshore record of early continental break-up processes from which to investigate the role of rift obliquity in strain localization. Using new high-precision paleomagnetic vectors from tectonically stable sites in north-central Baja California, I compile a paleomagnetic transect of Miocene ignimbrites across northern Baja California and Sonora that reveals the timing and distribution of dextral shear associated with inception of this oblique rift. I integrate detailed geologic mapping, basin analysis, and geochronology of pre-rift and syn-rift volcanic units to determine the timing of fault activity on Isla Tiburon, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. The onset of strike-slip faulting on Isla Tiburon, ca. 8 - 7 Ma, was synchronous with the onset of transform faulting along a significant length of the nascent plate boundary within the rift. This tectonic transition coincides with a clockwise azimuthal shift in Pacific-North America relative motion that increased rift obliquity. I constrain the earliest marine conditions on southwest Isla Tiburon to ca. 6.4 - 6.0 Ma, coincident with a regional latest Miocene marine incursion in the northern proto-Gulf of California. This event likely flooded a narrow, incipient topographic depression along a ˜650 km-long portion of the latest Miocene plate boundary and corresponds in time and space with formation of a newly

  8. Extension velocity partitioning, rheological crust-mantle and intra-crustal decoupling and tectonically inherited structures: consequences for continental rifting dynamics.

    Science.gov (United States)

    Wang, Kun; Mezri, Leila; Burov, Evgueni; Le Pourhiet, Laetitia

    2015-04-01

    We implemented series of systematic thermo-mechanical numerical models testing the importance of the rheological structure and extension rate partitioning for continental rift evolution. It is generally assumed that styles of continental rifting are mainly conditioned by the initial integrated strength of the lithosphere. For example, strong plates are expected to undergo extension in narrow rifting mode, while weak lithospheres would stretch in wide rifting mode. However, we show that this classification is largely insufficient because the notion of the integrated strength ignores the internal rheological structure of the lithosphere that may include several zones of crust-mantle or upper-crust-intermediate (etc) crust decoupling. As well, orogenic crusts characterizing most common sites of continental extension may exhibit inverted lithological sequences, with stronger and denser formerly lower crustal units on top of weaker and lighter upper crustal units. This all may result in the appearance of sharp rheological strength gradients and presence of decoupling zones, which may lead to substantially different evolution of the rift system. Indeed, strong jump-like contrasts in the mechanical properties result in mechanical instabilities while mechanical decoupling between the competent layers results in overall drop of the flexural strength of the system and may also lead to important horizontal flow of the ductile material. In particular, the commonly inferred concept of level of necking (that assumes the existence of a stationary horizontal stretching level during rifting) looses its sense if necking occurs at several distinct levels. In this case, due to different mechanical strength of the rheological layers, several necking levels develop and switch from one depth to another resulting in step-like variations of rifting style and accelerations/decelerations of subsidence during the active phase of rifting. During the post-rifting phase, initially decoupled

  9. Architecture of the intracontinental Jaibaras Rift, Brazil, based on geophysical data

    Science.gov (United States)

    Pedrosa, Nilo C.; Vidotti, Roberta M.; Fuck, Reinhardt A.; Castelo Branco, R. M. G.; Almeida, Afonso R. de; Silva, Nilton C. Vieira; Braga, Luiz R. C.

    2017-03-01

    Qualitative and quantitative integration and interpretation of magnetic, gravity and magnetotelluric data help to determine the internal architecture of the Jaibaras rift, and allow assessing the evolution of the Jaibaras Rift within the Precambrian crystalline basement of Borborema Province, NE Brazil. This was achieved by 2D joint modeling of magnetic and gravity data in five sections across the main axis of the Jaibaras Rift. Surface data, rock density measurements, depth constraints from 2D Euler deconvolution and geophysical information from previous work in the area were integrated to constrain the modeling. The magnetic and gravity profiles of the Jaibaras Rift indicate estimated source bodies at depths up to 2.5 km, showing complex configuration for the structural framework, with a set of asymmetric grabens and horsts. The 2D magnetotelluric inversion shows that the Jaibaras Rift is marked by low resistivity values, and maximum thickness of the sedimentary package up to approximately 3 km. Shallow dipping conductive material may represent either a suture zone between the Ceará Central and Médio Coreaú domains or a set of fractures due to horizontal σ1 stress in the Ceará Central Domain. The Jaibaras Rift displays a very complex internal structure, with discontinuous sequences of grabens and horsts, and a significant volume of surface and subsurface volcanic rocks. The sedimentary packages with volcanic rift sequences have variable thicknesses, from 1 to 3 km. These rock units are controlled by normal faults that developed from older discontinuities, such as the Transbrasiliano lineament.

  10. Rift Valley fever virus seroprevalence in human rural populations of Gabon.

    Directory of Open Access Journals (Sweden)

    Xavier Pourrut

    Full Text Available BACKGROUND: Rift Valley fever (RVF is a mosquito-borne viral zoonosis caused by a phlebovirus and transmitted by Aedes mosquitoes. Humans can also be infected through direct contact with blood (aerosols or tissues (placenta, stillborn of infected animals. Although severe clinical cases can be observed, infection with RVF virus (RVFV in humans is, in most cases, asymptomatic or causes a febrile illness without serious symptoms. In small ruminants RVFV mainly causes abortion and neonatal death. The distribution of RVFV has been well documented in many African countries, particularly in the north (Egypt, Sudan, east (Kenya, Tanzania, Somalia, west (Senegal, Mauritania and south (South Africa, but also in the Indian Ocean (Madagascar, Mayotte and the Arabian Peninsula. In contrast, the prevalence of RVFV has rarely been investigated in central African countries. METHODOLOGY/PRINCIPAL FINDINGS: We therefore conducted a large serological survey of rural populations in Gabon, involving 4,323 individuals from 212 randomly selected villages (10.3% of all Gabonese villages. RVFV-specific IgG was found in a total of 145 individuals (3.3% suggesting the wide circulation of Rift Valley fever virus in Gabon. The seroprevalence was significantly higher in the lakes region than in forest and savannas zones, with respective rates of 8.3%, 2.9% and 2.2%. In the lakes region, RVFV-specific IgG was significantly more prevalent in males than in females (respectively 12.8% and 3.8% and the seroprevalence increased gradually with age in males but not in females. CONCLUSIONS/SIGNIFICANCE: Although RVFV was suggested to circulate at a relatively high level in Gabon, no outbreaks or even isolated cases have been documented in the country. The higher prevalence in the lakes region is likely to be driven by specific ecologic conditi