WorldWideScience

Sample records for easily removable cationic

  1. Synthesis, Characterization, to application of water soluble and easily removable cationic pressure sensitive adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Paper Science Technology

    2004-01-30

    In recent years, the world has expressed an increasing interest in the recycling of waste paper to supplement the use of virgin fiber as a way to protect the environment. Statistics show that major countries are increasing their use of recycled paper. For example, in 1991 to 1996, the U.S. increased its recovered paper utilization rate from 31% to 39%, Germany went from 50% to 60%, the UK went from 60% to 70%, France increased from 46% to 49%, and China went from 32% to 35% [1]. As recycled fiber levels and water system closures both increase, recycled product quality will need to improve in order for recycled products to compete with products made from virgin fiber [2]. The use of recycled fiber has introduced an increasing level of metal, plastic, and adhesive contamination into the papermaking process which has added to the complexity of the already overwhelming task of providing a uniform and clean recycle furnish. The most harmful of these contaminates is a mixture of adhesives and polymeric substances that are commonly known as stickies. Stickies, which enter the mill with the pulp furnish, are not easily removed from the repulper and become more difficult the further down the system they get. This can be detrimental to the final product quality. Stickies are hydrophobic, tacky, polymeric materials that are introduced into the papermaking system from a mixture of recycled fiber sources. Properties of stickies are very similar to the fibers used in papermaking, viz. size, density, hydrophobicity, and electrokinetic charge. This reduces the probability of their removal by conventional separation processes, such as screening and cleaning, which are based on such properties. Also, their physical and chemical structure allows for them to extrude through screens, attach to fibers, process equipment, wires and felts. Stickies can break down and then reagglomerate and appear at seemingly any place in the mill. When subjected to a number of factors including changes

  2. Capability of cation exchange technology to remove proven N-nitrosodimethylamine precursors.

    Science.gov (United States)

    Li, Shixiang; Zhang, Xulan; Bei, Er; Yue, Huihui; Lin, Pengfei; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2017-08-01

    N-nitrosodimethylamine (NDMA) precursors consist of a positively charged dimethylamine group and a non-polar moiety, which inspired us to develop a targeted cation exchange technology to remove NDMA precursors. In this study, we tested the removal of two representative NDMA precursors, dimethylamine (DMA) and ranitidine (RNTD), by strong acidic cation exchange resin. The results showed that pH greatly affected the exchange efficiency, with high removal (DMA>78% and RNTD>94%) observed at pHMg 2+ >RNTD + >K + >DMA + >NH 4 + >Na + . The partition coefficient of DMA + to Na + was 1.41±0.26, while that of RNTD + to Na + was 12.1±1.9. The pseudo second-order equation fitted the cation exchange kinetics well. Bivalent inorganic cations such as Ca 2+ were found to have a notable effect on NA precursor removal in softening column test. Besides DMA and RNTD, cation exchange process also worked well for removing other 7 model NDMA precursors. Overall, NDMA precursor removal can be an added benefit of making use of cation exchange water softening processes. Copyright © 2017. Published by Elsevier B.V.

  3. Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal.

    Science.gov (United States)

    Soleimani, Khadijeh; Tehrani, Abbas Dadkhah; Adeli, Mohsen

    2018-01-01

    In this study, graphene oxide - cellulose nanowhiskers nanocomposite hydrogel was easily synthesized through covalent functionalization of cellulose nanowhiskers with graphene oxide via a facile approach. The nitrene chemistry applied for covalent functionalization of graphene oxide sheets. The surface morphology and chemical structure of the nanocomposite hydrogel were characterized by FTIR, TGA, Raman, XRD, elemental analysis and SEM. The UV/Visible absorption spectrum revealed that the obtained porous nanocomposite hydrogel can efficiently remove cationic dyes such as methylene blue (MB) and Rhodamine B (RhB) from wastewater with high absorption power. The adsorption process showed that 100% of MB and 90% of RhB have been removed and the equilibrium state has been reached in 15min for low concentration solutions in accordance with the pseudo-second-order model. Moreover, the sample exhibited stable performance after being used several times. High adsorption capacity and easy recovery are the efficient factors making these materials as good adsorbent for water pollutants and wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Removal of both cationic and anionic contaminants by amphoteric starch.

    Science.gov (United States)

    Peng, Huanlong; Zhong, Songxiong; Lin, Qintie; Yao, Xiaosheng; Liang, Zhuoying; Yang, Muqun; Yin, Guangcai; Liu, Qianjun; He, Hongfei

    2016-03-15

    A novel amphoteric starch incorporating quaternary ammonium and phosphate groups was applied to investigate the efficiency and mechanism of cationic and anionic contaminant treatment. Its flocculation abilities for kaolin suspension and copper-containing wastewater were evaluated by turbidity reduction and copper removal efficiency, respectively. And the kinetics of formation, breakage and subsequent re-formation of aggregates were monitored using a Photometric Dispersion Analyzer (PDA) and characterized by flocculation index (FI). The results showed that amphoteric starch possessed the advantages of being lower-dosages-consuming and being stronger in shear resistance than cationic starch, and exhibited a good flocculation efficiency over a wide pH range from 3.0 to 11.0. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters.

    Science.gov (United States)

    Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong

    2016-06-29

    Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

  6. Nanotubular Halloysite Clay as Efficient Water Filtration System for Removal of Cationic and Anionic Dyes

    International Nuclear Information System (INIS)

    Zhao, Yafei; Abdullayev, Elshad; Lvov, Yuri

    2014-01-01

    Halloysite nanotubes, chemically similar to kaolinite, are formed by rolling of kaolinite layers in tubes with diameter of 50 nm and length of ca. 1 μm. Halloysite has negative SiO 2 outermost and positive Al 2 O 3 inner lumen surface, which enables it to be used as potential absorbent for both cationic and anionic dyes due to the efficient bivalent adsorbancy. An adsorption study using cationic Rhodamine 6G and anionic Chrome azurol S has shown approximately two times better dye removal for halloysite as compared to kaolinite. Halloysite filters have been effectively regenerated up to 50 times by burning the adsorbed dyes. Overall removal efficiency of anionic Chrome azurol S exceeded 99.9% for 5th regeneration cycle of halloysite. Chrome azurol S adsorption capacity decreases with the increase of ionic strength, temperature and pH. For cationic Rhodamine 6G, higher ionic strength, temperature and initial solution concentration were favorable to enhanced adsorption with optimal pH 8. These results indicate a potential to utilize halloysite for the removal of ionic dyes from environmental waters

  7. Competition and enhancement effect in coremoval of atenolol and copper by an easily regenerative magnetic cation exchange resin.

    Science.gov (United States)

    Li, Qimeng; Wang, Zheng; Li, Qiang; Shuang, Chendong; Zhou, Qing; Li, Aimin; Gao, Canzhu

    2017-07-01

    This paper aimed to investigate the removal of combined Cu 2+ and atenolol (ATL) in aqueous solution by using a newly synthesized magnetic cation exchange resin (MCER) as the adsorbent. The MCER exhibited efficient removal performance in sole, binary, pre-loading and saline systems. The adsorption kinetics of Cu 2+ and ATL fitted both pseudo-first-order and pseudo-second order model, while better described by pseudo-second order model in binary system. In mixed Cu 2+ and ATL solution, the adsorption of ATL was suppressed due to direct competition of carboxylic groups, while Cu 2+ adsorption was enhanced because of the formation of surface complexes. This increasing in heterogeneity was demonstrated by adsorption isotherms, which were more suitable for Freundlich model in binary system, while better described by Langmuir model in sole system. As proved by FTIR and XPS spectra, both amino and hydroxyl groups of ATL could form complexes with Cu 2+ . Decomplexing-bridging interaction was elucidated as the leading mechanism in coremoval of Cu 2+ and ATL, which involved [Cu-ATL] decomplexing and newly created Cu- or ATL sites for additional bridging. For saline system, the resulting competition and enhancement effects in mixed solution were amplified with the addition of co-existing cations. Moreover, the MCER could be effectively regenerated by 0.01 M HCl solution and maintain high stability over 5 adsorption-desorption cycles, which render it great potential for practical applications. Copyright © 2017. Published by Elsevier Ltd.

  8. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    Science.gov (United States)

    Moore, Robert C; Holt-Larese, Kathleen C; Bontchev, Ranko

    2013-08-13

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  9. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert C.; Larese, Kathleen Caroline; Bontchev, Ranko Panayotov

    2017-05-30

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  10. Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions

    CSIR Research Space (South Africa)

    Mittala, H

    2016-02-01

    Full Text Available after nanocomposite formation with SiC NPs. The HNC was employed for the removal of cationic dyes, i.e., malachite green (MG) and rhodamine B (RhB) from the aqueous solution. The HNC was found to remove 91% (MG) and 86% (RhB) of dyes with a polymer dose...

  11. Electrocoagulation-Adsorption to Remove Anionic and Cationic Dyes from Aqueous Solution by PV-Energy

    OpenAIRE

    Castañeda-Díaz, J.; Pavón-Silva, T.; Gutiérrez-Segura, E.; Colín-Cruz, A.

    2017-01-01

    The cationic dye malachite green (MG) and the anionic dye Remazol yellow (RY) were removed from aqueous solutions using electrocoagulation-adsorption processes. Batch and continuous electrocoagulation procedures were performed and compared. Carbonaceous materials obtained from industrial sewage sludge and commercial activated carbons were used to adsorb dyes from aqueous solutions in column systems with a 96–98% removal efficiency. The continuous electrocoagulation-adsorption system was more ...

  12. Cation exchange assisted binding-elution strategy for enzymatic synthesis of human milk oligosaccharides (HMOs).

    Science.gov (United States)

    Zhu, Hailiang; Wu, Zhigang; Gadi, Madhusudhan Reddy; Wang, Shuaishuai; Guo, Yuxi; Edmunds, Garrett; Guan, Wanyi; Fang, Junqiang

    2017-09-15

    A cation exchange assisted binding-elution (BE) strategy for enzymatic synthesis of human milk oligosaccharides (HMOs) was developed. An amino linker was used to provide the cation ion under acidic condition which can be readily bound to cation exchange resin and then eluted off by saturated ammonium bicarbonate. Ammonium bicarbonate in the collections was easily removed by vacuum evaporation. This strategy circumvented the incompatible issue between glycosyltransferases and solid support or large polymers, and no purification was needed for intermediate products. With current approach, polyLacNAc backbones of HMOs and fucosylated HMOs were synthesized smoothly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Nanotubular halloysite clay as efficient water filtration system for cationic and anionic dyes removal

    OpenAIRE

    Conference, Nanostruc; Yafei Zhao, Elshad Abdullayev and Yuri Lvov

    2014-01-01

    Halloysite clay has chemical structure similar to kaolinite but it is rolled in tubes with diameter of 50 nm and length of ca. 1000 nm. Halloysite exhibits higher adsorption capacity for both cationic and anionic dyes because it has negative SiO2 outermost and positive Al2O3 inner lumen surface. An adsorption study using cationicRhodamine 6G and anionic Chrome azurol S has shown pproximately two times better dye removal for halloysite as compared to kaolin. Halloysite filters have been effect...

  14. Electrocoagulation-Adsorption to Remove Anionic and Cationic Dyes from Aqueous Solution by PV-Energy

    Directory of Open Access Journals (Sweden)

    J. Castañeda-Díaz

    2017-01-01

    Full Text Available The cationic dye malachite green (MG and the anionic dye Remazol yellow (RY were removed from aqueous solutions using electrocoagulation-adsorption processes. Batch and continuous electrocoagulation procedures were performed and compared. Carbonaceous materials obtained from industrial sewage sludge and commercial activated carbons were used to adsorb dyes from aqueous solutions in column systems with a 96–98% removal efficiency. The continuous electrocoagulation-adsorption system was more efficient for removing dyes than electrocoagulation alone. The thermodynamic parameters suggested the feasibility of the process and indicated that the adsorption was spontaneous and endothermic (ΔS=0.037 and −0.009 for MG and RY, resp.. The ΔG value further indicated that the adsorption process was spontaneous (−6.31 and −10.48; T=303 K. The kinetic electrocoagulation results and fixed-bed adsorption results were adequately described using a first-order model and a Bohart-Adams model, respectively. The adsorption capacities of the batch and column studies differed for each dye, and both adsorbent materials showed a high affinity for the cationic dye. Thus, the results presented in this work indicate that a continuous electrocoagulation-adsorption system can effectively remove this type of pollutant from water. The morphology and elements present in the sludge and adsorbents before and after dye adsorption were characterized using SEM-EDS and FT-IR.

  15. Efficiency of lead removal from drinking water using cationic resin Purolite

    Directory of Open Access Journals (Sweden)

    Ashour Mohammad Merganpour

    2015-01-01

    Full Text Available Background: Today, issues such as water shortage, difficulties and costs related to supplying safe water, and anomalous concentrations of heavy metals in groundwater and surface water resources, doubled the necessity of access to technical methods on removing these pollutants from water resources. Methods: In this lab study, cationic resin Purolite S-930 (with co-polymer styrene di-vinyl benzene structure was used for lead removal from drinking water containing up to 22 μg/L. Using statistical analysis and designing a full factorial experiment are the most important effective parameters on lead removal obtained through ion exchange process. Results: Analysis of response and interaction parameters of ion exchange showed that the resin column height has maximum and pH value has minimum effect on the efficiency of lead removal from aquatic environment. Trinary interaction of “effective size, flow rate, resin column high” has the most important for lead removal efficiency in this system. So the maximum efficiency was obtained at the mesh = 40, bed height =1.6 meter, and pH= 6.5. At the best operation conditions, ability to remove 95.42% of lead concentration can be achieved. Conclusion: Using the resin Purolite S-930 during 21-day service with 91.12% of mean lead removal ratio from drinking water is an economic and technical feasibility.

  16. Investigation of using Zeolite A and P synthesized from Iranian natural clinoptilolite for removal of heavy cations from simulated wastes

    International Nuclear Information System (INIS)

    Ghasemi Mbtaker, H.; Kazemiyan, H.; Maleki Nejad, A.; Zeinali, M. A. A.; Pakzad, M. R.

    2006-01-01

    Various methods have been used for the the removal o f heavy metal cations from mineral and industrial wastes. This research deals with the use of synthetic zeolites A and P synthesized from natural clinoptilolite for the removal process because of their superiority to ones. Ion exchange capacity of natural and synthetic samples was determined, then, the effects of some parameters such as temperature, time, and acidity on sorption were investigated as well as continues sorption. The sorption of lead cations was much better than that of other cations with the use of the synthetic samples and the rise in temperature and in pH has no significant effect. Sorption of this cations on the column was good. The results of cadmium sorption was promising and increasing the temperature increased the sorption and decreasing the pH decreased it. The sorption of zinc was rationally good; however it was less than previous cations, and increased with increasing the temperature. The results of nickel sorption in comparison with other cation, at high concentration was not promising. However, the results, at low concentration were good. Temperature had strong effect on nickel sorption

  17. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  18. Removal of radiocesium using cation exchange resin

    International Nuclear Information System (INIS)

    Morita-Murase, Yuko; Mizumura, Ryosuke; Tachibana, Yoshitaka; Kanazawa, Hideko

    2013-01-01

    Cation exchange resins (calcium polystyrene sulfonate, Ca-resin and sodium polystyrene sulfonate, Na-resin) have been used as agents to improve hyperkerlemia. For removing 137 Cs from the human body, the adsorption ability of the resin for 137 Cs was examined and evaluated. Resin (0.03 g) and 137 Cs (ca.1 kBq) were introduced into 3 mL of water, the Japanese Pharmacopoeia 1st fluid for a dissolution test (pH 1.2) and 2nd fluid (pH 6.8), respectively, and shaken. After 1-3 hours, the 137 Cs adsorption (%) of Na-resin was 99% in water, 60% in a pH 1.2 fluid and, 66% in a pH 6.8 fluid. By adding potassium, the 137 Cs adsorption (%) of Ca-resin was reduced. However, the 137 Cs adsorption (%) of Na-resin was almost unchanged. These results show that both resins have adsorption ability for 137 Cs in the stomach and the intestines. Therefore, the proposed method will be an effective means in the case of a radiological emergency due to 137 Cs. (author)

  19. Synthesis of a Cationic Polyacrylamide under UV Initiation and Its Flocculation in Estrone Removal

    Directory of Open Access Journals (Sweden)

    Jiaoxia Sun

    2018-01-01

    Full Text Available A ternary cationic polyacrylamide (CPAM with the hydrophobic characteristic was prepared through ultraviolet- (UV- initiated polymerization technique for the estrone (E1 environmental estrogen separation and removal. The monomers of acrylamide (AM, acryloyloxyethyl-trimethyl ammonium chloride (DAC, and acryloyloxyethyl dimethylbenzyl ammonium chloride (AODBAC were used to synthesize the ternary copolymer (PADA. Fourier transform infrared spectroscopy (FT-IR, 1H nuclear magnetic resonance spectroscopy (1H NMR, thermogravimetry/differential scanning calorimetry (TG/DSC, and scanning electron microscopy (SEM were employed to characterize the structure, thermal decomposition property, and morphology of the polymers, respectively. FT-IR and 1H NMR results indicated the successful formation of the polymers. Besides, with the introduction of hydrophobic groups (phenyl group, an irregular and porous surface morphology and a favorable thermal stability of the PADA were observed by SEM and TG/DSC analyses, respectively. At the optimal condition (pH = 7, flocculant dosage = 4.0 mg/L and E1 concentration = 0.75 mg/L, an excellent E1 flocculation performance (E1 removal rate: 90.1%, floc size: 18.3 μm, and flocculation kinetics: 22.69×10-4 s−1 was acquired by using the efficient flocculant PADA-3 (cationic degree = 40%, and intrinsic viscosity = 6.30 dL·g−1. The zeta potential and floc size analyses were used to analyze the possible flocculation mechanism for the E1 removal. Results indicated that the charge neutralization, adsorption, and birding effects were dominant in the E1 removal progress.

  20. Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes.

    Science.gov (United States)

    Jeon, Jong-Rok; Kim, Eun-Ju; Kim, Young-Mo; Murugesan, Kumarasamy; Kim, Jae-Hwan; Chang, Yoon-Seok

    2009-11-01

    Natural organic coagulants (NOCs) such as chitosan and Moringa oleifera seeds have been extensively characterized for potential application in water treatment as an alternative to metal-based coagulants. However, the action of both chitosan and M. oleifera seeds is mainly restricted to anionic organic pollutants because of their cationic functional groups affording poor cationic pollutant coagulation by electrostatic repulsion. In this study, we employed ethanolic grape seed extract (GSE) and grape seed-derived polyphenols such as tannic acid and catechin in an effort to find novel NOCs showing stable anionic forms for removal of cationic organic pollutants. The target substances tested were malachite green (MG) and crystal violet (CV), both mutagenic cationic dyes. Polyphenol treatment induced fast decolorization followed by gradual floc formation concomitant with red or blue shifts in maximum absorbance wavelengths of the cationic dyes. Liquid chromatography analysis of flocs formed by polyphenols directly showed that initial supramolecular complexes attributed mainly to electrostatic attraction between polyphenol hydroxyphenyl groups and cationic dyes further progressed into stronger aggregates, leading to precipitation of dye-polyphenol complexes. Consistent with the results obtained using catechin and tannic acid, use of GSE also resulted in effective decolorization and coagulation of soluble MG and CV in aqueous solutions. Screening of several organic GSE components for NOC activity strongly suggested that natural polyphenols are the main organic ingredients causing MG and CV removal via gradual floc formation. The treatment by natural polyphenols and GSE decreased toxicity of MG- or CV-contaminated water.

  1. Magnetic chitosan/clay beads: A magsorbent for the removal of cationic dye from water

    Energy Technology Data Exchange (ETDEWEB)

    Bée, Agnès, E-mail: agnes.bee@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris (France); Obeid, Layaly, E-mail: lghannoum@hotmail.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris (France); CertiNergy Solutions, 33 avenue du Maine, BP 195, 75755 Paris Cedex 15 (France); Mbolantenaina, Rakotomalala, E-mail: mbolantenaina@yahoo.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris (France); Welschbillig, Mathias, E-mail: welschbillig@certinergysolutions.com [CertiNergy Solutions, 33 avenue du Maine, BP 195, 75755 Paris Cedex 15 (France); Talbot, Delphine, E-mail: delphine.talbot@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris (France)

    2017-01-01

    A magnetic composite material composed of magnetic nanoparticles and clay encapsulated in cross-linked chitosan beads was prepared, characterized and used as a magsorbent for the removal of a cationic dye, methylene blue (MB), from aqueous solutions. The magnetic properties of these beads represent an advantage to recover them at the end of the depollution process. The optimal weight ratio R=clay:chitosan for the removal of MB in a large range of pH was determined. For beads without clay, the maximal adsorption capacity of MB occurs in the pH range [9–12], while for beads with clay, the pH range extends by increasing the amount of clay to reach [3–12] for R>0.5. Adsorption isotherms show that the adsorption capacity of magnetic beads is equal to 82 mg/g. Moreover, the kinetics of dye adsorption is relatively fast since 50% of the dye is removed in the first 13 min for an initial MB concentration equal to 100 mg/L. The estimation of the number of adsorption sites at a given pH shows that the main driving force for adsorption of MB in a large range of pH is the electrostatic interaction between the positively charged dye and the permanent negative charges of clay. - Highlights: • A magsorbent based on magnetic nanoparticles and clay encapsulated in chitosan beads was prepared and characterized. • Clay played significant role for the removal of a cationic dye. • The magnetic beads exhibit a maximum adsorption capacity of 82 mg/g for methylene blue. • The pH range of the maximum adsorption extends from [9–12] to [3–12] by increasing the amount of clay. • The magsorbent could be magnetically removed from solution.

  2. Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane.

    Science.gov (United States)

    Zereshki, Sina; Daraei, Parisa; Shokri, Amin

    2018-05-18

    Using an emulsion liquid membrane based on edible oils is investigated for removing cationic dyes from aqueous solutions. There is a great potential for using edible oils in food industry extraction processes. The parameters affecting the stability of the emulsion and the extraction rate were studied. These parameters were the emulsification time, the stirring speed, the surfactant concentration, the internal phase concentration, the feed phase concentration, the volume ratio of internal phase to organic phase and the treat ratio. In order to stabilize the emulsion without using a carrier, edible paraffin oil and heptane are used at an 80:20 ratio. The optimum conditions for the extraction of methylene blue (MB), crystal violet and methyl violet (CV and MV) cationic dyes using edible paraffin oil as an environment friendly solvent are represented. A removal percentage of 95% was achieved for a mixture of dyes. The optimum concentration of sodium hydroxide in the internal phase, which results a stabile emulsion with a high stripping efficiency of 96%, was 0.04 M. An excellent membrane recovery was observed and the extraction of dyes did not decrease up to seven run cycles. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation.

    Science.gov (United States)

    Mena, Ismael F; Cotillas, Salvador; Díaz, Elena; Sáez, Cristina; Mohedano, Ángel F; Rodrigo, Manuel A

    2017-12-06

    In this work, sono- and photoelectrolysis of synthetic wastewaters polluted with the ionic liquids 1-Butyl-3-methylimidazolium acetate (BmimAc) and chloride (BmimCl) were investigated with diamond anodes. The results were compared to those attained by enhancing bare electrolysis with irradiation by UV light or with the application of high-frequency ultrasound (US). Despite its complex heterocyclic structure, the Bmim + cation was successfully depleted with the three technologies that were tested and was mainly transformed into four different organic intermediates, an inorganic nitrogen species and carbon dioxide. Regardless of the technology that was evaluated, removal of the heterocyclic ring is much less efficient (and much slower) than oxidation of the counter ion. In turn, the counter ion influences the rate of removal of the ionic liquid cation. Thus, the electrolysis and photoelectrolysis of BmimAc are much less efficient than sonoelectrolysis, but their differences become much less important in the case of BmimCl. In this later case, the most efficient technology is photoelectrolysis. This result is directly related to the generation of free radicals in the solution by irradiation of the electrochemical system with UV light, which contributes significantly to the removal of Bmim + . Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Removal of cationic surfactant (CTAB from aqueous solution on to activated carbon obtained from corncob.

    Directory of Open Access Journals (Sweden)

    S. M. Yakout

    2009-05-01

    Full Text Available Direct and indirect releases of large quantities of surfactants to the environment may result in serious health and environmental problems. Therefore, surfactants should be removed from water before water is released to the environment or delivered for public use. Using powdered activated carbon (PAC as adsorbent may be an effective technique to remove surfactants. In this study, the removal of surfactants by PAC was investigated and the influencesof the operating parameters on the effectiveness on adsorption rate were studied. Cationic surfactant, Cetyl trimethyl ammonium bromide (CTAB was selected for the experiments. A series of batch experiments were performed to determine the sorption isotherms of surfactants to PAC. The results showed that carbon structure affect mainly on the surfactant adsorption. Surfactant equilibrium data fitted very well to the binary langmuir model. The pseudo first-,second- order and intraparticle diffusion kinetic models were applied. Both, the external mass transfer and intraparticle diffusion mechanisms involve in CTAB sorption.

  5. Nitrogen removal from wastewater through microbial electrolysis cells and cation exchange membrane.

    Science.gov (United States)

    Haddadi, Sakineh; Nabi-Bidhendi, Gholamreza; Mehrdadi, Nasser

    2014-02-17

    Vulnerability of water resources to nutrients led to progressively stricter standards for wastewater effluents. Modification of the conventional procedures to meet the new standards is inevitable. New technologies should give a priority to nitrogen removal. In this paper, ammonium chloride and urine as nitrogen sources were used to investigate the capacity of a microbial electrolysis cell (MEC) configured by cation exchange membrane (CEM) for electrochemical removal of nitrogen over open-and closed-circuit potentials (OCP and CCP) during biodegradation of organic matter. Results obtained from this study indicated that CEM was permeable to both organic and ammonium nitrogen over OCP. Power substantially mediated ammonium migration from anodic wastewater to the cathode, as well. With a urine rich wastewater in the anode, the maximum rate of ammonium intake into the cathode varied from 34.2 to 40.6 mg/L.h over CCP compared to 10.5-14.9 mg/L.h over OCP. Ammonium separation over CCP was directly related to current. For 1.46-2.12 mmol electron produced, 20.5-29.7 mg-N ammonium was removed. Current also increased cathodic pH up to 12, a desirable pH for changing ammonium ion to ammonia gas. Results emphasized the potential for MEC in control of ammonium through ammonium separation and ammonia volatilization provided that membrane characteristic is considered in their development.

  6. 2D nanoporous membrane for cation removal from water: Effects of ionic valence, membrane hydrophobicity, and pore size

    Science.gov (United States)

    Köhler, Mateus Henrique; Bordin, José Rafael; Barbosa, Marcia C.

    2018-06-01

    Using molecular dynamic simulations, we show that single-layers of molybdenum disulfide (MoS2) and graphene can effectively reject ions and allow high water permeability. Solutions of water and three cations with different valencies (Na+, Zn2+, and Fe3+) were investigated in the presence of the two types of membranes, and the results indicate a high dependence of the ion rejection on the cation charge. The associative characteristic of ferric chloride leads to a high rate of ion rejection by both nanopores, while the monovalent sodium chloride induces lower rejection rates. Particularly, MoS2 shows 100% of Fe3+ rejection for all pore sizes and applied pressures. On the other hand, the water permeation does not vary with the cation valence, having dependence only with the nanopore geometric and chemical characteristics. This study helps us to understand the fluid transport through a nanoporous membrane, essential for the development of new technologies for the removal of pollutants from water.

  7. Shaft seals with an easily removable cylinder holder for low-pressure steam turbines

    Science.gov (United States)

    Zakharov, A. E.; Rodionov, D. A.; Pimenov, E. V.; Sobolev, A. S.

    2016-01-01

    The article is devoted to the problems that occur at the operation of LPC shaft seals (SS) of turbines, particularly, their bearings. The problems arising from the deterioration of oil-protecting rings of SS and bearings and also the consequences in which they can result are considered. The existing SS housing construction types are considered. Their operational features are specified. A new SS construction type with an easily removable holder is presented. The construction of its main elements is described. The sequence of operations of the repair personnel at the restoration of the new SS type spacings is proposed. The comparative analysis of the new and the existing SS construction types is carried out. The assessment results of the efficiency, the operational convenience, and the economic effect after the installation of the new type seals are given. The conclusions about the offered construction prospects are made by results of the comparative analysis and the carried-out assessment. The main advantage of this design is the possibility of spacings restoration both in SS and in oil-protecting rings during a short-term stop of a turbine, even without its cooling. This construction was successfully tested on the working K-300-23.5 LMP turbine. However, its adaptation for other turbines is quite possible.

  8. Development of a novel device to trap heavy metal cations: application of the specific interaction between heavy metal cation and mismatch DNA base pair.

    Science.gov (United States)

    Torigoe, Hidetaka; Miyakawa, Yukako; Fukushi, Miyako; Ono, Akira; Kozasa, Tetsuo

    2009-01-01

    We have already found that Hg(II) cation specifically binds to T:T mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving T:T mismatch base pair by about 4 degrees C. We have also found that Ag(I) cation specifically binds to C:C mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving C:C mismatch base pair by about 4 degrees C. Using the specific interaction, we developed a novel device to trap each of Hg(II) and Ag(I) cation. The device is composed of 5'-biotinylated T-rich or C-rich DNA oligonucleotides, BIO-T20: 5'-Bio-T(20)-3' or BIO-C20: 5'-Bio-C(20)-3' (Bio is a biotin), immobilized on streptavidin-coated polystylene beads. When the BIO-T20-immobilized beads were added to a solution containing Hg(II) cation, and the beads trapping Hg(II) cation were collected by centrifugation, almost all of Hg(II) cation were removed from the solution. Also, when the BIO-C20-immobilized beads were added to a solution containing Ag(I) cation, and the beads trapping Ag(I) cation were collected by centrifugation, almost all of Ag(I) cation were removed from the solution. We conclude that, using the novel device developed in this study, Hg(II) and Ag(I) cation can be effectively removed from the solution.

  9. Transport of sewage molecular markers through saturated soil column and effect of easily biodegradable primary substrate on their removal.

    Science.gov (United States)

    Foolad, Mahsa; Ong, Say Leong; Hu, Jiangyong

    2015-11-01

    Pharmaceutical and personal care products (PPCPs) and artificial sweeteners (ASs) are emerging organic contaminants (EOCs) in the aquatic environment. The presence of PPCPs and ASs in water bodies has an ecologic potential risk and health concern. Therefore, it is needed to detect the pollution sources by understanding the transport behavior of sewage molecular markers in a subsurface area. The aim of this study was to evaluate transport of nine selected molecular markers through saturated soil column experiments. The selected sewage molecular markers in this study were six PPCPs including acetaminophen (ACT), carbamazepine (CBZ), caffeine (CF), crotamiton (CTMT), diethyltoluamide (DEET), salicylic acid (SA) and three ASs including acesulfame (ACF), cyclamate (CYC), and saccharine (SAC). Results confirmed that ACF, CBZ, CTMT, CYC and SAC were suitable to be used as sewage molecular markers since they were almost stable against sorption and biodegradation process during soil column experiments. In contrast, transport of ACT, CF and DEET were limited by both sorption and biodegradation processes and 100% removal efficiency was achieved in the biotic column. Moreover, in this study the effect of different acetate concentration (0-100mg/L) as an easily biodegradable primary substrate on a removal of PPCPs and ASs was also studied. Results showed a negative correlation (r(2)>0.75) between the removal of some selected sewage chemical markers including ACF, CF, ACT, CYC, SAC and acetate concentration. CTMT also decreased with the addition of acetate, but increasing acetate concentration did not affect on its removal. CBZ and DEET removal were not dependent on the presence of acetate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cation depletion by the sodium pump in red cells with pathologic cation leaks. Sickle cells and xerocytes.

    Science.gov (United States)

    Joiner, C H; Platt, O S; Lux, S E

    1986-12-01

    The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blocked by ouabain, removal of external potassium, or pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonate, which blocks the increase in cation permeability induced by deoxygenation. The loss of cation exhibited by oxygenated xerocytes similarly incubated was also blocked by ouabain. These data support the hypothesis that the elevated "passive" cation fluxes of xerocytes and deoxygenated sickle cells are not directly responsible for cation depletion of these cells; rather, these pathologic leaks interact with the sodium pump to produce a net loss of cellular cation.

  11. Evaluation of the potential cationic dye removal using adsorption by graphene and carbon nanotubes as adsorbents surfaces

    Directory of Open Access Journals (Sweden)

    Akbar Elsagh

    2017-05-01

    Full Text Available We are employed in the present study of single-walled carbon nanotubes (SWCNTs, carboxylate group functionalized single-walled carbon nanotubes (SWCNT-COOH, graphene (G and graphene oxide (GO as alternative adsorbents for the removal of cationic dye Basic Red 46 (BR 46, from aqueous solution. Various physico-chemical parameters were studied such as electrical conductivity behaviors, contact time, solution pH, and dye concentration. The experimental results show that SWCNTs, SWCNT-COOH, G and GO are promising adsorbents for removing BR 46. The adsorption equilibrium data were analyzed using various adsorption isotherms, and the results have shown that adsorption behavior of BR 46 could be described reasonably well by the Langmuir isotherm. Results showed that the removal of BR 46 increased with increasing initial dye concentration, contact time and pH. Adsorption kinetics data were modeled using the pseudo-first and pseudo-second order, and intra-particle diffusion models. Results show that the pseudo-first order kinetic model for SWCNTs, SWCNT-COOH and the pseudo-second order for G and GO were found to correlate the experimental data well.

  12. Ion exchange removal of chromium (iii) from tannery wastes by using a strong acid cation exchange resin amberlite ir-120 h+ and its hybrids

    International Nuclear Information System (INIS)

    Ahmad, T.

    2014-01-01

    A strong acid cation exchange resin Amberlite IR-120 H+ and its hybrids with Mn(OH)/sub 2/, Cu(OH)/sub 2/ and Fe(OH)/sub 3/ are used for the removal of chromium (III) from spent tannery bath. The experimental data give good fits with the Langmuir sorption model. The thermodynamic parameters entropy (delta S), enthalpy (delta H) and free energy (delta G) changes are computed, which reveal that the chromium removal from tannery wastes by ion exchangers is an endothermic, physical sorption and entropically driven process. The rate of sorption is found to increase with the increase of resin dosage, stirring speed and temperature. Different kinetic models such as film diffusion, particle diffusion and Lagergren pseudo first order are used to evaluate the mechanism of the process. It is found that the hybrid ion exchange resins have better removal capacity as compared to the parent ion exchanger. The increase in the removal capacity is found to be in the order of the corresponding PZC values of the hybrid ion exchangers. Further, it is suggested that the higher exchange capacity is the result of Donnan effect and specific adsorption of chromium by the oxides / hydroxides present inside the matrix of the organic cation exchanger. (author)

  13. Formation of the N-Iodopyridinium Cation in an Alkane Environment

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2006-01-01

    -iodopyridinium cation (pyI+). This assignment is consistent with the observed polarization data. Ionic side reactions (py-I2 = pyI+ + I–, py-I2 + I2 = pyI+ + I3–, etc.) are easily observed in binary pyridine-iodine mictures and in polar solvents, but not so easily in non-polar media. We are thus surprised to see...... the apparent efficiency with which the pyI+ cation is formed in an apolar and aprotic medium like PE. With excess iodine, the peaks assigned to pyI+ dominate the observed mid-infrared spectrum. We suspect that a driving force for the ionic reaction is the formation of polyiodide anions in the channels...

  14. Removal of cobalt, chromium, copper, iron and nickel cations from electroplating waste water by apatite ore

    Energy Technology Data Exchange (ETDEWEB)

    Kargar-Razi, M.; Yahyaabadi, S. [Azad Univ. Tehran (Iran, Islamic Republic of)

    2012-07-01

    In this investigation, the adsorption behavior of natural phosphate rock and it's concentrate with respect to Fe{sup 3+}, Ni{sup 2+}, Co{sup 2+}, Cu{sup 2+} and Cr{sup 3+} has been studied, in order to consider its application to purity of electroplating waste water pollution. The batch mehtod has been employed, using metal concentrations in solution ranging from 2 ppm to 40 ppm with mixing process. The effect of pH, concentration of heavy metals and times (10-20 min) is considered. The results of their removal performance in 40 ppm concentration, pH = 8 and 10 minutes are obtained as Cr{sup 3+} > Cu{sup 2+} > Fe{sup 3+} > Co{sup 2+} > Ni{sup 2+} for phosphate rock and the sequence can be given as Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Co{sup 2+} > Ni{sup 2+} for phosphate concentrate. It was found that the adsorption phenomena depend on charge density and hydrated ion diameter. The same results show that maximum adsorption in PH = 4.5 and 7 for concentrate. The Langmuir adsorption isotherm constants corresponding to adsorption capacity were found to be as Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+} for phosphate soil and Cr{sup 3+} > Fe{sup 3+} > Cu{sup 2+} > Co{sup 2+} > Ni{sup 2+} for phosphate concentrate. Sorption of metallic cations are considered in pH 4.5, 7 and 8. The results show that phosphate rock and its concentrate have great potential to remove cations of heavy metal species from electroplating waste water. (orig.)

  15. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  16. Effect of alkyl length of cationic surfactants on desorption of Cs from contaminated clay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Hyun; Park, Chan Woo; Yang, Hee Man; Seo, Bum Kyoung; Lee, Kune Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, So Jin [Chungnam National University, Daejeon (Korea, Republic of)

    2017-03-15

    In this study, desorption characteristics of Cs from clay according to the hydrophobic alkyl chain length of the cationic surfactant were investigated. Alkyltrimethylammonium bromide was used as a cationic surfactant, and the length of the hydrophobic alkyl chain of the cationic surfactant was varied from –octyl to –cetyl. The adsorbed amount of the cationic surfactant on montmorillonite increased with the length of the hydrophobic alkyl chain, and intercalation of the cationic surfactant into the clay interlayer increased the interlayer distances. The Cs removal efficiency was also enhanced with increasing alkyl chain length, and the cationic surfactant with the cetyl group showed a maximum Cs removal efficiency of 99±2.9%.

  17. Removal of ciprofloxacin from water by birnessite

    International Nuclear Information System (INIS)

    Jiang, Wei-Teh; Chang, Po-Hsiang; Wang, Ya-Siang; Tsai, Yolin; Jean, Jiin-Shuh; Li, Zhaohui; Krukowski, Keith

    2013-01-01

    Highlights: ► Ciprofloxacin removal by birnessite was accompanied by interlayer cation exchange. ► Layer expansion and FTIR data suggested ciprofloxacin intercalation into birnessite. ► Adsorption capacity of ciprofloxacin into birnessite was limited by surface area. ► Birnessite in soil systems may provide host for ciprofloxacin accumulation. -- Abstract: With more pharmaceuticals and personal care products detected in the surface and waste waters, studies on interactions between these contaminants and soils or sediments have attracted great attention. In this study, the removal of ciprofloxacin (CIP), a fluoroquinolone antibiotic, by birnessite, a layered manganese oxide, in aqueous solution was investigated by batch studies supplemented by X-ray diffraction (XRD) and Fourier transform infrared analyses. Stoichiometric release of exchangeable cations accompanying CIP removal from water confirmed cation exchange as the major mechanism for CIP uptake by birnessite. Interlayer expansion after CIP adsorption on birnessite as revealed by XRD analyses indicated that intercalation contributed significantly to CIP uptake in addition to external surface adsorption. Correlation of CIP adsorption to specific surface area and cation exchange capacity suggested that the former was the limiting factor for CIP uptake. At the adsorption maximum, CIP molecules formed a monolayer on the birnessite surfaces. The adsorbed CIP could be partially removed using a cationic surfactant at a low initial concentration and mostly removed by AlCl 3 at a higher initial concentration, which further supported the cation exchange mechanism for CIP removal by birnessite. The results indicated that the presence of layered Mn-oxide in the soil and waste water treatment systems may provide host for CIP accumulation

  18. Enhancement of perchlorate removal from groundwater by cationic granular activated carbon: Effect of preparation protocol and surface properties.

    Science.gov (United States)

    Hou, Pin; Yan, Zhe; Cannon, Fred S; Yue, Ye; Byrne, Timothy; Nieto-Delgado, Cesar

    2018-06-01

    In order to obtain a high adsorption capacity for perchlorate, the epoxide-forming quaternary ammonium (EQA) compounds were chemically bonded onto granular activated carbon (GAC) surface by cationic reaction. The optimum preparation condition of the cationic GAC was achieved while applying softwood-based Gran C as the parent GAC, dosing EQA first at a pH of 12, preparation time of 48 h, preparation temperature of 50 °C, and mole ratio of EQA/oxygen groups of 2.5. The most favorable cationic GAC that had the QUAB360 pre-anchored exhibited the highest perchlorate adsorption capacity of 24.7 mg/g, and presented the longest bed volumes (3000 BV) to 2 ppb breakthrough during rapid small scale column tests (RSSCTs), which was 150 times higher than that for the pristine Gran C. This was attributed to its higher nitrogen amount (1.53 At%) and higher positive surface charge (0.036 mmol/g) at pH 7.5. Also, there was no leaching of the quaternary ammonium detected in the effluent of the RSSCTs, indicating there was no secondary pollution occurring during the perchlorate removal process. Overall, this study provides an effective and environmental-friendly technology for improving GAC perchlorate adsorption capacity for groundwater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds.

    Science.gov (United States)

    Tran, Hai Nguyen; Viet, Pham Van; Chao, Huan-Ping

    2018-01-01

    A hydrophilic Y zeolite was primarily treated with sodium hydroxide to enhance its cation exchange capacity (Na-zeolite). The organo-zeolite (Na-H-zeolite) was prepared by a modification process of the external surface of Na-zeolite with a cationic surfactant (hexadecyltrimethylammonium; HDTMA). Three adsorbents (i.e., pristine zeolite, Na-zeolite, and Na-H-zeolite) were characterized with nitrogen adsorption/desorption isotherms, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, cation exchange capacities, and zeta potential. Results demonstrated that HDTMA can be adsorbed on the surface of Na-zeolite to form patchy bilayers. The adsorption capacity of several hazardous pollutants (i.e., Pb 2+ , Cu 2+ , Ni 2+ , Cr 2 O 7 2- , propylbenzene, ethylbenzene, toluene, benzene, and phenol) onto Na-H-zeolite was investigated in a single system and multiple-components. Adsorption isotherm was measured to further understand the effects of the modification process on the adsorption behaviors of Na-H-zeolite. Adsorption performances indicated that Na-H-zeolite can simultaneously adsorb the metal cations (on the surface not covered by HDTMA), oxyanions (on the surface covered by HDTMA). Na-H-zeolite also exhibited both hydrophilic and hydrophobic surfaces to uptake organic compounds with various water solubilities (from 55 to 75,000mg/L). It was experimentally concluded that Na-H-zeolite is a potential dual-electronic and amphiphilic adsorbent for efficiently removing a wide range of potentially toxic pollutants from aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Removal of ciprofloxacin from water by birnessite

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Chang, Po-Hsiang; Wang, Ya-Siang; Tsai, Yolin; Jean, Jiin-Shuh [Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin – Parkside, Kenosha, WI 53144 (United States); Krukowski, Keith [Department of Geosciences, University of Wisconsin – Parkside, Kenosha, WI 53144 (United States)

    2013-04-15

    Highlights: ► Ciprofloxacin removal by birnessite was accompanied by interlayer cation exchange. ► Layer expansion and FTIR data suggested ciprofloxacin intercalation into birnessite. ► Adsorption capacity of ciprofloxacin into birnessite was limited by surface area. ► Birnessite in soil systems may provide host for ciprofloxacin accumulation. -- Abstract: With more pharmaceuticals and personal care products detected in the surface and waste waters, studies on interactions between these contaminants and soils or sediments have attracted great attention. In this study, the removal of ciprofloxacin (CIP), a fluoroquinolone antibiotic, by birnessite, a layered manganese oxide, in aqueous solution was investigated by batch studies supplemented by X-ray diffraction (XRD) and Fourier transform infrared analyses. Stoichiometric release of exchangeable cations accompanying CIP removal from water confirmed cation exchange as the major mechanism for CIP uptake by birnessite. Interlayer expansion after CIP adsorption on birnessite as revealed by XRD analyses indicated that intercalation contributed significantly to CIP uptake in addition to external surface adsorption. Correlation of CIP adsorption to specific surface area and cation exchange capacity suggested that the former was the limiting factor for CIP uptake. At the adsorption maximum, CIP molecules formed a monolayer on the birnessite surfaces. The adsorbed CIP could be partially removed using a cationic surfactant at a low initial concentration and mostly removed by AlCl{sub 3} at a higher initial concentration, which further supported the cation exchange mechanism for CIP removal by birnessite. The results indicated that the presence of layered Mn-oxide in the soil and waste water treatment systems may provide host for CIP accumulation.

  1. Nitrogen and chemical oxygen demand removal from septic tank wastewater in subsurface flow constructed wetlands: substrate (cation exchange capacity) effects.

    Science.gov (United States)

    Collison, Robert S; Grismer, Mark E

    2014-04-01

    The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.

  2. The study of furfural removal from aqueous solutions using activated carbon and bentonite modified with cetyltrimethylammonium bromide (CTAB), a cationic surfactant

    OpenAIRE

    M Leili; Gh Asgari; A. A Eskandari; L Borzoei; B Ramavandi

    2016-01-01

    Background and Objectives: Furfural is one of the toxic chemical compounds used in many industries such as petrochemical, food, paper products, pharmaceutical, etc., due to having some characteristics. Therefore, furfural could be found at different concentrations in the effluent from these industries and can enter the environment. Hence, the aim of this study was the assessment the efficiency of a low cost bentonite modified with cationic surfactant in the removal of furfural from aqueous so...

  3. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    Science.gov (United States)

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation.

  4. Synthesis and application of magnetic hydrogel for Cr(VI) removal from contaminated water

    KAUST Repository

    Tang, Samuel C N; Wang, Peng; Yin, Ke; Lo., Irene Man Chi

    2010-01-01

    Many magnetic adsorbents reported in the literature, such as iron oxides, for Cr(VI) removal have been found effective only in low pH environments. Moreover, the application of polymeric hydrogels on heavy metal removal has been hindered by difficulties in separation by filtration. In this study, a magnetic cationic hydrogel was synthesized for Cr(VI) removal from contaminated water, making use of the advantages of magnetic adsorbents and polymeric hydrogels. The magnetic hydrogel was produced by imbedding 10-nm γ-Fe2O 3 nanoparticles into the polymeric matrix via radical polymerization. Characterization of the hydrogel was undertaken with Fourier transform infrared and vibrating sample magnetometer; swelling properties were tested and anionic adsorption capacity was evaluated. The magnetic hydrogel showed a superior Cr(VI) removal capacity compared to commercial products such as MIEX®. Cr(VI) removal was independent of solution pH. Results show that Cr(VI) removal kinetics was improved drastically by grinding the bulk hydrogel into powder form. At relevant concentrations, common water anions (e.g., Cl-, SO4 2-, PO4 3-) and natural organic matter did not exhibit significant inhibition of Cr(VI) adsorption onto the hydrogel. Results of vibrating sample magnetometer indicate that the magnetic hydrogel can be easily separated from treatment systems. Regeneration of the magnetic hydrogel can be easily achieved by washing the Cr(VI)-loaded hydrogel with 0.5 M NaCl solution, with a recovery rate of about 90% of Cr(VI). © Copyright 2010, Mary Ann Liebert, Inc. 2010.

  5. Synthesis and application of magnetic hydrogel for Cr(VI) removal from contaminated water

    KAUST Repository

    Tang, Samuel C N

    2010-11-01

    Many magnetic adsorbents reported in the literature, such as iron oxides, for Cr(VI) removal have been found effective only in low pH environments. Moreover, the application of polymeric hydrogels on heavy metal removal has been hindered by difficulties in separation by filtration. In this study, a magnetic cationic hydrogel was synthesized for Cr(VI) removal from contaminated water, making use of the advantages of magnetic adsorbents and polymeric hydrogels. The magnetic hydrogel was produced by imbedding 10-nm γ-Fe2O 3 nanoparticles into the polymeric matrix via radical polymerization. Characterization of the hydrogel was undertaken with Fourier transform infrared and vibrating sample magnetometer; swelling properties were tested and anionic adsorption capacity was evaluated. The magnetic hydrogel showed a superior Cr(VI) removal capacity compared to commercial products such as MIEX®. Cr(VI) removal was independent of solution pH. Results show that Cr(VI) removal kinetics was improved drastically by grinding the bulk hydrogel into powder form. At relevant concentrations, common water anions (e.g., Cl-, SO4 2-, PO4 3-) and natural organic matter did not exhibit significant inhibition of Cr(VI) adsorption onto the hydrogel. Results of vibrating sample magnetometer indicate that the magnetic hydrogel can be easily separated from treatment systems. Regeneration of the magnetic hydrogel can be easily achieved by washing the Cr(VI)-loaded hydrogel with 0.5 M NaCl solution, with a recovery rate of about 90% of Cr(VI). © Copyright 2010, Mary Ann Liebert, Inc. 2010.

  6. Preparation of Cationic MOFs with Mobile Anions by Anion Stripping to Remove 2,4-D from Water

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-07-01

    Full Text Available A cationic porous framework with mobile anions (MIL-101(Cr-Cl was easily and successfully synthesized by utilizing the stronger affinity of F− to Al3+ than Cr3+ in the charge-balanced framework of MIL-101(Cr. The structure, morphology and porosity of MIL-101(Cr-Cl were characterized. The obtained new materials retain the high surface area, good thermostability, and structure topology of MIL-101(Cr. With the mobile Cl− anion, MIL-101(Cr-Cl can be used as an ion-exchange material for anionic organic pollutions. In this work, 2,4-dichlorophenoxyacetic acid (2,4-D was used as a model to test the absorption performance of this new material. This new material exhibited improved adsorbability compared to that of the original metal-organic frameworks (MOFs. At the same time, this material also shows high anti-interference performance with changing solution pH.

  7. Removal of cationic dye from water by activated pine cones

    Directory of Open Access Journals (Sweden)

    Momčilović Milan Z.

    2012-01-01

    Full Text Available Adsorption of a cationic phenothyazine dye methylene blueonto activated carbon prepared from pine cones was investigated with the variation in parameters of contact time, dye concentration and pH. The kinetic data were found to follow the pseudo-second-order kinetic modelclosely. The equilibrium data were best represented by the Langmuir isotherm with maximum adsorption capacity of 233.1 mg g-1. Adsorption was favored by using a higher solution pH. Textural analysis by nitrogen adsorption was used to determine specific surface area and pore structure of the obtained carbon. Boehm titrations revealed that carboxylic groups are present in the highest degree on the carbon surface. The results indicate that the presented method for activation of pine cones could yield activated carbon with significant porosity, developed surface reactivity and considerable adsorption affinity toward cationic dye methylene blue.

  8. Efficient visible light photocatalytic NO{sub x} removal with cationic Ag clusters-grafted (BiO){sub 2}CO{sub 3} hierarchical superstructures

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xin [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 40067 (China); Zhang, Wendong [Department of Scientific Research Management, Chongqing Normal University, Chongqing 401331 (China); Deng, Hua [State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Ni, Zilin [Department of Scientific Research Management, Chongqing Normal University, Chongqing 401331 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 40067 (China); Zhang, Yuxin, E-mail: zhangyuxin@cqu.edu.cn [College of Materials Science and Engineering, National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044 (China)

    2017-01-15

    Graphical abstract: The cationic Ag clusters-grafted (BiO){sub 2}CO{sub 3} hierarchical superstructures exhibits highly enhanced visible light photocatalytic air purification through an interfacial charge transfer process induced by Ag clusters. - Highlights: • Microstructural optimization and surface cluster-grafting were firstly combined. • Cationic Ag clusters were grafted on the surface of (BiO){sub 2}CO{sub 3} superstructures. • The Ag clusters-grafted BHS displayed enhanced visible light photocatalysis. • Direct interfacial charge transfer (IFCT) from BHS to Ag clusters was proposed. • The charge transfer process and the dominant reactive species were revealed. - Abstract: A facile method was developed to graft cationic Ag clusters on (BiO){sub 2}CO{sub 3} hierarchical superstructures (BHS) surface to improve their visible light activity. Significantly, the resultant Ag clusters-grafted BHS displayed a highly enhanced visible light photocatalytic performance for NOx removal due to the direct interfacial charge transfer (IFCT) from BHS to Ag clusters. The chemical and coordination state of the cationic Ag clusters was determined with the extended X-ray absorption fine structure (EXAFS) and a theoretical structure model was proposed for this unique Ag clusters. The charge transfer process and the dominant reactive species (·OH) were revealed on the basis of electron spin resonance (ESR) trapping. A new photocatalysis mechanism of Ag clusters-grafted BHS under visible light involving IFCT process was uncovered. In addition, the cationic Ag clusters-grafted BHS also demonstrated high photochemical and structural stability under repeated photocatalysis runs. The perspective of enhancing photocatalysis through combination of microstructural optimization and IFCT could provide a new avenue for the developing efficient visible light photocatalysts.

  9. base cation leaching from the canopy of a rubber (hevea brasiliensis

    African Journals Online (AJOL)

    Osondu

    2012-08-11

    Aug 11, 2012 ... accelerated by acid rain, by forest regrowth following harvest removals, and by declining inputs of base cations from atmospheric deposition. Cation leaching from tree canopy could affect physiological processes, damage flowering and dormancy patterns, and make plants more vulnerable to diseases and ...

  10. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    Directory of Open Access Journals (Sweden)

    Yamuna Kunhi Mouvenchery

    Full Text Available It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM molecules via cation bridges (CaB. The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+, Ca(2+ or Na(+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h than deprotonation of functional groups (<2 h and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB and molecular mobility of water (NMR analysis suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is

  11. Removal of Na+ from Ionic Liquids by Zeolite for High Quality Electrolyte Manufacture

    International Nuclear Information System (INIS)

    Cho, Wonje; Seo, Yongseong; Jung, Soon Jae; Lee, Won Gil; Kim, Byung Chul; Yu, Kookhyun

    2013-01-01

    This study develops a novel method to remove the free cations created during the synthesis of ionic liquid. The cations are removed from the ionic liquid by size-selective adsorption onto chemically surface-modified Zeolite. The porous crystal nano-structure of Zeolite has several electron-rich Al sites to attract cations. While large cations of an ionic liquid cannot access the Zeolite nano-structure, small cations like Na + have ready access and are adsorbed. This study confirms that: Na + can be removed from ionic liquid effectively using Zeolite; and, in contrast to the conventional and extensively applied ion exchange resin method or solvent extraction methods, this can be done without changing the nature of the ionic liquid

  12. Hydrocolloid liquid-core capsules for the removal of heavy-metal cations from water

    Energy Technology Data Exchange (ETDEWEB)

    Nussinovitch, A., E-mail: amos.nussi@mail.huji.ac.il; Dagan, O.

    2015-12-15

    Highlights: • Novel liquid-core capsules with a non-crosslinked alginate core were produced. • Capsules demonstrated highest efficiency adsorption of ∼300 mg Pb{sup 2+}/g alginate. • Regeneration was carried out by suspending capsules in 1 M HNO{sub 3} for 24 h. • Adsorption capacities of the capsules followed the order: Pb{sup 2+} > Cu{sup 2+} > Cd{sup 2+} > Ni{sup 2+}. - Abstract: Liquid-core capsules with a non-crosslinked alginate fluidic core surrounded by a gellan membrane were produced in a single step to investigate their ability to adsorb heavy metal cations. The liquid-core gellan–alginate capsules, produced by dropping alginate solution with magnesium cations into gellan solution, were extremely efficient at adsorbing lead cations (267 mg Pb{sup 2+}/g dry alginate) at 25 °C and pH 5.5. However, these capsules were very weak and brittle, and an external strengthening capsule was added by using magnesium cations. The membrane was then thinned with the surfactant lecithin, producing capsules with better adsorption attributes (316 mg Pb{sup +2}/g dry alginate vs. 267 mg Pb{sup +2}/g dry alginate without lecithin), most likely due to the thinner membrane and enhanced mass transfer. The capsules’ ability to adsorb other heavy-metal cations – copper (Cu{sup 2+}), cadmium (Cd{sup 2+}) and nickel (Ni{sup 2+}) – was tested. Adsorption efficiencies were 219, 197 and 65 mg/g, respectively, and were correlated with the cation’s affinity to alginate. Capsules with the sorbed heavy metals were regenerated by placing in a 1 M nitric acid suspension for 24 h. Capsules could undergo three regeneration cycles before becoming damaged.

  13. Enhanced desorption of Cs from clays by a polymeric cation-exchange agent

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Woo, E-mail: park85@gmail.com [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Bo Hyun [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Kune-Woo, E-mail: nkwlee@kaeri.re.kr [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-04-05

    Highlights: • A cationic polyelectrolyte has excellent ability to desorb Cs bound strongly to clay. • The polycation desorbed significantly more Cs from the clay than did single cations. • Additional NH{sub 4}{sup +} treatment following the polycation treatment enhanced desorption of Cs. • The reaction yielded efficient desorption (95%) of an extremely low concentration of Cs-137 in the clay. - Abstract: We report on a new approach to increase the removal of cesium from contaminated clays based on the intercalation of a cationic polyelectrolyte into the clay interlayers. A highly charged cationic polyelectrolyte, polyethyleneimine (PEI), was shown to intercalate into the negatively charged interlayers and readily replaced Cs ions adsorbed on the interlayers of montmorillonite. The polycation desorbed significantly more Cs strongly bound to the clay than did single cations. Moreover, additional NH{sub 4}{sup +} treatment following the PEI treatment enhanced desorption of Cs ions that were less accessible by the bulky polyelectrolyte. This synergistic effect of PEI with NH{sub 4}{sup +} yielded efficient desorption (95%) of an extremely low concentration of radioactive {sup 137}Cs in the clay, which is very difficult to remove by simple cation-exchange methods due to the increased stability of the binding of Cs to the clay at low Cs concentrations.

  14. Synthesis of malachite@clay nanocomposite for rapid scavenging of cationic and anionic dyes from synthetic wastewater.

    Science.gov (United States)

    Srivastava, Varsha; Sillanpää, Mika

    2017-01-01

    Synthesis of malachite@clay nanocomposite was successfully carried out for the removal of cationic (Methylene Blue, MB) and anionic dyes (Congo Red, CR) from synthetic wastewater. Nanocomposite was characterized by TEM, SEM, FT-IR, EDS analysis and zeta potential. TEM analysis indicated that the particle diameter of nanocomposite was in the range of 14 to 23nm. Various important parameters viz. contact time, concentration of dyes, nanocomposite dosage, temperature and solution pH were optimized to achieve maximum adsorption capacity. In the case of MB, removal decreased from 99.82% to 93.67% while for CR, removal decreased from 88.55% to 75.69% on increasing dye concentration from 100 to 450mg/L. pH study confirmed the higher removal of CR in acidic range while MB removal was higher in alkaline range. Kinetic study revealed the applicability of pseudo-second-order model for the adsorption of both dyes. Negative values of ΔG 0 for both systems suggested the feasibility of dye removal and support for spontaneous adsorption of CR and MB on nanocomposite. Nanocomposite showed 277.77 and 238.09mg/g Langmuir adsorption capacity for MB and CR respectively. Desorption of dyes from the dye loaded nanocomposite was easily carried out with acetone. The results indicate that the prepared malachite@clay nanocomposite is an efficient adsorbent with high adsorption capacity for the aforementioned dyes. Copyright © 2016. Published by Elsevier B.V.

  15. Electrodeposition properties of modified cational epoxy resin-type photoresist

    International Nuclear Information System (INIS)

    Yong He; Yunlong Zhang; Feipeng Wu; Miaozhen Li; Erjian Wang

    1999-01-01

    Multi-component cationic epoxy and acrylic resin system for ED photoresist was used in this work, since they can provide better storage stability for ED emulsion and better physical and chemical properties of deposited film than one-component system. The cationic main resin (AE) was prepared from amine modified epoxy resins and then treated with acetic acid. The amination degree was controlled as required. The synthetic procedure of cationic main resins is described in scheme I. The ED photoresist (AME) is composed of cationic main resin (AE) and nonionic multifunctional acrylic crosslinkers (PETA), in combination with suitable photo-initiator. They can easily be dispersed in deionized water to form a stable ED emulsion. The exposed part of deposited film upon UV irradiation occurs crosslinking to produce an insoluble semi-penetrating network and the unexposed part remains good solubility in the acidic water solution. It is readily utilized for fabrication of fine micropattern. The electrodeposition are carried out on Cu plate at room temperature. To evaluate the electrodeposition properties of ED photoresist (AME), the different influences are examined

  16. Selective adsorption of cationic dyes by UiO-66-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi; He, Qinqin; Lv, Mengmeng; Xu, Yanli; Yang, Hanbiao; Liu, Xueting, E-mail: wmlxt@163.com; Wei, Fengyu, E-mail: weifyliuj@163.com

    2015-02-01

    Graphical abstract: - Highlights: • Two Zr(IV)-based MOFs can remove cationic dyes more effectively than anionic dyes. • UiO-66 has higher selectivity for cationic dyes after modification with NH{sub 2}. • The mechanism for adsorption selectivity is rationally proposed. - Abstract: Herein, two zirconium(IV)-based MOFs UiO-66 and UiO-66-NH{sub 2} had been successfully prepared by a facile solvothermal method and were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), N{sub 2} adsorption–desorption (BET), X-ray photoelectron spectroscopy (XPS), and zeta potential. They exhibit small size, large surface area, and can remove cationic dyes from aqueous solution more effectively than anionic dyes. This adsorption selectivity is due to the favorable electrostatic interactions between the adsorbents and cationic dyes. Furthermore, owing to the individual micropore structure of UiO-66-NH{sub 2} and its more negative zeta potential resulted from the charge balance for the protonation of –NH{sub 2}, UiO-66-NH{sub 2} displays much higher adsorption capacity for cationic dyes and lower adsorption capacity for anionic dyes than UiO-66.

  17. Uptake of Cationic Dyes from Aqueous Solution by Biosorption Using Granulized Annona squmosa Seed

    Directory of Open Access Journals (Sweden)

    T. Santhi

    2009-01-01

    Full Text Available A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. A sample of granulized Annona squmosa seeds had been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB, methylene red (MR and malachite green (MG. The effects of various experimental parameters (e.g., contact time, dye concentration, adsorbent dose and pH were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 5, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir model in the case of MB sorption and the Freundlich model for all three dyes sorption. The biosorption processes followed the pseudo first order rate kinetics. The results in this study indicated that granulized Annona squmosa seed was an attractive candidate for removing cationic dyes from the dye wastewater.

  18. Removal of Cr(VI) and Ni(II) from aqueous solution by fused yeast: Study of cations release and biosorption mechanism

    International Nuclear Information System (INIS)

    Yin Hua; He Baoyan; Peng Hui; Ye Jinshao; Yang Feng; Zhang Na

    2008-01-01

    Biosorption of Cr(VI) and Ni(II) by a fused yeast from Candida tropicalis and Candida lipolytica under varying range of pH, initial metal concentration and reaction time was investigated. Net cation release and Cr removal reached 2.000 mmol/l and 81.37% when treating 20 mg/l Cr(VI) at pH 2 with 25 mg/l biomass for 30 min, while for Ni were 0.351 mmol/l and 64.60%, respectively. Trace metal elements such as Co, Cu, Mn, Mo, Se and Zn played active role in biosorption as important ingredients of functional enzymes. Cr(VI) was reduced to less toxic Cr(III) and chelated with extracellular secretions, and further accumulated inside the cells. For Ni biosorption, however, largely a passive uptake process influenced by ion gradient led to lower adsorption capacity and cations release. Fourier transform infrared (FTIR) spectrum analysis indicated that amide and pyridine on cells were involved in binding with Cr, but for Ni, bound-OH and nitro-compounds were the main related functional groups. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis confirmed that considerable amounts of metals precipitated on cell surface when dealing with high concentration metals

  19. Heavy metals removal in wastewater by activated carbon adsorption and clays of cationic interchange; Eliminacion de metales pesados en disolucion mediante adsorcion en carbon activo y arcillas de intercambio cationico

    Energy Technology Data Exchange (ETDEWEB)

    Montes, M. A.; Medialdea, J. M.; Garcia Mediavilla, B.; Moron, M. J.; Arnaiz, M. C.; Garcia Martinez de Simon, I.; Lopez, C. M.; Escot, E.; Lebrato, J. [Universidad de Sevilla. Sevilla (Spain)

    1999-11-01

    Among the different treatment systems assessed for the purification of the wastewaters poured from Aznalcollar quarry the last April 25, 1998, physical and chemical adsorption proved highly efficient for the removal of refractory heavy metals. In laboratory experiments, 99% of dissolved Mn and Zn was removed when wastewater passed through a packedbed column filled with a cationic exchange clay. In the same way, activated-carbon adsorption removed more than 80% of dissolved Zn and 11-16% of Mn. Results confirm the feasibility of these processes and contribute knowledge on their operational characteristics so that in any other similar situation we can consider all treatment possibilities. 8 refs.

  20. Magnetic Solid Phase Extraction and Removal of Five Cationic Dyes from Aqueous Solution Using Magnetite Nanoparticle Loaded Platanusorientalis Waste Leaves

    Directory of Open Access Journals (Sweden)

    Elaheh Madrakian

    2016-12-01

    Full Text Available This paper reports on synthesis of a magnetic adsorbent for wastewater treatment purposes. In this regard, platanus orientalis waste leaves were chosen as a cheap material for preparing the magnetic adsorbent by loading magnetite nanoparticles on it. The synthesized adsorbent was characterized using scanning electron microscope and X-ray diffractometer. Then, it was used for magnetic solid phase extraction and removal of five cationic dyes including methyl violet (MV, methylene blue (MB, malachite green (MG, crystal violet (CV, and neutral red (NR from aqueous solution as a model application. Different important factors affecting the adsorption process were optimized, and the results showed that under the optimized conditions (pH 10 for CV, MV, MB, and MG; pH 6 for NR; adsorbent dosage, 20 mg; agitation time, 25 min efficient removal of the investigated dyes (adsorption capacities between of 89-133 mg g-1 is achievable using the synthesized adsorbent. Furthermore, the reusability experiments showed that the adsorbent could be reused at least ten cycles without any significant loss in its sorption behavior.

  1. Cation exchange removal of Cd from aqueous solution by NiO

    International Nuclear Information System (INIS)

    Mahmood, T.; Saddique, M.T.; Naeem, A.; Mustafa, S.; Dilara, B.; Raza, Z.A.

    2011-01-01

    Graphical abstract: Sorption of Cd on NiO particles is described by modified Langmuir adsorption isotherms. - Abstract: Detailed adsorption experiments of Cd from aqueous solution on NiO were conducted under batch process with different concentrations of Cd, time and temperature of the suspension. The solution pH is found to play a decisive role in the metal ions precipitation, surface dissolution and adsorption of metal ions onto the NiO. Preliminary adsorption experiments show that the selectivity of NiO towards different divalent metal ions follows the trend Pb > Zn > Co > Cd, which is related to their first hydrolysis equilibrium constant. The exchange between the proton from the NiO surface and the metal from solution is responsible for the adsorption. The cation/exchange mechanism essentially remains the same for Pb, Zn, Co and Cd ions. The sorption of Cd on NiO particles is described by the modified Langmuir adsorption isotherms. The isosteric heat of adsorption (ΔH) indicates the endothermic nature of the cation exchange process. Spectroscopic analyses provide evidence that Cd is chemisorbed onto the surface of NiO.

  2. Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer.

    Science.gov (United States)

    Abo Markeb, Ahmad; Alonso, Amanda; Dorado, Antonio David; Sánchez, Antoni; Font, Xavier

    2016-08-01

    A novel nanocomposite (NC) based on magnetite nanoparticles (Fe3O4-NPs) immobilized on the surface of a cationic exchange polymer, C100, using a modification of the co-precipitation method was developed to obtain magnetic NCs for phosphate removal and recovery from water. High-resolution transmission electron microscopy-energy-dispersive spectroscopy, scanning electron microscopy , X-ray diffraction, and inductively coupled plasma optical emission spectrometry were used to characterize the NCs. Continuous adsorption process by the so-called breakthrough curves was used to determine the adsorption capacity of the Fe3O4-based NC. The adsorption capacity conditions were studied under different conditions (pH, phosphate concentration, and concentration of nanoparticles). The optimum concentration of iron in the NC for phosphate removal was 23.59 mgFe/gNC. The sorption isotherms of this material were performed at pH 5 and 7. Taking into account the real application of this novel material in real water, the experiments were performed at pH 7, achieving an adsorption capacity higher than 4.9 mgPO4-P/gNC. Moreover, Freundlich, Langmuir, and a combination of them fit the experimental data and were used for interpreting the influence of pH on the sorption and the adsorption mechanism for this novel material. Furthermore, regeneration and reusability of the NC were tested, obtaining 97.5% recovery of phosphate for the first cycle, and at least seven cycles of adsorption-desorption were carried out with more than 40% of recovery. Thus, this work described a novel magnetic nanoadsorbent with properties for phosphate recovery in wastewater.

  3. Chitosan metal-crosslinked beads applied for n-alkylmonoamines removal from aqueous solutions – a thermodynamic study

    International Nuclear Information System (INIS)

    Oliveira, Margarete; Simoni, Jose A.; Airoldi, Claudio

    2014-01-01

    Highlights: • Chitosan beads were successfully synthesized with divalent cations. • Well-formed bead structures containing cations act as acceptor electron sites. • n-Alkylmonoamine/bead interactions are favorably sorbed at the solid/liquid interface. • The thermodynamic data were favorably obtained from calorimetric titrations. • Crosslinked metal–chitosan beads can remove amine-like substances from an ecosystem. - Abstract: Chitosan has ability in coordinating divalent cations when immersed in crosslinked beads, after dripping: (i) chitosan gel into a copper solution, (ii) nickel chitosan gel into sodium hydroxide and (iii) chitosan/cobalt gel into sodium tripolyphosphate. The amounts of (1.82; 1.27 and 0.44) mmol · g −1 for copper, nickel and cobalt cations in these well-formed structures were determined, to give nitrogen/metal ratios of 3.52; 2.09 and 8.51, indicating the least effectiveness for cobalt in the coordination. Copper cation is well-adjusted in the coordination model through free amino and hydroxyl electron pairs, while amino and acetamino groups for nickel and cobalt were used. The chitosan–hydrogen bond breaking in bead formation caused decreases in crystallinity to yield amorphous structures for cobalt and nickel. The water mass fraction released during heating depends on the hydration of the cations, with the highest value of 0.20 for cobalt. The quantitative aspects of the interaction among cations on beads and basic n-alkylmonoamines determined via sorption batch methodology adjusted to the Langmuir isothermal model, with maximum sorption quantities to saturate nickel of (2.50; 2.38; 2.03; 1.79) mmol · g −1 and copper of (2.59; 2.29; 2.28; 1.92) mmol · g −1 for ethyl- propyl-, butyl- and pentylamines, respectively. The interaction energies quantitatively determined from isothermal titration calorimetry (ITC) at the solid/liquid interface resulted in exothermic enthalpic values. These negative enthalpy values combined to

  4. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification.

    Science.gov (United States)

    Liu, Hui F; McCooey, Beth; Duarte, Tiago; Myers, Deanna E; Hudson, Terry; Amanullah, Ashraf; van Reis, Robert; Kelley, Brian D

    2011-09-28

    Cation exchange chromatography using conventional resins, having either diffusive or perfusive flow paths, operated in bind-elute mode has been commonly employed in monoclonal antibody (MAb) purification processes. In this study, the performance of diffusive and perfusive cation exchange resins (SP-Sepharose FF (SPSFF) and Poros 50HS) and a convective cation exchange membrane (Mustang S) and monolith (SO(3) Monolith) were compared. All matrices were utilized in an isocratic state under typical binding conditions with an antibody load of up to 1000 g/L of chromatographic matrix. The dynamic binding capacity of the cation exchange resins is typically below 100 g/L resin, so they were loaded beyond the point of anticipated MAb break through. All of the matrices performed similarly in that they effectively retained host cell protein and DNA during the loading and wash steps, while antibody flowed through each matrix after its dynamic binding capacity was reached. The matrices differed, though, in that conventional diffusive and perfusive chromatographic resins (SPSFF and Poros 50HS) demonstrated a higher binding capacity for high molecular weight species (HMW) than convective flow matrices (membrane and monolith); Poros 50HS displayed the highest HMW binding capacity. Further exploration of the conventional chromatographic resins in an isocratic overloaded mode demonstrated that the impurity binding capacity was well maintained on Poros 50HS, but not on SPSFF, when the operating flow rate was as high as 36 column volumes per hour. Host cell protein and HMW removal by Poros 50HS was affected by altering the loading conductivity. A higher percentage of host cell protein removal was achieved at a low conductivity of 3 mS/cm. HMW binding capacity was optimized at 5 mS/cm. Our data from runs on Poros 50HS resin also showed that leached protein A and cell culture additive such as gentamicin were able to be removed under the isocratic overloaded condition. Lastly, a MAb

  5. Sorptive Removal of Cesium and Cobalt Ions in a Fixed bed Column Using Lewatit S100 Cation Exchange Resin

    International Nuclear Information System (INIS)

    El-Naggar, M.R.; Ibrahim, H.A.; El-Kamash, A.M.

    2014-01-01

    The sorptive removal of cesium and cobalt ions from aqueous solutions in a fixed bed column packed with Lewatit S100® cation exchange resin has been investigated. A preliminary batch studies were performed to estimate the effect of pH and contact time on the sorption process. Results indicated that Cs + and Co 2+ could be efficiently removed using Lewatit S100® at a ph range of 4-7 with more affinity towards Cs than Co 2+ . Kinetic models have been applied to the sorption rate data and the relevant parameters were determined. The obtained results indicated that the sorption of both Cs + and Co 2+ on Lewatit S100 followed pseudo second-order rather than pseudo first-order or Morris-Webber model. Fixed bed experiments were conducted at a constant initial concentration of 100 mg/l whereas the effect of bed depth (3, 4.5 and 6 cm) and volumetric flow rate (3 and 5 ml/min.) on the breakthrough characteristics of the fixed bed sorption systems were determined. The experimental sorption data were fitted to the well-established column models namely; Thomas and BDST models to compute the different model parameters. The higher column sorption capacities were obtained at bed depth of 3 cm with a flow rate of 3 ml/min., for both Cs + and Co 2+ . The BDST model appeared to describe experimental results better than Thomas model. Results indicate that Lewatit S100® is an efficient material for the removal of cesium and cobalt ions from aqueous solutions.

  6. Removal of strontium and transuranics from Hanford tank waste via addition of metal cations and chemical oxidant: FY 1995 test results

    International Nuclear Information System (INIS)

    Orth, R.J.; Zacher, A.H.; Schmidt, A.J.; Elmore, M.R.; Elliott, K.R.; Neuenschwander, G.G.; Gano, S.R.

    1995-09-01

    Chelating organics and some of their degradation products in the Hanford tank waste, such as EDTA, HEDTA, and NTA act to solubilize strontium and transuranics (TRU) in the tank waste supernatant. Displacement of strontium and TRU will facilitate the removal of these radionuclides via precipitation/filtration, ion exchange, or solvent extraction so that low-level waste feed specifications can be met. Pacific Northwest Laboratory has investigated two methods for releasing organic-complexed strontium and TRU components to allow for effective pretreatment of tank waste supernatant: metal cation addition (to promote displacement and flocculation) and chemical oxidant (pennanganate) addition (to promote chelator destruction/defunctionalization and possibly flocculation). These methods, which can be conducted at near-ambient. temperatures and pressures, could be deployed as intank processes

  7. Amazon kaolinite functionalized with diethylenetriamine moieties for U(VI) removal: Thermodynamic of cation-basic interactions

    International Nuclear Information System (INIS)

    Guerra, Denis L.; Leidens, Victor L.; Viana, Rubia R.; Airoldi, Claudio

    2010-01-01

    The compound N-[3-(trimethoxysilyl)propyl]diethylenetriamine (MPDET) was anchored onto Amazon kaolinite surface (KLT) by heterogeneous route. The modified and natural kaolinite clay samples were characterized by transmission electron microscopy (TEM), scanning electron microscopic (SEM), N 2 adsorption, powder X-ray diffraction, thermal analysis, ion exchange capacities, and nuclear magnetic nuclei of 29 Si and 13 C. The well-defined peaks obtained in the 13 C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The adsorption of uranyl on natural (KLT) and modified (KLT MPDET ) kaolinite clays was investigated as a function of the solution pH, metal concentration, temperature, and ionic strength. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 8.37 x 10 -3 and 13.87 x 10 -3 mmol g -1 for KLT and KLT MPDET at 298 K, respectively. The energetic effects (Δ int H, Δ int G, and Δ int S) caused by metal cations adsorption were determined through calorimetric titrations.

  8. Natural zeolite reactivity towards ozone: the role of compensating cations.

    Science.gov (United States)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Characterization of a supported ionic liquid membrane used for the removal of cyanide from wastewater.

    Science.gov (United States)

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    2017-12-01

    This work evaluated the performance of ionic liquids (ILs) in supported liquid membranes in the removal of total cyanide from wastewater. Membranes were characterized by scanning electron microscopy and contact angle measurements to study the membrane morphology and wetting ability. In particular, the effects of operational parameters such as membrane immersion time, feed-phase concentration, and pH on cyanide removal were investigated. ILs are organic salts that are entirely composed of organic cations and either organic or inorganic anions. Since their vapor pressure is negligible, they can be handled easily; this characteristic gives rise to their 'green' nature. In this study, a hydrophobic IL, 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF 6 ), was immobilized in the pores of a solid polymeric support made of polyvinylidene fluoride. The optimal conditions were as follows: 1 hour membrane immersion time, 312.24 mg/L feed-phase concentration, a feed-phase pH of 4, 3% NaOH solution, and 1 hour stirring time. The cyanide removal was 95.31%. The treatment of cyanide using supported ionic liquid membrane (SILM) technology is a method with potential applications in industry.

  10. Structural and energetic study of cation-π-cation interactions in proteins.

    Science.gov (United States)

    Pinheiro, Silvana; Soteras, Ignacio; Gelpí, Josep Lluis; Dehez, François; Chipot, Christophe; Luque, F Javier; Curutchet, Carles

    2017-04-12

    Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.

  11. Self-assembly synthesis of hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes with excellent performance for fast removal of cationic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yaxi; Cui, Guijia; Liu, Yan; Li, Haizhen; Sun, Zebin; Yan, Shiqiang, E-mail: yansq@lzu.edu.cn

    2016-11-30

    Highlights: • Hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes were synthesized for the first time. • MgSNTs showed excellent prformance for the removal of low concentration methylene blue and high concentration rodamine B. • It could be easily discovered from solution. - Abstract: In this work, novel hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes (MgSNTs) were successfully synthesized by using magnetic mesoporous silica nanocapsules (MSNCs) as morphology templates via a hydrothermal method for the first time. MgSNTs were characterized by transmission electron microscopy, Mapping, X-ray diffraction, Fourier transform infraed spetroscopy, N{sub 2} adorption-desorption, X-ray photoelectron spectroscopy and vibrating sample magnetometry. The synthesized MgSNTs with high specific surface area (588 m{sup 2}/g), average pore width (7.13 nm) and pore volume (1.05 cm{sup 3}/g) had high removal efficiency for low concentration methylene blue (70 mg/L, 299 mg/g) and high adsorption capacities for high concentration rodamine B (300 mg/L, 752 mg/g). Besides, it could be easily recovered due with the help of γ-Fe{sub 2}O{sub 3} in the inner chamber. Moreover, the adsorption capacity, the influence of pH, adsorption kinetics and adsorption mechanism were also carefully and comprehensively investigated. The results indicated that magnetic magnesium silicate nanotubes (MgSNTs) using mesoporous silica nanocapsules as the assisted templates were promsing adsorbents for water purification.

  12. Solid-phase extraction sorbent consisting of alkyltrimethylammonium surfactants immobilized onto strong cation-exchange polystyrene resin.

    Science.gov (United States)

    Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D

    2002-10-25

    Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.

  13. A Review on Adsorption of Cationic Dyes using Activated Carbon

    Directory of Open Access Journals (Sweden)

    Corda Nikita Chrishel

    2018-01-01

    Full Text Available In this article efficiency of activated carbon as a potent adsorbent of cationic dyes has been reviewed. Non-biodegradable nature of pollutants and their removal in the present generation is a great challenge. Therefore, extensive study on adsorption of these classes of pollutants from water bodies is being carried out. Methylene blue (majorly a dye seen in the effluent streams of textile, printing, paper industries along with some of the commonly used cationic dyes in process industries and their sorption on activated carbon are reviewed here. High cost of commercially activated carbon which is a limitation to its extensive use have paved way for study of adsorption by naturally obtained and extracted activated carbon from agricultural wastes and various other sources. The purpose of this review paper is to summarize the available information on the removal of cationic dyes using naturally extracted and commercially obtained activated carbon. Various parameters such as temperature, initial dye concentration, pH, contact time, adsorbent dosage, particle size, stirring, agitation etc. were studied and the optimum parameters were determined based on the experimental outcomes. Equilibrium data was examined using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich and few other isotherm models. Kinetic studies also have been carried out to find the most suitable way of expressing the adsorption process.

  14. Amazon kaolinite functionalized with diethylenetriamine moieties for U(VI) removal: Thermodynamic of cation-basic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Denis L., E-mail: denis@cpd.ufmt.br [Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiaba, Mato Grosso, 78060 900 (Brazil); Leidens, Victor L.; Viana, Rubia R. [Universidade Federal de Mato Grosso, UFMT, Centro de Recursos Minerais, Cuiaba, Mato Grosso, 78060 900 (Brazil); Airoldi, Claudio [Chemistry Institute, State University of Campinas, P.O. Box 6154, 13084-971 Campinas, Sao Paulo (Brazil)

    2010-08-15

    The compound N-[3-(trimethoxysilyl)propyl]diethylenetriamine (MPDET) was anchored onto Amazon kaolinite surface (KLT) by heterogeneous route. The modified and natural kaolinite clay samples were characterized by transmission electron microscopy (TEM), scanning electron microscopic (SEM), N{sub 2} adsorption, powder X-ray diffraction, thermal analysis, ion exchange capacities, and nuclear magnetic nuclei of {sup 29}Si and {sup 13}C. The well-defined peaks obtained in the {sup 13}C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The adsorption of uranyl on natural (KLT) and modified (KLT{sub MPDET}) kaolinite clays was investigated as a function of the solution pH, metal concentration, temperature, and ionic strength. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 8.37 x 10{sup -3} and 13.87 x 10{sup -3} mmol g{sup -1} for KLT and KLT{sub MPDET} at 298 K, respectively. The energetic effects ({Delta}{sub int}H, {Delta}{sub int}G, and {Delta}{sub int}S) caused by metal cations adsorption were determined through calorimetric titrations.

  15. Natural zeolite reactivity towards ozone: The role of compensating cations

    International Nuclear Information System (INIS)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A.

    2012-01-01

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L −1 ). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH 3 -TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  16. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation.

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-28

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  17. Cation dependency of the hydrolytic activity of activated bovine Protein C

    International Nuclear Information System (INIS)

    Hill, K.A.W.

    1986-01-01

    The hydrolytic activity of activated bovine plasma Protein C (APC) is dependent upon monovalent or divalent cations. The kinetics of APC activity were examined with a variety of monovalent and divalent cations, and significant differences were observed. Similar studies were performed with des(1-41, light chain)APC (GDAPC), from which all γ-carboxyglutamic acid residues have been removed. These studies provided useful information concerning the cation dependency. Divalent cations apparently stimulate APC and GDAPC kinetic activity through association at a single γ-carboxyglutamic acid-independent high affinity binding site. A Mn(II) binding site of this nature of GDAPC was determined by EPR spectroscopy, to possess a dissociation constant of 53 +/- 8 uM. Monovalent cations stimulate GDAPC activity through association at an apparently single binding site that is distinct from the divalent cation site. The monovalent cation , Tl(I), was determined, by 205 Tl(I) NMR spectroscopy, to bind to APC and GDAPC with dissociation constants of 16 +/- 8 mM and 32+/- 11 mM, respectively. Both NMR and EPR spectroscopy have been utilized to estimate topographical relationships between divalent cation sites, monovalent cation sites, and the active site of GDAPC. By observing the paramagnetic effects of either Mn(II) or an active site directed spin-label on the longitudinal relaxation rates of Tl(I) nuclei bound to this enzyme, the average interatomic distance between Mn(II) and Tl(I) was calculated to be 8.3 +/- 0.3 A, and the average distance between Tl(I) and the spin-label free electron was estimated to be 3.8 +/- 0.2 A

  18. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  19. Enhancement of sorption capacity of cocoa shell biomass modified with non-thermal plasma for removal of both cationic and anionic dyes from aqueous solution.

    Science.gov (United States)

    Takam, Brice; Acayanka, Elie; Kamgang, Georges Y; Pedekwang, Merlin T; Laminsi, Samuel

    2017-07-01

    Removal of cationic dye, Azur II, and anionic dye, Reactive Red 2 (RR-2) from aqueous solutions, has been successfully achieved by using a modified agricultural biomaterial waste: cocoa shell husk (Theobroma cacao) treated by gliding arc plasma (CPHP). The biomass in its natural form CPHN and modified form CPHP was characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and point of zero charge (pH pzc ). Experimental variables such as initial pH, contact time, and temperature were optimized for adsorptive characteristics of CPHN and CPHP. The results show that the removal of the Azur II dye was favorable in the basic pH region (pH 10) while the Reactive Red 2 dye was favorable in the acidic pH region (pH 2). The minimum equilibrium time for Azur II and RR-2 dye was obtained after 40 and 240 min, respectively. The adsorption kinetics and isotherm data obtained were best described by a pseudo-second-order kinetic rate model and a combination of Langmuir-Freundlich isotherm models. This work indicates that the plasma-treated raw materials are good alternative multi-purpose sorbents for the removal of many coexisting pollutants from aqueous solutions.

  20. Removal of radium from drinking water

    International Nuclear Information System (INIS)

    Lauch, R.P.

    1992-08-01

    The report summarizes processes for removal of radium from drinking water. Ion exchange, including strong acid and weak acid resin, is discussed. Both processes remove better than 95 percent of the radium from the water. Weak acid ion exchange does not add sodium to the water. Calcium cation exchange removes radium and can be used when hardness removal is not necessary. Iron removal processes are discussed in relation to radium removal. Iron oxides remove much less than 20 percent of the radium from water under typical conditions. Manganese dioxide removes radium from water when competition for sorption sites and clogging of sites is reduced. Filter sand that is rinsed daily with dilute acid will remove radium from water. Manganese dioxide coated filter sorption removes radium but more capacity would be desirable. The radium selective complexer selectively removes radium with significant capacity if iron fouling is eliminated

  1. Adsorptive removal of cationic dye from aqueous solution using ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Received 15 October 2017, received in revised form 03 December 2017, accepted 31 December 2017. Keywords: African Border Tree, ... to remove dyes include flocculation, oxidation, ..... estuarine algae, crustaceans and fishes. Environ.

  2. Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes

    Science.gov (United States)

    Hua, Yani; Xiao, Juan; Zhang, Qinqin; Cui, Chang; Wang, Chuan

    2018-04-01

    A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic dyes in water. The adsorption capacity of methylene blue (MB), cationic turquoise blue GB (GB), malachite green (MG), crystal violet (CV) and cationic pink FG (FG) were 60.06 mg g- 1, 70.97 mg g- 1, 66.84 mg g- 1, 66.01 mg g- 1 and 50.27 mg g- 1, respectively. The adsorption mechanism was proposed by the analyses of the adsorption isotherms and adsorption kinetics of cationic dyes on Fe3O4/PCC MNPs. Moreover, the cationic dyes adsorbed on the MNPs as a function of contact time, pH value, temperature, coexisting cationic ions and ion strength were also investigated. These results suggested that the Fe3O4/PCC MNPs is promising to be used as a magnetic adsorbent for selective adsorption of cationic dyes in wastewater treatment.

  3. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    International Nuclear Information System (INIS)

    Wang, Chih-Jen; Li, Zhaohui; Jiang, Wei-Teh; Jean, Jiin-Shuh; Liu, Chia-Chuan

    2010-01-01

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca 2+ as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK a2 (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d 001 ) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  4. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Jen [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jean, Jiin-Shuh; Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca{sup 2+} as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK{sub a2} (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d{sub 001}) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  5. Synthesis and chemical modification of polymeric resins for the treatment of cations and aromatic hydrocarbons in produced oily water; Sintese de modificacao quimica de resina polimerica e aplicacao na remocao de cations e hidrocarbonetos aromaticos presentes em agua produzida

    Energy Technology Data Exchange (ETDEWEB)

    Aversa, Thiago M.; Rodrigues, Monique F.; Vieira, Helida V.P.; Queiros, Yure G.C.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Lab. de Macromoleculas e Coloides na Industria do Petroleo, Rio de Janeiro, RJ (Brazil)], e-mail: thiagoaversa@ima.ufrj.br

    2011-07-01

    The use of chemically modified resins in oily water treatment process is not very developed yet. Because of this, this work suggests to study the styrene and divinylbenzene sulfonation effect on oil and grease, aniline and calcium removal from the water. The aniline, oils and greases belong to a class of toxic organic compounds, with the Brazilian maximum limits established for disposal in CONAMA 393/2007, while the calcium ions belong to the group of cations of alkaline earth metals which improve hardness to the water, may cause fouling as carbonates and sulfates form. By using sulfonated resins in oily water treatment it is possible to remove not only oils and greases but also calcium and aniline. These kinds of polar compounds are removed because of the cation exchange capacity of resin. (author)

  6. Indirect anodic oxidation applied for treatment of simulated wastewater containing Cationic Red X-GRL and Disperse Red 3B

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2017-06-01

    Full Text Available The treatment of simulated wastewater containing Cationic Red X-GRL (X-GRL or Disperse Red 3B (DR-3B dye was carried out by indirect anodic oxidation, using Ti/SnO2 electrodes as the anode. The influences of pH value, voltage, electrolysis time and sodium chloride dosage on the degradation performance were studied by single factor experiment. Furthermore the nitrogen states and UV-Vis spectra in dyes degradation were analyzed. The results showed that under the optimum condition (pH = 3, voltage = 20 V, NaCl = 2.5 g/L, the decolorization and chemical oxygen demand removal of X-GRL were 98% and 67%, respectively; and those of DR-3B were 51% and 61%, respectively. The azo double bond conjugated system in X-GRL is much more easily destroyed than the anthraquinone conjugated system in DR-3B; the aryl ring structures of them can be partially degraded.

  7. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    KAUST Repository

    Han, Sanyang

    2016-10-04

    Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.

  8. Natural zeolite reactivity towards ozone: The role of compensating cations

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  9. Biosorption of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain.

    Science.gov (United States)

    Kim, Su Young; Jin, Mi Ra; Chung, Chang Ho; Yun, Yeoung-Sang; Jahng, Kwang Yeop; Yu, Kang-Yeol

    2015-04-01

    Biosorption of heavy metals and dyes is a promising technology that involves the removal of toxic metals from industrial wastes. The present study aims to screen the bacterial strains isolated from soils and polluted pond for their potential biosorption of both cationic dye and cadmium. Bacillus catenulatus JB-022 strain removed 58% and 66% of cationic basic blue 3 (BB3) and cadmium (Cd(II)) at the respective concentrations of 2000 mg/L and 150 mg/L. The biosorption equilibrium data were well fitted by the Langmuir adsorption isotherm, and the kinetic studies indicated that the biosorption followed the pseudo-second-order model. The biosorption kinetics showed that the equilibrium was reached within 10 min and 5 min for BB3 and Cd(II), respectively. According to the Langmuir model, the maximum uptakes of BB3 and Cd(II) by the JB-022 biomass were estimated to be 139.74 and 64.28 mg/g, respectively. To confirm the surface morphology and functional groups, field emission scanning electron microscope, energy-dispersive X-ray spectrometer, X-ray diffraction, and Fourier transform infrared spectroscopy analyses were carried out, and the results revealed that the biomass of JB-022 has carboxyl and phosphonate groups as potential surface functional groups capable of binding to cationic pollutants. In conclusion, B. catenulatus JB-022 is proposed as an excellent biosorbent with potentially important applications in removal of cationic pollutants from wastewaters. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Cobalt 60 cation exchange with mexican clays

    International Nuclear Information System (INIS)

    Nava Galve, R.G.

    1993-01-01

    Mexican clays can be used to remove radioactive elements from contaminated aqueous solutions. Cation exchange experiments were performed with 60 Co radioactive solution. In the present work the effect of contact time on the sorption of Co 2+ was studied. The contact time in hydrated montmorillonite was from 5 to 120 minutes and in dehydrated montmorillonite 5 to 1400 minutes. The Co 2+ uptake value was, in hydrated montmorillonite, between 0.3 to 0.85 m eq/g and in dehydrated montmorillonite, between 0.6 to 1.40 m eq/g. The experiments were done in a pH 5.1 to 5.7 and normal conditions. XRD patterns were used to characterize the samples. The crystallinity was determined by X-ray Diffraction and it was maintained before and after the cation exchange. DTA thermo grams showed the temperatures of the lost humidity and crystallization water. Finally, was observed that dehydrated montmorillonite adsorb more cobalt than hydrated montmorillonite. (Author)

  11. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    Science.gov (United States)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  12. Performance evaluation of household water treatment systems used in Kerman for removal of cations and anions from drinking water

    Science.gov (United States)

    Malakootian, Mohammad; Amirmahani, Najmeh; Yazdanpanah, Ghazal; Nasiri, Alireza; Asadipour, Ali; Ebrahimi, Ahmad; Darvish Moghaddam, Sodaif

    2017-12-01

    Increased awareness in society of the consequences of contaminants in drinking water has created a demand for household water treatment systems, which provide higher quality water, to spread. The aim of this study was to evaluate the performance of household water treatment systems used in Kerman for the removal of cations and anions. Various brands of home water treatment devices commonly used in Kerman were selected, with one device chosen from each brand for study. In cases in which the devices were used extensively, samples were selected with filters that had been changed in proper time, based on the device's operational instructions. The samples were selected from homes in the center and four geographical directions of Kerman. Then, sampling was conducted in three stages of input and output water of each device. For each of the samples, parameters were measured, such as chloride, sulfate, bicarbonate, calcium, magnesium, hardness, sodium, nitrate and nitrite (mg/L), temperature (°C), and pH. The average removal efficiency of different parameters by 14 brands in Kerman, which include chloride ions, sulfate, bicarbonate, calcium, magnesium, sodium, nitrites, nitrates, and total hardness, was obtained at 68.48, 85, 67, 61.21, 78.97, 80.24, 32.59, 66.83, and 69.38%, respectively. The amount of sulfate, bicarbonate, chloride, calcium, magnesium, hardness, sodium, and nitrate in the output water of household water treatment systems was less than the input water of these devices, but nitrite concentration in the output of some devices was more than the input water and showed a significant difference ( p > 0.05).

  13. Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO

    International Nuclear Information System (INIS)

    Gao Xiang; Liu Shaojun; Zhang Yang; Luo Zhongyang; Cen Kefa

    2011-01-01

    Research highlights: → Cu and Fe were partly reduced by carbon during preparation. → Metal-involved SO 2 removal pathways were catalytic oxidation, reaction and adsorption. → Good performances of SO 2 and NO removal depended on the metal redox pairs. - Abstract: Several metal-doped activated carbons (Fe, Co, Ni, V, Mn, Cu and Ce) were prepared and characterized. The results of N 2 adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that some metals (Cu and Fe) were partly reduced by carbon during preparation. Activity tests for the removal of SO 2 and the selective catalytic reduction of NO with ammonia were carried out. Due to different physicochemical properties, different pathways for the SO 2 removal had been put out, i.e., catalytic oxidation, direct reaction and adsorption. This classification depended on the standard reduction potentials of metal redox pairs. Samples impregnated with V, Ce and Cu showed good activity for NO reduction by NH 3 , which was also ascribed to the reduction potential values of metal redox pairs. Ce seemed to be a promising alternative to V due to the higher activity in NO reduction and the nontoxic property. A metal cation which could easily convert between the two valences seemed to be crucial to the good performance of both SO 2 and NO removal, just like V and Cu.

  14. A relevante potencialidade dos centros básicos nitrogenados disponíveis em polímeros inorgânicos e biopol��meros na remoção catiônica The weighty potentiality of nitrogenated basic centers in inorganic polymers and biopolymers for cation removal

    Directory of Open Access Journals (Sweden)

    Claudio Airoldi

    2008-01-01

    Full Text Available This review reports the application of inorganic and organic polymeric materials for cation removal by using nitrogenated basic centers. The data demonstrate the importance of the desired groups when free or immobilized on natural or synthesized inorganic polymers through silanol groups. Thus, the most studied silica gel is followed by natural crysotile and talc polymers, and the synthesized mesopore silicas, talc-like, silicic acids, phosphates and phyllosilicates. The organic natural biopolymeric chitin and cellulose were chemically modified to improve the availability of the amine groups or the reactivity with desirable molecules to enlarge the content of basic centers. The cation removal takes place at the solid/liquid interface and some interactive effects have their thermodynamic data determined.

  15. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment.

    Science.gov (United States)

    Niedbala, Anne; Schaffer, Mario; Licha, Tobias; Nödler, Karsten; Börnick, Hilmar; Ruppert, Hans; Worch, Eckhard

    2013-02-01

    The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na(+) and Ca(2+) on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH=7. Isotherms for the beta-blocker metoprolol were obtained by sediment-water batch tests over a wide concentration range (1-100000 μg L(-1)). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n=0.9), indicating slightly non-linear behavior. Results show that the influence of Ca(2+) compared to Na(+) is more pronounced. A logarithmic correlation between the Freundlich coefficient K(Fr) and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Clinoptilolite in Drinking Water Treatment for Ammonia Removal

    Directory of Open Access Journals (Sweden)

    H. M. Abd El-Hady

    2001-01-01

    Full Text Available In most countries today the removal of ammonium ions from drinking water has become almost a necessity. The natural zeolite clinoptiloliteis mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation, and this has prompted its use in water treatment, wastewater treatment, swimming pools and fish farming. The work described in this paper provides dynamic data on cation exchange processes in clinoptilolite involving the NH4 +, Ca+2 and Mg+2 cations. We used material of natural origin – clinoptilolite from Nižný Hrabovec in Slovakia (particle-size 3–5 mm. The breakthrough capacity was determined by dynamic laboratory investigations, and we investigated the influence of thermal pretreatment of clinoptilolite and the concentration of regenerant solution (2, 5, and 10% NaCl. The concentrations of ammonium ion inputs in the tap water that we used were 10, 5, and 2 mg NH4 + l_1 and down to levels below 0.5 mg NH4 + l_1. The experimental results show that repeated pretreatment sufficiently improves the zeolite’s properties, and the structure of clinoptilolite remains unchanged during the loading and regeneration cycles. Ammonium removal capacities were increased by approximately 40 % and 20 % for heat-treated zeolite samples. There was no difference between the regenerates for 10% and 5% NaCl. We conclude that the use of zeolite is an attractive and promising method for ammonium removal.

  17. The cation-π interaction.

    Science.gov (United States)

    Dougherty, Dennis A

    2013-04-16

    The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author's perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forego aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction (Li(+) binds to benzene with 38 kcal/mol of binding energy; NH4(+) with 19 kcal/mol) distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2-5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) C(δ-)-H(δ+) bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li(+) > Na(+) > K(+) > Rb(+): as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane is

  18. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.

    Science.gov (United States)

    Hilder, Tamsyn A; Gordon, Dan; Chung, Shin-Ho

    2011-01-28

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  19. Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiangbiao, E-mail: yin.x.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Wang, Xinpeng [College of Resources and Metallurgy, Guangxi University, 100 Daxue East Road, Nanning 530004 (China); Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2017-03-15

    Highlights: • Desorption of Cs{sup +} fixed in collapsed interlayer region of vermiculite was studied. • Monovalent cations readily induced interlayer collapse inhibiting Cs{sup +} desorption. • Larger hydrous ionic radii of divalent cations greatly prevented Cs{sup +} desorption. • Effect of divalent cation on Cs{sup +} desorption changes depending on thermal treatment. • ∼100% removal of saturated Cs{sup +} was achieved by hydrothermal treatment at 250 °C. - Abstract: Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49 × 10{sup −3} mmol g{sup −1}) after four cycles of treatment of 0.01 M Mg{sup 2+}/Ca{sup 2+} at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250 °C with 0.01 M Mg{sup 2+}, ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg{sup 2+} cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs{sup +}.

  20. Removal of calcium and magnesium ions from shale gas flowback water by chemically activated zeolite.

    Science.gov (United States)

    Chang, Haiqing; Liu, Teng; He, Qiping; Li, Duo; Crittenden, John; Liu, Baicang

    2017-07-01

    Shale gas has become a new sweet spot of global oil and gas exploration, and the large amount of flowback water produced during shale gas extraction is attracting increased attention. Internal recycling of flowback water for future hydraulic fracturing is currently the most effective, and it is necessary to decrease the content of divalent cations for eliminating scaling and maintaining effectiveness of friction reducer. Zeolite has been widely used as a sorbent to remove cations from wastewater. This work was carried out to investigate the effects of zeolite type, zeolite form, activation chemical, activation condition, and sorption condition on removal of Ca 2+ and Mg 2+ from shale gas flowback water. Results showed that low removal of Ca 2+ and Mg 2+ was found for raw zeolite 4A and zeolite 13X, and the efficiency of the mixture of both zeolites was slightly higher. Compared with the raw zeolites, the zeolites after activation using NaOH and NaCl greatly improved the sorption performance, and there was no significant difference between dynamic activation and static activation. Dynamic sorption outperformed static sorption, the difference exceeding 40% and 7-70% for removal of Ca 2+ and Mg 2+ , respectively. Moreover, powdered zeolites outperformed granulated zeolites in divalent cation removal.

  1. Long-term tobacco plantation induces soil acidification and soil base cation loss.

    Science.gov (United States)

    Zhang, Yuting; He, Xinhua; Liang, Hong; Zhao, Jian; Zhang, Yueqiang; Xu, Chen; Shi, Xiaojun

    2016-03-01

    Changes in soil exchangeable cations relative to soil acidification are less studied particularly under long-term cash crop plantation. This study investigated soil acidification in an Ali-Periudic Argosols after 10-year (2002-2012) long-term continuous tobacco plantation. Soils were respectively sampled at 1933 and 2143 sites in 2002 and 2012 (also 647 tobacco plants), from seven tobacco plantation counties in the Chongqing Municipal City, southwest China. After 10-year continuous tobacco plantation, a substantial acidification was evidenced by an average decrease of 0.20 soil pH unit with a substantial increase of soil sites toward the acidic status, especially those pH ranging from 4.5 to 5.5, whereas 1.93 kmol H(+) production ha(-1) year(-1) was mostly derived from nitrogen (N) fertilizer input and plant N uptake output. After 1 decade, an average decrease of 27.6 % total exchangeable base cations or of 0.20 pH unit occurred in all seven tobacco plantation counties. Meanwhile, for one unit pH decrease, 40.3 and 28.3 mmol base cations kg(-1) soil were consumed in 2002 and 2012, respectively. Furthermore, the aboveground tobacco biomass harvest removed 339.23 kg base cations ha(-1) year(-1) from soil, which was 7.57 times higher than the anions removal, leading to a 12.52 kmol H(+) production ha(-1) year(-1) as the main reason inducing soil acidification. Overall, our results showed that long-term tobacco plantation not only stimulated soil acidification but also decreased soil acid-buffering capacity, resulting in negative effects on sustainable soil uses. On the other hand, our results addressed the importance of a continuous monitoring of soil pH changes in tobacco plantation sites, which would enhance our understanding of soil fertility of health in this region.

  2. Eosin Removal Properties of Organo-Local Clay from Aqueous Solution

    OpenAIRE

    Rawan Al-Faze; Fethi Kooli

    2014-01-01

    Local clay from Al-Madinah Al-Munawwarah was modified by a solution of cetyltrimethylammonium bromide (C16TMABr) at different initial concentrations. The organoclays were characterized by PXRD, TGA, FTIR and N2 adsorption isotherms. The ability of these samples to remove the dye eosin is evaluated. The removal properties of organoclays were dependent on the content of C16TMA cations, the initial concentrations of eosin, temperature of the removal process, the mass of the used organoclays. T...

  3. Biocompatible water softening system using cationic protein from moringa oleifera extract

    Science.gov (United States)

    Nisha, R. R.; Jegathambal, P.; Parameswari, K.; Kirupa, K.

    2017-10-01

    In developing countries like India, the deciding factors for the selection of the specific water purification system are the flow rate, cost of implementation and maintenance, availability of materials for fabrication or assembling, technical manpower, energy requirement and reliability. But most of them are energy and cost intensive which necessitate the development of cost-effective water purification system. In this study, the feasibility of development of an efficient and cost-effective water purifier using Moringa oleifera cationic protein coated sand column to treat drinking water is presented. Moringa oleifera seeds contain cationic antimicrobial protein which acts as biocoagulant in the removal of turbidity and also aids in water softening. The main disadvantage of using Moringa seeds in water purification is that the dissolved organic matter (DOM) which is left over in the water contributes to growth of any pathogens that come into contact with the stored water. To overcome this limitation, the Moringa oleifera cationic protein coated sand (MOCP c-sand) is prepared in which the flocculant and antimicrobial properties of the MOCP are maintained and the DOM to be rinsed away. The efficiency of MOCP c-sand in removing suspended particles and reducing total hardness (TH), chloride, total dissolved solids (TDS), electrical conductivity (EC) was also studied. Also, it is shown that the functionalized sand showed the same treatment efficiency even after being stored dry and in dehydrated condition for 3 months. This confirms MOCP c-sand's potential as a locally sustainable water treatment option for developing countries since other chemicals used in water purification are expensive.

  4. Comparison of cation adsorption by isostructural rutile and cassiterite.

    Science.gov (United States)

    Machesky, Michael; Wesolowski, David; Rosenqvist, Jörgen; Předota, Milan; Vlcek, Lukas; Ridley, Moira; Kohli, Vaibhav; Zhang, Zhan; Fenter, Paul; Cummings, Peter; Lvov, Serguei; Fedkin, Mark; Rodriguez-Santiago, Victor; Kubicki, James; Bandura, Andrei

    2011-04-19

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl(2) in NaCl, and trace ZnCl(2) in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (ε(bulk) ≈ 11). Inner-sphere adsorption is also significant for Rb(+) and Na(+) on neutral surfaces, whereas Cl(-) binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb(+), Na(+), and especially Sr(2+) are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn(2+) are very steep but similar for both oxides, reflective of Zn(2+) hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH(+) on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner

  5. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    Science.gov (United States)

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  6. The role of cell walls and pectins in cation exchange and surface area of plant roots.

    Science.gov (United States)

    Szatanik-Kloc, A; Szerement, J; Józefaciuk, G

    2017-08-01

    We aimed to assess role of cell walls in formation of cation exchange capacity, surface charge, surface acidity, specific surface, water adsorption energy and surface charge density of plant roots, and to find the input of the cell wall pectins to the above properties. Whole roots, isolated cell walls and the residue after the extraction of pectins from the cell walls of two Apiaceae L. species (celeriac and parsnip) were studied using potentiometric titration curves and water vapor adsorption - desorption isotherms. Total amount of surface charge, as well as the cation exchange capacity were markedly higher in roots than in their cell walls, suggesting large contribution of other cell organelles to the binding of cations by the whole root cells. Significantly lower charge of the residues after removal of pectins was noted indicating that pectins play the most important role in surface charge formation of cell walls. The specific surface was similar for all of the studied materials. For the separated cell walls it was around 10% smaller than of the whole roots, and it increased slightly after the removal of pectins. The surface charge density and water vapor adsorption energy were the highest for the whole roots and the lowest for the cell walls residues after removal of pectins. The results indicate that the cell walls and plasma membranes are jointly involved in root ion exchange and surface characteristics and their contribution depends upon the plant species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    Science.gov (United States)

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  8. Malachite green "a cationic dye" and its removal from aqueous solution by adsorption

    Science.gov (United States)

    Raval, Nirav P.; Shah, Prapti U.; Shah, Nisha K.

    2017-11-01

    Adsorption can be efficiently employed for the removal of various toxic dyes from water and wastewater. In this article, the authors reviewed variety of adsorbents used by various researchers for the removal of malachite green (MG) dye from an aqueous environment. The main motto of this review article was to assemble the scattered available information of adsorbents used for the removal of MG to enlighten their wide potential. In addition to this, various optimal experimental conditions (solution pH, equilibrium contact time, amount of adsorbent and temperature) as well as adsorption isotherms, kinetics and thermodynamics data of different adsorbents towards MG were also analyzed and tabulated. Finally, it was concluded that the agricultural solid wastes and biosorbents such as biopolymers and biomass adsorbents have demonstrated outstanding adsorption capabilities for removal of MG dye.

  9. EDTA-functionalized clinoptilolite nanoparticles as an effective adsorbent for Pb(II) removal.

    Science.gov (United States)

    Eshraghi, Farahnaz; Nezamzadeh-Ejhieh, Alireza

    2018-03-08

    An efficient Pb(II) adsorbent was prepared by the modification of clinoptilolite nanoparticles (CpN) with ethylenediaminetetraacetic acid (EDTA). Samples were characterized by XRD, FT-IR, SEM, BET, TG-DTG, CHNS analyzer, and energy dispersive analysis X-ray spectroscopy (EDX). The experiments were designed by response surface methodology (RSM) based on central composite design (CCD) that suggested a quadratic model to predict the conditions and the interactions between the variables including adsorbent dosage, removal time, C Pb , and its solution pH. Adequacy of the suggested quadratic model was judged by ANOVA. The maximum Pb(II) removal of 0.27 mmol Pb(II) /g ads was achieved in optimal run including adsorbent dosage 2 g L -1 , removal time 271 min, C Pb 22.51 mmol L -1 , and Pb(II) solution pH 5.88. In binary metal cation systems including 1000 mg L -1 with respect to both Pb(II) and interfering cations, good selectivity of CpN-EDTA adsorbent was observed towards Pb(II) among the tested cations except Fe(III). Adsorption isotherm of lead removal by the adsorbent was well modeled by Langmuir equation, indicating a monolayer sorption of Pb(II) onto the adsorbent. The pseudo-second-order rate equation, indicating chemical reaction rate limiting step for the process, well modeled the kinetic of the process. An exothermic and spontaneous process was confirmed by the negative ∆H and ∆G.

  10. Laboratory Experiments on the Electrochemical Remediation of Environment. Part 4: Color Removal of Simulated Wastewater by Electrocoagulation-Electroflotation

    Science.gov (United States)

    Ibanez, Jorge G.; Singh, M. M.; Szafran, Z.

    1998-08-01

    Due to the large production of aqueous waste streams from textile mills and dye production plants, several processes have been under intense study. Electrochemical processes offer some distinctive advantages, including effects due to: 1) the production of electrolysis gases, and 2) the production of polyvalent cations from the oxidation of corrodible anodes (like Fe and Al). The gas bubbles can carry the pollutant to the top of the solution where it can be more easily concentrated, collected and removed. The metallic ions can react with the OH- ions produced at the cathode during the evolution of H2 gas to yield insoluble hydroxides that will adsorb pollutants out of the solution and also contribute to coagulation by neutralizing any negatively charged colloidal particles that might be present. In this experiment an iron electrode (paper clip) is used in conjunction with pH indicator dyes, so dramatic color changes will be noticed.

  11. Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO{sub 2} and NO

    Energy Technology Data Exchange (ETDEWEB)

    Gao Xiang, E-mail: xgao1@zju.edu.cn [State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China); Liu Shaojun; Zhang Yang; Luo Zhongyang; Cen Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China)

    2011-04-15

    Research highlights: {yields} Cu and Fe were partly reduced by carbon during preparation. {yields} Metal-involved SO{sub 2} removal pathways were catalytic oxidation, reaction and adsorption. {yields} Good performances of SO{sub 2} and NO removal depended on the metal redox pairs. - Abstract: Several metal-doped activated carbons (Fe, Co, Ni, V, Mn, Cu and Ce) were prepared and characterized. The results of N{sub 2} adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that some metals (Cu and Fe) were partly reduced by carbon during preparation. Activity tests for the removal of SO{sub 2} and the selective catalytic reduction of NO with ammonia were carried out. Due to different physicochemical properties, different pathways for the SO{sub 2} removal had been put out, i.e., catalytic oxidation, direct reaction and adsorption. This classification depended on the standard reduction potentials of metal redox pairs. Samples impregnated with V, Ce and Cu showed good activity for NO reduction by NH{sub 3}, which was also ascribed to the reduction potential values of metal redox pairs. Ce seemed to be a promising alternative to V due to the higher activity in NO reduction and the nontoxic property. A metal cation which could easily convert between the two valences seemed to be crucial to the good performance of both SO{sub 2} and NO removal, just like V and Cu.

  12. Cationization increases brain distribution of an amyloid-beta protofibril selective F(ab')2 fragment

    OpenAIRE

    Syvänen, Stina; Edén, Desireé; Sehlin, Dag

    2017-01-01

    Antibodies and fragments thereof are, because of high selectivity for their targets, considered as potential therapeutics and biomarkers for several neurological disorders. However, due to their large molecular size, antibodies/fragments do not easily penetrate into the brain. The aim of the present study was to improve the brain distribution via adsorptive-mediated transcytosis of an amyloid-beta (A beta) protofibril selective F(ab')2 fragment (F(ab')2-h158). F(ab')2-h158 was cationized to d...

  13. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal–organic framework composite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoxia; Gong, Wenpeng; Luo, Jing; Zou, Chentao; Yang, Yun; Yang, Shuijin, E-mail: yangshuijin@163.com

    2016-01-30

    Graphical abstract: Selective adsorption ability of H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 toward MO (a), Rhb (b) and the removal rate of Rhb, MO and MB (c). - Highlights: • Using metal–organic framework (MOF) composite as an adsorbent was investigated. • Selective adsorption ability of the composite towards cationic dyes was proposed. • The removal rate of MOF was raised greatly by the modification of polyoxometalate. • The adsorption kinetic and isotherm were used to describe the adsorption process. • The thermodynamic parameters of the composite were investigated in detail. - Abstract: A novel environmental friendly adsorbent H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 was synthesized by a simple one-step reaction under solvothermal conditions and characterized by XRD, FTIR, thermogravimetric analyses (TGA) and N{sub 2} adsorption–desorption isotherms. The removal rate of H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 was quite greater (85%) than that of MOF-5 (almost zero), showing that the adsorption performance of porous MOF-5 can be improved through the modification of H{sub 6}P{sub 2}W{sub 18}O{sub 62}. Further study revealed that H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 exhibited a fast adsorption rate and selective adsorption ability towards the cationic dyes in aqueous solution. The removal rate was up to 97% for cationic dyes methylene blue (MB) and 68% for rhodamine B(Rhb) within 10 min. However, anionicdye methyl orange(MO) can only reach to 10%. The influences including initial concentration, contact time, initial solution pH and temperature of MB adsorption onto H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 were investigated in detail. The kinetic study indicated that the adsorption of MB onto H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 followed the pseudo second-order model well. The isotherm obtained from experimental data fitted the Langmuir model, yielding maximum adsorption capacity of 51.81 mg/g. The thermodynamic parameters analysis

  14. Electronic properties of bivalent cations (Be, Mg and Ca) substitution for Al in delafossite CuAlO{sub 2} semiconductor by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Haifeng, E-mail: jhf043@163.com [Department of Mechanics and Electronic Engineering, Chizhou College, Chizhou 247000 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Xiancai; Zang, Xueping; Wu, Weifeng [Department of Mechanics and Electronic Engineering, Chizhou College, Chizhou 247000 (China); Sun, Shunping [School of Materials Engineering, Jiangsu Teachers University of Technology, Changzhou 213001 (China); Xiong, Chao [School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213001 (China); Yin, Weiwei; Gui, Chuanyou [Department of Mechanics and Electronic Engineering, Chizhou College, Chizhou 247000 (China); Zhu, Xuebin [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-03-15

    Highlights: ► Electronic properties of CuAlO{sub 2} substituted with bivalent cations were studied. ► Denser band structures were observed in the substituted CuAlO{sub 2}. ► The defect (Be{sub Al}, −1) forms more easily compared to others. -- Abstract: Electronic properties of delafossite-type CuAlO{sub 2} doped with the bivalent cation (Be, Mg or Ca) were systematically calculated by using first-principles PAW method based on density functional theory. The calculated results show the Cu–O distance nearest to the substituted bivalent cation for Al (0.5 0.5 0.5) is decreased with the increase of atomic number from Be to Ca. Moreover, the denser energy band structures have been observed in the valence band in the substituted structures, which are related to the enhancement of covalent character of the Cu–O bond nearest to the substituted site. The contributions from the substituted bivalent cations (Be{sup 2+}, Mg{sup 2+} and Ca{sup 2+}) to the valence band begin at −6.5 eV, relative to −8 eV of Al{sup 3+}, which could be another cause to variations in band structures. From Be to Ca, their partial densities of states show the contributions to the valence band are gradually decreased, in great agreement with the variation trend for the pauling electronegativity. The calculated defect formation energies indicate the (Be{sub Al}, −1) forms more easily than the others.

  15. Effect of co-existing copper and calcium on the removal of As(V) by reused aluminum oxides.

    Science.gov (United States)

    Yang, J K; Park, Y J; Kim, K H; Lee, H Y; Min, K C; Lee, S M

    2013-01-01

    Among the various heavy metals, arsenic is frequently found in abandoned mine drainage and the environmental fate of arsenic in real aqueous solutions can be highly dependent on the presence of co-existing ions. In this study, removal of arsenate through adsorption on the reused aluminum oxide or through precipitation was investigated in a single and in a binary system as a function of pH and concentration. Different removal behaviors of arsenate were observed in the presence of different cations as well as a variation of the molar ratios of arsenate to cations. Co-operative effects on arsenate removal by precipitation in solution occurred with an increase of copper concentration, while a decrease of arsenate removal resulted in increasing calcium concentration. It was observed that the arsenate removal in the presence of calcium would be highly dependent on the molar ratios of both elements.

  16. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    Muller, W.

    2010-01-01

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl - , NO 3 - , C 2 O 4 2- ) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu 2+ , Zn 2+ , UO 2 2+ , Fe 3+ , Nd 3+ , Eu 3+ , Th 4+ ) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author) [fr

  17. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    Mueller, Wolfram; Sievers, Torsten K.; Zemb, Thomas; Diat, Olivier; Sievers, Torsten K.; Dejugnat, Christophe

    2012-01-01

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  18. Impact of carbon-dosing on micro-pollutants removal in MBBR post-denitrification systems

    DEFF Research Database (Denmark)

    Escola Casas, Monica; Torresi, Elena; Plósz, Benedek G.

    and indigenous micro-pollutants concentrations, different methanol and ethanol dosages were used to manipulate the carbon-to-nitrate ratio in two MBBRs. Atenolol, citalopram and trimethoprim were efficiently removed in both reactors. However, type or concentration of carbon did not correlate to micro......-pollutant removal rates. Second, an anoxic-batch test with spiked micropollutants was conducted. The batch test showed that acetyl-sulfadiazine, atenolol, citalopram, propranolol and trimethoprim were easily removed in both reactors. Ibuprofen, clarithromycin, iopromide, metoprolol, iohexol, iomeprol, venlafaxine......, erythromycin and sotalol were moderately removed while diatrizoic acid, iopamidol, carbamazepine and diclofenac showed to be hardly biodegradable. The fact that both reactors gave similar removal rate constants for easily degradable compounds, could suggest that diffusion through the biofilm determined...

  19. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  20. Solar-assisted photodegradation of isoproturon over easily recoverable titania catalysts.

    Science.gov (United States)

    Tolosana-Moranchel, A; Carbajo, J; Faraldos, M; Bahamonde, A

    2017-03-01

    An easily recoverable homemade TiO 2 catalyst (GICA-1) has been evaluated during the overall photodegradation process, understood as photocatalytic efficiency and catalyst recovery step, in the solar light-assisted photodegradation of isoproturon and its reuse in two consecutive cycles. The global feasibility has been compared to the commercial TiO 2 P25. The homemade GICA-1 catalyst presented better sedimentation efficiency than TiO 2 P25 at all studied pHs, which could be explained by its higher average hydrodynamic particle size (3 μm) and other physicochemical surface properties. The evaluation of the overall process (isoproturon photo-oxidation + catalyst recovery) revealed GICA-1 homemade titania catalyst strengths: total removal of isoproturon in less than 60 min, easy recovery by sedimentation, and reusability in two consecutive cycles, without any loss of photocatalytic efficiency. Therefore, considering the whole photocatalytic cycle (good performance in photodegradation plus catalyst recovery step), the homemade GICA-1 photocatalyst resulted in more affordability than commercial TiO 2 P25. Graphical abstract.

  1. Cation exchange process for recovery of plutonium from laboratory solutions containing chloride

    International Nuclear Information System (INIS)

    Gray, L.W.

    1978-10-01

    A cation exchange technique was developed for the separation of plutonium from laboratory solutions containing either Pu(III) or Pu(III)--Pu(IV) mixtures in acidic solutions containing chloride ions. The procedure consists of adjusting the acid concentration to less than one molar and adjusting the valence of the plutonium ion to the (III) state, if necessary. The adjusted solution is fed to a cation exchange column and washed with distilled water to remove residual chlorides from the column. Plutonium is then eluted from the column with 5M nitric acid containing 0.34M sulfamic acid. This procedure was used to separate plutonium from 1.2M chloride solution on a production-scale column. Typical plutonium recovery was 99.97%, while greater than 96% of the original chloride was rejected

  2. Engineering of CH 3 NH 3 PbI 3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties

    KAUST Repository

    Peng, Wei; Miao, Xiaohe; Adinolfi, Valerio; Alarousu, Erkki; El Tall, Omar; Emwas, Abdul-Hamid M.; Zhao, Chao; Walters, Grant; Liu, Jiakai; Ouellette, Olivier; Pan, Jun; Banavoth, Murali; Sargent, Edward H.; Mohammed, Omar F.; Bakr, Osman

    2016-01-01

    The number of studies on organic–inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite's three-dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties.

  3. Cation-Cation Complexes of Pentavalent Uranyl: From Disproportionation Intermediates to Stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Mougel, Victor; Horeglad, Pawel; Nocton, Gregory; Pecaut, Jacques; Mazzanti, Marinella [CEA, INAC, SCIB, Laboratoire de Reconnaissance Ionique et Chimie de Coordination, CEA-Grenoble, 38054 GRENOBLE, Cedex 09 (France)

    2010-07-01

    Three new cation cation complexes of pentavalent uranyl, stable with respect to the disproportionation reaction, have been prepared from the reaction of the precursor [(UO{sub 2}py{sub 5})-(KI{sub 2}py{sub 2})]{sub n} (1) with the Schiff base ligands salen{sup 2-}, acacen{sup 2-}, and salophen{sup 2-} (H{sub 2}salen N, N'-ethylene-bis(salicylidene-imine), H{sub 2}acacen=-N, N'-ethylenebis(acetylacetone-imine), H{sub 2}salophen=N, N'-phenylene-bis(salicylidene-imine)). The preparation of stable complexes requires a careful choice of counter ions and reaction conditions. Notably the reaction of 1 with salophen{sup 2-} in pyridine leads to immediate disproportionation, but in the presence of [18]crown-6 ([18]C-6) a stable complex forms. The solid-state structure of the four tetra-nuclear complexes ([UO{sub 2}-(acacen)]{sub 4}[{mu}{sub 8}-]{sub 2}[K([18]C-6)(py)]{sub 2}) (3) and ([UO{sub 2}(acacen)](4)[{mu}{sub 8}-]).2[K([222])(py)] (4) ([UO{sub 2}(salophen)](4)[{mu}{sub 8}-K]{sub 2}[mu(5)-KI]{sub 2}[(K([18]C-6)]).2 [K([18]C-6)-(thf){sub 2}].2I (5), and ([UO{sub 2}(salen)(4)][{mu}{sub 8}-Rb]{sub 2}[Rb([18]C-6)]{sub 2}) (9) ([222] = [222]cryptand, py =pyridine), presenting a T-shaped cation cation interaction has been determined by X-ray crystallographic studies. NMR spectroscopic and UV/Vis studies show that the tetra-nuclear structure is maintained in pyridine solution for the salen and acacen complexes. Stable mononuclear complexes of pentavalent uranyl are also obtained by reduction of the hexavalent uranyl Schiff base complexes with cobaltocene in pyridine in the absence of coordinating cations. The reactivity of the complex [U{sup V}O{sub 2}(salen)(py)][Cp*{sub 2}Co] with different alkali ions demonstrates the crucial effect of coordinating cations on the stability of cation cation complexes. The nature of the cation plays a key role in the preparation of stable cation cation complexes. Stable tetra-nuclear complexes form in the presence of K

  4. Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes.

    Science.gov (United States)

    Paecharoenchai, Orapan; Niyomtham, Nattisa; Apirakaramwong, Auayporn; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Yingyongnarongkul, Boon-ek; Opanasopit, Praneet

    2012-12-01

    The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.

  5. Selective cation-exchange separation of cesium(I) on chromium ferricyanide gel

    International Nuclear Information System (INIS)

    Jain, A.K.; Agrawal, S.; Singh, R.P.

    1980-01-01

    The removal of 137 Cs from liquid streams of nuclear power plants and from processed radioactive waste of nuclear fission has received increasing attention from ion-exchange chemists. A desirable exchanger (adsorbent) for 137 Cs removal is one which can adsorb it significantly and selectively in the presence of appreciable amounts (approx. 2molL -1 ) of Na + , NH 4 + , and H + . This paper deals with the exchange properties of the inorganic exchanger, chromium ferricyanide gel (CFiC). The stability of the gel in both acid and salt solutions and its high specificity for cesium are responsible for its good scavanger properties in removing long lived 137 Cs from radioactive waste. The chromium ferricyanide exchanger is highly selective for monovalent cations, the order being Ag + >Tl + >Cs + >Rb + >K + >Na + . It does not adsorb any bivalent, trivalent, and tetravalent ions even when present in trace amounts. (2 figures, 3 tables)

  6. Adsorptive behaviour of mercury on algal biomass: Competition with divalent cations and organic compounds

    International Nuclear Information System (INIS)

    Carro, Leticia; Barriada, Jose L.; Herrero, Roberto; Sastre de Vicente, Manuel E.

    2011-01-01

    Highlights: → Native and protonated macroalga S. muticum are good materials for mercury removal. → Fast kinetic process and high mercury uptakes have been found for those materials. → Diffusion control is the rate limiting step of the process. → Competition effects by organic compounds, inorganic salts and divalent cations were analyzed. → Continuous flow experiments allowed identification of mercury reduction during metal removal. - Abstract: Biosorption processes constitute an effective technique for mercury elimination. Sorption properties of native and acid-treated Sargassum muticum have been studied. Effect of pH, initial mercury concentration and contact time studies provided fundamental information about the sorption process. This information was used as the reference values to analyse mercury sorption under competition conditions. Saline effect has shown little influence in sorption, when only electrostatic modifications took place upon salt addition. On the contrary, if mercury speciation dramatically changed owing to the addition of an electrolyte, such as in the case of chloride salt, very large modifications in mercury sorption were observed. Competition with other divalent cations or organic compounds has shown little or none effect on mercury, indicating that a different mechanism is taking place during the removal of these pollutants. Finally, continuous flow experiments have clearly shown that a reduction process is also taking place during mercury removal. This fact is not obvious to elucidate under batch sorption experiments. Scanning Electron Microscopy analysis of the surface of the materials show deposits of mercury(I) and metallic mercury which is indicative of the reduction process proposed.

  7. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  8. Finely Tuned SnO2 Nanoparticles for Efficient Detection of Reducing and Oxidizing Gases: The Influence of Alkali Metal Cation on Gas-Sensing Properties.

    Science.gov (United States)

    Lee, Szu-Hsuan; Galstyan, Vardan; Ponzoni, Andrea; Gonzalo-Juan, Isabel; Riedel, Ralf; Dourges, Marie-Anne; Nicolas, Yohann; Toupance, Thierry

    2018-03-28

    Tin dioxide (SnO 2 ) nanoparticles were straightforwardly synthesized using an easily scaled-up liquid route that involves the hydrothermal treatment, either under acidic or basic conditions, of a commercial tin dioxide particle suspension including potassium counterions. After further thermal post-treatment, the nanomaterials have been thoroughly characterized by Fourier transform infrared and Raman spectroscopy, powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and nitrogen sorption porosimetry. Varying pH conditions and temperature of the thermal treatment provided cassiterite SnO 2 nanoparticles with crystallite sizes ranging from 7.3 to 9.7 nm and Brunauer-Emmett-Teller surface areas ranging from 61 to 106 m 2 ·g -1 , acidic conditions favoring potassium cation removal. Upon exposure to a reducing gas (H 2 , CO, and volatile organic compounds such as ethanol and acetone) or oxidizing gas (NO 2 ), layers of these SnO 2 nanoparticles led to highly sensitive, reversible, and reproducible responses. The sensing results were discussed in regard to the crystallite size, specific area, valence band energy, Debye length, and chemical composition. Results highlight the impact of the counterion residuals, which affect the gas-sensing performance to an extent much higher than that of size and surface area effects. Tin dioxide nanoparticles prepared under acidic conditions and calcined in air showed the best sensing performances because of lower amount of potassium cations and higher crystallinity, despite the lower surface area.

  9. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    Science.gov (United States)

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for

  10. environmental studies for removal of some radioactive elements using zirconium silicate as inorganic ion exchange material

    International Nuclear Information System (INIS)

    El-Aryan, Y.F.A.

    2007-01-01

    inorganic ion exchangers have a good potential than the commonly used organic ones for removal and separation of radionuclides from irradiated nuclear fuel solutions. therefore, the main aim of this work is directed to find the optimum conditions for removal of some radionuclides such as Cs + ,Co 2+ ,and Eu 3+ by the prepared zirconium silicate as cation exchanger. the following items will be involved:-1- preparation of zirconium silicate as a cation exchanger. 2- characterization of the prepared exchanger using IR spectra, X-ray diffraction patterns, DTA and TG analyses. 3-chemical stability, capacity and equilibrium measurements will be determined on the materials using at different conditions (heating temperature and reaction temperature). 4- ion exchange isotherms. 5- breakthrough curves for removal of the investigated metal ions on the prepared exchanger under certain conditions

  11. The earth grind or ''diatomite'' as the removal of chemicals in the laboratory

    International Nuclear Information System (INIS)

    Alfaro Vargas, Ariel

    2007-01-01

    Experiments were carried out to determine the capability of diatomite for the disposal of laboratory residues. Experimentation with different organic solvents (ethyl ether, acetone, ethyl acetate, hexane and ethanol) verified that there is no solvent absorption in the mineral material. Experiments were also carried out with heavy metal cations, in order to quantify their absorption or adsorption in the porous mineral. Ion sequestration was determined and the following order resulted: Cr 3+ > Pb 2+ > Ag + > Ni 2+ > Zn 2+ > Cr 2 O 7 2- . The effect of pH was also studied with nickel, 99,5% removal was observed at pH 7, SO 4 2- was 98% removed, followed by Cl - and NO 3 - . The ideal cation concentration was 4 ppm with a removal efficiency of 99,5%. It is possible to conclude that the absorption material can be used as effusion containment system, rather than a material to eliminate laboratory residues. (author) [es

  12. Regenerable, innovative porous silicon-based polymer-derived ceramics for removal of methylene blue and rhodamine B from textile and environmental waters.

    Science.gov (United States)

    Bruzzoniti, Maria Concetta; Appendini, Marta; Onida, Barbara; Castiglioni, Michele; Del Bubba, Massimo; Vanzetti, Lia; Jana, Prasanta; Sorarù, Gian Domenico; Rivoira, Luca

    2018-04-01

    The presence of residual color in treated textile wastewater above the regulation limits is still a critical issue in many textile districts. Innovative, polymer-derived ceramics of the Si-C-O system were here synthesized in order to obtain porous nanocomposite materials where a free carbon phase is dispersed into a silicon carbide/silicon oxycarbide network. The sorbents were comprehensively characterized for the removal of two model water-soluble dyes (i.e., the cation methylene blue and the zwitterion rhodamine B). Adsorption is very rapid and controlled by intra-particle and/or film diffusion, depending on dye concentration. Among the nanocomposites studied, the SiOC aerogel (total capacity about 45 mg/g, is easily regenerated under mild treatment (250 °C, 2 h). Adsorption of dyes is not affected by the matrix composition: removals of 150 mg/L methylene blue from river water and simulated textile wastewater with high content of metal ions (2-50 mg/L) and chemical oxygen demand (800 mg/L) were higher than 92% and quantitative for a dye concentration of 1 mg/L.

  13. Phenolic cation exchange resin material for recovery of cesium and strontium

    Science.gov (United States)

    Ebra, Martha A.; Wallace, Richard M.

    1983-01-01

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear waste solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs.sup.+ and Sr.sup.2+ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  14. Sulfates removal by the GYP-CIX process following lime treatment

    International Nuclear Information System (INIS)

    Robertson, A.M.; Everett, D.J.; Plessis, N.J. Du

    1994-01-01

    The treatment of acid mine drainage by limiting results in the discharge of water saturated in gypsum and containing residual metal concentrations. These waters may exceed drinking and irrigation water standards for TDS, sulfates and some metals. The scaling nature of the saturated gypsum solution makes it unsuitable for industrial use and makes further processing difficult and costly. This paper discusses a novel ion exchange process that is suitable to desalinate large volumes of mine and industrial waters with a TDS of up to 6,500 mg/l which is also high in calcium and sulfates, to meet effluent discharge specifications. The GYP-CIX process is a continuous fluidized bed ion-exchange process that effectively removes calcium sulfate from gypsum saturated waters. It uses low cost chemicals such as lime and sulfuric acid for resin regeneration. The only waste product is gypsum and the treated water produced meets standards for reuse or discharge. This process consists of a two stage operation. The first is the removal of cations in a multistage continuous loading train, using cation exchange resin. The second operation is the removal of anions, again in a multistage continuous loading train using anion exchange resin

  15. Removal of natural radionuclides from drinking water from private wells in Finland

    International Nuclear Information System (INIS)

    Huikuri, Pia; Salonen, Laina; Turtiainen, Tuukka

    1999-01-01

    Removal of natural radionuclides is often necessary in Finland when household water is taken from a drilled well. Removal of radionuclides by various methods from Finnish groundwaters were studied in a EU-research project, TENAWA. The results indicated that radon can be removed very efficiently (up to 99%) by applying aeration or granular activated carbon (GAC) filtration. Uranium and radium were also removed (over 94%) by using strong base anion (SBA) and strong acid cation (SAC) resins. The capability of reverse osmosis (RO) equipment to remove radionuclides was over 90% for uranium, radium and polonium. The water quality analyses indicated that water quality remained mostly good during the water treatment. (au)

  16. Synthesized cellulose/succinic anhydride as an ion exchanger. Calorimetry of divalent cations in aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Julio C.P. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Silva Filho, Edson C. [LIMAV, Federal University of Piaui, 64049-550 Teresina, Piaui (Brazil); Santana, Sirlane A.A. [Departamento de Quimica/CCET, Universidade Federal do Maranhao, Av. dos Portugueses S/N, Campus do Bacanga, 65080-540 Sao Luiz, MA (Brazil); Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2011-09-20

    Highlights: {yields} Synthetic route based on anhydride melting point. {yields} Cellulosic biopolymer/anhydride as ion exchanger. {yields} Calorimetry of cation exchange at solid/liquid interface. {yields} Favorable thermodynamic data of exchanging process. - Abstract: A synthetic route to a biopolymer/anhydride ion exchanger adds cellulose directly to molten succinic anhydride in a quasi solvent-free procedure. An amount of 3.07 {+-} 0.05 mmol of pendant groups incorporated onto the polymeric structure, which was characterized by elemental analysis, solid state carbon NMR, infrared, X-ray and thermogravimetry. The new polysaccharide is able to exchange cations from aqueous solution through a batchwise methodology, to obtain 2.46 {+-} 0.09 mmol g{sup -1} for divalent cobalt and nickel cations. The net thermal effects obtained from calorimetric titrations gave endothermic values of 3.81 {+-} 0.02 and 2.35 {+-} 0.01 kJ mol{sup -1}. The spontaneity of this ion-exchange process reflected in negative Gibbs energies and also a positive entropic contribution. These thermodynamic data at the solid/liquid interface suggests a favorable ion exchange process for this anchored biopolymer, for cation removal from the environment.

  17. Preparation, Characterization, and Cationic Functionalization of Cellulose-Based Aerogels for Wastewater Clarification

    Directory of Open Access Journals (Sweden)

    Yang Hu

    2016-01-01

    Full Text Available Aerogels are a series of materials with porous structure and light weight which can be applied to many industrial divisions as insulators, sensors, absorbents, and cushions. In this study, cellulose-based aerogels (aerocelluloses were prepared from cellulosic material (microcrystalline cellulose in sodium hydroxide/water solvent system followed by supercritical drying operation. The average specific surface area of aerocelluloses was 124 m2/g. The nitrogen gas (N2 adsorption/desorption isotherms revealed type H1 hysteresis loops for aerocelluloses, suggesting that aerocelluloses may possess a porous structure with cylindrically shaped pores open on both ends. FTIR and XRD analyses showed that the crystallinity of aerocelluloses was significantly decreased as compared to microcrystalline cellulose and that aerocelluloses exhibited a crystalline structure of cellulose II as compared to microcrystalline cellulose (cellulose I. To perform cationic functionalization, a cationic agent, (3-chloro-2-hydroxypropyl trimethylammonium chloride, was used to introduce positively charged sites on aerocelluloses. The cationized aerocelluloses exhibited a strong ability to remove anionic dyes from wastewater. Highly porous and low cost aerocelluloses prepared in this study would be also promising as a fast absorbent for environmental pollutants.

  18. Novel phosphorus-containing cyclodextrin polymers and their affinity for calcium cations and hydroxyapatite.

    Science.gov (United States)

    Wintgens, Véronique; Dalmas, Florent; Sébille, Bernard; Amiel, Catherine

    2013-10-15

    Novel phosphorous-containing β-cyclodextrin (βCD) polymers (CDP) were synthesized easily under "green chemistry" conditions. A simple polycondensation between the hydroxyl groups of βCD and non-toxic sodium trimetaphosphate (STMP) under basic conditions led to soluble, non-reticulated CDPs with molecular weights (Mw) higher than 10(4) g mol(-1), the actual value depending on the NaOH:βCD and STMP:βCD weight ratios. The presence of both βCD and phosphate groups in the polymer allows for strong interactions with amphiphilic probes, such as 1-adamantyl acetic acid, or with divalent cations, such as Ca(2+), whose strengths were characterized by isothermal titration microcalorimetry. The obtained phosphated compounds also display high affinity towards hydroxyapatite (HA), leading to HA nanoparticles that could easily be recovered by CDPs, as demonstrated by transmission electron microscopy and quantitative determination of the total amount of phosphated molecules fixed on HA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A new alternative adsorbent for the removal of cationic dyes from aqueous solution

    Directory of Open Access Journals (Sweden)

    T. Santhi

    2016-09-01

    Full Text Available Adsorption of Malachite green (MG and Methylene blue (MB from aqueous solutions on low cost adsorbent prepared from Annona squmosa seed (CAS is studied experimentally. Results obtained indicate that the removal efficiency of Malachite green and Methylene blue at 27 ± 2 °C exceeds 75.66% and 24.33% respectively, and that the adsorption process is highly pH-dependent. Results showed that the optimum pH for dye removal is 6.0. The amount of dye adsorbed from aqueous solution increases with the increase of the initial dye concentration. Smaller adsorbent particle adds to increase the percentage removal of Malachite green and Methylene blue. The equilibrium data fitted well to the Langmuir model (R2 > 0.97 and the adsorption kinetic followed the pseudo-second-order equation (R2 > 0.99. The maximum adsorption capacities of MG, MB on CAS are 25.91 mg g−1 and 08.52 mg g−1 respectively. These results suggest that A. squmosa seed is a potential low-cost adsorbent for the dye removal from industrial wastewater. The adsorption capacity of CAS on MG is greater than MB.

  20. Cation disorder in Ga1212.

    Science.gov (United States)

    Greenwood, K B; Ko, D; Vander Griend, D A; Sarjeant, G M; Milgram, J W; Garrity, E S; DeLoach, D I; Poeppelmeier, K R; Salvador, P A; Mason, T O

    2000-07-24

    Substitution of calcium for strontium in LnSr2-xCaxCu2GaO7 (Ln = La, Pr, Nd, Gd, Ho, Er, Tm, and Yb) materials at ambient pressure and 975 degrees C results in complete substitution of calcium for strontium in the lanthanum and praseodymium systems and partial substitution in the other lanthanide systems. The calcium saturation level depends on the size of the Ln cation, and in all cases, a decrease in the lattice parameters with calcium concentration was observed until a common, lower bound, average A-cation size is reached. Site occupancies from X-ray and neutron diffraction experiments for LnSr2-xCaxCu2GaO7 (x = 0 and x = 2) confirm that the A-cations distribute between the two blocking-layer sites and the active-layer site based on size. A quantitative link between cation distribution and relative site-specific cation enthalpy for calcium, strontium, and lanthanum within the gallate structure is derived. The cation distribution in other similar materials can potentially be modeled.

  1. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  2. Kinetics of electrodialytic extraction of Pb and soil cations from a slurry of contaminated soil fines

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ottosen, Lisbeth M.; Ferreira, Célia

    2006-01-01

    -removal was obtained. During the first phase dissolution of carbonates was the prevailing process, resulting in a corresponding loss of soil-mass. During this phase, the investigated ions accounted for the major current transfer, while, as remediation proceeded hydrogen-ions increasingly dominated the transfer. During......The objective of this work was to investigate the kinetics of Pb removal from soil-fines during electrodialytic remediation in suspension, and study the simultaneous dissolution of common soil cations (Al, Ca, Fe, Mg, Mn, Na and K). This was done to evaluate the possibilities within control...

  3. Comparison of the efficiencies of modified clay with polyethylene glycol and tetradecyl trimethyl ammonium bromide for BTEX removal

    Directory of Open Access Journals (Sweden)

    Heshmatollah Nourmoradi

    2013-01-01

    Conclusion: The adsorption capacity of TTAB-Mt (22.11 mg/g was slightly higher than PEG-Mt (18.77 mg/g. With regard to lower toxic effects and lower cost of nonionic surfactants than the cationic type, using the nonionic modified Mt is preferred than cationic modified Mt for the removal of BTEX from aqueous solution.

  4. Engineering of CH 3 NH 3 PbI 3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties

    KAUST Repository

    Peng, Wei

    2016-07-28

    The number of studies on organic–inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite\\'s three-dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties.

  5. Calixarenes synthesized for seducing and trapping cations

    International Nuclear Information System (INIS)

    Dozol, J.F.

    1997-01-01

    Calixarenes are known to be selective extractants for cesium radioactive cations. This liquid-liquid extraction is still to be studied and would allow to reduce the volume of years living radioactive wastes before they were stored and perhaps to remove then the cesium by transmutation. Calixarenes are macrocycles with phenolic units bridged by methylene groups. They have the important property to have a flexible structure. On this basic structure, all kinds of chemical functions can be branched. They thus confer particular properties to the molecule. A computerized virtual construction phase of molecules is actually studied in order to optimize the extraction. It is currently known that with small modifications it will be possible to selectively extract heavy metals (Hg, Cd..) coming from industrial pollution. (O.M.)

  6. Removal of Carbon Dioxide from Gas Mixtures Using Ion-Exchanged Silicoaluminophosphates

    Science.gov (United States)

    Hernandez-Maldonado, Arturo J (Inventor); Rivera-Ramos, Milton E (Inventor); Arevalo-Hidalgo, Ana G (Inventor)

    2017-01-01

    Na+-SAPO-34 sorbents were ion-exchanged with several individual metal cations for CO2 absorption at different temperatures (273-348 K) and pressures (SAPO-34 sorbents are by far the best option for CO2 removal from CH4 mixtures, especially at low concentrations.

  7. Precipitation process for the removal of technetium values from nuclear waste solutions

    Science.gov (United States)

    Walker, D.D.; Ebra, M.A.

    1985-11-21

    High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  8. Radical cations of quadricyclane and norbornadiene in polar ZSM-5 matrices: Radical cation photochemical transformations without photons

    International Nuclear Information System (INIS)

    Barnabas, M.V.; Trifunac, A.D.

    1994-01-01

    Radical cations of quadricyclane (Q) and norbornadiene (NBD) are produced by γ-radiolysis in zeolites. In polar ZSM-5, only one radical cation is initially observed below 100K. Increasing the temperature above 200K gives rise to the cyclopentadiene radical cation. Higher temperatures (>360K) give rise to the cyclopenten-4-yl radical. The observation of cyclopentadiene radical cation implies the occurrence of the reverse Diels-Alder reaction. This is a thermally forbidden, photochemically allowed, process, which is made possible by the interaction of the polar zeolite matrix sites with parent NBD and Q radical cations

  9. Sorption and thermodynamic of cation-basic center interactions of inorganic-organic hybrids synthesized from RUB-18

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, T.R. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, Sao Paulo (Brazil); Petrucelli, G.C. [Institute of Chemistry, Federal University of Goias, UFG, P.O. Box 03, 75805-190 Jatai, Goias (Brazil); Airoldi, C., E-mail: airoldi@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, Sao Paulo (Brazil)

    2010-04-20

    Synthesized nanostructured hybrids from RUB-18 layered silicate, containing one (N) or three (3N) basic nitrogen atoms attached to pendant chains were applied for copper, nickel and cobalt sorptions. The isotherms obtained from batchwise processes were adjusted to the Freundlich and the Langmuir-Freundlich models for heterogeneous systems. The basic nitrogen centers/acidic cation interactions were followed by calorimetry under batchwise conditions and the results were analyzed by a modified Langmuir equation. The exothermic enthalpic values of -2.50 {+-} 0.30, -1.62 {+-} 0.10 and -1.35 {+-} 0.20 and -15.61 {+-} 0.20, -8.05 {+-} 0.14 and -20.48 {+-} 0.15 kJ mol{sup -1}, obtained for Cu{sup 2+}, Ni{sup 2+} and Co{sup 2+} titrations with C-RUB-xN (x = 1, 3) materials, suggest a favorable process at the solid/liquid interface for inorganic/organic hybrid cation sorptions. These thermodynamic data, expressed also by reaction spontaneity, infer the use of such hybrids for cation removal from aqueous solution.

  10. Magnetic zeolite NaA: synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+.

    Science.gov (United States)

    Liu, Haibo; Peng, Shuchuan; Shu, Lin; Chen, Tianhu; Bao, Teng; Frost, Ray L

    2013-06-01

    The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu(2+), Pb(2+)). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3=2.3, Na2O/SiO2=1.4, H2O/Na2O=50, crystallization time 8h, crystallization temperature 95 °C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g(-1) for Cu(2+), Pb(2+) with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu(2+), Pb(2+) from water with metallic contaminants and can be separated easily after a magnetic process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Selective sodium removal from lithium chloride brine with novel ...

    African Journals Online (AJOL)

    Natrium superionic conductor (NASICON) ceramics present interesting sensitive and selective properties against alkaline cations due to their structure. The powder of Li1.4La0.4Zr1.6(PO4)3 has been synthesized by a solid phase reaction. The removal of sodium was studied in an extensive series of tests involving different ...

  12. Uranium speciation and removal from well water

    International Nuclear Information System (INIS)

    Ayaz, B.; DeVol, T.; Navratil, J.D.

    2001-01-01

    The purpose of this work was to determine the form of uranium present in the well water and to test the effectiveness of common household treatment devices to remove uranium and radium. Batch tests with activated carbon, iron powder, anion exchange resin and cation exchange resin were used to characterize the form of uranium in the drinking water. In the tests, water and the separation materials were first equilibrated, filtered and then analyzed by alpha spectrometry. The results of the batch tests showed that it is possible to remove greater than 90% of the uranium and radium in the drinking water by using any of the sorbents listed above. Simple filtration with 0.1 μm had little to no impact on uranium removal. Results of tests using household treatment devices will also be presented. (authors)

  13. Converting Hg-1212 to Tl-2212 via Tl-Hg cation exchange in combination with Tl cation intercalation

    International Nuclear Information System (INIS)

    Zhao Hua; Wu, Judy Z

    2007-01-01

    In a cation exchange process developed recently for epitaxy of HgBa 2 CaCu 2 O 6 (Hg-1212) thin films, TlBa 2 CaCu 2 O 7 (Tl-1212) or Tl 2 Ba 2 CaCu 2 O 9 (Tl-2212) precursor films were employed as the precursor matrices and Hg-1212 was obtained by replacing Tl cations on the precursor lattice with Hg cations. The reversibility of the cation exchange dictates directly the underlying mechanism. Following our recent success in demonstrating a complete reversibility within '1212' structure, we show the conversion from Hg-1212 to Tl-2212 can be achieved via two steps: conversion from Hg-1212 to Tl-1212 followed by Tl intercalation to form double Tl-O plans in each unit cell. The demonstrated reversibility of the cation exchange process has confirmed the process is a thermal perturbation of weakly bonded cations on the lattice and the direction of the process is determined by the population ratio between the replacing cations and that to be replaced

  14. New double-cation borohydrides

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Inge; Domenech Ferrer, Roger; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, 01171 Dresden (Germany); Filinchuk, Yaroslav [Swiss-Norwegian Beam Lines at ESRF, BP-220, 38043 Grenoble (France); Hagemann, Hans; Cerny, Radovan [Department of Physical Chemistry and Crystallography, University of Geneva, 1211 Geneva (Switzerland)

    2011-07-01

    Complex hydrides are under consideration for on-board hydrogen storage due to their high hydrogen density. However, up to now conventional borohydrides are either too stable or unstable for applications as in PEM fuel cells (60-120 C). Recently, double-cation borohydride systems have attracted great interest. The desorption temperature of the borohydrides decreases with increasing electronegativity of the cation. Consequently, it is possible to tailor a feasible on-board hydrogen storage material by the combination of appropriate cations. The stability was found to be intermediate between the single-cation borohydride systems. Two combinations were sucessfully synthesised by metathesis reaction via high energy ball milling. Al-Li-borohydride shows desorption at about 70 C combined with a very high hydrogen density (17.2 wt.%) and the Na-Al-borohydride (14.2 wt.%) decomposes around 90 C. Both desorption temperatures are in the target range for applications. The decomposition pathways were observed by in-situ-Raman spectroscopy, DSC (Differential Scanning Calorimetry), TG (Thermogravimetry) and thermal desorption measurements.

  15. Glycosaminoglycan-resistant and pH-sensitive lipid-coated DNA complexes produced by detergent removal method.

    Science.gov (United States)

    Lehtinen, Julia; Hyvönen, Zanna; Subrizi, Astrid; Bunjes, Heike; Urtti, Arto

    2008-10-21

    Cationic polymers are efficient gene delivery vectors in in vitro conditions, but these carriers can fail in vivo due to interactions with extracellular polyanions, i.e. glycosaminoglycans (GAG). The aim of this study was to develop a stable gene delivery vector that is activated at the acidic endosomal pH. Cationic DNA/PEI complexes were coated by 1,2-dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) (3:2 mol/mol) using two coating methods: detergent removal and mixing with liposomes prepared by ethanol injection. Only detergent removal produced lipid-coated DNA complexes that were stable against GAGs, but were membrane active at low pH towards endosome mimicking liposomes. In relation to the low cellular uptake of the coated complexes, their transfection efficacy was relatively high. PEGylation of the coated complexes increased their cellular uptake but reduced the pH-sensitivity. Detergent removal was thus a superior method for the production of stable, but acid activatable, lipid-coated DNA complexes.

  16. Removal of ammonia generated from farm poultry and their use in the fuel cells and as fertilizer

    International Nuclear Information System (INIS)

    Ferreira, Joao Coutinho

    2010-01-01

    The process here stressed uses a cation exchange material. The aim of the present work has been to prepare a suitable cation exchanger material with especially high selectivity for ammonia, as the cation NH 4+ or as aqueous ammonia solution containing NH 4 OH hydroxide as well. Aliquots of the above mentioned exchangers were set up inside an chicken farm production near Sao Paulo city. Periodically the exchanger was removed to the laboratory and eluted with a convenient acid to regenerate the exchanger for the new cycle. The ammonia retention was quite high and presents no difficulty for its elution. The selected exchanger is a solid material, non toxic, without smell and have good physical properties. The first results encouraged us and our plants to do large experiments that in progress. This process is a contribution to remediation of the avicola local, removing the ammonia gas and suppressing greatly its smell and bad effect to the animals and even to workers. (author)

  17. High-capacity cation-exchange column for enhanced resolution of adjacent peaks of cations in ion chromatography.

    Science.gov (United States)

    Rey, M A

    2001-06-22

    One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.

  18. The cation-controlled and hydrogen bond-mediated shear-thickening behaviour of a tree-fern isolated polysaccharide.

    Science.gov (United States)

    Wee, May S M; Matia-Merino, Lara; Goh, Kelvin K T

    2015-10-05

    The shear-thickening rheological behaviour (between 5 and 20s(-1)) of a 5% (w/w) viscoelastic gum extracted from the fronds of the native New Zealand black tree fern or mamaku in Māori was further explored by manipulating the salt content. The freeze-dried mamaku gum contained a high mineral content and sugars which upon removal via dialysis, resulted in the loss of shear thickening. However, this loss was reversible by the addition of salts to the dialysed dispersion. The mechanism of shear-thickening behaviour was therefore hypothesised to be due to shear-induced transition of intra- to intermolecular hydrogen bonding, promoted by the screening effect of cations. Mono-, di- and trivalent salts, i.e. Na(+), K(+), N(CH3)4(+), Ca(2+), Mg(2+), Al(3+) and La(3+) at concentrations between 0.001 and 1.0M were tested to support the hypothesis as well as to demonstrate the sensitivity of the biopolymer to cation valency and concentrations. The cation valency and concentration were crucial factors in determining: (i) zero-shear viscosity, (ii) critical shear rate, γ˙c (or shear rate at the onset of shear-thickening) and (iii) the extent of shear-thickening of the solution. For mono- and divalent cations these parameters were similar at equivalent ionic strengths and fairly independent of the cation type. Trivalent cations (La(3+)) however caused precipitation of the gum in the concentration range of 0.005-0.05 M but clear dispersions were obtained above 0.05 M. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cation-π interactions in structural biology

    OpenAIRE

    Gallivan, Justin P.; Dougherty, Dennis A.

    1999-01-01

    Cation-pi interactions in protein structures are identified and evaluated by using an energy-based criterion for selecting significant sidechain pairs. Cation-pi interactions are found to be common among structures in the Protein Data Bank, and it is clearly demonstrated that, when a cationic sidechain (Lys or Arg) is near an aromatic sidechain (Phe, Tyr, or Trp), the geometry is biased toward one that would experience a favorable cation-pi interaction. The sidechain of Arg is more likely tha...

  20. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    Science.gov (United States)

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  1. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2016-06-01

    We have analyzed the structure and bonding of gas-phase Cl-X and [HCl-X](+) complexes for X(+)= H(+), CH3 (+), Li(+), and Na(+), using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl(-) and HCl for the various cations. The Cl-X bond becomes longer and weaker along X(+) = H(+), CH3 (+), Li(+), and Na(+). Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn-Sham molecular orbital (KS-MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities.

  2. Green sample preparation for liquid chromatography and capillary electrophoresis of anionic and cationic analytes.

    Science.gov (United States)

    Wuethrich, Alain; Haddad, Paul R; Quirino, Joselito P

    2015-04-21

    A sample preparation device for the simultaneous enrichment and separation of cationic and anionic analytes was designed and implemented in an eight-channel configuration. The device is based on the use of an electric field to transfer the analytes from a large volume of sample into small volumes of electrolyte that was suspended into two glass micropipettes using a conductive hydrogel. This simple, economical, fast, and green (no organic solvent required) sample preparation scheme was evaluated using cationic and anionic herbicides as test analytes in water. The analytical figures of merit and ecological aspects were evaluated against the state-of-the-art sample preparation, solid-phase extraction. A drastic reduction in both sample preparation time (94% faster) and resources (99% less consumables used) was observed. Finally, the technique in combination with high-performance liquid chromatography and capillary electrophoresis was applied to analysis of quaternary ammonium and phenoxypropionic acid herbicides in fortified river water as well as drinking water (at levels relevant to Australian guidelines). The presented sustainable sample preparation approach could easily be applied to other charged analytes or adopted by other laboratories.

  3. Removal of Pb(2+) from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb(2+).

    Science.gov (United States)

    Wang, Yanhui; Li, LeiLei; Luo, Chuannan; Wang, Xiaojiao; Duan, Huimin

    2016-05-01

    A novel, magnetic chitosan coating on the surface of graphene oxide was (Pb-MCGO) successfully synthesized using Pb(2+) as imprinted ions for adsorption and removal of Pb(2+) from aqueous solutions. The magnetic composite bioadsorbent was characterized by SEM, FTIR and XRD measurements. Batch adsorption experiments were performed to evaluate the adsorption conditions, selectivity and reusability. The results showed that the maximum adsorption capacity was 79 mg/g, observed at pH 5 and 303K. Equilibrium adsorption was achieved within 40 min. The kinetic data could be fitted with a pseudo-second order equation. Adsorption process could be well described by Langmuir adsorption isotherms. The selectivity coefficient of Pb(2+) and other metal cations onto Pb-MCGO indicated an overall preference for Pb(2+), which was much higher than non-imprinted MCGO beads. Moreover, the sorbent was stable and easily recovered, the adsorption capacity was about 90% of the initial saturation adsorption capacity after being used five times. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Removal of heavy metals from aqueous solution by Carrot residues

    International Nuclear Information System (INIS)

    Eslamzadeh, T.; Nasernejad, B.; Bonakdar Pour, B.; Zamani, A.; Esmaail-Beygi, M.

    2004-01-01

    The removal of Copper(II), Zinc(II), and Chromium (III) from wastewater by carrot residues was investigated to evaluate cation exchange capacity. The effects of solution P H and co-ions were studied in batch experiments. Adsorption equilibria were initially rapidly established, and then decreased markedly after 10 min. Column experiments were carried out in a glass column filled with carrot residues to evaluate the metal removal capacity. The influences of the feed concentration and feed rate were also studied in order to compare the dynamic capacity for metal binding in different feed concentrations

  5. Removal of lead and phosphate ions from aqueous solutions by organo-smectite.

    Science.gov (United States)

    Bajda, Tomasz; Szala, Barbara; Solecka, Urszula

    2015-01-01

    Smectite has been modified using hexadecyltrimethyl ammonium bromide in an amount of double cationic exchange capacity. This alteration makes it possible to use organo-smectite as a sorbent to remove anionic forms. The experiment consisted of the interchangeable sorption of phosphate(V) and lead(II) by organo-smectite. Research was carried out with varying pH (2-5) and various concentrations (0.1-5 mmol/L). Organo-smectite with previously adsorbed lead ions removed more phosphate than the untreated organo-smectite. Experimental data show that lead is more likely to absorb on the organo-smectite than on the organo-smectite with previously adsorbed phosphate ions. It follows that the most effective use of the organo-smectite is through the sorption of first - Pb cations and then PO4 anions. With an increasing concentration of Pb(II) or P(V), the sorption efficiency increases. The maximum sorption efficiency of lead and phosphate ions is observed at pH 5. This enables the removal of harmful lead and phosphorus compounds from waste water and immobilizes them on the sorbent's surface. The alternating reactions of lead and phosphorus ions result in the crystallization of brompyromorphite Pb5(PO4)3Br.

  6. [Noncovalent cation-π interactions--their role in nature].

    Science.gov (United States)

    Fink, Krzysztof; Boratyński, Janusz

    2014-11-07

    Non-covalent interactions play an extremely important role in organisms. The main non-covalent interactions in nature are: ion-ion interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals interactions. A new kind of intermolecular interactions--cation-π interactions--is gaining increasing attention. These interactions occur between a cation and a π system. The main contributors to cation-π interactions are electrostatic, polarization and, to a lesser extent, dispersion interactions. At first, cation-π interactions were studied in a gas phase, with metal cation-aromatic system complexes. The characteristics of these complexes are as follows: an increase of cation atomic number leads to a decrease of interaction energy, and an increase of cation charge leads to an increase of interaction energy. Aromatic amino acids bind with metal cations mainly through interactions with their main chain. Nevertheless, cation-π interaction with a hydrophobic side chain significantly enhances binding energy. In water solutions most cations preferentially interact with water molecules rather than aromatic systems. Cation-π interactions occur in environments with lower accessibility to a polar solvent. Cation-π interactions can have a stabilizing role on the secondary, tertiary and quaternary structure of proteins. These interactions play an important role in substrate or ligand binding sites in many proteins, which should be taken into consideration when the screening of effective inhibitors for these proteins is carried out. Cation-π interactions are abundant and play an important role in many biological processes.

  7. Stressor states and the cation crossroads.

    Science.gov (United States)

    Weber, Karl T; Bhattacharya, Syamal K; Newman, Kevin P; Soberman, Judith E; Ramanathan, Kodangudi B; McGee, Jesse E; Malik, Kafait U; Hickerson, William L

    2010-12-01

    Neurohormonal activation involving the hypothalamic-pituitary-adrenal axis and adrenergic nervous and renin-angiotensin-aldosterone systems is integral to stressor state-mediated homeostatic responses. The levels of effector hormones, depending upon the degree of stress, orchestrate the concordant appearance of hypokalemia, ionized hypocalcemia and hypomagnesemia, hypozincemia, and hyposelenemia. Seemingly contradictory to homeostatic responses wherein the constancy of extracellular fluid would be preserved, upregulation of cognate-binding proteins promotes coordinated translocation of cations to injured tissues, where they participate in wound healing. Associated catecholamine-mediated intracellular cation shifts regulate the equilibrium between pro-oxidants and antioxidant defenses, a critical determinant of cell survival. These acute and chronic stressor-induced iterations in extracellular and intracellular cations are collectively referred to as the cation crossroads. Intracellular cation shifts, particularly excessive accumulation of Ca2+, converge on mitochondria to induce oxidative stress and raise the opening potential of their inner membrane permeability transition pores (mPTPs). The ensuing loss of cationic homeostasis and adenosine triphosphate (ATP) production, together with osmotic swelling, leads to organellar degeneration and cellular necrosis. The overall impact of iterations in extracellular and intracellular cations and their influence on cardiac redox state, cardiomyocyte survival, and myocardial structure and function are addressed herein.

  8. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  9. A theoretical study of complexes formed between cations and curved aromatic systems: electrostatics does not always control cation-π interaction.

    Science.gov (United States)

    Carrazana-García, Jorge A; Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús

    2017-04-19

    The present work studies the interaction of two extended curved π-systems (corannulene and sumanene) with various cations (sodium, potassium, ammonium, tetramethylammonium, guanidinium and imidazolium). Polyatomic cations are models of groups found in important biomolecules in which cation-π interaction plays a fundamental role. The results indicate an important size effect: with extended π systems and cations of the size of potassium and larger, dispersion is much more important than has been generally recognized for cation-π interactions. In most of the systems studied here, the stability of the cation-π complexes is the result of a balanced combination of electrostatic, induction and dispersion contributions. None of the systems studied here owes its stability to the electrostatic interaction more than 42%. Induction dominates stabilization in complexes with sodium, and in some of the potassium and ammonium complexes. In complexes with large cations and with flat cations dispersion is the major stabilizing contribution and can provide more than 50% of the stabilization energy. This implies that theoretical studies of the cation-π interaction involving large or even medium-size fragments require a level of calculation capable of properly modelling dispersion. The separation between the cation and the π system is another important factor to take into account, especially when the fragments of the cation-π complex are bound (for example, to a protein backbone) and cannot interact at the most favourable distance.

  10. Polymeric microcapsules assembled from a cationic/zwitterionic pair of responsive block copolymer micelles.

    Science.gov (United States)

    Addison, Timothy; Cayre, Olivier J; Biggs, Simon; Armes, Steven P; York, David

    2010-05-04

    Using a layer-by-layer (LbL) approach, this work presents the preparation of hollow microcapsules with a membrane constructed entirely from a cationic/zwitterionic pair of pH-responsive block copolymer micelles. Our previous work with such systems highlighted that, in order to retain the responsive nature of the individual micelles contained within the multilayer membranes, it is important to optimize the conditions required for the selective dissolution of the sacrificial particulate templates. Consequently, here, calcium carbonate particles have been employed as colloidal templates as they can be easily dissolved in aqueous environments with the addition of chelating agents such as ethylenediaminetetraacetic acid (EDTA). Furthermore, the dissolution can be carried out in solutions buffered to a desirable pH so not to adversely affect the pH sensitive micelles forming the capsule membranes. First, we have deposited alternating layers of anionic poly[2-(dimethylamino)ethyl methacrylate-block-poly(2-(diethylamino)ethyl methacrylate)] (PDMA-PDEA) and cationic poly(2-(diethylamino)ethyl)methacrylate-block-poly(methacrylic acid) (PDEA-PMAA) copolymer micelles onto calcium carbonate colloidal templates. After deposition of five micelle bilayers, addition of dilute EDTA solution resulted in dissolution of the calcium carbonate and formation of hollow polymer capsules. The capsules were imaged using atomic force microscopy (AFM) and scanning electron microscopy (SEM), which shows that the micelle/micelle membrane is sufficiently robust to withstand dissolution of the supporting template. Quartz crystal microbalance studies were conducted and provide good evidence that the micelle multilayer structure is retained after EDTA treatment. In addition, a hydrophobic dye was incorporated into the micelle cores prior to adsorption. After dissolution of the particle template, the resulting hollow capsules retained a high concentration of dye, suggesting that the core

  11. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    Science.gov (United States)

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  12. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities.

    Science.gov (United States)

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-11-07

    Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg 2+ and Ca 2+ ) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  13. Ordered microporous layered lanthanide 1,3,5-benzenetriphosphonates pillared with cationic organic molecules.

    Science.gov (United States)

    Araki, Takahiro; Kondo, Atsushi; Maeda, Kazuyuki

    2015-04-13

    Novel isomorphous pillared-layer-type crystalline lanthanide 1,3,5-benzenetriphosphonates were prepared with bpy and dbo as organic pillars (LnBP-bpy and LnBP-dbo; Ln: Ce, Pr, and Nd). Ab initio crystal structure solution using synchrotron X-ray powder diffraction data revealed that the organic pillars do not exist as neutral coordinating ligands but as cationic molecules. Especially the LnBP-dbo phases have ordered interlayer space filled with water molecules between the dbo pillars, and the interlayer water is successfully removed by heating under vacuum with slightly distorted but basically retained pillared layer structures. Microporosity of the materials is confirmed by adsorption of nitrogen, carbon dioxide, and hydrogen gases. Such microporous layered metal phosphonates pillared with cationic molecules should be unprecedented and should offer new strategies to design ordered microporous materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Formation of radical cations of diaryloxadiazoles

    International Nuclear Information System (INIS)

    Helmstreit, W.

    1988-01-01

    The nature of the formation of the radical cation of the 2,5-bis-(p-diethylaminophenyl)-1,3,4-oxadiazole (PC) in liquid n-butyl chloride and acetonitrile has been investigated by observing excited state fluorescence and transient absorption using nanosecond pulse radiolysis and laser flash photolysis. The formation of solute oxonium ions has also been observed. At concentrations -4 mol dm -3 the growth time at which the transient absorption of the radical cation reaches the maximum follows the rise time of the electron pulse ( 2 laser yields the solute radical cation in an acetonitrile solution of 2 x 10 -4 mol dm -3 PC via an electronically excited state. Here, the generation time was smaller than 5 ns. The yield of the cation is increased by addition of CCl 4 . A reaction mechanism is proposed that explains the fast cation formation in terms of an exciplex formed by interaction between an electronically excited state of diaryloxadiazole and the ground state of the solvent. This exciplex yields the solute radical cation. (author)

  15. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu

    2017-04-27

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  16. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu; Tian, Qiwei; Dong, Xinglong; Liu, Zhaohui; Basset, Jean-Marie; Saih, Youssef; Sun, Miao; Xu, Wei; Shaikh, Sohel

    2017-01-01

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  17. Synthesis of modified maghemite nanoparticles and its application for removal of Acridine Orange from aqueous solutions by using Box-Behnken design

    Science.gov (United States)

    Bagheban Shahri, Fatemeh; Niazi, Ali

    2015-12-01

    In this study, sodium dodecyl sulfate-coated maghemite nanoparticles (SDS-coated γ-Fe2O3 NPs), was used for removal of cationic dye Acridine Orange from water samples. The γ-Fe2O3 NPs were synthesized by co-precipitation method and were characterized by scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) to examine their size and magnetic moment. The adsorption experiments were performed using the batch system. The prepared magnetic adsorbent was well dispersed in water and easily separated magnetically from the medium after loaded with adsorbate. Four most important operating variables including initial pH of the solution, dosage of adsorbent, concentration of dye and contact time was studied and optimized by response surface methodology (RSM), involving Box-Behnken design matrix. Twenty-seven experiments were performed to investigate the effect of these parameters on removal of the dye. The results showed that initial pH of the solution was the most effective parameter in comparison with others. Also, experimental parameters were optimized and chose the best conditions by determination of effective factors. The optimized conditions for dye removal were at initial pH 5.1 0.8 g L-1 of adsorbent, 30.0 mg L-1 dye and 43 min adsorption time. The experimental data were analyzed by the Langmuir and Freundlich adsorption models. The maximum predicted adsorption capacities for Acridine Orange was 285.82 mg g-1.

  18. Removal of americium and curium from high-level wastes

    International Nuclear Information System (INIS)

    Bond, W.D.; Leuze, R.E.

    1979-01-01

    The DHDECMP process was demonstrated to give a 99.5% removal of actinides from actual HLLW in small-scale, batch extraction tests. Results from cold tests indicate that it may be possible to carry out the oxalate precipitation step of the OPIX process continuously. About 90% recovery of the trivalent actinides and lanthanides can be achieved in the continuous precipitation. the presence of zirconium impurity in feed solutions to Talspeak process at concentrations of 10 -4 M (0.5% of the Zr in the original waste) affected phase separations but equipment could be operated satisfactory in cold tests. Zirconium concentrations of 10 -3 M seriously affected phase separations and substantial quantities of interfacial cruds were formed. Modest concentrations (0.006 M or less) of H 2 MEHP, a suspected degradation product of HDEHP, did not effect separation factors. The presence of impurities derived from the thermal degradation of DHDECMP did not inhibit the loading of the trivalent actinide and lanthanide elements in the cation exchange chromatographic process for their separation. It appears that the biodentate (DHDECMP) solvent extraction process and the OPIX process are the leading candidate process for the co-removal of trivalent actinide and lanthanide elements from HLLW. The cation exchange chromatography and the Talspeak processes, are the leading candidate processes for the subsequent separation of actinides and lanthanides. The bidentate and cation exchange processes are further along in their development than the other processes and are currently considered the reference processes for the partitioning of Am-Cm from HLLW. 4 figures, 4 tables

  19. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Wanna, Yongyuth, E-mail: yongyuth.wanna@gmail.com [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Nara Machinery Co., Ltd., 2-5-7, Jonan-Jima, Ohta-ku, Tokyo 143-0002 (Japan); Chindaduang, Anon; Tumcharern, Gamolwan [National Nanotechnology Center (NANOTEC), 111 Thailand Science Park, Pahol Yothin Rd, Klong Luang, Pathum Thani 12120 (Thailand); Phromyothin, Darinee [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Porntheerapat, Supanit [NECTEC, National Science and Technology Development Agency (NSTDA), 112 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120 (Thailand); Nukeaw, Jiti [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand); Hofmann, Heirich [Laboratory of Powder Technology, Ecole Polytechnique Fédérale de Lausanne (Switzerland); Pratontep, Sirapat [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520 (Thailand)

    2016-09-15

    Hybrid magnetic nanoparticles based on poly(methylmethacrylate) (PMMA) and super-paramagnetic iron oxide nanopaticles (SPIONs) with selective surface modification has been developed for heavy metal removal by applying external magnetic fields. The nanoparticles were prepared by the emulsion polymerization technique in an aqueous suspension of SPIONs. The hydrolysis of carboxyl functional group was then applied for grafting polyethylene glycol bis(amine)(PEG-bis(amine)) onto the PMMA-coated SPIONs. The morphology, the chemical structure and the magnetic properties of the grafted nanoparticles were investigated. The efficiency of the hybrid nanoparticles for heavy metal removal were conducted on Pb(II), Hg(II), Cu(II) and Co(II) in aqueous solutions.The metal concentration in the solutions after separation by the hybrid nanoparticles was determined by inductively coupled plasma optical emission spectrometer (ICP-OES). The results show the heavy metal uptake ratios of 0.08, 0.04, 0.03, and 0.01 mM per gramme of the grafted SPIONs for Pb(II), Hg(II), Cu(II), and Co(II), respectively. A competitive removal of Cu(II), Pb(II), Co(II) and Hg(II) ions in mixed metal salt solutions has also been studied.The heavy metal removal efficiency of the hybrid nanoparitcles was found to depend on the cation radius, in accordance with capture of metal ions by the amine group. - Highlights: • We synthesis hybrid magnetic nanoparticles for heavy metal removal. • The efficiency of hybrid nanoparticles for heavy metal removal is proposed. • We investigated the characteristic of hybrid nanoparticle. • The heavy metal removal efficiency of the hybrid nanoparticle was founded that depend on the heavy metal cation radius.

  20. Cation-π interaction of the univalent sodium cation with [2.2.2]paracyclophane: Experimental and theoretical study

    Science.gov (United States)

    Makrlík, Emanuel; Sýkora, David; Böhm, Stanislav; Vaňura, Petr

    2018-02-01

    By employing electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent sodium cation (Na+) forms with [2.2.2]paracyclophane (C24H24) the cationic complex [Na(C24H24)]+. Further, applying quantum chemical DFT calculations, the most probable structure of the [Na(C24H24)]+ complex was derived. In the resulting complex with a symmetry very close to C3, the "central" cation Na+, fully located in the cavity of the parent [2.2.2]paracyclophane ligand, is bound to all three benzene rings of [2.2.2]paracyclophane via cation-π interaction. Finally, the interaction energy, E(int), of the considered cation-π complex [Na(C24H24)]+ was found to be -267.3 kJ/mol, confirming the formation of this fascinating complex species as well.

  1. Decontamination of aqueous effluents containing metallic cations or anions by iron oxides under the action of a magnetic field

    International Nuclear Information System (INIS)

    Goncalves, M. A.; Camilo, R. L.; Cohen, V. H.; Yamaura, M.

    1999-01-01

    This work deals with a review of decontamination processes of aqueous effluents containing metallic cations and anions by using iron oxides as adsorber. Conditions to obtain the different iron oxides and adsorption capacities for cations and anions are presented and precipitation and/or adsorption mechanisms studies under the point of view of oxide-interface phenomena are described. Emphasis will be applied to the magnetite combined with inorganic exchanger or liquid extractants which magnetic properties has been used to enhance metals removal. Experimental results of a synthetic magnetite production and its adsorption capacity as a function of a magnetic field intensity are also showed. (authors)

  2. Histidine, lysine, and arginine radical cations: isomer control via the choice of auxiliary ligand (L) in the dissociation of [CuII(L)amino acid]*2+ complexes.

    Science.gov (United States)

    Ke, Yuyong; Zhao, Junfang; Verkerk, Udo H; Hopkinson, Alan C; Siu, K W Michael

    2007-12-27

    Histidine, lysine, and arginine radical cations have been generated through collision-induced dissociation (CID) of complexes [CuII(auxiliary ligand)namino acid]*2+, using tri-, bi-, as well as monodentate auxiliary ligands. On the basis of the observed CID products, the existence of two isomeric amino-acid populations is postulated. The Type 1 radical cations of histidine and lysine, stable on the mass spectrometer time scale, were found to lose water, followed by the loss of carbon monoxide under more energetic CID conditions. The arginine Type 1 radical cation behaved differently, losing dehydroalanine. The Type 2 radical cations were metastable and easily fragmented by the loss of carbon dioxide, effectively preventing direct observation. Type 1 radical cations are proposed to result from neutral (canonical) amino-acid coordination, whereas Type 2 radical cations are from zwitterionic amino-acid coordination to copper in the complex. The ratio of Type 1/Type 2 ions was found to be dependent on the auxiliary ligand, providing a method of controlling which radical cation would be formed primarily. Density functional calculations at B3LYP/6-311++G(d,p) have been used to determine the relative energies of five His*+ isomers. Barriers against interconversion between the isomers and against fragmentation have been calculated, giving insight as to why the Type 1 ions are stable, while only fragmentation products of the Type 2 ions are observable under CID conditions.

  3. Cations form sequence selective motifs within DNA grooves via a combination of cation-pi and ion-dipole/hydrogen bond interactions.

    Science.gov (United States)

    Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori

    2013-01-01

    The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl⁺) and the polarized first hydration shell waters of divalent cations (Mg²⁺, Ca²⁺) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.

  4. Isomerization of propargyl cation to cyclopropenyl cation ...

    Indian Academy of Sciences (India)

    step) for isomeri- zation of the linear propargyl cation to ..... C3, C4 and C5. The ZPE corrections in each case are derived from the. B3LYP calculations. ..... the converse of which gives the relative capacity of the. LPD's to stabilize TS6 with respect ...

  5. Cationic liposome-mediated gene transfer to tumor cells in vitro and in vivo.

    Science.gov (United States)

    Son, K; Sorgi, F; Gao, X; Huang, L

    1997-01-01

    Development of safe and effective technology for delivering functional DNA into cells in an intact organism is crucial to broad applications of gene therapy to human disease. Both viral and nonviral vectors have been developed. Of the technologies currently being studied, liposomal delivery system is particularly attractive. Cationic liposome-mediated gene transfection (lipofection), a relatively new technique pioneered by Felgner and coworkers (1), was highly efficient for transfecting cells in culture. The liposomes were composed of an equimolar mixture of a synthetic cationic lipid N-[1-(2,3,-dioleyloxy)propyl]-N,N,N,-trimethylammonium chloride (DOTMA) and a helper lipid dioleoyl-phosphatidylethanolamine (DOPE) Fig. 1). The DOTMA/DOPE mixture (Lipofectin) forms complexes with DNA by charge interaction upon mixing at room temperature. Other catronic lipids are DOTAP, LipofectAMINE, Lipofectam, and DC-chol. The DOTAP is a diester analog of DOTMA and commercially available. LipofectAMINE and Lipofectam are polycationic lipids with a spermine head group that show increased frequency and activity of eukaryotic cell transfection (2,3). 3β-[N-(N',N'-dimethyaminoaminoethane) carbamoyl] cholesterol (DC-chol) (Fig. 1), a cationic cholesterol derivative, was introduced by Gao and Huang (4) and is routinely used in our laboratory. The DC-chol is now commercially available but can be easily synthesized with a single-step reaction from N,N-dimethylethylenediamine and cholesterol chloroformate (4), and improves the efficiency of transfection with minimal toxicity.Liposomes prepared with DC-chol and DOPE (3∶2 molar ratio) are stable at 4°C for at least 1 yr (unpublished data).

  6. Removal of nitrate by zero-valent iron and pillared bentonite

    International Nuclear Information System (INIS)

    Li Jianfa; Li Yimin; Meng Qingling

    2010-01-01

    The pillared bentonite prepared by intercalating poly(hydroxo Al(III)) cations into bentonite interlayers was used together with Fe(0) for removing nitrate in column experiments. The obvious synergetic effect on nitrate removal was exhibited through uniformly mixing the pillared bentonite with Fe(0). In such a mixing manner, the nitrate was 100% removed, and the removal efficiency was much higher than the simple summation of adsorption by the pillared bentonite and reduction by Fe(0). The influencing factors such as bentonite type, amount of the pillared bentonite and initial pH of nitrate solutions were investigated. In this uniform mixture, the pillared bentonite could adsorb nitrate ions, and facilitated the mass transfer of nitrate onto Fe(0) surface, then accelerated the nitrate reduction. The pillared bentonite could also act as the proton-donor, and helped to keep the complete nitrate removal for at least 10 h even when the nitrate solution was fed at nearly neutral pH.

  7. Study on the removal of fluoride from drinking water and effluents

    International Nuclear Information System (INIS)

    Charbel, M.Y.

    1990-01-01

    A study for removal of excess fluoride from drinking water and aqueous effluents from nuclear power plants is presented. Inorganic and organic ion exchangers were used for this purpose: 1. Alumina microspheres form, granular alumina and zirconium oxide (powder or granular form with the aid of agglutinants) were experimented. 2. Strong cation exchange resins as Al-III, Fe-III, Zr-IV, RE-III, Ca-II and Mg-II salt form were examined. 3. Retention on hydrous oxide of Al-III, Fe-III, Zr-IV and RE-III supported on strong cation ion exchanger was performed. 4. Strong anion exchange resins in the form of OH sup(-), Cl sup(-), NO3 sup(-), CO3 sup(2-), SO4 sup(2-), ClO4 sup(-) and Zr(SO4)3 sup(2-) were examined. For the experiments pure fluoride solutions or dilute solutions containing the cations of Fe-III, Ca-II, Mn-II, Cu-II, Al-III, Cd-II and U-VI were used. Cation exchange resin loaded with zirconium, anion exchange resin as hydroxyl and zirconium sulfate complex form exhibited very good results, but the last performed best and we suggest it for industrial application. (author)

  8. Luminescent sulfides of monovalent and trivalent cations

    International Nuclear Information System (INIS)

    1975-01-01

    The invention discloses a family of luminescent materials or phosphors having a rhombohedral crystal structure and consisting essentially of a mixed host sulfide of at least one monovalent host cation and at least one trivalent host cation, and containing, for each mole of phosphor, 0.0005 to 0.05 mole of at least one activating cation. The monovalent host cations may be Na, K or Rb and Cs. The trivalent host cations may be Gd, La, Lu, Sc and Y. The activating cations may be one or more of trivalent As, Bi, Ce, Dy, Er, Pr, Sb, Sm, Tb and Tm; divalent Lu, Mn, Pb and Sn; and monovalent Ag, Cu and Tl. The novel phosphors may be used in devices to convert electron-beam, ultraviolet or x-ray energy to light in the visible spectrum. Such energy conversion can be employed for example in fluoroscopic screens, and in viewing screens of cathode-ray tubes and other electron tubes

  9. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    Science.gov (United States)

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  10. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    International Nuclear Information System (INIS)

    Bauschlicher, Charles W. Jr.; Ricca, Alessandra

    2013-01-01

    The loss of one hydrogen from C 96 H 24 does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare

  11. Radiochemical study of isomerization of free butyl cations

    International Nuclear Information System (INIS)

    Sinotova, E.N.; Nefedov, V.D.; Skorokhodov, S.S.; Arkhipov, Yu.M.

    1987-01-01

    Ion-molecular reactions of free butyl cations, generated by nuclear chemical method, with carbon monoxide containing small quantities of ethanol vapors are studied. Carbon monoxide was used to fix instable butyl cations in the form of corresponding acyl ions. Ester of α-methyl-butyric acid appears to be the only product of free butyl cation interaction with carbon monoxide in the presence of ethanol vapors. That means, that up to the moment of butyl cation reaction with carbon monoxide, the primary butyl cations are almost completely isomerized into secondary in agreement with results of previous investigations. This allows one to study free butyl cation isomerization process according to ion-molecular reaction product isomeric composition

  12. Gas phase chemistry of N-benzylbenzamides with silver(I) cations: characterization of benzylsilver cation.

    Science.gov (United States)

    Sun, Hezhi; Jin, Zhe; Quan, Hong; Sun, Cuirong; Pan, Yuanjiang

    2015-03-07

    The benzylsilver cation which emerges from the collisional dissociation of silver(I)-N-benzylbenzamide complexes was characterized by deuterium-labeling experiments, theoretical calculations, breakdown curves and substituent effects. The nucleophilic attack of the carbonyl oxygen on an α-hydrogen results in the generation of the benzylsilver cation, which is competitive to the AgH loss with the α-hydrogen.

  13. Synthesis of modified maghemite nanoparticles and its application for removal of Acridine Orange from aqueous solutions by using Box-Behnken design

    International Nuclear Information System (INIS)

    Bagheban Shahri, Fatemeh; Niazi, Ali

    2015-01-01

    In this study, sodium dodecyl sulfate-coated maghemite nanoparticles (SDS-coated γ-Fe 2 O 3 NPs), was used for removal of cationic dye Acridine Orange from water samples. The γ-Fe 2 O 3 NPs were synthesized by co-precipitation method and were characterized by scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) to examine their size and magnetic moment. The adsorption experiments were performed using the batch system. The prepared magnetic adsorbent was well dispersed in water and easily separated magnetically from the medium after loaded with adsorbate. Four most important operating variables including initial pH of the solution, dosage of adsorbent, concentration of dye and contact time was studied and optimized by response surface methodology (RSM), involving Box-Behnken design matrix. Twenty-seven experiments were performed to investigate the effect of these parameters on removal of the dye. The results showed that initial pH of the solution was the most effective parameter in comparison with others. Also, experimental parameters were optimized and chose the best conditions by determination of effective factors. The optimized conditions for dye removal were at initial pH 5.1 0.8 g L −1 of adsorbent, 30.0 mg L −1 dye and 43 min adsorption time. The experimental data were analyzed by the Langmuir and Freundlich adsorption models. The maximum predicted adsorption capacities for Acridine Orange was 285.82 mg g −1 . - Highlights: • Synthesis of maghemite as magnetic nanoparticle by co-precipitation. • Simple and fast removal of Acridine Orange by MMNPs. • Effect of parameters are optimized by Box-Behnken design

  14. Synthesis of modified maghemite nanoparticles and its application for removal of Acridine Orange from aqueous solutions by using Box-Behnken design

    Energy Technology Data Exchange (ETDEWEB)

    Bagheban Shahri, Fatemeh; Niazi, Ali, E-mail: a-niazi@iau-arak.ac.ir

    2015-12-15

    In this study, sodium dodecyl sulfate-coated maghemite nanoparticles (SDS-coated γ-Fe{sub 2}O{sub 3} NPs), was used for removal of cationic dye Acridine Orange from water samples. The γ-Fe{sub 2}O{sub 3} NPs were synthesized by co-precipitation method and were characterized by scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) to examine their size and magnetic moment. The adsorption experiments were performed using the batch system. The prepared magnetic adsorbent was well dispersed in water and easily separated magnetically from the medium after loaded with adsorbate. Four most important operating variables including initial pH of the solution, dosage of adsorbent, concentration of dye and contact time was studied and optimized by response surface methodology (RSM), involving Box-Behnken design matrix. Twenty-seven experiments were performed to investigate the effect of these parameters on removal of the dye. The results showed that initial pH of the solution was the most effective parameter in comparison with others. Also, experimental parameters were optimized and chose the best conditions by determination of effective factors. The optimized conditions for dye removal were at initial pH 5.1 0.8 g L{sup −1} of adsorbent, 30.0 mg L{sup −1} dye and 43 min adsorption time. The experimental data were analyzed by the Langmuir and Freundlich adsorption models. The maximum predicted adsorption capacities for Acridine Orange was 285.82 mg g{sup −1}. - Highlights: • Synthesis of maghemite as magnetic nanoparticle by co-precipitation. • Simple and fast removal of Acridine Orange by MMNPs. • Effect of parameters are optimized by Box-Behnken design.

  15. Waste water treatment plants with removal of nitrogens and phosphorous; Planta de tratamiento de aguas residuales con eliminacion de fosforo y nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, H.

    1996-10-01

    Wherever waste water is discharged into a receiving water of a sensitive area the treatment efficiency has to be increased beyond the removal of easily biodegradable carbonaceous compounds (BOD{sub 5}). The main requirements are then the removal of nitrogens and phosphorous compounds in order to prevent eutrophication in the receiving water. With these requirements a much better removal of carbonaceous matter is achieved too. One of this prerequisites for nitrogen removal is the nitrification process wich removes ammonia toxicity from the waste water. The removal of ammonia from the waste water can easily be monitored by the treatment plant operators and can be classified as the best indicator for a stable high treatment efficiency for every waste water.

  16. Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters.

    Science.gov (United States)

    Balea, Ana; Monte, M Concepción; de la Fuente, Elena; Negro, Carlos; Blanco, Ángeles

    2017-02-01

    Water-based or flexographic inks in paper and plastic industries are more environmentally favourable than organic solvent-based inks. However, their use also creates new challenges because they remain dissolved in water and alter the recycling process. Conventional deinking technologies such as flotation processes do not effectively remove them. Adsorption, coagulation/flocculation, biological and membrane processes are either expensive or have negative health impacts, making the development of alternative methods necessary. Cellulose nanofibers (CNF) are biodegradable, and their structural and mechanical properties are useful for wastewater treatment. TEMPO-oxidised CNF have been evaluated for the decolourisation of wastewaters that contained copper phthalocyanine blue, carbon black and diarlyide yellow pigments. CNF in combination with a cationic polyacrylamide (cPAM) has also been tested. Jar-test methodology was used to evaluate the efficiency of the different treatments and cationic/anionic demand, turbidity and ink concentration in waters were measured. Results show that dual-component system for ink removal has a high potential as an alternative bio-based adsorbent for the removal of water-based inks. In addition, experiments varying CNF and cPAM concentrations were performed to optimise the ink-removal process. Ink concentration reductions of 100%, 87.5% and 83.3% were achieved for copper phthalocyanine blue, carbon black and diarlyide yellow pigments, respectively. Flocculation studies carried out show the decolourisation mechanism during the dual-component treatment of wastewaters containing water-based inks.

  17. Removal method of fluorescent dyes as pretreatment for measurement of major ion concentrations and hydrogen and oxygen isotopic ratios

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Hasegawa, Takuma; Kashiwaya, Koki; Kodama, Hiroki; Miyajima, Tohru

    2011-01-01

    The major ion concentration and isotope ratio of hydrogen and oxygen can provide important information for migration of groundwater. Sometimes, quantitative estimation of these chemical and isotopic characteristics of solution is necessary for groundwater containing fluorescent dyes, which are used in drilling borehole and tracer experiments. However, sometimes correct estimation is disturbed by dyes and they become a cause of troubles for measurement equipments. Thus development of method to remove dyes is required so that the characteristics of groundwater can be estimated without the negative effect of dyes on measurement or equipments. In this study, removal of four representative dyes (Uranin, Eosin, Naphthalenesulfonic acid sodium(NAP) and Amino G acid potassium salt (AG)) was investigated. Uranin and Eosin were found to be removed by non-ionic synthetic resin: HP2MG. 99.99% of the dyes were removed from initial solutions containing dyes with 10 mg/L after contact with resin, while the contact had little effect on ion concentrations and oxygen and hydrogen isotope ratios. Thus the chemical and isotopic characteristics of groundwater samples containing Uranin and Eosin can be obtained by using the HP2MG resin. On the other hand, the NAP and AG were found to be difficult to remove by the HP2MG resin but they were able to be removed by anion exchange resin (Dowex 1x8). Though contact of solution with Dowex 1x8 did not affect cation concentrations and hydrogen and oxygen isotope ratios, anion concentrations were changed by the contact. Therefore the Dowex 1x8 is only applicable to estimation of the cation concentrations and isotope ratio of hydrogen and oxygen. When both anion and cation concentrations from the samples were necessary, Uranin or Eosin were recommended as a tracer in drilling or tracer experiments. (author)

  18. Effect of operating conditions in soil aquifer treatment on the removals of pharmaceuticals and personal care products

    Energy Technology Data Exchange (ETDEWEB)

    He, Kai, E-mail: hekai@urban.env.kyoto-u.ac.jp; Echigo, Shinya; Itoh, Sadahiko

    2016-09-15

    Soil aquifer treatment (SAT) is an alternative advanced treatment for wastewater reclamation, and it has the potential to control micropollutants including pharmaceuticals and personal care products (PPCPs). However, the relationship of operating conditions in SAT and removals of micropollutants was not clear. In this study, the effects of operating conditions on the removals of PPCPs were evaluated by using lab-scale columns and plant pilot-scale reactors under different operating conditions. Firstly, weathered granite soil (WGS), standard sand (SAND) and Toyoura standard sand (TS) have different soil characteristics such as total organic carbon (TOC) and cation exchange capacity (CEC). In the columns with these packing materials, the removals of carboxylic analgesics and antilipidemics were effective regardless packing materials. The removals of antibiotics were more effective in WGS than in TS and SAND, indicating high TOC and CEC enhance the sorption in SAT. Secondly, with the extension of hydraulic retention time (HRT), the removals of sulfamethoxazole, acetaminophen, crotamiton, and antipyrine were improved in WGS columns, and adaptable biodegradation for moderately removable PPCPs was formed. Thirdly, the removal efficiencies of sulfamethoxazole and crotamiton were higher in the WGS column under vadose condition than in the WGS column under saturated condition, because of aerobic condition in WGS column under vadose condition. Though long HRT and vadose condition had positive influence on the removals of several PPCPs such as sulfamethoxazole, WGS column with an HRT of 7 days under saturated condition removed most PPCPs. - Highlights: • Soil organic matter and cation exchange capacity enhanced the removals of antibiotics in SAT. • A hydraulic retention time (HRT) of 7 days was sufficient for the removals of most PPCPs. • The removals of most selected PPCPs were similar under vadose and saturated conditions. • Vadose condition contributed to the

  19. Investigations on complexing cation exchangers and their use for trace analysis in natural waters

    International Nuclear Information System (INIS)

    Lang, H.

    1991-12-01

    The practicability of cation preconcentrations from natural waters by use of EDTrA- and 5-s-oxine- celluloses has been studied. For that purpose the protonation constants as well as the complexation capacities were determined by use of acid/base titrations. In additional titration experiments the complex stability constants for Cu 2+ , Mn 2+ , Co 2+ , Ni 2+ and Ca 2+ were determined examplarely. The interpretation of the experiments was performed using an optimised fit between calculated and experimentally determined pH-titration curves. Calculations have been done by the computer code 'MINEQL'. The determined stability constants are in the same order of magnitude as those given in literature for the water soluble complexes of EDTA, NTA or 5-s-oxine. The preconcentration of cations from natural water samples occurs in accordance with the theoretical predictions. Not ignorable disturbances appear for cations forming hydroxides or oxides in neutral or weakly acidic solutions. By use of radioactive isotopes for Sn 2+ , Zn 4+ and Nb 5+ it can be shown that those ions may form particles or colloids in natural waters. These particles will be filtered in the columns packed with the celluloses and can hardly be removed from there. (author)

  20. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter.

    Science.gov (United States)

    Schophuizen, Carolien M S; Wilmer, Martijn J; Jansen, Jitske; Gustavsson, Lena; Hilgendorf, Constanze; Hoenderop, Joost G J; van den Heuvel, Lambert P; Masereeuw, Rosalinde

    2013-12-01

    Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 μM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 μM ASP(+), which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 μM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.

  1. Electronic spectra of astrophysically interesting cations

    Energy Technology Data Exchange (ETDEWEB)

    Maier, John P., E-mail: j.p.maier@unibas.ch; Rice, Corey A., E-mail: j.p.maier@unibas.ch; Mazzotti, Fabio J., E-mail: j.p.maier@unibas.ch; Johnson, Anatoly, E-mail: j.p.maier@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstr. 80, CH-4056 Basel (Switzerland)

    2015-01-22

    The electronic spectra of polyacetylene cations were recorded at 20K in the laboratory in an ion trap instrument. These can then be compared with diffuse interstellar band (DIB) absorptions. Examination of recently published data shows that the attribution of a weak DIB at ∼506.9 nm to diacetylene cation is not justified. Study of the higher excited electronic states of polyacetylene cations shows that their widths can still be sufficiently narrow for consideration as DIB carriers.

  2. How the cation-cation π-π stacking occurs: A theoretical investigation into ionic clusters of imidazolium.

    Science.gov (United States)

    Gao, Wei; Tian, Yong; Xuan, Xiaopeng

    2015-07-01

    The cation-cation π-π stacking is uncommon but it is essential for the understanding of some supramolecular structures. We explore theoretically the nature of non-covalent interaction occurring in the stacked structure within modeled clusters of 1,3-dimethylimidazolium and halide. The evidences of the energy decomposition analysis (EDA) and reduced density gradient (RDG) approach are different from those of common π-π interaction. Isosurfaces with RDG also illustrate the strength of the titled π-π interaction and their region. Additionally, we find that the occurrence of this interaction is attributed to a few C-H···X interactions, as depicted using atom in molecule (AIM) method. This work presents a clear picture of the typical cation-cation π-π interaction and can serve to advance the understanding of this uncommon interaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. [Routine oral examinations and specific after-care for removable partial dentures].

    Science.gov (United States)

    de Baat, C; Witter, D J; Keltjens, H M A M; Creugers, N H J

    2011-01-01

    Following treatment with a removable partial denture, routine oral examinations are required to stabilize the existing condition in a sustainable way and to make possible the timely treatment of anomalies which have appeared. In cases of problems assessed during a routine oral examination in relation to the removable partial dentures, maintenance, restorative and prosthetic treatment may be indicated. Maintenance treatments are indicated for small and easily retrievable alterations. In removable partial denture treatment, adequate space between prepared tooth and denture is essential. Possible prosthetic treatments of a removable partial denture are relining, rebasing, improving or renewing the maxillomandibular relation, repairment, and extension.

  4. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    Science.gov (United States)

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Cation depletion by the sodium pump in red cells with pathologic cation leaks. Sickle cells and xerocytes.

    OpenAIRE

    Joiner, C H; Platt, O S; Lux, S E

    1986-01-01

    The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blo...

  6. Anchoring cationic amphiphiles for nucleotide delivery: significance of DNA release from cationic liposomes for transfection.

    Science.gov (United States)

    Hirashima, Naohide; Minatani, Kazuhiro; Hattori, Yoshifumi; Ohwada, Tomohiko; Nakanishi, Mamoru

    2007-06-01

    We have designed and synthesized lithocholic acid-based cationic amphiphile molecules as components of cationic liposomes for gene transfection (lipofection). To study the relationship between the molecular structures of those amphiphilic molecules, particularly the extended hydrophobic appendant (anchor) at the 3-hydroxyl group, and transfection efficiency, we synthesized several lithocholic and isolithocholic acid derivatives, and examined their transfection efficiency. We also compared the physico-chemical properties of cationic liposomes prepared from these derivatives. We found that isolithocholic acid derivatives exhibit higher transfection efficiency than the corresponding lithocholic acid derivatives. This result indicates that the orientation and extension of hydrophobic regions influence the gene transfection process. Isolithocholic acid derivatives showed a high ability to encapsulate DNA in a compact liposome-DNA complex and to protect it from enzymatic degradation. Isolithocholic acid derivatives also facilitated the release of DNA from the liposome-DNA complex, which is a crucial step for DNA entry into the nucleus. Our results show that the transfection efficiency is directly influenced by the ability of the liposome complex to release DNA, rather than by the DNA-encapsulating ability. Molecular modeling revealed that isolithocholic acid derivatives take relatively extended conformations, while the lithocholic acid derivatives take folded structures. Thus, the efficiency of release of DNA from cationic liposomes in the cytoplasm, which contributes to high transfection efficiency, appears to be dependent upon the molecular shape of the cationic amphiphiles.

  7. Obtention of the cation exchange capacity of a natural kaolinite with radioactive tracers

    International Nuclear Information System (INIS)

    Uribe I, A.; Badillo A, V.E.; Monroy G, F.

    2005-01-01

    One of the more used techniques for the elimination of the heavy metals present in water systems is to use adsorbent mineral phases like zeolites and clays, among others. The clays are able to exchange easily the fixed ions in the external surface of its crystals or well the ions present in the interlaminar spaces of the structures, for other existent ones in the encircling aqueous solutions for that the Cation exchange capacity (CIC) is defined as the sum of all the cations exchange that a mineral can possess independent to the physicochemical conditions. The CIC is equal to the measure of the total of negative charges of the mineral by mass of the solid (meq/g). In this investigation work, the value of the CIC equal to 2.5 meq/100 g is obtained, of a natural kaolinite from the State of Hidalgo studying the retention of the sodium in the kaolinite with the aid of the radioactive isotope 24 Na and of the selective electrodes technique, making vary the pH value. So is experimentally demonstrated that the CIC is an intrinsic property of the mineral independent of the pH value of the solution and of the charges origin. (Author)

  8. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    and the expulsion of anions; a broad anodic peak centered at ca. - 0.5 V representing the expulsion of cations; and a second broad peak at +0.2 to +0.5 V corresponding to anions being inserted. Although the motion of cations is the most important, as expected, there is a significant anion contribution, thereby...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  9. Identifi cation of Sectarianism

    Directory of Open Access Journals (Sweden)

    Martinovich Vladimir

    2016-03-01

    Full Text Available «New religious movements and society» is traditionally one of the most sophisticated topics in the area of new religions studies. Its problem field is so huge that up to now by far not all important research themes where even touched by scientists from all over the world. The problem of the process of the identification of sectarianism by diff erent societal institutions is one of such untouched themes that is taken as the main subject of this article. This process by itself is an inseparable part of the every societal deliberate reaction to the very existence of unconventional religiosity, its unstructured and mainly structured types. The focal point of the article is step-by-step analysis of the general structure elements of the process of the identification of sectarianism without any reference to the specific time and place of its flow. Special attention is paid to the analysis of the subjects of the identification of sectarianism, to the criteria for religious groups to be qualified as new religious movements, and to the specific features of the process of documents filtration. The causes of selective perception of sectarianism are disclosed. Some main consequences and unpredictable outcomes of the process of the identification of sectarianism are described.

  10. Cation radicals of xanthophylls.

    Science.gov (United States)

    Galinato, Mary Grace I; Niedzwiedzki, Dariusz; Deal, Cailin; Birge, Robert R; Frank, Harry A

    2007-10-01

    Carotenes and xanthophylls are well known to act as electron donors in redox processes. This ability is thought to be associated with the inhibition of oxidative reactions in reaction centers and light-harvesting pigment-protein complexes of photosystem II (PSII). In this work, cation radicals of neoxanthin, violaxanthin, lutein, zeaxanthin, beta-cryptoxanthin, beta-carotene, and lycopene were generated in solution using ferric chloride as an oxidant and then studied by absorption spectroscopy. The investigation provides a view toward understanding the molecular features that determine the spectral properties of cation radicals of carotenoids. The absorption spectral data reveal a shift to longer wavelength with increasing pi-chain length. However, zeaxanthin and beta-cryptoxanthin exhibit cation radical spectra blue-shifted compared to that of beta-carotene, despite all of these molecules having 11 conjugated carbon-carbon double bonds. CIS molecular orbital theory quantum computations interpret this effect as due to the hydroxyl groups in the terminal rings selectively stabilizing the highest occupied molecular orbitals of preferentially populated s-trans-isomers. The data are expected to be useful in the analysis of spectral results from PSII pigment-protein complexes seeking to understand the role of carotene and xanthophyll cation radicals in regulating excited state energy flow, in protecting PSII reaction centers against photoinhibition, and in dissipating excess light energy absorbed by photosynthetic organisms but not used for photosynthesis.

  11. Simultaneous precipitation of carbonato complexes of uranium and plutonium with cationic surfactants

    International Nuclear Information System (INIS)

    Heckmann, K.; Strnad, J.; Huber, K.

    1992-01-01

    The proposed method allows to separate Uranium, Thorium and Cerium from carbonate solutions and the further processing of these metals to mixed oxides. The separation can be divided into three steps: 1. Precipitation of the metals with a 10-fold surplus of carbonate and a 5-fold surplus of a cationic surfactant. 2. Thermal decomposition of the precipitates in air at 600 C. 3. Reduction of U(VI) to U(IV) with CO at 500 C. Mixed oxides in any ratio are formed in this way. This is possible due to the coprecipitation of both metals. Comparing the standard potentials it is clear that Ce(IV) is more easily reduced that Pu(IV). Therefore, the chance on the formation of U/Pu mixed oxides by this method is quite good. (orig.) [de

  12. Comparative analysis of cation/proton antiporter superfamily in plants.

    Science.gov (United States)

    Ye, Chu-Yu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun

    2013-06-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na(+)/H(+) exchangers, K(+) efflux antiporters, and cation/H(+) exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H(+) exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Radioimmunoassay of human eosinophil cationic protein

    International Nuclear Information System (INIS)

    Venge, P.; Roxin, L.E.; Olsson, I.

    1977-01-01

    A radioimmunosorbent assay has been developed which allows the detection in serum of a cationic protein derived from eosinophil granulocytes. In 34 healthy individuals the mean level was 31 μg/l. with a range of 5 to 55 μg/l. The serum concentration of 'eosinophil' cationic protein was correlated (P<0.001) to the number of eosinophil granulocytes in peripheral blood. Quantitiation of 'eosinophil' cationic protein in serum might be useful in the study of eosinophil granulocyte turnover and function in vivo. (author)

  14. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    Science.gov (United States)

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fluoride Removal from Water by Reverse Osmosis Membrane

    Directory of Open Access Journals (Sweden)

    Sara Namavar

    2013-09-01

    Full Text Available As fluoride concentration in drinking water is one of the effective parameters in human health, finding the way to remove excess amount of fluoride from drinking water is very important in water supply projects. Today, with developing in technology and finding new methods, the use of membrane technology for producing fresh water get improved. In this study the efficiency of reverse osmosis method to remove fluoride from water was investigated. Initial concentration of fluoride, sulfate and electrical conductivity in feed water and the effect of associated cation with fluoride ion were studied. All tests adapted from “Standard Methods for Examination of Water and Wastewater”. Determination of fluoride concentration was done according the standard SPANDS method by using a spectrophotometer DR/5000. Obtain results show that with increasing in concentration of fluoride and sulfate and electrical conductivity in feed water the efficiency of RO membrane to remove fluoride reduced. In addition, this efficiency for CaF2 was higher than NaF.

  16. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    Energy Technology Data Exchange (ETDEWEB)

    Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ricca, Alessandra, E-mail: Charles.W.Bauschlicher@nasa.gov, E-mail: Alessandra.Ricca-1@nasa.gov [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States)

    2013-10-20

    The loss of one hydrogen from C{sub 96}H{sub 24} does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare.

  17. Copper removal and nickel for exchange cationic with a natural zeolite

    International Nuclear Information System (INIS)

    Estupinan, Arnoldy; Sarmiento, Diego; Belalcazar de Galvis, Ana Maria

    1998-01-01

    Natural zeolite clinoptilolite, was used to remove copper and nickel from waste waters of a galvanotechnical company. Exchange capacity determined for the zeolite after its transformation to homoionic sodium form, was 0.794 meq/g for copper and 0.447 meq/g for nickel. There were made batch and column experiments, reaching the last one a better approach to the equilibrium. From the degeneration essays, the sodical zeolite concentrates the copper in the waste waters to 23.5 up times the level found for the acid rinsing waters; it shows its potential use in treatment of these waste, because its effectiveness and low cost

  18. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2018-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope of the...

  19. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, C.R. [Environmental Protection Agency, Edison, NJ (United States); Vaccaro, G. [Science Applications International Corp., Hackensack, NJ (United States)

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  20. Uranium isotope separation using styrene cation exchangers

    International Nuclear Information System (INIS)

    Kahovec, J.

    1980-01-01

    The separation of 235 U and 238 U isotopes is carried out either by simple isotope exchange in the system uranium-cation exchanger (sulphonated styrene divinylbenzene resin), or by combination of isotope exchange in a uranium-cation exchanger (Dowex 50, Amberlite IR-120) system and a chemical reaction. A review is presented of elution agents used, the degree of cation exchanger cross-linking, columns length, and 235 U enrichment. The results are described of the isotope effect study in a U(IV)-U(VI)-cation exchanger system conducted by Japanese and Romanian authors (isotope exchange kinetics, frontal analysis, reverse (indirect) frontal analysis). (H.S.)

  1. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Ozone direct oxidation kinetics of Cationic Red X-GRL in aqueous solution

    International Nuclear Information System (INIS)

    Zhao Weirong; Wu Zhongbiao; Wang Dahui

    2006-01-01

    This study characterizes the ozonation of the azo dye Cationic Red X-GRL in the presence of TBA (tert-butyl alcohol), a scavenger of hydroxyl radical, in a bubble column reactor. Effects of oxygen flow rate, temperature, initial dye concentration, and pH were investigated through a series of batch tests. Generally, enhancing oxygen flow rate enhanced the removal of dye. However, there was a minimum removal of dye at temperature 298 K. Increasing or decreasing temperature enhanced the degradation of dye. Increasing the initial dye concentration decreased the removal of dye while the ozonation rate increased. The rate constants and the kinetic regime of the reaction between ozone and dye were obtained by fitting the experimental data to a kinetics model based on a second order overall reaction, first order with respect to both ozone and dye. The Hatta numbers of the reactions were between 0.039 and 0.083, which indicated that the reaction occurred in the liquid bulk. The direct oxidation rate constant k D was correlated with temperature by a modified Arrhenius Equation with an activation energy E a of 15.538 kJ mol -1

  3. First-principles calculation study of mechanism of cation adsorption selectivity of zeolites. A guideline for effective removal of radioactive cesium

    International Nuclear Information System (INIS)

    Nakamura, Hiroki; Okumura, Masahiko; Machida, Masahiko

    2013-01-01

    Zeolites have attracted attention in the reprocessing of radioactive nuclear waste because of their high selective affinity for radioisotopes of Cs. Very recently, their useful properties have been widely utilized in decontamination after the accident at the Fukushima Daiichi Nuclear Power Plants. In this study, we study the high selectivity in the Cs adsorption of zeolites using first-principles calculations and clarify the mechanism of the cation selectivity of zeolites. We obtain energy surfaces on all capture locations for Cs/Na ions inside the micropores of a zeolite, 'mordenite', and find three crucial conditions for the highly ion-selective exchange of Na for Cs: 1) micropores with a radius of ∼3 Å, 2) a moderate Al/Si ratio, and 3) a uniform distribution of Al atoms around each micropore. These insights suggest a guideline for developing zeolites with high Cs selectivity and for enhancing the cation selectivity in more general situations. (author)

  4. Nanostructured polypyrrole for automated and electrochemically controlled in-tube solid-phase microextraction of cationic nitrogen compounds

    International Nuclear Information System (INIS)

    Asiabi, Hamid; Yamini, Yadollah; Rezaei, Fatemeh; Seidi, Shahram

    2015-01-01

    The authors describe an efficient method for microextraction and preconcentration of trace quantities of cationic nitrogen compounds, specifically of anilines. It relies on a combination of electrochemically controlled solid-phase microextraction and on-line in-tube solid-phase microextraction (SPME) using polypyrrole-coated capillaries. Nanostructured polypyrrole was electrically deposited on the inner surface of a stainless steel tube and used as the extraction phase. It also acts as a polypyrrole electrode that was used as a cation exchanger, and a platinum electrode that was used as the anode. The solution to be extracted is passed over the inner surface of the polypyrrole electrode, upon which cations are extracted by applying a negative potential under flow conditions. This method represents an ideal technique for SPME of protonated anilines because it is fast, easily automated, solvent-free, and inexpensive. Under optimal conditions, the limits of detection are in the 0.10–0.30 μg L -1 range. The method works in the 0.10 to 300 μg L -1 concentration range. The inter- and intra-assay precisions (RSD%; for n = 3) range from 5.1 to 7.5 % and from 4.7 to 6.0 % at the concentration levels of 2, 10 and 20 μg L -1 , respectively. The EC-in-tube SPME method was successfully applied to the analysis of methyl-, 4-chloro-, 3-chloro and 3,4-dichloroanilines in (spiked) water samples. (author)

  5. Cationic mobility in polystyrene sulfone exchangers - Application to the elution of a cation on an exchange column

    International Nuclear Information System (INIS)

    Menin, Jean-Pierre

    1969-01-01

    The aim of this work is to improve elutions and separations carried out on inorganic exchangers by selective electromigration of the ionic species to be displaced. To do this, it has been found indispensable to make a fundamental study of the mobility of cations in exchangers. As the field for this research we have chosen those organic exchangers whose structure and behaviour with respect to ion-exchange are much better known that in the case of their inorganic equivalents. We have related the idea of the equivalent conductivity to that of the cation mobility in the exchanger, and this has entailed determining the specific conductivity of the exchanger and the cation concentration in the resin. The results obtained have allowed us to draw up a hypothesis concerning the cation migration mechanism in the exchanger. The third part of our work has been the application of the preceding results to an operation on an ion-exchange column, viz. the elution by an acid solution of a single fixed ion, magnesium or strontium. This work has enabled us to show that the electromigration of a cation during its elution can markedly accelerate or retard this elution. (author) [fr

  6. Selective alkylation by photogenerated aryl and vinyl cation

    NARCIS (Netherlands)

    Slegt, Micha

    2006-01-01

    Seven para-substituted phenyl cations and the parent phenyl cation were prepared from iodonium salt precursors. Product studies revealed remarkable chemoselectivity and regioselectivity that could be related to the spin multiplicity of the cations. Also an universal method to fingerprint singlet and

  7. (4 + 3) Cycloadditions of Nitrogen-Stabilized Oxyallyl Cations

    Science.gov (United States)

    Lohse, Andrew G.; Hsung, Richard P.

    2011-01-01

    The use of heteroatom-substituted oxyallyl cations in (4 + 3) cycloadditions has had a tremendous impact on the development of cycloaddition chemistry. Extensive efforts have been exerted toward investigating the effect of oxygen-, sulfur-, and halogen-substituents on the reactivity of oxyallyl cations. Most recently, the use of nitrogen-stabilized oxyallyl cations has gained prominence in the area of (4 + 3) cycloadditions. The following article will provide an overview of this concept utilizing nitrogen-stabilized oxyallyl cations. PMID:21384451

  8. Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, T., E-mail: okamoto-takayuki@ed.tmu.ac.jp [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Tachibana, S.; Miura, O. [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Takeuchi, M. [Komazawa Jin Clinic, 1-19-8 Komazawa, Setagayaku, Tokyo 154-0012 (Japan)

    2011-11-15

    Recently, mercury Hg concentration in human blood increases due to expanding the global mercury contamination. Excess mercury bioaccumulation poses a significant health risk. In order to decrease mercury concentration in the environment and human blood, we have developed two different kinds of nanostructured magnetic adsorbents for mercury to apply them to superconducting magnetic separation instead of conventional filtration. One is magnetic beads (MBs) which have nanosize magnetite particles in the core and a lot of SH radicals on the surface to adsorb Hg ions effectively. MBs were developed mainly to remove mercury from human blood. The maximum amount of the adsorption for MBs is 6.3 mg/g in the solution in less than a minute. Dithiothreitol can easily remove mercury adsorbed to MBs, hence MBs can be reusable. The other is nanostructured magnetic activated carbon (MAC) which is activated carbon with mesopores and nanosize magnetite. The maximum amount of the adsorption for MAC is 38.3 mg/g in the solution. By heat-treatment mercury can be easily removed from MAC. We have studied superconducting magnetic separation using each adsorbent for mercury removal from solution.

  9. Safety evaluation of cation-exchange resins

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.

    1977-08-01

    Results are presented of a study to evaluate whether sufficient information is available to establish conservative limits for the safe use of cation-exchange resins in separating radionuclides and, if not, to recommend what new data should be acquired. The study was also an attempt to identify in-line analytical techniques for the evaluation of resin degradation during radionuclide processing. The report is based upon a review of the published literature and upon discussions with many people engaged in the use of these resins. It was concluded that the chief hazard in the use of cation-exchange resins for separating radionuclides is a thermal explosion if nitric acid or other strong oxidants are present in the process solution. Thermal explosions can be avoided by limiting process parameters so that the rates of heat and gas generation in the system do not exceed the rates for their transfer to the surroundings. Such parameters include temperature, oxidant concentration, the amounts of possible catalysts, the radiation dose absorbed by the resin and the diameter of the resin column. Current information is not sufficient to define safe upper limits for these parameters. They can be evaluated, however, from equations derived from the Frank-Kamenetskii theory of thermal explosions provided the heat capacities, thermal conductivities and rates of heat evolution in the relevant resin-oxidant mixtures are known. It is recommended that such measurements be made and the appropriate limits be evaluated. A list of additional safety precautions are also presented to aid in the application of these limits and to provide additional margins of safety. In-line evaluation of resin degradation to assess its safety hazard is considered impractical. Rather, it is recommended that the resin be removed from use before it has received the limiting radiation dose, evaluated as described above

  10. Synthesis of high capacity cation exchangers from a low-grade Chinese natural zeolite

    International Nuclear Information System (INIS)

    Wang Yifei; Lin Feng

    2009-01-01

    The Chinese natural zeolite, in which clinoptilolite coexists with quartz was treated hydrothermally with NaOH solutions, either with or without fusion with NaOH powder as pretreatment. Zeolite Na-P, Na-Y and analcime were identified as the reacted products, depending on the reaction conditions such as NaOH concentration, reaction time and hydrothermal temperature. The products were identified by X-ray diffraction, and characterized by Fourier transform IR and ICP. With hydrothermal treatment after fusion of natural zeolite with NaOH, high purity of zeolite Na-Y and Na-P can be selectively formed, their cation exchange capacity (CEC) are 275 and 355 meq/100 g respectively, which are greatly higher than that of the natural zeolite (97 meq/100 g). Furthermore, the ammonium removal by the synthetic zeolite Na-P in aqueous solution was also studied. The equilibrium isotherms have been got and the influence of other cations present in water upon the ammonia uptake suggested an order of preference Ca 2+ > K + > Mg 2+ .

  11. Electrokinetic migration studies on removal of chromium and uranyl ions from 904-A trench soil

    International Nuclear Information System (INIS)

    Bibler, J.P.; Meaker, T.F.; O'Steen, A.B.

    1992-01-01

    This report describes a laboratory-scale study, in which electrokinetic migration technology was used to remove chromium and uranium, as well as other ions, from soil taken from a bore hole adjacent to the 904-A trench at the Savannah River Technology Center. Imposition of an electric current on humid (not saturated) soil successfully caused cations to migrate through the pore water of the soil to the cathode, where they were captured in an ISOLOCKTm polymer matrix and in a cation exchange resin incorporated in the polymer. Chemicals circulated through the anode/polymer and cathode/polymer were able to control pH excursions in the electrokinetic-cells by reacting with the H + and OH - generated at the anode and cathode, respectively. The study indicates that ions adsorbed on the surface of the soil as well as those in the pores of soil particles can be caused to migrate through the soil to an appropriate electrode. After 10 days of operation at 20--25 V and 2 mA, approximately 65% of the chromium was removed from two 3.5 kg soil samples. A 57% removal of uranium was achieved. The study shows that electrokinetic migration, using the ISOLOCK trademark polymer will be effective as an in situ treatment method for the removal of metal ion contaminants in soil adjacent to the 904-A trench

  12. Cationic polymers and their therapeutic potential

    NARCIS (Netherlands)

    Samal, S.K.; Dash, M.; van Vlierberghe, S.; Kaplan, D.; Chiellini, E.; van Blitterswijk, Clemens; Moroni, Lorenzo; Dubruel, P.

    2012-01-01

    The last decade has witnessed enormous research focused on cationic polymers. Cationic polymers are the subject of intense research as non-viral gene delivery systems, due to their flexible properties, facile synthesis, robustness and proven gene delivery efficiency. Here, we review the most recent

  13. Optimizing the application of magnetic nanoparticles in Cr(VI) removal

    Science.gov (United States)

    Simeonidis, Konstantinos; Kaprara, Efthymia; Mitrakas, Manassis; Tziomaki, Magdalini; Angelakeris, Mavroidis; Vourlias, Georgios; Andritsos, Nikolaos

    2013-04-01

    The presence of heavy metals in aqueous systems is an intense health and environmental problem as implied by their harmful effects on human and other life forms. Among them, chromium is considered as an acutely hazardous compound contaminating the surface water from industrial wastes or entering the groundwater, the major source of drinking water, by leaching of chromite rocks. Chromium occurs in two stable oxidation states, Cr(III) and Cr(VI), with the hexavalent form being much more soluble and mobile in water having the ability to enter easily into living tissues or cells and thus become more toxic. Despite the established risks from Cr(VI)-containing water consumption and the increasing number of incidents, the E.U. tolerance limit for total chromium in potable water still stands at 50 μg/L. However, in the last years a worldwide debate concerning the establishment of a separate and very strict limit for the hexavalent form takes place. In practice, Cr(VI) is usually removed from water by various methods such as chemical coagulation/filtration, ion exchange, reverse osmosis and adsorption. Adsorption is considered as the simplest method which may become very effective if the process is facilitated by the incorporation of a Cr(VI) to Cr(III) reduction stage. This work studies the potential of using magnetic nanoparticles as adsorbing agents for Cr(VI) removal at the concentration levels met in contaminated drinking water. A variety of nanoparticles consisting of ferrites MFe2O4 (M=Fe, Co, Ni, Cu, Mn, Mg, Zn) were prepared by precipitating the corresponding bivalent or trivalent sulfate salts under controlled acidity and temperature. Electron microscopy and X-ray diffraction techniques were used to verify their crystal structure and determine the morphological characteristics. The mean particle size of the samples was found in the range 10-50 nm. Batch Cr(VI) removal tests were performed in aqueous nanoparticles dispersions showing the efficiency of ferrite

  14. Thermochemical stability of Soviet macroporous sulfonated cation-exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rukhlyada, N.N.; Plotnikova, V.P.; Roginskaya, B.S.; Znamenskii, Yu.P.; Zavodovskaya, A.S.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the influence of macroporosity on the thermochemical stability of sulfonated cation-exchangers. The investigations were carried out on commercial macroporous sulfonated cation-exchangers based on styrene-divinylbenzene copolymers. Study of the thermochemical stability of macroporous sulfonated cation-exchangers in dilute hydrogen peroxide solutions showed that the type of macroporosity has virtually no influence on their stability. The determining factor in thermal stability of macroporous cation-exchangers, as of the gel type, is the degree of cross-linking of the polymer matrix. The capacity loss of macroporous cation-exchangers during oxidative thermolysis is caused by destruction of the macromolecular skeleton and elution of fragments of polar chains containing sulfo groups into the solution.

  15. Colloidal systems of silver nanoparticles and high-regioregular cationic polythiophene with ionic-liquid-like pendant groups: Optical properties and SERS.

    Science.gov (United States)

    Kazim, Samrana; Pfleger, Jiří; Procházka, Marek; Bondarev, Dmitrij; Vohlídal, Jiří

    2011-02-15

    We report tuning of structure dependent optical properties of colloidal systems of borate-stabilized silver nanoparticles (Ag NPs) and polythiophene-based cationic polyelectrolyte with ionic-liquid like side groups: poly{3-[6-(1-methylimidazolium-3-yl)hexyl]thiophene-2,5-diyl bromide} (PMHT-Br) towards obtaining local electromagnetic field enhancement effects. Surface-enhanced Raman scattering (SERS) studies showed that the strong electromagnetic field enhancement is related to the formation of aggregates of Ag NPs achieved at the components ratio providing the charge balance between Ag NPs and cationic polythiophene, at which Ag NPs are nearly single-polymer-layer coated, their zeta potential is close to zero and they easily form aggregates in which the mean inter-particle distance enables the occurrence of desired plasmonic effects. Fluorescence quenching is efficient only in the systems with low concentrations of PMHT-Br, in which almost all polymer chains directly interact with the Ag NPs surface. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Simultaneous removal of several heavy metals from aqueous solution by natural limestones

    Directory of Open Access Journals (Sweden)

    Sdiri A.

    2014-07-01

    Full Text Available Four natural limestone samples, collected from the Campanian-Maastrichtian limestones, Tunisia, were used as adsorbents for the removal of toxic metals in aqueous systems. The results indicated that high removal efficiency could be achieved by the present natural limestones. Among the metal ions studied, Pb2+ was the most preferably removed cation because of its high affinity to calcite surface. In binary system, the presence of Cu2+ effectively depressed the sorption of Cd2+ and Zn2+. Similarly Cu2+ strongly competed with Pb2+ to limestone surface. In ternary system, the removal further decreased, but considerable amount of Pb2+ and Cu2+ still occurred regardless of the limestone sample. The same behavior was observed in quadruple system, where the selectivity sequence was Pb2+ > Cu2+ > Cd2+ > Zn2+. From these results, it was concluded that the studied limestones have the required technical specifications to be used for the removal of toxic metals from wastewaters.

  17. Thermal activation and characterization of chocolate clay for using as adsorbent in nickel removal

    International Nuclear Information System (INIS)

    Villar, W.C.T.; Brito, A.L.F.; Laborde, H.M.; Rodrigues, M.G.F.; Ferreira, H.S.

    2009-01-01

    Clays present interesting properties as adsorbing material for the removal of heavy metals from effluents. This property is clearly modified by thermal activation. In this work, the characterization of chocolate clay before and after thermal activation (from 300 to 500 deg C) is realized by X-ray diffraction (XRD), differential thermal analysis and thermogravimetric analysis (DTA/TG), infrared spectroscopy (IR), scanning electron microscopy (SEM) and cation exchange capacity (CEC). The main differences between the activated and natural clays are structural modifications of the clay, as shown by XRD and DTA/TG, but also a modification of its cation exchange capacity as shown by the methylene blue method. (author)

  18. Selective adsorption and ion exchange of metal cations and anions with silico-titanates and layered titanates

    International Nuclear Information System (INIS)

    Anthony, R.G.; Philip, C.V.

    1993-01-01

    Metal ions may be removed from aqueous wastes from metal processing plants and from refineries. They may also be used in concentrating radioactive elements found in dilute, aqueous, nuclear wastes. A new series of silico-titanates and alkali titanates are shown to have specific selectivity for cations of lead, mercury, and cadmium and the dichromate anion in solutions with low and high pH. Furthermore, one particular silico-titanate, TAM-5, was found to be highly selective for Cs + and Sr 2+ in solutions of 5.7 M Na + and 0.6 M Oh - . A high potential exists for these materials for removing Cs + and Sr 2+ from radioactive aqueous wastes containing high concentrations of Na + at high and low pH

  19. Application of bipolar electrodialysis to E.coli fermentation for simultaneous acetate removal and pH control

    DEFF Research Database (Denmark)

    Wong, M.; Woodley, John; Lye, G.J.

    2010-01-01

    The application of bipolar electrodialysis (BPED) for the simultaneous removal of inhibitory acetate and pH control during E. coli fermentation was investigated. A two cell pair electrodialysis module, consisting of cation exchange, anion exchange and bipolar membranes with working area of 100 cm2...

  20. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  1. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  2. Removal of mercury from sludge using ion exchange

    International Nuclear Information System (INIS)

    Bibler, J.P.; Wallace, R.M.

    1984-01-01

    Laboratory scale batch tests and fluidized bed column tests show that ES-465 cation exchange resin removes >90% of the mercury from formated simulated sludge and formated high-level radioactive sludge. Similar experiments using formated simulated sludge which has been steam stripped indicated that the resin is capable of removing about 75% of the mercury from that system in the same time 90% could be removed from sludge which has not been steam stripped. The percent removed can be improved by operating at higher temperatures. Early batch experiments showed that abrasion from vigorous stirring of the sludge/ES-465 mixture caused the resin to degrade into particles too small to separate from the slurry after reaction. To protect the resin from abrasion, a resin-in-sludge mode of operation was designed wherein the sludge slurry contacts the resin by flowing through a bed retained between two screens in a column. The process has been demonstrated using both a 0.5 in. internal 0.5 in. diameter upflow column containing two milliliters of resin and a 6.4 in. internal diameter stirred bed downflow column containing one liter of resin

  3. Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA.

    Science.gov (United States)

    Yang, J P; Huang, L

    1997-09-01

    Since cationic liposome was first developed as a lipofection reagent, a drawback has been noted in that the efficiency of lipofection decreases dramatically after addition of serum to the lipofection medium. This drawback hampers the application of cationic liposome for systematic delivery of genes. In the present studies, we found that the effect of serum on DC-chol liposome-mediated lipofection is dependent on the charge ratio of liposome to DNA. Serum inhibited lipofection activity of the lipoplex at low charge ratios, whereas it enhanced the lipofection activity at high charge ratios. This phenomenon was observed using DOTAP/DOPE but not lipofectamine. Measurement of cellular association of DNA showed that serum could reduce the binding of lipoplex to cells at all tested charge ratios, i.e. 0-10.6. Removal of negatively charged proteins from serum by DEAE Sephacel column abolished the inhibitory effect of serum on lipofection. The fraction contained only negatively charged serum proteins which strongly inhibited lipofection at low charge ratios but not at higher charge ratios. Furthermore, preincubation of serum with positively charged polylysine, which neutralized negatively charged serum proteins, eliminated the inhibitory effect of serum on lipofection. In summary, inactivation of cationic liposome by serum is due to negatively charged serum proteins and it can be overcome by increasing charge ratio of cationic liposome-DNA lipoplexes or by neutralizing the serum with polylysine.

  4. Accelerators for forming cationic technetium complexes useful as radiodiagnostic images

    International Nuclear Information System (INIS)

    Tweedle, M.F.

    1985-01-01

    This invention relates to compositions for making cationic radiodiagnostic agents and, in particular, to accelerator compounds for labelling such cationic radiodiagnostic agents, kits for preparing such 99m Tc-labelled cationic radiodiagnostic agents with technetium, and methods for labelling such cationic radiodiagnostic agents with technetium

  5. Tripodal receptors for cation and anion sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Verboom, Willem; Reinhoudt, David

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  6. Evaluating Design Parameters for Breakthrough Curve Analysis and Kinetics of Fixed Bed Columns for Cu(II Cations Using Lignocellulosic Wastes

    Directory of Open Access Journals (Sweden)

    Zaira Zaman Chowdhury

    2014-12-01

    Full Text Available A continuous adsorption study for removal of Cu(II cations from wastewater using a fixed-bed column was conducted. A granular carbonaceous activated adsorbent produced by carbonization of the outer rind, or exocarp, of mangostene fruit shell was used for column packing. The effects of feed flow rate, influent cation concentration, and bed depth on the breakthrough curve were investigated at pH 5.5. Experimental analysis confirmed that the breakthrough curves were dependent on flow rate, initial concentration of Cu(II cations, and bed height related to the amount of activated carbon used for column packing. Thomas, Yoon–Nelson, and Adams–Bohart models were applied to analyze the breakthrough curves at different conditions. Linear regression analysis of experimental data demonstrated that Thomas and Yoon–Nelson models were appropriate to explain the breakthrough curve, while the Adams–Bohart model was only applicable to predict the initial part of the dynamic process. It was concluded that the column packed with fruit rind based activated carbon can be used to treat Cu(II-enriched wastewater.

  7. Cation interdiffusion in polycrystalline calcium and strontium titanate

    International Nuclear Information System (INIS)

    Butler, E.P.; Jain, H.; Smyth, D.M.

    1991-01-01

    This paper discusses a method that has been developed to study bulk lattice interdiffusion between calcium and strontium titanate by fabrication of a diffusion couple using cosintering. The measured interdiffusion coefficients, D(C), indicate that strontium impurity diffusion in calcium titanate occurs at a faster rate than calcium impurity diffusion in strontium titanate. These interdiffusion coefficients are composition independent when the concentration of the calcium cation exceeds that of the strontium cation; otherwise D(C) is strongly composition dependent. Investigations into the effect of cation nonstoichiometry give results that are consistent with a defect incorporation reaction in which excess TiO 2 , within the solid solubility limit, produces A-site cation vacancies as compensating defects. The interdiffusion coefficients increase with increasing concentrations of TiO 2 , so it is concluded that interdiffusion of these alkaline-earth cations in their titanates occurs via a vacancy mechanism

  8. The effects of anionic and cationic surfactants on the ion flotation of Cd2+

    International Nuclear Information System (INIS)

    Kobayashi, Koichi

    1975-01-01

    The ion flotation of Cd 2+ ions has been investigated from the surface chemical point of view in comparison with the case of Cu 2+ ions reported previously. The effects of the change in the pH, the anionic and cationic surfactants, and bentonite on the flotation rate have also been studied. Sodium α-sulfolaurate proved to be one of the best surfactants among the anionic surfactants used for removing Cd 2+ ions, showing as high as a 97% removal. About 97% of the Cd 2+ ions could be floated in the region of pH 11.3 when a cationic surfactant was used with bentonite, regardless of the exact surfactant used. The addition of bentonite reduced the foam formation and liquid hold-up, resulting in effective bubble flotation. This behavior was as a whole similar to that of Cu 2+ ions. However, in all the flotation systems tested, the flotation rate increased sharply at about pH 8, and the flotation rate vs. pH curve for Cd 2+ shifted towards a more alkaline region than that for Cu 2+ , because of the stronger basic nature of the former. Also, the flotation rate of Cd 2+ ions for the Cd 2+ -anionic surfactant systems attained a steady value after about 7 min, longer than the 2-min gas flow required in the case of Cu 2+ ion flotation. The adjustment of the pH using ammonia gave a lower rate of flotation than in the case of flotation using sodium hydroxide. (auth.)

  9. Polyurethane foam loaded with SDS for the adsorption of cationic dyes from aqueous medium: Multivariate optimization of the loading process.

    Science.gov (United States)

    Robaina, Nicolle F; Soriano, Silvio; Cassella, Ricardo J

    2009-08-15

    This paper reports the development of a new procedure for the adsorption of four cationic dyes (Rhodamine B, Methylene Blue, Crystal Violet and Malachite Green) from aqueous medium employing polyurethane foam (PUF) loaded with sodium dodecylsulfate (SDS) as solid phase. PUF loading process was based on the stirring of 200mg PUF cylinders with acidic solutions containing SDS. The conditions for loading were optimized by response surface methodology (RSM) using a Doehlert design with three variables that were SDS and HCl concentrations and stirring time. Results obtained in the optimization process showed that the stirring time is not a relevant parameter in the PUF loading, evidencing that the transport of SDS from solution to PUF surface is fast. On the other hand, both SDS and HCl concentrations were important parameters causing significant variation in the efficiency of the resulting solid phase for the removal of dyes from solution. At optimized conditions, SDS and HCl concentrations were 4.0 x 10(-4) and 0.90 mol L(-1), respectively. The influence of stirring time was evaluated by univariate methodology. A 20 min stirring time was established in order to make the PUF loading process fast and robust without losing efficiency. The procedure was tested for the removal of the four cationic dyes from aqueous solutions and removal efficiencies always better than 90% were achieved for the two concentrations tested (2.0 x 10(-5) and 1.0 x 10(-4)mol L(-1)).

  10. A computational study of anion-modulated cation-π interactions.

    Science.gov (United States)

    Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2012-05-24

    The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.

  11. Synthesis of Cationic Core-Shell Latex Particles

    NARCIS (Netherlands)

    Dziomkina, N.; Hempenius, Mark A.; Vancso, Gyula J.

    2006-01-01

    Surfactant-free seeded (core-shell) polymerization of cationic polymer colloids is presented. Polystyrene core particles with sizes between 200 nm and 500 nm were synthesized. The number average diameter of the colloidal core particles increased with increasing monomer concentration. Cationic shells

  12. Biosorbents for Removing Hazardous Metals and Metalloids

    Directory of Open Access Journals (Sweden)

    Katsutoshi Inoue

    2017-07-01

    Full Text Available Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II, Cr(VI, Sb(III and V, and As(III and V were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II. Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide into biosorbents that effectively removed Pb(II. These materials also effectively removed Sb(III and V and As(III and V when these were preloaded with multi-valent metal ions such as Zr(IV and Fe(III. Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI, were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid.

  13. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both

  14. Removal of radionuclides from process streams, a series of applications

    International Nuclear Information System (INIS)

    Menetrez, M.Y.

    1987-01-01

    The extensive research performed on metal oxide adsorption, the adsorption phenomena and physical conditions of cationic adsorption on manganese dioxide in solution have demonstrated that above pH 3 cations are adsorbed by an order of affinity, and that the interaction is characterized by the pH dependence of the metal. The relationship of the zero point charge of pH and the solution ionic strength effects on interfacial surface potential and adsorption have been addressed. A system to produce MnO 2 fiber with a heavy MnO 2 loading was designed, constructed, and operated successfully. Extensive testing has been performed on the adsorption of radium, calcium, cadmium, cesium, cobalt, iron, and manganese on MnO 2 fiber. This testing entailed field work utilizing bleed stream tests of MnO 2 fiber cartridges and tests of loose MnO 2 fiber and resin in columns. Radium removal amounted to a level of 36.9 nanocuries per gram MnO 2 , or 2 microcuries on a single 10 inch MnO 2 fiber filter element. Removal of metals from solutions was demonstrated at various rates specific for each metal tested. The order of affinity of those metals tested and the combined effects of electrolytic solutions was compared to previous research. The analysis of radium in water was performed using a highly modified procedure which is included to specify the exact steps of the analytical method followed. This method has introduced innovations in equipment, technique, and the use of reagents. Results of a comparison of MnO 2 fiber to commercial water treatment media for the removal of cobalt and cesium is presented

  15. Mercury removal from water streams through the ion exchange membrane bioreactor concept.

    Science.gov (United States)

    Oehmen, Adrian; Vergel, Dario; Fradinho, Joana; Reis, Maria A M; Crespo, João G; Velizarov, Svetlozar

    2014-01-15

    Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal

    Science.gov (United States)

    Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.

    2016-07-01

    The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.

  17. Removal of Arsenic with Oyster Shell: Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Md. Atiqur Rahman, , and

    2008-12-01

    Full Text Available Oyster shell has tremendous potential as a remediation material for the removal of arsenic from groundwater. A single arsenic removal system was developed with oyster shell for tube well water containing arsenic. The system removes arsenic from water by adsorption through fine oyster shell. Various conditions that affect the adsorption/desorption of arsenic were investigated. Adsorption column methods showed the removal of As(III under the following conditions: initial As concentration, 100 µg /L; oyster shell amount, 6 g; particle size, <355µm ; treatment flow rate, 1.7 mL/min; and pH 6.5. Arsenic concentration of the treated water were below the Bangladesh drinking water standard of 50 µg/L for As. The desorption efficiencies with 2M of KOH after the treatment of groundwater were in the range of 80-83%. A combination of techniques was used to measure the pH, conductivity, cations and anions. The average concentrations of other inorganic constituents of health concern (Na, K, Ca, Mg and Fe in treated water were below their respective WHO guideline for drinking. The present study might provide new avenues to achieve the arsenic concentrations required for drinking water recommended by Bangladesh and the World Health Organization (WHO.

  18. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  19. Cation Exchange Capacity of Biochar: An urgent method modification

    Science.gov (United States)

    Munera, Jose; Martinsen, Vegard; Mulder, Jan; Tau Strand, Line; Cornelissen, Gerard

    2017-04-01

    A better understanding of the cation exchange capacity (CEC) values of biochar and its acid neutralizing capacity (ANC) is crucial when tailoring a single biochar for a particular soil and crop. Literature values for the CEC of biochar are surprisingly variable, commonly ranging from 5 to 50 cmol+/Kg even as high as 69 to 204 cmol+/Kg and often poorly reproducible, suggesting methodological problems. Ashes and very fine pores in biochar may complicate the analysis and thus compromise the results. Here, we modify and critically assess different steps in a common method for CEC determination in biochar and investigate how the measured CEC may be affected by slow cation diffusion from micro-pores. We modified the existing ammonium acetate (NH4-OAc) method (buffered at pH 7), based on displaced ammonium (NH4+) in potassium chloride (KCl) extracts after removing excess NH4-OAc with alcohol in batch mode. We used pigeon pea biochar (produced at 350 ˚C; particle size 0.5mm to 2mm) to develop the method and we tested its reproducibility in biochars with different ANC. The biochar sample (1.00g) was pH-adjusted to 7 after 2 days of equilibration, using hydrochloric acid (HCl), and washed with water until the conductivity of the water was modified method were highly reproducible and that 1 day shaking with NH4OAc and KCl is enough to saturate the exchange sites with NH4+ and subsequently with K+. The biochar to NH4OAc solution ratio did not affect the measured CEC. Three washings with at least 15 ml alcohol are required to remove excess NH4-OAc. We found the CEC of biochar with the displacement method from pigeon pea, corncob, rice husk and cacao shell to be 26.4(±0.3), 19.2(±0.5), 20.5(±0.4), 46.5±(0.2) cmol+/Kg, respectively. The selected batch experiment allows a large sample throughput, less laboratory equipment is needed and shaking ensures better contact between the extracting solution and the exchange sites.

  20. Increasing Base Cations in Streams: Another Legacy of Deicing Salts?

    Science.gov (United States)

    Helton, A. M.; Barclay, J. R.; Bellucci, C.; Rittenhouse, C.

    2017-12-01

    Elevated use of deicing salts directly increases sodium chloride inputs to watersheds. Sodium can accumulate in soils over time and has the potential to leach other cations (e.g., calcium, magnesium, and potassium) from the soil through cation exchange. We hypothesize that increased use of deicing salts results in a legacy of soils depleted in non-sodium base cations with loss of cations to receiving waters. The goal of this project is to quantify temporal trends in base cations and chloride in streams and rivers across the United States. We used Weighted Regressions on Time, Discharge, and Season (WRTDS) to analyze trends in base cations. Our preliminary analysis of 10 rivers in Connecticut with chemical periods of record ranging from 24 - 64 years (median = 55 years), shows that the flux of base cations is increasing in all sites (25 - 366 103 meq ha-1 yr-1 yr-1), driven largely by increases in sodium (23 - 222 103 meq ha-1 yr-1 yr-1), the dominant cation in 7 of the sites. Chloride is also increasing at all sites (26 - 261 103 meq ha-1 yr-1 yr-1), which, in combination with salt use trends, suggests a road salt source for the increased sodium. Non-sodium cations are also increasing in 9 of the sites (8 - 54 103 meq ha-1 yr-1 yr-1), though they are not directly added with most deicing salts. We will compare these trends to other long-term sites across the United States, and quantify relationships between cation trends and land cover, road density, and snowfall.

  1. Selective crystallization of cations with crown ethers

    International Nuclear Information System (INIS)

    Heffels, Dennis Egidius

    2014-01-01

    The aim of this work was to study the selectivity and preferences of the incorporation of differently sized cations in the cavities of various crown ethers and the characterization of the resulting compounds. The coordination preferences of crown ethers with different cavities have long been known, and the impact of other effects on the structure formation have increasingly become the focus of attention. In this work a comparative overview of the coordination preferences depending on various factors was undertaken. The focus was mainly on the variation of the cavity of the crown ether in the presence of differently sized cations. In addition, the effects of the solvent and differently coordinating anions have been investigated. Within the framework of this work, basic coordination preferences could be detected with rare earth nitrates, which are affected particularly by the choice of the solvent. The formation of different types of structures could be controlled by varying the conditions such that the incorporation of the cation in the cavity of the crown ether was influenced and the formation of a particular type of structure can be influenced partly by the choice of solvent. In this case no direct preferences for the incorporation into the cavity of the crown ether in relation to the cation size were observed for rare earth cations. However, the coordination of the crown ether leads in each case - for lanthanides - to rather high coordination numbers. A total of five new rare earth complexes and two structural variants could be observed with crown ethers. In the study of the selectivity of the incorporation into the cavity, known structures were also reproduced and further structures were characterized but the crystal structures not entirely solved. With the use of monovalent cations such as potassium, lithium or silver a total of nine new compounds could be synthesized, while no clear preferences for the incorporation of certain cations were detected. The

  2. Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+

    International Nuclear Information System (INIS)

    Fan, Lulu; Luo, Chuannan; Lv, Zhen; Lu, Fuguang; Qiu, Huamin

    2011-01-01

    Highlights: → Coating modified chitosan on magnetic fluids, which were using Ag(I) as imprinted ions, is a new method to expand function of the chitosan. → The method can improve the surface area for adsorption of Ag + and reduce the required dosage for the adsorption of Ag(I). → The imprinted magnetic chitosan can be used effectively and selectively to remove Ag(I) ions from aqueous solutions. → It shows the facile, fast separation process of magnetic chitosan during the experiments. The absorbent has a good application prospect. - Abstract: A novel, thiourea-chitosan coating on the surface of magnetite (Fe 3 O 4 ) (Ag-TCM) was successfully synthesized using Ag(I) as imprinted ions for adsorption and removal of Ag(I) ions from aqueous solutions. The thermal stability, chemical structure and magnetic property of the Ag-TCM were characterized by the scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometer (VSM), respectively. Batch adsorption experiments were performed to evaluate the adsorption conditions, selectivity and reusability. The results showed that the maximum adsorption capacity was 4.93 mmol/g, observed at pH 5 and temperature 30 o C. Equilibrium adsorption was achieved within 50 min. The kinetic data, obtained at the optimum pH 5, could be fitted with a pseudo-second order equation. Adsorption process could be well described by Langmuir adsorption isotherms and the maximum adsorption capacity calculated from Langmuir equation was 5.29 mmol/g. The selectivity coefficient of Ag(I) ions and other metal cations onto Ag-TCM indicated an overall preference for Ag(I) ions, which was much higher than non-imprinted thiourea-chitosan beads. Moreover, the sorbent was stable and easily recovered, the adsorption capacity was about 90% of the initial saturation adsorption capacity after being used five times.

  3. Tunable states of interlayer cations in two-dimensional materials

    International Nuclear Information System (INIS)

    Sato, K.; Numata, K.; Dai, W.; Hunger, M.

    2014-01-01

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of 23 Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and 23 Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed

  4. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)

    2014-03-31

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  5. Comparative investigation on cation-cation (Al-Sn) and cation-anion (Al-F) co-doping in RF sputtered ZnO thin films: Mechanistic insight

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Arindam; Basak, Durga, E-mail: sspdb@iacs.res.in

    2017-07-15

    Highlights: • Comparative study on Al, Al-Sn and Al-F doped ZnO films has been carried out. • High transparent Al-F co-doped film shows three times enhanced carrier density. • Al-F co-doped film shows larger carrier relaxation time. • Al-Sn co-doped films shows carrier transport dominated by impurity scattering. • Al-F co-doped ZnO film can be applied as transparent electrode. - Abstract: Herein, we report a comparative mechanistic study on cation-cation (Al-Sn) and cation-anion (Al-F) co-doped nanocrystalline ZnO thin films grown on glass substrate by RF sputtering technique. Through detailed analyses of crystal structure, surface morphology, microstructure, UV-VIS-NIR transmission-reflection and electrical transport property, the inherent characteristics of the co-doped films were revealed and compared. All the nanocrystalline films retain the hexagonal wurtzite structure of ZnO and show transparency above 90% in the visible and NIR region. As opposed to expectation, Al-Sn (ATZO) co-doped film show no enhanced carrier concentration consistent with the probable formation of SnO{sub 2} clusters supported by the X-ray photoelectron spectroscopy study. Most interestingly, it has been found that Al-F (AFZO) co-doped film shows three times enhanced carrier concentration as compared to Al doped and Al-Sn co-doped films attaining a value of ∼9 × 10{sup 20} cm{sup −3} due to the respective cation and anion substitution. The carrier relaxation time increases in AFZO while it decreases significantly for ATZO film consistent with the concurrence of the impurity scattering in the latter.

  6. Comparison of "type I" and "type II" organic cation transport by organic cation transporters and organic anion-transporting polypeptides

    NARCIS (Netherlands)

    Van Montfoort, JE; Muller, M; Groothuis, GMM; Meijer, DKF; Koepsell, H; Meier, PJ

    Previous inhibition studies with taurocholate and cardiac glycosides suggested the presence of separate uptake systems for small "type I" (system1) and for bulky "type II" (system2) organic cations in rat hepatocytes. To identify the transport systems involved in type I and type II organic cation

  7. Cation-enhanced capillary electrophoresis separation of atropoisomer anions.

    Science.gov (United States)

    Na, Yun-Cheol; Berthod, Alain; Armstrong, Daniel W

    2015-12-01

    CE was used to study the separation of the atropoisomers of four phosphoric acids and two sulfonic acids and the enantiomers of two phosphoric acids. All solutes are in their anionic forms in aqueous electrolytes. The chiral additives were two hydroxypropyl cyclodextrins (CDs) and cyclofructan 6 (CF6). The CDs were able to separate four solutes and the CF6 additive could separate only one: 1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (BHP). Since CF6 is able to bind with cations, nitrate of alkaline metals, Ba(2+) , and Pb(2+) were added, greatly improving the BHP separation at the expense of longer migration times. There seems to be a link between CF6-cation-binding constants and BHP resolution factors. Cation additions were also performed with CD selectors that are less prone to form complexes with cations. Significant improvements of enantiomer or atropoisomer separations were observed also associated with longer migration times. It is speculated that the anionic solutes associate with the added cations forming larger entities better differentiated by CDs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng, E-mail: zhangteng@mail.iee.ac.cn; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste.

  9. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  10. Removal of cobalt ion from bentonite using diffusion dialysis

    International Nuclear Information System (INIS)

    Takase, Hisao; Tamura, Kouichi; Katoh, Naotake

    1995-01-01

    A radioactive metal ion must be removed from contaminated soil which accidentally adsorbs the radioactive metal ion. With this situation, the authors examined the diffusion dialysis as a removal process of the radioactive ion from fine particles of the soil. In a dialyzer, the one side of the solution including fine particles of soil was referred to as diluting cell and the other side stripping was referred to as concentrating cell. The experiments by batch operations were carried out by interposing a cation exchange membrane (CMV) between both cells. The high separation of the ion from the soil could be achieved by the experiments when the aqueous solution of hydrochloric acid was used as stripping solution. Equations for batch diffusion dialysis system were set up and calculated. From the results of simulation, it was noted that the concentration of hydrochloric acid in the stripping solution, the selections of the membrane, and mass transfer coefficient at the surface of the membrane strongly affect the removal efficiency of the ion. (author)

  11. Use of cation selective membrane and acid addition for PH control in two-dimensional electrokinetic remediation of copper

    Energy Technology Data Exchange (ETDEWEB)

    Chan, M.S.M.; Lynch, R.J. [Cambridge Univ., Engineering Dept. (United Kingdom); Ilett, D.J. [AEA Technology, Harwell, Oxfordshire (United Kingdom)

    2001-07-01

    The feasibility of using a combination of a cation selective membrane and acid addition for pH control in electrokinetic remediation to toxic and heavy metals from low-permeability soil has been investigated. The high pH generated during the remediation process, as a result of surplus OH{sup -} ions, may cause metal ions to precipitate as hydroxides at or near the cathodes. This region of high pH is known to be associated with high electrical resistance, which limits the remediation efficiency by inhibiting current flow through the soil. One way to control pH is by adding acid to neutralize the OH{sup -} ions. However, preliminary work showed that addition of acid to the cathodic region was not effective in preventing the spread of the alkaline zone from cathodes toward anodes. Precipitates were formed before metal ions reached the cathodic region. Therefore, another method of pH control was investigated, using a cation selective membrane to enhance the electrokinetic process. The membrane was placed in front of the cathodes to contain the OH{sup -} ions generated, and confine the precipitates of metal hydroxide to a small cathodic region. The clean-up of a contaminated site was modelled in a rectangular tank, using silt as the low permeability soul and copper to simulate the contamination. The objective was to redistribute the contaminant so as to concentrate it into a small area. Three experiments were performed with the following methods of pH control: (1) acid addition, (2) use of a cation selective membrane and (3) a combination of acid addition and a cation selective membrane. Using the combined approach, it was found that 75% of the target clean-up section (bounded by the cation selective membrane and the anodes) had more than 40% of the initial copper removed. The general efficiency of remediation increased in the following order. (orig.)

  12. Effect of cation exchange of major cation chemistry in the large scale redox experiment at Aespoe. Revision 1

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1996-06-01

    Geochemical modeling was used to test the hypothesis that cation exchange with fracture-lining clays during fluid mixing in the Aespoe Hard Rock Laboratory can significantly affect major element chemistry. Conservative mixing models do not adequately account for changes in Na, Ca and Mg concentrations during mixing. Mixing between relatively dilute shallow waters and more concentrated waters at depth along fracture zones was modeled using the EQ3/6 geochemical modeling package. A cation exchange model was added to the code to describe simultaneously aqueous speciation, mineral precipitation/dissolution, and equilibration between a fluid and a cation exchanger. Fluid chemistries predicted to result from mixing were compared with those monitored from boreholes intersecting the fracture zone. Modeling results suggest that less than 0.1 equivalent of a smectite exchanger per liter of groundwater is necessary to account for discrepancies between predictions from a conservative mixing model and measured Na and Ca concentrations. This quantity of exchanger equates to an effective fracture coating thickness of 20 microm or less given a fracture aperture width of 1,000 microm or less. Trends in cation ratios in the fluid cannot be used to predict trends in cation ratios on the exchanger because of the influence of ionic strength on heterovalent exchange equilibrium. It is expected that Na for Ca exchange will dominate when shallow waters such as HBHO2 are mixed with deeper waters. In contrast, Na for Mg exchange will dominate mixing between deeper waters

  13. Organic cation rhodamines for screening organic cation transporters in early stages of drug development.

    Science.gov (United States)

    Ugwu, Malachy C; Oli, Angus; Esimone, Charles O; Agu, Remigius U

    The aim of this study was to investigate the suitability of rhodamine-123, rhodamine-6G and rhodamine B as non-radioactive probes for characterizing organic cation transporters in respiratory cells. Fluorescent characteristics of the compounds were validated under standard in vitro drug transport conditions (buffers, pH, and light). Uptake/transport kinetics and intracellular accumulation of the compounds were investigated. Uptake/transport mechanisms were investigated by comparing the effect of pH, temperature, concentration, polarity, OCTs/OCTNs inhibitors/substrates, and metabolic inhibitors on the cationic dyes uptake in Calu-3 cells. Fluorescence stability and intensity of the compounds were altered by buffer composition, light, and pH. Uptake of the dyes was concentration-, temperature- and pH-dependent. OCTs/OCTNs inhibitors significantly reduced intracellular accumulation of the compounds. Whereas rhodamine-B uptake was sodium-dependent, pH had no effect on rhodamine-123 and rhodamine-6G uptake. Transport of the dyes across the cells was polarized: (AP→BL>BL→AP transport) and saturable: {V max =14.08±2.074, K m =1821±380.4 (rhodamine-B); V max =6.555±0.4106, K m =1353±130.4 (rhodamine-123) and V max =0.3056±0.01402, K m =702.9±60.97 (rhodamine-6G)}. The dyes were co-localized with MitoTracker®, the mitochondrial marker. Cationic rhodamines, especially rhodamine-B and rhodamine- 6G can be used as organic cation transporter substrates in respiratory cells. During such studies, buffer selection, pH and light exposure should be taken into consideration. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... highly enantioselective silylation reactions in polyether-generated chiral environments, and leading to a record-high turnover in asymmetric organocatalysis. This can lead to further applications by the asymmetric use of other inorganic salts in various organic transformations....

  15. Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel.

    Science.gov (United States)

    Gurnev, Philip A; Bezrukov, Sergey M

    2012-11-13

    We demonstrate that the cation-selective channel formed by gramicidin A can be used as a reliable sensor for studying the multivalent ion accumulation at the surfaces of charged lipid membranes and the "charge inversion" phenomenon. In asymmetrically charged membranes with the individual leaflets formed from pure negative and positive lipids bathed by 0.1 M CsCl solutions the channel exhibits current rectification, which is comparable to that of a typical n/p semiconductor diode. We show that even at these highly asymmetrical conditions the channel conductance can be satisfactorily described by the electrodiffusion equation in the constant field approximation but, due to predictable limitations, only when the applied voltages do not exceed 50 mV. Analysis of the changes in the voltage-dependent channel conductance upon addition of trivalent cations allows us to gauge their interactions with the membrane surface. The inversion of the sign of the effective surface charge takes place at the concentrations, which correlate with the cation size. Specifically, these concentrations are close to 0.05 mM for lanthanum, 0.25 mM for hexaamminecobalt, and 4 mM for spermidine.

  16. Removal rate of [3H]hyaluronan injected subcutaneously in rabbits

    International Nuclear Information System (INIS)

    Reed, R.K.; Laurent, U.B.; Fraser, J.R.; Laurent, T.C.

    1990-01-01

    Hyaluronan is an important constituent of the extracellular matrix in skin, and recent studies suggest that there is a pool of easily removable (free) hyaluronan drained by lymph. The removal rate of free hyaluronan in skin was measured from the elimination of [ 3 H]hyaluronan, injected subcutaneously in 13 rabbits. The removal of radioactivity was determined from appearance of 3 H in plasma. During the first 24 h after injection, 10-87% of the tracer entered blood, less in injectates with high concentrations of hyaluronan. The removal was monoexponential with a half-life of 0.5-1 day when concentration of hyaluronan was 5 mg/ml or less. When hyaluronan concentration was 10 mg/ml or higher, the removal was slow for about 24 h and then became similar to that in experiments with low hyaluronan concentration. Free hyaluronan at physiological concentrations is thus turned over with the same rate as serum albumin, supporting the concept that hyaluronan is removed essentially by lymph flow to be degraded in lymph nodes and liver

  17. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  18. A study on ammonia removal properties using clinoptilolite Part 1 : characterization of clinoptilolite and ammonia removal properties in batch reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jeong Min; Chung, Jong Shik [Dept. of Chemical Engineering/School of Environment Engineering, Pohang University of Science and Technology, Pohang (Korea); Sun, De Shi [Dept. of Applied Chemistry, Harbin Institute of Techonology (China)

    2000-04-01

    A natural zeolite, deposit located at Guryongpo, Young-il bay, was found to be clinoptilolite containing impurities of heulandite and mordenite. Cation exchange capacity(CEC) for ammonia was about 1.41 meq/g from Na{sup +}-form of the zeolite. In batch experiment, removal efficiency of ammonia was increased as particle size of zeolite and initial concentration of Na{sup +} were decreased and SR(Stoichiometric Ratio), time, and initial concentration of ammonia increased. More than 70% aluminum ion could be removed from water having 3 ppm ammonia and 0.7 ppm Al{sup 3+} by the batch adsorption(ion exchange) experiment. Regeneration of used zeolite with NaCl solution of pH=12 has shown more than 95% of regeneration efficiency when SR'(ratio of the amount of NaCl solution employed actually to the amount in a stoichiometric quantity) was equal to 2.0. 19 refs., 10 figs., 1 tab.

  19. Chemical reactivity of cation-exchanged zeolites

    OpenAIRE

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed by Brønsted acid sites in the hydrogen forms of zeolites, the nature of chemical reactivity, and related, the structure of the metal-containing ions in cation-exchanged zeolites remains the subject...

  20. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  1. Effect of cations on the hydrated proton.

    Science.gov (United States)

    Ottosson, Niklas; Hunger, Johannes; Bakker, Huib J

    2014-09-17

    We report on a strong nonadditive effect of protons and other cations on the structural dynamics of liquid water, which is revealed using dielectric relaxation spectroscopy in the frequency range of 1-50 GHz. For pure acid solutions, protons are known to have a strong structuring effect on water, leading to a pronounced decrease of the dielectric response. We observe that this structuring is reduced when protons are cosolvated with salts. This reduction is exclusively observed for combinations of protons with other ions; for all studied solutions of cosolvated salts, the effect on the structural dynamics of water is observed to be purely additive, even up to high concentrations. We derive an empirical model that quantitatively describes the nonadditive effect of cosolvated protons and cations. We argue that the effect can be explained from the special character of the proton in water and that Coulomb fields exerted by other cations, in particular doubly charged cations like Mg(2+)aq and Ca(2+)aq, induce a localization of the H(+)aq hydration structures.

  2. Selective adsorption and release of cationic organic dye molecules on mesoporous borosilicates

    International Nuclear Information System (INIS)

    Paul, Manidipa; Pal, Nabanita; Bhaumik, Asim

    2012-01-01

    Mesoporous materials can play a pivotal role as a host material for delivery application to a specific part of a system. In this work we explore the selective adsorption and release of cationic organic dye molecules such as safranine T (ST) and malachite green (MG) on mesoporous borosilicate materials. The mesoporous silica SBA-15 and borosilicate materials (MBS) were prepared using non-ionic surfactant Pluronic P123 as template via evaporation induced self-assembly (EISA) method. After template removal the materials show high surface areas and in some cases ordered mesopores of dimensions ca. 6–7 nm. High surface area, mesoporosity and the presence of heteroatom (boron) help this mesoporous borosilicate material to adsorb high amount of cationic dye molecules at its surface from the respective aqueous solutions. Furthermore, the mesoporous borosilicate samples containing higher percentage adsorbed dyes show excellent release of ST or MG dye in simulated body fluid (SBF) solution at physiological pH = 7.4 and temperature 310 K. The adsorption and release efficiency of mesoporous borosilicate samples are compared with reference boron-free mesoporous pure silica material to understand the nature of adsorbate–adsorbent interaction at the surfaces. - Graphical abstract: Highly ordered 2D-hexagonal mesoporous borosilicate materials have been synthesized by using Pluronic P123 as template. The materials show very good adsorption and release of organic cationic dye molecules under physiological conditions. Highlights: ► Highly ordered 2D-hexagonal mesoporous borosilicate. ► Nonionic Pluoronic P123 templated mesoporous material. ► Adsorption of organic dyes at the mesopore surface. ► Controlled release of dyes under physiological pH and temperature. ► Release of safranine T (ST) and malachite green (MG) dyes in simulated body fluids.

  3. Biosorbents for Removing Hazardous Metals and Metalloids †

    Science.gov (United States)

    Inoue, Katsutoshi; Parajuli, Durga; Ghimire, Kedar Nath; Biswas, Biplob Kumar; Kawakita, Hidetaka; Oshima, Tatsuya; Ohto, Keisuke

    2017-01-01

    Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II). Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide) into biosorbents that effectively removed Pb(II). These materials also effectively removed Sb(III and V) and As(III and V) when these were preloaded with multi-valent metal ions such as Zr(IV) and Fe(III). Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI), were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid. PMID:28773217

  4. Removal of cationic pollutants from water by xanthated corn cob: optimization, kinetics, thermodynamics, and prediction of purification process.

    Science.gov (United States)

    Kostić, Miloš; Đorđević, Miloš; Mitrović, Jelena; Velinov, Nena; Bojić, Danijela; Antonijević, Milan; Bojić, Aleksandar

    2017-07-01

    The removal of Cr(III) ions and methylene blue (MB) from aqueous solutions by xanthated corn cob (xCC) in batch conditions was investigated. The sorption capacity of xCC strongly depended of the pH, and increase when the pH rises. The kinetics was well fitted by pseudo-second-order and Chrastil's model. Sorption of Cr(III) ions and MB on xCC was rapid during the first 20 min of contact time and, thereafter, the biosorption rate decrease gradually until reaching equilibrium. The maximum sorption capacity of 17.13 and 83.89 mg g -1 for Cr(III) ions and MB, respectively, was obtained at 40 °C, pH 5, and sorbent dose 4 g dm -3 for removal of Cr(III) ions and 1 g dm -3 for removal of MB. The prediction of purification process was successfully carried out, and the verification of theoretically calculated amounts of sorbent was confirmed by using packed-bed column laboratory system with recirculation of the aqueous phase. The wastewater from chrome plating industry was successfully purified, i.e., after 40 min concentration of Cr(III) ions was decreased lower than 0.1 mg dm -3 . Also, removal of MB from the river water was successfully carried out and after 40 min, removal efficiency was about 94%.

  5. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    Science.gov (United States)

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  6. INVERSE ELECTRON TRANSFER IN PEROXYOXALATE CHEMIEXCITATION USING EASILY REDUCIBLE ACTIVATORS

    NARCIS (Netherlands)

    Bartoloni, Fernando Heering; Monteiro Leite Ciscato, Luiz Francisco; Augusto, Felipe Alberto; Baader, Wilhelm Josef

    2010-01-01

    INVERSE ELECTRON TRANSFER IN PEROXYOXALATE CHEMIEXCITATION USING EASILY REDUCIBLE ACTIVATORS. Chemiluminescence properties of the peroxyoxalate reaction in the presence of activators bearing electron withdrawing substituents were studied, to evaluate the possible occurrence of an inverse electron

  7. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport

    International Nuclear Information System (INIS)

    Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M.

    1987-01-01

    Cationized albumin (pI greater than 8), unlike native albumin (pI approximately 4), enters cerebrospinal fluid (CSF) rapidly from blood. This suggests that a specific uptake mechanism for cationized albumin may exist at the brain capillary wall, i.e. the blood-brain barrier. Isolated bovine brain capillaries rapidly bound cationized [ 3 H]albumin and approximately 70% of the bound radioactivity was resistant to mild acid wash, which is assumed to represent internalized peptide. Binding was saturable and a Scatchard plot gave a maximal binding capacity (Ro) = 5.5 +/- 0.7 micrograms/mgp (79 +/- 10 pmol/mgp), and a half-saturation constant (KD) = 55 +/- 8 micrograms/ml (0.8 +/- 0.1 microM). The binding of cationized [ 3 H]albumin (pI = 8.5-9) was inhibited by protamine, protamine sulfate, and polylysine (molecular weight = 70,000) with a Ki of approximately 3 micrograms/ml for all three proteins. The use of cationized albumin in directed delivery of peptides through the blood-brain barrier was examined by coupling [ 3 H]beta-endorphin to unlabeled cationized albumin (pI = 8.5-9) using the bifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)proprionate. The [ 3 H]beta-endorphin-cationized albumin chimeric peptide was rapidly bound and endocytosed by isolated bovine brain capillaries, and this was inhibited by unlabeled cationized albumin but not by unconjugated beta-endorphin or native bovine albumin. Cationized albumin provides a new tool for studying absorptive-mediated endocytosis at the brain capillary and may also provide a vehicle for directed drug delivery through the blood-brain barrier

  8. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M.

    1987-11-05

    Cationized albumin (pI greater than 8), unlike native albumin (pI approximately 4), enters cerebrospinal fluid (CSF) rapidly from blood. This suggests that a specific uptake mechanism for cationized albumin may exist at the brain capillary wall, i.e. the blood-brain barrier. Isolated bovine brain capillaries rapidly bound cationized (/sup 3/H)albumin and approximately 70% of the bound radioactivity was resistant to mild acid wash, which is assumed to represent internalized peptide. Binding was saturable and a Scatchard plot gave a maximal binding capacity (Ro) = 5.5 +/- 0.7 micrograms/mgp (79 +/- 10 pmol/mgp), and a half-saturation constant (KD) = 55 +/- 8 micrograms/ml (0.8 +/- 0.1 microM). The binding of cationized (/sup 3/H)albumin (pI = 8.5-9) was inhibited by protamine, protamine sulfate, and polylysine (molecular weight = 70,000) with a Ki of approximately 3 micrograms/ml for all three proteins. The use of cationized albumin in directed delivery of peptides through the blood-brain barrier was examined by coupling (/sup 3/H)beta-endorphin to unlabeled cationized albumin (pI = 8.5-9) using the bifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)proprionate. The (/sup 3/H)beta-endorphin-cationized albumin chimeric peptide was rapidly bound and endocytosed by isolated bovine brain capillaries, and this was inhibited by unlabeled cationized albumin but not by unconjugated beta-endorphin or native bovine albumin. Cationized albumin provides a new tool for studying absorptive-mediated endocytosis at the brain capillary and may also provide a vehicle for directed drug delivery through the blood-brain barrier.

  9. Does the cation really matter? The effect of modifying an ionic liquid cation on an SN2 process.

    Science.gov (United States)

    Tanner, Eden E L; Yau, Hon Man; Hawker, Rebecca R; Croft, Anna K; Harper, Jason B

    2013-09-28

    The rate of reaction of a Menschutkin process in a range of ionic liquids with different cations was investigated, with temperature-dependent kinetic data giving access to activation parameters for the process in each solvent. These data, along with molecular dynamics simulations, demonstrate the importance of accessibility of the charged centre on the cation and that the key interactions are of a generalised electrostatic nature.

  10. Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox

    Science.gov (United States)

    Zhan, Chun; Yao, Zhenpeng; Lu, Jun; Ma, Lu; Maroni, Victor A.; Li, Liang; Lee, Eungje; Alp, Esen E.; Wu, Tianpin; Wen, Jianguo; Ren, Yang; Johnson, Christopher; Thackeray, Michael M.; Chan, Maria K. Y.; Wolverton, Chris; Amine, Khalil

    2017-12-01

    Anionic redox reactions in cathodes of lithium-ion batteries are allowing opportunities to double or even triple the energy density. However, it is still challenging to develop a cathode, especially with Earth-abundant elements, that enables anionic redox activity for real-world applications, primarily due to limited strategies to intercept the oxygenates from further irreversible oxidation to O2 gas. Here we report simultaneous iron and oxygen redox activity in a Li-rich anti-fluorite Li5FeO4 electrode. During the removal of the first two Li ions, the oxidation potential of O2- is lowered to approximately 3.5 V versus Li+/Li0, at which potential the cationic oxidation occurs concurrently. These anionic and cationic redox reactions show high reversibility without any obvious O2 gas release. Moreover, this study provides an insightful guide to designing high-capacity cathodes with reversible oxygen redox activity by simply introducing oxygen ions that are exclusively coordinated by Li+.

  11. NO/sub x/ removal facility: MON process

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Y

    1974-05-01

    A newly developed process for nitrogen oxides removal is described. The MON process, named for Mitsubishi Kizoku, Okabe of Tohoku Univ., and Nippon Kagaku, uses potassium permanganate as an oxidizing agent. Potassium permanganate in alkaline solution converts nitric oxide into nitrate and nitrogen dioxide into nitric acid. The resulting MnO/sub 2/ is easily filtered and recovered as material for the manufacturing of KMnO/sub 4/. Contrary to the conventional methods, the NO/sub x/ conversion rate increases with increasing temperature. Test results at a pilot plant showed that NO/sub x/ was reduced from 570 ppM (nitric oxide 520 ppM) to 27 ppM (mostly NO) at 97 to 98 percent conversion. Another advantage of the process is that other acidic gases such as sulfur dioxide are also removed.

  12. Spectroscopic and computer modelling studies of mixed-cation superionic fluorites

    CSIR Research Space (South Africa)

    Netshisaulu, TT

    2005-10-19

    Full Text Available into the local environments of the Cd and Pb cations (as a function of composition and temperature) in CdF2 (xPbF(2)) mixed-cation superionic fluorites. A high degree of disorder is shown around both cations. However, the extent of disorder is even larger around...

  13. REMOVAL OF U(VI) IN MULTI-COMPONENT SYSTEMS BY ADSORPTION USING ACTIVATED CARBON DERIVED FROM RICE STRAW

    International Nuclear Information System (INIS)

    YAKOUT, S.M.; RIZK, M.A.

    2008-01-01

    The use of low cost activated carbon derived from rice straw has been investigated as a replacement for the current expensive methods for radionuclides removal from wastewater. The adsorption studies were carried out in multi-component systems. The effects of common cations and anions on uranium uptake were investigated. Different cations under investigation showed marginal effect on the adsorption of uranium, except in case of iron ion where the adsorption was significantly depressed by the addition of Fe ion (R % was 20%). Coexistence of iron ions at high levels may compete strongly for the adsorption sites with uranium ions resulting in a substantial reduction of uranium removal. The prepared activated carbon showed good selectivity in uranium extraction even in the presence of large concentrations (100 ppm) of anionic complexing agents and common electrolyte species.The simultaneous presence of both U(VI) / Th(IV) reduced sorption through competition for sorption sites on carbon surface. It is concluded that multi-species adsorption can be significantly affected by adsorbate interactions. Understanding these interactions needs great attention in adsorption study in the future

  14. Fabrication of the tea saponin functionalized reduced graphene oxide for fast adsorptive removal of Cd(II) from water

    Science.gov (United States)

    Li, Zhigang; Liu, Zhifeng; Wu, Zhibin; Zeng, Guangming; Shao, Binbin; Liu, Yujie; Jiang, Yilin; Zhong, Hua; Liu, Yang

    2018-05-01

    A novel graphene-based material of tea saponin functionalized reduced graphene oxide (TS-RGO) was synthesized via a facil thermal method, and it was characterized as the absorbent for Cd(II) removal from aqueous solutions. The factors on adsorption process including solution pH, contact time, initial concentration of Cd(II) and background electrolyte cations were studied to optimize the conditions for maximum adsorption at room temperature. The results indicated that Cd(II) adsorption was strongly dependent on pH and could be strongly affected by background electrolytes and ionic strength. The optimal pH and required equilibrium time was 6.0 and 10 min, respectively. The Cd(II) removal decreased with the presence of background electrolyte cations (Na+ < Ca2+ < Al3+). The adsorption kinetics of Cd(II) followed well with the pseudo-second-order model. The adsorption isotherm fitted well to the Langmuir model, indicating that the adsorption was a monolayer adsorption process occurred on the homogeneous surfaces of TS-RGO. The maximum monolayer adsorption capacity was 127 mg/g at 313 K and pH 6.0. Therefore, the TS-RGO was considered to be a cost-effective and promising material for the removal of Cd(II) from wastewater.

  15. Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan.

    Science.gov (United States)

    Chang, Qing; Zhang, Min; Wang, Jinxi

    2009-09-30

    A macromolecule heavy metal flocculant mercaptoacetyl chitosan (MAC) was prepared by reacting chitosan with mercaptoacetic acid. In preliminary experiments, the flocculation performance of MAC was evaluated by using wastewater containing Cu(2+) or/and turbidity. Some factors which affect the removal of Cu(2+) and turbidity were also studied. The experimental results showed that: (1) MAC can remove both Cu(2+) and turbidity from wastewater. The removal efficiency of Cu(2+) by using MAC combined with hydrolyzed polyacrylamide is higher than that by only using MAC, the removal efficiency of Cu(2+) reaches above 98%; (2) when water sample containing not only Cu(2+) but also turbidity-causing substance, the removal efficiency of both Cu(2+) and turbidity will be promoted by the cooperation effect of each other, the residual concentration of Cu(2+) reaches below 0.5 mg L(-1) and the turbidity reaches below 3NTU, Cu(2+) is more easily removed by MAC when turbidity is higher; (3) the removal efficiency of Cu(2+) increases with the increase in pH value, contrarily removal efficiency of turbidity decreases with the increase in pH value.

  16. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Shan, Chao; Ma, Zhiyao; Tong, Meiping

    2014-01-01

    Graphical abstract: - Highlights: • Sb(III) adsorption capacity of MNP@hematite was twice that of commercial Fe 3 O 4 . • pH, ionic strength, coexisting anions and NOM did not inhibit Sb(III) removal. • MNP@hematite could remove trace Sb(III) and As(III) from water simultaneously. • Efficient removal of Sb(III) from real tap water was achieved. • MNP@hematite could be easily recycled with a magnet and could be used repeatedly. - Abstract: Hematite coated magnetic nanoparticle (MNP@hematite) was fabricated through heterogeneous nucleation technique and used to remove trace Sb(III) from water. Powder X-ray diffraction, transmission electron microscopy (TEM), and alternating gradient magnetometry were utilized to characterize the prepared adsorbent. TEM image showed that MNP@hematite particles were spherical with size of 10–30 nm. With saturation magnetization of 27.0 emu/g, MNP@hematite particles could be easily separated from water with a simple magnetic process in short time (5 min). At initial concentration of 110 μg/L, Sb(III) was rapidly decreased to below 5 μg/L by MNP@hematite in 10 min. Sb(III) adsorption capacity of MNP@hematite was 36.7 mg/g, which was almost twice that of commercial Fe 3 O 4 nanoparticles. The removal of trace Sb(III) was not obviously affected by solution pH (over a wide range from 3 to 11), ionic strength (up to 100 mM), coexisting anions (chloride, nitrate, sulfate, carbonate, silicate, and phosphate, up to 10 mM) and natural organic matters (humic acid and alginate, up to 8 mg/L as TOC). Moreover, MNP@hematite particles were able to remove Sb(III) and As(III) simultaneously. Trace Sb(III) could also be effectively removed from real tap water by MNP@hematite. The magnetic adsorbent could be recycled and used repeatedly

  17. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chao; Ma, Zhiyao; Tong, Meiping, E-mail: tongmeiping@pku.edu.cn

    2014-03-01

    Graphical abstract: - Highlights: • Sb(III) adsorption capacity of MNP@hematite was twice that of commercial Fe{sub 3}O{sub 4}. • pH, ionic strength, coexisting anions and NOM did not inhibit Sb(III) removal. • MNP@hematite could remove trace Sb(III) and As(III) from water simultaneously. • Efficient removal of Sb(III) from real tap water was achieved. • MNP@hematite could be easily recycled with a magnet and could be used repeatedly. - Abstract: Hematite coated magnetic nanoparticle (MNP@hematite) was fabricated through heterogeneous nucleation technique and used to remove trace Sb(III) from water. Powder X-ray diffraction, transmission electron microscopy (TEM), and alternating gradient magnetometry were utilized to characterize the prepared adsorbent. TEM image showed that MNP@hematite particles were spherical with size of 10–30 nm. With saturation magnetization of 27.0 emu/g, MNP@hematite particles could be easily separated from water with a simple magnetic process in short time (5 min). At initial concentration of 110 μg/L, Sb(III) was rapidly decreased to below 5 μg/L by MNP@hematite in 10 min. Sb(III) adsorption capacity of MNP@hematite was 36.7 mg/g, which was almost twice that of commercial Fe{sub 3}O{sub 4} nanoparticles. The removal of trace Sb(III) was not obviously affected by solution pH (over a wide range from 3 to 11), ionic strength (up to 100 mM), coexisting anions (chloride, nitrate, sulfate, carbonate, silicate, and phosphate, up to 10 mM) and natural organic matters (humic acid and alginate, up to 8 mg/L as TOC). Moreover, MNP@hematite particles were able to remove Sb(III) and As(III) simultaneously. Trace Sb(III) could also be effectively removed from real tap water by MNP@hematite. The magnetic adsorbent could be recycled and used repeatedly.

  18. Removal of cadmium and cyanide from aqueous solutions through electrodialysis

    Directory of Open Access Journals (Sweden)

    Marder Luciano

    2003-01-01

    Full Text Available The discharge of galvanic industry wastewaters containing heavy metals and cyanide is one of the largest sources of water pollution. The use of the electrodialysis technique for the treatment of a synthetic wastewater containing approximately 0.0089 mol L-1 cadmium and 0.081 mol L-1 cyanide was studied using a five-compartment electrodialysis cell. The results demonstrate that the removal of cadmium and cyanide depends on the applied current density and it is limited by the precipitation of cadmium on the cation-exchange membrane in the diluate central cell compartment.

  19. SiC-C Composite as A Highly Stable and Easily Regenerable Photothermal Material for Practical Water Evaporation

    KAUST Repository

    Shi, Le

    2018-05-26

    Solar-driven water distillation by photothermal materials is emerging as a promising way of renewable energy-driven clean water production. In designing photothermal materials, light absorption, photo-to-thermal conversion efficiency, and ability to localize thermal energy at the water-air interface are three important considerations. However, one additional consideration, regenerability, has so far slipped out of the photothermal material designs at status quo. This work reveals that there is a fouling layer formed during photothermal evaporation of real seawater (Red Sea water) and domestic wastewater, which once formed, would be difficult to remove. Herein, we synthesize a SiC-C composite monolith as an effective photothermal material where carbon acts as photothermal component and SiC serves as a heat conductor and strong structural support. The high mechanical strength of the monolithic composite makes it able to withstand repeatedly high strength physical cleaning by brush scrubbing and sonication and the anti-carbon-loss mechanism generates zero carbon loss during the physical cleaning. In the case of the domestic wastewater evaporation, the bio- and organic foulants on the SiC-C composite monolith can be totally removed by annealing at 1000 oC in N2 atmosphere. We believe that the SiC-C composite monoliths are promising photothermal materials in practical solar-driven water evaporation applications thanks to their highly stable and easily regenerable properties and therefore more research efforts are warranted to further improve their performances.

  20. pi-Dimers of end-capped oligopyrrole cation radicals

    NARCIS (Netherlands)

    Haare, van J.A.E.H.; Groenendaal, L.; Havinga, E.E.; Janssen, R.A.J.; Meijer, E.W.

    1996-01-01

    In two consecutive one-electron oxidations, oligopyrroles substituted with phenyl capping groups (PhPynPh, n = 2–4) can be oxidized reversibly to give stable cation radicals and dications. Spectroelectrochemical studies give direct evidence that diamagnetic p-dimers of cation radicals are formed in

  1. Synthesis of Cation and Water Free Cryptomelane Type OMS-2 Cathode Materials: The Impact of Tunnel Water on Electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Poyraz, Altug S.; Huang, Jianping; Zhang, Bingjie; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2017-01-01

    Cryptomelane type manganese dioxides (α-MnO2, OMS-2) are interesting potential cathode materials due to the ability of their one dimensional (1D) tunnels to reversibly host various cations including Li+and an accessible stable 3+/4+ redox couple. Here, we synthesized metal cation free OMS-2 materials where the tunnels were occupied by only water and hydronium ions. Water was subsequently removed from the tunnels. Cation free OMS-2 and Dry-OMS-2 were used as cathodes in Li based batteries to investigate the role of tunnel water on their electrochemistry. The initial discharge capacity was higher for Dry-OMS-2 (252 mAh/g) compared to OMS-2 (194 mAh/g), however, after 100 cycles Dry-OMS-2 and OMS-2 delivered 137 mAh/g and 134 mAh/g, respectively. Li+ion diffusion was more facile for Dry-OMS as evidenced by rate capability, at 400 mA/g. Dry-OMS-2 delivered 135mAh/g whereas OMS-2 delivered ~115 mAh/g. This first report of the impact of tunnel water on the electrochemistry of OMS-2 type materials demonstrates that the presence of tunnel water in OMS-2 type materials negatively impacts the electrochemistry.

  2. Cation-pi interaction of the univalent silver cation with racemic [6]helicene in the gas phase and in the solid state

    Czech Academy of Sciences Publication Activity Database

    Klepetářová, Blanka; Makrlík, E.; Sýkora, D.; Böhm, S.; Vaňura, P.

    2016-01-01

    Roč. 117, Oct 15 (2016), s. 1-6 ISSN 0277-5387 Institutional support: RVO:61388963 Keywords : univalent silver cation * [6]helicene * cation -pi interaction * DFT calculations * X-ray crystallography Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.926, year: 2016

  3. Al cation induces aggregation of serum proteins.

    Science.gov (United States)

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-07-15

    Al cation is known to induce protein fibrillation and causes several neurodegenerative disorders. We report the spectroscopic, thermodynamic analysis and AFM imaging for the Al cation binding process with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in Al-protein interactions with more hydrophobic b-LG forming stronger Al-protein complexes. Thermodynamic parameters ΔS, ΔH and ΔG showed Al-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der Waals and H-bonding interactions prevail in HSA and BSA adducts. AFM clearly indicated that aluminum cations are able to force BSA and b-LG into larger or more robust aggregates than HSA, with HSA 4±0.2 (SE, n=801) proteins per aggregate, for BSA 17±2 (SE, n=148), and for b-LG 12±3 (SE, n=151). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced major alterations of protein conformations with the order of perturbations b-LG>BSA>HSA. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Removable coating for contamination protection of concrete surface

    International Nuclear Information System (INIS)

    Brambilla, G.; Beaulardi, L.

    1985-01-01

    In order to research protective coatings for concrete surfaces, assuring an effective protection against contamination and that it be easily removed before dismantling the structures, commercial stripping paints have been characterized for their conventional and nuclear properties: water and chemicals, abrasion, impact, tensile stress resistance, stripping capacity, decontaminability. The protective power of the coatings against contamination has been checked by recording the surface activity before and after stripping the paint film: the activity filtered through the coating was, in any case, very low (< 1% of the deposited activity). Indications from large scale application of a stripping paint in NUCLEO (Rome) establishments and technical evaluation of the possible utilization of removable coatings in the CAORSO Nuclear Power Station, are also reported

  5. Cation Exchange Water Softeners

    Science.gov (United States)

    WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.

  6. Selective removal of heavy metal ions by disulfide linked polymer networks

    DEFF Research Database (Denmark)

    Ko, Dongah; Sung Lee, Joo; Patel, Hasmukh A.

    2017-01-01

    Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has...... a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal...... sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions―copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water....

  7. Removal of chloride from MSWI fly ash.

    Science.gov (United States)

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing; Ko, Chun-Han

    2012-10-30

    The high levels of alkali chloride and soluble metal salts present in MSWI fly ash is worth noting for their impact on the environment. In addition, the recycling or reuse of fly ash has become an issue because of limited landfill space. The chloride content in fly ash limits its application as basis for construction materials. Water-soluble chlorides such as potassium chloride (KCl), sodium chloride (NaCl), and calcium chloride hydrate (CaCl(2) · 2H(2)O) in fly ash are easily washed away. However, calcium chloride hydroxide (Ca(OH)Cl) might not be easy to leach away at room temperature. The roasting and washing-flushing processes were applied to remove chloride content in this study. Additionally, air and CO(2) were introduced into the washing process to neutralize the hazardous nature of chlorides. In comparison with the water flushing process, the roasting process is more efficient in reducing the process of solid-liquid separation and drying for the reuse of Cl-removed fly ash particles. In several roasting experiments, the removal of chloride content from fly ash at 1050°C for 3h showed the best results (83% chloride removal efficiency). At a solid to liquid ratio of 1:10 the water-flushing process can almost totally remove water-soluble chloride (97% chloride removal efficiency). Analyses of mineralogical change also prove the efficiency of the fly ash roasting and washing mechanisms for chloride removal. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Stable polyfluorinated cycloalkenyl cations and their NMR spectra

    International Nuclear Information System (INIS)

    Snegirev, V.F.; Galakhov, M.V.; Makarov, K.N.; Bakhmutov, V.I.

    1986-01-01

    New stable 1-methoxyperfluoro-2-ethylcyclobutenyl, 1-methoxyperfluoro-2-methylcyclo-pentenyl, and 1-methoxyperfluoro-2-ethylcyclohexenyl cations were obtained by the action of antimony pentafluoride on the corresponding olefins. The distribution of the charges in the investigated polyfluorinated cycloalkenyl cations was investigated by 13 C NMR method

  9. Removal rate of ( sup 3 H)hyaluronan injected subcutaneously in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R.K.; Laurent, U.B.; Fraser, J.R.; Laurent, T.C. (Univ. of Bergen (Norway))

    1990-08-01

    Hyaluronan is an important constituent of the extracellular matrix in skin, and recent studies suggest that there is a pool of easily removable (free) hyaluronan drained by lymph. The removal rate of free hyaluronan in skin was measured from the elimination of ({sup 3}H)hyaluronan, injected subcutaneously in 13 rabbits. The removal of radioactivity was determined from appearance of {sup 3}H in plasma. During the first 24 h after injection, 10-87% of the tracer entered blood, less in injectates with high concentrations of hyaluronan. The removal was monoexponential with a half-life of 0.5-1 day when concentration of hyaluronan was 5 mg/ml or less. When hyaluronan concentration was 10 mg/ml or higher, the removal was slow for about 24 h and then became similar to that in experiments with low hyaluronan concentration. Free hyaluronan at physiological concentrations is thus turned over with the same rate as serum albumin, supporting the concept that hyaluronan is removed essentially by lymph flow to be degraded in lymph nodes and liver.

  10. Planning of experimental removal of cadmium in finite bath system using the chocolate clay B as adsorbent

    International Nuclear Information System (INIS)

    Mota, J.D.; Rodrigues, M.G.F.; Lima, W.S.; Souza, R.S.

    2012-01-01

    The smectite clays are characterized by having a high cation exchange capacity and ability to remove metal ions. They have great industrial importance, for its abundance and low cost. The first part of this work was to characterize the clay called Chocolate B through the techniques of X-Ray Diffraction, X-Ray Spectroscopy and Energy Dispersive Physical Adsorption of Nitrogen. The second part of the work aims to evaluate the significance of the variables: pH and initial concentration on removal of cadmium in a batch system. In the experimental design used was a 2 2 factorial analysis with the addition at the central point, and evaluated the percentage of removal (Rem%) and removal capacity (EQF). XRD results corroborating the chemical analysis (EDX), characterized as a B Chocolate smectite clays. Statistical analysis showed a strong influence of variable pH on the removal of cadmium. (author)

  11. Exchange of interlayer cations in micaceous minerals. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Scott, A.D.

    1975-01-01

    Information pertaining to the sorption and exchange of interlayer cations in micaceous minerals was developed along several lines. Cs sorption experiments with different minerals and particle sizes established the periods required for maximum sorption at different temperatures and downgraded the impact anticipated from a contraction of particle edges by Cs. Added interlayer Cs in even highly charged minerals (degraded muscovite) proved to be very exchangeable in air-dry, clay size particles. Heat treatments greatly retarded the exchange of this sorbed Cs and by doing so have circumvented the commonly observed small particle effects. Structural Fe in micas was shown to be susceptible to oxidation by various Br 2 treatments but these treatments also removed a lot of K that must be accounted for in a determination of changes in interlayer K exchangeability. Changes in the rate of interlayer K exchange were induced in some micaceous minerals by adding H 2 O 2 but not in others. Specific effects of heat treatments on dioctahedral and trioctahedral micas were examined in great detail. Interlayer cation exchange experiments with different concentrations of Na and Al have produced predictable results. (U.S.)

  12. Pyrochemical recovery of easily reducible species from spent nuclear fuel

    International Nuclear Information System (INIS)

    Jouault, C.

    2000-01-01

    The purpose of the reprocessing of spent fuel is to separate noble metals and other easily reducible species, actinides and lanthanides. A thermodynamic and bibliographical study allowed us to elaborate a process which realises these separations in several steps. The experimental validation of the steps concerning the extraction of noble metals and easily reducible species required to imagine an apparatus which is conformed to the study of the two steps in question: the reduction by a gas of fission product oxides and the extraction of the metallic particles, obtained by reduction, by digestion in a liquid metal. Experiments on digestion, carried on molybdenum and ruthenium particles, allowed us to conclude that the transfer of metallic particles from a molten salt into a liquid metal is ruled by phenomena of complex wettability between the metallic particle, the molten salt, the liquid metal and the gas. The transfer from the salt to the metal is a chain of two steps: emersion of the particles from the salt to go into the gas, and then transfer from the gas into the metal. Kinetics are limited by the transfer through the metal surface. Kinetics study withdrew the experimental parameters and the metals properties which influence the digestion rate. A model on the transfer into a liquid metal of a particle trapped at the fluid/metal interface ratified the experimental conclusions and informed on the stirring influence. All the results allow us to think that the extraction of noble metals and easily reducible species are feasible in this way. (author) [fr

  13. The non-easily ionized elements as spectrochemical buffers

    International Nuclear Information System (INIS)

    Tripkovic, M.; Radovanov, S.; Holclajtner-Antunovic, I.; Todorovic, M.

    1985-01-01

    A method is developed for determining trace elements (In, Ga, B, V, Mo, Mn, Pt, P, Be) in graphite with the aid of a low current d.c. arc. The method makes use of the enhancement of the radiation intensities of trace elements by non-easily ionized elements (NEIE). As a NEIE, this method uses Cd which is added up to a concentration of 150 mg/g sample. The absolute detection limits for all of the above mentioned elements are at the ng-level. (orig.) [de

  14. Flocculation of Chlamydomonas reinhardtii with Different Phenotypic Traits by Metal Cations and High pH

    Directory of Open Access Journals (Sweden)

    Jianhua Fan

    2017-11-01

    Full Text Available Concentrating algal cells by flocculation as a prelude to centrifugation could significantly reduce the energy and cost of harvesting the algae. However, how variation in phenotypic traits such as cell surface features, cell size and motility alter the efficiency of metal cation and pH-induced flocculation is not well understood. Our results demonstrate that both wild-type and cell wall-deficient strains of the green unicellular alga Chlamydomonas reinhardtii efficiently flocculate (>90% at an elevated pH of the medium (pH 11 upon the addition of divalent cations such as calcium and magnesium (>5 mM. The trivalent ferric cation (at 10 mM proved to be essential for promoting flocculation under weak alkaline conditions (pH ∼8.5, with a maximum efficiency that exceeded 95 and 85% for wild-type CC1690 and the cell wall-deficient sta6 mutant, respectively. Near complete flocculation could be achieved using a combination of 5 mM calcium and a pH >11, while the medium recovered following cell removal could be re-cycled without affecting algal growth rates. Moreover, the absence of starch in the cell had little overall impact on flocculation efficiency. These findings contribute to our understanding of flocculation in different Chlamydomonas strains and have implications with respect to inexpensive methods for harvesting algae with different phenotypic traits. Additional research on the conditions (e.g., pH and metal ions used for efficient flocculation of diverse algal groups with diverse characteristics, at both small and large scale, will help establish inexpensive procedures for harvesting cell biomass.

  15. Cationic polymers in water treatment: Part 1: Treatability of water with cationic polymers

    Czech Academy of Sciences Publication Activity Database

    Polasek, P.; Mutl, Silvestr

    2002-01-01

    Roč. 28, č. 1 (2002), s. 69-82 ISSN 0378-4738 R&D Projects: GA AV ČR KSK2067107 Keywords : cationic polymers * treatability * water quality Subject RIV: BK - Fluid Dynamics Impact factor: 0.481, year: 2002

  16. Effect of some operational parameters on the arsenic removal by electrocoagulation using iron electrodes

    OpenAIRE

    Can, Berrin Zeliha; Boncukcuoglu, Recep; Yilmaz, Alper Erdem; Fil, Baybars Ali

    2014-01-01

    Arsenic contamination of drinking water is a global problem that will likely become more apparent in future years as scientists and engineers measure the true extent of the problem. Arsenic poisoning is preventable though as there are several methods for easily removing even trace amounts of arsenic from drinking water. In the present study, electrocoagulation was evaluated as a treatment technology for arsenic removal from aqueous solutions. The effects of parameters such as initial pH, curr...

  17. Correlation between the Increasing Conductivity of Aqueous Solutions of Cation Chlorides with Time and the “Salting-Out” Properties of the Cations

    Directory of Open Access Journals (Sweden)

    Nada Verdel

    2016-02-01

    Full Text Available The time-dependent role of cations was investigated by ageing four different aqueous solutions of cation chlorides. A linear correlation was found between the cations’ Setchenov coefficient for the salting-out of benzene and the increase in the conductivity with time. The conductivity of the structure-breaking cations or the chaotropes increased more significantly with time than the conductivity of the kosmotropes. Since larger water clusters accelerate the proton or hydroxyl hopping mechanism, we propose that the structuring of the hydration shells of the chaotropes might be spontaneously enhanced over time.

  18. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels.

    Science.gov (United States)

    Jiang, Feng; Dinh, Darren M; Hsieh, You-Lo

    2017-10-01

    Ultra-light aerogels have been assembled from cellulose nanofibrils into hierarchically macroporous (several hundred μm) honeycomb cellular structure surrounded with mesoporous (8-60nm) thin walls. The high specific surface (193m 2 /g) and surface carboxyl content (1.29mmol/g) of these aerogels were demonstrated to be highly capable of removing cationic malachite green (MG) dye from aqueous media. The rapid MG adsorption was driven by electrostatic interactions and followed a pseudo-second-order adsorption kinetic and monolayer Langmuir adsorption isotherm. At a low 1:5mg/mL aerogel/MG ratio, both initial MG adsorption rate (2.3-59.8mgg -1 min -1 ) and equilibrium adsorption capacity (53.0-203.7mgg -1 ) increased with increasing initial MG concentrations from 10 to 200mg/L, reaching a maximum adsorption of 212.7mgg -1 . The excellent dye removal efficiency was demonstrated by complete MG removal through four repetitive adsorptions at a low 1:5mg/mL aerogel/MG ratio and 10mg/L dye concentration as well as 92% MG adsorption in a single batch at one order of magnitude higher10:5mg/mL aerogel/MG ratio and 100mg/L dye concentration. The adsorbed MG in aerogels could be desorbed in aqueous media by increasing ionic strength, demonstrating facile recovery of both dye and aerogel as well as the robust capability of this aerogel for repetitive applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Device for removing a spent reactor core instrument tube

    International Nuclear Information System (INIS)

    Watanabe, Shigeru; Tsuji, Teruaki.

    1980-01-01

    Purpose: To easily and exactly execute works for removing a used reactor core instrument tube to be mounted in a reactor core from the lattice space of the core or for charging the tube into the lattice of the core. Constitution: When fuel assembly is pulled out of a reactor core and a spent reactor core instrument tube is then bent and removed from the core at periodical inspection time, a lower gripping unit integral with an upper gripping unit and a bending unit is provided at the lower end of a hanging rope of a winch, and lowered to the reactor core. Then, the spent reactor core instrument tube is gripped by the upper and lower gripping units, the bending unit is operated, the spent reactor core instrument tube is bent, and the tube is then pulled upwardly by the winch to remove the tube. (Aizawa, K.)

  20. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar

    2015-01-01

    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the las...

  1. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  2. Inorganic sorbents for radiostrontium removal from waste solutions: selectivity and role of calixarenes

    International Nuclear Information System (INIS)

    Vijayan, S.; Belikov, K.; Drapailo, A.

    2011-01-01

    The challenge in the remediation of 90 Sr-contaminated waters arises from the need to achieve very high removal efficiencies to meet discharge targets from waste effluents containing relatively high concentrations of non-radioactive cations. Low-cost natural zeolites are not selective for strontium over other divalent cations, notably such ions as calcium; and produce low 90 Sr removal performance, and large volumes of spent sorbent waste. The synthesis and use of selective, synthetic inorganic sorbents could prove to be a feasible approach for high 90 Sr removal efficiencies, and much smaller volumes of secondary solid waste generation. The essential advantages of inorganic sorbents include their stability and resistance to radiation, and the potential for producing stable waste forms such as vitrified glass or ceramics for disposal. However, the cost of strontium-specific sorbents is prohibitive for large-scale applications at present. This paper is a review of the reported information on removal mechanisms and performance of Sr-specific inorganic sorbents. The analysis has revealed promising performance, efficiency and selectivity for strontium removal from solutions containing low and high concentrations of salts. The leading sorbents are crystalline silicotitanate and oxides of metals such as titanium. An initial assessment has also been made of the performance of calixarene-based macrocyclic compounds. These are known for their selectivity for strontium in solvent extraction processes. From the initial strontium removal results in bench-scale tests using different solid substrates, impregnated with calixarene derivatives, only sodium-mordenite impregnated with calyx[8]arene octamide gave an overall strontium removal efficiency in the range of 90 to 95% in the presence of 3.5 ppm calcium. There was no improvement observed for strontium-removal efficiency or selectivity over calcium in the calixarene-impregnated inorganic sorbent matrix. In several tests, the

  3. Cation Substitution in Earth‐Abundant Kesterite Photovoltaic Materials

    Science.gov (United States)

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu

    2018-01-01

    Abstract As a promising candidate for low‐cost and environmentally friendly thin‐film photovoltaics, the emerging kesterite‐based Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se2 (CIGS) and CdTe thin‐film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open‐circuit voltage (V OC) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth‐abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe‐based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending. PMID:29721421

  4. Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials.

    Science.gov (United States)

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu; Zhang, Yi

    2018-04-01

    As a promising candidate for low-cost and environmentally friendly thin-film photovoltaics, the emerging kesterite-based Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se 2 (CIGS) and CdTe thin-film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open-circuit voltage ( V OC ) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth-abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe-based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending.

  5. THERMODYNAMICS OF ETHANOLAMMONIUM CATIONES DISSOCIATION IN AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    R. E. Khoma

    2017-03-01

    Full Text Available The literature data on the thermodynamics of ethanolamines onium cations dissociation have been systematized and generalized. The correlation between these cations dissociation thermodynamic functions (DH and DS and physicochemical properties (Tmp., Tbp, Pp, lgPow et al. has been revealed. There was a correlation between lipophilicity determined experimentally and calculated by QSAR. For monoethanolammonium, diethanolammonium, and their N-methyl and N-ethyl derivatives it was found dissociation thermodynamic functions to depend on bases lgPow. Acid-base dissociation of TRIS and triethanolamine onium cations does not correspond to said relationship because TRIS (primary amine, TEA (tertiary amine act differently on aqueous solutions of SO2. TEA, unlike MEA, DEA and MMEA, has a salting out effect towards sulfur dioxide because of competing hydration that promotes sulfite «onium» salts hydrolysis. TRIS promotes S(IV → S(VI sulphooxidation, in contrast to another ethanolamines. Enthalpy–enthropy compensation with isothermodynamic temperature 303 K has been recorded. The revealed correlations may be useful in developing of procedures for air sanitary cleaning from acidic gases; chemisorbents immobilized for gas and ion exchange chromatography; potentiometric methods for fluorocomplex acids determinations. The use of monoethanolamine is most promising to obtain chemisorbents because the thermodynamic functions of its onium cation acid-base dissociation are least dependent on temperature compared to other etanolammonium cations.

  6. Experimental investigation and modeling of dissolved organic carbon removal by coagulation from seawater.

    Science.gov (United States)

    Jeong, Sanghyun; Sathasivan, Arumugam; Kastl, George; Shim, Wang Geun; Vigneswaran, Saravanamuthu

    2014-01-01

    Coagulation removes colloidal matters and dissolved organic carbon (DOC) which can cause irreversible membrane fouling. However, how DOC is removed by coagulant is not well-known. Jar test was used to study the removal of hydrophobic and hydrophilic DOC fractions at various doses (0.5-8.0 mg-Fe(+3) L(-1)) of ferric chloride (FeCl3) and pH (5.0-9.0). Natural organic matter (NOM) in seawater and treated seawater were fractionated by liquid chromatography-organic carbon detector (LC-OCD). Compared to surface water, the removal of DOC in seawater by coagulation was remarkably different. Majority of DOC could be easily removed with very low coagulant dose (fraction (HB) was better removed at high pH while hydrophilic fraction (HF) was better removed at low pH. A modified model of Kastl et al. (2004) which assumed that the removal occurred by adsorption of un-dissociated compounds onto ferric hydroxide was formulated and successfully validated against the jar test data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Surface enhanced spectroscopic investigations of adsorption of cations on electrochemical interfaces.

    Science.gov (United States)

    Dunwell, M; Wang, Junhua; Yan, Y; Xu, B

    2017-01-04

    The adsorption of alkali and tetraalkylammonium cations on Pt is investigated using surface enhanced infrared absorption spectroscopy and carbon monoxide as a probe molecule. Alkali cations exhibit a stronger adsorption than organic cations, with potassium showing the strongest effect, followed by sodium and lithium.

  8. Regioselective C2 Oxidative Olefination of Indoles and Pyrroles through Cationic Rhodium(III)-Catalyzed C-H Bond Activation.

    Science.gov (United States)

    Li, Bin; Ma, Jianfeng; Xie, Weijia; Song, Haibin; Xu, Shansheng; Wang, Baiquan

    2013-09-02

    Be economic with your atoms! An efficient Rh-catalyzed oxidative olefination of indoles and pyrroles with broad substrate scope and tolerance is reported. The catalytic reaction proceeds with excellent regio- and stereoselectivity. The directing group N,N-dimethylcarbamoyl was crucial for the reaction and could be removed easily. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cation exchange of 53 elements in nitric acid

    International Nuclear Information System (INIS)

    Marsh, S.F.; Alarid, J.E.; Hamond, C.F.; McLeod, M.J.; Roensch, F.R.; Rein, J.E.

    1978-02-01

    Cation-exchange distribution data are presented for 53 elements from 3 to 12M HNO 3 for three strong-acid resins, having cross-linkages of 8%, 4%, and macroporous. Data obtained by 16- to 18-h dynamic batch contacts are compared to cation-exchange distribution data from strong HCl and HClO 4

  10. Forging Colloidal Nanostructures via Cation Exchange Reactions.

    Science.gov (United States)

    De Trizio, Luca; Manna, Liberato

    2016-09-28

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field.

  11. Forging Colloidal Nanostructures via Cation Exchange Reactions

    Science.gov (United States)

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  12. A new method for in situ nitrate removal from groundwater using submerged microbial desalination-denitrification cell (SMDDC)

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2013-01-01

    , which was composed of an anode and a cathode chamber, can be easily applied to subsurface environments. When current was produced by bacteria on the anode, NO3- and Na+ were transferred into the anode and cathode through anion and cation exchange membrane, respectively; the anode effluent was directed...... groundwater with 12 h wastewater hydraulic retention time (HRT) and 10 Ω of external resistance. The nitrate concentration and ionic strength of groundwater were the main limiting factors to the system performance. Besides, the external resistance and HRT were also affecting the system performance...

  13. Cationic polymerization of styrene by means of pulse radiolysis

    International Nuclear Information System (INIS)

    Egusa, S.; Arai, S.; Kira, A.; Imamura, M.; Tabata, Y.

    1977-01-01

    The radiation-induced cationic polymerization of styrene has been studied by microsecond pulse radiolysis. It was possible to observe absorption bands of a monomer cation radical (St. + ) at 630 nm and at 350 nm in a mixture of isopentane and n-butyl chloride at - 165 0 C. Three absorption bands, around 1600 nm, at 600 nm and at 450 nm, grew in parallel with the decay of St. + after pulse. The 1600-nm and 600-nm bands were assigned to an associated dimer cation radical (St 2 . + ), and the 450-nm band to a bonded dimer cation radical (St-St. + ) by comparison of absorption spectra of α-methylstyrene, 1,2-dihydronaphthalene and trans-β-methylstyrene. The kinetic behaviour of these species suggests that St-St. + and a part of St 2 . + are formed by the reaction of St. + with a styrene monomer, and the rest of St 2 . + may be formed by positive charge transfer from a solvent cation radical to an auto-associated neutral dimer of styrene. A long-lived absorption band at 340 nm grew with the decay of St-St. + . This band is considered due to a growing polymer carbonium ion. (author)

  14. Process using sorbents for the removal of SOx from flue gas

    International Nuclear Information System (INIS)

    Pinnavaia, T.J.; Amareskera, J.; Polansky, C.A.

    1992-01-01

    This patent describes a process for removing the SO x components from a flue gas stream containing oxygen, sulfur dioxide and sulfur trioxide from the combustion of coal from a coal-fired boiler which comprises combusting the coal in the boiler to provide the flue gas stream and contacting the the gas stream with a heated sorbent composition at 400 degrees to 1000 degrees C wherein the the sorbent before being heated is selected from the group consisting of a layered double hydroxide composition of formula: [M 1-x II M x III (OH) 2 ](A n- ) x/n · yH 2 O wherein M II is a divalent metal cation and M III is a trivalent metal cation selected from the group consisting of Group IIA. IIB and IIIA metals as the cation which form metal oxides and which are capable of reacting with SO 2 to form metal sulfites and SO 3 to form metal sulfates, A is an interlayer anion of charge n- which comprises at least one metal atoms selected from the group consisting of main group metals and transition metals which provide oxidation of sulfur dioxide to sulfur trioxide in an amount sufficient that the layered double hydroxide structure promotes the oxidation of the sulfur dioxide to the sulfur trioxide at the combustion conditions within the coal-fired boiler, wherein y is moles of water

  15. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    Science.gov (United States)

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  16. Microscopic theory of cation exchange in CdSe nanocrystals.

    Science.gov (United States)

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  17. Gamma-irradiated cationic starches: Paper surface-sizing agents

    International Nuclear Information System (INIS)

    Hofreiter, B.T.; Heath, H.D.; Schulte, M.I.; Phillips, B.S.

    1981-01-01

    Cationic starches, precisely depolymerized by gamma-irradiation ( 60 Co), were dispersed in mild alkali and evaluated as surface sizes for bond paper on a pilot paper machine. The irradiated products had excellent dispersion properties, were well retained on fibers when sized wastepaper (broke) was repulped and had an ability to enhance paper properties that was comparable to that of starch-based materials used commercially. A yellow corn flour, cationized by an essentially dry reaction process recently developed at this Center, was also radiolyzed and evaluated as a size. This latter product was unique in that all drying steps were eliminated in the preparation of a cationic ceral product of reduced viscosity. (orig.) [de

  18. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    WANG FangFang; WANG Yi; WANG BingQiang; WANG YinFeng; MA Fang; Li ZhiRu

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer (TTF·~+-TTF·~+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·~+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π/π bonding with a telescope shape.The covalent π/π bonding has the bonding energy of about-21 kcal·mol~(-1) and is concealed by the Coulombic repulsion between two TTF·~+ cations.This intermolecular covalent attraction also influences the structure of the TTF·~+ subunit,I.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  19. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer(TTF·+-TTF·+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π /π bonding with a telescope shape.The covalent π /π bonding has the bonding energy of about -21 kcal·mol-1 and is concealed by the Coulombic repulsion between two TTF·+ cations.This intermolecular covalent attraction also influences the structure of the TTF·+ subunit,i.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  20. Application of Mineral Sorbents for Removal of Petroleum Substances: A Review

    Directory of Open Access Journals (Sweden)

    Lidia Bandura

    2017-03-01

    Full Text Available Environmental pollution with petroleum products has become a major problem worldwide, and is a consequence of industrial growth. The development of sustainable methods for the removal of petroleum substances and their derivatives from aquatic and terrestrial environments and from air has therefore become extremely important today. Advanced technologies and materials dedicated to this purpose are relatively expensive; sorption methods involving mineral sorbents are therefore popular and are widely described in the scientific literature. Mineral materials are easily available, low-cost, universal adsorbents and have a number of properties that make them suitable for the removal of petroleum substances. This review describes recent works on the use of natural, synthetic and modified mineral adsorbents for the removal of petroleum substances and their derivatives from roads, water and air.

  1. Cation diffusion facilitators transport initiation and regulation is mediated by cation induced conformational changes of the cytoplasmic domain.

    Directory of Open Access Journals (Sweden)

    Natalie Zeytuni

    Full Text Available Cation diffusion facilitators (CDF are part of a highly conserved protein family that maintains cellular divalent cation homeostasis in all domains of life. CDF's were shown to be involved in several human diseases, such as Type-II diabetes and neurodegenerative diseases. In this work, we employed a multi-disciplinary approach to study the activation mechanism of the CDF protein family. For this we used MamM, one of the main ion transporters of magnetosomes--bacterial organelles that enable magnetotactic bacteria to orientate along geomagnetic fields. Our results reveal that the cytosolic domain of MamM forms a stable dimer that undergoes distinct conformational changes upon divalent cation binding. MamM conformational change is associated with three metal binding sites that were identified and characterized. Altogether, our results provide a novel auto-regulation mode of action model in which the cytosolic domain's conformational changes upon ligand binding allows the priming of the CDF into its transport mode.

  2. Mercury release from deforested soils triggered by base cation enrichment

    International Nuclear Information System (INIS)

    Farella, N.; Lucotte, M.; Davidson, R.; Daigle, S.

    2006-01-01

    The Brazilian Amazon has experienced considerable colonization in the last few decades. Family agriculture based on slash-and-burn enables millions of people to live in that region. However, the poor nutrient content of most Amazonian soils requires cation-rich ashes from the burning of the vegetation biomass for cultivation to be successful, which leads to forest ecosystem degradation, soil erosion and mercury contamination. While recent studies have suggested that mercury present in soils was transferred towards rivers upon deforestation, little is known about the dynamics between agricultural land-use and mercury leaching. In this context, the present study proposes an explanation that illustrates how agricultural land-use triggers mercury loss from soils. This explanation lies in the competition between base cations and mercury in soils which are characterized by a low adsorption capacity. Since these soils are naturally very poor in base cations, the burning of the forest biomass suddenly brings high quantities of base cations to soils, destabilizing the previous equilibrium amongst cations. Base cation enrichment triggers mobility in soil cations, rapidly dislocating mercury atoms. This conclusion comes from principal component analyses illustrating that agricultural land-use was associated with base cation enrichment and mercury depletion. The overall conclusions highlight a pernicious cycle: while soil nutrient enrichment actually occurs through biomass burning, although on a temporary basis, there is a loss in Hg content, which is leached to rivers, entering the aquatic chain, and posing a potential health threat to local populations. Data presented here reflects three decades of deforestation activities, but little is known about the long-term impact of such a disequilibrium. These findings may have repercussions on our understanding of the complex dynamics of deforestation and agriculture worldwide

  3. Removal of Cd2+, Cr3+, Cu2+, Hg2+, Pb2+ and Zn2+ cations

    African Journals Online (AJOL)

    2006-04-20

    Apr 20, 2006 ... Studies in Malawi have revealed high levels of particular heavy metals in ... respectively. Many processes for the removal of heavy metals from water ... acteristic of the metal ion itself such as its ionic radius, charge size and ...

  4. Effects of metallic cations in the beryl flotation

    International Nuclear Information System (INIS)

    Lima Leonel, C.M. de; Peres, A.E.C.

    1984-01-01

    The beryl zeta potential in microelectrophoretic cell is studied in the presence of neutral electrolyte, cations of calcium, magnesium and iron. The petroleum sulfonate is used how collector in Hallimond tube. Hydroxy complex of metallic cations seems activate the ore and precipitates of colloidal metallic hidroxies seems lower him when added to the mixture. (M.A.C.) [pt

  5. CATION EXCHANGE METHOD FOR THE RECOVERY OF PROTACTINIUM

    Science.gov (United States)

    Studier, M.H.; Sullivan, J.C.

    1959-07-14

    A cation exchange prccess is described for separating protactinium values from thorium values whereby they are initially adsorbed together from an aqueous 0.1 to 2 N hydrochloric acid on a cation exchange resin in a column. Then selectively eluting the thorium by an ammonium sulfate solution and subsequently eluting the protactinium by an oxalate solution.

  6. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    Science.gov (United States)

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  7. Chemical bonding and structural ordering of cations in silicate glasses

    International Nuclear Information System (INIS)

    Calas, G.; Cormier, L.; Galoisy, L.; Ramos, A.; Rossano, St.

    1997-01-01

    The specific surrounding of cations in multicomponent silicate glasses is briefly presented. Information about interatomic distances and site geometry may be gained by using spectroscopic methods among which x-ray absorption spectroscopy may be used for the largest number of glass components. Scattering of x-rays and neutrons may also be used to determine the importance of medium range order around specific cations. All the existing data show that cations occur in sites with a well-defined geometry, which are in most cases connected to the silicate polymeric network. Medium range order has been detected around cations such as Ti, Ca and Ni, indicating that these elements have an heterogeneous distribution within the glassy matrix. (authors)

  8. "Nara" knot for suturing of cleft lip in children to make removal easy

    Directory of Open Access Journals (Sweden)

    Obaidullah

    2006-01-01

    Full Text Available Cleft patients usually go through a lifetime of repeated hospital admissions and multiple procedures. Suture removal at a tender age and on a sensitive area like the lip becomes a challenge for the nursing staff. It is also emotionally demanding on the part of the parents. Hence, in most centres these patients are at least sedated if not anaesthetised. We have been using a simple knot and running prolene material so that undoing of the knot becomes easy and suture removal more or less atraumatic. We would like to share our experience with readers through this article. An analysis of 53 cleft lip repairs has shown that this knot is safe and easily removable.

  9. A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions

    Science.gov (United States)

    Uddin, Md. Tamez; Rahman, Md. Arifur; Rukanuzzaman, Md.; Islam, Md. Akhtarul

    2017-10-01

    This study was aimed at using mango leaf powder (MLP) as a potential adsorbent for the removal of methylene blue (MB) from aqueous solutions. Characterization of the adsorbent was carried out with scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption analysis. The pH at the point of zero charge of the adsorbent was determined by titration method and was found a value to be 5.6 ± 0.2. Batch studies were performed to evaluate the influence of various experimental parameters like initial solution pH, contact time, initial concentration of dye and adsorbent dosage on the removal of MB. An adsorption-desorption study was carried out resulting the mechanism of adsorption was carried out by electrostatic force of attraction. The adsorption equilibrium time required for the adsorption of MB on MLP was almost 2 h and 85 ± 5% of the total amount of dye uptake was found to occur in the first rapid phase (30 min). The Langmuir and Freundlich isotherm models were used for modeling the adsorption equilibrium. The experimental equilibrium data could be well interpreted by Langmuir isotherm with maximum adsorption capacity of 156 mg/g. To state the sorption kinetics, the fits of pseudo-first-order and pseudo-second-order kinetic models were investigated. It was obtained that the adsorption process followed the pseudo-second-order rate kinetics. The above findings suggest that MLP can be effectively used for decontamination of dye containing wastewater.

  10. 'Stent in a stent'--an alternative technique for removing partially covered stents following sleeve gastrectomy complications.

    Science.gov (United States)

    Vasilikostas, Georgios; Sanmugalingam, Nimalan; Khan, Omar; Reddy, Marcus; Groves, Chris; Wan, Andrew

    2014-03-01

    Endoscopic stenting is a relatively new technique for the treatment of post sleeve gastrectomy complications. Partially covered stents are used in this method to minimise the risk of migration but they are associated with difficulties with removal. Patients requiring emergency stenting following sleeve gastrectomy underwent insertion of a partially covered metallic stent. One month later, if the stent was not easily removable, a fully covered overlapping stent was inserted and the patient was readmitted 2 weeks later for removal of both stents. Four patients required stenting following sleeve gastrectomy leaks, and one patient required stenting for a stricture. In these cases, a 'stent in a stent' technique was used for removal. This technique allows the safe removal of partially covered stents inserted following sleeve gastrectomy complications.

  11. Evaluation of sorptive flotation technique for enhanced removal of radioactive Eu(III) from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ezzat, Amir; Saad, Ebtissam A. [Ain Shams Univ., Cairo (Egypt). Chemistry Dept.; Mahmoud, Mamdoh R. [Atomic Energy Authority, Cairo (Egypt). Nuclear Chemistry Dept.; Soliman, Mohamed A. [Atomic Energy Authority, Cairo (Egypt). Egypt Second Research Reactor; Kandil, Abdelhakim [Helwan Univ., Cairo (Egypt). Chemistry Dept.

    2017-06-01

    The present study aims at the removal of Eu(III) from aqueous solutions by sorptive flotation process. This process involves adsorption of Eu(III) onto bentonite and kaolinite clays followed by floatation using sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) collectors. The effect of adsorption parameters (pH, contact time, clay weight, Eu(III) concentration, ionic strength) as well as flotation parameters (collector and frother concentrations, bubbling time, concentrations of foreign cations and anions) on the removal efficiency of Eu(III) were studied. The obtained results show that Eu(III) ions are removed efficiently (R% ∝ 95%) at pH=4 after 1 h shaking with clay and 15 min floatation. The adsorption kinetics of Eu(III) onto the employed clays followed the pseudo-second-order model and the equilibrium data fitted well to the Freundlich isotherm model.

  12. Separation of ions in acidic solution by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Michelle [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  13. Aggregation of trypsin and trypsin inhibitor by Al cation.

    Science.gov (United States)

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-04-01

    Al cation may trigger protein structural changes such as aggregation and fibrillation, causing neurodegenerative diseases. We report the effect of Al cation on the solution structures of trypsin (try) and trypsin inhibitor (tryi), using thermodynamic analysis, UV-Visible, Fourier transform infrared (FTIR) spectroscopic methods and atomic force microscopy (AFM). Thermodynamic parameters showed Al-protein bindings occur via H-bonding and van der Waals contacts for trypsin and trypsin inhibitor. AFM showed that Al cations are able to force trypsin into larger or more robust aggregates than trypsin inhibitor, with trypsin 5±1 SE (n=52) proteins per aggregate and for trypsin inhibitor 8.3±0.7 SE (n=118). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced more alterations of trypsin inhibitor conformation than trypsin. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    Directory of Open Access Journals (Sweden)

    Samadikhah HR

    2011-10-01

    Full Text Available Hamid Reza Samadikhah1,*, Asia Majidi2,*, Maryam Nikkhah2, Saman Hosseinkhani11Department of Biochemistry, 2Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran *These authors contributed equally to this work Purpose: Cationic liposomes (CLs are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the deficiencies. Patients and methods: CLs and magnetic cationic liposomes (MCLs were prepared using the freeze-dried empty liposome method. Luciferase-harboring vectors (pGL3 were transferred into liposomes and the transfection efficiencies were determined by luciferase assay. Firefly luciferase is one of most popular reporter genes often used to measure the efficiency of gene transfer in vivo and in vitro. Different formulations of liposomes have been used for delivery of different kinds of gene reporters. Lipoplex (liposome–plasmid DNA complexes formation was monitored by gel retardation assay. Size and charge of lipoplexes were determined using particle size analysis. Chinese hamster ovary cells were transfected by lipoplexes (liposome-pGL3; transfection efficiency and gene expression level was evaluated by luciferase assay. Results: High transfection efficiency of plasmid by CLs and novel nanomagnetic CLs was achieved. Moreover, lipoplexes showed less cytotoxicity than polyethyleneimine and Lipofectamine™. Conclusion: Novel liposome compositions (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dioctadecyldimethylammonium bromide [DOAB] and DPPC/cholesterol/DOAB with high transfection efficiency can be useful in gene delivery in vitro. MCLs can also be used for targeted gene delivery, due to

  15. Method of removing hydrogen sulphide from hot gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Yumura, M.

    1987-12-22

    Hydrogen sulphide can be removed from hot gas mixtures by contacting the hot gas mixture at temperatures in the range of 500-900/sup 0/C with an adsorbent consisting of managanese nodules. The nodules may contain additional calcium cations. In sulphided form, the nodules are catalytically active for hydrogen sulphide decomposition to produce hydrogen. Regeneration of the adsorbent can be accomplished by roasting in an oxidizing atmosphere. The nodules can be used to treat gaseous mixtures containing up to 20% hydrogen sulfide, for example, gases produced during pyrolysis, cracking, coking, and hydrotreating processes. Experiments using the processes described in this patent are also outlined. 6 tabs.

  16. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides

    Science.gov (United States)

    Smart, Matthew; Rajagopal, Aruna; Liu, Wing-Ki; Ha, Bae-Yeun

    2017-10-01

    The permeability of the bacterial outer membrane, enclosing Gram-negative bacteria, depends on the interactions of the outer, lipopolysaccharide (LPS) layer, with surrounding ions and molecules. We present a coarse-grained model for describing how cationic amphiphilic molecules (e.g., antimicrobial peptides) interact with and perturb the LPS layer in a biologically relevant medium, containing monovalent and divalent salt ions (e.g., Mg2+). In our approach, peptide binding is driven by electrostatic and hydrophobic interactions and is assumed to expand the LPS layer, eventually priming it for disruption. Our results suggest that in parameter ranges of biological relevance (e.g., at micromolar concentrations) the antimicrobial peptide magainin 2 effectively disrupts the LPS layer, even though it has to compete with Mg2+ for the layer. They also show how the integrity of LPS is restored with an increasing concentration of Mg2+. Using the approach, we make a number of predictions relevant for optimizing peptide parameters against Gram-negative bacteria and for understanding bacterial strategies to develop resistance against cationic peptides.

  17. Colonoscopic Removal of an Intrauterine Device That Had Perforated the Rectosigmoid Colon

    Science.gov (United States)

    Huh, Jin Myeong; Kim, Ki Seok; Cho, Yong Seok; Lee, Jae Uk; Baek, Seong Deuk; Moon, Sin Kil

    2018-01-01

    The intrauterine device (IUD) is a widely used contraceptive method. One of the most serious and rare complications of using an IUD is colon perforation. We report a case of colonoscopic removal of an IUD that had perforated into the rectosigmoid colon in a 42-year-old woman who presented with no symptoms. Colonoscopy showed that the IUD had penetrated into rectosigmoid colon wall and that an arm of the IUD was embedded in the colon wall. We were able to remove the IUD easily by using colonoscopy. The endoscopic approach may be considered the first choice therapy for selected patients. PMID:29742863

  18. Separation of cations of heavy metalsfrom concentrated galvanic drains

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2018-01-01

    Full Text Available When applying galvanic coatings, soluble salts of heavy metals such as iron, copper, nickel, zinc, cadmium, chromium and other metals are used, toxic cations enter the water, with subsequent migration to the biosphere. To date, many methods have been developed for cleaning galvanic sewage, which cannot be considered sufficiently effective. The joint sorption of divalent cations of copper, nickel and cadmium from concentrated aqueous solutions was investigated. Calculation and experimental methods were used to determine the separation conditions of the bivalent ion systems that differed and close in sorption properties on the aminophosphonic polyampholyte Purolite S950 in a natrium form. It is shown that the cadmium (II cations can be isolated from solutions containing copper (II or nickel (II cations even at the height of the sorption layer of 0.13 m due to the difference in the defining characteristics of the cations. This layer height can be used not only in a chromatographic column, but also in a concentrating cartridge. Separation of the copper (II and nickel (II close to the sorption properties requires an absorbing layer of 0.76 m, which can only be used in a chromatographic column, but not for a concentrating cartridge. In this paper, the degrees of ion separation in various sorption conditions are calculated. The applicability of the conductometric method for controlling the ion exchange process is shown not only when the free cations are isolated from aqueous solutions but also bound to complexes.

  19. Synthesis and SMM behaviour of trinuclear versus dinuclear 3d-5f uranyl(v)-cobalt(ii) cation-cation complexes.

    Science.gov (United States)

    Chatelain, Lucile; Tuna, Floriana; Pécaut, Jacques; Mazzanti, Marinella

    2017-05-02

    Trinuclear versus dinuclear heterodimetallic U V O 2 + Co 2+ complexes were selectively assembled via a cation-cation interaction by tuning the ligand. The trimeric complex 2, with a linear [Co-O[double bond, length as m-dash]U[double bond, length as m-dash]O-Co] core, exhibits magnetic exchange and slow relaxation with a reversal barrier of 30.5 ± 0.9 K providing the first example of a U-Co exchange-coupled SMM.

  20. Radical Addition to Iminium Ions and Cationic Heterocycles

    Directory of Open Access Journals (Sweden)

    Johannes Tauber

    2014-10-01

    Full Text Available Carbon-centered radicals represent highly useful reactive intermediates in organic synthesis. Their nucleophilic character is reflected by fast additions to electron deficient C=X double bonds as present in iminium ions or cationic heterocycles. This review covers diverse reactions of preformed or in situ-generated cationic substrates with various types of C-radicals, including alkyl, alkoxyalkyl, trifluoromethyl, aryl, acyl, carbamoyl, and alkoxycarbonyl species. Despite its high reactivity, the strong interaction of the radical’s SOMO with the LUMO of the cation frequently results in a high regioselectivity. Intra- and intermolecular processes such as the Minisci reaction, the Porta reaction, and the Knabe rearrangement will be discussed along with transition metal and photoredox catalysis or electrochemical methods to generate the odd-electron species.

  1. Environmental Remediation and Sorption of Metal Cations Using Aluminum Pillared Nano-Bentonite

    Science.gov (United States)

    Rifai, Rifai; Abou El Safa, Magda

    2015-04-01

    The release of heavy metal cations into the environment is a potential threat to water and soil quality. Some clay minerals play an important role, as physical and chemical barriers, for the isolation of metal-rich wastes and to adsorb heavy metals as well as to avoid their environmental dispersion. In the present study, the bentonitic clay (southeast El-Hammam City, Egypt) was subjected to pillaring using hydroxyl-aluminum solution. The XRD patterns of the Aluminum Pillared Nano-Bentonite (APNB) showed severe alteration of the crystal structure after pillaring. Poly metal solutions with different metal concentrations of Cu, Co, Ni, Zn, Cd and Pb (0.001, 0.005 and 0.01 moles), and pH (1, 2.5, 5 and 6) were subjected to treatment by the APNB. The removal process is very rapid and spontaneous and the contact time may be short (several minutes) for most adsorption to occur. The criterion for environmental remediation of APNB is less stringent and a short contact time is sufficient. The rate of Cu2+, Zn2+, Co2+, Cd2+, Ni2+ and Pb2+sorption remained higher or equal to the CEC. The sorption of metal ions by APNB are complex and probably involve several mechanisms. In general, APNB can be used to immobilize Cu2+, Zn2+, Co2+, Cd2+, Ni2+ and Pb2+ to any extent. For each metal ion, the most effective immobilization occurs over a particular pH around 5. According to the experimental data obtained, the uptake amount of the studied cations by APNB increased with increasing solution pH, sorbent dose and contact time. The preference of the APNB adsorption for heavy metal ions that are through the cation exchange processes decreases in the order: Cu2+>Zn2+>Co2+>Cd2+ >Ni2+ >Pb2+. Keywords: Bentonitic clay, Egypt, Aluminum Pillared Nano-Bentonite, heavy metal, environmental remediation

  2. Preparation of magnetic Ni@graphene nanocomposites and efficient removal organic dye under assistance of ultrasound

    International Nuclear Information System (INIS)

    Zhao, Chuang; Guo, Jianhui; Yang, Qing; Tong, Lei; Zhang, Jingwei; Zhang, Jiwei; Gong, Chunhong; Zhou, Jingfang; Zhang, Zhijun

    2015-01-01

    Graphical abstract: Reduced graphene oxide/Ni microspheres, being prepared under ultrasound conditions, exhibit a better removal efficiency to decolorize RhB with ultrasonic-assisted decolorization process. - Highlights: • One-step synthesis of Ni@graphene microspheres under ultrasound conditions. • During the ultrasonic process, graphene oxide was reduced and Ni nanoparticles were formed and anchored on graphene sheets. • The products exhibit excellent performance for fast and efficient removal of dye contaminants. • The nanocomposites can be easily separated from solution by a magnet. - Abstract: In this article, we report a facile one-step synthesis of Ni@graphene nanocomposite microspheres (NGs) in hydrazine hydrate solution under ultrasound conditions. During the ultrasonic process, graphene oxide (GO) was reduced effectively under mild conditions and Ni nanoparticles were simultaneously formed and anchored on graphene sheets, which act as spacers to keep the neighboring sheets separated. The target products exhibit excellent performance for fast and efficient removal of dye contaminants, rhodamine B (RhB) in aqueous solution, under assistance of ultrasound. Finally, the nanocomposites can be easily separated from solution by a magnet. Furthermore, higher content of graphene can be produced under sonication, which facilitates faster and more efficient removal of organic contaminates in the solution. The nanocomposites were also characterized by scanning electron microscopy, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and thermogravimetric analysis.

  3. Preparation of magnetic Ni@graphene nanocomposites and efficient removal organic dye under assistance of ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chuang; Guo, Jianhui; Yang, Qing; Tong, Lei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Zhang, Jingwei, E-mail: jwzhang@henu.edu.cn [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhang, Jiwei [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China); Gong, Chunhong [College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004 (China); Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhou, Jingfang, E-mail: jingfang.zhou@unisa.edu.au [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhang, Zhijun [Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2015-12-01

    Graphical abstract: Reduced graphene oxide/Ni microspheres, being prepared under ultrasound conditions, exhibit a better removal efficiency to decolorize RhB with ultrasonic-assisted decolorization process. - Highlights: • One-step synthesis of Ni@graphene microspheres under ultrasound conditions. • During the ultrasonic process, graphene oxide was reduced and Ni nanoparticles were formed and anchored on graphene sheets. • The products exhibit excellent performance for fast and efficient removal of dye contaminants. • The nanocomposites can be easily separated from solution by a magnet. - Abstract: In this article, we report a facile one-step synthesis of Ni@graphene nanocomposite microspheres (NGs) in hydrazine hydrate solution under ultrasound conditions. During the ultrasonic process, graphene oxide (GO) was reduced effectively under mild conditions and Ni nanoparticles were simultaneously formed and anchored on graphene sheets, which act as spacers to keep the neighboring sheets separated. The target products exhibit excellent performance for fast and efficient removal of dye contaminants, rhodamine B (RhB) in aqueous solution, under assistance of ultrasound. Finally, the nanocomposites can be easily separated from solution by a magnet. Furthermore, higher content of graphene can be produced under sonication, which facilitates faster and more efficient removal of organic contaminates in the solution. The nanocomposites were also characterized by scanning electron microscopy, Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and thermogravimetric analysis.

  4. p53 Mutagenesis by Benzo[a]pyrene derived Radical Cations

    Science.gov (United States)

    Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Jeffrey Field, Trevor M. Penning

    2013-01-01

    Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9, 10-epoxide pathway (P450/ epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. Based on the B[a]P-1,6 and 3,6-dione formation, approximately 4µM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 µM to 10 µM B[a]P with no significant increase seen with further escalation to 50 µM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7–8 dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918

  5. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    Verschueren, K.; Balwant Kaur

    1999-01-01

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  6. Stability and recovery of DNA origami structure with cation concentration

    Science.gov (United States)

    Chen, Yi; Wang, Ping; Liu, Yang; Liu, Ting; Xu, Yan; Zhu, Shanshan; Zhu, Jun; Ye, Kai; Huang, Guang; Dannong, He

    2018-01-01

    We synthesized triangular and rectangular DNA origami nanostructures and investigated the stability and recovery of them under low cation concentration. Our results demonstrated that the origami nanostructures would melt when incubated in low cation concentration, and recover whilst kept in the concentration for less than 10 min. However, extending the incubation time would lead to irreversible melting. Our results show the possibility of application of DNA origami nanostructures for things such as a sensor for cation concentration response, etc.

  7. π-Cation Interactions in Molecular Recognition: Perspectives on Pharmaceuticals and Pesticides.

    Science.gov (United States)

    Liang, Zhibin; Li, Qing X

    2018-04-04

    The π-cation interaction that differs from the cation-π interaction is a valuable concept in molecular design of pharmaceuticals and pesticides. In this Perspective we present an up-to-date review (from 1995 to 2017) on bioactive molecules involving π-cation interactions with the recognition site, and categorize into systems of inhibitor-enzyme, ligand-receptor, ligand-transporter, and hapten-antibody. The concept of π-cation interactions offers use of π systems in a small molecule to enhance the binding affinity, specificity, selectivity, lipophilicity, bioavailability, and metabolic stability, which are physiochemical features desired for drugs and pesticides.

  8. Lead (II) removal from natural soils by enhanced electrokinetic remediation.

    Science.gov (United States)

    Altin, Ahmet; Degirmenci, Mustafa

    2005-01-20

    Electrokinetic remediation is a very effective method to remove metal from fine-grained soils having low adsorption and buffering capacity. However, remediation of soil having high alkali and adsorption capacity via the electrokinetic method is a very difficult process. Therefore, enhancement techniques are required for use in these soil types. In this study, the effect of the presence of minerals having high alkali and cation exchange capacity in natural soil polluted with lead (II) was investigated by means of the efficiency of electrokinetic remediation method. Natural soil samples containing clinoptilolite, gypsum and calcite minerals were used in experimental studies. Moreover, a sample containing kaolinite minerals was studied to compare with the results obtained from other samples. Best results for soils bearing alkali and high sorption capacity minerals were obtained upon addition of 3 mol AcH and application of 20 V constant potential after a remediation period of 220 h. In these test conditions, lead (II) removal efficiencies for these samples varied between 60% and 70% up to 0.55 normalized distance. Under the same conditions, removal efficiencies in kaolinite sample varied between 50% and 95% up to 0.9 normalized distance.

  9. Kinetic and thermodynamic studies on the adsorption of anionic surfactant on quaternary ammonium cationic cellulose.

    Science.gov (United States)

    Zhang, Yuanzhang; Shi, Wenjian; Zhou, Hualan; Fu, Xing; Chen, Xuan

    2010-06-01

    Removal of anionic surfactants from aqueous solutions by adsorption onto quaternary ammonium cationic cellulose (QACC) was investigated. The effects of solution acidity, initial concentration, adsorption time, and temperature on the adsorption of sodium dodecyl-benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS) were studied. The kinetic experimental data fit well with the pseudo-second-order model; the rate constant of the adsorption increased with temperature. The values of apparent activation energy for the adsorption were calculated as ranging from 10.2 to 17.4 kJ/ mol. The adsorption isotherm can be described by the Langmuir isotherm. The values of thermodynamic parameters (deltaH0, deltaS0, and deltaG0) for the adsorption indicated that this process was spontaneous and endothermic. At 318 K, the saturated adsorption capacities of QACC for SDBS, SLS, and SDS were 1.75, 1.53, and 1.39 mmol/g, respectively. The adsorption process was mainly chemisorption and partially physisorption. The results show that QACC is effective for the removal of anionic surfactants.

  10. Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation.

    Science.gov (United States)

    Kulkarni, Vihangraj V; Golder, Animes Kumar; Ghosh, Pranab Kumar

    2018-01-05

    A new carboxylic bio-resin was synthesized from raw arecanut husk through mercerization and ethylenediaminetetraacetic dianhydride (EDTAD) carboxylation. The synthesized bio-resin was characterized using thermogravimetric analysis, field emission scanning electron microscopy, proximate & ultimate analyses, mass percent gain/loss, potentiometric titrations, and Fourier transform infrared spectroscopy. Mercerization extracted lignin from the vesicles on the husk and EDTAD was ridged in to, through an acylation reaction in dimethylformamide media. The reaction induced carboxylic groups as high as 0.735mM/g and a cation exchange capacity of 2.01meq/g functionalized mercerized husk (FMH). Potentiometric titration data were fitted to a newly developed single-site proton adsorption model (PAM) that gave pKa of 3.29 and carboxylic groups concentration of 0.741mM/g. FMH showed 99% efficiency in Pb(II) removal from synthetic wastewater (initial concentration 0.157mM), for which the Pb(II) binding constant was 1.73×10 3 L/mol as estimated from modified PAM. The exhaustion capacity was estimated to be 18.7mg/g of FMH. Desorption efficiency of Pb(II) from exhausted FMH was found to be about 97% with 0.1N HCl. The FMH simultaneously removed lead and cadmium below detection limit from a real lead acid battery wastewater along with the removal of Fe, Mg, Ni, and Co. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dynamics of photoexcited Ba+ cations in 4He nanodroplets

    International Nuclear Information System (INIS)

    2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain))" data-affiliation=" (Departament ECM, Facultat de Física, and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain))" >Leal, Antonio; 2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain))" data-affiliation=" (Departament ECM, Facultat de Física, and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain))" >Pi, Martí; Zhang, Xiaohang; Drabbels, Marcel; 2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Laboratoire des Collisions, Agrégats, Réactivité, IRSAMC, UMR 5589, CNRS et Université Paul Sabatier-Toulouse 3, 118 route de Narbonne, F-31062 Toulouse Cedex 09 (France))" data-affiliation=" (Departament ECM, Facultat de Física, and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Laboratoire des Collisions, Agrégats, Réactivité, IRSAMC, UMR 5589, CNRS et Université Paul Sabatier-Toulouse 3, 118 route de Narbonne, F-31062 Toulouse Cedex 09 (France))" >Barranco, Manuel; Cargnoni, Fausto; Hernando, Alberto; Mateo, David; Mella, Massimo

    2016-01-01

    We present a joint experimental and theoretical study on the desolvation of Ba + cations in 4 He nanodroplets excited via the 6p ← 6s transition. The experiments reveal an efficient desolvation process yielding mainly bare Ba + cations and Ba + He n exciplexes with n = 1 and 2. The speed distributions of the ions are well described by Maxwell-Boltzmann distributions with temperatures ranging from 60 to 178 K depending on the excitation frequency and Ba + He n exciplex size. These results have been analyzed by calculations based on a time-dependent density functional description for the helium droplet combined with classical dynamics for the Ba + . In agreement with experiment, the calculations reveal the dynamical formation of exciplexes following excitation of the Ba + cation. In contrast to experimental observation, the calculations do not reveal desolvation of excited Ba + cations or exciplexes, even when relaxation pathways to lower lying states are included.

  12. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    Science.gov (United States)

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were

  13. Americium removal from nitric acid waste streams

    International Nuclear Information System (INIS)

    Muscatello, A.C.; Navratil, J.D.

    1986-01-01

    Separations research at the Rocky Flats Plant (RFP) has found ways to significantly improve americium removal from nitric acid (7M) waste streams generated by plutonium purification operations. Partial neutralization of the acid waste followed by solid supported liquid membranes (SLM) are useful in transferring and concentrating americium from nitrate solutions. Specifically, DHDECMP (dihexyl-N,N-diethylcarbamoylmethylphosphonate) supported on Accurel polypropylene hollow fibers assembled in modular form transfers >95% of the americium from high nitrate (6.9M), low acid (0.1M) feeds into 0.25M oxalic acid stripping solution. Maximum permeabilities were observed to be 0.001 cm/sec, consistent with typical values for other systems. The feed:strip volume ratio shows an inverse relationship to the fraction of metal ion transferred. Cation exchangers may be used to concentrate americium from the strip solution. Furthermore, O0D (iB)CMPO (or CMPO) (octylphenyl-N-N-diisobutylcarbamoylmethylphosphine oxide) has been tested in an extraction chromatography mode. Preliminary results show CMPO to be effective in removing americium if the feed is neutralized to 1.0M acidity and iron(III) is complexed with 0.20M oxalic acid. 3 figs

  14. Natural and Modified Zeolite—Alginate Composites. Application for Removal of Heavy Metal Cations from Contaminated Water Solutions

    Directory of Open Access Journals (Sweden)

    Milan Kragović

    2018-01-01

    Full Text Available In present paper, the influence of the initial pH and concentration of Pb2+ on its adsorption by the natural (NZA and Fe(III-modified zeolite-alginate beads (FeA was studied. Results showed that modification of the starting materials have a positive effect on their adsorption capacities (102 and 136 mg/g for the NZA and FeA, respectively. After encapsulation, the mechanism of lead adsorption by both adsorbents was changed and ion exchange dominates. The best adsorption was achieved for initial pH > 3.8. Cation exchange capacity, structural properties, and hydrophobicity of samples were also determined, and the presence of the alginate has no significant influence on investigated properties of samples. Experiments on wastewater from tailings of lead and zinc mine Grot, Serbia, showed that after treatment with both adsorbents, the content of the most abundant heavy metals (Pb, Zn, Hg, and Mn significantly decreased.

  15. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    Science.gov (United States)

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

  16. A simple method to prepare magnetic modified beer yeast and its application for cationic dye adsorption.

    Science.gov (United States)

    Yu, Jun-Xia; Wang, Li-Yan; Chi, Ru-An; Zhang, Yue-Fei; Xu, Zhi-Gao; Guo, Jia

    2013-01-01

    The purpose of this research is to use a simple method to prepare magnetic modified biomass with good adsorption performances for cationic ions. The magnetic modified biomass was prepared by two steps: (1) preparation of pyromellitic dianhydride (PMDA) modified biomass in N, N-dimethylacetamide solution and (2) preparation of magnetic PMDA modified biomass by a situ co-precipitation method under the assistance of ultrasound irradiation in ammonia water. The adsorption potential of the as-prepared magnetic modified biomass was analyzed by using cationic dyes: methylene blue and basic magenta as model dyes. Optical micrograph and x-ray diffraction analyses showed that Fe(3)O(4) particles were precipitated on the modified biomass surface. The as-prepared biosorbent could be recycled easily by using an applied magnetic field. Titration analysis showed that the total concentration of the functional groups on the magnetic PMDA modified biomass was calculated to be 0.75 mmol g(-1) by using the first derivative method. The adsorption capacities (q(m)) of the magnetic PMDA modified biomass for methylene blue and basic magenta were 609.0 and 520.9 mg g(-1), respectively, according to the Langmuir equation. Kinetics experiment showed that adsorption could be completed within 150 min for both dyes. The desorption experiment showed that the magnetic sorbent could be used repeatedly after regeneration. The as-prepared magnetic modified sorbent had a potential in the dyeing industry wastewater treatment.

  17. A method for easily customizable gradient gel electrophoresis.

    Science.gov (United States)

    Miller, Andrew J; Roman, Brandon; Norstrom, Eric

    2016-09-15

    Gradient polyacrylamide gel electrophoresis is a powerful tool for the resolution of polypeptides by relative mobility. Here, we present a simplified method for generating polyacrylamide gradient gels for routine analysis without the need for specialized mixing equipment. The method allows for easily customizable gradients which can be optimized for specific polypeptide resolution requirements. Moreover, the method eliminates the possibility of buffer cross contamination in mixing equipment, and the time and resources saved with this method in place of traditional gradient mixing, or the purchase of pre-cast gels, are noteworthy given the frequency with which many labs use gradient gel SDS-PAGE. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. New approaches to improve the removal of dissolved organic matter and nitrogen in aquaculture

    DEFF Research Database (Denmark)

    von Ahnen, Mathis

    further due to the lack of cost-effective and easy applicable treatment methods for removing dissolved N and OM. The purpose of this PhD thesis was to assess the problem of removing dissolved N and OM in the context of the large differences in system intensity between farms, and to devise new, simple...... at increasing long-term waste loadings. The second part examined the potential of using anoxic denitrifying woodchip bioreactors for removal of nitrate from aquaculture effluent (Paper III-V). Investigations within the first part showed that the effectiveness of biofilters, as determined by their areal removal......-term biofilter loading up to a certain threshold. The latter indicated that the removal capacity of biofilters operated at lower loadings is easily exceeded, and that they may not respond very well to sudden increases in total ammonia nitrogen (TAN) concentrations. In the second part of the thesis, a field study...

  19. Visible photodissociation spectroscopy of PAH cations and derivatives in the PIRENEA experiment

    International Nuclear Information System (INIS)

    Useli-Bacchitta, F.; Bonnamy, A.; Mulas, G.; Malloci, G.; Toublanc, D.; Joblin, C.

    2010-01-01

    Graphical abstract: Measured multiphoton dissociation spectra of gas-phase coronene cation and its doubly-dehydrogenated derivative. - Abstract: The electronic spectra of gas-phase cationic polycyclic aromatic hydrocarbons (PAHs), trapped in the Fourier Transform Ion Cyclotron Resonance cell of the PIRENEA experiment, have been measured by multiphoton dissociation spectroscopy in the 430-480 nm spectral range using the radiation of a mid-band optical parametric oscillator laser. We present here the spectra recorded for different species of increasing size, namely the pyrene cation (C 16 H 10 + ), the 1-methylpyrene cation (CH 3 -C 16 H 9 + ), the coronene cation (C 24 H 12 + ), and its dehydrogenated derivative C 24 H 10 + . The experimental results are interpreted with the help of time-dependent density functional theory calculations and analysed using spectral information on the same species obtained from matrix isolation spectroscopy data. A kinetic Monte Carlo code has also been used, in the case of pyrene and coronene cations, to estimate the absorption cross-sections of the measured electronic transitions. Gas-phase spectra of highly reactive species such as dehydrogenated PAH cations are reported for the first time.

  20. BATCH AND FIXED BED ADSORPTION STUDIES OF LEAD (II CATIONS FROM AQUEOUS SOLUTIONS ONTO GRANULAR ACTIVATED CARBON DERIVED FROM MANGOSTANA GARCINIA SHELL

    Directory of Open Access Journals (Sweden)

    Zaira Zaman Chowdhury,

    2012-05-01

    Full Text Available The feasibility of granular activated carbon (GAC derived from Mangostene (Mangostana garcinia fruit shell to remove lead, Pb2+ cations was investigated in batch and fixed bed sorption systems. Batch experiments were carried out to study equilibrium isotherms, kinetics, and thermodynamics by using an initial lead (Pb2+ ions concentration of 50 to 100 mg/L at pH 5.5. Equilibrium data were fitted using Langmuir, Freundlich, and Temkin linear equation models at temperatures 30°C, 50°C, and 70°C. Langmuir maximum monolayer sorption capacity was 25.00 mg/g at 30°C. The experimental data were best represented by pseudo-second-order and Elovich models. The sorption process was found to be feasible, endothermic, and spontaneous. In column experiments, the effects of initial cation concentration (50 mg/L, 70 mg/L, and 100 mg/L, bed height (4.5 cm and 3 cm, and flow rate (1 mL/min and 3 mL/min on the breakthrough characteristics were evaluated. Breakthrough curves were further analyzed by using Thomas and Yoon Nelson models to study column dynamics. The column was regenerated and reused consecutively for four cycles. The result demonstrated that the prepared activated carbon was suitable for removal of Pb2+ from synthetic aqueous solution using batch, as well as fixed bed sorption systems.

  1. Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation.

    Science.gov (United States)

    Shakir, Kamal; Elkafrawy, Ahmed Faouzy; Ghoneimy, Hussein Fouad; Elrab Beheir, Shokry Gad; Refaat, Mamdoh

    2010-03-01

    The present work deals with removal, by ion flotation, of two dyes: a basic dye (rhodamine B (RB)) and an acidic one (thoron (TH)) from dilute aqueous solutions and simulated wastewaters. These dyes are widely used for analytical and biological staining purposes. Besides, RB is commonly used in dyeing of various industrial products. Therefore, wastewaters emanating from chemical and radiochemical laboratories, and biomedical and biological research laboratories may be contaminated with RB and TH. Ion flotation of these dyes has been investigated over a wide range of pH using the anionic surfactant, sodium lauryl sulfate (NaLS) and the cationic surfactant, cetyltrimethylammonium bromide (CTAB) as collectors. Successful removals could be achieved for RB and TH with the anionic collector, NaLS, and the cationic collector, CTAB, respectively. In addition to the effects of pH and type of collector on the efficiency of removal of each dye, the effects of collector and dye concentrations, frother dosage, ionic strength, bubbling time period and presence of foreign salts were investigated and the optimal removal conditions have been established. Removals exceeding 99.5 % and 99.9% could be achieved for RB and TH, respectively. The results obtained are discussed with respect to dissociation of dye, type of collector, ionic strength and sign and magnitude of charge of added foreign ions. Kinetics of flotation were also studied. Further studies demonstrate that under optimum conditions the developed flotation processes can be applied for the treatment of dye-contaminated wastewaters simulated to those generated at dyeing industries and radiochemical laboratories. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. External Carbon Source Addition as a Means to Control an Activated Sludge Nutrient Removal Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens; Søeberg, Henrik

    1994-01-01

    In alternating type activated sludge nutrient removal processes, the denitrification rate can be limited by the availability of readily-degradable carbon substrate. A control strategy is proposed by which an easily metabolizable COD source is added directly to that point in the process at which d...

  3. Effects of Hofmeister salt series on gluten network formation: Part I. Cation series.

    Science.gov (United States)

    Tuhumury, H C D; Small, D M; Day, L

    2016-12-01

    Different cationic salts were used to investigate the effects of the Hofmeister salt series on gluten network formation. The effects of cationic salts on wheat flour dough mixing properties, the rheological and the chemical properties of the gluten extracted from the dough with different respective salts, were investigated. The specific influence of different cationic salts on the gluten structure formation during dough mixing, compared to the sodium ion, were determined. The effects of different cations on dough and gluten of different flours mostly followed the Hofmeister series (NH4(+), K(+), Na(+), Mg(2+) and Ca(2+)). The impacts of cations on gluten structure and dough rheology at levels tested were relatively small. Therefore, the replacement of sodium from a technological standpoint is possible, particularly by monovalent cations such as NH4(+), or K(+). However the levels of replacement need to take into account sensory attributes of the cationic salts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Size effects on cation heats of formation. I. Methyl substitutions in nitrogenous compounds

    International Nuclear Information System (INIS)

    Leach, Sydney

    2012-01-01

    Graphical abstract: Heat of formation of cations as a function of ln(n) where n is the number of atoms in the ion: methyl substituted immonium cations. N = substitution at nitrogen sites, C = substitution at carbon sites. Highlights: ► Heats of formation of nitrogenous cations by graphical method relating to ion size. ► Methyl substitution in formamides, acetamides, immonium, amine, and imine cations. ► Methyl substitution in ammonium and amino cations. ► New studies ionization energies and heats of formation required in several cases. - Abstract: The heats of formation of molecular ions are often not known to better than 10 or 20 kJ/mol. The present study on nitrogenous compounds adopts the graphical approach of Holmes and Lossing which relates cation heats of formation to cation size. A study of methyl substitution in formamides and acetamides is followed by an examination of heat of formation data on carbon-site and nitrogen-site methyl substitution in immonium, amine, imine, ammonium and amino cations. The results provide tests of the validity of this graphical method and also suggest investigating or re-investigating the ionization energies and the heats of formation of several of the molecules studied.

  5. Radiation-induced cationic curing of vinyl ethers

    International Nuclear Information System (INIS)

    Lapin, S.C.

    1992-01-01

    Recently there has been an increasing interest in nonacrylate radiation-curable coatings. Vinyl ethers are particularly reactive under cationic polymerization reaction conditions. The high efficiency of the photoacid initiators combined with the high reactivity of vinyl ether monomers makes this a potentially very useful system. This chapter discusses the preparation of vinyl ethers, introduces vinyl ether-functional monomers and oligomers, describes radiation-induced cationic polymerization of vinyl ethers, and discusses various coating systems. Throughout the chapter, an emphasis is placed on radiation-curable coating applications. 64 refs., 5 figs., 11 tabs

  6. Conserved Aromatic Residue Confers Cation Selectivity in Claudin-2 and Claudin-10b*

    Science.gov (United States)

    Li, Jiahua; Zhuo, Min; Pei, Lei; Yu, Alan S. L.

    2013-01-01

    In tight junctions, both claudin-2 and claudin-10b form paracellular cation-selective pores by the interaction of the first ECL 1 with permeating ions. We hypothesized that a highly conserved aromatic residue near the pore selectivity filter of claudins contributes to cation selectivity by cation-π interaction with the permeating cation. To test this, we generated MDCK I Tet-off cells stably transfected with claudin-2 Tyr67 mutants. The Y67L mutant showed reduced cation selectivity compared with wild-type claudin-2 due to a decrease in Na+ permeability, without affecting the Cl− permeability. The Y67A mutant enlarged the pore size and further decreased the charge selectivity due to an increase in Cl− permeability. The Y67F mutant restored the Na+ permeability, Cl− permeability, and pore size back to wild-type. The accessibility of Y67C to methanethiosulfonate modification indicated that its side chain faces the lumen of the pore. In claudin-10b, the F66L mutant reduced cation selectivity, and the F66A mutant lost pore conductance. We conclude that the conserved aromatic residue near the cation pore domain of claudins contributes to cation selectivity by a dual role of cation-π interaction and a luminal steric effect. Our findings provide new insight into how ion selectivity is achieved in the paracellular pore. PMID:23760508

  7. Cation substitution induced blue-shift of optical band gap

    Indian Academy of Sciences (India)

    Cation substitution induced blue-shift of optical band gap in nanocrystalline Zn ( 1 − x ) Ca x O thin films deposited by sol–gel dip coating technique ... thin films giving 13.03% enhancement in theenergy gap value due to the electronic perturbation caused by cation substitution as well as deterioration in crystallinity.

  8. Simultaneous anionic and cationic redox

    Science.gov (United States)

    Jung, Sung-Kyun; Kang, Kisuk

    2017-12-01

    It is challenging to unlock anionic redox activity, accompanied by full utilization of available cationic redox process, to boost capacity of battery cathodes. Now, material design by tuning the metal-oxygen interaction is shown to be a promising solution.

  9. Contribution of cation-π interactions to the stability of Sm/LSm oligomeric assemblies.

    Science.gov (United States)

    Mucić, Ivana D; Nikolić, Milan R; Stojanović, Srđan Đ

    2015-07-01

    In this work, we have analyzed the influence of cation-π interactions to the stability of Sm/LSm assemblies and their environmental preferences. The number of interactions formed by arginine is higher than lysine in the cationic group, while histidine is comparatively higher than phenylalanine and tyrosine in the π group. Arg-Tyr interactions are predominant among the various pairs analyzed. The furcation level of multiple cation-π interactions is much higher than that of single cation-π interactions in Sm/LSm interfaces. We have found hot spot residues forming cation-π interactions, and hot spot composition is similar for all aromatic residues. The Arg-Phe pair has the strongest interaction energy of -8.81 kcal mol(-1) among all the possible pairs of amino acids. The extent of burial of the residue side-chain correlates with the ΔΔG of binding for residues in the core and also for hot spot residues cation-π bonded across the interface. Secondary structure of the cation-π residues shows that Arg and Lys preferred to be in strand. Among the π residues, His prefers to be in helix, Phe prefers to be in turn, and Tyr prefers to be in strand. Stabilization centers for these proteins showed that all the five residues found in cation-π interactions are important in locating one or more of such centers. More than 50 % of the cation-π interacting residues are highly conserved. It is likely that the cation-π interactions contribute significantly to the overall stability of Sm/LSm proteins.

  10. Photodissociation of spatially aligned acetaldehyde cations.

    Science.gov (United States)

    Lee, Suk Kyoung; Silva, Ruchira; Kim, Myung Hwa; Shen, Lei; Suits, Arthur G

    2007-07-26

    Photofragment translational energy and angular distributions are reported for the photodissociation of acetaldehyde cations in the wavelength range 354-363 nm obtained using the DC slice ion imaging technique. Vibrationally selected parent ions were produced by 2+1 resonance-enhanced multiphoton ionization (REMPI) via the 3sCH3CO+, and CH4+. The angular distributions reveal that all product channels have a predominantly parallel recoil anisotropy although the lower beta2 parameter of CH3CO+ indicates the concomitant presence of a perpendicular component. Furthermore, the distinct angular distribution of the CH3CO+ fragments shows a large value of the higher order Legendre polynomial term, providing evidence that acetaldehyde cations are spatially aligned during the ionization process.

  11. Computer simulation of displacement cation exchange chromatography: separation of trivalent actinides and lanthanides

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1980-05-01

    A first-generation mathematical model of displacement cation exchange chromatography (CES) was constructed. The model incorporated the following phenomena: diffusion of cations up and down the column, diffusion of cations from the bulk liquid to the resin surface, and equilibrium of cations between liquid and solid resin beads. A limited number of experiments with rare earths using DTPA as the separation agent were undertaken to increase the current understanding of the processes involved in cation exchange chromatography. The numerical computer program based on the mathematical model was written in FORTRAN IV for use on the IBM 360 series of computers

  12. Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes.

    Science.gov (United States)

    Koynova, Rumiana; Tenchov, Boris

    2010-01-01

    Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.

  13. Carbon nitride nanotube as a sensor for alkali and alkaline earth cations

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Department of Chemistry, Shahid Rajaee Teacher Training University, P.O. Box: 16875-163, Tehran (Iran, Islamic Republic of); Baei, Mohammad T. [Department of Chemistry, Azadshahr Branch, Islamic Azad University, Azadshahr, Golestan (Iran, Islamic Republic of); Bagheri, Zargham [Physics Group, Science Department, Islamic Azad University, Islamshahr Branch, P.O. Box: 33135-369, Islamshahr, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi, E-mail: ahmadi.iau@gmail.com [Young Researchers Club, Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Adsorption of alkali and alkaline earth cations on a CN nanotube studied by DFT. Black-Right-Pointing-Pointer The alkaline cation adsorption may raise potential barrier of the electron emission. Black-Right-Pointing-Pointer The tube may act as a sensor in the presence of alkali and alkaline cations. - Abstract: Adsorption of several alkali (Li{sup +}, Na{sup +}, and K{sup +}) and alkaline earth (Be{sup 2+}, Mg{sup 2+}, and Ca{sup 2+}) cations on the surface of a zigzag (9, 0) carbon nitride nanotube has been investigated using density functional theory. It has been found that almost all of the cations prefer to be strongly chemisorbed at the center of porous site of the tube surface. The adsorption of alkaline cations much more influences the electronic properties of the tube, in comparison with the alkali ones, so that it is transformed from an intrinsic semiconductor with HOMO/LUMO energy gap of 4.02 eV to extrinsic p-type one with the gap of 0.54-1.94 eV. The alkaline cation adsorption may significantly raise potential barrier of the electron emission from the tube surface, hence impeding the field emission. It has been also concluded that the electrical sensitivity of the tube toward the cations may be in the order: Be{sup 2+} Much-Greater-Than Mg{sup 2+} Much-Greater-Than Ca{sup 2+} Much-Greater-Than Li{sup +} {approx} Na{sup +} {approx} K{sup +}.

  14. Single Vs Mixed Organic Cation for Low Temperature Processed Perovskite Solar Cells

    International Nuclear Information System (INIS)

    Mahmud, Md Arafat; Elumalai, Naveen Kumar; Upama, Mushfika Baishakhi; Wang, Dian; Wright, Matthew; Chan, Kah Howe; Xu, Cheng; Haque, Faiazul; Uddin, Ashraf

    2016-01-01

    Highlights: • Low temperature processed ZnO based single & mixed organic cation perovskite device. • 37% higher PCE in mixed cation perovskite solar cells (PSCs) than single cation ones. • Mixed cation PSCs exhibit significantly reduced photocurrent hysteresis. • Mixed cation PSCs demonstrate three fold higher device stability than single cation PSCs. • Electronic properties are analyzed using Electrochemical Impedance Spectroscopy. - Abstract: The present work reports a comparative study between single and mixed organic cation based MAPbI 3 and MA 0.6 FA 0.4 PbI 3 perovskite devices fabricated in conjunction with low temperature processed (<150 °C) ZnO electron transport layers. MA 0.6 FA 0.4 PbI 3 perovskite devices demonstrate 37% higher power conversion efficiency compared to MAPbI 3 perovskite devices developed on the ZnO ETL. In addition, MA 0.6 FA 0.4 PbI 3 devices exhibit very low photocurrent hysteresis and they are three-fold more stable than conventional MAPbI 3 PSCs (perovskite solar cells). An in-depth analysis on the charge transport properties in both fresh and aged devices has been carried out using electrochemical impedance spectroscopy analysis to comprehend the enhanced device stability of the mixed perovskite devices developed on the ZnO ETL. The study also investigates into the interfacial charge transfer characteristics associated with the ZnO/mixed organic cation perovskite interface and concomitant influence on the inherent electronic properties.

  15. Comparison contemporary methods of regeneration sodium-cationic filters

    Science.gov (United States)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  16. Intracrystalline cation order in a lunar crustal troctolite

    Science.gov (United States)

    Smyth, J. R.

    1975-01-01

    Lunar sample 76535 appears to be one of the most slowly cooled bits of silicate material yet studied. It provides, therefore, a unique opportunity for the study of ordering processes in the minerals present. A better understanding of these processes may permit better characterization of the thermal history of this and similar rocks. The cation ordering in the olivine is consistent with terrestrial olivines favoring the interpretation that ordering in olivines increases with increasing temperature. In low bronzite, the deviations from the common orthopyroxene space group appear to be caused by cation order on the basis of four M sites instead of two. The degree of cation order in each of these minerals is consistent with the rock having been excavated from its depth of formation by tectonic or impact processes without being reheated above 300 C.

  17. Effect of alkali metal cations on anodic dissolution of gold in cyanide solutions. Potentiodynamic measurement

    International Nuclear Information System (INIS)

    Bek, R.Yu.; Rogozhnikov, N.A.; Kosolapov, G.V.

    1998-01-01

    It is shown that gold dissolution rate in cyanic solutions in Li + , Na + , K + , Cs + cation series increases basically and decreases under cation concentration increasing. Cation effect on current value is caused by cations drawing in dense layer. A model of dense part of double layer with two Helmholtz planes (anion and cation) is suggested. Effect of nature and concentration of alkali metal cations on gold dissolution rate is explained on the base of the model [ru

  18. Prediction of Intrinsic Cesium Desorption from Na-Smectite in Mixed Cation Solutions.

    Science.gov (United States)

    Fukushi, Keisuke; Fukiage, Tomo

    2015-09-01

    Quantitative understanding of the stability of sorbed radionuclides in smectite is necessary to assess the performance of engineering barriers used for nuclear waste disposal. Our previous study demonstrated that the spatial organization of the smectite platelets triggered by the divalent cations led to the apparent fixation of intrinsic Cs in smectite, because some Cs is retained inside the formed tactoids. Natural water is usually a mixture of Na(+) and divalent cations (Ca(2+) and Mg(2+)). This study therefore investigated the desorption behavior of intrinsic Cs in Na-smecite in mixed Na(+)-divalent cation solutions under widely various cation concentrations using batch experiments, grain size measurements, and cation exchange modeling (CEM). Results show that increased Na(+) concentrations facilitate Cs desorption because Na(+) serves as the dispersion agent. A linear relation was obtained between the logarithm of the Na(+) fraction and the accessible Cs fraction in smectite. That relation enables the prediction of accessible Cs fraction as a function of solution cationic compositions. The corrected CEM considering the effects of the spatial organization suggests that the stability of intrinsic Cs in the smectite is governed by the Na(+) concentration, and suggests that it is almost independent of the concentrations of divalent cations in natural water.

  19. Correlations of Glomalin Contents and PAHs Removal in Alfalfa-vegetated Soils with Inoculation of Arbuscular Mycorrhizal Fungi

    Directory of Open Access Journals (Sweden)

    YANG Zhen-ya

    2016-07-01

    Full Text Available The correlations of glomalin contents and removal of phenanthrene and pyrene as representative polycyclic aromatic hydrocarbons (PAHs in soils with inoculation of arbuscular mycorrhizal fungi(AMF were investigated. The test AMF included Glomus etunicatum(Ge, Glomus mosseae(Gm, and Glomus lamellosum(Gla, and the host plant was alfalfa(Medicago sativa L.. The AMF hyphal density and contents of easily extractable glomalin and total glomalin in AMF-inoculated soils were observed to increase with cultivation time from 35 d to 75 d. Comparing with the control treatment(CK without AMF inoculation, the contents of easily extractable glomalin in soil increased 48.58%, 55.99% and 50.23%, and total glomalin contents increased 38.75%, 50.95% and 46.12% with Ge, Gm and Gla inoculation after 75 d, respectively. AMF inoculation promoted the removal of test PAHs in soils. The removal rates of phenanthrene and pyrene in soils with AMF enhanced in 35~75 d. 83.4%~92.7%, 82.1%~93.8% and 86.9%~93.4% of phenanthrene and 42.2%~63.5%, 43.7%~69.2% and 44.6%~66.4% of pyrene in soils with Ge, Gm, Gla were removed in 75 d respectively. AMF hyphal density and total glomalin contents were observed to be significantly positively correlated with the removal rates of PAHs in soils, indicating that the colonization of AMF enhanced hyphal density and total glomalin contents and thus promoted the degradation of PAHs in the soil environments.

  20. Application of ion chromatography to batchwise activated sludge process for simultaneous removal of thiosulfate, acetate and ammonium ions.

    OpenAIRE

    田中, 一彦; 黒川, 利一; 中島, 良三

    1988-01-01

    Ion chromatography (IC) with conductivity detection for determining anions and ion-exclusion chromatography (IEC) with conductivity detection for determining cations were investigated. Both techniques were applied to the establishment of the optimal conditions for the simultaneous removal of thiosulfate, acetate, and ammonium ions by a batchwise activated sludge process. The process consists of the combination of aerobic and anaerobic biological treatment processes by a sequential automatic p...

  1. Fission product removal from molten salt using zeolite

    International Nuclear Information System (INIS)

    Pereira, C.; Babcock, B.D.

    1996-01-01

    Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission product cations from the molten salt. Breakthrough of cesium and the alkaline earths occurred more rapidly than was observed for the rare earths. The effluent composition as a function of time is presented, as well as results for the distribution of fission products along the length of the column. Effects of temperature and salt flow rate are also discussed

  2. Selective removal of dissolved toxic metals from groundwater by ultrafiltration in combination with chemical treatment

    International Nuclear Information System (INIS)

    Buckley, L.P.; Le, V.T.; McConeghy, G.J.; Martin, J.F.

    1989-09-01

    An alternative in-place process for the removal of toxic heavy metals based on aqueous solution chemistry and treatment is being evaluated under the auspices of the Emerging Technologies Program funded through the USEPA's Superfund Innovative Technology Evaluation Program. The technique involves the contacting of aqueous solutions containing the heavy metal contaminants with low concentrations of polyelectrolytes, and then removing the polyelectrolytes from solution with ultrafiltration membranes. The first phase of the program is considered complete. Success has been achieved for the separation of soluble, heavy metal ions: cadmium, lead, and mercury even in the presence of an organic compound, toluene. Removal was successful at alkaline conditions, using any combination of membrane material or polyelectrolyte. Arsenic was removed, but not effectively, using the current polyelectrolytes, simply because arsenic is present as an anionic species rather than as a cationic species. Optimization of the process variables is nearing completion and pilot and field testing will take place in the second year of the program to verify the process under realistic conditions and to establish process economics

  3. Factors affecting radium removal using mixed iron-manganese oxides

    International Nuclear Information System (INIS)

    Mott, H.V. Singh, S.; Kondapally, V.R.

    1993-01-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment

  4. Factors affecting radium removal using mixed iron-manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Mott, H.V. Singh, S.; Kondapally, V.R. (South Dakota School of Mines and Technology, Rapid City, SD (United States))

    1993-10-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment.

  5. Removal of cyanobacteria and cyanotoxins from lake water by composites of bentonite with micelles of the cation octadecyltrimethyl ammonium (ODTMA).

    Science.gov (United States)

    Sukenik, Assaf; Viner-Mozzini, Yehudit; Tavassi, Mordechay; Nir, Shlomo

    2017-09-01

    Cyanobacteria and their toxins present potential hazard to consumers of water from lakes, reservoirs and rivers, thus their removal via water treatment is essential. The capacity of nano-composites of Octadecyltrimethyl-ammonium (ODTMA) complexed with clay to remove cyanobacterial and their toxins from laboratory cultures and from lake water, was evaluated. Column filters packed with micelles of ODTMA complexed with bentonite and granulated were shown to significantly reduce the number of cyanobacteria cells or filaments and their corresponding toxins from laboratory cultures. Fluorescence measurements demonstrated that cyanobacteria cells lost their metabolic activity (photosynthesis) upon exposure to the micelle (ODTMA)-bentonite complex, or ODTMA monomers. The complex efficiently removed cyanobacteria toxins with an exceptional high removal rate of microcystins. The effectiveness of the complex in elimination of cyanobacteria was further demonstrated with lake water containing cyanobacteria and other phytoplankton species. These results and model calculations suggest that filters packed with granulated composites can secure the safety of drinking water in case of a temporary bloom event of toxic cyanobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    Science.gov (United States)

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  7. Understanding weakly coordinating anions: tetrakis(pentafluorophenyl)borate paired with inorganic and organic cations.

    Science.gov (United States)

    Andreeva, Nadezhda A; Chaban, Vitaly V

    2017-03-01

    Efficient design of ionic compounds requires a systematic understanding of cation-anion interactions. Weakening of electrostatic attraction is essential to increase the liquid range of the ionic compound and decrease its melting point. Here, we report simulations of the closest-approach cation-anion distances in a variety of ion pairs containing the tetrakis(pentafluorophenyl)borate (TFPB - ) anion. Small alkali cations (Li + , Na + ) penetrate the TFPB - core, whereas K + and larger organic cations do not. In the latter case, the shortest possible distance from the cations to the boron atom of TFPB - ranges from 0.50 nm to 0.63 nm. TFPB - was shown to be substantially rigid, providing a steric hindrance to thermodynamically efficient cation-anion coordination. Our results prove that TFPB - is more efficient for electrostatic charge confinement than the tetraoctylammonium cation, whereas the perfluorophenyl group is more efficient than linear alkyl chains. These simulations will motivate development of TFPB - -based ionic liquids with low phase transition points. Graphical Abstract Ionic configuration of the equilibrated "TFPB + K"system.

  8. Thermodynamics and Cation Diffusion in the Oxygen Ion Conductor Lsgm

    Science.gov (United States)

    Martin, M.; Schulz, O.

    Perovskite type oxides based on LaGaO3 are of large technical interest because of their high oxygen-ion conductivity. Lanthanum gallate doped with Sr on A- and Mg on B-sites, La1-xSrxGa1-yMgyO3-(x+y)/2 (LSGM), reaches higher oxygen-ion conductivities than yttria-doped zirconia (YSZ). Thus LSGM represents a promising alternative for YSZ as electrolyte in solid oxide fuel cells (SOFC). Cells using thin LSGM-layers as electrolyte are expected to operate at intermediate temperatures around 700°C for more than 30000 hours without severe degradation. A potential long term degradation effect of LSGM is kinetic demixing of the electrolyte, caused by different cation diffusion coefficients. In this paper we report on experimental studies concerning the phase diagram of LSGM and the diffusion of cations. Cation self-diffusion of 139La, 84Sr and 25Mg and cation impurity diffusion of 144Nd, 89Y and 56Fe in polycrystalline LSGM samples was investigated by secondary ion mass spectrometry (SIMS) for temperatures between 900°C and 1400°C. It was found that diffusion occurs by means of bulk and grain boundaries. The bulk diffusion coefficients are similar for all cations with activation energies which are strongly dependent on temperature. At high temperatures, the activation energies are about 5 eV, while at low temperatures values of about 2 eV are found. These results are explained by a frozen in defect structure at low temperatures. This means that the observed activation energy at low temperatures represents only the migration energy of the different cations while the observed activation energy at high temperatures is the sum of the defect formation energy and the migration energy. The migration energies for all cations are nearly identical, although 139La, 84Sr and 144Nd are occupying A-sites while 25Mg and 56Fe are occupying B-sites in the perovskite-structure. To explain these experimental findings we propose a defect cluster containing cation vacancies in both the A

  9. Cation incorporation into zirconium oxide in LiOH, NaOH, and KOH solutions

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Kim, K.H.; Baek, J.H.

    1999-01-01

    To investigate the cation incorporation into zirconium oxide, SIMS analysis was performed on the specimens prepared to have an equal oxide thickness in LiOH, NaOH, and KOH solutions. Even though they have an equal oxide thickness in LiOH, NaOH, and KOH solutions, the penetration depth of cation into the oxide decreased with an increase in the ionic radius of cation. The cation is considered to control the corrosion in alkali hydroxide solutions and its effect is dependent on the concentration of alkali and the oxide thickness. The slight enhancement of the corrosion rate at a low concentration is thought to be caused by cation incorporation into oxide, while the significant acceleration at a high concentration is due to the transformation of oxide microstructures that would be also induced by cation incorporation into oxide. (orig.)

  10. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    Science.gov (United States)

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  11. Development and application of high performance resins for crud removal

    International Nuclear Information System (INIS)

    Deguchi, Tatsuya; Izumi, Takeshi; Hagiwara, Masahiro

    1998-01-01

    The development of crud removal technology has started with the finding of the resin aging effect that an old ion exchange resin, aged by long year of use in the condensate demineralizer, had an enhanced crud removal capability. It was confirmed that some physical properties such as specific surface area and water retention capacity were increased due to degradation caused by long year of contact with active oxygens in the condensate water. So, it was speculated that those degradation in the resin matrix enhanced the adsorption of crud particulate onto the resin surface, hence the crud removal capability. Based on this, crud removal resin with greater surface area was first developed. This resin has shown an excellent crud removal efficiency in an actual power plant, and the crud iron concentration in the condensate effluent was drastically reduced by this application. However, the cross-linkage of the cation resin had to be lowered in a delicate manner for that specific purpose, and this has caused higher organic leachables from the resin, and the sulfate level in the reactor was raised accordingly. Our major goals, therefore, has been to develop a crud resin of as little organic leachables as possible with keeping the original crud removal efficiency. It was revealed through the evaluation of the first generation crud resin and its improved version installed in the actual condensate demineralizers that there was a good correlation between crud removal efficiency and organic leaching rate. The bast one among a number of developmental resins has shown the organic leaching rate of 1/10 of that of the original crud resin (ETR-C), and the crud removal efficiency of 90%. So far as we understand, the resin was considered to have the best overall balance between crud removal and leaching characteristics. The result of six month evaluation of this developmental resin, ETR-C3, in one vessel of condensate demineralizer of a power plant will be presented. (J.P.N.)

  12. Regulation of Cation Balance in Saccharomyces cerevisiae

    Science.gov (United States)

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  13. Comparative energies of Zn(II) cation localization as a function of the distance between two forming cation position aluminium ions in high-silica zeolites

    NARCIS (Netherlands)

    Kachurovskaya, N.A.; Zhidomirov, G.M.; van Santen, R.A.

    2004-01-01

    Periodical calcns. of Zn(II) metal cation stabilization in cationic positions with distantly placed aluminum ions has been performed for high-silica ferrierite. It was found that decrease of the stabilization energy at large distances between Al ions (more than 10 .ANG.) is about of 2 eV in

  14. The reaction of organocerium reagents with easily enolizable ketones

    International Nuclear Information System (INIS)

    Imamoto, Tsuneo; Kusumoto, Tetsuo; Sugiura, Yasushi; Suzuki, Nobuyo; Takiyama, Nobuyuki

    1985-01-01

    Organocerium (III) reagents were conveniently generated by the reaction of organolithium compounds with anhydrous cerium (III) chloride. The reagents are less basic than organolithiums and Grignard reagents, and they react readily at -78 deg C with easily enolizable ketones such as 2-tetralone to afford addition products in high yields. Cerium (III) enolates were also generated from lithium enolates and cerium (III) chloride. The cerium (III) enolates undergo aldol addition with ketones or sterically crowded aldehyde to give the corresponding β-hydroxy ketones in good to high yields. (author)

  15. An albumin-fixed membrane for the removal of protein-bound toxins

    International Nuclear Information System (INIS)

    Ge Dongtao; Wu Dewang; Shi Wei; Ma Yuanyuan; Tian Xiangdong; Liang Pengfei; Zhang Qiqing

    2006-01-01

    Established methods for kidney dialysis do not work for liver failure because kidney dialysis removes only water-soluble toxins, while the liver normally removes albumin-bound toxins. In the present study, a polysulfone dialysis membrane with a -OH reactive group was prepared by hydrolyzing the chloromethylated polysulfone membrane, and the bovine serum albumin molecules were fixed into the membrane with 1,1'-carbonyldiimidazole activation. The content of albumin of the albumin-fixed membrane was 121.3 mg (g membrane) -1 . The albumin-fixed dialysis membranes were used to remove protein-bound toxins, bilirubin, from the bilirubin-albumin solution. The transfer rate of bilirubin of the albumin-fixed membrane was obviously higher compared to the normal dialysis membrane. The clearance of bilirubin with the albumin-fixed membrane was 49.8%. The albumin-fixed membrane can easily be regenerated by the bovine serum albumin and NaOH solution. Regeneration of the membrane suggested good mechanical and chemical stability, as well as good clearance of bilirubin. In addition, the effects of membrane thickness and bilirubin initial concentration on the removal of bilirubin were discussed

  16. Development of a High-Throughput Ion-Exchange Resin Characterization Workflow.

    Science.gov (United States)

    Liu, Chun; Dermody, Daniel; Harris, Keith; Boomgaard, Thomas; Sweeney, Jeff; Gisch, Daryl; Goltz, Bob

    2017-06-12

    A novel high-throughout (HTR) ion-exchange (IEX) resin workflow has been developed for characterizing ion exchange equilibrium of commercial and experimental IEX resins against a range of different applications where water environment differs from site to site. Because of its much higher throughput, design of experiment (DOE) methodology can be easily applied for studying the effects of multiple factors on resin performance. Two case studies will be presented to illustrate the efficacy of the combined HTR workflow and DOE method. In case study one, a series of anion exchange resins have been screened for selective removal of NO 3 - and NO 2 - in water environments consisting of multiple other anions, varied pH, and ionic strength. The response surface model (RSM) is developed to statistically correlate the resin performance with the water composition and predict the best resin candidate. In case study two, the same HTR workflow and DOE method have been applied for screening different cation exchange resins in terms of the selective removal of Mg 2+ , Ca 2+ , and Ba 2+ from high total dissolved salt (TDS) water. A master DOE model including all of the cation exchange resins is created to predict divalent cation removal by different IEX resins under specific conditions, from which the best resin candidates can be identified. The successful adoption of HTR workflow and DOE method for studying the ion exchange of IEX resins can significantly reduce the resources and time to address industry and application needs.

  17. Device for removing radioactive solids in wet gases

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Miyo, Hiroaki.

    1981-01-01

    Purpose: To enable removal and decontamination of radioactive solids in wet gases simply, easily and securely by removing radioactive solids in gases by filteration and applying microwaves to filters to evaporate condensed moistures. Constitution: Objects to be heated such as solutions, sludges and solids containing radioactive substances are placed in an evaporation vessel and a microwave generator is operated. Microwaves are applied to the objects in the evaporation vessel through a shielding plate and filters. The objects are evaporated and exhausted gases are passed through the filters and sent to an exhaust gas processing system by way of an exhaust gas pipe. Condensed moistures deposited on the filters which would otherwise cause cloggings are evaporated being heated by the microwaves to prevent cloggings. The number of stages for the filters may optionally be adjusted depending on the extent of the contamination in the exhaust gases. (Kawakami, Y.)

  18. Graphene oxide/ferroferric oxide/polyethylenimine nanocomposites for Congo red adsorption from water.

    Science.gov (United States)

    Wang, Lina; Mao, Changming; Sui, Ning; Liu, Manhong; Yu, William W

    2017-04-01

    Graphene oxide/ferroferric oxide/polyethylenimine (GO/Fe 3 O 4 /PEI) nanocomposites were synthesized by an in situ growth of Fe 3 O 4 nanoparticles on GO sheets, and then modified by PEI. The GO/Fe 3 O 4 /PEI nanocomposites showed extremely high removal efficiency for anionic dye Congo Red (CR) due to the positively charged PEI molecules (methylene blue was also tested but with low adsorption capacity due to its cationic property). The CR removal capacity was 574.7 mg g -1 , higher than most of reported results. The adsorption kinetics could be well described by a pseudo-second-order model. Furthermore, GO/Fe 3 O 4 /PEI nanocomposites could be easily recycled by magnetic separation. The removal efficiency remained above 70% after five cycles.

  19. Icosahedral cationic framework in the structures of MR2F7 fluorides

    International Nuclear Information System (INIS)

    Golubev, A.M.; Maksimov, B.A.; Rastsvetaeva, R.K.

    1997-01-01

    Cationic icosahedral frame formed by BiCs 6 Bi 6 icosahedrons is detected in C 5 Bi 2 F 7 structure. Similarity of cationic motives of CsBi 2 F 7 and β-KEr 2 F 7 structure types is determined, occurrence of a similar motive in RbEr 2 F 7 structure is assumed. Cationic motives of MR 2 F 7 fluorides (R=Y, Ln) are studied and dependence of cationic frame type on the ratio of metal ion radii is shown using KLn 2 F 7 fluorides as an example. 12 refs.; 4 figs.; 1 tab

  20. Evaluation of phenomena affecting diffusion of cations in compacted bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.

    1995-04-01

    In a number of diffusion studies, contradictions between the apparent diffusivities of cations and their distribution coefficients in bentonite have been found. Two principal reasons have been offered as explanations for this discrepancy; diffusion of the sorbed cations, often called surface diffusion, and the decrease of sorption in compacted clay compared to a sorption value obtained from a batch experiment. In the study the information available from the literature on sorption-diffusion mechanisms of cations in bentonite has been compiled and re-interpreted in order to improve the understanding of the diffusion process. (103 refs., 23 figs., 8 tabs.)

  1. Early events following radiolytic and photogeneration of radical cations in hydrocarbons

    International Nuclear Information System (INIS)

    Werst, D.W.; Trifunac, A.D.

    1992-01-01

    Real-time studies in hydrocarbons have revealed a richness of chemistry involving the initial ionic species produced in radiolysis and photoionization. A modified radical cation mechanism patterned after the core mechanism for alkane radiolysis-formation of radical cations and their disappearance via ion-molecule reactions - is capable of explaining a wide range of observations in high-energy photochemistry, and thus unifies two high-energy regimes. Fundamental studies of radical cations suggest strategies for mitigating radiation effects in materials

  2. Electrostatically driven resonance energy transfer in "cationic" biocompatible indium phosphide quantum dots.

    Science.gov (United States)

    Devatha, Gayathri; Roy, Soumendu; Rao, Anish; Mallick, Abhik; Basu, Sudipta; Pillai, Pramod P

    2017-05-01

    Indium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs. The quaternary ammonium group provides the much required permanent positive charge and stability to InP/ZnS QDs in biofluids. The two important properties of QDs, namely bioimaging and light induced resonance energy transfer, are successfully demonstrated in cationic InP/ZnS QDs. The low cytotoxicity and stable photoluminescence of cationic InP/ZnS QDs inside cells make them ideal candidates as optical probes for cellular imaging. An efficient resonance energy transfer ( E ∼ 60%) is observed, under physiological conditions, between the cationic InP/ZnS QD donor and anionic dye acceptor. A large bimolecular quenching constant along with a linear Stern-Volmer plot confirms the formation of a strong ground state complex between the cationic InP/ZnS QDs and the anionic dye. Control experiments prove the role of electrostatic attraction in driving the light induced interactions, which can rightfully form the basis for future nano-bio studies between cationic InP/ZnS QDs and anionic biomolecules.

  3. Structure and Intramolecular Proton Transfer of Alanine Radical Cations

    International Nuclear Information System (INIS)

    Lee, Gab Yong

    2012-01-01

    The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the NH 2 group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [NH 3 + -CHCH 3 -COO·], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol

  4. Cationization of heparin for film applications

    Czech Academy of Sciences Publication Activity Database

    Šimkovic, I.; Mendichi, R.; Kelnar, Ivan; Filip, J.; Hricovíni, M.

    2015-01-01

    Roč. 115, 22 January (2015), s. 551-558 ISSN 0144-8617 Institutional support: RVO:61389013 Keywords : heparin * cationization * NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.219, year: 2015

  5. Aggregation is a critical cause of poor transfer into the brain tissue of intravenously administered cationic PAMAM dendrimer nanoparticles

    Science.gov (United States)

    Kurokawa, Yoshika; Sone, Hideko; Win-Shwe, Tin-Tin; Zeng, Yang; Kimura, Hiroyuki; Koyama, Yosuke; Yagi, Yusuke; Matsui, Yasuto; Yamazaki, Masashi; Hirano, Seishiro

    2017-01-01

    Dendrimers have been expected as excellent nanodevices for brain medication. An amine-terminated polyamidoamine dendrimer (PD), an unmodified plain type of PD, has the obvious disadvantage of cytotoxicity, but still serves as an attractive molecule because it easily adheres to the cell surface, facilitating easy cellular uptake. Single-photon emission computed tomographic imaging of a mouse following intravenous injection of a radiolabeled PD failed to reveal any signal in the intracranial region. Furthermore, examination of the permeability of PD particles across the blood–brain barrier (BBB) in vitro using a commercially available kit revealed poor permeability of the nanoparticles, which was suppressed by an inhibitor of caveolae-mediated endocytosis, but not by an inhibitor of macropinocytosis. Physicochemical analysis of the PD revealed that cationic PDs are likely to aggregate promptly upon mixing with body fluids and that this prompt aggregation is probably driven by non-Derjaguin–Landau– Verwey–Overbeek attractive forces originating from the surrounding divalent ions. Atomic force microscopy observation of a freshly cleaved mica plate soaked in dendrimer suspension (culture media) confirmed prompt aggregation. Our study revealed poor transfer of intravenously administered cationic PDs into the intracranial nervous tissue, and the results of our analysis suggested that this was largely attributable to the reduced BBB permeability arising from the propensity of the particles to promptly aggregate upon mixing with body fluids. PMID:28579780

  6. Chemical Surface, Thermal and Electrical Characterization of Nafion Membranes Doped with IL-Cations

    Directory of Open Access Journals (Sweden)

    María del Valle Martínez de Yuso

    2014-04-01

    Full Text Available Surface and bulk changes in a Nafion membrane as a result of IL-cation doping (1-butyl-3-methylimidazolium tetrafluoroborate or BMIM+BF4 and phenyltrimethylammonium chloride or TMPA+Cl− were studied by X-ray photoelectron spectroscopy (XPS, contact angle, differential scanning calorimetry (DSC and impedance spectroscopy (IS measurements performed with dry samples after 24 h in contact with the IL-cations BMIM+ and TMPA+. IL-cations were selected due to their similar molecular weight and molar volume but different shape, which could facilitate/obstruct the cation incorporation in the Nafion membrane structure by proton/cation exchange mechanism. The surface coverage of the Nafion membrane by the IL-cations was confirmed by XPS analysis and contact angle, while the results obtained by the other two techniques (DSC and IS seem to indicate differences in thermal and electrical behaviour depending on the doping-cation, being less resistive the Nafion/BMIM+ membrane. For that reason, determination of the ion transport number was obtained for this membrane by measuring the membrane or concentration potential with the samples in contact with HCl solutions at different concentrations. The comparison of these results with those obtained for the original Nafion membrane provides information on the effect of IL-cation BMIM+ on the transport of H+ across wet Nafion/BMIM+ doped membranes.

  7. [Carrier-mediated Transport of Cationic Drugs across the Blood-Tissue Barrier].

    Science.gov (United States)

    Kubo, Yoshiyuki

    2015-01-01

    Studies of neurological dysfunction have revealed the neuroprotective effect of several cationic drugs, suggesting their usefulness in the treatment of neurological diseases. In the brain and retina, blood-tissue barriers such as blood-brain barrier (BBB) and blood-retinal barrier (BRB) are formed to restrict nonspecific solute transport between the circulating blood and neural tissues. Therefore study of cationic drug transport at these barriers is essential to achieve systemic delivery of neuroprotective agents into the neural tissues. In the retina, severe diseases such as diabetic retinopathy and macular degeneration can cause neurological dysfunction that dramatically affects patients' QOL. The BRB is formed by retinal capillary endothelial cells (inner BRB) and retinal pigment epithelial cells (outer BRB). Blood-to-retina transport of cationic drugs was investigated at the inner BRB, which is known to nourish two thirds of the retina. Blood-to-retinal transport of verapamil suggested that the barrier function of the BRB differs from that of the BBB. Moreover, carrier-mediated transport of verapamil and pyrilamine revealed the involvement of novel organic cation transporters at the inner BRB. The identified transport systems for cationic drugs are sensitive to several cationic neuroprotective and anti-angiogenic agents such as clonidine and propranolol, and the involvement of novel transporters was also suggested in their blood-to-retina transport across the inner BRB.

  8. REMOVAL OF HEXAVALENT CHROMIUM FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    A. R. Asgari ، F. Vaezi ، S. Nasseri ، O. Dördelmann ، A. H. Mahvi ، E. Dehghani Fard

    2008-10-01

    Full Text Available Removal of chromium can be accomplished by various methods but none of them is cost-effective in meeting drinking water standards. For this study, granular ferric hydroxide was used as adsorbent for removal of hexavalent chromium. Besides, the effects of changing contact time, pH and concentrations of competitive anions were determined for different amounts of granular ferric hydroxide. It was found that granular ferric hydroxide has a high capacity for adsorption of hexavalent chromium from water at pH≤7 and in 90 min contact time. Maximum adsorption capacity was determined to be 0.788 mg Cr+6/g granular ferric hydroxide. Although relatively good adsorption of sulfate and chloride had been specified in this study, the interfering effects of these two anions had not been detected in concentrations of 200 and 400 mg/L. The absorbability of hexavalent chromium by granular ferric hydroxide could be expressed by Freundlich isotherm with R2>0.968. However, the disadvantage was that the iron concentration in water was increased by the granular ferric hydroxide. Nevertheless, granular ferric hydroxide is a promising adsorbent for chromium removal, even in the presence of other interfering compounds, because granular ferric hydroxide treatment can easily be accomplished and removal of excess iron is a simple practice for conventional water treatment plants. Thus, this method could be regarded as a safe and convenient solution to the problem of chromium-polluted water resources.

  9. Removal of waterborne microorganisms by filtration using clay-polymer complexes.

    Science.gov (United States)

    Undabeytia, Tomas; Posada, Rosa; Nir, Shlomo; Galindo, Irene; Laiz, Leonila; Saiz-Jimenez, Cesareo; Morillo, Esmeralda

    2014-08-30

    Clay-polymer composites were designed for use in filtration processes for disinfection during the course of water purification. The composites were formed by sorption of polymers based on starch modified with quaternary ammonium ethers onto the negatively charged clay mineral bentonite. The performance of the clay-polymer complexes in removal of bacteria was strongly dependent on the conformation adopted by the polycation on the clay surface, the charge density of the polycation itself and the ratio between the concentrations of clay and polymer used during the sorption process. The antimicrobial effect exerted by the clay-polymer system was due to the cationic monomers adsorbed on the clay surface, which resulted in a positive surface potential of the complexes and charge reversal. Clay-polymer complexes were more toxic to bacteria than the polymers alone. Filtration employing our optimal clay-polymer composite yielded 100% removal of bacteria after the passage of 3L, whereas an equivalent filter with granular activated carbon (GAC) hardly yielded removal of bacteria after 0.5L. Regeneration of clay-polymer complexes saturated with bacteria was demonstrated. Modeling of the filtration processes permitted to optimize the design of filters and estimation of experimental conditions for purifying large water volumes in short periods. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Szilard-Chalmers cation recoil studies in zeolites X and Y

    International Nuclear Information System (INIS)

    Lai, P.P.; Rees, L.V.C.

    1976-01-01

    The Szilard-Chalmers recoil of the cations Rb + , Cs + , Ba 2+ , La 3+ , Co 2+ , Zn 2+ , Cu 2+ and Na + from the sodalite cage and hexagonal prism sites into the supercage sites of zeolites X and Y has been studied. This study is complementary to that described in Lai et al, JCS Faraday I; 72:181 (1976). It has been found that these cations recoil from the sodalite cage sites into the supercage sites with a probability of approximately 90% whereas the corresponding probability for these cations in the hexagonal prism sites (site I) is between 40 and 50% depending on the cation. It is thus possible to determine the preferences shown by these cations for these 'locked-in' sites as a function of temperature of calcination, Tsub(c), concentration and type of other cations contained in these sites. In these studies the cations present in the supercage sites before irradiation were usually NH 4 + but Ba 2+ , Ca 2+ and Na + have also been used. When Tsub(c) > 400 0 C, Rb + and Cs + began to populate site I. These ions populated this site in zeolite X at lower calcination temperatures than required for zeolite Y. When Tsub(c) was increased from 110 to 220 0 C the occupancy of site I by Ba 2+ was greatly enhanced and when Tsub(c) > 440 0 C Ba 2+ ions now occupied this site in preference to all other 'locked-in' sites. Barium exhibited a higher affinity for site I in zeolite X than in zeolite Y when Tsub(c) = 110 0 C. If dehydrated La-Y was assumed to have 5 La 3+ ions per u.c. in site I, the hydration of this material did not change the concentration of La 3+ in site I. Co 2+ , Zn 2+ and Cu 2+ ions all exhibited similar affinities for the 'locked-in' sites of zeolites X and Y. (author)

  11. Structure and dynamics of olefin radical cation aggregates. Time-resolved fluorescence detected magnetic resonance

    International Nuclear Information System (INIS)

    Desrosiers, M.F.; Trifunac, A.D.

    1986-01-01

    The time-resolved EPR spectra and thus the structure and dynamics of transient hydrocarbon radical cations are obtained by the pulse radiolysis-fluorescence detected magnetic resonance (FDMR) technique. Here the authors report the observation of short-lived radical cations from olefins. FDMR-EPR spectra of radical cations from tetramethylethylene and cyclohexadiene are illustrated. The olefin radical cations, FDMR spectra are concentration-dependent, since dimerization with neutral molecules takes place at higher (>10 -2 M) olefin concentration. Rate constants for the dimerization reaction are derived and the effect of solvent viscosity on aggregate formation is demonstrated. By monitoring the further reactions of dimer cations the authors have obtained EPR evidence for previously unobserved higher-order (multimer) radical cation aggregates of olefins. 16 references, 5 figures

  12. Reducible cationic lipids for gene transfer.

    Science.gov (United States)

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  13. Formation and reactions of radical cations of substituted benzenes in aqueous media

    International Nuclear Information System (INIS)

    Holcman, J.

    1977-08-01

    Radical cations of anisole, methylated benzenes, ethylbenzene, isopropylbenzene, tert-butylbenzene and N,N-dimethylaniline were studied in aqueous media by pulse radiolytic technique. Absorption spectra and reaction kinetics of the radical cations were recorded. The radical cations are formed from the corresponding OH adducts by the elimination of OH - , either by a simple dissociation or by an acid catalyzed reaction. The rate constants of the formation of the radical cations and their reactions with water, OH - and Fe 2+ , or the reaction of a proton loss, were measured. The rate constants for the reaction with water and OH - , together with the rate constants for the dissociation of the OH adducts, are correlated with the ionization potential of the parent compound. These correlations offer a possibility of predicting the acid-base properties of radical cations of substituted benzenes, or the estimation of their ionization potential. (author)

  14. A New Alkali-Stable Phosphonium Cation Based on Fundamental Understanding of Degradation Mechanisms.

    Science.gov (United States)

    Zhang, Bingzi; Kaspar, Robert B; Gu, Shuang; Wang, Junhua; Zhuang, Zhongbin; Yan, Yushan

    2016-09-08

    Highly alkali-stable cationic groups are a critical component of hydroxide exchange membranes (HEMs). To search for such cations, we studied the degradation kinetics and mechanisms of a series of quaternary phosphonium (QP) cations. Benzyl tris(2,4,6-trimethoxyphenyl)phosphonium [BTPP-(2,4,6-MeO)] was determined to have higher alkaline stability than the benchmark cation, benzyl trimethylammonium (BTMA). A multi-step methoxy-triggered degradation mechanism for BTPP-(2,4,6-MeO) was proposed and verified. By replacing methoxy substituents with methyl groups, a superior QP cation, methyl tris(2,4,6-trimethylphenyl)phosphonium [MTPP-(2,4,6-Me)] was developed. MTPP-(2,4,6-Me) is one of the most stable cations reported to date, with <20 % degradation after 5000 h at 80 °C in a 1 m KOD in CD3 OD/D2 O (5:1 v/v) solution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Base Cation Leaching From the Canopy of a Rubber ( Hevea ...

    African Journals Online (AJOL)

    Base cations are essential to the sustainability of forest ecosystems. They are important for neutralizing the acidifying effects of atmospheric deposition. There is the need for in-depth understanding of base cation depletion and leaching from forest canopy. This is important particularly due to the increasing acidification and ...

  16. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    Science.gov (United States)

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.

  17. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1982-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in non-polar solvents (cyclohexane, carbon tetrachloride, n-butylchloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations. These cations dimerize in a diffusion-controlled reaction. The next step of chain-growth is slower by 3 to 4 orders of magnitude. In carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of radical cations with solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The reaction mechanism established shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  18. Solid cation exchange phase to remove interfering anthocyanins in the analysis of other bioactive phenols in red wine.

    Science.gov (United States)

    da Silva, Letícia Flores; Guerra, Celito Crivellaro; Klein, Diandra; Bergold, Ana Maria

    2017-07-15

    Bioactive phenols (BPs) are often targets in red wine analysis. However, other compounds interfere in the liquid chromatography methods used for this analysis. Here, purification procedures were tested to eliminate anthocyanin interference during the determination of 19 red-wine BPs. Liquid chromatography, coupled to a diode array detector (HPLC-DAD) and a mass spectrometer (UPLC-MS), was used to compare the direct injection of the samples with solid-phase extractions: reversed-phase (C18) and strong cation-exchange (SCX). The HPLC-DAD method revealed that, out of 13BPs, only six are selectively analyzed with or without C18 treatment, whereas SCX enabled the detection of all BPs. The recovery with SCX was above 86.6% for eight BPs. Moreover, UPLC-MS demonstrated the potential of SCX sample preparation for the determination of 19BPs. The developed procedure may be extended to the analysis of other red wine molecules or to other analytical methods where anthocyanins may interfere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Aromatic Amino Acids-Guanidinium Complexes through Cation-π Interactions

    Directory of Open Access Journals (Sweden)

    Cristina Trujillo

    2015-05-01

    Full Text Available Continuing with our interest in the guanidinium group and the different interactions than can establish, we have carried out a theoretical study of the complexes formed by this cation and the aromatic amino acids (phenylalanine, histidine, tryptophan and tyrosine using DFT methods and PCM-water solvation. Both hydrogen bonds and cation-π interactions have been found upon complexation. These interactions have been characterized by means of the analysis of the molecular electron density using the Atoms-in-Molecules approach as well as the orbital interactions using the Natural Bond Orbital methodology. Finally, the effect that the cation-π and hydrogen bond interactions exert on the aromaticity of the corresponding amino acids has been evaluated by calculating the theoretical NICS values, finding that the aromatic character was not heavily modified upon complexation.

  20. Removal of organic matter and toxicity in hospital wastewaters by ozone

    International Nuclear Information System (INIS)

    Grisales Penagos, Dayana; Ortega Lopez, Joela; Rodriguez Chaparro, Tatiana

    2012-01-01

    Hospital wastewaters are considered to be one of the major sources of emergent contaminants as result of the dairy activities and excretion of the patients. Several studies have demonstrated that these compounds are not easily removed in conventional wastewater treatments that use biological process. This study evaluated the removal of the organic matter present in real hospital effluent applying ozone at different pH conditions (3,0, 6,7, 10). Parameters such as UV254, biodegradability ratio (COD/BOD) and color (VIS436) were measured. Moreover, it was assessed the acute toxicity with Allium cepa L. The results demonstrated that with an ozone dosage of 187 mgO3/h and pH = 10 the biodegradability increased by 70% and the acute toxicity decreased by 62%, whereas for pH =3,0 both UV254 and color removal was notable. The ozone application seems to be a viable alternative to treat hospital effluents as a pretreatment of a biological process.

  1. Removal of organic matter and toxicity in hospital wastewaters by ozone

    International Nuclear Information System (INIS)

    Grisales Penagos Dayana; Ortega Lopez Joela; Rodriguez Chaparro Tatiana

    2012-01-01

    Hospital wastewaters are considered to be one of the major sources of emergent contaminants as result of the dairy activities and excretion of the patients. Several studies have demonstrated that these compounds are not easily removed in conventional wastewater treatments that use biological process. This study evaluated the removal of the organic matter present in real hospital effluent applying ozone at different pH conditions (3,0, 6,7, 10). Parameters such as UV254, biodegradability ratio (COD/BOD) and color (VIS436) were measured. Moreover, it was assessed the acute toxicity with Allium cepa L. The results demonstrated that with an ozone dosage of 187 MgO 3 /h and pH = 10 the biodegradability increased by 70% and the acute toxicity decreased by 62%, whereas for pH =3,0 both UV254 and color removal was notable. The ozone application seems to be a viable alternative to treat hospital effluents as a pretreatment of a biological process. Allium cepa L., biodegradability, emergent compounds, recalcitrance

  2. Comparative cation dependency of sugar transport by crustacean hepatopancreas and intestine

    Directory of Open Access Journals (Sweden)

    Ada Duka

    2014-06-01

    Full Text Available Glucose is transported in crustacean hepatopancreas and intestine by Na+-dependent co-transport, while Na+-dependent D-fructose influx has only been described for the hepatopancreas. It is still unclear if the two sugars are independently transported by two distinct cation-dependent co-transporter carrier systems. In this study, lobster (Homarus americanus hepatopancreas brush border membrane vesicles (BBMV were used to characterize, in detail, the cation-dependency of both D-[3H]-glucose and D-[3H]-fructose influxes, while in vitro perfused intestines were employed to determine the nature of cation-dependent sugar transport across this organ. Over the sodium concentration range of 0–100 mM, both [3H]-glucose and [3H]-fructose influxes (0.1 mM; 1 min uptakes by hepatopancreatic BBMV were hyperbolic functions of [Na+]. [3H]-glucose and [3H]-fructose influxes by hepatopancreatic BBMV over a potassium concentration range of 15–100 mM were hyperbolic functions of [K+]. Both sugars displayed significant (p<0.01 Na+/K+-dependent and cation-independent uptake processes. Transepithelial 25 µM [3H]-glucose and [3H]-fructose fluxes across lobster intestine over luminal sodium and potassium concentration ranges of 0–50 mM and 5–100 mM, respectively, were hyperbolic functions of luminal [Na+] and [K+]. As with hepatopancreatic sugar transport, transepithelial intestinal sugar transport exhibited both significant (p<0.01 Na+/K+-dependent and cation-independent processes. Results suggest that both D-glucose and D-fructose are transported by a single SGLT-type carrier in each organ with sodium being the “preferred”, high affinity, cation for both sugars in the hepatopancreas, and potassium being the “preferred”, high affinity, cation for both sugars in the intestine.

  3. Electrochemical ion exchanger in the water circuit to measure cation conductivity

    International Nuclear Information System (INIS)

    Bengtsson, B.; Ingemarsson, R.; Settervik, G.; Velin, A.

    2010-01-01

    In Ringhals NPP, more than four years of successful operation with a full-scale EDI for the recycling of steam generator blow down (SGBD) gave the inspiration to modify and 'scale down' this EDI process. This with purpose to explore the possibilities to replace the cation exchanger columns used for cation conductivity analysis, with some small and integrated electrochemical ion-exchange cells. Monitoring the cation conductivity requires the use of a small cation resin column upstream of the conductivity probe and is one of the most important analyses at power plants. However, when operating with high alkaline treatment in the steam circuit, it's connected to the disadvantage of getting the resins rapidly exhausted, with needs to be frequently replaced or regenerated. This is causing interruptions in the monitoring and giving rise to high workload for the maintenance. This paper reports about some optimization and tests of two different two-compartment electrochemical cells for the possible replacements of cation resin columns when analyzing cation conductivity in the secondary steam circuit at Ringhals NPPs. Field tests during start up condition and more than four months of steady operation together with real and simulated test for impurity influences, indicates that a ELectrical Ion Echange process (ELIX) could be successfully used to replace the resin columns in Ringhals during operating with high pH-AVT (All Volatile Treatment), using hydrazine and ammonia. Installation of an ELIX-system downstream a particle filter and upstream of a small cation resin column, will introduce additional safety and further reduce the maintenance with possible interruptions. Performance of the ELIX-process together with other chemical additives (Morpholine, ETA, MPA, DMA) and dispersants, may be further evaluated to qualify the ELIX-process as well as SGBD-EDI for wider use in nuclear applications. (author)

  4. Self-assembled monolayers on mosoporous supports (SAMMS) for RCRA metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiangdong; Liu, Jun; Fryxell, G. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The Mixed Waste Focus Area has declared mercury removal and stabilization as the first and fourth priorities among 30 prioritized deficiencies. Resource Conservation and Recovery Act (RCRA) metal and mercury removal has also been identified as a high priority at DOE sites such as Albuquerque, Idaho Falls, Oak Ridge, Hanford, Rocky Flats, and Savannah River. Under this task, a proprietary new technology, Self-Assembled Monolayers on Mesoporous Supports (SAMMS), for RCRA metal ion removal from aqueous wastewater and mercury removal from organic wastes such as vacuum pump oils is being developed at Pacific Northwest National Laboratory (PNNL). The six key features of the SAMMS technology are (1) large surface area (>900 m{sup 2}/g) of the mesoporous oxides (SiO{sub 2}, ZrO{sub 2}, TiO{sub 2}) ensures high capacity for metal loading (more than 1 g Hg/g SAMMS); (2) molecular recognition of the interfacial functional groups ensures the high affinity and selectivity for heavy metals without interference from other abundant cations (such as calcium and iron) in wastewater; (3) suitability for removal of mercury from both aqueous wastes and organic wastes; (4) the Hg-laden SAMMS not only pass TCLP tests, but also have good long-term durability as a waste form because the covalent binding between mercury and SAMMS has good resistance to ion exchange, oxidation, and hydrolysis; (5) the uniform and small pore size (2 to 40 nm) of the mesoporous silica prevents bacteria (>2000 nm) from solubilizing the bound mercury; and (6) SAMMS can also be used for RCRA metal removal from gaseous mercury waste, sludge, sediment, and soil.

  5. Cation effects on phosphatidic acid monolayers at various pH conditions.

    Science.gov (United States)

    Zhang, Ting; Cathcart, Matthew G; Vidalis, Andrew S; Allen, Heather C

    2016-10-01

    The impact of pH and cations on phase behavior, stability, and surface morphology for dipalmitoylphosphatidic acid (DPPA) monolayers was investigated. At pHCations are found to expand and stabilize the monolayer in the following order of increasing magnitude at pH 5.6: Na + >K + ∼Mg 2+ >Ca 2+ . Additionally, cation complexation is tied to the pH and protonation state of DPPA, which are the primary factors controlling the monolayer surface behavior. The binding affinity of cations to the headgroup and thus deprotonation capability of the cation, ranked in the order of Ca 2+ >Mg 2+ >Na + >K + , is found to be well explained by the law of matching water affinities. Nucleation of surface 3D lipid structures is observed from Ca 2+ , Mg 2+ , and Na + , but not from K + , consistent with the lowest binding affinity of K + . Unraveling cation and pH effects on DPPA monolayers is useful in further understanding the surface properties of complex systems such as organic-coated marine aerosols where organic films are directly influenced by the pH and ionic composition of the underlying aqueous phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Automated dual capillary electrophoresis system with hydrodynamic injection for the concurrent determination of cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thi Thanh Thuy; Mai, Thanh Duc [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland); Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Nguyen, Thanh Dam [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Sáiz, Jorge [Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering – University of Alcalá, Ctra. Madrid-Barcelona km 33.6, Alcalá de Henares, Madrid 28871 (Spain); Pham, Hung Viet, E-mail: phamhungviet@hus.edu.vn [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Hauser, Peter C., E-mail: Peter.Hauser@unibas.ch [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland)

    2014-09-02

    Highlights: • Concurrent determination of cations and anions was carried out by electrophoretic separation. • Optimized conditions for each class of analystes was possible by using separate capillaries. • Simultaneous hydrodynamic injection was carried out. • Pneumatic actuation was used for flushing and sample handling. • The denitrification of drinking water was successfully demonstrated. - Abstract: The capillary electrophoresis instrument developed for the concurrent determination of cations and anions features two separate capillaries and individual detectors to allow independent optimization for each group of ions. The capillaries are joined in a common injector block. The sample is drawn into the injector with a small membrane pump and automated simultaneous injection into both capillaries is achieved by pressurization of the fluid with compressed air. Flushing of the injector and of the capillaries with the background electrolyte is also carried out automatically by the same means. The buffer consisted of 12 mM histidine and 2 mM 18-crown-6 adjusted to pH 4 with acetic acid and was suitable for the contactless conductivity detection employed. The system was optimized for the determination of cationic NH{sub 4}{sup +} and anionic NO{sub 3}{sup −} and NO{sub 2}{sup −}, and linear calibration curves from about 20 μM up to about 1.5 mM were obtained for these ions. In a test run over 8 h, the reproducibility for the peak areas was within ±7%. For demonstration, the instrument was successfully applied to the concurrent monitoring of the concentrations of the three ions during the biological removal of ammonium from contaminated groundwater in a sequencing batch reactor, where NO{sub 3}{sup −} and NO{sub 2}{sup −} are formed as intermediate products.

  7. Ammonia removal via microbial fuel cell (MFC) dynamic reactor

    Science.gov (United States)

    Alabiad, I.; Ali, U. F. M.; Zakarya, I. A.; Ibrahim, N.; Radzi, R. W.; Zulkurnai, N. Z.; Azmi, N. H.

    2017-06-01

    Landfill leachate is generally known as high-strength wastewater that is difficult to handle and contains dissolved extracts and suspended matter. Microbial fuel cells (MFCs) were designed to treat landfill leachate while continuously producing power (voltage output). Three different anodes were tested in MFC reactors: carbon black, activated carbon, and zinc electrodes. Movements in the MFC reactor during treatment were also a key factor for testing. Results showed a difference in ammonia levels in the three anodes used. The study compared the efficiency of static and dynamic modes of MFC in removing ammonia. Continual leachate movement in the reactor could increase the rate of removal of the ammonia components. The setup provided a viable condition for maximum removal because the reactor movement caused the sludge to disintegrate, which allowed ammonia to separate easily from the parent leachate. Ammonia removal also resulted from the transfer of ammonium through the membrane or from ammonia loss. Constant exchange of ionic content benefited the MFC performance by increasing power production and decreasing internal electrode material resistance. This paper presents the results of the analyses of leachate treatment from the solid waste landfill located in Padang Siding Landfill, Perlis. The performance of ammonia removal was enhanced using different types of electrodes. In both modes, activated carbon performed better than black carbon and zinc. The respective percentages of ammonia removal for activated carbon of dynamic over static were 96.6%, 66.6%, and 92.8% for activated carbon, zinc, and black carbon. The results provide further information on the possibility of using MFCs in landfill leachate treatment systems.

  8. Interactions of nucleobases with alkali earth metal cations--electrospray ionization mass spectrometric study.

    Science.gov (United States)

    Frańska, Magdalena

    2007-01-01

    Interactions of nucleobases with alkali earth metal cations have been studied by electrospray ionization mass spectrometry (ESI-MS). Nucleobases containing at least one oxygen atom form stable complexes with alkali earth metal cations. This phenomenon can be explained on the grounds of the well known theory of hard and soft acids and bases. Uracil and thymine make complexes only when in their deprotonoted forms. The cations of great radii (Sr(2+), Ba(2+)) are more prone to form complexes of stoichiometry 1:1 with uracil and thymine than the cations of small radii (Mg(2+), Ca(2+)). On the other hand, Mg(2+) forms complexes of stoichiometry 2:1 and 3:2 with uracil and thymine. Gas-phase stabilities of the 1:1 complexes are higher for the cations of small radii, in contrast to the solution stabilities. For cytosine and 9- methylhypoxantine the 1:1 complexes of their deprotonated forms are observed at higher cone voltage as a result of HCl molecule loss from the complexes containing the counter ion (Cl(-)). In solution, more stable complexes are formed with metal cations of low radii. Gas-phase stability of the complexes formed by deprotonated 9- methyl-hypoxantine increases with increasing metal cation radius.

  9. Star-like superalkali cations featuring planar pentacoordinate carbon

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jin-Chang [Institute of Materials Science and Department of Chemistry, Xinzhou Teachers’ University, Xinzhou, Shanxi 034000 (China); Tian, Wen-Juan; Zhao, Xue-Feng; Wu, Yan-Bo, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn; Li, Si-Dian, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); Wang, Ying-Jin [Institute of Materials Science and Department of Chemistry, Xinzhou Teachers’ University, Xinzhou, Shanxi 034000 (China); Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); Zhai, Hua-Jin, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-06-28

    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe{sub 5} can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe{sub 5}X{sub 5}{sup +} (X = F, Cl, Br, Li, Na, K) cations containing a CBe{sub 5} moiety. Polyhalogenation and polyalkalination on the CBe{sub 5} unit may help eliminate the high reactivity of bare CBe{sub 5} molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe{sub 5}X{sub 5}{sup +} (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe{sub 5}X{sub 5}{sup +} range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12–2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76–11.07 eV for X = F, Cl, Br and 4.99–6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be–X–Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe{sub 5} motif is robust in the

  10. Isotope substitution effects on preferred conformations of some hydrocarbon radical cations

    International Nuclear Information System (INIS)

    Lunell, S.; Eriksson, L.A.

    1992-01-01

    The stability of different conformational isomers of partially deuterated radical cations of ethane, butane, and cyclopropane is studied at the HF/6-31G** and MP2/6-31G** levels. It is shown that the superposition patterns of spectra corresponding to different isomers, observed in ESR spectroscopy, are accurately reproduced by Boltzmann statistics based on differences in vibrational zero-point energies (ZPE), provided that the temperature is high enough to overcome existing barriers toward internal pseudorotation in the cations. For the ethane and butane cations, the most stable conformations are, as expected, those which are deuterated in the short CH bonds, while this is found not to be the case for the cyclopropane cation. The latter result is explained by shifts in the low-frequency bending modes, which counteract the anticipated isotope effect on the C H stretching modes

  11. Concerted action of two cation filters in the aquaporin water channel

    DEFF Research Database (Denmark)

    Wu, Binghua; Steinbronn, Christina; Alsterfjord, Magnus

    2009-01-01

    Aquaporin (AQP) facilitated water transport is common to virtually all cell membranes and is marked by almost perfect specificity and high flux rates. Simultaneously, protons and cations are strictly excluded to maintain ionic transmembrane gradients. Yet, the AQP cation filters have not been...... identified experimentally. We report that three point mutations turned the water-specific AQP1 into a proton/alkali cation channel with reduced water permeability and the permeability sequence: H(+) >>K(+) >Rb(+) >Na(+) >Cs(+) >Li(+). Contrary to theoretical models, we found that electrostatic repulsion...... at the central asn-pro-ala (NPA) region does not suffice to exclude protons. Full proton exclusion is reached only in conjunction with the aromatic/arginine (ar/R) constriction at the pore mouth. In contrast, alkali cations are blocked by the NPA region but leak through the ar/R constriction. Expression...

  12. Removal of cesium from aluminum decladding wastes generated in irradiated target processing using a fixed-bed column of resorcinol-formaldehyde resin

    International Nuclear Information System (INIS)

    Brunson, R.R.; Williams, D.F.; Bond, W.D.; Benker, D.E.; Chattin, F.R.; Collins, E.D.

    1994-09-01

    The removal of cesium (Cs) from a low-level liquid waste (LLLW) with a cation-exchange column was demonstrated using a resorcinol-formaldehyde (RF) resin. The RF resin was developed at the Westinghouse Savannah River Laboratory (SRL) and is highly specific for the removal of Cs from an alkaline waste of high sodium content. It was determined that the RF resin would be suitable for removing Cs, the largest gamma radiation contributor, from the LLLW generated at the Radiochemical Engineering Development Center located at the Oak Ridge National Laboratory. Presently, the disposal of the LLLW is limited due to the amount of Cs contained in the waste. Cesium removal from the waste solution offers immediate benefits by conserving valuable tank space and would allow cask shipments of the treated waste should the present Laboratory pipelines become unavailable in the future. Preliminary laboratory tests of the RF resins, supplied from two different sources, were used to design a full-scale cation-exchange column for the removal of Cs from a Mark 42 SRL fuel element dejacketing waste solution. The in-cell tests reproduced the preliminary bench-scale test results. The initial Cs breakthrough range was 85--92 column volumes (CV). The resin capacity for Cs was found to be ∼0.35 meq per gram of resin. A 1.5-liter resin bed loaded a combined ∼1,300 Ci of 134 Cs and 137 Cs. A distribution coefficient of ∼110 CV was determined, based on a 50% Cs breakthrough point. The kinetics of the system was studied by examining the rate parameters; however, it was decided that several more tests would be necessary to define the mass transfer characteristics of the system

  13. Removal of heavy metals and pollutants by membrane adsorption techniques

    Science.gov (United States)

    Khulbe, K. C.; Matsuura, T.

    2018-03-01

    Application of polymeric membranes for the adsorption of hazardous pollutants may lead to the development of next-generation reusable and portable water purification appliances. Membranes for membrane adsorption (MA) have the dual function of membrane filtration and adsorption to be very effective to remove trace amounts of pollutants such as cationic heavy metals, anionic phosphates and nitrates. In this review article, recent progresses in the development of MA membranes are surveyed. In addition, recent progresses in the development of advanced adsorbents such as nanoparticles are summarized, since they are potentially useful as fillers in the host membrane to enhance its performance. The future directions of R&D in this field are also shown in the conclusion section.

  14. Speed and Strain of Polypyrrole Actuators: Dependence on Cation Hydration Number

    DEFF Research Database (Denmark)

    Jafeen, Mohamed J.M.; Careem, Mohamed A.; Skaarup, Steen

    2010-01-01

    Polypyrrole films have been characterized by simultaneous cyclic voltammetry driven force-displacement measurements. The aim was to clarify the role of cations in the electrolyte on the speed of response and on the strain of the film. The strain as a function of actuation frequency was studied in...... frequencies, the strain depends almost exclusively on insertion of strongly solvated cations and therefore depends on the hydration number of the cations: Li+ (hydration number ~5.4) gives more strain than Na+ (~4.4) and much more than Cs+ (~0) as predicted by the model....

  15. Resonance Raman and quantum chemical studies of short polyene radical cations

    DEFF Research Database (Denmark)

    Keszthelyi, T.; Wilbrandt, R.; Bally, T.

    1997-01-01

    ,3,5-hexatriene have been studied. The radical cations were generated radiolytically in a glassy Freon matrix and investigated by optical absorption and resonance Raman spectroscopy. Ab initio and density functional molecular-orbital calculations have been carried out to predict equilibrium structures...... and to assist assignment of the resonance Raman spectra. A new and improved scaled quantum mechanical force field for the butadiene radical cation was also determined. The presence of more than one rotamer was observed in all the polyene radical cations we investigated. (C) 1997 Elsevier Science B.V....

  16. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The Hofmeister Effects.

    Science.gov (United States)

    Xia, Tianjiao; Qi, Yu; Liu, Jing; Qi, Zhichong; Chen, Wei; Wiesner, Mark R

    2017-01-17

    Transport of negatively charged nanoparticles in porous media is largely affected by cations. To date, little is known about how cations of the same valence may affect nanoparticle transport differently. We observed that the effects of cations on the transport of graphene oxide (GO) and sulfide-reduced GO (RGO) in saturated quartz sand obeyed the Hofmeister series; that is, transport-inhibition effects of alkali metal ions followed the order of Na + cations having large ionic radii (and thus being weakly hydrated) interacted with quartz sand and GO and RGO more strongly than did cations of small ionic radii. In particular, the monovalent Cs + and divalent Ca 2+ and Ba 2+ , which can form inner-sphere complexes, resulted in very significant deposition of GO and RGO via cation bridging between quartz sand and GO and RGO, and possibly via enhanced straining, due to the enhanced aggregation of GO and RGO from cation bridging. The existence of the Hofmeister effects was further corroborated with the interesting observation that cation bridging was more significant for RGO, which contained greater amounts of carboxyl and phenolic groups (i.e., metal-complexing moieties) than did GO. The findings further demonstrate that transport of nanoparticles is controlled by the complex interplay between nanoparticle surface functionalities and solution chemistry constituents.

  17. Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide.

    Science.gov (United States)

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Jiang, Jin; Wang, Yaan; Wu, Zhengsong

    2017-02-01

    Thallium (Tl) is an element of high toxicity and significant accumulation in human body. There is an urgent need for the development of appropriate strategies for trace Tl removal in drinking water treatment plants. In this study, the efficiency and mechanism of trace Tl (0.5 μg/L) removal by conventional coagulation enhanced by nanosized manganese dioxide (nMnO 2 ) were explored in simulated water and two representative surface waters (a river water and a reservoir water obtained from Northeast China). Experimental results showed that nMnO 2 significantly improve Tl(I) removal from selected waters. The removal efficiency was dramatically higher in the simulated water, demonstrating by less than 0.1 μg/L Tl residual. The enhancement of trace Tl removal in the surface waters decreased to a certain extent. Both adjusting water pH to alkaline condition and preoxidation of Tl(I) to Tl(III) benefit trace Tl removal from surface waters. Data also indicated that competitive cation of Ca 2+ decreased the efficiency of trace Tl removal, resulting from the reduction of Tl adsorption on nMnO 2 . Humic acid could largely low Tl removal efficiency during nMnO 2 enhanced coagulation processes. Trace elemental Tl firstly adsorbed on nMnO 2 and then removed accompanying with nMnO 2 settling. The information obtained in the present study may provide a potential strategy for drinking water treatment plants threatened by trace Tl. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Role of distonic dimer radical cations in the radiation-induced polymerisation of vinyl ethers

    International Nuclear Information System (INIS)

    Naumov, Sergej; Janovsky, Igor; Knolle, Wolfgang; Mehnert, Reiner

    2005-01-01

    The experimental low-temperature EPR results and the quantum chemical calculations suggest that dimer radical cations of cyclic and aliphatic vinyl ethers (VE) plays a key role in starting of radiation-induced polymerisation. The main species observed at high 2,3-dihydrofuran (DHF), 2,3-dihydropyran (DHP) and VE concentration is the dimer radical cation. In the case of cyclic VE the dimer radical cation transforms through H-abstraction from neutral molecule into a carbocation and radical, which could start both cationic and free-radical polymerisation. However, in the case of aliphatic VE no further reactive species, which could start polymerisation, were observed. This is caused (in agreement with experiment and quantum chemical calculations) by the very high stability of dimer radical cation and calculated endothermity of H-abstraction reaction by dimer radical cation from monomer

  19. Electrochemical investigations on cation-cation interaction between Np(V) and U(VI) in nitric acid medium

    International Nuclear Information System (INIS)

    Verma, P.K.; Murali, M.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    Ever since the first report on cation-cation interactions (CCIs) in 1961 by Sullivan et al., many researchers have worked on this using different techniques like optical spectroscopy and potentiometry. However, there is almost no report, in recent times, on this interesting subject using an electrochemical technique. In the present work, we set out to use simple cyclic voltammetry (CV) as a probe to study this phenomenon in the case of Np(V)-U(VI) in nitric acid medium. Accordingly, cyclic voltammograms were recorded individually for Np(V) , U(VI) in 4M HNO 3 and for solutions resulting from a titration of Np(V) with incremental additions of U(VI) in the same medium. These experiments were carried out using AutoLab 30 with three solid electrode system. Ag/AgCl was the reference electrode while Pt wires were used as working and counter electrode. The paper gives the part of CVs for successive additions of only U(VI) (1.4M) at fixed scan rate and room temperature. It can be seen that that the reduction peak shifts only slightly towards left with increased aliquots of U(VI). In contrast, the paper also gives the part of CVs for only U(VI) and for a titration mixture of fixed concentration of Np(V) and successive volume aliquot-additions of U(VI). It can be seen that there was no appreciable shift in the cathodic peak (∼ -0.15V) for additions of 1225μL of only U(VI) and 3225 μL of U(VI) in presence of Np. This showed that no change occurred till this composition. But with the addition of next aliquot of 4225μL of U(VI), there was an appreciable shift in the peak. This signified the formation of a new complex which can be attributed to the cation-cation interaction envisaged for Np(V)-U(VI). With further addition of an aliquot of 4725 μL of U(VI), it can be seen that again there was no appreciable shift in the cathodic peak position which probably underlined that the formation of the complex was complete

  20. Influence of cations and anions on the formation of β-FeOOH

    International Nuclear Information System (INIS)

    Kamimura, T.; Nasu, S.; Segi, T.; Tazaki, T.; Miyuki, H.; Morimoto, S.; Kudo, T.

    2005-01-01

    In the presence of cations such as Cr 3+ , Cu 2+ and Ni 2+ , and anions such as SO 4 2- and NO 3 - , precipitation of β-FeOOH from Fe 3+ -solution containing Cl - by hydrolysis have been investigated by means of X-ray diffraction technique (XRD), Mossbauer spectroscopy (MS) and transmission electron microscopy (TEM). XRD peaks of β-FeOOH were broadened when the cations were added as sulfates, and this tendency for Cr 3+ was significantly observed. When the cations were added as nitrates, there was no significant change in XRD peaks. Inductively coupled plasma (ICP) analysis showed that only Cr added as sulfate was contained in β-FeOOH. Ni and Cu added as sulfates, and any cations added as nitrates were not contained in it. When β-FeOOH was synthesized with Na 2 SO 4 , the XRD peaks were broadened. XRD-peak broadening was mainly caused by the coexistence of SO 4 2- ion. The incorporation of cations in β-FeOOH is affected by coexistent anions, and the XRD-peak broadening is caused by not only cations but also anions. This behavior has been discussed in association with the stability of Fe 3+ -complexes in the solution

  1. Removal of Cu(II) metal ions from aqueous solution by amine functionalized magnetic nanoparticles

    Science.gov (United States)

    Kothavale, V. P.; Karade, V. C.; Waifalkar, P. P.; Sahoo, Subasa C.; Patil, P. S.; Patil, P. B.

    2018-04-01

    The adsorption behavior of Cu(II) metal cations was investigated on the amine functionalized magnetic nanoparticles (MNPs). TheMNPs were synthesized by thesolvothermal method and functionalized with (3-Aminopropyl)triethoxysilane (APTES). MNPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM). The MNPs have pure magnetite phase with particle size around 10-12 nm. MNPs exhibits superparamagnetic behavior with asaturation magnetization of 68 emu/g. The maximum 38 % removal efficiency was obtained for Cu(II) metal ions from the aqueous solution.

  2. Removal mechanism of selenite by Fe{sub 3}O{sub 4}-precipitated mesoporous magnetic carbon microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jianwei; Fu, Fenglian, E-mail: fufenglian2006@163.com; Ding, Zecong; Li, Na; Tang, Bing

    2017-05-15

    Highlights: • MCMSs were prepared via green hydrothermal carbonization and coprecipitation. • MCMSs displayed effective removal of Se(IV) from wastewater. • Se(IV) formed inner-sphere complexes with MCMSs and was reduced to insoluble Se{sup 0}. • MCMSs can be easily separated and recycled by an external magnetic field. - Abstract: A mesoporous composite of magnetic carbon microspheres (MCMSs) was synthesized via introducing Fe{sub 3}O{sub 4} nanoscale particles to the surface of carbon microspheres (CMSs) by coprecipitation. Scanning electron microscopy and transmission electron microscopy showed the Fe{sub 3}O{sub 4} nanoscale particles were dispersedly immobilized on the surface of CMSs. The MCMSs demonstrated effective removal of selenite (Se(IV)) from wastewater. MCMSs showed the regular pattern where the lower pH value, the lower residual Se(IV) concentration. The coexisting sulfate, nitrate, chloride, carbonate, and silicate had no significant effect on Se(IV) removal, whereas phosphate hindered the removal of Se(IV) by competing with Se(IV) and formed inner–sphere complexes with Fe{sub 3}O{sub 4} on the surface of MCMSs. Through X–ray photoelectron spectroscopy analysis, Se(IV) can not only form inner–sphere complexes with MCMSs, but also be reduced to insoluble elemental selenium (Se{sup 0}) by Fe{sub 3}O{sub 4} which was oxidized and formed γ–Fe{sub 2}O{sub 3}. Moreover, the superparamagnetic MCMSs can be easily separated from solution by means of an external magnetic field. The high removal efficiency for Se(IV) and rapid separability of MCMSs made them promising materials for the application in the practice.

  3. Blunt bilateral diaphragmatic rupture—A right side can be easily missed

    Directory of Open Access Journals (Sweden)

    Maria Michailidou

    2015-12-01

    Full Text Available Blunt diaphragmatic rupture (BDR is uncommon with a reported incidence range of 1%–2%. The true incidence is not known. Bilateral BDR is particularly rare. We presented a case of bilateral BDR and we think that the incidence is under-recognised thanks to an easily missed and difficult to diagnose right sided injury. Keywords: Blunt, Diaphragm, Bilateral, Injury

  4. The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water

    International Nuclear Information System (INIS)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-01-01

    The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated for the first time. Unlike ion exchange, one of the more conventional deionization processes, no chemicals were required for regeneration of the system. Electricity was used instead. Water with various anions and cations was pumped through the electrochemical cell. After polarization, ions were electrostatically removed from the water and held in the electric double layers formed at electrode surfaces. The water leaving the cell was purified, as desired

  5. Clearly written, easily comprehended? The readability of websites providing information on epilepsy

    NARCIS (Netherlands)

    Brigo, Francesco; Otte, Wim; Igwe, Stanley C.; Tezzon, Frediano; Nardone, Raffaele

    2015-01-01

    There is a general need for high-quality, easily accessible, and comprehensive health-care information on epilepsy to better inform the general population about this highly stigmatized neurological disorder. The aim of this study was to evaluate the health literacy level of eight popular

  6. Behavior and removal of organic species in the Savannah River Plant effluent treatment facility

    International Nuclear Information System (INIS)

    Oblath, S.B.; Georgeton, G.K.

    1988-01-01

    The effluent treatment facility (ETF) at the Savannah River Plant (SRP) is a new facility designed to treat and decontaminate low-level radioactive wastewater prior to release to the environment. The wastewater is primarily composed of evaporator overheads from the chemical separations and waste handling facilities at SRP. Primarily a 2000 mg/L NaNO 3 solution, the wastewater also contains microcurie-per-liter quantities of radionuclides and milligram-per-liter concentrations of heavy metals and organic components. This paper shows a block diagram of the major process steps. The pH adjustment, filtration, mercury removal, reverse osmosis, and cation-exchange polishing steps give a significant reduction of inorganic species and radionuclide (except trittium) concentrations. The activated carbon removal step was recently added to remove organic species to ensure that the effluent discharge permit limits for oil and grease and biochemical oxygen demand are met. The concentrates and regenerates from each of the treatment steps are further concentrated by evaporation to reduce the volume sufficiently for incorporation into and disposal as a grout

  7. Application of coals as sorbents for the removal of Cr from aqueous waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [University of Miskolc, Miskolc (Hungary). Dept. of Analytical Chemistry

    2001-09-01

    The study reported further understanding of how various electron transfer processes operate for Cr(VI) with a view to using coals for the removal of Cr(VI) from waste streams. Skye peat, Spanish and German lignites, UK high and low volatility bituminous coals and an activated carbon were used. After treatment to remove exchangeable cations, ion exchange experiments were conducted in 0.1 M acetic acid-sodium acetate (1:1) buffer and 0.05 M sulphuric acid solutions and the slurries were agitated once a day. The ion concentrations in the solutions were determined by flame atomic absorption spectroscopy. The Cr(VI) renaming in solution was determined by the standard calorimetric 1,5-diphenylcarbazide method. Peat and low rank (Spanish Mequinenza) coal exhibited a larger capacity for Cr(VI) removal than bituminous coal. Redox mechanisms are operative coupled with the oxidation of the coal and peat surfaces. Desorption of Cr(III) formed by reduction which occurs in strongly acidic media also needs to be considered. 1 ref., 3 figs.

  8. Removal of some basic dyes by poly (Vinyl Alcohol/ acrylic acid)Hydrogel

    International Nuclear Information System (INIS)

    Hegazy, S.A.; Abdel-AAl, S.E.; Abdel-Rehim, H.A.; Khalifa, N.A.; El-Hosseiny, E.M.

    2000-01-01

    A study has made on the preparation and properties of poly (vinyl alcohol/ acrylic acid) hydrogel for the purpose of removal of cationic dyes from aqueous solutions. The effect of dose and monomer concentration on the uptake property of the hydrogel toward dye was studied. The uptake of basic methylene blue-9 dye with PVA/AAc was studied by the batch adsorption technique. The effect of pH on the dye uptake was demonstrated to find out that the suitable pH for maximum uptake occurred at pH 5. It was observed that as the concentration of dye is increased the dye uptake decreased. Furthermore, the uptake of dye by hydrogels increased as the temperature was elevated. The recovery of dye adsorbed is possible by treating the hydrogel with 5% HCl. The results obtained suggested this hydrogel possessed good removal properties towards basic methylene blue-9 dye, and this suggests that such hydrogels could be acceptable for practical uses

  9. Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass.

    Science.gov (United States)

    Sainio, Tuomo; Turku, Irina; Heinonen, Jari

    2011-05-01

    Adsorptive purification of concentrated acid hydrolyzate of lignocellulose was investigated. Cation exchange resin (CS16GC), neutral polymer adsorbent (XAD-16), and granulated activated carbon (GAC) were studied to remove furfural, HMF, and acetic acid from a synthetic hydrolyzate containing 20 wt.% H(2)SO(4). Adsorption isotherms were determined experimentally. Loading and regeneration were investigated in a laboratory scale column. GAC has the highest adsorption capacity, but regeneration with water was not feasible. XAD-16 and CS16GC had lower adsorption capacities but also shorter cycle times due to easier regeneration. Productivity increased when regenerating with 50 wt.% EtOH(aq) solution. To compare adsorbents, process performance was quantified by productivity and fraction of inhibitors removed. GAC yields highest performance when high purity is required and ethanol can be used in regeneration. For lower purities, XAD-16 and GAC yield approximately equal performance. When using ethanol must be avoided, CS16GC offers highest productivity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Method for in situ determination cation exchange capacities of subsurface formations

    International Nuclear Information System (INIS)

    Fertl, W.H.; Welker, D.W.

    1980-01-01

    A method is disclosed for the in situ examination of each subsurface formation penetrated by a borehole to ascertain the cation exchange capacity of such formations within a geological region. Natural γ ray logging is used to develop signals functionally related to the total γ radiation and to the potassium-40, uranium and thorium energy-band radiations. A first borehole is traversed by a potential γ ray spectrometer to provide selected measurements of natural γ radiation. Core samples are taken from the logged formation and laboratory tests performed to determine the cation exchange capacity thereof. The cation exchange capacities thus are developed then correlated with selected parameters provided by the γ ray spectrometer to establish functional relationships. Cation exchange capacities of formations in subsequent boreholes within the region are then determined in situ by use of the natural γ ray spectrometer and these established relationships. (author)

  11. Mechanism of adsorption of cations onto rocks

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yamamoto, Tadashi; Fujiwara, Kenso; Nishikawa, Sataro; Moriyama, Hirotake

    1999-01-01

    Adsorption behavior of cations onto granite was investigated. The distribution coefficient (K d ) of Sr 2+ and Ba 2+ onto granite was determined in the solution of which pH was ranged from 3.5 to 11.3 and ionic strength was set at 10 -2 and 10 -1 . The K d values were found to increase with increasing pH and with deceasing ionic strength. The obtained data were successfully analyzed by applying an electrical double layer model. The optimum parameter values of the double layer electrostatics and adsorption reactions were obtained, and the mechanism of adsorption of cations onto granite was discussed. Feldspar was found to play an important role in their adsorption. (author)

  12. Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies.

    Science.gov (United States)

    Smolensky Koganov, Elena; Leitus, Gregory; Rozin, Rinat; Weiner, Lev; Friedman, Noga; Sheves, Mordechai

    2017-05-04

    Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn 2+ and Ca 2+ , to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn 2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn 2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn 2+ cations to xR is due to the formation of Mn 2+ clusters. Our data demonstrate that Ca 2+ cations bind to DI-xR with a lower affinity than Mn 2+ , supporting the assumption that binding of Mn 2+ occurs through cluster formation, because Ca 2+ cations cannot form clusters in contrast to Mn 2+ .

  13. Photodynamic therapy for hair removal

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2013-05-01

    Full Text Available Background: Unwanted hair is one of the most common medical problems affecting women of reproductive age inducing a lot of psychological stress and threatening their femininity and self-esteem. Old methods of removing unwanted hair include shaving, waxing, chemical depilation, and electrolysis, all of which have temporary results. However laser-assisted hair removal is the most efficient method of long-term hair removal currently available. It is desirable to develop a reduced cost photodynamic therapy (PDT system whose properties should include high efficiency and low side-effects. Method: Mice skin tissues were used in this study and divided into six groups such as controls, free methylene blue (MB incubation, liposome methylene blue (MB incubation, laser without methylene blue (MB, free methylene blue (MB for 3 and 4 hrs and laser, liposome methylene blue (MB for 3 hrs and laser. Methylene blue (MBwas applied to wax epilated areas. The areas were irradiated with CW He-Ne laser system that emits orange-red light with wavelength 632.8 nm and 10 mW at energy density of 5 J/ cm2 for 10 minutes. The UV-visible absorption spectrum was collected by Cary spectrophotometer. Results: Methylene blue (MB is selectively absorbed by actively growing hair follicles due to its cationic property. Methylene blue (MBuntreated sections showed that hair follicle and sebaceous gland are intact and there is no change due to the laser exposure. Free methylene blue (MB sections incubated for 3 hrs showed that He:Ne laser induced destruction in hair follicles, leaving an intact epidermis. Treated section with free methylene blue (MB for 4 hrs showed degeneration and necrosis in hair follicle, leaving an intact epidermis. Liposomal methylene blue (MB sections incubated for 3 hrs showed He:Ne laser induced destruction in hair follicles with intradermal leucocytic infiltration. Conclusions: Low power CW He:Ne laser and methylene blue (MB offered a successful PDT system

  14. Chemical reactivity of cation-exchanged zeolites

    NARCIS (Netherlands)

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed

  15. The assessment of removing strontium and cesium cations from aqueous solutions based on the combined methods of ionic liquid extraction and electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Po-Yu [Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan (China)]. E-mail: pyc@kmu.edu.tw

    2007-05-05

    The extraction of Sr{sup 2+} and Cs{sup +} from aqueous solutions by using the ionophores dicyclohexano-18-crown-6 (DCH18C6) and calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6), respectively, was demonstrated in the hydrophobic, room-temperature ionic liquid (RTIL), tri-1-butylmethylammonium bis((trifluoromethyl)sulfonyl)imide (Bu{sub 3}MeN-TFSI). The water contents of several hydrophobic ionic liquids and the absorption/desorption reversibility of oxygen and moisture in the Bu{sub 3}MeN-TFSI ionic liquid were determined by electrochemical techniques. The relationship between the distribution coefficient, D{sub M}, and the concentration ratios of C{sub ionophore,IL}/C{sub metal{sub ion,aq}} were investigated. The values of D {sub M} increase with increasing the concentration ratios and they are also influenced with the counter ions of Sr{sup 2+} and Cs{sup +} in the aqueous solutions. In the previous study, it was demonstrated that the Sr{sup 2+} and Cs{sup +} cations in the Bu{sub 3}MeN-TFSI ionic liquid could be coordinated by DCH18C6 and BOBCalixC6, respectively, and formed the DCH18C6.Sr{sup 2+} and BOBCalixC6.2Cs{sup +} ions, which would be cathodically reduced to Sr- and Cs-amalgam at a mercury film electrode (MFE). In this study, the probability was evaluated if the Sr{sup 2+} and Cs{sup +} cations extracted from the aqueous solutions can be really reduced to respective amalgam.

  16. Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.

    Science.gov (United States)

    Faraji, S.; Köppel, H.

    2009-06-01

    Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light

  17. Structure modification of natural zeolite for waste removal application

    Science.gov (United States)

    Widayatno, W. B.

    2018-03-01

    Tremendous industrialization in the last century has led to the generation of huge amount of waste. One of the recent hot research topics is utilizing any advance materials and methods for waste removal. Natural zeolite as an inexpensive porous material with a high abundance holds a key for efficient waste removal owing to its high surface area. However, the microporous structure of natural zeolite hinders the adsorption of waste with a bigger molecular size. In addition, the recovery of natural zeolite after waste adsorption into its pores should also be considered for continuous utilization of this material. In this study, the porosity of natural zeolite from Tasikmalaya, Indonesia, was hydrothermally-modified in a Teflon-lined autoclave filled with certain pore directing agent such as distilled water, KOH, and NH4OH to obtain hierarchical pore structure. After proper drying process, the as-treated natural zeolite is impregnated with iron cation and heat-treated at specified temperature to get Fe-embedded zeolite structure. XRD observation is carried out to ensure the formation of magnetic phase within the zeolite pores. The analysis results show the formation of maghemite phase (γ-Fe2O3) within the zeolite pore structure.

  18. Thermal dynamic analysis of sulfur removal from coal by electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Gao, J.; Meng, F. [Qinghua University, Beijing (China). Dept. of Thermal Engineering

    2002-06-01

    The electrolytic reactions about sulfur removal from coal were studied by using chemical thermal dynamic analysis. According to the thermodynamical data, the Gibbs free energy value of the electrolytic reactions of pyritic and organic sulfur removal from coal is higher than zero. So, these electrolytic reactions are not spontaneous chemical reactions. In order to carry out desulfurisation by electrolysis, a certain voltage is necessary and important. Because theoretic decomposition voltage of pyrite and some parts of organic sulfur model compound is not very high, electrolysis reactions are easily to be carried out by using electrolysis technology. Mn ion and Fe ion are added into electrolysis solutions to accelerate the desulfurisation reaction. The electrolytic decomposition of coal is discussed. Because the theoretical decomposition voltage of some organic model compound is not high, the coal decomposition might happen. 17 refs., 4 tabs.

  19. Removal of dogs' gingival pigmentation with CO2 laser

    Science.gov (United States)

    Figueiredo, Jose A. P.; Chavantes, Maria C.; Gioso, Marco A.; Pesce, Hildeberto F.; Jatene, Adib D.

    1995-05-01

    The aim of this study was to analyze the ability of CO2 laser to remove physiologic pigmentation of gingiva. Dogs were chosen for this study because of their intense black pigmentation on the gingiva, similar to what can be found in human negroes and other dark- skinned races. Three specimens were irradiated at the left side of the buccal aspect of the gingiva, while for comparison the right side was used as a control. CO2 laser in a continuous mode applying 3 watt power was used (Xanar-20, USA). The portion to be irradiated was continuously irrigated with saline solution, to prevent tissue damage from the excessive heat generated. The handpiece device irradiated the target easily and fast, with no bleeding. All the pigmentation could be removed from the portion exposed to the laser beam. A 45th day follow up showed very little repigmentation just in one of the specimens. It could be concluded that CO2 laser irradiation can be an alternative to remove pigmentation of the gingiva for cosmetic purposes. The risk of repigmentation exists, so the patients should be aware of this inconvenience, sometimes demanding further irradiation.

  20. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1981-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in nonpolar solvents (cyclohexane, carbon tetrachloride, n-butyl chloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations (k about 10 11 l mol -1 s -1 ). These cations dimerize in a diffusion-controlled reaction (k approximately 10 10 l mol -1 s -1 ). The next step of chain-growth is slower by 3 to 4 orders of magnitude. Furthermore, in carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of the radical cations with the solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The established reaction mechanism shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  1. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  2. Simultaneous electrochemical-electron spin resonance studies of carotenoid cation radicals and dications

    International Nuclear Information System (INIS)

    Khaled, M.; Hadjipetrou, A.; Xinhai Chen; Kispert, L.

    1989-01-01

    Carotenoids are present in the chloroplasts of photosynthetic green plants and serve as photoprotect devices and antenna pigments, and active role in the photosynthetic electron-transport chain with the carotenoid cation radical as an integral part of the electron-transfer process. The research reported herein has confirmed that carotenoid cation radicals have a lifetime that is sensitive to solvent, being longest in CH 2 Cl 2 and are best prepared electrochemically. Semiempirical AM1 and INDO calculations of the trans and cis isomers of β-carotene, canthaxanthin and β-apo-8'-carotenal cation radicals predicted the unresolved EPR line whose linewidth varies to a measurable degree with carotenoid, which subsequent experimental observations affirmed. Simultaneous electrochemical - electron spin resonance studies of carotenoid cation radicals and dications have shown the radicals detected by EPR are formed by the one electron oxidation of the carotenoid, that dimers are not formed upon decay of the radical cations and an estimate of the rate of comproportionation as a function of carotenoid can be given. The formal rate constant K' for heterogenous electron transfer rate at the electrode surface has been deduced from rotating disc experiments. Upon deuteration, and in the presence of excess β-carotene, the half-life for decay of the carotenoid radical cation increased an order of magnitude due to the reaction between diffusion carotenoid dications and carotenoids to form additional radical cations. The carotenoid diffusion coefficients deduced by chronocoulometry substantiates this measurement. The produces formed upon electrochemical studies are being studied by HPLC and the isomers formed thermally are being separated. Additional radical reactions are currently being studied by EPR and electrochemical methods

  3. Measurement of antioxidant activity with trifluoperazine dihydrochloride radical cation

    Directory of Open Access Journals (Sweden)

    M.N. Asghar

    2008-06-01

    Full Text Available A novel, rapid and cost-effective trifluoperazine dihydrochloride (TFPH decolorization assay is described for the screening of antioxidant activity. A chromogenic reaction between TFPH and potassium persulfate at low pH produces an orange-red radical cation with maximum absorption at 502 nm in its first-order derivative spectrum. TFPH was dissolved in distilled water to give a 100 mM solution. The TFPH radical cation solution was made by reacting 0.5 mL of the solution with K2S2O8 (final concentration: 0.1 mM and diluting to 100 mL with 4 M H2SO4 solution. A linear inhibition of color production was observed with linearly increasing amounts of antioxidants, with correlation coefficients (R² ranging from 0.999 to 0.983. The antioxidant capacity of standard solutions of an antioxidant was evaluated by comparing with the inhibition curve using Trolox as the standard. Comparison of antioxidant capacity determined with this newly developed TFPH assay and with the well-known 2,2'-azinobis-[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS-persulfate decolorization assay indicated the efficacy and sensitivity of the procedure. The proposed assay is less expensive (costs about US$4 per 100 assays and requires only 20 min for preparation of radical cation solution in comparison with ABTS assay, in which almost 12-16 h are required for preparation of a stable ABTS radical cation solution. The present assay has the advantage over ABTS assay that it can be used to measure the antioxidant activity of the samples, which are naturally found at a pH as low as 1, because the radical cation itself has been stabilized at low pH.

  4. Comparison of Freezing and Hydrate Formation Methods in Removing Chloride and Bromide Ions from Brine

    Directory of Open Access Journals (Sweden)

    Marzieh Fattahi

    2018-01-01

    Full Text Available The growing population and enhanced industrial activities coupled with limitations on freshwater availability have led to efforts to desalinate salt water from the seas. Membrane and thermal technologies are the two commonly used for this purpose. In this study, the direct freezing and hydrate formation techniques were used for salt water desalination. Materials and Methods: Distilled water, sodium chloride, and sodium bromide were used as raw materials in the experiments. The experimental setup included a stationary reactor with two coaxial cylinders, in which ice crystals were deposited outside the cool inner cylinder to increase the salt concentration in the residual brine. An electrical conductivity instrument was used to measure sal removal. Results: Salt removal was shown to decrease with increasing salt concentration in the direct freeze method. A different trend was, however, observed in the hydrate formation method; salt removal was negligible at low concentrations in this method but increased at high concentrations before a constant value was reached. Overall, the hydrate formation recorded a higher salt removal efficiency than the other method. To investigate the effect of anion size on salt removal efficiency, experiments were carried out using NaCl and NaBr, which have the same cation but different anion sizes. Result showed that removal efficiency increased with increasing anion size. Conclusion: It was found that increasing ion radius leads to the lower likelihood of ion presence in the crystal lattice, thereby reducing salt removal efficiency. On the other hand, low concentrations of salt serve as site for the generation of cores, which naturally serve as removal accelerators.

  5. Competitive/co-operative interactions in acid base sandwich: role of cation vs. substituents.

    Science.gov (United States)

    Kalpana, Ayyavoo; Akilandeswari, Lakshminarayanan

    2017-11-15

    The cation-π interaction can be envisaged as a lewis acid base interaction, and it is in line with Pearson's acid base concept. The critical examination of interactions between the π-acids (alkali metal cations - Li + , Na + and alkaline earth metal cations Mg 2+ , Ca 2+ ) on one face and tripodal Cr(CO) 3 moiety on the other π face of substituted arenes demonstrates the role of cation and substitutents in manipulating the interactions between them. The interaction of the two π acids on both faces of arene is not expectedly additive, rather it shows either depreciation of interaction energy revealing the competition of acids toward the base or enhancement of interaction energy denoting a cooperative effect. Among the metal cations under study, Mg 2+ shows a cooperative gesture. Although the substituents play a meek role, they unfailingly exert their electronic effects and are amply documented by excellent correlation of various parameters with the Hammett constant σ m . The elusive switching of λ max from the UV to IR region on binding Mg 2+ with substituted arene-Cr(CO) 3 complex is a characteristic clue that TDDFT can help design the ionic sensors for Mg 2+ cations.

  6. Use of marker ion and cationic surfactant plastic membrane electrode for potentiometric titration of cationic polyelectrolytes.

    Science.gov (United States)

    Masadome, Takashi; Imato, Toshihiko

    2003-07-04

    A plasticized poly (vinyl chloride) (PVC) membrane electrode sensitive to stearyltrimethylammonium (STA) ion is applied to the determination of cationic polyelectrolytes such as poly (diallyldimethylammonium chloride) (Cat-floc) by potentiometric titration, using a potassium poly (vinyl sulfate) (PVSK) solution as a titrant. The end-point of the titration is detected as the potential change of the plasticized PVC membrane electrode caused by decrease in the concentration of STA ion added to the sample solution as a marker ion due to the ion association reaction between the STA ion and PVSK. The effects of the concentration of STA ion, coexisting electrolytes in the sample solution and pH of the sample on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of cationic polyelectrolyte and the end-point volume of the titrant exists in the concentration range from 2x10(-5) to 4x10(-4) N for Cat-floc, glycol chitosan, and methylglycol chitosan.

  7. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    International Nuclear Information System (INIS)

    Oliver, S. A.; Harris, V. G.; Hamdeh, H. H.; Ho, J. C.

    2000-01-01

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn 0.55 2+ Fe 0.18 3+ ) tet [Zr 0.45 2+ Fe 1.82 3+ ] oct O 4 through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe 3+ on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics

  8. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    International Nuclear Information System (INIS)

    Hackbarth, Liisa

    2015-01-01

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H_2O)_5][B(CN)_4]_3.0.5 H_2O, where LRE"3"+ is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H_2O)_7][B(CN)_4]_3 and the [HRE(H_2O)_8][B(CN)_4]_3.3 H_2O, where HRE"3"+ is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical measurements indicate that the tetracyanidoborates with rare earth metal cations

  9. Dynamics of photoexcited Ba{sup +} cations in {sup 4}He nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Antonio; Pi, Martí [Departament ECM, Facultat de Física, and IN" 2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Zhang, Xiaohang; Drabbels, Marcel [Laboratoire de Chimie Physique Moléculaire, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Barranco, Manuel [Departament ECM, Facultat de Física, and IN" 2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Laboratoire des Collisions, Agrégats, Réactivité, IRSAMC, UMR 5589, CNRS et Université Paul Sabatier-Toulouse 3, 118 route de Narbonne, F-31062 Toulouse Cedex 09 (France); Cargnoni, Fausto [Istituto di Scienze e Tecnologie Molecolari (ISTM), Consiglio Nazionale delle Ricerche, via Golgi 19, 20133 Milano (Italy); Hernando, Alberto [Social Thermodynamics Applied Research (SThAR), EPFL Innovation Park, Bâtiment C, CH-1015 Lausanne (Switzerland); Mateo, David [Department of Chemistry and Biochemistry, California State University at Northridge, Northridge, California 91330 (United States); Mella, Massimo [Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como (Italy)

    2016-03-07

    We present a joint experimental and theoretical study on the desolvation of Ba{sup +} cations in {sup 4}He nanodroplets excited via the 6p ← 6s transition. The experiments reveal an efficient desolvation process yielding mainly bare Ba{sup +} cations and Ba{sup +}He{sub n} exciplexes with n = 1 and 2. The speed distributions of the ions are well described by Maxwell-Boltzmann distributions with temperatures ranging from 60 to 178 K depending on the excitation frequency and Ba{sup +} He{sub n} exciplex size. These results have been analyzed by calculations based on a time-dependent density functional description for the helium droplet combined with classical dynamics for the Ba{sup +}. In agreement with experiment, the calculations reveal the dynamical formation of exciplexes following excitation of the Ba{sup +} cation. In contrast to experimental observation, the calculations do not reveal desolvation of excited Ba{sup +} cations or exciplexes, even when relaxation pathways to lower lying states are included.

  10. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    Science.gov (United States)

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  11. Selenium Sequestration in a Cationic Layered Rare Earth Hydroxide: A Combined Batch Experiments and EXAFS Investigation.

    Science.gov (United States)

    Zhu, Lin; Zhang, Linjuan; Li, Jie; Zhang, Duo; Chen, Lanhua; Sheng, Daopeng; Yang, Shitong; Xiao, Chengliang; Wang, Jianqiang; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2017-08-01

    Selenium is of great concern owing to its acutely toxic characteristic at elevated dosage and the long-term radiotoxicity of 79 Se. The contents of selenium in industrial wastewater, agricultural runoff, and drinking water have to be constrained to a value of 50 μg/L as the maximum concentration limit. We reported here the selenium uptake using a structurally well-defined cationic layered rare earth hydroxide, Y 2 (OH) 5 Cl·1.5H 2 O. The sorption kinetics, isotherms, selectivity, and desorption of selenite and selenate on Y 2 (OH) 5 Cl·1.5H 2 O at pH 7 and 8.5 were systematically investigated using a batch method. The maximum sorption capacities of selenite and selenate are 207 and 124 mg/g, respectively, both representing the new records among those of inorganic sorbents. In the low concentration region, Y 2 (OH) 5 Cl·1.5H 2 O is able to almost completely remove selenium from aqueous solution even in the presence of competitive anions such as NO 3 - , Cl - , CO 3 2- , SO 4 2- , and HPO 4 2- . The resulting concentration of selenium is below 10 μg/L, well meeting the strictest criterion for the drinking water. The selenate on loaded samples could be desorbed by rinsing with concentrated noncomplexing NaCl solutions whereas complexing ligands have to be employed to elute selenite for the material regeneration. After desorption, Y 2 (OH) 5 Cl·1.5H 2 O could be reused to remove selenate and selenite. In addition, the sorption mechanism was unraveled by the combination of EDS, FT-IR, Raman, PXRD, and EXAFS techniques. Specifically, the selenate ions were exchanged with chloride ions in the interlayer space, forming outer-sphere complexes. In comparison, besides anion exchange mechanism, the selenite ions were directly bound to the Y 3+ center in the positively charged layer of [Y 2 (OH) 5 (H 2 O)] + through strong bidentate binuclear inner-sphere complexation, consistent with the observation of the higher uptake of selenite over selenate. The results presented in

  12. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions

    International Nuclear Information System (INIS)

    Ruan, Guihua; Wu, Zhenwei; Huang, Yipeng; Wei, Meiping; Su, Rihui; Du, Fuyou

    2016-01-01

    A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of N_α-benzoyl-L-arginine ethyl ester to N_α-benzoyl-L-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast and easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. - Graphical abstract: Schematic illustration of preparation of hypercrosslinking polyHIPE immobilized enzyme reactor for on-column protein digestion. - Highlights: • A reactor was prepared and used for enzyme immobilization and continuous on-column protein digestion. • The new polyHIPE IMER was quite suit for protein digestion with good properties. • On-column digestion revealed that the IMER was easy regenerated by HCl without any structure destruction.

  13. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Guihua, E-mail: guihuaruan@hotmail.com [Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004 (China); Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004 (China); Wu, Zhenwei; Huang, Yipeng; Wei, Meiping; Su, Rihui [Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004 (China); Du, Fuyou, E-mail: dufu2005@126.com [Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004 (China); Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004 (China)

    2016-04-22

    A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of N{sub α}-benzoyl-L-arginine ethyl ester to N{sub α}-benzoyl-L-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast and easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. - Graphical abstract: Schematic illustration of preparation of hypercrosslinking polyHIPE immobilized enzyme reactor for on-column protein digestion. - Highlights: • A reactor was prepared and used for enzyme immobilization and continuous on-column protein digestion. • The new polyHIPE IMER was quite suit for protein digestion with good properties. • On-column digestion revealed that the IMER was easy regenerated by HCl without any structure destruction.

  14. A uranium-based UO_2"+-Mn"2"+ single-chain magnet assembled trough cation-cation interactions

    International Nuclear Information System (INIS)

    Mougel, Victor; Chatelain, Lucile; Hermle, Johannes; Pecaut, Jacques; Mazzanti, Marinella; Caciuffo, Roberto; Colineau, Eric; Tuna, Floriana; Magnani, Nicola; Geyer, Arnaud de

    2014-01-01

    Single-chain magnets (SCMs) are materials composed of magnetically isolated one-dimensional (1D) units exhibiting slow relaxation of magnetization. The occurrence of SCM behavior requires the fulfillment of stringent conditions for exchange and anisotropy interactions. Herein, we report the synthesis, the structure, and the magnetic characterization of the first actinide-containing SCM. The 5f-3d heterometallic 1D chains [{[UO_2(salen)(py)][M(py)_4](NO_3)}]_n, (M=Cd (1) and M=Mn (2); py=pyridine) are assembled trough cation-cation interaction from the reaction of the uranyl(V) complex [UO_2(salen)py][Cp"*_2Co] (Cp"*=pentamethylcyclopentadienyl) with Cd(NO_3)_2 or Mn(NO_3)_2 in pyridine. The infinite UMn chain displays a high relaxation barrier of 134±0.8 K (93±0.5 cm"-"1), probably as a result of strong intra-chain magnetic interactions combined with the high Ising anisotropy of the uranyl(V) dioxo group. It also exhibits an open magnetic hysteresis loop at T<6 K, with an impressive coercive field of 3.4 T at 2 K.

  15. Effect of Melamine Sponge on Tooth Stain Removal.

    Science.gov (United States)

    Otsuka, Takero; Kawata, Toshitsugu

    2015-01-01

    To investigate the stain removal ability of melamine sponge before aesthetic tooth whitening in extracted teeth. Melamine sponge of thickness 40 mm was compressed and the destruction of the partition wall structure during the compression process was examined under a stereoscopic microscope. An extracted human tooth was cleaned by normal polishing or with melamine sponge for 90 s. To evaluate the stain level, the tooth surfaces were photographed under a stereoscopic microscope at 0, 30, 60 and 90 s. The residual stained region was traced in a high-magnification photograph, and the stain intensity was presented as a change, relative to the intensity before the experiment (0 s). Mechanical cleaning by toothbrushing produced polishing scratches on the tooth surface, whereas use of the melamine sponge resulted in only minimal scratches. As the compression level increased, the stain-removing effect tended to become stronger. Melamine sponge can remove stains from the tooth surface more effectively and less invasively compared to a conventional toothbrush. As no new scratches are made on the tooth surface when using a melamine sponge brush, the risk of re-staining is reduced. Cleaning using a melamine sponge brush can be easily and effectively performed at home and in a dental office.

  16. Enhancing the sorption efficiency of polystyrene by immobilizing MgO and its application for uranium (VI) removal from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Elhefnawy, O.A.; Elabd, A.A. [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Nuclear Safeguards and Physical Protection Dept.

    2016-07-01

    Magnesium oxide immobilized polystyrene (PS/MgO) was prepared by the thermal attachment method for the removal of U(VI) from aqueous solutions. PS/MgO was characterized by different techniques [scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD)]. The effects of pH, adsorbent amount, contact time, initial U(VI) concentration, temperature and co-existing cations on the removal process were investigated by using batch technique. The results showed that the maximum adsorption capacity was 163 (mg g{sup -1}) at pH 6 and 293 K. The adsorption kinetics of U(VI) onto PS/MgO followed pseudo-second order and intra-particle kinetic models. The adsorption isotherms obeyed the Freundlich isotherm model. The thermodynamic parameters show that the process is endothermic and spontaneous. PS/MgO is an attractive adsorbent for U(VI) removal from aqueous solutions due to its accessibility, low preparation cost and high removal capacity.

  17. Do constructed wetlands remove metals or increase metal bioavailability?

    Science.gov (United States)

    Xu, Xiaoyu; Mills, Gary L

    2018-07-15

    The H-02 wetland was constructed to treat building process water and storm runoff water from the Tritium Processing Facility on the Department of Energy's Savannah River Site (Aiken, SC). Monthly monitoring of copper (Cu) and zinc (Zn) concentrations and water quality parameters in surface waters continued from 2014 to 2016. Metal speciation was modeled at each sampling occasion. Total Cu and Zn concentrations released to the effluent stream were below the NPDES limit, and the average removal efficiency was 65.9% for Cu and 71.1% for Zn. The metal-removal processes were found out to be seasonally regulated by sulfur cycling indicated by laboratory and model results. High temperature, adequate labile organic matter, and anaerobic conditions during the warm months (February to August) favored sulfate reduction that produced sulfide minerals to significantly remove metals. However, the dominant reaction in sulfur cycling shifted to sulfide oxidation during the cool months (September to next March). High concentrations of metal-organic complexes were observed, especially colloidal complexes of metal and fulvic acid (FA), demonstrating adsorption to organic matter became the primary process for metal removal. Meanwhile, the accumulation of metal-FA complexes in the wetland system will cause negative effects to the surrounding environment as they are biologically reactive, highly bioavailable, and can be easily taken up and transferred to ecosystems by trophic exchange. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Mechanism of selective ion flotation. 1. Selective flotation of transition metal cations

    International Nuclear Information System (INIS)

    Walkowiak, W.

    1991-01-01

    An experimental investigation is presented of the batch ion flotation of the transition metal cations Cr 3+ , Fe 3+ , Mn 2+ , Co 2+ , Zn 2+ , Ag + , Cd 2+ , and In 3+ from acidic aqueous solutions with sodium dodecylsulfonate and sodium dodecylbenzenesulfonate as anionic surfactants. The selectivity sequences Mn 2+ 2+ 2+ 3+ 3+ and Ag + 2+ 3+ are established, both from data for single and multi-ion metal cations solutions, where sublate was not formed in the bulk solution. Good agreement between the selectivity sequences and the values of ionic potential of metal cations was found. An experimental investigation was also performed on the solubility of sublates. The sublates solubility values are discussed in terms of ionic potentials of metal cations as well as of the surfactant size

  19. Temperature dependent fission product removal efficiency due to pool scrubbing

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shunsuke, E-mail: suchida@iae.or.jp [Institute of Applied Energy, 1-14-2, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Itoh, Ayumi; Naitoh, Masanori; Okada, Hidetoshi; Suzuki, Hiroyuki [Institute of Applied Energy, 1-14-2, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003 (Japan); Hanamoto, Yukio [KAKEN, Inc., 1044, Hori-machi, Mito 310-0903 (Japan); Osakabe, Masahiro [Tokyo University of Marine Science & Technology, Koutou-ku, Tokyo 135-8533 (Japan); Fujikawa, Masahiro [Japan Broadcasting Corporation, 2-2-1, Jinnan, Shibuya-ku, Tokyo 150-8001 (Japan)

    2016-03-15

    Highlights: • Pool temperature effects on the FP removal were not clearly concluded in the previous publications. • It was confirmed that the removal efficiency decreased with temperature around the boiling point. • A modified empirical formula for FP removal was proposed as a function of sub-cooling temperature. • DF could be predicted with an accuracy within a factor of 2 with the proposed formula. - Abstract: The wet-well of boiling water reactors plays important roles not only to suppress the pressure in the primary containment vessel due to steam scrubbing effects during severe accidents but also to mitigate release of radioactive fission products (FP), aerosols and particulates, into the environment. The effects of steam scrubbing in the wet-well on FP removal have been well studied and reported by changing major parameters determining the removal efficiencies, e.g., aerosol diameters, submergence (depth of scrubbing nozzles) and steam/non-condensable gas volume fraction. Unfortunately, the effects of pool temperature on the FP removal were not clearly concluded in the previous publications, though it would be easily expected that boiling in the pool resulted in reduced aerosol removal efficiency. In order to determine the temperature effects on FP removal efficiency, amounts of cesium in aerosols released from scrubbing pool were measured by changing pool temperature in mini and medium scale scrubbing experiments, and then, it was confirmed that the removal efficiency clearly decreased with temperature around the boiling point. Then, a modified empirical formula to express the FP removal around the boiling point temperature was proposed as a function of sub-cooling temperature by applying the effective steam volume fraction, which was designated as the volume ratio of condensed steam in the pool versus the sum of input steam and non-condensable gas. By comparing the measured removal efficiency with the calculated, it was validated that the

  20. Temperature dependent fission product removal efficiency due to pool scrubbing

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Itoh, Ayumi; Naitoh, Masanori; Okada, Hidetoshi; Suzuki, Hiroyuki; Hanamoto, Yukio; Osakabe, Masahiro; Fujikawa, Masahiro

    2016-01-01

    Highlights: • Pool temperature effects on the FP removal were not clearly concluded in the previous publications. • It was confirmed that the removal efficiency decreased with temperature around the boiling point. • A modified empirical formula for FP removal was proposed as a function of sub-cooling temperature. • DF could be predicted with an accuracy within a factor of 2 with the proposed formula. - Abstract: The wet-well of boiling water reactors plays important roles not only to suppress the pressure in the primary containment vessel due to steam scrubbing effects during severe accidents but also to mitigate release of radioactive fission products (FP), aerosols and particulates, into the environment. The effects of steam scrubbing in the wet-well on FP removal have been well studied and reported by changing major parameters determining the removal efficiencies, e.g., aerosol diameters, submergence (depth of scrubbing nozzles) and steam/non-condensable gas volume fraction. Unfortunately, the effects of pool temperature on the FP removal were not clearly concluded in the previous publications, though it would be easily expected that boiling in the pool resulted in reduced aerosol removal efficiency. In order to determine the temperature effects on FP removal efficiency, amounts of cesium in aerosols released from scrubbing pool were measured by changing pool temperature in mini and medium scale scrubbing experiments, and then, it was confirmed that the removal efficiency clearly decreased with temperature around the boiling point. Then, a modified empirical formula to express the FP removal around the boiling point temperature was proposed as a function of sub-cooling temperature by applying the effective steam volume fraction, which was designated as the volume ratio of condensed steam in the pool versus the sum of input steam and non-condensable gas. By comparing the measured removal efficiency with the calculated, it was validated that the