WorldWideScience

Sample records for earthquake thermal precursors

  1. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  2. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  3. The escaping "pneuma" - gas of ancient earthquake concepts in relation to animal, atmospheric and thermal precursors

    Science.gov (United States)

    Helmut, Tributsch

    2013-04-01

    The escaping "pneuma" - gas of ancient earthquake concepts in relation to animal, atmospheric and thermal precursors Helmut Tributsch Present affiliation: Carinthian University for Applied Sciences, Bio-mimetics program, Europastrasse 4, 9524 Villach, Austria, helmut.tributsch@alice.it Retired from: Free University Berlin, Institute for physical and theoretical chemistry, Takustr. 3, 14195 Berlin, Germany. For two thousand years ancient European and medieval (including islamic) natural philosophers have considered a dry, warm gas, the "pneuma" ( breath, exhalation), escaping from the earth, as precursor and trigger of earthquakes. Also in China an escaping gas or breath (the qi) was considered the cause of earthquake, first in a document from 780 BC. We know today that escaping gas is not causing earthquakes. But it may be that natural phenomena that supported such a pneuma-concept have again and again been observed. The unpolluted environment and the largely absence of distracting artificial stimuli may have allowed the recognition of distinct earthquake precursors, such as described by ancient observers: (1) the sun becomes veiled and has a dim appearance, turns reddish or dark (2) a narrow long stretched cloud becomes visible, like a line drawn by a ruler, (3) earthquakes preceded by a thin streak of cloud stretching over a wide space. (4) earthquakes in the morning sometimes preceded by a still and a strong frost, (5) a surf - line of the air sea is forming (near the horizon). The described phenomena may be interpreted as a kind of smog forming above the ground prior to an earthquake, a smog exhaled from the ground, which is triggering water condensation, releasing latent heat, changing visibility, temperature, heat conduction and radiation properties. This could perfectly match the phenomenon, which is at the origin of satellite monitored temperature anomalies preceding earthquakes. Based on a few examples it will be shown that the time window of temperature

  4. The EM Earthquake Precursor

    Science.gov (United States)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  5. Identified EM Earthquake Precursors

    Science.gov (United States)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  6. Radon as an earthquake precursor

    International Nuclear Information System (INIS)

    Planinic, J.; Radolic, V.; Vukovic, B.

    2004-01-01

    Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors during a four-year period. Seismic activities, as well as barometric pressure, rainfall and air temperature were also observed. The influence of meteorological parameters on temporal radon variations was investigated, and a respective equation of the multiple regression was derived. The earthquakes with magnitude ≥3 at epicentral distances ≤200 km were recognized by means of radon anomaly. Empirical equations between earthquake magnitude, epicentral distance and precursor time were examined, and respective constants were determined

  7. Radon as an earthquake precursor

    Energy Technology Data Exchange (ETDEWEB)

    Planinic, J. E-mail: planinic@pedos.hr; Radolic, V.; Vukovic, B

    2004-09-11

    Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors during a four-year period. Seismic activities, as well as barometric pressure, rainfall and air temperature were also observed. The influence of meteorological parameters on temporal radon variations was investigated, and a respective equation of the multiple regression was derived. The earthquakes with magnitude {>=}3 at epicentral distances {<=}200 km were recognized by means of radon anomaly. Empirical equations between earthquake magnitude, epicentral distance and precursor time were examined, and respective constants were determined.

  8. PRECURSORS OF EARTHQUAKES: VLF SIGNALSIONOSPHERE IONOSPHERE RELATION

    Directory of Open Access Journals (Sweden)

    Mustafa ULAS

    2013-01-01

    Full Text Available lot of people have died because of earthquakes every year. Therefore It is crucial to predict the time of the earthquakes reasonable time before it had happed. This paper presents recent information published in the literature about precursors of earthquakes. The relationships between earthquakes and ionosphere are targeted to guide new researches in order to study further to find novel prediction methods.

  9. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  10. Ionospheric precursors for crustal earthquakes in Italy

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2010-04-01

    Full Text Available Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9 tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

  11. Understanding Animal Detection of Precursor Earthquake Sounds.

    Science.gov (United States)

    Garstang, Michael; Kelley, Michael C

    2017-08-31

    We use recent research to provide an explanation of how animals might detect earthquakes before they occur. While the intrinsic value of such warnings is immense, we show that the complexity of the process may result in inconsistent responses of animals to the possible precursor signal. Using the results of our research, we describe a logical but complex sequence of geophysical events triggered by precursor earthquake crustal movements that ultimately result in a sound signal detectable by animals. The sound heard by animals occurs only when metal or other surfaces (glass) respond to vibrations produced by electric currents induced by distortions of the earth's electric fields caused by the crustal movements. A combination of existing measurement systems combined with more careful monitoring of animal response could nevertheless be of value, particularly in remote locations.

  12. Modelling earth current precursors in earthquake prediction

    Directory of Open Access Journals (Sweden)

    R. Di Maio

    1997-06-01

    Full Text Available This paper deals with the theory of earth current precursors of earthquake. A dilatancy-diffusion-polarization model is proposed to explain the anomalies of the electric potential, which are observed on the ground surface prior to some earthquakes. The electric polarization is believed to be the electrokinetic effect due to the invasion of fluids into new pores, which are opened inside a stressed-dilated rock body. The time and space variation of the distribution of the electric potential in a layered earth as well as in a faulted half-space is studied in detail. It results that the surface response depends on the underground conductivity distribution and on the relative disposition of the measuring dipole with respect to the buried bipole source. A field procedure based on the use of an areal layout of the recording sites is proposed, in order to obtain the most complete information on the time and space evolution of the precursory phenomena in any given seismic region.

  13. Biological Indicators in Studies of Earthquake Precursors

    Science.gov (United States)

    Sidorin, A. Ya.; Deshcherevskii, A. V.

    2012-04-01

    Time series of data on variations in the electric activity (EA) of four species of weakly electric fish Gnathonemus leopoldianus and moving activity (MA) of two cat-fishes Hoplosternum thoracatum and two groups of Columbian cockroaches Blaberus craniifer were analyzed. The observations were carried out in the Garm region of Tajikistan within the frameworks of the experiments aimed at searching for earthquake precursors. An automatic recording system continuously recorded EA and DA over a period of several years. Hourly means EA and MA values were processed. Approximately 100 different parameters were calculated on the basis of six initial EA and MA time series, which characterize different variations in the EA and DA structure: amplitude of the signal and fluctuations of activity, parameters of diurnal rhythms, correlated changes in the activity of various biological indicators, and others. A detailed analysis of the statistical structure of the total array of parametric time series obtained in the experiment showed that the behavior of all animals shows a strong temporal variability. All calculated parameters are unstable and subject to frequent changes. A comparison of the data obtained with seismicity allow us to make the following conclusions: (1) The structure of variations in the studied parameters is represented by flicker noise or even a more complex process with permanent changes in its characteristics. Significant statistics are required to prove the cause-and-effect relationship of the specific features of such time series with seismicity. (2) The calculation of the reconstruction statistics in the EA and MA series structure demonstrated an increase in their frequency in the last hours or a few days before the earthquake if the hypocenter distance is comparable to the source size. Sufficiently dramatic anomalies in the behavior of catfishes and cockroaches (changes in the amplitude of activity variation, distortions of diurnal rhythms, increase in the

  14. A critical review of Electric Earthquake Precursors

    Directory of Open Access Journals (Sweden)

    F. Vallianatos

    2001-06-01

    Full Text Available The generation of transient electric potential prior to rupture has been demonstrated in a number of laboratory experiments involving both dry and wet rock specimens. Several different electrification effects are responsible for these observations, but how these may scale up co-operatively in large heterogeneous rock volumes, to produce observable macroscopic signals, is still incompletely understood. Accordingly, the nature and properties of possible Electric Earthquake Precursors (EEP are still inadequately understood. For a long time observations have been fragmentary, narrow band and oligo-parametric (for instance, the magnetic field was not routinely measured. In general, the discrimination of purported EEP signals relied on "experience" and ad hoc empirical rules that could be shown unable to guarantee the validity of the data. In consequence, experimental studies have produced a prolific variety of signal shape, complexity and duration but no explanation for the apparently indefinite diversity. A set of inconsistent or conflicting ideas attempted to explain such observations, including different concepts about the EEP source region (near the observer or at the earthquake focus and propagation (frequently assumed to be guided by peculiar geoelectric structure. Statistics was also applied to establish the "beyond chance" association between presumed EEP signals and earthquakes. In the absence of well constrained data, this approach ended up with intense debate and controversy but no useful results. The response of the geophysical community was scepticism and by the mid-90's, the very existence of EEP was debated. At that time, a major re-thinking of EEP research began to take place, with reformulation of its queries and objectives and refocusing on the exploration of fundamental concepts, less on field experiments. The first encouraging results began to appear in the last two years of the 20th century. Observation technologies are mature

  15. A critical review of electric earthquake precursors

    Energy Technology Data Exchange (ETDEWEB)

    Tzanis, A. [Athens Univ., Athens (Italy). Dept. of Geophysics and Geothermy; Valliantos, F. [Technological Educational Institute of Crete, Chania (Greece)

    2001-04-01

    The generation of transient electric potential prior to rupture has been demonstrated in a number of laboratory experiments involving both dry and wet rock specimens. Several different electrification effects are responsible for these observations, but how these may scale up co-operatively in large heterogeneous rock volumes, to produce observable macroscopic signals, is still incompletely understood. Accordingly, the nature and properties of possible Electric Earthquake Precursors (EEP) are still inadequately understood. For a long time observations have been fragmentary, narrow band and oligo-parametric (for instance, the magnetic field was not routinely measured). In general, the discrimination of purported EEP signals relied on experience and ad hoc empirical rules that could be shown unable to guarantee the validity of the data. In consequence, experimental studies have produced a prolific variety of signal shape, complexity and duration but no explanation for the apparently indefinite diversity. A set of inconsistent or conflicting ideas attempted to explain such observations, including different concepts about the EEP source region (near the observer or at the earthquake focus) and propagation (frequently assumed to be guided by peculiar geo electric structure). Statistics was also applied to establish the beyond chance association between presumed EEP signals and earthquakes. In the absence of well constrained data, this approach ended up with intense debate and controversy but no useful results. The response of the geophysical community was scepticism and by the mid-90's, the very existence of EEP was debated. At that time, a major re-thinking of EEP research began to take place, with reformulation of its queries and objectives and refocusing on the exploration of fundamental concepts, less on field experiments. The firs encouraging results began to appear in the last two years of the 20th century. Observation technologies are mature and can guarantee

  16. Earthquake prediction the ory and its relation to precursors

    International Nuclear Information System (INIS)

    Negarestani, A.; Setayeshi, S.; Ghannadi-Maragheh, M.; Akasheh, B.

    2001-01-01

    Since we don't have enough knowledge about the Physics of earthquakes. therefore. the study of seismic precursors plays an important role in earthquake prediction. Earthquake prediction is a science which discusses about precursory phenomena during seismogenic process, and then investigates the correlation and association among them and the intrinsic relation between precursors and the seismogenic process. ar the end judges comprehensively the seismic status and finally makes earthquake prediction. There are two ways for predicting earthquake prediction. The first is to study the physics of seismogenic process and to determine the parameters in the process based on the source theories and the second way is to use seismic precursors. In this paper the theory of earthquake is reviewed. We also study theory of earthquake using models of earthquake origin, the relation between seismogenic process and various accompanying precursory phenomena. The earthquake prediction is divided into three categories: long-term, medium-term and short-term. We study seismic anomalous behavior. electric field, crustal deformation, gravity. magnetism of earth. change of groundwater variation. groundwater geochemistry and change of Radon gas emission. Finally, it is concluded the there is a correlation between Radon gas emission and earthquake phenomena. Meanwhile, there are some samples from actual processing in this area

  17. Tilt Precursors before Earthquakes on the San Andreas Fault, California.

    Science.gov (United States)

    Johnston, M J; Mortensen, C E

    1974-12-13

    An array of 14 biaxial shallow-borehole tiltmeters (at 1O(-7) radian sensitivity) has been installed along 85 kilometers of the San Andreas fault during the past year. Earthquake-related changes in tilt have been simultaneously observed on up to four independent instruments. At earthquake distances greater than 10 earthquake source dimensions, there are few clear indications of tilt change. For the four instruments with the longest records (> 10 months), 26 earthquakes have occurred since July 1973 with at least one instrument closer than 10 source dimensions and 8 earthquakes with more than one instrument within that distance. Precursors in tilt direction have been observed before more than 10 earthquakes or groups of earthquakes, and no similar effect has yet been seen without the occurrence of an earthquake.

  18. Seismic-electromagnetic precursors of Romania's Vrancea earthquakes

    International Nuclear Information System (INIS)

    Enescu, B.D.; Enescu, C.; Constantin, A. P.

    1999-01-01

    Diagrams were plotted from electromagnetic data that were recorded at Muntele Rosu Observatory during December 1996 to January 1997, and December 1997 to September 1998. The times when Vrancea earthquakes of magnitudes M ≥ 3.9 occurred within these periods are marked on the diagrams.The parameters of the earthquakes are given in a table which also includes information on the magnetic and electric anomalies (perturbations) preceding these earthquakes. The magnetic data prove that Vrancea earthquakes are preceded by magnetic perturbations that may be regarded as their short-term precursors. Perturbations, which could likewise be seen as short-term precursors of Vrancea earthquakes, are also noticed in the electric records. Still, a number of electric data do cast a doubt on their forerunning nature. Some suggestions are made in the end of the paper on how electromagnetic research should go ahead to be of use for Vrancea earthquake prediction. (authors)

  19. Method for forecasting an earthquake from precursor signals

    International Nuclear Information System (INIS)

    Farnworth, D.F.

    1996-01-01

    A method for forecasting an earthquake from precursor signals by employing characteristic first electromagnetic signals, second, seismically induced electromagnetic signals, seismically induced mechanical signals, and infrasonic acoustic signals which have been observed to precede an earthquake. From a first electromagnetic signal, a magnitude, depth beneath the surface of the earth, distance, latitude, longitude, and first and second forecasts of the time of occurrence of the impending earthquake may be derived. From a second, seismically induced electromagnetic signal and the mechanical signal, third and fourth forecasts of the time of occurrence of an impending earthquake determined from the analysis above, a magnitude, depth beneath the surface of the earth and fourth and fifth forecasts of the time of occurrence of the impending earthquake may be derived. The forecasts of time available from the above analyses range from up to five weeks to substantially within one hour in advance of the earthquake. (author)

  20. Assigning probability gain for precursors of four large Chinese earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, T.; Aki, K.

    1983-03-10

    We extend the concept of probability gain associated with a precursor (Aki, 1981) to a set of precursors which may be mutually dependent. Making use of a new formula, we derive a criterion for selecting precursors from a given data set in order to calculate the probability gain. The probabilities per unit time immediately before four large Chinese earthquakes are calculated. They are approximately 0.09, 0.09, 0.07 and 0.08 per day for 1975 Haicheng (M = 7.3), 1976 Tangshan (M = 7.8), 1976 Longling (M = 7.6), and Songpan (M = 7.2) earthquakes, respectively. These results are encouraging because they suggest that the investigated precursory phenomena may have included the complete information for earthquake prediction, at least for the above earthquakes. With this method, the step-by-step approach to prediction used in China may be quantified in terms of the probability of earthquake occurrence. The ln P versus t curve (where P is the probability of earthquake occurrence at time t) shows that ln P does not increase with t linearly but more rapidly as the time of earthquake approaches.

  1. Amplitude of foreshocks as a possible seismic precursor to earthquakes

    Science.gov (United States)

    Lindh, A.G.

    1978-01-01

    In recent years, we have made significant progress in being able to recognize the long-range pattern of events that precede large earthquakes. For example, in a recent issue of the Earthquake Information Bulletin, we saw how the pioneering work of S.A. Fedotov of the U.S.S.R in the Kamchatka-Kurile Islands region has been applied worldwide to forecast where large, shallow earthquakes might occur in the next decades. Indeed, such a "seismic gap" off the coast of Alaska was filled by the 1972 Sitka earthquake. Promising results are slowly accumulating from other techniques that suggest that intermediate-term precursors might also be seen: among these are tilt and geomagnetic anomalies and anomalous land uplift. But the crucial point remains that short-term precursors (days to hours) will be needed in many cases if there is to be a significant saving of lives. 

  2. Earthquake chemical precursors in groundwater: a review

    Science.gov (United States)

    Paudel, Shukra Raj; Banjara, Sushant Prasad; Wagle, Amrita; Freund, Friedemann T.

    2018-03-01

    We review changes in groundwater chemistry as precursory signs for earthquakes. In particular, we discuss pH, total dissolved solids (TDS), electrical conductivity, and dissolved gases in relation to their significance for earthquake prediction or forecasting. These parameters are widely believed to vary in response to seismic and pre-seismic activity. However, the same parameters also vary in response to non-seismic processes. The inability to reliably distinguish between changes caused by seismic or pre-seismic activities from changes caused by non-seismic activities has impeded progress in earthquake science. Short-term earthquake prediction is unlikely to be achieved, however, by pH, TDS, electrical conductivity, and dissolved gas measurements alone. On the other hand, the production of free hydroxyl radicals (•OH), subsequent reactions such as formation of H2O2 and oxidation of As(III) to As(V) in groundwater, have distinctive precursory characteristics. This study deviates from the prevailing mechanical mantra. It addresses earthquake-related non-seismic mechanisms, but focused on the stress-induced electrification of rocks, the generation of positive hole charge carriers and their long-distance propagation through the rock column, plus on electrochemical processes at the rock-water interface.

  3. Are any public-reported earthquake precursors valid?

    Directory of Open Access Journals (Sweden)

    N. E. Whitehead

    2004-01-01

    Full Text Available This article examines retrospective public-supplied precursor reports statistically, and confirms published hypotheses that some alleged precursors within 100km and within a day prior to the large 1995 Kobe and 1999 Izmit earthquakes, may be valid. The confirmations are mostly at the p<0.001 level of significance. Most significant were alleged meteorological and geophysical precursors, and less often, animal reports. The chi-squared test used, for the first time eliminates the distorting effects of psychological factors on the reports. However it also shows that correct reports are diluted with about the same number which are merely wishful thinking, and obtaining more reliable data would be logistically difficult. Some support is found for another published hypothesis in which other precursors occurred within the ten days prior to the earthquake.

  4. Surface latent heat flux as an earthquake precursor

    Directory of Open Access Journals (Sweden)

    S. Dey

    2003-01-01

    Full Text Available The analysis of surface latent heat flux (SLHF from the epicentral regions of five recent earthquakes that occurred in close proximity to the oceans has been found to show anomalous behavior. The maximum increase of SLHF is found 2–7 days prior to the main earthquake event. This increase is likely due to an ocean-land-atmosphere interaction. The increase of SLHF prior to the main earthquake event is attributed to the increase in infrared thermal (IR temperature in the epicentral and surrounding region. The anomalous increase in SLHF shows great potential in providing early warning of a disastrous earthquake, provided that there is a better understanding of the background noise due to the tides and monsoon in surface latent heat flux. Efforts have been made to understand the level of background noise in the epicentral regions of the five earthquakes considered in the present paper. A comparison of SLHF from the epicentral regions over the coastal earthquakes and the earthquakes that occurred far away from the coast has been made and it has been found that the anomalous behavior of SLHF prior to the main earthquake event is only associated with the coastal earthquakes.

  5. Radon anomaly in soil gas as an earthquake precursor

    International Nuclear Information System (INIS)

    Miklavcic, I.; Radolic, V.; Vukovic, B.; Poje, M.; Varga, M.; Stanic, D.; Planinic, J.

    2008-01-01

    The mechanical processes of earthquake preparation are always accompanied by deformations; afterwards, the complex short- or long-term precursory phenomena can appear. Anomalies of radon concentrations in soil gas are registered a few weeks or months before many earthquakes. Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors at site A (Osijek) during a 4-year period, as well as by the Barasol semiconductor detector at site B (Kasina) during 2 years. We investigated the influence of the meteorological parameters on the temporal radon variations, and we determined the equation of the multiple regression that enabled the reduction (deconvolution) of the radon variation caused by the barometric pressure, rainfall and temperature. The pre-earthquake radon anomalies at site A indicated 46% of the seismic events, on criterion M≥3, R<200 km, and 21% at site B. Empirical equations between earthquake magnitude, epicenter distance and precursor time enabled estimation or prediction of an earthquake that will rise at the epicenter distance R from the monitoring site in expecting precursor time T

  6. Radon anomaly in soil gas as an earthquake precursor

    Energy Technology Data Exchange (ETDEWEB)

    Miklavcic, I.; Radolic, V.; Vukovic, B.; Poje, M.; Varga, M.; Stanic, D. [Department of Physics, University of Osijek, Trg Ljudevita Gaja 6, POB 125, 31000 Osijek (Croatia); Planinic, J. [Department of Physics, University of Osijek, Trg Ljudevita Gaja 6, POB 125, 31000 Osijek (Croatia)], E-mail: planinic@ffos.hr

    2008-10-15

    The mechanical processes of earthquake preparation are always accompanied by deformations; afterwards, the complex short- or long-term precursory phenomena can appear. Anomalies of radon concentrations in soil gas are registered a few weeks or months before many earthquakes. Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors at site A (Osijek) during a 4-year period, as well as by the Barasol semiconductor detector at site B (Kasina) during 2 years. We investigated the influence of the meteorological parameters on the temporal radon variations, and we determined the equation of the multiple regression that enabled the reduction (deconvolution) of the radon variation caused by the barometric pressure, rainfall and temperature. The pre-earthquake radon anomalies at site A indicated 46% of the seismic events, on criterion M{>=}3, R<200 km, and 21% at site B. Empirical equations between earthquake magnitude, epicenter distance and precursor time enabled estimation or prediction of an earthquake that will rise at the epicenter distance R from the monitoring site in expecting precursor time T.

  7. Possibility to study ionospheric earthquakes precursors using CubeSats

    Science.gov (United States)

    Korepanov, Valery; Lappas, Vaios

    It is generally accepted that the earthquakes (EQ) are the most dangerous natural phenomena leading to the multiple losses in human lives and economics. The space observations must be included into the global chain of the EQ precursors monitoring at least as the initial warning to pay greater attention to the ground segment data. As the common opinion agrees, only in combination of multiple observation sites and set of monitored parameters the further progress at the way to raise EQ precursors detection probability may be obtained. There is necessary to answer two important questions before to plan any experiment to study ionospheric precursors of EQ. First one - whether the variations in the ionosphere definitely connected with the EQ preparation process do exist, and the second one - if they do, whether using these signals the precursors of EQ can be reliably identified and used for, if not prediction, then for the warning that the EQ in the given area approaches. The first successful mission dedicated to this problem solution was DEMETER (in orbit during more than 6 years from June 2004 until December 2010). The statistics of this study is impressive: altogether, about 9000 EQs with magnitude larger than M = 5.0 and depth lower than 40 km occurred all over the world during the analyzed period. In the result, the conclusion made there suggests that, obviously, there are real perturbations in the ionosphere connected with the seismic activity, but they are rather weak and at the present stage of data processing may be revealed only with the help of statistical analysis. To realize the study of ionospheric precursors, first it is imperative to clarify the mechanism of energy transfer along the chain “lithosphere-atmosphere-ionosphere”. Many hypotheses of such a mechanism exist, from which the mostly supported are fair weather currents (FWC) and atmospheric gravity waves (AGW), both of which have their pros and contras. The following minimal set of physical

  8. Using Groundwater physiochemical properties for assessing potential earthquake precursor

    Science.gov (United States)

    Inbar, Nimrod; Reuveni, Yuval; Anker, Yaakov; Guttman, Joseph

    2017-04-01

    Worldwide studies reports pre-seismic, co-seismic and post-seismic reaction of groundwater to earthquakes. The unique hydrological and geological situation in Israel resulted in relatively deep water wells which are located close to seismically active tectonic plate boundary. Moreover, the Israeli experience show that anomalies may occurs 60-90 minutes prior to the seismic event (Guttman et al., 2005; Anker et al., 2016). Here, we try to assess the possible connection between changes in physiochemical parameters of groundwater and earthquakes along the Dead Sea Transform (DST) region. A designated network of monitoring stations was installed in MEKOROT abandoned deep water wells, continuously measuring water table, conductivity and temperature at a sampling rate of 1 minute. Preliminary analysis compares changes in the measured parameters with rain events, tidal effects and earthquake occurrences of all measured magnitudes (>2.5Md) at monitoring area surroundings. The acquired data set over one year recorded simultaneous abrupt changes in several wells which seems disconnected from standard hydrological occurrences such as precipitation, abstraction or tidal effects. At this stage, our research aims to determine and rationalize a baseline for "normal response" of the measured parameters to external occurrences while isolating those cases in which "deviations" from that base line is recorded. We apply several analysis techniques both in time and frequency domain with the measured signal as well as statistical analysis of several measured earthquake parameters, which indicate potential correlations between earthquakes occurrences and the measured signal. We show that at least in one seismic event (5.1 Md) a potential precursor may have been recorded. Reference: Anker, Y., N. Inbar, A. Y. Dror, Y. Reuveni, J. Guttman, A. Flexer, (2016). Groundwater response to ground movements, as a tool for earthquakes monitoring and a possible precursor. 8th International Conference

  9. Possible precursors to the 2011 3/11 Japan earthquake:

    Science.gov (United States)

    Hayakawa, M.; Hobara, Y.; Schekotov, A.; Rozhnoi, A.; Solovieva, M.

    2012-04-01

    The purpose of this paper is to present a possible precursor to the 2011 March 11 Japan earthquake. First of all, we present the results on subionospheric VLF/LF propagation anomaly (ionospheric perturbation) by means of Japan-Russia VLF network. It is found that the ionospheric perturbation is clearly detected on March 4, 5 and 6 on the propagation paths of NLK (Seattle, USA) to Japanese stations and on a path of JJI (Miyazaki, Kyushu) to Kamchatka. Next, we present the results on the ULF depression (horizontal component) on the same days, which is interpreted in terms of the absorption in the disturbed lower ionosphere of the downgoing magnetospheric Alfve'n waves. These two precursors are considered to be due to the same effect of the lower ionospheric perturbation about one week before the earthquake.

  10. The wireless networking system of Earthquake precursor mobile field observation

    Science.gov (United States)

    Wang, C.; Teng, Y.; Wang, X.; Fan, X.; Wang, X.

    2012-12-01

    The mobile field observation network could be real-time, reliably record and transmit large amounts of data, strengthen the physical signal observations in specific regions and specific period, it can improve the monitoring capacity and abnormal tracking capability. According to the features of scatter everywhere, a large number of current earthquake precursor observation measuring points, networking technology is based on wireless broadband accessing McWILL system, the communication system of earthquake precursor mobile field observation would real-time, reliably transmit large amounts of data to the monitoring center from measuring points through the connection about equipment and wireless accessing system, broadband wireless access system and precursor mobile observation management center system, thereby implementing remote instrument monitoring and data transmition. At present, the earthquake precursor field mobile observation network technology has been applied to fluxgate magnetometer array geomagnetic observations of Tianzhu, Xichang,and Xinjiang, it can be real-time monitoring the working status of the observational instruments of large area laid after the last two or three years, large scale field operation. Therefore, it can get geomagnetic field data of the local refinement regions and provide high-quality observational data for impending earthquake tracking forecast. Although, wireless networking technology is very suitable for mobile field observation with the features of simple, flexible networking etc, it also has the phenomenon of packet loss etc when transmitting a large number of observational data due to the wireless relatively weak signal and narrow bandwidth. In view of high sampling rate instruments, this project uses data compression and effectively solves the problem of data transmission packet loss; Control commands, status data and observational data transmission use different priorities and means, which control the packet loss rate within

  11. Isotopic and geochemical precursors of earthquakes and volcanic eruptions

    International Nuclear Information System (INIS)

    1993-11-01

    Radon 222 seems to be one of the most promising precursors and is the tracer for which more data are available: according to statistics elaborated in China, 70% of earthquakes are preceded by radon anomalies detectable in soil, air and/or in groundwater. Also other changes of the fluid chemical composition and variations of 3 He/ 4 He, 2 H/ 1 H, 13 C/ 12 C, 18 O/ 16 O isotopic ratios have been detected. Among these indicators one can mention variations in concentration and/or isotopic ratios of hydrogen, helium, carbon, oxygen, neon, radon, radium and uranium. Refs, figs, tabs

  12. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) Model - An Unified Concept for Earthquake Precursors Validation

    Science.gov (United States)

    Pulinets, S.; Ouzounov, D.

    2010-01-01

    The paper presents a conception of complex multidisciplinary approach to the problem of clarification the nature of short-term earthquake precursors observed in atmosphere, atmospheric electricity and in ionosphere and magnetosphere. Our approach is based on the most fundamental principles of tectonics giving understanding that earthquake is an ultimate result of relative movement of tectonic plates and blocks of different sizes. Different kind of gases: methane, helium, hydrogen, and carbon dioxide leaking from the crust can serve as carrier gases for radon including underwater seismically active faults. Radon action on atmospheric gases is similar to the cosmic rays effects in upper layers of atmosphere: it is the air ionization and formation by ions the nucleus of water condensation. Condensation of water vapor is accompanied by the latent heat exhalation is the main cause for observing atmospheric thermal anomalies. Formation of large ion clusters changes the conductivity of boundary layer of atmosphere and parameters of the global electric circuit over the active tectonic faults. Variations of atmospheric electricity are the main source of ionospheric anomalies over seismically active areas. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model can explain most of these events as a synergy between different ground surface, atmosphere and ionosphere processes and anomalous variations which are usually named as short-term earthquake precursors. A newly developed approach of Interdisciplinary Space-Terrestrial Framework (ISTF) can provide also a verification of these precursory processes in seismically active regions. The main outcome of this paper is the unified concept for systematic validation of different types of earthquake precursors united by physical basis in one common theory.

  13. A review on remotely sensed land surface temperature anomaly as an earthquake precursor

    Science.gov (United States)

    Bhardwaj, Anshuman; Singh, Shaktiman; Sam, Lydia; Joshi, P. K.; Bhardwaj, Akanksha; Martín-Torres, F. Javier; Kumar, Rajesh

    2017-12-01

    The low predictability of earthquakes and the high uncertainty associated with their forecasts make earthquakes one of the worst natural calamities, capable of causing instant loss of life and property. Here, we discuss the studies reporting the observed anomalies in the satellite-derived Land Surface Temperature (LST) before an earthquake. We compile the conclusions of these studies and evaluate the use of remotely sensed LST anomalies as precursors of earthquakes. The arrival times and the amplitudes of the anomalies vary widely, thus making it difficult to consider them as universal markers to issue earthquake warnings. Based on the randomness in the observations of these precursors, we support employing a global-scale monitoring system to detect statistically robust anomalous geophysical signals prior to earthquakes before considering them as definite precursors.

  14. Possible earthquake precursors revealed by LF radio signals

    Directory of Open Access Journals (Sweden)

    P. F. Biagi

    2001-01-01

    Full Text Available Among radio signals, low frequency (LF radio signals lie in the band between 30–300 kHz. Monitoring equipment with the ability to measure the electric strength of such signals at field sites, were designed and assembled in Italy. From 1993 onwards, the electric field strength of the MCO (216 kHz, France broadcasting station has been collecting measurements at two sites in central Italy that were chosen according to very low noise levels. At the end of 1996, radio signals from the CLT (189 kHz, Italy and CZE (270 kHz, Czech Republic broadcasting stations were included in the measurements. Meteorological data from central Italy were also collected over the same time period in order to study the influence of weather conditions on the experimental measurements. During the monitoring period, we observed some evident attenuation of the electric field strength in some of the radio signals at some of the receivers. The duration of the attenuation observed was several days, so it could possibly be related to particular meteorological conditions. On the other hand, this phenomenon might represent precursors of moderate (3.0 M 3.5 earthquakes that occurred near the receivers (within 50 km along the transmitter-receiver path. In this case, it is possible that the pre-seismic processes could have produced irregularities in the troposphere, such as ducts, reflecting layers and scattering zones, so that some local troposphere defocusing of the radio signals might have occurred. These observations were related only to moderate earthquakes and in these cases, suitable meteorological conditions were probably needed to observe the effect. Between February – March 1998, we observed at one measuring site, a significant increase in the CZE electric field strength. Unfortunately, we could not use the data of the other receiver in this case, due to frequent interruptions in the data set. The increase might have been a precursor of the strong seismic sequence (M = 5

  15. "Storms of crustal stress" and AE earthquake precursors

    Directory of Open Access Journals (Sweden)

    G. P. Gregori

    2010-02-01

    Colfiorito – and (maybe in 2002 also the Molise earthquake can be reckoned to this "storm". During the "storm", started in 2008, the l'Aquila earthquake occurred.

    Additional logical analysis envisages the possibility of distinguishing some kind of "elementary" constituents of a "crustal storm", which can be briefly called "crustal substorms". The concept of "storm" and "substorm" is a common logical aspect, which is shared by several phenomena, depending on their common intrinsic and primary logical properties that can be called lognormality and fractality. Compared to a "crustal storm", a "crustal substorm" is likely to be reckoned to some specific seismic event. Owing to brevity purposes, however, the discussion of "substorms" is given elsewhere.

    AE is an effective tool for monitoring these phenomena, and other processes that are ongoing within the crust. Eventually they result to be precursors of some more or less violent earthquake. It should be stressed, however, that the target of AE monitoring is diagnosing the Earth's crust. In contrast, earthquake prediction implies a much different perspective, which makes sense only by means of more detailed multiparametric monitoring. An AE array can provide real physical information only about the processes that are objectively ongoing inside different and contiguous large slabs of the crust. The purpose is to monitor the stress propagation that crosses different regions, in order to envisage where and when it can eventually trigger a catastrophe of the system. The conclusion is that continental – or planetary – scale arrays of AE monitoring stations, which record a few different AE frequencies, appear to be the likely first step for diagnosing the evolution of local structures preceding an earthquake. On the other hand, as it is well known, the magnitude of the shock is to be related to the elastic energy stored in

  16. The October 2008 Novy Kostel earthquake swarm and its gas geochemical precursor

    Czech Academy of Sciences Publication Activity Database

    Weinlich, F. H.; Gaždová, Renata; Teschner, M.; Poggenburg, J.

    2016-01-01

    Roč. 16, č. 5 (2016), s. 826-840 ISSN 1468-8115 Institutional support: RVO:67985891 Keywords : CO2 * earthquake precursor * earthquake swarm * gas monitoring * water table fluctuations Subject RIV: DD - Geochemistry Impact factor: 2.687, year: 2016

  17. The use of radon as an earthquake precursor

    International Nuclear Information System (INIS)

    Ramola, R.C.; Singh, M.; Sandhu, A.S.; Singh, S.; Virk, H.S.

    1990-01-01

    Radon monitoring for earthquake prediction is part of an integral approach since the discovery of coherent and time anomalous radon concentrations prior to, during and after the 1966 Tashkent earthquake. In this paper some studies of groundwater and soil gas radon content in relation to earthquake activities are reviewed. Laboratory experiments and the development of groundwater and soil gas radon monitoring systems are described. In addition, radon monitoring studies conducted at the Guru Nanak Dev University Campus since 1986 are presented in detail. During these studies some anomalous changes in radon concentration were recorded before earthquakes occurred in the region. The anomalous radon increases are independent of meteorological conditions and appear to be caused by strain changes, which precede the earthquake. Anomalous changes in radon concentration before an earthquake suggest that radon monitoring can serve as an additional technique in the earthquake prediction programme in India. (author)

  18. Thermal Radiation Anomalies Associated with Major Earthquakes

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Kafatos, Menas C.; Taylor, Patrick

    2017-01-01

    Recent developments of remote sensing methods for Earth satellite data analysis contribute to our understanding of earthquake related thermal anomalies. It was realized that the thermal heat fluxes over areas of earthquake preparation is a result of air ionization by radon (and other gases) and consequent water vapor condensation on newly formed ions. Latent heat (LH) is released as a result of this process and leads to the formation of local thermal radiation anomalies (TRA) known as OLR (outgoing Longwave radiation, Ouzounov et al, 2007). We compare the LH energy, obtained by integrating surface latent heat flux (SLHF) over the area and time with released energies associated with these events. Extended studies of the TRA using the data from the most recent major earthquakes allowed establishing the main morphological features. It was also established that the TRA are the part of more complex chain of the short-term pre-earthquake generation, which is explained within the framework of a lithosphere-atmosphere coupling processes.

  19. Geomagnetic anomalies - possible earthquake precursors - linked with 2004 significant seismic activity in Vrancea, Romania

    International Nuclear Information System (INIS)

    Enescu, D.

    2005-01-01

    The association between a precursory geomagnetic anomaly and a Vrancea earthquake of moderate-to-high magnitude (M W = 6.3) followed by weaker earthquakes (M W W ≤ 6.3 the conclusion of our earlier papers, i.e., that the great majority of Vrancea earthquakes of magnitudes 3.7 ≤ M W ≤5.0 were accompanied by observable precursory electromagnetic anomalies. Our works show that neither the precursor time nor the amplitude of the precursory magnetic anomaly can be linked reliably with the magnitude of the anticipated earthquake. Knowing the way electric resistivity varies ahead of an earthquake, we can assert that the earthquake-precursory growth in geomagnetic impedance is matched by an earthquake-precursory decrease of electric resistivity. (authors)

  20. A pilot study of the Earthquake Precursors in the Southwest Peloponnes, Greece

    Science.gov (United States)

    Velez, A. P.; Tsinganos, K.; Karastathis, V. K.; Kafatos, M.; Ouzounov, D.; Papadopoulos, G. A.; Tselentis, A.; Eleftheriou, G.; Mouzakiotis, E.; Gika, F.; Aspiotis, T.; Liakopoulos, S.; Voulgaris, N.

    2016-12-01

    A seismic array of the most contemporary technology has been recently installed in the area of Southwest Peloponnese, Greece, an area well known for its high seismic activity. The tectonic regime of the Hellenic arc was the reason for many lethal earthquakes with considerable damage to the broader area of East Mediterranean sea. The seismic array is based on nine 32-bit stations with broadband borehole seismometers. The seismogenic region, monitored by the array, is offshore. At this place the earthquake location suffers by poor azimuthal coverage and the stations of the national seismic network are very distant to this area. Therefore, the existing network cannot effectively monitor the microseismicity. The new array achieved a detailed monitoring of the small events dropping considerably the magnitude of completeness. The detectability of the microearthquakes has been drastically improved permitting so the statistical assessment of earthquake sequences in the area. In parallel the monitored seismicity is directly related with Radon measurement in the soil, taken at three stations in the area.. Radon measurements are performed indirectly by means γ-ray spectrometry of its radioactive progenies 214Pb and 214Bi (emitted at 351 keV and 609 keV, respectively). NaI(Tl) detectors have been installed at 1 m depth, at sites in vicinity of faults providing continuous real time data. Local meteorological records for atmospheric corrections are also continuously recorded. According to the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model atmospheric thermal anomalies observed before strong events can be attributed to increased radon concentration. This is also supported by the statistical analysis of AVHRR/NOAA-18 satellite thermal infrared (TIR) daily records. A combined study of precursor's signals is expected to provide a reliable assessment of their ability on short-term forecasting.

  1. Monitoring of soil radon by SSNTD in Eastern India in search of possible earthquake precursor.

    Science.gov (United States)

    Deb, Argha; Gazi, Mahasin; Ghosh, Jayita; Chowdhury, Saheli; Barman, Chiranjib

    2018-04-01

    The present paper deals with monitoring soil radon-222 concentration at two different locations, designated Site A and Site B, 200 m apart at Jadavpur University campus, Kolkata, India, with a view to find possible precursors for the earthquakes that occurred within a few hundred kilometers from the monitoring site. The solid state nuclear track detector CR-39 has been used for detection of radon gas coming out from soil. Radon-222 time series at both locations during the period August 2012-December 2013 have been analysed. Distinct anomalies in the soil radon time series have been observed for seven earthquakes of magnitude greater than 4.0 M that occurred during this time. Of these, radon anomalies for two earthquakes have been observed at both locations A and B. Absence of anomalies for some other earthquakes has been discussed, and the observations have been compared with some earthquake precursor models. Copyright © 2018. Published by Elsevier Ltd.

  2. A methodology for analyzing precursors to earthquake-initiated and fire-initiated accident sequences

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Lambert, H.E.; Apostolakis, G.

    1998-04-01

    This report covers work to develop a methodology for analyzing precursors to both earthquake-initiated and fire-initiated accidents at commercial nuclear power plants. Currently, the U.S. Nuclear Regulatory Commission sponsors a large ongoing project, the Accident Sequence Precursor project, to analyze the safety significance of other types of accident precursors, such as those arising from internally-initiated transients and pipe breaks, but earthquakes and fires are not within the current scope. The results of this project are that: (1) an overall step-by-step methodology has been developed for precursors to both fire-initiated and seismic-initiated potential accidents; (2) some stylized case-study examples are provided to demonstrate how the fully-developed methodology works in practice, and (3) a generic seismic-fragility date base for equipment is provided for use in seismic-precursors analyses. 44 refs., 23 figs., 16 tabs

  3. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    Science.gov (United States)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring

  4. Multiparameter monitoring of short-term earthquake precursors and its physical basis. Implementation in the Kamchatka region

    Directory of Open Access Journals (Sweden)

    Pulinets Sergey

    2016-01-01

    Full Text Available We apply experimental approach of the multiparameter monitoring of short-term earthquake precursors which reliability was confirmed by the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC model created recently [1]. A key element of the model is the process of Ion induced Nucleation (IIN and formation of cluster ions occurring as a result of the ionization of near surface air layer by radon emanating from the Earth's crust within the earthquake preparation zone. This process is similar to the formation of droplet’s embryos for cloud formation under action of galactic cosmic rays. The consequence of this process is the generation of a number of precursors that can be divided into two groups: a thermal and meteorological, and b electromagnetic and ionospheric. We demonstrate elements of prospective monitoring of some strong earthquakes in Kamchatka region and statistical results for the Chemical potential correction parameter for more than 10 years of observations for earthquakes with M≥6. As some experimental attempt, the data of Kamchatka volcanoes monitoring will be demonstrated.

  5. High frequency microseismic noise as possible earthquake precursor

    OpenAIRE

    Ivica Sović; Kristina Šariri; Mladen Živčić

    2013-01-01

    Before an earthquake occurs, microseismic noise in high frequency (HF) range, i.e. 2-25 Hz, is being generated during preparation process. These signals change the microseismic noise and, consequently, the spectrum of microseismic noise. Time variation of spectra recorded at the same seismological station could imply the change of the state of noise source. We propose the image moment analysis approach to objectively compare microseismic noise spectra. The result could be used for earthquake ...

  6. Electrical streaming potential precursors to catastrophic earthquakes in China

    Directory of Open Access Journals (Sweden)

    F. Qian

    1997-06-01

    Full Text Available The majority of anomalies in self-potential at 7 stations within 160 km from the epicentre showed a similar pattern of rapid onset and slow decay during and before the M 7.8 Tangshan earthquake of 1976. Considering that some of these anomalies associated with episodical spouting from boreholes or the increase in pore pressure in wells, observed anomalies are streaming potential generated by local events of sudden movements and diffusion process of high-pressure fluid in parallel faults. These transient events triggered by tidal forces exhibited a periodic nature and the statistical phenomenon to migrate towards the epicentre about one month before the earthquake. As a result of events, the pore pressure reached its final equilibrium state and was higher than that in the initial state in a large enough section of the fault region. Consequently, local effective shear strength of the material in the fault zone decreased and finally the catastrophic earthquake was induced. Similar phenomena also occurred one month before the M 7.3 Haichen earthquake of 1975. Therefore, a short term earthquake prediction can be made by electrical measurements, which are the kind of geophysical measurements most closely related to pore fluid behaviors of the deep crust.

  7. Statistical Evaluations of Variations in Dairy Cows’ Milk Yields as a Precursor of Earthquakes

    Science.gov (United States)

    Yamauchi, Hiroyuki; Hayakawa, Masashi; Asano, Tomokazu; Ohtani, Nobuyo; Ohta, Mitsuaki

    2017-01-01

    Simple Summary There are many reports of abnormal changes occurring in various natural systems prior to earthquakes. Unusual animal behavior is one of these abnormalities; however, there are few objective indicators and to date, reliability has remained uncertain. We found that milk yields of dairy cows decreased prior to an earthquake in our previous case study. In this study, we examined the reliability of decreases in milk yields as a precursor for earthquakes using long-term observation data. In the results, milk yields decreased approximately three weeks before earthquakes. We have come to the conclusion that dairy cow milk yields have applicability as an objectively observable unusual animal behavior prior to earthquakes, and dairy cows respond to some physical or chemical precursors of earthquakes. Abstract Previous studies have provided quantitative data regarding unusual animal behavior prior to earthquakes; however, few studies include long-term, observational data. Our previous study revealed that the milk yields of dairy cows decreased prior to an extremely large earthquake. To clarify whether the milk yields decrease prior to earthquakes, we examined the relationship between earthquakes of various magnitudes and daily milk yields. The observation period was one year. In the results, cross-correlation analyses revealed a significant negative correlation between earthquake occurrence and milk yields approximately three weeks beforehand. Approximately a week and a half beforehand, a positive correlation was revealed, and the correlation gradually receded to zero as the day of the earthquake approached. Future studies that use data from a longer observation period are needed because this study only considered ten earthquakes and therefore does not have strong statistical power. Additionally, we compared the milk yields with the subionospheric very low frequency/low frequency (VLF/LF) propagation data indicating ionospheric perturbations. The results showed

  8. Anomalous radon emission as precursor of medium to strong earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Zoran, Maria [National Institute of R& D for Optoelectronics, MG5 Bucharest -Magurele, 077125 Romania (Romania)

    2016-03-25

    Anomalous radon (Rn{sup 222}) emissions enhanced by forthcoming earthquakes is considered to be a precursory phenomenon related to an increased geotectonic activity in seismic areas. Rock microfracturing in the Earth’s crust preceding a seismic rupture may cause local surface deformation fields, rock dislocations, charged particle generation and motion, electrical conductivity changes, radon and other gases emission, fluid diffusion, electrokinetic, piezomagnetic and piezoelectric effects as well as climate fluctuations. Space-time anomalies of radon gas emitted in underground water, soil and near the ground air weeks to days in the epicentral areas can be associated with the strain stress changes that occurred before the occurrence of medium and strong earthquakes. This paper aims to investigate temporal variations of radon concentration levels in air near or in the ground by the use of solid state nuclear track detectors (SSNTD) CR-39 and LR-115 in relation with some important seismic events recorded in Vrancea region, Romania.

  9. Electrical streaming potential precursors to catastrophic earthquakes in China

    OpenAIRE

    Zhao, Y.; Zhao, B.; Qian, F.

    1997-01-01

    The majority of anomalies in self-potential at 7 stations within 160 km from the epicentre showed a similar pattern of rapid onset and slow decay during and before the M 7.8 Tangshan earthquake of 1976. Considering that some of these anomalies associated with episodical spouting from boreholes or the increase in pore pressure in wells, observed anomalies are streaming potential generated by local events of sudden movements and diffusion process of high-pressure fluid in parallel faults. These...

  10. The investigation of electromagnetic precursors to earthquakes in Armenia

    Directory of Open Access Journals (Sweden)

    M. Babayan

    1997-06-01

    Full Text Available The present work provides a sufficient theoretical substantiation of the anomalous distribution for Very-Low-Frequency (VLF radio waves which is observed for all radio routes controlled by the National Survey for Seismic Protection (NSSP of the Republic of Armenia. This event is connected with the ionosphere excitement over the strong seismic event preparation zone under the influence of intensively oscillated VLF electromagnetic waves falling on the ionosphere from the source called an area of uniformly oriented Zones of Separated Charges (ZSC in the strong seismic preparation zone. ZSC, formed at the interfaces of solid, liquid, and gaseous phases of rocks, acquire identical orientation under the action of increasing elastic strain forces. These strain forces may cause the effect of mutual polarisation of ZSC in the field of their high concentration. As a result, in the strong earthquake preparation zone, the most sensitive to the deformation ZSC, non-linear electromagnetic effects may be observed. One of these effects is the irreversibility of non-stationary electromagnetic processes (INP. It is shown that the INP method developed by Balassanian and Kabilsky (Balassanian, 1990 may prove to be very sensitive to the deformations of geological medium in the earthquake preparation zone.

  11. IR spectral analysis for the diagnostics of crust earthquake precursors

    Science.gov (United States)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  12. MODEL OF TECTONIC EARTHQUAKE PREPARATION AND OCCURRENCE AND ITS PRECURSORS IN CONDITIONS OF CRUSTAL STRETCHING

    Directory of Open Access Journals (Sweden)

    R. M. Semenov

    2018-01-01

    Full Text Available In connection with changes in the stress-strain state of the Earth's crust, various physical and mechanical processes, including destruction, take place in the rocks and are accompanied by tectonic earthquakes. Different models have been proposed to describe earthquake preparation and occurrence, depending on the mechanisms and the rates of geodynamic processes. One of the models considers crustal stretching that is characteristic of formation of rift structures. The model uses the data on rock samples that are stretched until destruction in a special laboratory installation. Based on the laboratory modeling, it is established that the samples are destroyed in stages that are interpreted as stages of preparation and occurrence of an earthquake source. The preparation stage of underground tremors is generally manifested by a variety of temporal (long-, medium- and short-term precursors. The main shortcoming of micro-modeling is that, considering small sizes of the investigated samples, it is impossible to reveal a link between the plastic extension of rocks (taking place in the earthquake hypocenter and the rock rupture. Plasticity is the ability of certain rocks to change shape and size irreversibly, while the rock continuity is maintained, in response to applied external forces. In order to take into account the effect of plastic deformation of rocks on earthquake preparation and occurrence, we propose not to refer to the diagrams showing stretching of the rock samples, but use a typical diagram of metal stretching, which can be obtained when testing a metal rod for breakage (Fig. 1. The diagram of metal stretching as a function of the relative elongation (to some degree of approximation and taking into account the coefficient of plasticity can be considered as a model of preparation and occurrence of an earthquake source in case of rifting. The energy released in the period immediately preceding the earthquake contributes to the emergence of

  13. Ionospheric precursors to large earthquakes: A case study of the 2011 Japanese Tohoku Earthquake

    Science.gov (United States)

    Carter, B. A.; Kellerman, A. C.; Kane, T. A.; Dyson, P. L.; Norman, R.; Zhang, K.

    2013-09-01

    Researchers have reported ionospheric electron distribution abnormalities, such as electron density enhancements and/or depletions, that they claimed were related to forthcoming earthquakes. In this study, the Tohoku earthquake is examined using ionosonde data to establish whether any otherwise unexplained ionospheric anomalies were detected in the days and hours prior to the event. As the choices for the ionospheric baseline are generally different between previous works, three separate baselines for the peak plasma frequency of the F2 layer, foF2, are employed here; the running 30-day median (commonly used in other works), the International Reference Ionosphere (IRI) model and the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIE-GCM). It is demonstrated that the classification of an ionospheric perturbation is heavily reliant on the baseline used, with the 30-day median, the IRI and the TIE-GCM generally underestimating, approximately describing and overestimating the measured foF2, respectively, in the 1-month period leading up to the earthquake. A detailed analysis of the ionospheric variability in the 3 days before the earthquake is then undertaken, where a simultaneous increase in foF2 and the Es layer peak plasma frequency, foEs, relative to the 30-day median was observed within 1 h before the earthquake. A statistical search for similar simultaneous foF2 and foEs increases in 6 years of data revealed that this feature has been observed on many other occasions without related seismic activity. Therefore, it is concluded that one cannot confidently use this type of ionospheric perturbation to predict an impending earthquake. It is suggested that in order to achieve significant progress in our understanding of seismo-ionospheric coupling, better account must be taken of other known sources of ionospheric variability in addition to solar and geomagnetic activity, such as the thermospheric coupling.

  14. [Comment on Earthquake precursors: Banished forever?] Comment: Unpredictability of earthquakes-Truth or fiction?

    Science.gov (United States)

    Lomnitz, Cinna

    I was delighted to read Alexander Gusev's opinions on what he calls the “unpredictability paradigm” of earthquakes (Eos, February 10, 1998, p. 71). I always enjoy hearing from a good friend in the pages of Eos. I immediately looked up “paradigm” in my Oxford Dictionary and found this: paradigm n 1) set of all the different forms of a word: verb paradigms. 2) Type of something; pattern; model: a paradigm for others to copy.I wonder whether Sasha Gusev actually believes that branding earthquake prediction a “proven nonscience” [Geller, 1997] is a paradigm for others to copy. As for me, I choose to refrain from climbing on board this particular bandwagon for the following reasons.

  15. Thermal IR satellite data application for earthquake research in Pakistan

    Science.gov (United States)

    Barkat, Adnan; Ali, Aamir; Rehman, Khaista; Awais, Muhammad; Riaz, Muhammad Shahid; Iqbal, Talat

    2018-05-01

    The scientific progress in space research indicates earthquake-related processes of surface temperature growth, gas/aerosol exhalation and electromagnetic disturbances in the ionosphere prior to seismic activity. Among them surface temperature growth calculated using the satellite thermal infrared images carries valuable earthquake precursory information for near/distant earthquakes. Previous studies have concluded that such information can appear few days before the occurrence of an earthquake. The objective of this study is to use MODIS thermal imagery data for precursory analysis of Kashmir (Oct 8, 2005; Mw 7.6; 26 km), Ziarat (Oct 28, 2008; Mw 6.4; 13 km) and Dalbandin (Jan 18, 2011; Mw 7.2; 69 km) earthquakes. Our results suggest that there exists an evident correlation of Land Surface Temperature (thermal; LST) anomalies with seismic activity. In particular, a rise of 3-10 °C in LST is observed 6, 4 and 14 days prior to Kashmir, Ziarat and Dalbandin earthquakes. In order to further elaborate our findings, we have presented a comparative and percentile analysis of daily and five years averaged LST for a selected time window with respect to the month of earthquake occurrence. Our comparative analyses of daily and five years averaged LST show a significant change of 6.5-7.9 °C for Kashmir, 8.0-8.1 °C for Ziarat and 2.7-5.4 °C for Dalbandin earthquakes. This significant change has high percentile values for the selected events i.e. 70-100% for Kashmir, 87-100% for Ziarat and 84-100% for Dalbandin earthquakes. We expect that such consistent results may help in devising an optimal earthquake forecasting strategy and to mitigate the effect of associated seismic hazards.

  16. Reply [to Comment on Earthquake precursors: Banished forever?] Comment: Unpredictability of earthquakes-Truth or fiction?

    Science.gov (United States)

    Gusev, Alexander

    I agree with many of C. Lomnitz's points. I only wish to add that by the word “paradigm” I mean the entity as T. Kuhn defines it in The Nature of Scientific Revolutions, that is, a belief system considered as the truth by a scientific community for a certain amount of time. Kuhn's idea of scientific progress is by radical paradigm shifts. Earthquake prediction (EP) is a good example. It was a nonscience in 1960, and C. Richter warned every student in his Elementary Seismology that it is “a marsh light,” appealing to one from the darkness but leading those who respond to the swamp.

  17. My Road to Transform Faulting 1963; Long-Term Precursors to Recent Great Earthquakes

    Science.gov (United States)

    Sykes, L. R.

    2017-12-01

    My road to plate tectonics started serendipitously in 1963 in a remote area of the southeast Pacific when I was studying the propagation of short-period seismic surface waves for my PhD. The earthquakes I used as sources were poorly located. I discovered that my relocated epicenters followed the crest of the East Pacific Rise but then suddenly took a sharp turn to the east at what I interpreted to be a major fracture zone 1000 km long before turning again to the north near 55 degrees south. I noted that earthquakes along that zone only occurred between the two ridge crests, an observation Tuzo Wilson used to develop his hypothesis of transform faulting. Finding a great, unknown fracture zone led me to conclude that work on similar faults that intersect the Mid-Oceanic Ridge System was more important than my study of surface waves. I found similar great faults over the next two years and obtained refined locations of earthquakes along several island arcs. When I was in Fiji and Tonga during 1965 studying deep earthquakes, James Dorman wrote to me about Wilson's paper and I thought about testing his hypothesis. I started work on it the spring of 1966 immediately after I learned about the symmetrical "magic magnetic anomaly profile" across the East Pacific Rise of Pitman and Heirtzler. I quickly obtained earthquake mechanisms that verified the transform hypothesis and its related concepts of seafloor spreading and continental drift. As an undergraduate in the late 1950s, my mentor told me that respectable young earth scientists should not work on vague and false mobilistic concepts like continental drift since continents cannot plow through strong oceanic crust. Hence, until spring 1966, I did not take continental drift seriously. The second part of my presentation involves new evidence from seismology and GPS of what appear to be long-term precursors to a number of great earthquakes of the past decade.

  18. Experimental evidence on formation of imminent and short-term hydrochemical precursors for earthquakes

    International Nuclear Information System (INIS)

    Du Jianguo; Amita, Kazuhiro; Ohsawa, Shinji; Zhang Youlian; Kang Chunli; Yamada, Makoto

    2010-01-01

    The formation of imminent hydrochemical precursors of earthquakes is investigated by the simulation for water-rock reaction in a brittle aquifer. Sixty-one soaking experiments were carried out with granodiorite and trachyandesite grains of different sizes and three chemically-distinct waters for 6 to 168 h. The experimental data demonstrate that water-rock reaction can result in both measurable increases and decreases of ion concentrations in short times and that the extents of hydrochemical variations are controlled by the grain size, dissolution and secondary mineral precipitation, as well as the chemistry of the rock and groundwater. The results indicate that water-rock reactions in brittle aquifers and aquitards may be an important genetic mechanism of hydrochemical seismic precursors when the aquifers and aquitards are fractured in response to tectonic stress.

  19. Time series of GNSS-derived ionospheric maps to detect anomalies as possible precursors of high magnitude earthquakes

    Science.gov (United States)

    Barbarella, M.; De Giglio, M.; Galeandro, A.; Mancini, F.

    2012-04-01

    The modification of some atmospheric physical properties prior to a high magnitude earthquake has been recently debated within the Lithosphere-Atmosphere-Ionosphere (LAI) Coupling model. Among this variety of phenomena the ionization of air at the higher level of the atmosphere, called ionosphere, is investigated in this work. Such a ionization occurrences could be caused by possible leaking of gases from earth crust and their presence was detected around the time of high magnitude earthquakes by several authors. However, the spatial scale and temporal domain over which such a disturbances come into evidence is still a controversial item. Even thought the ionospheric activity could be investigated by different methodologies (satellite or terrestrial measurements), we selected the production of ionospheric maps by the analysis of GNSS (Global Navigation Satellite Data) data as possible way to detect anomalies prior of a seismic event over a wide area around the epicentre. It is well known that, in the GNSS sciences, the ionospheric activity could be probed by the analysis of refraction phenomena occurred on the dual frequency signals along the satellite to receiver path. The analysis of refraction phenomena affecting data acquired by the GNSS permanent trackers is able to produce daily to hourly maps representing the spatial distribution of the ionospheric Total Electron Content (TEC) as an index of the ionization degree in the upper atmosphere. The presence of large ionospheric anomalies could be therefore interpreted in the LAI Coupling model like a precursor signal of a strong earthquake, especially when the appearance of other different precursors (thermal anomalies and/or gas fluxes) could be detected. In this work, a six-month long series of ionospheric maps produced from GNSS data collected by a network of 49 GPS permanent stations distributed within an area around the city of L'Aquila (Abruzzi, Italy), where an earthquake (M = 6.3) occurred on April 6, 2009

  20. Plate dynamical mechanisms as constraints on the likelihood of earthquake precursors in the ionosphere

    Science.gov (United States)

    Osmaston, Miles

    2013-04-01

    In my oral(?) contribution to this session [1] I use my studies of the fundamental physics of gravitation to derive a reason for expecting the vertical gradient of electron density (= radial electric field) in the ionosphere to be closely affected by another field, directly associated with the ordinary gravitational potential (g) present at the Earth's surface. I have called that other field the Gravity-Electric (G-E) field. A calibration of this linkage relationship could be provided by noting corresponding co-seismic changes in (g) and in the ionosphere when, for example, a major normal-fault slippage occurs. But we are here concerned with precursory changes. This means we are looking for mechanisms which, on suitably short timescales, would generate pre-quake elastic deformation that changes the local (g). This poster supplements my talk by noting, for more relaxed discussion, what I see as potentially relevant plate dynamical mechanisms. Timescale constraints. If monitoring for ionospheric precursors is on only short timescales, their detectability is limited to correspondingly tectonically active regions. But as our monitoring becomes more precise and over longer terms, this constraint will relax. Most areas of the Earth are undergoing very slow heating or cooling and corresponding volume or epeirogenic change; major earthquakes can result but we won't have detected any accumulating ionospheric precursor. Transcurrent faulting. In principle, slip on a straight fault, even in a stick-slip manner, should produce little vertical deformation, but a kink, such as has caused the Transverse Ranges on the San Andreas Fault, would seem worth monitoring for precursory build-up in the ionosphere. Plate closure - subducting plate downbend. The traditionally presumed elastic flexure downbend mechanism is incorrect. 'Seismic coupling' has long been recognized by seismologists, invoking the repeated occurrence of 'asperities' to temporarily lock subduction and allow stress

  1. Thermal evolution of nitrate precursors for processing of lanthanide perovskites

    Directory of Open Access Journals (Sweden)

    Kozhukharov, V. S.

    1998-12-01

    Full Text Available Studies on thermal decomposition of ceramic powder with a general formula of (La1-x Ba x (Co0.8 Fe0.2O3 have been achieved. Precursors as nitrate solutions with additive of EDTA as complexion agent are used for powder processing. The black powders obtained are dried and their thermal evolution up to 1000ºC has been investigated by Differential Thermal Analysis. The powders was analyzed by EDX and ICP- AES, as well. It was established that the powder compositions are very close to the nominal one. The resulting DTA, TA, TG and DTG curves are analyzed as function of the composition and heating rate applied. At polythermal scanning regime three regions the powder thermal evolution are discussed. The correlation dependence has been examined for both Sr- and Ba- doped multicomponent lanthanide samples. The multicomponent nature of the samples have been shown on the base of the thermal treatment applied and XRD phase control carried out.

    Se han realizado estudios sobre la descomposición térmica de polvos cerámicos de fórmula general (La1-x Ba x (Co0.8 Fe0.2O3. Se utilizaron como precursores soluciones de nitratos con EDTA como agente acomplejante. La evolución térmica del polvo negro obtenido se estudió hasta la temperatura de 1000 ºC por medio de análisis térmico diferencial. Los polvos se analizaron así mismo por EDX e ICP-A ES. Se estableció que la composición de los polvos esta muy próxima a la composición nominal. Se distingue tres regímenes en la evolución térmica. Se examina la dependencia con el contenido en lantanidas multicomponentes de pulsos con Sr y Ba. La naturaleza multicomponente se ha mostrado sobre la base del tratamiento térmico empleado y el análisis de las fases cristalinas.

  2. Thermal anomalies detection before strong earthquakes (M > 6.0 using interquartile, wavelet and Kalman filter methods

    Directory of Open Access Journals (Sweden)

    M. Akhoondzadeh

    2011-04-01

    Full Text Available Thermal anomaly is known as a significant precursor of strong earthquakes, therefore Land Surface Temperature (LST time series have been analyzed in this study to locate relevant anomalous variations prior to the Bam (26 December 2003, Zarand (22 February 2005 and Borujerd (31 March 2006 earthquakes. The duration of the three datasets which are comprised of MODIS LST images is 44, 28 and 46 days for the Bam, Zarand and Borujerd earthquakes, respectively. In order to exclude variations of LST from temperature seasonal effects, Air Temperature (AT data derived from the meteorological stations close to the earthquakes epicenters have been taken into account. The detection of thermal anomalies has been assessed using interquartile, wavelet transform and Kalman filter methods, each presenting its own independent property in anomaly detection. The interquartile method has been used to construct the higher and lower bounds in LST data to detect disturbed states outside the bounds which might be associated with impending earthquakes. The wavelet transform method has been used to locate local maxima within each time series of LST data for identifying earthquake anomalies by a predefined threshold. Also, the prediction property of the Kalman filter has been used in the detection process of prominent LST anomalies. The results concerning the methodology indicate that the interquartile method is capable of detecting the highest intensity anomaly values, the wavelet transform is sensitive to sudden changes, and the Kalman filter method significantly detects the highest unpredictable variations of LST. The three methods detected anomalous occurrences during 1 to 20 days prior to the earthquakes showing close agreement in results found between the different applied methods on LST data in the detection of pre-seismic anomalies. The proposed method for anomaly detection was also applied on regions irrelevant to earthquakes for which no anomaly was detected

  3. Earthquake precursors in the ionosphere: electrical linkage provided by the fundamental physics of gravitation

    Science.gov (United States)

    Osmaston, Miles

    2013-04-01

    For more than a decade, evidence has been mounting that major earthquakes may be preceded, days to weeks later, by the appearance of local changes in electron density-gradient in the Earth's ionosphere above that area. Such linkage, albeit co-seismic, has been observed even when the earthquake was deep below electrically conducting seawater [1]. This appears to rule out many of the kinds of linkage that have been proposed. My inquiry as to the nature of the physical mechanism by which gravitational force is developed has led me to the surprising finding that the Newtonian potential is inevitably always accompanied by a corresponding positive-body-repelling radial electric field. I have called this the Gravity-Electric (G-E) field and have adduced evidence for its action at many astronomical scales [2 -4]. After outlining the reasoning that has led me to this result I will refer to observations which suggest that the G-E field is indeed the precursor link that we seek. Time permitting, I will show briefly how the likelihood of an ionospheric precursor will, in this case, depend on the plate dynamical mechanism and nature of the pre-quake deformation. Historical background. Newton's work on gravitation astride the end of the 17th century concentrated on the behaviour of the force, not upon its origin.. But he already endorsed the idea of an ubiquitously intervening aether tp convey the force and, as Huygens had already reasoned, also to transmit light waves. Then, in the 1860s, people [5, 6] started to think of fundamental particles as being aether in a vortex-like motion which would, by mutual attraction, provide their mass property and gravitation. In such a set-up, particles and the aether around them would not be dynamically independent, so the Michelson-Morley experiment, 20 years later [7], could equally have been interpreted as supporting that situation, not as disproving the existence of the aether. But, in setting up Relativity (1905-1916), Einstein took the

  4. Probabilistic neural network algorithm for using radon emanations as an earthquake precursor

    International Nuclear Information System (INIS)

    Gupta, Dhawal; Shahani, D.T.

    2014-01-01

    The investigation throughout the world in past two decades provides evidence which indicate that significance variation of radon and other soil gases occur in association with major geophysical events such as earthquake. The traditional statistical algorithm includes regression to remove the effect of the meteorological parameters from the raw radon and anomalies are calculated either taking the periodicity in seasonal variations or periodicity computed using Fast Fourier Transform. In case of neural networks the regression step is avoided. A neural network model can be found which can learn the behavior of radon with respect to meteorological parameter in order that changing emission patterns may be adapted to by the model on its own. The output of this neural model is the estimated radon values. This estimated radon value is used to decide whether anomalous behavior of radon has occurred and a valid precursor may be identified. The neural network model developed using Radial Basis function network gave a prediction rate of 87.7%. The same was accompanied by huge false alarms. The present paper deals with improved neural network algorithm using Probabilistic Neural Networks that requires neither an explicit step of regression nor use of any specific period. This neural network model reduces the false alarms to zero and gave same prediction rate as RBF networks. (author)

  5. On the reported ionospheric precursor of the 1999 Hector Mine, California earthquake

    Science.gov (United States)

    Thomas, Jeremy N.; Love, Jeffrey J.; Komjathy, Attila; Verkhoglyadova, Olga P.; Butala, Mark; Rivera, Nicholas

    2012-01-01

    Using Global Positioning System (GPS) data from sites near the 16 Oct. 1999 Hector Mine, California earthquake, Pulinets et al. (2007) identified anomalous changes in the ionospheric total electron content (TEC) starting one week prior to the earthquake. Pulinets (2007) suggested that precursory phenomena of this type could be useful for predicting earthquakes. On the other hand, and in a separate analysis, Afraimovich et al. (2004) concluded that TEC variations near the epicenter were controlled by solar and geomagnetic activity that were unrelated to the earthquake. In an investigation of these very different results, we examine TEC time series of long duration from GPS stations near and far from the epicenter of the Hector Mine earthquake, and long before and long after the earthquake. While we can reproduce the essential time series results of Pulinets et al., we find that the signal they identify as anomalous is not actually anomalous. Instead, it is just part of normal global-scale TEC variation. We conclude that the TEC anomaly reported by Pulinets et al. is unrelated to the Hector Mine earthquake.

  6. Thermal analysis methods in the characterization of photocatalytic titania precursors

    Czech Academy of Sciences Publication Activity Database

    Pulišová, Petra; Večerníková, Eva; Maříková, Monika; Balek, V.; Boháček, Jaroslav; Šubrt, Jan

    2012-01-01

    Roč. 108, č. 2 (2012), s. 489-492 ISSN 1388-6150 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40320502 Keywords : differential thermal analysis * thermogravimetry * emanation thermal analysis * titanium dioxide * photocatalyst Subject RIV: CA - Inorganic Chemistry Impact factor: 1.982, year: 2012

  7. Fossil rocks of slow earthquake detected by thermal diffusion length

    Science.gov (United States)

    Hashimoto, Yoshitaka; Morita, Kiyohiko; Okubo, Makoto; Hamada, Yohei; Lin, Weiren; Hirose, Takehiro; Kitamura, Manami

    2016-04-01

    Fault motion has been estimated by diffusion pattern of frictional heating recorded in geology (e.g., Fulton et al., 2012). The same record in deeper subduction plate interface can be observed from micro-faults in an exhumed accretionary complex. In this study, we focused on a micro-fault within the Cretaceous Shimanto Belt, SW Japan to estimate fault motion from the frictional heating diffusion pattern. A carbonaceous material concentrated layer (CMCL) with ~2m of thickness is observed in study area. Some micro-faults cut the CMCL. Thickness of a fault is about 3.7mm. Injection veins and dilatant fractures were observed in thin sections, suggesting that the high fluid pressure was existed. Samples with 10cm long were collected to measure distribution of vitrinite reflectance (Ro) as a function of distance from the center of micro-fault. Ro of host rock was ~1.0%. Diffusion pattern was detected decreasing in Ro from ~1.2%-~1.1%. Characteristic diffusion distance is ~4-~9cm. We conducted grid search to find the optimal frictional heat generation per unit area per second (Q (J/m^2/s), the product of friction coefficient, normal stress and slip velocity) and slip duration (t(s)) to fit the diffusion pattern. Thermal diffusivity (0.98*10^8m^2/s) and thermal conductivity (2.0 w/mK) were measured. In the result, 2000-2500J/m^2/s of Q and 63000-126000s of t were estimated. Moment magnitudes (M0) of slow earthquakes (slow EQs) follow a scaling law with slip duration and its dimension is different from that for normal earthquakes (normal EQ) (Ide et al., 2007). The slip duration estimated in this study (~10^4-~10^5s) consistent with 4-5 of M0, never fit to the scaling law for normal EQ. Heat generation can be inverted from 4-5 of M0, corresponding with ~10^8-~10^11J, which is consistent with rupture area of 10^5-10^8m2 in this study. The comparisons in heat generation and slip duration between geological measurements and geophysical remote observations give us the

  8. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  9. Uranium concentrations and 234U/238U activity ratios in fault-associated groundwater as possible earthquake precursors

    International Nuclear Information System (INIS)

    Finkel, R.C.

    1981-01-01

    In order to assess the utility of uranium isotopes as fluid phase earthquake precursors, uranium concentrations and 234 U/ 238 U activity ratios have been monitored on a monthly or bimonthly basis in water from 24 wells and springs associated with Southern California fault zones. Uranium concentrations vary from 0.002 ppb at Indian Canyon Springs on the San Jacinto fault to 8.3 ppb at Lake Hughes well on the San Andreas fault in the Palmdale area. 234 U/ 238 U activity ratios vary from 0.88 at Agua Caliente Springs on the Elsinore fault to 5.4 at Niland Slab well on the San Andreas fault in the Imperial Valley. There was one large earthquake in the study area during 1979, the 15 October 1979 M = 6.6 Imperial Valley earthquake. Correlated with this event, uranium concentrations varied by a factor of more than 60 and activity ratios by a factor of 3 at the Niland Slab site, about 70 km from the epicenter. At the other sites monitored, uranium concentrations varied in time, but with no apparent pattern, while uranium activity ratios remained essentially constant throughout the monitoring period

  10. Unusual Childhood Waking as a Possible Precursor of the 1995 Kobe Earthquake

    Directory of Open Access Journals (Sweden)

    Neil E. Whitehead

    2013-03-01

    Full Text Available Nearly 1,100 young students living in Japan at a range of distances up to 500 km from the 1995 Kobe M7 earthquake were interviewed. A statistically significant abnormal rate of early wakening before the earthquake was found, having exponential decrease with distance and a half value approaching 100 km, but decreasing much slower than from a point source such as an epicentre; instead originating from an extended area of more than 100 km in diameter. Because an improbably high amount of variance is explained, this effect is unlikely to be simply psychological and must reflect another mechanism—perhaps Ultra-Low Frequency (ULF electromagnetic waves creating anxiety—but probably not 222Rn excess. Other work reviewed suggests these conclusions may be valid for animals in general, not just children, but would be very difficult to apply for practical earthquake prediction.

  11. Field Observations of Precursors to Large Earthquakes: Interpreting and Verifying Their Causes

    Science.gov (United States)

    Suyehiro, K.; Sacks, S. I.; Rydelek, P. A.; Smith, D. E.; Takanami, T.

    2017-12-01

    Many reports of precursory anomalies before large earthquakes exist. However, it has proven elusive to even identify these signals before their actual occurrences. They often only become evident in retrospect. A probabilistic cellular automaton model (Sacks and Rydelek, 1995) explains many of the statistical and dynamic natures of earthquakes including the observed b-value decrease towards a large earthquake or a small stress perturbation to have effect on earthquake occurrence pattern. It also reproduces dynamic characters of each earthquake rupture. This model is useful in gaining insights on causal relationship behind complexities. For example, some reported cases of background seismicity quiescence before a main shock only seen for events larger than M=3 4 at years time scale can be reproduced by this model, if only a small fraction ( 2%) of the component cells are strengthened by a small amount. Such an enhancement may physically occur if a tiny and scattered portion of the seismogenic crust undergoes dilatancy hardening. Such a process to occur will be dependent on the fluid migration and microcracks developments under tectonic loading. Eventual large earthquake faulting will be promoted by the intrusion of excess water from surrounding rocks into the zone capable of cascading slips to a large area. We propose this process manifests itself on the surface as hydrologic, geochemical, or macroscopic anomalies, for which so many reports exist. We infer from seismicity that the eastern Nankai Trough (Tokai) area of central Japan is already in the stage of M-dependent seismic quiescence. Therefore, we advocate that new observations sensitive to detecting water migration in Tokai should be implemented. In particular, vertical component strain, gravity, and/or electrical conductivity, should be observed for verification.

  12. Development of a technique for long-term detection of precursors of strong earthquakes using high-resolution satellite images

    Science.gov (United States)

    Soto-Pinto, C. A.; Arellano-Baeza, A. A.; Ouzounov, D. P.

    2012-12-01

    Among a variety of processes involved in seismic activity, the principal process is the accumulation and relaxation of stress in the crust, which takes place at the depth of tens of kilometers. While the Earth's surface bears at most the indirect sings of the accumulation and relaxation of the crust stress, it has long been understood that there is a strong correspondence between the structure of the underlying crust and the landscape. We assume the structure of the lineaments reflects an internal structure of the Earth's crust, and the variation of the lineament number and arrangement reflects the changes in the stress patterns related to the seismic activity. Contrary to the existing assumptions that lineament structure changes only at the geological timescale, we have found that the much faster seismic activity strongly affects the system of lineaments extracted from the high-resolution multispectral satellite images. Previous studies have shown that accumulation of the stress in the crust previous to a strong earthquake is directly related to the number increment and preferential orientation of lineament configuration present in the satellite images of epicenter zones. This effect increases with the earthquake magnitude and can be observed approximately since one month before. To study in details this effect we have developed a software based on a series of algorithms for automatic detection of lineaments. It was found that the Hough transform implemented after the application of discontinuity detection mechanisms like Canny edge detector or directional filters is the most robust technique for detection and characterization of changes in the lineament patterns related to strong earthquakes, which can be used as a robust long-term precursor of earthquakes indicating regions of strong stress accumulation.

  13. Earthquakes as collapse precursors at the Han-sur-Lesse Cave in the Belgian Ardennes

    Science.gov (United States)

    Camelbeeck, Thierry; Quinif, Yves; Verheyden, Sophie; Vanneste, Kris; Knuts, Elisabeth

    2018-05-01

    Collapse activation is an ongoing process in the evolution of karstic networks related to the weakening of cave vaults. Because collapses are infrequent, few have been directly observed, making it challenging to evaluate the role of external processes in their initiation and triggering. Here, we study the two most recent collapses in the Dôme chamber of the Han-sur-Lesse Cave (Belgian Ardenne) that occurred on or shortly after 3rd December 1828 and between the 13th and 14th of March 1984. Because of the low probability that the two earthquakes that generated the strongest ground motions in Han-sur-Lesse since 1800, on 23rd February 1828 (Mw = 5.1 in Central Belgium) and 8th November 1983 (Mw = 4.8 in Liège) occurred by coincidence less than one year before these collapses, we suggest that the collapses are related to these earthquakes. We argue that the earthquakes accelerated the cave vault instability, leading to the collapses by the action of other factors weakening the host rock. In particular, the 1828 collapse was likely triggered by a smaller Mw = 4.2 nearby earthquake. The 1984 collapse followed two months of heavy rainfall that would have increased water infiltration and pressure in the rock mass favoring destabilization of the cave ceiling. Lamina counting of a stalagmite growing on the 1828 debris dates the collapse at 1826 ± 9 CE, demonstrating the possibility of dating previous collapses with a few years of uncertainty. Furthermore, our study opens new perspectives for studying collapses and their chronology both in the Han-sur-Lesse Cave and in other karstic networks. We suggest that earthquake activity could play a stronger role than previously thought in initiating cave collapses.

  14. Fluid thermodynamics control thermal weakening during earthquake rupture.

    Science.gov (United States)

    Acosta, M.; Passelegue, F. X.; Schubnel, A.; Violay, M.

    2017-12-01

    Although fluids are pervasive among tectonic faults, thermo-hydro-mechanical couplings during earthquake slip remain unclear. We report full dynamic records of stick-slip events, performed on saw cut Westerly Granite samples loaded under triaxial conditions at stresses representative of the upper continental crust (σ3' 70 MPa) Three fluid pressure conditions were tested, dry, low , and high pressure (i.e. Pf=0, 1, and 25 MPa). Friction (μ) evolution recorded at 10 MHz sampling frequency showed that, for a single event, μ initially increased from its static pre-stress level, μ0 to a peak value μ p it then abruptly dropped to a minimum dynamic value μd before recovering to its residual value μr, where the fault reloaded elastically. Under dry and low fluid pressure conditions, dynamic friction (μd) was extremely low ( 0.2) and co-seismic slip (δ) was large ( 250 and 200 μm respectively) due to flash heating (FH) and melting of asperities as supported by microstructures. Conversely, at pf=25 MPa, μd was higher ( 0.45), δ was smaller ( 80 μm), and frictional melting was not found. We calculated flash temperatures at asperity contacts including heat buffering by on-fault fluid. Considering the isobaric evolution of water's thermodynamic properties with rising temperature showed that pressurized water controlled fault heating and weakening, through sharp variations of specific heat (cpw) and density (ρw) at water's phase transitions. Injecting the computed flash temperatures into slip-on-a-plane model for thermal pressurization (TP) showed that: (i) if pf was low enough so that frictional heating induced liquid/vapour phase transition, FH operated, allowing very low μd during earthquakes. (ii) Conversely, if pf was high enough that shear heating induced a sharp phase transition directly from liquid to supercritical state, an extraordinary rise in water's specific heat acted as a major energy sink inhibiting FH and limiting TP, allowing higher dynamic fault

  15. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koopmans, M.P.; Rijpstra, W.I.C.; Klapwijk, M.M.; Lewan, M.D.

    1999-01-01

    A thermal and chemical degradation approach was followed to determine the precursors of pristane (Pr) and phytane (Ph) in samples from the Gessoso-solfifera, Ghareb and Green River Formations. Hydrous pyrolysis of these samples yields large amounts of Pr and Ph carbon skeletons, indicating that

  16. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    2003-02-01

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered. Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  17. Evidence of precursor phenomena in the Kobe earthquake obtained from atmospheric radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    Yasuoka, Yumi [Kobe Pharmaceutical University, 4-19-1 Mtoyamakitama-machi, Higashinada-ku, Kobe, Hyogo 658-8558 (Japan)]. E-mail: yasuoka@kobepharma-u.ac.jp; Igarashi, George [Science Research Center for Prediction of Earthquakes and Volcanic Eruptions, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 (Japan); Ishikawa, Testuo [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Tokonami, Shinji [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shinogi, Masaki [Kobe Pharmaceutical University, 4-19-1 Mtoyamakitama-machi, Higashinada-ku, Kobe, Hyogo 658-8558 (Japan)

    2006-06-15

    Atmospheric {sup 222}Rn concentrations were determined over a 10a period, which included the date of the Kobe, Japan earthquake, on January 17th 1995. It was found that the seismically related {sup 222}Rn anomaly was higher than the 99% confidence limits for the residual value of atmospheric {sup 222}Rn which had been observed 2 months before. The residual {sup 222}Rn concentration, in which residual values of the daily minimum are the difference between each normal {sup 222}Rn concentration (calculated from January 1984 to December 1993) and the daily minimum {sup 222}Rn concentration (January 1994 to January 1995), was calculated by applying the exponential smoothing method to the residual values for each day. It was found that the fluctuations of the residual values can be fitted very well to a log-periodic oscillation model. The real residual values stopped increasing at 1994.999 (December 31st 1994), which corresponds with the critical point (t {sub c}) of best fit model. This anomalous {sup 222}Rn variation can be seen as the result of local stresses, not primary stresses which directly lead to the Kobe earthquake. On the other hand, when the critical exponent (z) and the radial frequency ({omega}) of the model were simultaneously fixed 0.2 {<=} z {<=} 0.6 and 6 {<=} {omega} {<=} 12, t {sub c} (critical point) was between January 13th 1995 and January 27th 1995. The Kobe earthquake occurrence date (January 17th 1995) is within this range. Therefore this anomalous {sup 222}Rn variation can also be seen as the result of primary stresses which possibly led to the Kobe earthquake. There is a distinct possibility that similar statistical oscillations will be detected in other measurements such as microseismicity, tectonic strain, fluctuation in the ground level, or changes in groundwater elevations and composition.

  18. Some peculiarities of zirconium tungstate synthesis by thermal decomposition of hydrothermal precursors

    International Nuclear Information System (INIS)

    Gubanov, Alexander I.; Dedova, Elena S.; Plyusnin, Pavel E.; Filatov, Eugeny Y.; Kardash, Tatyana Y.; Korenev, Sergey V.; Kulkov, Sergey N.

    2014-01-01

    Highlights: • Synthesis of ZrW 2 O 8 using hydrothermal method. • On hydrothermal synthesis optimal conc. of HCl in the reaction mixture is 2.3 M. • Thermal decomposition of ZrW 2 O 7 ((OH) 1.5 ,Cl 0.5 )·2H 2 O begins are 200 °S. • Amorphous intermediate crystallizes into cubic single-phase ZrW 2 O 8 above 550 °S. • ZrW 2 O 8 destructed at temperatures above 700 °S. - Abstract: This article discusses some peculiarities of the synthesis of ZrW 2 O 8 (1) using thermal decomposition of the precursor ZrW 2 O 7 ((OH) 1.5 ,Cl 0.5 )·2H 2 O (2) prepared by hydrothermal method. On hydrothermal synthesis of 2 the optimal concentration of hydrochloric acid in the reaction mixture is about 2.3 M. TG approach to determine the chemical composition of the precursor was suggested. It has been found that the precursor for the synthesis of zirconium tungstate has chemical formula 2. Thermal decomposition of the precursor 2 begins at 200 °S and affords an amorphous intermediate, which crystallizes as a cubic phase 1 above 550 °S with an exoeffect. The temperature of the beginning of the transition from amorphous to the crystalline state is 350 ± 25 °S

  19. Social tension as precursor of large damaging earthquake: legend or reality?

    Science.gov (United States)

    Molchanov, O.

    2008-11-01

    Using case study of earthquake (EQ) activity and war conflicts in Caucasus during 1975 2002 time interval and correlation analysis of global distribution of damaging EQs and war-related social tension during 1901 2005 period we conclude: There is a statistically reliable increase of social tension several years (or several months in case study) before damaging EQs, There is evident decrease of social tension several years after damaging EQs, probably due to society consolidation, Preseismic effect is absent for the large EQs in unpopulated areas, There is some factual background for legendary belief in Almighty retribution for social abnormal behavior.

  20. Research on groundwater radon as a fluid phase precursor to earthquakes

    International Nuclear Information System (INIS)

    Teng, T.; Sun, L.

    1986-01-01

    Groundwater radon monitoring work carried out in southern California by the University of Southern California since 1974 is summarized here. This effort began with a sampling network over a locked segment of the San Andreas fault from Tejon to Cajon and was later expanded to cover part of the southern Transverse Mountain ranges. Groundwater samples were brought back weekly to the laboratory for high precision scintillation counting. Needs for more frequent sampling and less labor prompted the development of an economical and field worthy instrument known as the continuous radon monitor. About 10 have been installed in the network since early 1980. The groundwater radon content was found to show anomalous increases (mostly at a single station) before a number of moderate and nearby earthquakes. Our work is hampered by a lack of large earthquakes that may have a regional impact on radon anomalies and by the complexity of the underground hydrological regime. To circumvent this difficulty, we have chosen to monitor only deep artesian wells or hot spring wells

  1. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  2. Thermal conductivity of high-porosity biocarbon precursors of white pine wood

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Kartenko, N. F.; Sharenkova, N. V.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Jezowski, A.; Wilkes, T. E.; Faber, K. T.

    2008-12-01

    This paper reports on measurements of the thermal conductivity κ and the electrical conductivity σ of high-porosity (cellular pores) biocarbon precursors of white pine tree wood in the temperature range 5-300 K, which were prepared by pyrolysis of the wood at carbonization temperatures ( T carb) of 1000 and 2400°C. The x-ray structural analysis has permitted the determination of the sizes of the nanocrystallites contained in the carbon framework of the biocarbon precursors. The sizes of the nanocrystallites revealed in the samples prepared at T carb = 1000 and 2400°C are within the ranges 12-35 and 25-70 Å, respectively. The dependences κ( T) and σ( T) are obtained for samples cut along the tree growth direction. As follows from σ( T) measurements, the biocarbon precursors studied are semiconducting. The values of κ and σ increase with increasing carbonization temperature of the samples. Thermal conductivity measurements have revealed that samples of both types exhibit a temperature dependence of the phonon thermal conductivity κph, which is not typical of amorphous (and amorphous to x-rays) materials. As the temperature increases, κph first varies proportional to T, to scale subsequently as ˜ T 1.7. The results obtained are analyzed.

  3. Some peculiarities of zirconium tungstate synthesis by thermal decomposition of hydrothermal precursors

    Energy Technology Data Exchange (ETDEWEB)

    Gubanov, Alexander I., E-mail: gubanov@niic.nsc.su [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Prospekt 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Dedova, Elena S. [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, pr. Akademicheskii 2/4, 634021 Tomsk (Russian Federation); Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk (Russian Federation); Plyusnin, Pavel E.; Filatov, Eugeny Y. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Prospekt 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Kardash, Tatyana Y. [Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Prospekt 5, 630090 Novosibirsk (Russian Federation); Korenev, Sergey V. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Prospekt 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Kulkov, Sergey N. [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, pr. Akademicheskii 2/4, 634021 Tomsk (Russian Federation); Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk (Russian Federation)

    2014-12-10

    Highlights: • Synthesis of ZrW{sub 2}O{sub 8} using hydrothermal method. • On hydrothermal synthesis optimal conc. of HCl in the reaction mixture is 2.3 M. • Thermal decomposition of ZrW{sub 2}O{sub 7}((OH){sub 1.5},Cl{sub 0.5})·2H{sub 2}O begins are 200 °S. • Amorphous intermediate crystallizes into cubic single-phase ZrW{sub 2}O{sub 8} above 550 °S. • ZrW{sub 2}O{sub 8} destructed at temperatures above 700 °S. - Abstract: This article discusses some peculiarities of the synthesis of ZrW{sub 2}O{sub 8} (1) using thermal decomposition of the precursor ZrW{sub 2}O{sub 7}((OH){sub 1.5},Cl{sub 0.5})·2H{sub 2}O (2) prepared by hydrothermal method. On hydrothermal synthesis of 2 the optimal concentration of hydrochloric acid in the reaction mixture is about 2.3 M. TG approach to determine the chemical composition of the precursor was suggested. It has been found that the precursor for the synthesis of zirconium tungstate has chemical formula 2. Thermal decomposition of the precursor 2 begins at 200 °S and affords an amorphous intermediate, which crystallizes as a cubic phase 1 above 550 °S with an exoeffect. The temperature of the beginning of the transition from amorphous to the crystalline state is 350 ± 25 °S.

  4. Understanding the Thermal Properties of Precursor-Ionomers to Optimize Fabrication Processes for Ionic Polymer-Metal Composites (IPMCs

    Directory of Open Access Journals (Sweden)

    Sarah Trabia

    2018-04-01

    Full Text Available Ionic polymer-metal composites (IPMCs are one of many smart materials and have ionomer bases with a noble metal plated on the surface. The ionomer is usually Nafion, but recently Aquivion has been shown to be a promising alternative. Ionomers are available in the form of precursor pellets. This is an un-activated form that is able to melt, unlike the activated form. However, there is little study on the thermal characteristics of these precursor ionomers. This lack of knowledge causes issues when trying to fabricate ionomer shapes using methods such as extrusion, hot-pressing, and more recently, injection molding and 3D printing. To understand the two precursor-ionomers, a set of tests were conducted to measure the thermal degradation temperature, viscosity, melting temperature, and glass transition. The results have shown that the precursor Aquivion has a higher melting temperature (240 °C than precursor Nafion (200 °C and a larger glass transition range (32–65°C compared with 21–45 °C. The two have the same thermal degradation temperature (~400 °C. Precursor Aquivion is more viscous than precursor Nafion as temperature increases. Based on the results gathered, it seems that the precursor Aquivion is more stable as temperature increases, facilitating the manufacturing processes. This paper presents the data collected to assist researchers in thermal-based fabrication processes.

  5. Recyclable Aggregates of Mesoporous Titania Synthesized by Thermal Treatment of Amorphous or Peptized Precursors

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mascolo

    2018-03-01

    Full Text Available Recyclable aggregates of mesoporous titania with different anatase–rutile ratios have been prepared by thermal treatments of either amorphous or peptized precursors. These last two have been obtained by hydrolysis of either Ti(OC2H54 or of Ti(OC2H54 in mixture with 5 mol % Zr(OC3H74 at room temperature in the presence of NH4OH as a catalyzing agent. The anatase–rutile ratio, the recyclable aggregates of the nano-sized particles, the mesoporosity, the surface area and the crystallinity of the resulting crystallized products of titania can be controlled by the synthesis parameters including: concentration of ammonia catalyst, stirring time and concentration of the peptizing HNO3, drying method of peptized precursors, calcination temperature, and finally the ramp rate up to the titania crystallization temperature. A broad range of synthesis parameters control the crystal sizes of titania particles produced. This allows catalyst preparation with very different crystal size, surface area, anatase to rutile crystal ratio and various mesoporous structures. Drying by lyophilization of precursors reduce the aggregation of the primary particles giving micro-/macroporous structures.

  6. Latitude-Time Total Electron Content Anomalies as Precursors to Japan's Large Earthquakes Associated with Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Jyh-Woei Lin

    2011-01-01

    Full Text Available The goal of this study is to determine whether principal component analysis (PCA can be used to process latitude-time ionospheric TEC data on a monthly basis to identify earthquake associated TEC anomalies. PCA is applied to latitude-time (mean-of-a-month ionospheric total electron content (TEC records collected from the Japan GEONET network to detect TEC anomalies associated with 18 earthquakes in Japan (M≥6.0 from 2000 to 2005. According to the results, PCA was able to discriminate clear TEC anomalies in the months when all 18 earthquakes occurred. After reviewing months when no M≥6.0 earthquakes occurred but geomagnetic storm activity was present, it is possible that the maximal principal eigenvalues PCA returned for these 18 earthquakes indicate earthquake associated TEC anomalies. Previously PCA has been used to discriminate earthquake-associated TEC anomalies recognized by other researchers, who found that statistical association between large earthquakes and TEC anomalies could be established in the 5 days before earthquake nucleation; however, since PCA uses the characteristics of principal eigenvalues to determine earthquake related TEC anomalies, it is possible to show that such anomalies existed earlier than this 5-day statistical window.

  7. Thermal emission before earthquakes by analyzing satellite infra-red data

    Science.gov (United States)

    Ouzounov, D.; Taylor, P.; Bryant, N.; Pulinets, S.; Freund, F.

    2004-05-01

    Satellite thermal imaging data indicate long-lived thermal anomaly fields associated with large linear structures and fault systems in the Earth's crust but also with short-lived anomalies prior to major earthquakes. Positive anomalous land surface temperature excursions of the order of 3-4oC have been observed from NOAA/AVHRR, GOES/METEOSAT and EOS Terra/Aqua satellites prior to some major earthquake around the world. The rapid time-dependent evolution of the "thermal anomaly" suggests that is changing mid-IR emissivity from the earth. These short-lived "thermal anomalies", however, are very transient therefore there origin has yet to be determined. Their areal extent and temporal evolution may be dependent on geology, tectonic, focal mechanism, meteorological conditions and other factors.This work addresses the relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing mid-IR flux as part of a larger family of electromagnetic (EM) phenomena related to seismic activity.We still need to understand better the link between seismo-mechanical processes in the crust, on the surface, and at the earth-atmospheric interface that trigger thermal anomalies. This work serves as an introduction to our effort to find an answer to this question. We will present examples from the strong earthquakes that have occurred in the Americas during 2003/2004 and the techniques used to record the thermal emission mid-IR anomalies, geomagnetic and ionospheric variations that appear to associated with impending earthquake activity.

  8. In-soil radon anomalies as precursors of earthquakes: a case study in the SE slope of Mt. Etna in a period of quite stable weather conditions

    International Nuclear Information System (INIS)

    Vizzini, Fabio; Brai, Maria

    2012-01-01

    In-soil radon concentrations as well as climatic parameters (temperature, atmospheric pressure and relative humidity) were collected in St. Venerina (Eastern Sicily – Italy) from March 19th to May 22nd 2009, close to an active fault system called Timpe Fault System (TFS), which is strictly linked to the geodynamics of Mt. Etna. During the monitoring period no drastic climatic variations were observed and, on the other hand, important seismic events were recorded close to the monitoring site. A seismic swarm composed of 5 earthquakes was observed in the Milo area on March 25th (M max = 2.7) at just 5.1 km from the site, and on May 13th an earthquake of 3.6 magnitude was recorded in the territory of St. Venerina, at just 3.2 km from the site; the earthquake was felt by the population and reported by all local and regional media. The in-soil radon concentrations have shown anomalous increases possibly linked to the earthquakes recorded, but certainly not attributable to local meteorology. To verify this assumption the average radon concentration and the standard deviation (σ) have been calculated and the regions of ±1.5σ and ±2σ deviation from the average concentration have been investigated. Moreover, to further minimise the contribution of the meteorological parameters on the in-soil radon fluctuations, a multiple regressions method has been used. To distinguish those earthquakes which could generate in-soil radon anomalies as precursors, the Dobrovolsky radius has been applied. The results obtained suggests that a clear correlation between earthquakes and in-soil radon increases exist, and that the detection of the in-soil radon anomalies becomes surely simpler in particular favourable conditions: weather stability, earthquakes within the Dobrovolsky radius and close to the monitoring area. Moreover, the absence of large variations of the climatic parameters, which could generate incoherent noise components to the radon signal, has made the radon

  9. Experimental Study of Thermal Field Evolution in the Short-Impending Stage Before Earthquakes

    Science.gov (United States)

    Ren, Yaqiong; Ma, Jin; Liu, Peixun; Chen, Shunyun

    2017-08-01

    Phenomena at critical points are vital for identifying the short-impending stage prior to earthquakes. The peak stress is a critical point when stress is converted from predominantly accumulation to predominantly release. We call the duration between the peak stress and instability "the meta-instability stage", which refers to the short-impending stage of earthquakes. The meta-instability stage consists of a steady releasing quasi-static stage and an accelerated releasing quasi-dynamic stage. The turning point of the above two stages is the remaining critical point. To identify the two critical points in the field, it is necessary to study the characteristic phenomena of various physical fields in the meta-instability stage in the laboratory, and the strain and displacement variations were studied. Considering that stress and relative displacement can be detected by thermal variations and peculiarities in the full-field observations, we employed a cooled thermal infrared imaging system to record thermal variations in the meta-instability stage of stick slip events generated along a simulated, precut planer strike slip fault in a granodiorite block on a horizontally bilateral servo-controlled press machine. The experimental results demonstrate the following: (1) a large area of decreasing temperatures in wall rocks and increasing temperatures in sporadic sections of the fault indicate entrance into the meta-instability stage. (2) The rapid expansion of regions of increasing temperatures on the fault and the enhancement of temperature increase amplitude correspond to the turning point from the quasi-static stage to the quasi-dynamic stage. Our results reveal thermal indicators for the critical points prior to earthquakes that provide clues for identifying the short-impending stage of earthquakes.

  10. Novel determination of radon-222 velocity in deep subsurface rocks, and the feasibility to using radon as an earthquake precursor

    Science.gov (United States)

    Zafrir, Hovav; Benhorin, Yochy; Malik, Uri; Chemo, Chaim

    2016-04-01

    An enhanced radon monitoring system was designed in order to study shallow versus deep subsurface processes affecting the appearance of radon anomalies. The method is based on the assumption that the climatic influence is limited since its energy decreases with the decrease in thickness of the geological cover whereby its effect is reduced to a negligible value at depth. Hence, lowering gamma and alpha detectors into deep boreholes and monitoring their temporal variations relative to a reference couple at shallow depths of 10-40 m eliminates the ambient thermal and pressure-induced contribution from the total radon time series. It allows highlighting the residual portion of the radon signals that might be associated with the geodynamic processes. The primary technological key is the higher sensitivity of the gamma detectors - in comparison to the solid-state alpha detectors, which are also suitable for threading into narrow boreholes in parallel to the narrow gamma detector (Zafrir et al., 2013*). The unique achievements of the novel system that was installed at the Sde Eliezer site close to the Hula Valley western border fault (HWBF) in northern Israel are: a) Determination, for the first time, of the radon movement velocity within rock layers at depths of several tens of meters, namely, 25 m per hour on average; b) Distinguishing between the diurnal periodical effect of the ambient temperature and the semi-diurnal effect of the ambient pressure on the radon temporal spectrum; c) Identification of a radon random pre-seismic anomaly preceding the Nuweiba, M 5.5 earthquake of 27 June 2015 that occurred within Dead Sea Fault Zone. * Zafrir, H., Barbosa, S.M. and Malik, U., 2013. Differentiation between the effect of temperature and pressure on radon within the subsurface geological media, Radiat. Meas., 49, 39-56. doi:10.1016/j.radmeas.2012.11.019.

  11. Thermal decomposition and spectroscopic investigation of a new aqueous glycolato(-peroxo) Ti(IV) solution-gel precursor

    International Nuclear Information System (INIS)

    De Dobbelaere, Christopher; Mullens, Jules; Hardy, An; Van Bael, Marlies K.

    2011-01-01

    Highlights: → A totally water based glycolato-Ti(IV) precursor is presented and characterized. → The precursors' thermal decomposition profile depends on the ligand to metal ratio. → Titanium is coordinated in an unidentate fashion by the glycolate anion. → Smooth and uniform TiO 2 films can be prepared from the precursor solution. - Abstract: A new aqueous solution-gel precursor based on water soluble glycolato(-peroxo)-Ti(IV) complexes is developed for the preparation of TiO 2 films. With regard to the decomposition of complexes towards oxide formation, it is important to gain insight in the chemical transformations inside the precursor during thermal treatment. Therefore, the thermo-oxidative decomposition pathway of a gel obtained by slow evaporation of the precursor solution is described based on hyphenated thermogravimetric analysis with Fourier transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). Pure glycolic acid is used as a reference system for this study. By varying the molar glycolic acid to Ti(IV) ratio, the thermal decomposition of the gel can be drastically shortened and the profile's course changed. Gel structure and chemical changes in the gel upon heating are also studied by means of off-line FTIR. A unidentate coordination of the titanium(IV) ion by the carboxylate group of the glycolato ligands and the involvement of the hydroxyl group is confirmed. Phase formation at certain points in the thermal decomposition is studied by X-ray diffraction and Raman spectroscopy. Finally, it is proven that the new precursor is a valuable candidate for the deposition of low carbon containing solution-gel films which can ultimately be converted into smooth and uniform TiO 2 films.

  12. Thermal decomposition and spectroscopic investigation of a new aqueous glycolato(-peroxo) Ti(IV) solution-gel precursor

    Energy Technology Data Exchange (ETDEWEB)

    De Dobbelaere, Christopher, E-mail: christopher.dedobbelaere@uhasselt.be [Hasselt University, Institute for Materials Research, Inorganic and Physical Chemistry, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Mullens, Jules, E-mail: jules.mullens@uhasselt.be [Hasselt University, Institute for Materials Research, Inorganic and Physical Chemistry, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Hardy, An, E-mail: an.hardy@uhasselt.be [Hasselt University, Institute for Materials Research, Inorganic and Physical Chemistry, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw, Division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium); Van Bael, Marlies K., E-mail: marlies.vanbael@uhasselt.be [Hasselt University, Institute for Materials Research, Inorganic and Physical Chemistry, Agoralaan Building D, B-3590 Diepenbeek (Belgium); IMEC vzw, Division IMOMEC, Agoralaan Building D, B-3590 Diepenbeek (Belgium)

    2011-06-10

    Highlights: {yields} A totally water based glycolato-Ti(IV) precursor is presented and characterized. {yields} The precursors' thermal decomposition profile depends on the ligand to metal ratio. {yields} Titanium is coordinated in an unidentate fashion by the glycolate anion. {yields} Smooth and uniform TiO{sub 2} films can be prepared from the precursor solution. - Abstract: A new aqueous solution-gel precursor based on water soluble glycolato(-peroxo)-Ti(IV) complexes is developed for the preparation of TiO{sub 2} films. With regard to the decomposition of complexes towards oxide formation, it is important to gain insight in the chemical transformations inside the precursor during thermal treatment. Therefore, the thermo-oxidative decomposition pathway of a gel obtained by slow evaporation of the precursor solution is described based on hyphenated thermogravimetric analysis with Fourier transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). Pure glycolic acid is used as a reference system for this study. By varying the molar glycolic acid to Ti(IV) ratio, the thermal decomposition of the gel can be drastically shortened and the profile's course changed. Gel structure and chemical changes in the gel upon heating are also studied by means of off-line FTIR. A unidentate coordination of the titanium(IV) ion by the carboxylate group of the glycolato ligands and the involvement of the hydroxyl group is confirmed. Phase formation at certain points in the thermal decomposition is studied by X-ray diffraction and Raman spectroscopy. Finally, it is proven that the new precursor is a valuable candidate for the deposition of low carbon containing solution-gel films which can ultimately be converted into smooth and uniform TiO{sub 2} films.

  13. On the reliability of the geomagnetic quake as a short time earthquake's precursor for the Sofia region

    Directory of Open Access Journals (Sweden)

    S. Cht. Mavrodiev

    2004-01-01

    Full Text Available The local 'when' for earthquake prediction is based on the connection between geomagnetic 'quakes' and the next incoming minimum or maximum of tidal gravitational potential. The probability time window for the predicted earthquake is for the tidal minimum approximately ±1 day and for the maximum ±2 days. The preliminary statistic estimation on the basis of distribution of the time difference between occurred and predicted earthquakes for the period 2002-2003 for the Sofia region is given. The possibility for creating a local 'when, where' earthquake research and prediction NETWORK is based on the accurate monitoring of the electromagnetic field with special space and time scales under, on and over the Earth's surface. The periodically upgraded information from seismic hazard maps and other standard geodetic information, as well as other precursory information, is essential.

  14. Application of the region-time-length algorithm to study of earthquake precursors in the Thailand-Laos-Myanmar borders

    Science.gov (United States)

    Puangjaktha, P.; Pailoplee, S.

    2018-04-01

    In order to examine the precursory seismic quiescence of upcoming hazardous earthquakes, the seismicity data available in the vicinity of the Thailand-Laos-Myanmar borders was analyzed using the Region-Time-Length (RTL) algorithm based statistical technique. The utilized earthquake data were obtained from the International Seismological Centre. Thereafter, the homogeneity and completeness of the catalogue were improved. After performing iterative tests with different values of the r0 and t0 parameters, those of r0 = 120 km and t0 = 2 yr yielded reasonable estimates of the anomalous RTL scores, in both temporal variation and spatial distribution, of a few years prior to five out of eight strong-to-major recognized earthquakes. Statistical evaluation of both the correlation coefficient and stochastic process for the RTL were checked and revealed that the RTL score obtained here excluded artificial or random phenomena. Therefore, the prospective earthquake sources mentioned here should be recognized and effective mitigation plans should be provided.

  15. The Rheological Evolution of Brittle-Ductile Transition Rocks During the Earthquake Cycle: Evidence for a Ductile Precursor to Pseudotachylyte in an Extensional Fault System, South Mountains, Arizona

    Science.gov (United States)

    Stewart, Craig A.; Miranda, Elena A.

    2017-12-01

    We investigate how the rheological evolution of shear zone rocks from beneath the brittle-ductile transition (BDT) is affected by coeval ductile shear and pseudotachylyte development associated with seismicity during the earthquake cycle. We focus our study on footwall rocks of the South Mountains core complex, and we use electron backscatter diffraction (EBSD) analyses to examine how strain is localized in granodiorite mylonites both prior to and during pseudotachylyte development beneath the BDT. In mylonites that are host to pseudotachylytes, deformation is partitioned into quartz, where quartz exhibits crystallographic-preferred orientation patterns and microstructures indicative of dynamic recrystallization during dislocation creep. Grain size reduction during dynamic recrystallization led to the onset of grain boundary sliding (GBS) accommodated by fluid-assisted grain size-sensitive (GSS) creep, localizing strain in quartz-rich layers prior to pseudotachylyte development. The foliation-parallel zones of GBS in the host mylonites, and the presence of GBS traits in polycrystalline quartz survivor clasts indicate that GBS zones were the ductile precursors to in situ pseudotachylyte generation. During pseudotachylyte development, strain was partitioned into the melt phase, and GSS deformation in the survivor clasts continued until crystallization of melt impeded flow, inducing pseudotachylyte development in other GBS zones. We interpret the coeval pseudotachylytes with ductile precursors as evidence of seismic events near the BDT. Grain size piezometry yields high differential stresses in both host mylonites ( 160 MPa) and pseudotachylyte survivor clasts (> 200 MPa), consistent with high stresses during interseismic and coseismic phases of the earthquake cycle, respectively.

  16. In-soil radon anomalies as precursors of earthquakes: a case study in the SE slope of Mt. Etna in a period of quite stable weather conditions.

    Science.gov (United States)

    Vizzini, Fabio; Brai, Maria

    2012-11-01

    In-soil radon concentrations as well as climatic parameters (temperature, atmospheric pressure and relative humidity) were collected in St. Venerina (Eastern Sicily - Italy) from March 19th to May 22nd 2009, close to an active fault system called Timpe Fault System (TFS), which is strictly linked to the geodynamics of Mt. Etna. During the monitoring period no drastic climatic variations were observed and, on the other hand, important seismic events were recorded close to the monitoring site. A seismic swarm composed of 5 earthquakes was observed in the Milo area on March 25th (M(max) = 2.7) at just 5.1 km from the site, and on May 13th an earthquake of 3.6 magnitude was recorded in the territory of St. Venerina, at just 3.2 km from the site; the earthquake was felt by the population and reported by all local and regional media. The in-soil radon concentrations have shown anomalous increases possibly linked to the earthquakes recorded, but certainly not attributable to local meteorology. To verify this assumption the average radon concentration and the standard deviation (σ) have been calculated and the regions of ±1.5σ and ±2σ deviation from the average concentration have been investigated. Moreover, to further minimise the contribution of the meteorological parameters on the in-soil radon fluctuations, a multiple regressions method has been used. To distinguish those earthquakes which could generate in-soil radon anomalies as precursors, the Dobrovolsky radius has been applied. The results obtained suggests that a clear correlation between earthquakes and in-soil radon increases exist, and that the detection of the in-soil radon anomalies becomes surely simpler in particular favourable conditions: weather stability, earthquakes within the Dobrovolsky radius and close to the monitoring area. Moreover, the absence of large variations of the climatic parameters, which could generate incoherent noise components to the radon signal, has made the radon fluctuations

  17. Advances in analysis of pre-earthquake thermal anomalies by analyzing IR satellite data

    Science.gov (United States)

    Ouzounov, D.; Bryant, N.; Filizzola, C.; Pergola, N.; Taylor, P.; Tramutoli, V.

    Presented work addresses the possible relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing infrared (IR) flux as part of a larger family of electromagnetic (EM) phenomena related to earthquake activity. Thermal infra-red (TIR) surveys performed by polar orbiting (NOAA/AVHRR, MODIS) and geosynchronous weather satellites (GOES, METEOSAT) seems to indicate the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients associated with the place (epicentral area, linear structures and fault systems) and the time of occurrence of a number of major earthquakes with M>5 and focal depths no deeper than 50km. As Earth emitted in 8-14 microns range the TIR signal measured from satellite strongly vary depending on meteorological conditions and other factors (space-time changes in atmospheric transmittance, time/season, solar and satellite zenithal angles and etc) independent from seismic activity, a preliminary definition of "anomalous TIR signal" should be given. To provide reliable discrimination of thermal anomalous area from the natural events (seasonal changes, local morphology) new robust approach (RAT) has been recently proposed (and successfully applied in the field of the monitoring of the major environmental risks) that permits to give a statistically based definition of thermal info-red (TIR) anomaly and reduce of false events detection. New techniques also were specifically developed to assure the precise co-registration of all satellite scenes and permit accurate time-series analysis of satellite observations. As final results we present examples of most recent 2000/2004 worldwide strong earthquakes and the techniques used to capture the tracks of thermal emission mid-IR anomalies and methodology for practical future use of such phenomena in the early warning systems.

  18. Y2O3-MgO Nano-Composite Synthesized by Plasma Spraying and Thermal Decomposition of Solution Precursors

    Science.gov (United States)

    Muoto, Chigozie Kenechukwu

    This research aims to identify the key feedstock characteristics and processing conditions to produce Y2O3-MgO composite coatings with high density and hardness using solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes, and also, to explore the phenomena involved in the production of homogenized nano-composite powders of this material system by thermal decomposition of solution precursor mixtures. The material system would find potential application in the fabrication of components for optical applications such as transparent windows. It was shown that a lack of major endothermic events during precursor decomposition and the resultant formation of highly dense particles upon pyrolysis are critical precursor characteristics for the deposition of dense and hard Y2O3-MgO coatings by SPPS. Using these principles, a new Y2O3-MgO precursor solution was developed, which yielded a coating with Vickers hardness of 560 Hv. This was a considerable improvement over the hardness of the coatings obtained using conventional solution precursors, which was as low as 110 Hv. In the thermal decomposition synthesis process, binary solution precursor mixtures of: yttrium nitrate (Y[n]) or yttrium acetate (Y[a]), with magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were used in order to study the effects of precursor chemistry on the structural characteristics of the resultant Y2O3-MgO powders. The phase domains were coarse and distributed rather inhomogeneously in the materials obtained from the Y[n]Mg[n] and Y[a]Mg[a] mixtures; finer and more homogeneously-distributed phase domains were obtained for ceramics produced from the Y[a]Mg[n] and Y[n]Mg[a] mixtures. It was established that these phenomena were related to the thermal characteristics for the decomposition of the precursors and their effect on phase separation during oxide crystallization. Addition of ammonium acetate to the Y[n[Mg[n] mixture changed the endothermic process to exothermic

  19. Thermal degradation of N-rich organic laboratory analogues: new insight on the cosmomaterials organic precursor composition

    Science.gov (United States)

    Bonnet, J.-Y.; Quirico, E.; Buch, A.; Szopa, C.; Fray, N.; Cottin, H.; Thissen, R.

    2011-10-01

    The observed organic matter in the different objects, carbonaceous chondrites and IDPs, accessible to laboratory analyses is the result of a complex history. This history is divided into several phases the first of which take place into the presolar nebula and is followed by post accretional processes on the parent bodies [1, 2]. In the carbonaceous chondrites organic matter (both soluble and insoluble), nitrogen is a very minor constituent about 2wt%, but in micrometer scale localized zone of some IDPs the nitrogen content can reach values as high as 20wt% [1, 3]. Additionally, the Insoluble Organic Matter (IOM) polyaromatic structure suggests a formation through thermal processes of the organic precursor(s). In this IOM N-bearing cycles have been identified but not chemical functions like amino groups. The precursor(s) of all the organic matter observed in IOM and IDPs could then be nitrogen rich. To test this scenario, N-rich laboratory analogues, (polymeric solids) were thermally degraded at four different temperatures to simulate short time thermal processes in the solar nebula.

  20. Contrastive research of ionospheric precursor anomalies between Calbuco volcanic eruption on April 23 and Nepal earthquake on April 25, 2015

    Science.gov (United States)

    Li, Wang; Guo, Jinyun; Yue, Jianping; Yang, Yang; Li, Zhen; Lu, Deikai

    2016-05-01

    On April 23, 2015, the VEI4 (volcanic explosive index) Calbuco volcano abruptly erupted in Chile and the Mw7.9 Nepal earthquake occurred on April 25. In order to investigate the similarities and differences between total electron content (TEC) anomalies preceding these two types of geophysical activities, the TEC time series over preparation zones before the volcanic eruption and earthquake extracted from global ionosphere map were analyzed. We used sunspot numbers (SSN), Bz, Dst, and Kp indices to represent the solar-terrestrial environment and eliminate the effects of solar and geomagnetic activities on ionosphere by the sliding interquartile range method with the 27-day window. The results indicate that TEC-negative and -positive anomalies appeared in the 14th and 6th day before the eruption, respectively. The anomalies lasted about 4-6 h with a magnitude of 15-20 TECU. The TEC anomalies were also observed on the 14th and 6th day before the Nepal earthquake with a duration of 6-8 h, and the absolute magnitude of TEC anomalies was within 12-20 TECU. These findings indicate that the magnitude of TEC anomalies preceding volcanic eruption was larger, and the duration of TEC anomalies before the earthquake was longer, which may be associated with their particular physical mechanisms. The TEC anomalies before the Nepal earthquake in the Eastern hemisphere occurred in the afternoon local time, but those before the eruption were observed in the night local time. Peak regions of TEC anomalies did not coincide with the epicenters of geophysical activities, and the TEC anomalies also appeared in the magnetic conjugated region. Both the TEC anomalies in the preparation zone and conjugated region were distributed near the boundaries of equatorial anomaly zone and moved along the boundaries. In the moving process, sometimes the extent or magnitude of TEC anomalies in the conjugated region was larger than that in the preparation zone. Many more GPS stations and receivers

  1. Numerical simulation of multiple-physical fields coupling for thermal anomalies before earthquakes: A case study of the 2008 Wenchuan Ms8.0 earthquake in southwest China

    Science.gov (United States)

    Deng, Z.

    2017-12-01

    It has become a highly focused issue that thermal anomalies appear before major earthquakes. There are various hypotheses about the mechanism of thermal anomalies. Because of lacking of enough evidences, the mechanism is still require to be further researched. Gestation and occurrence of a major earthquake is related with the interaction of multi-physical fields. The underground fluid surging out the surface is very likely to be the reason for the thermal anomaly. This study tries to answer some question, such as how the geothermal energy transfer to the surface, and how the multiple-physical fields interacted. The 2008 Wenchuan Ms8.0 earthquake, is one of the largest evens in the last decade in China mainland. Remote sensing studies indicate that distinguishable thermal anomalies occurred several days before the earthquake. The heat anomaly value is more than 3 times the average in normal time and distributes along the Longmen Shan fault zone. Based on geological and geophysical data, 2D dynamic model of coupled stress, seepage and thermal fields (HTM model) is constructed. Then using the COMSOL multi-physics filed software, this work tries to reveal the generation process and distribution patterns of thermal anomalies prior to thrust-type major earthquakes. The simulation get the results: (1)Before the micro rupture, with the increase of compression, the heat current flows to the fault in the footwall on the whole, while in the hanging wall of the fault, particularly near the ground surface, the heat flow upward. In the fault zone, heat flow upward along the fracture surface, heat flux in the fracture zone is slightly larger than the wall rock;, but the value is all very small. (2)After the occurrence of the micro fracture, the heat flow rapidly collects to the faults. In the fault zones, the heat flow accelerates up along the fracture surfaces, the heat flux increases suddenly, and the vertical heat flux reaches to the maximum. The heat flux in the 3 fracture

  2. Acoustic Emission Precursors of M6.0 2004 Parkfield and M7.0 1989Loma Prieta Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri

    2005-02-01

    Two recent strike-slip earthquakes on the San Andreas Fault(SAF) in California, the M6.0 2004 Parkfield and M7.0 1989 Loma Prietaevents, revealed peaks in the acoustic emission (AE) activity in thesurrounding crust several months prior to the main events. Earthquakesdirectly within the SAF zone were intentionally excluded from theanalysis. The observed increase in AE is assumed to be a signature of theincreasing stress level in the surrounding crust, while the peak andsubsequent decrease in AE starting several months prior to the mainevents is attributed to damage-induced softening processes as discussedherein. Further, distinctive zones of low seismic activity surroundingthe epicentral regions in the pre-event time period are present for thetwo studied events. Both AE increases in the crust surrounding apotential future event and the development of a low-seismicity epicentralzone can be regarded as promising precursory information that could helpsignal the arrival of large earthquakes.

  3. Spectroscopic determination of thermal impulse in sub-second heating events using lanthanide-doped oxide precursors and phenomenological modeling

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Benjamin R., E-mail: branderson@wsu.edu; Gunawidjaja, Ray; Price, Patrick; Eilers, Hergen, E-mail: eilers@wsu.edu [Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, Washington 99210-1495 (United States)

    2016-08-28

    Using a mixture of crystalline-Ho:ZrO{sub 2}, precursor-Dy:Y{sub 2}O{sub 3}, and precursor-Eu:ZrO{sub 2} nanoparticles we develop thermal impulse sensors capable of measuring equivalent isothermal temperatures and durations during a heating event, with response times of <100 ms, and a temperature range of at least 673 K to 1173 K. In order to determine the temperature and duration from the sensors after the heating event we measure the sensors' fluorescence spectrum, which is then compared with lab based calibration data. By using two precursor materials with different reaction kinetics we are able to extract both temperature and duration. Based on blind sample testing we find that the sensors and calculation method are accurate for measuring temperature and duration, but currently suffer a lack of precision due to difficulties in producing homogeneously heated samples.

  4. Detection of ULF electromagnetic emissions as a precursor to an earthquake in China with an improved polarization analysis

    Directory of Open Access Journals (Sweden)

    Y. Ida

    2008-07-01

    Full Text Available An improved analysis of polarization (as the ratio of vertical magnetic field component to the horizontal one has been developed, and applied to the approximately four years data (from 1 March 2003 to 31 December 2006 observed at Kashi station in China. It is concluded that the polarization ratio has exhibited an apparent increase only just before the earthquake on 1 September 2003 (magnitude = 6.1 and epicentral distance of 116 km.

  5. Seismicity Precursors of the M6.0 2004 Parkfield and M7.0 1989Loma Prieta Earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri A.

    2006-03-09

    The M6.0 2004 Parkfield and M7.0 1989 Loma Prietastrike-slip earthquakes on the San Andreas Fault (SAF) were preceded byseismicity peaks occurring several months prior to the main events.Earthquakes directly within the SAF zone were intentionally excluded fromthe analysis because they manifest stress-release processes rather thanstress accumulation. The observed increase in seismicity is interpretedas a signature of the increasing stress level in the surrounding crust,whereas the peaks and the subsequent decrease in seismicity areattributed to damage-induced softening processes. Furthermore, in bothcases there is a distinctive zone of low seismic activity that surroundsthe epicentral region in the pre-event period. The increase of seismicityin the crust surrounding a potential future event and the development ofa low-seismicity epicentral zone can be regarded as promising precursoryinformation that could help signal the arrival of large earthquakes. TheGutenberg-Richter relationship (GRR) should allow extrapolation ofseismicity changes down to seismic noise level magnitudes. Thishypothesis is verified by comparison of seismic noise at 80 Hz with theParkfield M4 1993-1994 series, where noise peaks 5 months before theseries to about twice the background level.

  6. A comparison of classical and intelligent methods to detect potential thermal anomalies before the 11 August 2012 Varzeghan, Iran, earthquake (Mw = 6.4)

    Science.gov (United States)

    Akhoondzadeh, M.

    2013-04-01

    In this paper, a number of classical and intelligent methods, including interquartile, autoregressive integrated moving average (ARIMA), artificial neural network (ANN) and support vector machine (SVM), have been proposed to quantify potential thermal anomalies around the time of the 11 August 2012 Varzeghan, Iran, earthquake (Mw = 6.4). The duration of the data set, which is comprised of Aqua-MODIS land surface temperature (LST) night-time snapshot images, is 62 days. In order to quantify variations of LST data obtained from satellite images, the air temperature (AT) data derived from the meteorological station close to the earthquake epicenter has been taken into account. For the models examined here, results indicate the following: (i) ARIMA models, which are the most widely used in the time series community for short-term forecasting, are quickly and easily implemented, and can efficiently act through linear solutions. (ii) A multilayer perceptron (MLP) feed-forward neural network can be a suitable non-parametric method to detect the anomalous changes of a non-linear time series such as variations of LST. (iii) Since SVMs are often used due to their many advantages for classification and regression tasks, it can be shown that, if the difference between the predicted value using the SVM method and the observed value exceeds the pre-defined threshold value, then the observed value could be regarded as an anomaly. (iv) ANN and SVM methods could be powerful tools in modeling complex phenomena such as earthquake precursor time series where we may not know what the underlying data generating process is. There is good agreement in the results obtained from the different methods for quantifying potential anomalies in a given LST time series. This paper indicates that the detection of the potential thermal anomalies derive credibility from the overall efficiencies and potentialities of the four integrated methods.

  7. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system

    Science.gov (United States)

    Pulinets, S. A.; Ouzounov, D. P.; Karelin, A. V.; Davidenko, D. V.

    2015-07-01

    This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth's natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth's atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.

  8. Thermal transitions in Fe-Ti-Cr-C quaternary system used as precursor during laser in situ carbide coating

    International Nuclear Information System (INIS)

    Singh, Anshul; Porter, Wallace D.; Dahotre, Narendra B.

    2005-01-01

    The temperature range of thermal transitions within the quaternary system (Fe, Ti, Cr, and C) and the thermal stability of the evolved phases were studied with the help of differential scanning calorimetry (DSC). DSC studies indicated that the major exothermic reactions (formation of carbides) take place within 850-1150 deg. C. The evolved phases (TiC, M 7 C 3 , Fe-Cr, and Fe 3 C) were characterized using X-ray diffraction (XRD). This multicomponent powder mixture was used as a precursor for synthesizing a composite coating on the surface of steel via laser surface engineering (LSE). The intended wear applications of the coating made thermal stability investigations vital. Experimental evaluation of thermal stability of the phases formed was done

  9. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-11-01

    Volume 2 of the ''Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems'' contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included

  10. Synthesis of (Cr,V){sub 2}(C,N) solid solution powders by thermal processing precursors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Anrui [School of Materials Science & Engineering, Sichuan University, Chengdu, 610065 (China); Liu, Ying [School of Materials Science & Engineering, Sichuan University, Chengdu, 610065 (China); Key Laboratory of Advanced Special Material & Technology, Ministry of Education, Chengdu, 610065 (China); Ma, Shiqing; Qiu, Yuchong; Rong, Pengcheng; Ye, Jinwen [School of Materials Science & Engineering, Sichuan University, Chengdu, 610065 (China)

    2017-06-01

    The single-phase (Cr,V){sub 2}(C,N) solid solution powders were fabricated via carbothermal reduction-nitridation (CRN) processing technique. The effects of heat treatment temperature, nitrogen pressure and carbon proportion were experimentally studied in detail by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and thermal analysis. The chemical transformations of vanadium and chromium compounds were as follows: precursors → V{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} → Cr{sub 3}C{sub 2}, Cr{sub 2}O{sub 3}, (Cr,V){sub 2}(C,N) → (Cr,V){sub 2}(C,N). When the heat-treated temperature was below 1200 °C, chromium oxides didn’t completely react. However, higher temperature ∼1300 °C could not only lead to the segregation of some nitrides and carbon black, but also to the occurrence of fiber-bridged particles. The system nitrogen pressure over 0.03 MPa would cause a subtle transformation of (Cr,V){sub 2}(C,N) to VCrN{sub 2}. When the carbon proportion was below 15 wt%, the oxides could not be completely reduced, while when the carbon proportion was above 15.5 wt%, some undesired carbides, like Cr{sub 23}C{sub 6} and Cr{sub 3}C{sub 2}, would form. Ultimately, the homogeneously distributed pure-phase (Cr,V){sub 2}(C,N) spherical particles with the average size of ∼1.5 μm were obtained at the optimal conditions of the treatment of precursors at 1200 °C for 1 h with the nitrogen pressure of 0.03 MPa and carbon content of 15.5 wt%. The chemical composition of the solid solution with the optimal process could be drawn as (Cr{sub 0.85}V{sub 0.15}){sub 2}(C{sub 0.57}N{sub 0.43}). Thermal processing precursors method shows the advantages of lower synthesis temperature, shorter period and finer particles when comparing with the conventional preparations. - Highlights: • Single phase of (Cr,V){sub 2}(C,N) powders were synthesized for the first time. • Precursors were used to prepared the powders by carbothermal

  11. Size distribution of silver nanoclusters induced by ion, electron, laser beams and thermal treatments of an organometallic precursor

    International Nuclear Information System (INIS)

    D'Urso, L.; Nicolosi, V.; Compagnini, G.; Puglisi, O.

    2004-01-01

    Recently, a huge variety of physical and chemical synthetic processes have been reported to prepare nanostructured materials made of very small (diameter<50 nm) metallic clusters. Depending on the nature of clusters, this new kind of materials posses interesting properties (electronic, optical, magnetic, catalytic) that can be tailored as a function of the particles size and shape. Silver nanoparticles have been obtained by direct thermal treatment or by beam-enhanced decomposition (ion, electron and laser) of a silver organometallic compound (precursor) spinned onto suitable substrates. In this paper, we present the results of a study on the size distribution of such nanoparticles as a function of the different synthesis methods. It was found that the methods employed strongly affect the silver nanoparticles formation. Smaller silver nanoclusters were obtained after reduction by ion beam irradiation and thermal treatment, as observed by using different techniques (AFM, XRD and UV-Vis)

  12. Multi precursors analysis associated with the powerful Ecuador (MW = 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data

    Science.gov (United States)

    Akhoondzadeh, Mehdi; De Santis, Angelo; Marchetti, Dedalo; Piscini, Alessandro; Cianchini, Gianfranco

    2018-01-01

    After DEMETER satellite mission (2004-2010), the launch of the Swarm satellites (Alpha (A), Bravo (B) and Charlie (C)) has created a new opportunity in the study of earthquake ionospheric precursors. Nowadays, there is no doubt that multi precursors analysis is a necessary phase to better understand the LAIC (Lithosphere Atmosphere Ionosphere Coupling) mechanism before large earthquakes. In this study, using absolute scalar magnetometer, vector field magnetometer and electric field instrument on board Swarm satellites, GPS (Global Positioning System) measurements, MODIS-Aqua satellite and ECMWF (European Centre for Medium-Range Weather Forecasts) data, the variations of the electron density and temperature, magnetic field, TEC (Total Electron Content), LST (Land Surface Temperature), AOD (Aerosol Optical Depth) and SKT (SKin Temperature) have been surveyed to find the potential seismic anomalies around the strong Ecuador (Mw = 7.8) earthquake of 16 April 2016. The four solar and geomagnetic indices: F10.7, Dst, Kp and ap were investigated to distinguish whether the preliminary detected anomalies might be associated with the solar-geomagnetic activities instead of the seismo-ionospheric anomalies. The Swarm satellites (A, B and C) data analysis indicate the anomalies in time series of electron density variations on 7, 11 and 12 days before the event; the unusual variations in time series of electron temperature on 8 days preceding the earthquake; the analysis of the magnetic field scalar and vectors data show the considerable anomalies 52, 48, 23, 16, 11, 9 and 7 days before the main shock. A striking anomaly is detected in TEC variations on 1 day before earthquake at 9:00 UTC. The analysis of MODIS-Aqua night-time images shows that LST increase unusually on 11 days prior to main shock. In addition, the AOD variations obtained from MODIS measurements reach the maximum value on 10 days before the earthquake. The SKT around epicentral region presents anomalous higher

  13. Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003

    Directory of Open Access Journals (Sweden)

    S. A. Pulinets

    2006-05-01

    Full Text Available The paper examines the possible relationship of anomalous variations of different atmospheric and ionospheric parameters observed around the time of a strong earthquake (Mw 7.8 which occurred in Mexico (state of Colima on 21 January 2003. These variations are interpreted within the framework of the developed model of the Lithosphere-Atmosphere-Ionosphere coupling. The main attention is focused on the processes in the near ground layer of the atmosphere involving the ionization of air by radon, the water molecules' attachment to the formed ions, and the corresponding changes in the latent heat. Model considerations are supported by experimental measurements showing the local diminution of air humidity one week prior to the earthquake, accompanied by the anomalous thermal infrared (TIR signals and surface latent heat flux (SLHF and anomalous variations of the total electron content (TEC registered over the epicenter of the impending earthquake three days prior to the main earthquake event. Statistical processing of the data of the GPS receivers network, together with various other atmospheric parameters demonstrate the possibility of an early warning of an impending strong earthquake.

  14. Nickel Oxide (NiO nanoparticles prepared by solid-state thermal decomposition of Nickel (II schiff base precursor

    Directory of Open Access Journals (Sweden)

    Aliakbar Dehno Khalaji

    2015-06-01

    Full Text Available In this paper, plate-like NiO nanoparticles were prepared by one-pot solid-state thermal decomposition of nickel (II Schiff base complex as new precursor. First, the nickel (II Schiff base precursor was prepared by solid-state grinding using nickel (II nitrate hexahydrate, Ni(NO32∙6H2O, and the Schiff base ligand N,N′-bis-(salicylidene benzene-1,4-diamine for 30 min without using any solvent, catalyst, template or surfactant. It was characterized by Fourier Transform Infrared spectroscopy (FT-IR and elemental analysis (CHN. The resultant solid was subsequently annealed in the electrical furnace at 450 °C for 3 h in air atmosphere. Nanoparticles of NiO were produced and characterized by X-ray powder diffraction (XRD at 2θ degree 0-140°, FT-IR spectroscopy, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The XRD and FT-IR results showed that the product is pure and has good crystallinity with cubic structure because no characteristic peaks of impurity were observed, while the SEM and TEM results showed that the obtained product is tiny, aggregated with plate-like shape, narrow size distribution with an average size between 10-40 nm. Results show that the solid state thermal decomposition method is simple, environmentally friendly, safe and suitable for preparation of NiO nanoparticles. This method can also be used to synthesize nanoparticles of other metal oxides.

  15. Phase development of the ZrO 2-ZnO system during the thermal treatments of amorphous precursors

    Science.gov (United States)

    Štefanić, Goran; Musić, Svetozar; Ivanda, Mile

    2009-04-01

    Thermal behavior of the amorphous precursors of the ZrO 2-ZnO system on the ZrO 2-rich side of the concentration range, co-precipitated from aqueous solutions of the corresponding salts, was monitored using X-ray powder diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectrometry, differential scanning calorimetry and thermogravimetric analysis. The crystallization temperature of the amorphous precursors increased with an increase in the ZnO content, from 457 °C (0 mol% ZnO) to 548 °C (25 mol% ZnO). Maximum solubility of Zn 2+ ions in the ZrO 2 lattice (˜25 mol%) occurred in the metastable products obtained upon crystallization of the amorphous precursors. Raman spectroscopy indicates that the incorporation of Zn 2+ ions can partially stabilize only the tetragonal ZrO 2. A precise determination of unit-cell parameters of the t-ZrO 2-type solid solutions, using both Rietveld and Le Bail refinements of the powder diffraction patterns, shows that the increase in the Zn 2+ content causes a decrease in c-ax, which in a solid solution with a Zn 2+ content above 20 mol% approaches very closely a-ax. The thermal treatment of the crystallization products (up to 1000 °C) leads to a rapid decrease in the terminal solid solubility limit of Zn 2+ ions in the ZrO 2 lattice that is followed by the partial evaporation of zinc, the formation of and increase in phases structurally closely related to zincite and monoclinic ZrO 2. The results of micro-structural analysis indicate that the presence of ZnO promotes the sintering of the ZrO 2 crystallization products.

  16. X-ray scattering study of thermal nanopore templating in hybrid films of organosilicate precursor and reactive four-armed porogen

    International Nuclear Information System (INIS)

    Yoon, Jinhwan; Heo, Kyuyoung; Oh, Weontae; Jin, Kyeong Sik; Jin, Sangwoo; Kim, Jehan; Kim, Kwang-Woo; Chang, Taihyun; Ree, Moonhor

    2006-01-01

    The miscibility and the mechanism for thermal nanopore templating in films prepared from spin-coating and subsequent drying of homogenous solutions of curable polymethylsilsesquioxane dielectric precursor and thermally labile, reactive triethoxysilyl-terminated four-armed poly(ε-caprolactone) porogen were investigated in detail by in situ two-dimensional grazing incidence small-angle x-ray scattering analysis. The dielectric precursor and porogen components in the film were fully miscible. On heating, limited aggregations of the porogen, however, took place in only a small temperature range of 100-140 deg. C as a result of phase separation induced by the competition of the curing and hybridization reactions of the dielectric precursor and porogen; higher porogen loading resulted in relatively large porogen aggregates and a greater size distribution. The developed porogen aggregates underwent thermal firing above 300 deg. C without further growth and movement, and ultimately left their individual footprints in the film as spherical nanopores

  17. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-02-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  18. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-04-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  19. Exploration of coal-based pitch precursors for ultra-high thermal conductivity graphite fibers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, G.V. [Amoco Performance Products, Inc., Alpharetta, GA (United States)

    1996-12-27

    Goal was to explore the utility of coal-based pitch precursors for use in ultra high thermal conductivity carbon (graphite) fibers. From graphite electrode experience, it was established that coal-based pitches tend to form more highly crystalline graphite at lower temperatures. Since the funding was limited to year 1 effort of the 3 year program, the goal was only partially achieved. The coal-base pitches can form large domain mesophase in spite of high N and O contents. The mesophase reactivity test performed on one of the variants of coal-based pitch (DO84) showed that it was not a good candidate for carbon fiber processing. Optimization of WVU`s isotropic pitch process is required to tailor the pitch for carbon fiber processing. The hetero atoms in the coal pitch need to be reduced to improve mesophase formation.

  20. Synthesis of In2O3nanoparticles by thermal decomposition of a citrate gel precursor

    International Nuclear Information System (INIS)

    Rey, J. F. Q.; Plivelic, T. S.; Rocha, R. A.; Tadokoro, S. K.; Torriani, I.; Muccillo, E. N. S.

    2005-01-01

    This paper describes the synthesis of indium oxide by a modified sol-gel method, and the study of thermal decomposition of the metal complex in air. The characterization of the intermediate as well as the final compounds was carried out by thermogravimetry, differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and small angle X-ray scattering. The results show that the indium complex decomposes to In 2 O 3 with the formation of an intermediate compound. Nanoparticles of cubic In 2 O 3 with crystallite sizes in the nanosize range were formed after calcination at temperatures up to 900 deg. C. Calcined materials are characterized by a polydisperse distribution of spherical particles with sharp and smooth surfaces

  1. Thermal behavior of the amorphous precursors of the ZrO2-SnO2 system

    International Nuclear Information System (INIS)

    Stefanic, Goran; Music, Svetozar; Ivanda, Mile

    2008-01-01

    Thermal behavior of the amorphous precursors of the ZrO 2 -SnO 2 system on the ZrO 2 -rich side of the concentration range, prepared by co-precipitation from aqueous solutions of the corresponding salts, was monitored using differential thermal analysis, X-ray powder diffraction, Raman spectroscopy, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectrometry (EDS). The crystallization temperature of the amorphous precursors increased with an increase in the SnO 2 content, from 405 deg. C (0 mol% SnO 2 ) to 500 deg. C (40 mol% SnO 2 ). Maximum solubility of Sn 4+ ions in the ZrO 2 lattice (∼25 mol%) occurred in the metastable products obtained upon crystallization of the amorphous precursors. A precise determination of unit-cell parameters, using both Rietveld and Le Bail refinements of the powder diffraction patterns, shows that the incorporation of Sn 4+ ions causes an asymmetric distortion of the monoclinic ZrO 2 lattice. The results of phase analysis indicate that the incorporation of Sn 4+ ions has no influence on the stabilization of cubic ZrO 2 and negligible influence on the stabilization of tetragonal ZrO 2 . Partial stabilization of tetragonal ZrO 2 in products having a tin content above its solid-solubility limit was attributed to the influence of ZrO 2 -SnO 2 surface interactions. In addition to phases closely structurally related to cassiterite, monoclinic ZrO 2 and tetragonal ZrO 2 , a small amount of metastable ZrSnO 4 phase appeared in the crystallization products of samples with 40 and 50 mol% of SnO 2 calcined at 1000 deg. C. Further temperature treatments caused a decrease in and disappearance of metastable phases. The results of the micro-structural analysis show that the sinterability of the crystallization products significantly decreases with an increase in the SnO 2 content

  2. Role of microstructure and thermal pressurization on the energy budget of an earthquake

    Science.gov (United States)

    Rattez, H.; Stefanou, I.; Sulem, J.

    2017-12-01

    The common understanding for earthquakes mechanics is that they occur by sudden slippage along a pre-existing fault (Brace and Byerlee, 1966). They are, thus, considered as frictional instabilities and can be explained by a simple spring-slider model. In this model, the stability of the block is determined by the difference between the stiffness of the spring, proxy for the elastic properties of the surrounding rock mass, and the rate of decrease of the frictional resisting force along with sliding. Therefore, it is primordial to correctly capture the softening behavior of the fault. Exhumed samples and outcrops show the presence of a principal slip zone (PSZ) inside the gouge that accommodates most of the slip in the fault. The localization process is associated with a strong weakening of the fault zone. In this study, the gouge is modelled as a saturated infinite sheared layer under thermo-hydro-mechanical couplings with Cosserat continuum. The nonlinear system of equations is integrated numerically using a Finite Element Code to study the softening regime. The use of Cosserat enables to regularizes the problem of localization and obtain a shear band thickness, and thus a softening behavior, that depends only on the constitutive parameters of the model. Cosserat continuum is also particularly interesting as it can explicitly take into account for the grain size of the fault gouge, which is an information accessible from exhumed samples (Sulem et al., 2011). From these simulations, we can estimate the evolution of fracture energy with slip and investigate the influence of the size of the microstructure or the thermal pressurization coefficient on its value. The results are compared with seismological and laboratory estimates of fracture energy under coseismic slip conditions (Viesca and Garagash, 2015).

  3. Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity

    International Nuclear Information System (INIS)

    Lv Kangle; Yu Jiaguo; Cui Longzhe; Chen Shulin; Li Mei

    2011-01-01

    Graphical abstract: The prepared anatase TiO 2 from TiOF 2 shows very high thermal stability (up to 1000 o C) and the 700 o C-calcined sample showed the highest photocatalytic activity. Display Omitted Research highlights: → TiOF 2 was prepared by a simple microwave assisted hydrothermal rout. → Anatase TiO 2 prepared by calcination of TiOF 2 shows high thermal stability. → F - play an important role in the improvement thermal stability of anatase TiO 2 . → The 700 o C-calcined sample shows the highest photocatalytic activity. - Abstract: Preparation of anatase TiO 2 with high themal stability is of great importance for its environmental application. In this work, TiOF 2 was first synthesized by a simple microwave-assisted hydrothermal route using tetrabutyl titanate and hydrofluoric acid as precursors at 200 o C for 20 min. Then the resulted precipitates were calcined at different temperatures (300-1000 o C) for 2 h. The as-prepared samples were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, N 2 adsorption-desorption isotherms and X-ray photoelectron spectroscopy. The photocatalytic activity was evaluated using Brilliant Red X3B, an anionic azo dye, as the target organic molecule under UV light irradiation. The results showed that the prepared TiOF 2 exhibited weak or no photocatalytic activity. The phase transformation of TiOF 2 to anatase TiO 2 occurred at about 300 o C. The prepared anatase TiO 2 from TiOF 2 showed very high thermal stability and the anatase-to-rutile phase transformation temperature was up to 1000 o C. Fluoride ions played an important role in the improvement of thermal stability of anatase TiO 2 by strongly adsorbing on the crystal planes of anatase to stabilize the anatase structure. The 700 o C-calcined sample showed the highest photocatalytic activity due to its relative good crystallization and high specific surface areas.

  4. Atmospheric Signals Associated with Major Earthquakes. A Multi-Sensor Approach. Chapter 9

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Kafatos, Menas; Taylor, Patrick

    2011-01-01

    We are studying the possibility of a connection between atmospheric observation recorded by several ground and satellites as earthquakes precursors. Our main goal is to search for the existence and cause of physical phenomenon related to prior earthquake activity and to gain a better understanding of the physics of earthquake and earthquake cycles. The recent catastrophic earthquake in Japan in March 2011 has provided a renewed interest in the important question of the existence of precursory signals preceding strong earthquakes. We will demonstrate our approach based on integration and analysis of several atmospheric and environmental parameters that were found associated with earthquakes. These observations include: thermal infrared radiation, radon! ion activities; air temperature and humidity and a concentration of electrons in the ionosphere. We describe a possible physical link between atmospheric observations with earthquake precursors using the latest Lithosphere-Atmosphere-Ionosphere Coupling model, one of several paradigms used to explain our observations. Initial results for the period of2003-2009 are presented from our systematic hind-cast validation studies. We present our findings of multi-sensor atmospheric precursory signals for two major earthquakes in Japan, M6.7 Niigata-ken Chuetsu-oki of July16, 2007 and the latest M9.0 great Tohoku earthquakes of March 11,2011

  5. Thorium aspartate tetrahydrate precursor to ThO{sub 2}: Comparison of hydrothermal and thermal conversions

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, N., E-mail: nicolas.clavier@icsm.fr; Maynadié, J.; Mesbah, A.; Hidalgo, J.; Lauwerier, R.; Nkou Bouala, G.I.; Parrès-Maynadié, S.; Meyer, D.; Dacheux, N.; Podor, R.

    2017-04-15

    The synthesis of original crystalline thorium aspartate tetrahydrate, Th(C{sub 4}NO{sub 4}H{sub 6}){sub 4}.4H{sub 2}O, was performed using two different wet-chemistry routes, involving either L-asparagine or L-aspartic acid as complexing agent. Characterization of this compound through {sup 13}C NMR and PXRD led to confirm the terminal coordination mode of the aspartate group and to suggest a potential cubic lattice (Pn-3 space group). Vibrational spectroscopy data were also collected. The conversion of thorium aspartate tetrahydrate into thorium dioxide was further performed through classical high temperature heat treatment or under hydrothermal conditions. On the one hand, thermal treatment provided a pseudomorphic conversion which retained the starting morphology, and favored the increase of the average crystallite size, as well as the complete elimination of the residual carbon content. On the other, hydrothermal conversion could be used to tune the morphology of the final oxide, ThO{sub 2}.nH{sub 2}O microspheres being prepared when starting from L-asparagine.

  6. Studies of crustal structure, seismic precursors to volcanic eruptions and earthquake hazard in the eastern provinces of the Democratic Republic of Congo

    CSIR Research Space (South Africa)

    Mavonga, T

    2010-11-01

    Full Text Available In recent decades, civil wars in the eastern provinces of the Democratic Republic of Congo have caused massive social disruptions, which have been exacerbated by volcanic and earthquake disasters. Seismic data were gathered and analysed as part...

  7. Fabrication of a Cu(InGaSe2 Thin Film Photovoltaic Absorber by Rapid Thermal Annealing of CuGa/In Precursors Coated with a Se Layer

    Directory of Open Access Journals (Sweden)

    Chun-Yao Hsu

    2013-01-01

    Full Text Available Cu(InGaSe2 (CIGS thin film absorbers are prepared using sputtering and selenization processes. The CuGa/In precursors are selenized during rapid thermal annealing (RTA, by the deposition of a Se layer on them. This work investigates the effect of the Cu content in precursors on the structural and electrical properties of the absorber. Using X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, and Hall effect measurement, it is found that the CIGS thin films produced exhibit facetted grains and a single chalcopyrite phase with a preferred orientation along the (1 1 2 plane. A Cu-poor precursor with a Cu/( ratio of 0.75 demonstrates a higher resistance, due to an increase in the grain boundary scattering and a reduced carrier lifetime. A Cu-rich precursor with a Cu/( ratio of 1.15 exhibits an inappropriate second phase ( in the absorber. However, the precursor with a Cu/( ratio of 0.95 exhibits larger grains and lower resistance, which is suitable for its application to solar cells. The deposition of this precursor on Mo-coated soda lime glass substrate and further RTA causes the formation of a MoSe2 layer at the interface of the Mo and CIGS.

  8. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, L.H.; De Carvalho, G.S.G. [Universidade Federal de Juiz de Fora, Departamento de Química, Grupo de Físico-Química de Sólidos e Interfaces, 36036-330 Juiz de Fora, MG (Brazil); San Gil, R.A.S. [Universidade Federal do Rio de Janeiro, Instituto de Química, 21949-900 Rio de Janeiro, RJ (Brazil); Chiaro, S.S.X. [PETROBRAS-CENPES, 21941-915 Rio de Janeiro, RJ (Brazil); Leitão, A.A. [Universidade Federal de Juiz de Fora, Departamento de Química, Grupo de Físico-Química de Sólidos e Interfaces, 36036-330 Juiz de Fora, MG (Brazil); Diniz, R., E-mail: renata.diniz@ufjf.edu.br [Universidade Federal de Juiz de Fora, Departamento de Química, Grupo de Físico-Química de Sólidos e Interfaces, 36036-330 Juiz de Fora, MG (Brazil)

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrational and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the γ-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.

  9. Detecting Ionospheric Precursors of a Deep Earthquake (378.8 km on 7 July 2013, M w=7.2, in Papua New Guinea under a Geomagnetic Storm: Two-Dimensional Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Jyh-Woei Lin

    2013-07-01

    Full Text Available Two-dimensional ionospheric total electron content (TEC data were collected during the time period from 00:00 on 2 July to 12:00 UT on 08 July 2013. This period spanned 5 days before to 1 day after a deep earthquake (378.8 km in Papua New Guinea at 18:35:30 on 7 July 2013 UT (Mw=7.2. Data were examined by two-dimensional principal component analysis (2DPCA to detect TEC precursors related to the earthquake because TEC precursors have usually appeared in earlier time periods (Liu et al. 2006. A TEC precursor was highly localized around the epicenter on 6 July for 5 minutes, from 06:00 to 06:05. Ionizing radiation from radon gas release could possibly have caused the anomalous TEC fluctuation through, for example, a density variance. The plasma might have experienced large damping to cause short-term TEC fluctuations, and the gas released in a small amount in a short time period. 2DPCA can also identify short-term TEC fluctuations, but this fluctuation lasted for a considerable length of time. Other background TEC anomalies caused by the geomagnetic storm, small earthquakes and non-earthquake activities, e.g., equatorial ionization anomaly (EIA, resulted in small principal eigenvalues. Therefore, the detection of TEC precursors through large eigenvalues was not due to these background TEC anomalies.  Resumen Datos del contenido total de electrones ionosféricos en dos dimensiones (TEC fueron medidos durante el período del 2 de julio de 2013, a las 0:00:00 horas GMT., hasta las 12:00 GMT. del 8 de julio. En este lapso se abarcan cinco días antes y un día después de un terremoto profundo (378,8 kilómetros en Papúa Nueva Guinea, que se presentó a las 18:35:30 del 7 de julio (M w =7.2. Los datos fueron examina- dos a través de los componentes principales en dos dimensiones (2DPCA para detectar los precursores TEC relacionados al terremoto (Liu et al. 2006. Un precursor de los TEC fue localizado alrededor del epicentro el 6 de julio durante 5

  10. Determination of furan precursors and some thermal damage markers in baby foods: ascorbic acid, dehydroascorbic acid, hydroxymethylfurfural and furfural.

    Science.gov (United States)

    Mesías-García, Marta; Guerra-Hernández, Eduardo; García-Villanova, Belén

    2010-05-26

    The presence of ascorbic acid (AA), vitamin C (AA + dehydroascorbic acid (DHAA)) and furfural as potential precursors of furan in commercial fruit and vegetable jarred baby food was studied. Hydroxymethylfurfural (HMF) was also determined and used, together with furfural levels, as markers of thermal damage. AA, calculated DHAA and vitamin C values ranged between 22.4 and 103, 2.9 and 13.8, and 32.1 and 113.2 mg/100 g, respectively, in fruit-based baby food. However, no trace of AA was found in the vegetable-based baby food samples tested, probably because these samples are not enriched in vitamin C and the content of this vitamin in fresh vegetables is destroyed during processing. Furfural values ranged from not detected to 236 microg/100 g, being higher in vegetable samples than in fruit samples possibly because of greater AA degradation favored by a higher pH in the vegetable samples. HMF values (range: not detected-959 microg/100 g), however, were higher in the fruit samples, probably due to greater carbohydrate content degradation and as a consequence of the Maillard reaction, favored by a lower pH in these samples. According to these results, HMF would be the optimum indicator of thermal treatment for fruits, and furfural for vegetables. The higher furfural content of vegetable baby food could be considered an index of greater AA degradation and, therefore, the furan content might be higher in this kind of sample than in fruit-based baby food.

  11. Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method

    International Nuclear Information System (INIS)

    Herrera, Adriana P.; Polo-Corrales, Liliana; Chavez, Ermides; Cabarcas-Bolivar, Jari; Uwakweh, Oswald N.C.; Rinaldi, Carlos

    2013-01-01

    Cobalt ferrite nanoparticles are of interest because of their room temperature coercivity and high magnetic anisotropy constant, which make them attractive in applications such as sensors based on the Brownian relaxation mechanism and probes to determine the mechanical properties of complex fluids at the nanoscale. These nanoparticles can be synthesized with a narrow size distribution by the thermal decomposition of an iron–cobalt oleate precursor in a high boiling point solvent. We studied the influence of aging time of the iron–cobalt oleate precursor on the structure, chemical composition, size, and magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. The structure and thermal behavior of the iron–cobalt oleate was studied during the aging process. Infrared spectra indicated a shift in the coordination state of the oleate and iron/cobalt ions from bidentate to bridging coordination. Aging seemed to influence the thermal decomposition of the iron–cobalt oleate as determined from thermogravimmetric analysis and differential scanning calorimetry, where shifts in the temperatures corresponding to decomposition events and a narrowing of the endotherms associated with these events were observed. Aging promoted formation of the spinel crystal structure, as determined from X-ray diffraction, and influenced the nanoparticle magnetic properties, resulting in an increase in blocking temperature and magnetocrystalline anisotropy. Mossbauer spectra also indicated changes in the magnetic properties resulting from aging of the precursor oleate. Although all samples exhibited some degree of Brownian relaxation, as determined from complex susceptibility measurements in a liquid medium, aging of the iron–cobalt oleate precursor resulted in crossing of the in-phase χ′and out-of-phase χ″ components of the complex susceptibility at the frequency of the Brownian magnetic relaxation peak, as expected for nanoparticles

  12. The role of non-thermal atmospheric pressure biocompatible plasma in the differentiation of osteoblastic precursor cells, MC3T3-E1.

    Science.gov (United States)

    Han, Ihn; Choi, Eun Ha

    2017-05-30

    Non-thermal atmospheric pressure plasma is ionized matter, composed of highly reactive species that include positive ions, negative ions, free radicals, neutral atoms, and molecules. Recent reports have suggested that non-thermal biocompatible plasma (NBP) can selectively kill a variety of cancer cells, and promote stem cell differentiation. However as of yet, the regulation of proliferation and differentiation potential of NBP has been poorly understood.Here, we investigated the effects of NBP on the osteogenic differentiation of precursor cell lines of osteoblasts, MC3T3 E1 and SaOS-2. For in vitro osteogenic differentiation, precursor cell lines were treated with NBP, and cultured with osteogenic induction medium. After 10 days of treatment, the NBP was shown to be effective in osteogenic differentiation in MC3T3 E1 cells by von Kossa and Alizarin Red S staining assay. Real-time PCR was then performed to investigate the expression of osteogenic specific genes, Runx2, OCN, COL1, ALP and osterix in MC3T3 E1 cells after treatment with NBP for 4 days. Furthermore, analysis of the protein expression showed that NBP treatment significantly reduced PI3K/AKT signaling and MAPK family signaling. However, p38 controlled phosphorylation of transcription factor forkhead box O1 (FoxO1) that related to cell differentiation with increased phosphorylated p38. These results suggest that non-thermal atmospheric pressure plasma can induce osteogenic differentiation, and enhance bone formation.

  13. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying

    Science.gov (United States)

    Zhou, Ting; Cheng, Xudong; Pan, Yuelei; Li, Congcong; Gong, Lunlun; Zhang, Heping

    2018-04-01

    In order to maintain the integrity, glass fiber (GF) reinforced silica aerogel composites were synthesized using methltrimethoxysilane (MTMS) and water glass co-precursor by freeze drying method. The composites were characterized by scanning electron microscopy, Brunauer-Emmett-Teller analysis, uniaxial compressive test, three-point bending test, thermal conductivity analysis, contact angle test, TG-DSC analysis. It was found that the molar ratio of MTMS/water glass could significantly affect the properties of composites. The bulk density and thermal conductivity first decreased and then increased with the increasing molar ratio. The composites showed remarkable mechanical strength and flexibility compared with pure silica aerogel. Moreover, when the molar ratio is 1.8, the composites showed high specific surface area (870.9 m2/g), high contact angle (150°), great thermal stability (560 °C) and low thermal conductivity (0.0248 W/m·K). These outstanding properties indicate that GF/aerogels have broad prospects in the field of thermal insulation.

  14. Thermal alteration of pyrite to pyrrhotite during earthquakes : New evidence of seismic slip in the rock record

    NARCIS (Netherlands)

    Yang, Tao; Dekkers, Mark J.; Chen, Jianye

    Seismic slip zones convey important information on earthquake energy dissipation and rupture processes. However, geological records of earthquakes along exhumed faults remain scarce. They can be traced with a variety of methods that establish the frictional heating of seismic slip, although each has

  15. The Ionospheric Precursor to the 2011 March 11 Earthquake Based upon Observations Obtained from the Japan-Pacific Subionospheric VLF/LF Network

    Directory of Open Access Journals (Sweden)

    Masashi Hayakawa

    2013-01-01

    Full Text Available By using network observation of subionospheric VLF (very low frequency/LF (low frequency signals in Japan and in Russia, we have found a significant ionospheric perturbation prior to the recent 2011 March 11 Japan earthquake (EQ which occurred at sea proximate to the Tohoku area on the main island (Honshu of Japan was an exceptionally huge plate-type EQ. A remarkable anomaly (with a decrease in the nighttime amplitude and also with enhancement in dispersion was detected on March 5 and 6 along the propagation path from the NLK (Seattle, USA transmitter to Chofu (together with Kochi and Kasugai. We also have observed the corresponding VLF anomaly during a prolonged period of March 1 - 6, with minima in the nighttime amplitude on March 3 and 4 along the path from JJI (Miyazaki, Kyushu to Kamchatka, Russia. This ionospheric perturbation has been discussed extensively with respect to its reliability. (1 How abnormal is this VLF/LF propagation anomaly? (2 What was the temporal evolution of terminator times? (3 Were there any solar-terrestrial effects (especially the effect from geomagnetic storms on the VLF/LF propagation anomaly? (4 The effect of any other EQs and foreshock activities on the VLF/LF anomaly? (5 Were there any correlations with other related phenomena? Finally, (6 are there any other examples of a VLF/LF propagation anomaly for oceanic EQs? We then compared the temporal properties of ionospheric perturbations for this EQ with those of a huge number of inland EQs and compared the corresponding spatial scale with the former result of the same oceanic 2004 Sumatra EQ with nearly the same magnitude. Finally, the generation mechanism of those seismo-ionospheric perturbations is briefly discussed.

  16. Thermal decomposition behavior of the co-precipitated carbonate precursor for La0.84Sr0.16MnO3

    International Nuclear Information System (INIS)

    Sankaranarayanan, A.; Kalekar, B.B.; Ramanathan, S.

    2004-01-01

    A carbonate precursor for lanthanum strontium manganite powder (La 0.84 Sr 0.16 MnO 3 - LSM) was obtained by addition of an aqueous solution of nitrates of lanthanum, strontium and manganese into a bath of ammonium carbonate solution. The precipitate was filtered, washed, dried and dry ground for homogenization. The thermal decomposition behavior of the precursor was studied by simultaneous TG-DTA-EGA technique while the precursor and intermediates formed at different temperatures were characterized by FTIR and XRD techniques for decomposition of carbonate and compound formation. It exhibited a loss in weight and endotherms in stages in the temperature ranges of 20 to 260 deg C, 260 deg to 500 deg C, 500 deg to 600 deg C, 600 deg to 900 deg C. The loss of carbon dioxide was exhibited in the EGA data and FTIR spectra while phase formation was confirmed by XRD. A comparative study of all these results showed that the processes occurring at various temperature ranges (20 deg to 260 deg C, 260 deg to 500 deg C, 500 deg to 600 deg C, 600 deg to 900 deg C) are dehydration of adsorbed moisture and water of crystallization, decomposition of manganese hydroxycarbonate to manganese dioxide, lanthanum carbonate to lanthanum oxy-carbonate and interaction between lanthanum oxy-carbonate, manganese dioxide and strontium carbonate to form finally LSM. Even though decomposition of carbonates into oxides was complete at 900 deg C, phase pure compound formation occurred at 1100 deg C, under the conditions used. (author)

  17. Microspheres Prepared by Internal Gelation for Actinide Co-Conversion - Influence of Organic Precursors in Initial Solution on Structure during Thermal Treatment

    International Nuclear Information System (INIS)

    Benay, G.; Modolo, G.; Robisson, A.C.; Grandjean, S.

    2008-01-01

    The fabrication of fuels or targets for transmutation of minor actinides requires a dust-free process. Such a requirement can be fulfilled by sol-gel methods, which allow the production of microsphere precursors. Internal gelation, one of these methods, was studied at Cea Marcoule and FZ (Forschungszentrum Juelich Germany). A study of the parameters involved in internal gelation (essentially the quantity of organic additives urea and hexa-methylene-tetramine (HMTA) present in the initial solution) was performed. Afterwards, the effects of these parameters on the structural evolution of the microspheres during thermal treatment were studied. It was observed that the structure and density of the microspheres are heavily dependant of the quantity of organic precursors present in the initial solution. Urea in particular has been found to bring porosity to the material, in addition to its catalytic effect on HMTA decomposition. The elimination of these organic compounds is however a major issue which causes the formation of cracks on the microspheres if no optimization is performed. (authors)

  18. Synthesis, characterization, and thermal properties of homoleptic rare-earth guanidinates: promising precursors for MOCVD and ALD of rare-earth oxide thin films.

    Science.gov (United States)

    Milanov, Andrian P; Fischer, Roland A; Devi, Anjana

    2008-12-01

    Eight novel homoleptic tris-guanidinato complexes M[(N(i)Pr)(2)CNR(2)](3) [M = Y (a), Gd (b), Dy (c) and R = Me (1), Et (2), (i)Pr (3)] have been synthesized and characterized by NMR, CHN-analysis, mass spectrometry and infrared spectroscopy. Single crystal structure analysis revealed that all the compounds are monomers with the rare-earth metal center coordinated to six nitrogen atoms of the three chelating guanidinato ligands in a distorted trigonal prism geometry. With the use of TGA/DTA and isothermal TGA analysis, the thermal characteristics of all the complexes were studied in detail to evaluate their suitability as precursors for thin film deposition by MOCVD and ALD. The (i)Pr-Me(2)N-guanidinates of Y, Gd and Dy (1a-c) showed excellent thermal characteristics in terms of thermal stability and volatility. Additionally, the thermal stability of the (i)Pr-Me(2)N-guanidinates of Y and Dy (1a, c) in solution was investigated by carrying out NMR decomposition experiments and both the compounds were found to be remarkably stable. All these studies indicate that (i)Pr-Me(2)N-guanidinates of Y, Gd and Dy (1a-c) have the prerequisites for MOCVD and ALD applications which were confirmed by the successful deposition of Gd(2)O(3) and Dy(2)O(3) thin films on Si(100) substrates. The MOCVD grown films of Gd(2)O(3) and Dy(2)O(3) were highly oriented in the cubic phase, while the ALD grown films were amorphous.

  19. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation

    KAUST Repository

    Swaidan, Ramy Jawdat

    2016-09-02

    High performance thermally-rearranged (TR) and carbon molecular sieve (CMS) membranes made from an intrinsically microporous polymer precursor PIM-6FDA-OH are reported for the separation of propylene from propane. Thermal rearrangement of PIM-6FDA-OH to the corresponding polybenzoxazole (PBO) membrane resulted in a pure-gas C3H6/C3H8 selectivity of 15 and C3H6 permeability of 14 Barrer, positioning it above the polymeric C3H6/C3H8 upper bound. For the first time, the C3H6/C3H8 mixed-gas properties of a TR polymer were investigated and showed a C3H6 permeability of 11 Barrer and C3H6/ C3H8 selectivity of 11, essentially independent of feed pressure up to 5 bar. The CMS membrane made by treatment at 600 C showed further improvement in performance as demonstrated with a pure-gas C3H8/C3H8 selectivity of 33 and a C3H6 permeability of 45 Barrer. The mixed-gas C3H6/C3H8 selectivity dropped from 24 to 17 from 2 to 5 bar feed pressure due to a decrease in C3H6 permeability most likely caused by competitive sorption without any evidence of plasticization. (C) 2016 Elsevier B.V. All rights reserved.

  20. Structural, morphological and thermal properties of La1-xSrxMnO3 (x = 0.15 and 0.22) prepared by the polymeric precursor method

    International Nuclear Information System (INIS)

    Macedo, D.A; Cela, B.; Carvalho, W.M.; Martinelli, A.E.; Nascimento, R.M.; Paskocimas, C.A.

    2009-01-01

    Strontium-doped lanthanum manganite (La1 -x Sr x MnO 3 or LSM) is traditionally the most used material for cathodes in high temperature solid oxide fuel cell (800 deg C). This material shows excellent electrocatalytic activity for oxygen reduction and is chemical and thermal stable with the yttria-stabilized zirconia electrolyte (YSZ). In this work La 0.85 Sr 0.15 MnO 3 (LSM 15) and La 0.78 Sr 0.22 MnO 3 (LSM 22) were prepared by the polymeric precursor method, calcinated at 700 deg C for 2 h and characterized by X-ray diffraction, particle size analysis, scanning electronic microscopy and compacts' dilatometry. The synthesis method used provided the attainment of nanopowders with perovskite structure and particles sizes below 100 nm. The thermal expansion coefficients of LSM 15 and LSM 22 were found to be 12.2 x 10 -6 deg C -1 and 11.7 x 10 -6 deg C -1 respectively, which are very close to that of the YSZ. (author)

  1. Robust satellite techniques (RST for the thermal monitoring of earthquake prone areas: the case of Umbria-Marche October, 1997 seismic events

    Directory of Open Access Journals (Sweden)

    V. Tramutoli

    2008-06-01

    Full Text Available Several authors claim a space-time correlation between increases in Earth’s emitted Thermal Infra-Red (TIR radiation and earthquake occurrence. The main problems of such studies regard data analysis and interpretation, which are often done without a validation/confutation control. In this context, a robust data analysis technique (RST, i.e. Robust Satellite Techniques is proposed which permits a statistically based definition of TIR «anomaly » and uses a validation/confutation approach. This technique was already applied to satellite TIR surveys in seismic regions for about twenty earthquakes that occurred in the world. In this work RST is applied for the first time to a time sequence of seismic events. Nine years of Meteosat TIR observations have been analyzed to characterize the unperturbed TIR signal behaviour at specific observation times and locations. The main seismic events of the October 1997 Umbria-Marche sequence have been considered for validation, and relatively unperturbed periods (no earthquakes with Mb ? 4 were taken for confutation purposes. Positive time-space persistent TIR anomalies were observed during seismic periods, generally overlapping the principal tectonic lineaments of the region and sometimes focusing on the vicinity of the epicentre. No similar (in terms of relative intensity and space-time persistence TIR anomalies were detected during seismically unperturbed periods.

  2. Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors

    International Nuclear Information System (INIS)

    Lopez, M.; Marin, P.; Agudo, P.; Carabias, I.; Venta, J. de la; Hernando, A.

    2007-01-01

    Nanocrystalline magnetic particles obtained by high energy ball milling of FeSiBNbCu alloy were prepared from rapidly quenched ribbons as a starting material. Structural characterization was made by using X-ray diffraction (XRD), differential scanning calorimetry (DSC), atomic force microscopy (AFM) and Moessbauer spectroscopy. The structural changes observed in this amorphous material suggest that nanocrystallization process takes place in a different way from the one induced by thermal treatments. Our different studies reveals that after short grinding times (up to 40 h) the material is composed by a two phase system of very fine nanocrystals embedded in a residual amorphous phase, while for largest periods of milling (from 140 h) the sample consists of a very fine nanocrystalline phase with a large fraction of grain boundary

  3. Teaching Activities for the Construction of a Precursor Model in 5- to 6-Year-Old Children's Thinking: The Case of Thermal Expansion and Contraction of Metals

    Science.gov (United States)

    Ravanis, Konstantinos; Papandreou, Maria; Kampeza, Maria; Vellopoulou, Angeliki

    2013-01-01

    This article presents the results of empirical research on the construction of a precursor model of the phenomenon of thermal expansion and contraction of metals in preschool children's thinking, which is compatible with the model used in science education. The research included 87 children aged 5-6. It was conducted at four stages, during…

  4. Thermal-annealing effects on the structural and magnetic properties of 10% Fe-doped SnO{sub 2} nanoparticles synthetized by a polymer precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Aragón, F.H., E-mail: fermin964@hotmail.com [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Instituto de Ciências Biológicas, Pós-graduação em Nanociência e Nanobiotecnologia, Universidade de Brasília, Brasilia DF 70919-970 (Brazil); Coaquira, J.A.H. [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Nagamine, L.C.C.M.; Cohen, R. [Instituto de Física, Universidade de São Paulo, São Paulo SP 05508-090 (Brazil); Silva, S.W. da [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Instituto de Ciências Biológicas, Pós-graduação em Nanociência e Nanobiotecnologia, Universidade de Brasília, Brasilia DF 70919-970 (Brazil); and others

    2015-02-01

    In this work, we present the experimental results of Sn{sub 0.9}Fe{sub 0.1}O{sub 2} nanoparticles synthesized by a polymer precursor method. Studies were performed in the as-prepared (AP) and thermally-annealed (TA) samples. The X-ray diffraction (XRD) data analysis carried out using the Rietveld refinement method shows the formation of only the rutile-type structure in the AP sample and this phase remains stable for the TA sample. Additionally, the mean crystallite size shows an increase from ∼4 nm to ∼17 nm after the annealing and a clear reduction of the residual strain has also been determined. Micro-Raman spectroscopy measurements show the formation of an iron oxide phase (likely α-Fe{sub 2}O{sub 3}) after the thermal treatment. Magnetic measurements show a paramagnetic behavior for the AP sample and the coexistence of a weak ferromagnetism and paramagnetism for the TA sample. The magnetically-ordered contribution of the TA sample has been assigned to the formation of the hematite phase. DC and AC magnetic features of the TA sample are consistent with a cluster-glass behavior which seems to be related to the magnetic disorder of spins located at the particle surface. Those spins clusters seem to be formed due to the diffusion of iron ions from the core of the particle to the surface caused by the annealing process. - Highlights: • Thermal annealing effects in the 10% Fe-doped SnO{sub 2} nanoparticles have been studied. • XRD data analysis shows the formation of the rutile-type structure. • Raman measurements show the formation of small amount of α-Fe{sub 2}O{sub 3} after the annealing. • Paramagnetic and magnetically ordered phases were determined after the annealing. • Spin clusters likely at the particle surface have been formed after the annealing.

  5. Heterometallic molecular precursors for a lithium-iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition.

    Science.gov (United States)

    Han, Haixiang; Wei, Zheng; Barry, Matthew C; Filatov, Alexander S; Dikarev, Evgeny V

    2017-05-02

    Three heterometallic single-source precursors with a Li : Fe = 1 : 1 ratio for a LiFeO 2 oxide material are reported. Heterometallic compounds LiFeL 3 (L = tbaoac (1), ptac (2), and acac(3)) have been obtained on a large scale, in nearly quantitative yields by one-step reactions that employ readily available reagents. The heterometallic precursor LiFe(acac) 3 (3) with small, symmetric substituents on the ligand (acac = pentane-2,4-dionate), maintains a 1D polymeric structure in the solid state that limits its volatility and prevents solubility in non-coordinating solvents. The application of the unsymmetrical ligands, tbaoac (tert-butyl acetoacetate) and ptac (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate), that exhibit different bridging properties at the two ends of the ligand, allowed us to change the connectivity pattern within the heterometallic assembly. The latter was demonstrated by structural characterization of heterometallic complexes LiFe(tbaoac) 3 (1) and LiFe(ptac) 3 (2) that consist of discrete heterocyclic tetranuclear molecules Li 2 Fe 2 L 6 . The compounds are highly volatile and exhibit a congruent sublimation character. DART mass spectrometric investigation revealed the presence of heterometallic molecules in the gas phase. The positive mode spectra are dominated by the presence of [M - L] + peaks (M = Li 2 Fe 2 L 6 ). In accord with their discrete molecular structure, complexes 1 and 2 are highly soluble in nearly all common solvents. In order to test the retention of the heterometallic structure in solution, the diamagnetic analog of 1, LiMg(tbaoac) 3 (4), has been isolated. Its tetranuclear molecular structure was found to be isomorphous to that of the iron counterpart. 1 H and 7 Li NMR spectroscopy unambiguously confirmed the presence of heterometallic molecules in solutions of non-coordinating solvents. The heterometallic precursor 1 was shown to exhibit clean thermal decomposition in air that results in phase-pure

  6. Growth Mechanism and Surface Structure of Ge Nanocrystals Prepared by Thermal Annealing of Cosputtered GeSiO Ternary Precursor

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available Ge nanocrystals (Ge-ncs embedded in a SiO2 superlattice structure were prepared by magnetron cosputtering and postdeposition annealing. The formation of spherical nanocrystals was confirmed by transmission electron microscopy and their growth process was studied by a combination of spectroscopic techniques. The crystallinity volume fraction of Ge component was found to increase with crystallite size, but its overall low values indicated a coexistence of crystalline and noncrystalline phases. A reduction of Ge-O species was observed in the superlattice during thermal annealing, accompanied by a transition from oxygen-deficient silicon oxide to silicon dioxide. A growth mechanism involving phase separation of Ge suboxides (GeOx was then proposed to explain these findings and supplement the existing growth models for Ge-ncs in SiO2 films. Further analysis of the bonding structure of Ge atoms suggested that Ge-ncs are likely to have a core-shell structure with an amorphous-like surface layer, which is composed of GeSiO ternary complex. The surface layer thickness was extracted to be a few angstroms and equivalent to several atomic layer thicknesses.

  7. Investigation of thermal and hot-wire chemical vapor deposition copper thin films on TiN substrates using CupraSelect as precursor.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    Copper films were deposited on oxidized Si substrates covered with TiN using a novel chemical vapor deposition reactor in which reactions were assisted by a heated tungsten filament (hot-wire CVD, HWCVD). Liquid at room temperature hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) was directly injected into the reactor with the aid of a direct-liquid injection (DLI) system using N2 as carrier gas. The deposition rates of HWCVD Cu films obtained on TiN covered substrates were found to increase with filament temperature (65 and 170 degrees C were tested). The resistivities of HWCVD Cu films were found to be higher than for thermally grown films due to the possible presence of impurities into the Cu films from the incomplete dissociation of the precursor and W impurities caused by the presence of the filament. For HWCVD films grown at a filament temperature of 170 degrees C, smaller grains are formed than at 65 degrees C as shown from the taken SEM micrographs. XRD diffractograms taken on Cu films deposited on TiN could not reveal the presence of W compounds originating from the filament because the relative peak was masked by the TiN [112] peak.

  8. Thermal behavior and phase transformation of ZrO2–10%SiO2 precursor powder prepared by a co-precipitation route without adding stability agent

    International Nuclear Information System (INIS)

    Chu, Hsueh-Liang; Hwang, Weng-Sing; Wang, Cheng-Li; Wang, Moo-Chin; Lee, Kuen-Chan; Huang, Hong-Hsin; Lee, Huey-Er

    2014-01-01

    Highlights: • The precursor powders contained about 68.3 wt% ZrO 2 , which corresponds to ZrO 2 ·1/8 H 2 O. • The exothermic peak temperature of tetragonal ZrO 2 formation occurred at 1014 K. • The activation energy of ZrO 2 –10%SiO 2 precursors crystallization is 993.7 kJ/mol. • Only the tetragonal ZrO 2 formed when the precursor calcined at 1173–1373 K for 2 h. • As calcined at 1473 K for 2 h, tetragonal ZrO 2 fully converted to monoclinic ZrO 2 . - Abstract: Thermal behavior and phase transformation of ZrO 2 –10%SiO 2 precursor powder prepared by a co-precipitation route without adding stability agent has been studied using different thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano beam electron diffraction (NBED), high-resolution TEM (HRTEM) and energy-dispersive X-ray spectrometer (EDS). The TG results show that four weight loss regions were from 298 to 443 K, 443 to 743 K, 743 to 793 K and 793 to 1400 K. The DTA result shows that the ZrO 2 freeze-dried precursor powders crystallization at 1014 K. The activation energy of 993.7 kJ/mol was obtained for tetragonal ZrO 2 crystallization using a non-isothermal process. The XRD result shows that only a single phase of tetragonal ZrO 2 appears when the freeze-dried precursor powders after calcination between 1173 and 1373 K for 2 h. Moreover, when calcined at 1473 K for 2 h, the phase transformation from tetragonal ZrO 2 fully converted to monoclinic ZrO 2 occurred

  9. Earthquake prediction by Kina Method

    International Nuclear Information System (INIS)

    Kianoosh, H.; Keypour, H.; Naderzadeh, A.; Motlagh, H.F.

    2005-01-01

    Earthquake prediction has been one of the earliest desires of the man. Scientists have worked hard to predict earthquakes for a long time. The results of these efforts can generally be divided into two methods of prediction: 1) Statistical Method, and 2) Empirical Method. In the first method, earthquakes are predicted using statistics and probabilities, while the second method utilizes variety of precursors for earthquake prediction. The latter method is time consuming and more costly. However, the result of neither method has fully satisfied the man up to now. In this paper a new method entitled 'Kiana Method' is introduced for earthquake prediction. This method offers more accurate results yet lower cost comparing to other conventional methods. In Kiana method the electrical and magnetic precursors are measured in an area. Then, the time and the magnitude of an earthquake in the future is calculated using electrical, and in particular, electrical capacitors formulas. In this method, by daily measurement of electrical resistance in an area we make clear that the area is capable of earthquake occurrence in the future or not. If the result shows a positive sign, then the occurrence time and the magnitude can be estimated by the measured quantities. This paper explains the procedure and details of this prediction method. (authors)

  10. Moment-ration imaging of seismic regions for earthquake prediction

    Science.gov (United States)

    Lomnitz, Cinna

    1993-10-01

    An algorithm for predicting large earthquakes is proposed. The reciprocal ratio (mri) of the residual seismic moment to the total moment release in a region is used for imaging seismic moment precursors. Peaks in mri predict recent major earthquakes, including the 1985 Michoacan, 1985 central Chile, and 1992 Eureka, California earthquakes.

  11. Prediction of earthquakes: a data evaluation and exchange problem

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, Paul

    1978-11-15

    Recent experiences in earthquake prediction are recalled. Precursor information seems to be available from geodetic measurements, hydrological and geochemical measurements, electric and magnetic measurements, purely seismic phenomena, and zoological phenomena; some new methods are proposed. A list of possible earthquake triggers is given. The dilatancy model is contrasted with a dry model; they seem to be equally successful. In conclusion, the space and time range of the precursors is discussed in relation to the magnitude of earthquakes. (RWR)

  12. Thermoset precursor

    International Nuclear Information System (INIS)

    Yamamoto, Y.

    1983-04-01

    This invention pertains to a distinctive thermoset precursor which is prepared by mixing a resin composition (A) which can be hardened by ionizing radiation, and a resin composition (B) which can be hardened by heat but cannot be hardened by, or is resistant to, ionizing radiation, and by coating or impregnating a molding or other substrate with a sheet or film of this mixture and irradiating this with an ionizing radiation. The principal components of composition (A) and (B) can be the following: (1) an acrylate or methacrylate and an epoxy resin and an epoxy resin hardener; (2) an unsaturated polyester resin and epoxy resin and an epoxy resin hardener; (3) a diacrylate or dimethacrylate or polyethylene glycol and an epoxy resin; (4) an epoxy acrylates or epoxy methacrylate obtained by the addition reaction of epoxy resin and acrylic or methacrylic acid

  13. Synthesis and gas permeation properties of a novel thermally-rearranged polybenzoxazole made from an intrinsically microporous hydroxyl-functionalized triptycene-based polyimide precursor

    KAUST Repository

    Alghunaimi, Fahd; Ghanem, Bader; Wang, Yingge; Salinas, Octavio; Alaslai, Nasser Y.; Pinnau, Ingo

    2017-01-01

    A hydroxyl-functionalized triptycene-based polyimide of intrinsic microporosity (TDA1-APAF) was converted to a polybenzoxazole (PBO) by heat treatment at 460 °C under nitrogen atmosphere. TDA1-APAF treated for 15 min (TR 460) resulted in a PBO conversion of 95% based on a theoretical weight loss of 11.7 wt% of the polyimide precursor. The BET surface area of the TR 460 (680 m2 g−1) was significantly higher than that of the TDA1-APAF polyimide (260 m2 g−1) as determined by nitrogen adsorption at −196 °C. Heating TDA1-APAF for 30 min (TRC 460) resulted in a weight loss of 13.5 wt%, indicating full conversion to PBO and partial main-chain degradation. The TR 460 membrane displayed excellent O2 permeability of 311 Barrer coupled with an O2/N2 selectivity of 5.4 and CO2 permeability of 1328 Barrer with a CO2/CH4 selectivity of 27. Interestingly, physical aging over 150 days resulted in enhanced O2/N2 selectivity of 6.3 with an O2 permeability of 185 Barrer. The novel triptycene-based TR 460 PBO outperformed all previously reported APAF-polyimide-based PBOs with gas permeation performance close to recently reported polymers located on the 2015 O2/N2 upper bound. Based on this study, thermally-rearranged membranes from hydroxyl-functionalized triptycene-based polyimides are promising candidate membrane materials for air separation, specifically in applications where space and weight of membrane systems are of utmost importance such as nitrogen production for inert atmospheres in fuel lines and tanks on aircrafts and off-shore oil- or natural gas platforms. Mixed-gas permeation experiments also demonstrated good performance of the TR 460 membrane for natural gas sweetening with a CO2 permeability of ∼1000 Barrer and CO2/CH4 selectivity of 22 at a typical CO2 wellhead partial pressure of 10 bar.

  14. Synthesis and gas permeation properties of a novel thermally-rearranged polybenzoxazole made from an intrinsically microporous hydroxyl-functionalized triptycene-based polyimide precursor

    KAUST Repository

    Alghunaimi, Fahd

    2017-06-06

    A hydroxyl-functionalized triptycene-based polyimide of intrinsic microporosity (TDA1-APAF) was converted to a polybenzoxazole (PBO) by heat treatment at 460 °C under nitrogen atmosphere. TDA1-APAF treated for 15 min (TR 460) resulted in a PBO conversion of 95% based on a theoretical weight loss of 11.7 wt% of the polyimide precursor. The BET surface area of the TR 460 (680 m2 g−1) was significantly higher than that of the TDA1-APAF polyimide (260 m2 g−1) as determined by nitrogen adsorption at −196 °C. Heating TDA1-APAF for 30 min (TRC 460) resulted in a weight loss of 13.5 wt%, indicating full conversion to PBO and partial main-chain degradation. The TR 460 membrane displayed excellent O2 permeability of 311 Barrer coupled with an O2/N2 selectivity of 5.4 and CO2 permeability of 1328 Barrer with a CO2/CH4 selectivity of 27. Interestingly, physical aging over 150 days resulted in enhanced O2/N2 selectivity of 6.3 with an O2 permeability of 185 Barrer. The novel triptycene-based TR 460 PBO outperformed all previously reported APAF-polyimide-based PBOs with gas permeation performance close to recently reported polymers located on the 2015 O2/N2 upper bound. Based on this study, thermally-rearranged membranes from hydroxyl-functionalized triptycene-based polyimides are promising candidate membrane materials for air separation, specifically in applications where space and weight of membrane systems are of utmost importance such as nitrogen production for inert atmospheres in fuel lines and tanks on aircrafts and off-shore oil- or natural gas platforms. Mixed-gas permeation experiments also demonstrated good performance of the TR 460 membrane for natural gas sweetening with a CO2 permeability of ∼1000 Barrer and CO2/CH4 selectivity of 22 at a typical CO2 wellhead partial pressure of 10 bar.

  15. Dynamic Assessment of Seismic Risk (DASR) by Multi-parametric Observations: Preliminary Results of PRIME experiment within the PRE-EARTHQUAKES EU-FP7 Project

    Science.gov (United States)

    Tramutoli, V.; Inan, S.; Jakowski, N.; Pulinets, S. A.; Romanov, A.; Filizzola, C.; Shagimuratov, I.; Pergola, N.; Ouzounov, D. P.; Papadopoulos, G. A.; Parrot, M.; Genzano, N.; Lisi, M.; Alparlsan, E.; Wilken, V.; Tsybukia, K.; Romanov, A.; Paciello, R.; Zakharenkova, I.; Romano, G.

    2012-12-01

    The integration of different observations together with the refinement of data analysis methods, is generally expected to improve our present knowledge of preparatory phases of earthquakes and of their possible precursors. This is also the main goal of PRE-EARTHQUAKES (Processing Russian and European EARTH observations for earthQUAKE precursors Studies) the FP7 Project which, to this aim, committed together, different international expertise and observational capabilities, in the last 2 years. In the learning phase of the project, different parameters (e.g. thermal anomalies, total electron content, radon concentration, etc.), measured from ground and satellite systems and analyzed by using different data analysis approaches, have been studied for selected geographic areas and specific seismic events in the past. Since July 2012 the PRIME (PRE-EARTHQUAKES Real-time Integration and Monitoring Experiment) started attempting to perform, on the base of independent observations collected and integrated in real-time through the PEG (PRE-EARTHQUAKES Geo-portal), a Dynamic Assessment of Seismic Risk (DASR) on selected geographic areas of Europe (Italy-Greece-Turkey) and Asia (Kamchatka, Sakhalin, Japan). In this paper, results so far achieved as well as the potential and opportunities they open for a worldwide Earthquake Observation System (EQuOS) - as a dedicated component of GEOSS (Global Earth Observation System of Systems) - will be presented.

  16. Thermal behavior and phase transformation of ZrO{sub 2}–10%SiO{sub 2} precursor powder prepared by a co-precipitation route without adding stability agent

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Hsueh-Liang [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hwang, Weng-Sing [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, Cheng-Li [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Lee, Kuen-Chan [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Huang, Hong-Hsin [Department of Electrical Engineering, Cheng Shiu University, 840 Cheng Ching Road, Niaosong, Kaohsiung 83347, Taiwan (China); Lee, Huey-Er, E-mail: huerle@kmu.edu.tw [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University, 100 Tzyou 1st Road, Kaohsiung 807, Taiwan (China)

    2014-12-15

    Highlights: • The precursor powders contained about 68.3 wt% ZrO{sub 2}, which corresponds to ZrO{sub 2}·1/8 H{sub 2}O. • The exothermic peak temperature of tetragonal ZrO{sub 2} formation occurred at 1014 K. • The activation energy of ZrO{sub 2}–10%SiO{sub 2} precursors crystallization is 993.7 kJ/mol. • Only the tetragonal ZrO{sub 2} formed when the precursor calcined at 1173–1373 K for 2 h. • As calcined at 1473 K for 2 h, tetragonal ZrO{sub 2} fully converted to monoclinic ZrO{sub 2}. - Abstract: Thermal behavior and phase transformation of ZrO{sub 2}–10%SiO{sub 2} precursor powder prepared by a co-precipitation route without adding stability agent has been studied using different thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano beam electron diffraction (NBED), high-resolution TEM (HRTEM) and energy-dispersive X-ray spectrometer (EDS). The TG results show that four weight loss regions were from 298 to 443 K, 443 to 743 K, 743 to 793 K and 793 to 1400 K. The DTA result shows that the ZrO{sub 2} freeze-dried precursor powders crystallization at 1014 K. The activation energy of 993.7 kJ/mol was obtained for tetragonal ZrO{sub 2} crystallization using a non-isothermal process. The XRD result shows that only a single phase of tetragonal ZrO{sub 2} appears when the freeze-dried precursor powders after calcination between 1173 and 1373 K for 2 h. Moreover, when calcined at 1473 K for 2 h, the phase transformation from tetragonal ZrO{sub 2} fully converted to monoclinic ZrO{sub 2} occurred.

  17. [Pd(NH{sub 3}){sub 4}]MoO{sub 4} as a precursor for Pd–Mo-containing catalysts: Thermal behavior, X-ray analysis of the thermolysis products and related catalytic studies

    Energy Technology Data Exchange (ETDEWEB)

    Gubanov, Alexander I., E-mail: gubanov@niic.nsc.su [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Prospekt 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Filatov, Eugeny Yu.; Semitut, Eugeny Yu.; Smolentsev, Anton I. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Prospekt 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Snytnikov, Pavel V.; Potemkin, Dmitry I. [Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Prospekt 5, 630090 Novosibirsk (Russian Federation); Korenev, Sergey V. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Prospekt 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation)

    2013-08-20

    Highlights: • [Pd(NH{sub 3}){sub 4}]MoO{sub 4} as a precursor for Pd–Mo-containing catalysts. • Different products are formed depending on atmosphere of thermal decomposition. • Thermolysis in He atmosphere affords finely mixed two-phase nanosized system Pd–MoO{sub 2}. • Pd–MoO{sub 2} system can be a promising catalyst both in pure and supported form. - Abstract: Compound [Pd(NH{sub 3}){sub 4}]MoO{sub 4} (1) has been synthesized and characterized by IR spectroscopy, analytical data, powder and single-crystal X-ray crystallography. Thermal properties of 1 have been examined by thermogravimetry. Powder X-ray diffraction has been applied to investigate the nanosized products of thermal decomposition of the precursor in hydrogen (Pd–Mo) and helium (Pd–MoO{sub 2}) atmospheres. Pd–Mo catalysts supported with γ-Al{sub 2}O{sub 3} have been tested in oxidation of CO and H{sub 2} mixtures.

  18. Magnéli phases Ti{sub 4}O{sub 7} and Ti{sub 8}O{sub 15} and their carbon nanocomposites via the thermal decomposition-precursor route

    Energy Technology Data Exchange (ETDEWEB)

    Conze, S., E-mail: susan.conze@ikts.fraunhofer.de [Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277 Dresden (Germany); Veremchuk, I. [Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden (Germany); Reibold, M. [Technical University of Dresden, Zum Triebenberg 50, 01328 Dresden (Zaschendorf) (Germany); Matthey, B.; Michaelis, A. [Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277 Dresden (Germany); Grin, Yu. [Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden (Germany); Kinski, I. [Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277 Dresden (Germany)

    2015-09-15

    A new synthetic approach for producing nano-powders of the Magnéli phases Ti{sub 4}O{sub 7}, Ti{sub 8}O{sub 15} and their carbon nanocomposites by thermal decomposition-precursor route is proposed. The formation mechanism of the single-phase carbon nanocomposites (Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C) from metal–organic precursors is studied using FT-IR, elemental analysis, TG, STA-MS and others. The synthesis parameters and conditions were optimized to prepare the target oxides with the desired microstructure and physical properties. The electrical and transport properties of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are investigated. These nano-materials are n-type semiconductors with relatively low thermal conductivity in contrast to the bulk species. The nanostructured carbon nanocomposites of Magnéli phases achieve a low thermal conductivity close to 1 W/m K at RT. The maximum ZT{sub 570} {sub °C} values are 0.04 for Ti{sub 4}O{sub 7}/C powder nanocomposite and 0.01 for Ti{sub 8}O{sub 15}/C bulk nanocomposite. - Graphical abstract: From the precursor to the produced titanium oxide pellet and its microstructure (SEM, TEM micrographs) as well as results of phase and thermoelectric analyses. - Highlights: • Magnéli phases Ti{sub 4}O{sub 7}/Ti{sub 8}O{sub 15} via thermal decomposition-precursor route is proposed. • The formation mechanism of the nanocomposites Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are investigated. • Microstructure of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are examined. • The electrical and transport properties of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are investigated. • The maximum figure of mertit ZT{sub 570} {sub °C} of Ti{sub 4}O{sub 7}/C and Ti{sub 8}O{sub 15}/C are 0.01 and 0.04.

  19. Analog earthquakes

    International Nuclear Information System (INIS)

    Hofmann, R.B.

    1995-01-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository

  20. The mechanism of earthquake

    Science.gov (United States)

    Lu, Kunquan; Cao, Zexian; Hou, Meiying; Jiang, Zehui; Shen, Rong; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    earthquakes and deep-focus earthquakes are the energy release caused by the slip or flow of rocks following a jamming-unjamming transition. (4) The energetics and impending precursors of earthquake: The energy of earthquake is the kinetic energy released from the jamming-unjamming transition. Calculation shows that the kinetic energy of seismic rock sliding is comparable with the total work demanded for rocks’ shear failure and overcoming of frictional resistance. There will be no heat flow paradox. Meanwhile, some valuable seismic precursors are likely to be identified by observing the accumulation of additional tectonic forces, local geological changes, as well as the effect of rock state changes, etc.

  1. Multi-Parameter Observation and Detection of Pre-Earthquake Signals in Seismically Active Areas

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Parrot, M.; Liu, J. Y.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The recent large earthquakes (M9.0 Tohoku, 03/2011; M7.0 Haiti, 01/2010; M6.7 L Aquila, 04/2008; and M7.9 Wenchuan 05/2008) have renewed interest in pre-anomalous seismic signals associated with them. Recent workshops (DEMETER 2006, 2011 and VESTO 2009 ) have shown that there were precursory atmospheric /ionospheric signals observed in space prior to these events. Our initial results indicate that no single pre-earthquake observation (seismic, magnetic field, electric field, thermal infrared [TIR], or GPS/TEC) can provide a consistent and successful global scale early warning. This is most likely due to complexity and chaotic nature of earthquakes and the limitation in existing ground (temporal/spatial) and global satellite observations. In this study we analyze preseismic temporal and spatial variations (gas/radon counting rate, atmospheric temperature and humidity change, long-wave radiation transitions and ionospheric electron density/plasma variations) which we propose occur before the onset of major earthquakes:. We propose an Integrated Space -- Terrestrial Framework (ISTF), as a different approach for revealing pre-earthquake phenomena in seismically active areas. ISTF is a sensor web of a coordinated observation infrastructure employing multiple sensors that are distributed on one or more platforms; data from satellite sensors (Terra, Aqua, POES, DEMETER and others) and ground observations, e.g., Global Positioning System, Total Electron Content (GPS/TEC). As a theoretical guide we use the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model to explain the generation of multiple earthquake precursors. Using our methodology, we evaluated retrospectively the signals preceding the most devastated earthquakes during 2005-2011. We observed a correlation between both atmospheric and ionospheric anomalies preceding most of these earthquakes. The second phase of our validation include systematic retrospective analysis for more than 100 major earthquakes (M>5

  2. Thermal and chemical evolution in the early Solar System as recorded by FUN CAIs: Part II - Laboratory evaporation of potential CMS-1 precursor material

    Science.gov (United States)

    Mendybaev, Ruslan A.; Williams, Curtis D.; Spicuzza, Michael J.; Richter, Frank M.; Valley, John W.; Fedkin, Alexei V.; Wadhwa, Meenakshi

    2017-03-01

    We present the results of laboratory experiments in which a forsterite-rich melt estimated to be a potential precursor of Allende CMS-1 FUN CAI was evaporated into vacuum for different lengths of time at 1900 °C. The evaporation of this melt resulted in residues that define trajectories in chemical as well as magnesium, silicon and oxygen isotopic composition space and come very close to the measured properties of CMS-1. The isotopic composition of the evaporation residues was also used to determine the kinetic isotopic fractionation factors [α2,1 (vapor-melt) defined as the ratio of isotopes 2 and 1 of a given element in the evaporating gas divided by their ratio in the evaporating source] for evaporation of magnesium (α25,24 for 25Mg/24Mg), silicon (α29,28 for 29Si/28Si) and oxygen (α18,16 for 18O/16O) from the forsterite-rich melt at 1900 °C. The values of α25,24 = 0.98383 ± 0.00033 and α29,28 = 0.99010 ± 0.00038 are essentially independent of change in the melt composition as evaporation proceeds. In contrast, α18,16 changes from 0.9815 ± 0.0016 to ∼0.9911 when the residual melt composition changes from forsteritic to melilitic. Using the determined values of α25,24 and α29,28 and present-day bulk chemical composition of the CMS-1, the composition of the precursor of the inclusion was estimated to be close to the clinopyroxene + spinel + forsterite assemblage condensed from a solar composition gas. The correspondence between the chemical composition and isotopic fractionation of experimental evaporation residues and the present-day bulk chemical and isotopic compositions of CMS-1 is evidence that evaporation played a major role in the chemical evolution of CMS-1.

  3. Radon anomalies prior to earthquakes (2). Atmospheric radon anomaly observed before the Hyogoken-Nanbu earthquake

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Tokonami, Shinji; Yasuoka, Yumi; Shinogi, Masaki; Nagahama, Hiroyuki; Omori, Yasutaka; Kawada, Yusuke

    2008-01-01

    Before the 1995 Hyogoken-Nanbu earthquake, various geochemical precursors were observed in the aftershock area: chloride ion concentration, groundwater discharge rate, groundwater radon concentration and so on. Kobe Pharmaceutical University (KPU) is located about 25 km northeast from the epicenter and within the aftershock area. Atmospheric radon concentration had been continuously measured from 1984 at KPU, using a flow-type ionization chamber. The radon concentration data were analyzed using the smoothed residual values which represent the daily minimum of radon concentration with the exclusion of normalized seasonal variation. The radon concentration (smoothed residual values) demonstrated an upward trend about two months before the Hyogoken-Nanbu earthquake. The trend can be well fitted to a log-periodic model related to earthquake fault dynamics. As a result of model fitting, a critical point was calculated to be between 13 and 27 January 1995, which was in good agreement with the occurrence date of earthquake (17 January 1995). The mechanism of radon anomaly before earthquakes is not fully understood. However, it might be possible to detect atmospheric radon anomaly as a precursor before a large earthquake, if (1) the measurement is conducted near the earthquake fault, (2) the monitoring station is located on granite (radon-rich) areas, and (3) the measurement is conducted for more than several years before the earthquake to obtain background data. (author)

  4. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  5. Book review: Earthquakes and water

    Science.gov (United States)

    Bekins, Barbara A.

    2012-01-01

    It is really nice to see assembled in one place a discussion of the documented and hypothesized hydrologic effects of earthquakes. The book is divided into chapters focusing on particular hydrologic phenomena including liquefaction, mud volcanism, stream discharge increases, groundwater level, temperature and chemical changes, and geyser period changes. These hydrologic effects are inherently fascinating, and the large number of relevant publications in the past decade makes this summary a useful milepost. The book also covers hydrologic precursors and earthquake triggering by pore pressure. A natural need to limit the topics covered resulted in the omission of tsunamis and the vast literature on the role of fluids and pore pressure in frictional strength of faults. Regardless of whether research on earthquake-triggered hydrologic effects ultimately provides insight into the physics of earthquakes, the text provides welcome common ground for interdisciplinary collaborations between hydrologists and seismologists. Such collaborations continue to be crucial for investigating hypotheses about the role of fluids in earthquakes and slow slip. 

  6. A geological evidence of very low frequency earthquake inferred from vitrinite thermal records across a microfault within on-land accretionary complex.

    Science.gov (United States)

    Morita, K.; Hashimoto, Y.; Hirose, T.; Hamada, Y.; Kitamura, M.

    2014-12-01

    Generation of friction heat associated with fault slip is controlled by friction, slip distance and fault thickness. Nature of fault slip can be estimated from the record of frictional heating along a fault (e.g., Fulton et al., 2012). Purpose of this study is to detect the record of frictional heating along a microfault observed in on-land accretionary complex, Shimanto Belt, SW Japan using vitrinite reflectance (Ro) and to examine the characteristics of fault slip in deeper subduction zone. The study area is located in Nonokawa formation, the Cretaceous Shimanto Belt, in Kochi Prefecture, Southwest Japan. We found a carbonaceous material concentrated layer (CMCL) in the formation. Some micro-faults cut the layer. The thickness of CMCL is about 3-4m. Ro of host rock is about 0.98-1.1% and of fault rock is over 1.2%. Kitamura et al. (2012) pointed out that fracturing energy may control the high Ro within fault zone. To avoid the effect of fracturing on Ro, we tired to detect a diffusion pattern of frictional heating in host rocks. Distribution of Ro is mapped in thin sections to make the Ro-distance pattern perpendicular to the fault plane. Within the fracture zone, abnormally high Ro (about 2.0% or above) was observed. Ro was 1.25% at the wall of fracture zone and decreases to 1.1% at about 5cm from the wall. We interpreted that the Ro-distance pattern was resulted from the thermal diffusion. Using this diffusion pattern, the characteristic fault parameters, such as friction, slip rate and rise time (Tr) was examined. We set parameters Q (= friction times slip rate). We have simulated frictional heating and Ro maturation on the basis of the method by Sweeny and Burnham (1990). Grid search was conducted to find the best fitted combination of Q and Tr at the smallest residual between simulated Ro and observed Ro. In the result, we estimated about 1500 (Pa m/s) of Q and about 130000(s) of Tr. Because the base temperature is about 185˚C based on the 1.1% of Ro, the

  7. Radon anomalies prior to earthquakes (1). Review of previous studies

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Tokonami, Shinji; Yasuoka, Yumi; Shinogi, Masaki; Nagahama, Hiroyuki; Omori, Yasutaka; Kawada, Yusuke

    2008-01-01

    The relationship between radon anomalies and earthquakes has been studied for more than 30 years. However, most of the studies dealt with radon in soil gas or in groundwater. Before the 1995 Hyogoken-Nanbu earthquake, an anomalous increase of atmospheric radon was observed at Kobe Pharmaceutical University. The increase was well fitted with a mathematical model related to earthquake fault dynamics. This paper reports the significance of this observation, reviewing previous studies on radon anomaly before earthquakes. Groundwater/soil radon measurements for earthquake prediction began in 1970's in Japan as well as foreign countries. One of the most famous studies in Japan is groundwater radon anomaly before the 1978 Izu-Oshima-kinkai earthquake. We have recognized the significance of radon in earthquake prediction research, but recently its limitation was also pointed out. Some researchers are looking for a better indicator for precursors; simultaneous measurements of radon and other gases are new trials in recent studies. Contrary to soil/groundwater radon, we have not paid much attention to atmospheric radon before earthquakes. However, it might be possible to detect precursors in atmospheric radon before a large earthquake. In the next issues, we will discuss the details of the anomalous atmospheric radon data observed before the Hyogoken-Nanbu earthquake. (author)

  8. Changes in groundwater chemistry before two consecutive earthquakes in Iceland

    KAUST Repository

    Skelton, Alasdair

    2014-09-21

    Groundwater chemistry has been observed to change before earthquakes and is proposed as a precursor signal. Such changes include variations in radon count rates1, 2, concentrations of dissolved elements3, 4, 5 and stable isotope ratios4, 5. Changes in seismic wave velocities6, water levels in boreholes7, micro-seismicity8 and shear wave splitting9 are also thought to precede earthquakes. Precursor activity has been attributed to expansion of rock volume7, 10, 11. However, most studies of precursory phenomena lack sufficient data to rule out other explanations unrelated to earthquakes12. For example, reproducibility of a precursor signal has seldom been shown and few precursors have been evaluated statistically. Here we analyse the stable isotope ratios and dissolved element concentrations of groundwater taken from a borehole in northern Iceland between 2008 and 2013. We find that the chemistry of the groundwater changed four to six months before two greater than magnitude 5 earthquakes that occurred in October 2012 and April 2013. Statistical analyses indicate that the changes in groundwater chemistry were associated with the earthquakes. We suggest that the changes were caused by crustal dilation associated with stress build-up before each earthquake, which caused different groundwater components to mix. Although the changes we detect are specific for the site in Iceland, we infer that similar processes may be active elsewhere, and that groundwater chemistry is a promising target for future studies on the predictability of earthquakes.

  9. Changes in groundwater chemistry before two consecutive earthquakes in Iceland

    KAUST Repository

    Skelton, Alasdair; André n, Margareta; Kristmannsdó ttir, Hrefna; Stockmann, Gabrielle; Mö rth, Carl-Magnus; Sveinbjö rnsdó ttir, Á rny; Jonsson, Sigurjon; Sturkell, Erik; Guð rú nardó ttir, Helga Rakel; Hjartarson, Hreinn; Siegmund, Heike; Kockum, Ingrid

    2014-01-01

    Groundwater chemistry has been observed to change before earthquakes and is proposed as a precursor signal. Such changes include variations in radon count rates1, 2, concentrations of dissolved elements3, 4, 5 and stable isotope ratios4, 5. Changes in seismic wave velocities6, water levels in boreholes7, micro-seismicity8 and shear wave splitting9 are also thought to precede earthquakes. Precursor activity has been attributed to expansion of rock volume7, 10, 11. However, most studies of precursory phenomena lack sufficient data to rule out other explanations unrelated to earthquakes12. For example, reproducibility of a precursor signal has seldom been shown and few precursors have been evaluated statistically. Here we analyse the stable isotope ratios and dissolved element concentrations of groundwater taken from a borehole in northern Iceland between 2008 and 2013. We find that the chemistry of the groundwater changed four to six months before two greater than magnitude 5 earthquakes that occurred in October 2012 and April 2013. Statistical analyses indicate that the changes in groundwater chemistry were associated with the earthquakes. We suggest that the changes were caused by crustal dilation associated with stress build-up before each earthquake, which caused different groundwater components to mix. Although the changes we detect are specific for the site in Iceland, we infer that similar processes may be active elsewhere, and that groundwater chemistry is a promising target for future studies on the predictability of earthquakes.

  10. Earthquake Facts

    Science.gov (United States)

    ... North Dakota, and Wisconsin. The core of the earth was the first internal structural element to be identified. In 1906 R.D. Oldham discovered it from his studies of earthquake records. The inner core is solid, and the outer core is liquid and so does not transmit ...

  11. Understanding Earthquakes

    Science.gov (United States)

    Davis, Amanda; Gray, Ron

    2018-01-01

    December 26, 2004 was one of the deadliest days in modern history, when a 9.3 magnitude earthquake--the third largest ever recorded--struck off the coast of Sumatra in Indonesia (National Centers for Environmental Information 2014). The massive quake lasted at least 10 minutes and devastated the Indian Ocean. The quake displaced an estimated…

  12. Seismicity map tools for earthquake studies

    Science.gov (United States)

    Boucouvalas, Anthony; Kaskebes, Athanasios; Tselikas, Nikos

    2014-05-01

    We report on the development of new and online set of tools for use within Google Maps, for earthquake research. We demonstrate this server based and online platform (developped with PHP, Javascript, MySQL) with the new tools using a database system with earthquake data. The platform allows us to carry out statistical and deterministic analysis on earthquake data use of Google Maps and plot various seismicity graphs. The tool box has been extended to draw on the map line segments, multiple straight lines horizontally and vertically as well as multiple circles, including geodesic lines. The application is demonstrated using localized seismic data from the geographic region of Greece as well as other global earthquake data. The application also offers regional segmentation (NxN) which allows the studying earthquake clustering, and earthquake cluster shift within the segments in space. The platform offers many filters such for plotting selected magnitude ranges or time periods. The plotting facility allows statistically based plots such as cumulative earthquake magnitude plots and earthquake magnitude histograms, calculation of 'b' etc. What is novel for the platform is the additional deterministic tools. Using the newly developed horizontal and vertical line and circle tools we have studied the spatial distribution trends of many earthquakes and we here show for the first time the link between Fibonacci Numbers and spatiotemporal location of some earthquakes. The new tools are valuable for examining visualizing trends in earthquake research as it allows calculation of statistics as well as deterministic precursors. We plan to show many new results based on our newly developed platform.

  13. Is It Possible to Predict Strong Earthquakes?

    Science.gov (United States)

    Polyakov, Y. S.; Ryabinin, G. V.; Solovyeva, A. B.; Timashev, S. F.

    2015-07-01

    The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake a few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on 28 February 2013) recorded at two different sites in the southeastern part of the Kamchatka Peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential "immediate" (up to 2 weeks) deterministic precursors because of the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of K irshvink (Soc Am 90, 312-323, 2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard "input-sensor-response" approach to determine what input signals trigger specific seismic escape brain activity responses.

  14. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  15. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 1, Main report

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-11-01

    Since 1982, there has been a major effort expended to evaluate the susceptibility of nuclear Power plant equipment to failure and significant damage during seismic events. This was done by making use of data on the performance of electrical and mechanical equipment in conventional power plants and other similar industrial facilities during strong motion earthquakes. This report is intended as an extension of the seismic experience data collection effort and a compilation of experience data specific to power plant piping and supports designed and constructed US power piping code requirements which have experienced strong motion earthquakes. Eight damaging (Richter Magnitude 7.7 to 5.5) California earthquakes and their effects on 8 power generating facilities in use natural gas and California were reviewed. All of these facilities were visited and evaluated. Seven fossel-fueled (dual use natural gas and oil) and one nuclear fueled plants consisting of a total of 36 individual boiler or reactor units were investigated. Peak horizontal ground accelerations that either had been recorded on site at these facilities or were considered applicable to these power plants on the basis of nearby recordings ranged between 0.20g and 0.5lg with strong motion durations which varied from 3.5 to 15 seconds. Most US nuclear power plants are designed for a safe shutdown earthquake peak ground acceleration equal to 0.20g or less with strong motion durations which vary from 10 to 15 seconds

  16. Thin HTSC films produced by a polymer metal precursor technique

    Science.gov (United States)

    Lampe, L. v.; Zygalsky, F.; Hinrichsen, G.

    In precursors the metal ions are combined with acid groups of polymethacrylic acid (PMAA), polyacrylic acid (PAA) or novolac. Compared to thermal degradation temperature of pure polymers those of precursors are low. Precursors films were patterned by UV lithography. Diffractometric investigations showed that the c-axis oriented epitaxial films of YBa 2Cu 3O x and Bi 2Sr 2CaCu 2O x originated from amorphous metal oxide films, which were received after thermal degradation of the precursor. Transition temperatures and current densities were determined by electric resistivity measurements.

  17. Synergic solventing-out crystallization with subsequent time-delay thermal annealing of PbI2 precursor in mesostructured perovskite solar cells

    Science.gov (United States)

    Jia, Fujin; Guo, Yanqun; Che, Lijia; Liu, Zhiyong; Zeng, Zhigang; Cai, Chuanbing

    2018-06-01

    Although the two-step sequential deposition method provides an efficient route to fabricate high performance perovskite solar cells (PSSCs) with increasing reproducibility, the inefficient and incomplete conversion of PbI2 to perovskite is still quite a challenge. Following pioneering works, we found that the conversion process from PbI2 to perovskite mainly involves diffusion, infiltration, contact and reaction. In order to facilitate the conversion from PbI2 to perovskite, we demonstrate an effective method to regulate supersaturation level (the driving force to crystallization) of PbI2 by solventing-out crystallization combining with subsequent time-delay thermal annealing of PbI2 wet film. Enough voids and spaces in resulting porous PbI2 layer will be in favor of efficient diffusion, infiltration of CH3NH3I solution, and further enhance the contact and reaction between PbI2 and CH3NH3I in the whole film, leading to rapid, efficient and complete perovskite conversion with a conversion level of about 99.9%. Enhancement of light harvesting ranging from visible to near-IR region was achieved for the resultant high-quality perovskite. Upon this combined method, the fabricated mesostructured solar cells show tremendous power conversion efficiency (PCE) improvement from 3.2% to about 12.3% with less hysteresis owing to the simultaneous enhancement of short-circuit photocurrent density (J sc), open-circuit voltage (V oc) and fill factor (FF).

  18. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  19. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    International Nuclear Information System (INIS)

    Cruz R, S. de la; Armienta, M.A.; Segovia A, N.

    1992-05-01

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  20. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz R, S. de la; Armienta, M A; Segovia A, N

    1992-05-15

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  1. Defeating Earthquakes

    Science.gov (United States)

    Stein, R. S.

    2012-12-01

    The 2004 M=9.2 Sumatra earthquake claimed what seemed an unfathomable 228,000 lives, although because of its size, we could at least assure ourselves that it was an extremely rare event. But in the short space of 8 years, the Sumatra quake no longer looks like an anomaly, and it is no longer even the worst disaster of the Century: 80,000 deaths in the 2005 M=7.6 Pakistan quake; 88,000 deaths in the 2008 M=7.9 Wenchuan, China quake; 316,000 deaths in the M=7.0 Haiti, quake. In each case, poor design and construction were unable to withstand the ferocity of the shaken earth. And this was compounded by inadequate rescue, medical care, and shelter. How could the toll continue to mount despite the advances in our understanding of quake risk? The world's population is flowing into megacities, and many of these migration magnets lie astride the plate boundaries. Caught between these opposing demographic and seismic forces are 50 cities of at least 3 million people threatened by large earthquakes, the targets of chance. What we know for certain is that no one will take protective measures unless they are convinced they are at risk. Furnishing that knowledge is the animating principle of the Global Earthquake Model, launched in 2009. At the very least, everyone should be able to learn what his or her risk is. At the very least, our community owes the world an estimate of that risk. So, first and foremost, GEM seeks to raise quake risk awareness. We have no illusions that maps or models raise awareness; instead, earthquakes do. But when a quake strikes, people need a credible place to go to answer the question, how vulnerable am I, and what can I do about it? The Global Earthquake Model is being built with GEM's new open source engine, OpenQuake. GEM is also assembling the global data sets without which we will never improve our understanding of where, how large, and how frequently earthquakes will strike, what impacts they will have, and how those impacts can be lessened by

  2. Earthquake Early Warning Systems

    OpenAIRE

    Pei-Yang Lin

    2011-01-01

    Because of Taiwan’s unique geographical environment, earthquake disasters occur frequently in Taiwan. The Central Weather Bureau collated earthquake data from between 1901 and 2006 (Central Weather Bureau, 2007) and found that 97 earthquakes had occurred, of which, 52 resulted in casualties. The 921 Chichi Earthquake had the most profound impact. Because earthquakes have instant destructive power and current scientific technologies cannot provide precise early warnings in advance, earthquake ...

  3. A Deterministic Approach to Earthquake Prediction

    Directory of Open Access Journals (Sweden)

    Vittorio Sgrigna

    2012-01-01

    Full Text Available The paper aims at giving suggestions for a deterministic approach to investigate possible earthquake prediction and warning. A fundamental contribution can come by observations and physical modeling of earthquake precursors aiming at seeing in perspective the phenomenon earthquake within the framework of a unified theory able to explain the causes of its genesis, and the dynamics, rheology, and microphysics of its preparation, occurrence, postseismic relaxation, and interseismic phases. Studies based on combined ground and space observations of earthquake precursors are essential to address the issue. Unfortunately, up to now, what is lacking is the demonstration of a causal relationship (with explained physical processes and looking for a correlation between data gathered simultaneously and continuously by space observations and ground-based measurements. In doing this, modern and/or new methods and technologies have to be adopted to try to solve the problem. Coordinated space- and ground-based observations imply available test sites on the Earth surface to correlate ground data, collected by appropriate networks of instruments, with space ones detected on board of Low-Earth-Orbit (LEO satellites. Moreover, a new strong theoretical scientific effort is necessary to try to understand the physics of the earthquake.

  4. Synthesis, spectral and thermal studies of pyridyl adducts of Zn(II) and Cd(II) dithiocarbamates, and their use as single source precursors for ZnS and CdS nanoparticles.

    Science.gov (United States)

    Onwudiwe, Damian C; Strydom, Christien A; Oluwafemi, Oluwatobi S; Hosten, Eric; Jordaan, Anine

    2014-06-21

    The synthesis, spectroscopic characterisation, and thermal studies of pyridyl adducts of Zn(II) and Cd(II) complexes of N-ethyl-N-phenyl dithiocarbamate, represented as [ZnL2py] and [CdL2py2], are reported. Single-crystal X-ray structural analysis of the Zn compound showed that it is five-coordinate with four sulphurs from dithiocarbamate and one nitrogen from pyridine in a distorted square pyramidal geometry. The thermogravimetric studies indicate that the zinc and cadmium compounds undergo fast weight loss, and the temperature at maximum rate of decomposition is at 277 °C and 265 °C respectively, to give the metal (Zn or Cd) sulphide residues. These compounds were used as single molecule precursors to produce nanocrystalline MS (M = Zn, Cd) after thermolysis in hexadecylamine. The morphological and optical properties of the resulting MS nanocrystallites were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-Vis absorption and photoluminescence (PL) spectroscopy, and powdered X-ray diffraction (XRD). By varying the growth time, the temporal evolution of the optical properties and morphology of the nanocrystals were investigated.

  5. N-Nitroso Compound Precursors in some Nigerian Forage Crops ...

    African Journals Online (AJOL)

    N-Nitroso Compound Precursors in some Nigerian Forage Crops. ... were analyzed as their sulphonamides by gas chromatography interfaced with a chemiluminescence detector-Thermal Energy Analyzer modified for use in nitrogen mode.

  6. Investigation of the relationship between ionospheric foF2 and earthquakes

    Science.gov (United States)

    Karaboga, Tuba; Canyilmaz, Murat; Ozcan, Osman

    2018-04-01

    Variations of the ionospheric F2 region critical frequency (foF2) have been investigated statistically before earthquakes during 1980-2008 periods in Japan area. Ionosonde data was taken from Kokubunji station which is in the earthquake preparation zone for all earthquakes. Standard Deviations and Inter-Quartile Range methods are applied to the foF2 data. It is observed that there are anomalous variations in foF2 before earthquakes. These variations can be regarded as ionospheric precursors and may be used for earthquake prediction.

  7. Thermal polycondensation of anthracene for carbon precursors

    Czech Academy of Sciences Publication Activity Database

    Valovičová, Věra; Plevová, Eva; Vaculíková, Lenka; Ritz, M.; Vallová, S.

    2016-01-01

    Roč. 124, č. 1 (2016), s. 261-267 ISSN 1388-6150 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : anthracene * polycondensation * mesophase Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.953, year: 2016 http://link.springer.com/article/10.1007%2Fs10973-015-5124-9

  8. IR spectral analysis for the diagnostics of crust earthquake precursors

    Directory of Open Access Journals (Sweden)

    R. M. Umarkhodgaev

    2012-11-01

    Full Text Available Some possible physical processes are analysed that cause, under the condition of additional ionisation in a pre-breakdown electric field, emissions in the infrared (IR interval. The atmospheric transparency region of the IR spectrum at wavelengths of 7–15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analyzed. For daytime conditions, modifications of the adsorption spectra of the scattered solar emissions are studied; for nighttime, variations of emission spectra may be used for the analysis.

  9. Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory

    Science.gov (United States)

    Deyi, Feng; Ichikawa, M.

    1989-11-01

    In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.

  10. Identification of radon anomalies related to earthquakes

    International Nuclear Information System (INIS)

    Ozdas, M.; Inceoglu, F.; Rahman, C.; Yaprak, G.

    2009-01-01

    Put of many proposed earthquake precursors, temporal radon variation in soil is classified as one of a few promising geochemical signals that may be used for earthquake prediction. However, to use radon variation in soil gas as a reliable earthquake precursor, it must be realized that radon changes are controlled not only by deeper phenomena such as earthquake, but they are also controlled by meteorological parameters such as precipitation, barometric pressure, air temperature and etc. Further studies are required to differentiate the changes in the measured radon concentration caused by tectonic disturbances from the meteorological parameters. In the current study, temporal radon variations in soil gas along active faults in Alasehir of Gediz Graben Systems have been continuously monitored by LR-115 nuclear track detectors for two years. Additionally, the meteorological parameters such as barometric pressure, rainfall and air temperature at the monitoring site have been observed during the same period. Accordingly, regression analysis have been applied to the collected data to identify the radon anomalies due to the seismic activities from those of meteorological conditions.

  11. Electrical resistivity variations associated with earthquakes on the san andreas fault.

    Science.gov (United States)

    Mazzella, A; Morrison, H F

    1974-09-06

    A 24 percent precursory change in apparent electrical resistivity was observed before a magnitude 3.9 earthquake of strike-slip nature on the San Andreas fault in central California. The experimental configuration and numerical calculations suggest that the change is associated with a volume at depth rather than some near-surface phenomenon. The character and duration of the precursor period agree well with those of other earthquake studies and support a dilatant earthquake mechanism model.

  12. Earthquake forecasting studies using radon time series data in Taiwan

    Science.gov (United States)

    Walia, Vivek; Kumar, Arvind; Fu, Ching-Chou; Lin, Shih-Jung; Chou, Kuang-Wu; Wen, Kuo-Liang; Chen, Cheng-Hong

    2017-04-01

    For few decades, growing number of studies have shown usefulness of data in the field of seismogeochemistry interpreted as geochemical precursory signals for impending earthquakes and radon is idendified to be as one of the most reliable geochemical precursor. Radon is recognized as short-term precursor and is being monitored in many countries. This study is aimed at developing an effective earthquake forecasting system by inspecting long term radon time series data. The data is obtained from a network of radon monitoring stations eastblished along different faults of Taiwan. The continuous time series radon data for earthquake studies have been recorded and some significant variations associated with strong earthquakes have been observed. The data is also examined to evaluate earthquake precursory signals against environmental factors. An automated real-time database operating system has been developed recently to improve the data processing for earthquake precursory studies. In addition, the study is aimed at the appraisal and filtrations of these environmental parameters, in order to create a real-time database that helps our earthquake precursory study. In recent years, automatic operating real-time database has been developed using R, an open source programming language, to carry out statistical computation on the data. To integrate our data with our working procedure, we use the popular and famous open source web application solution, AMP (Apache, MySQL, and PHP), creating a website that could effectively show and help us manage the real-time database.

  13. Earthquake location in island arcs

    Science.gov (United States)

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  14. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  15. Statistical validation of earthquake related observations

    Science.gov (United States)

    Kossobokov, V. G.

    2011-12-01

    The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable or, conversely, delicately-designed models. The widespread practice of deceptive modeling considered as a "reasonable proxy" of the natural seismic process leads to seismic hazard assessment of unknown quality, which errors propagate non-linearly into inflicted estimates of risk and, eventually, into unexpected societal losses of unacceptable level. The studies aimed at forecast/prediction of earthquakes must include validation in the retro- (at least) and, eventually, in prospective tests. In the absence of such control a suggested "precursor/signal" remains a "candidate", which link to target seismic event is a model assumption. Predicting in advance is the only decisive test of forecast/predictions and, therefore, the score-card of any "established precursor/signal" represented by the empirical probabilities of alarms and failures-to-predict achieved in prospective testing must prove statistical significance rejecting the null-hypothesis of random coincidental occurrence in advance target earthquakes. We reiterate suggesting so-called "Seismic Roulette" null-hypothesis as the most adequate undisturbed random alternative accounting for the empirical spatial distribution of earthquakes: (i) Consider a roulette wheel with as many sectors as the number of earthquake locations from a sample catalog representing seismic locus, a sector per each location and (ii) make your bet according to prediction (i.e., determine, which locations are inside area of alarm, and put one chip in each of the corresponding sectors); (iii) Nature turns the wheel; (iv) accumulate statistics of wins and losses along with the number of chips spent. If a precursor in charge of prediction exposes an imperfection of Seismic Roulette then, having in mind

  16. Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  17. Scope of radon monitoring for earthquake-studies in India

    International Nuclear Information System (INIS)

    Virk, H.S.

    1994-01-01

    In India, there is scope for investigating and exploiting radon as a precursor for earthquakes and for exploration of hydrocarbon deposits. This report mainly deals with the investigations carried out in Kangra and Chamba valleys of Himachal Pradesh under Himalayan Seismicity Project of Department of Science and Technology, Govt. of India. 20 refs., 4 figs., 1 tab

  18. The USGS plan for short-term prediction of the anticipated Parkfield earthquake

    Science.gov (United States)

    Bakun, W.H.

    1988-01-01

    Aside from the goal of better understanding the Parkfield earthquake cycle, it is the intention of the U.S Geological Survey to attempt to issue a warning shortly before the anticipated earthquake. Although short-term earthquake warnings are not yet generally feasible, the wealth of information available for the previous significant Parkfield earthquakes suggests that if the next earthquake follows the pattern of "characteristic" Parkfield shocks, such a warning might be possible. Focusing on earthquake precursors reported for the previous  "characteristic" shocks, particulary the 1934 and 1966 events, the USGS developed a plan* in late 1985 on which to base earthquake warnings for Parkfield and has assisted State, county, and local officials in the Parkfield area to prepare a coordinated, reasonable response to a warning, should one be issued. 

  19. Crowdsourced earthquake early warning

    Science.gov (United States)

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  20. Probabilistic approach to earthquake prediction.

    Directory of Open Access Journals (Sweden)

    G. D'Addezio

    2002-06-01

    Full Text Available The evaluation of any earthquake forecast hypothesis requires the application of rigorous statistical methods. It implies a univocal definition of the model characterising the concerned anomaly or precursor, so as it can be objectively recognised in any circumstance and by any observer.A valid forecast hypothesis is expected to maximise successes and minimise false alarms. The probability gain associated to a precursor is also a popular way to estimate the quality of the predictions based on such precursor. Some scientists make use of a statistical approach based on the computation of the likelihood of an observed realisation of seismic events, and on the comparison of the likelihood obtained under different hypotheses. This method can be extended to algorithms that allow the computation of the density distribution of the conditional probability of earthquake occurrence in space, time and magnitude. Whatever method is chosen for building up a new hypothesis, the final assessment of its validity should be carried out by a test on a new and independent set of observations. The implementation of this test could, however, be problematic for seismicity characterised by long-term recurrence intervals. Even using the historical record, that may span time windows extremely variable between a few centuries to a few millennia, we have a low probability to catch more than one or two events on the same fault. Extending the record of earthquakes of the past back in time up to several millennia, paleoseismology represents a great opportunity to study how earthquakes recur through time and thus provide innovative contributions to time-dependent seismic hazard assessment. Sets of paleoseimologically dated earthquakes have been established for some faults in the Mediterranean area: the Irpinia fault in Southern Italy, the Fucino fault in Central Italy, the El Asnam fault in Algeria and the Skinos fault in Central Greece. By using the age of the

  1. Earthquake prediction with electromagnetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp [Hayakawa Institute of Seismo Electomagnetics, Co. Ltd., University of Electro-Communications (UEC) Incubation Center, 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan); Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo (Japan); Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062 (Japan); Fuji Security Systems. Co. Ltd., Iwato-cho 1, Shinjyuku-ku, Tokyo (Japan)

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  2. Earthquake forecasting and warning

    Energy Technology Data Exchange (ETDEWEB)

    Rikitake, T.

    1983-01-01

    This review briefly describes two other books on the same subject either written or partially written by Rikitake. In this book, the status of earthquake prediction efforts in Japan, China, the Soviet Union, and the United States are updated. An overview of some of the organizational, legal, and societal aspects of earthquake prediction in these countries is presented, and scientific findings of precursory phenomena are included. A summary of circumstances surrounding the 1975 Haicheng earthquake, the 1978 Tangshan earthquake, and the 1976 Songpan-Pingwu earthquake (all magnitudes = 7.0) in China and the 1978 Izu-Oshima earthquake in Japan is presented. This book fails to comprehensively summarize recent advances in earthquake prediction research.

  3. Radon/helium survey of thermal springs of Parbati, Beas and Sutlej valleys in Himachal Himalaya

    International Nuclear Information System (INIS)

    Virk, H.S.; Sharma, Anand K.; Naresh Kumar

    1998-01-01

    India has more than 300 thermal springs spread over the entire geographical area of the subcontinent. Some of these springs have linkage with Indian mythology and are famous pilgrimage centres since historical times. The temperature of water recorded in these springs varies from 40 degC to that of steam. Some of them are being exploited as a source for geothermal energy. The purpose of this study is to measure radon and helium activity in the thermal springs of Himachal Himalaya. Radon is estimated in the soil and thermal waters using alpha spectrometry and scintillometry, respectively. The radon activity is maximum ( 716.3 Bq/l ) in thermal spring at Kasol and minimum ( 15.9 Bq/l ) in a natural spring ( bauli ) at Takrer. Radon concentration is highly variable in the Parbati valley with minimum value of 2230±430 Bq/m 3 recorded at Chhinjra on the banks of river Parbati and a maximum value of 57700±2050 Bq/m 3 at Dharmaur, the site of uranium ore exploitation by the AMD (DAE). Helium is estimated in the thermal springs by using a Helium Leak Detector (sniffing technique). The radon and helium contents of Kasol thermal springs are correlatable with high radioactivity in the soil of the area as revealed by Alpha Guard survey in the environs of Parbati valley. The helium content recorded in thermal springs is found to vary between 15-90 ppm. Radon and helium are well established as geochemical precursors for earthquake prediction studies. Helium/radon ratio seems to be a better predictive tool for earthquakes in comparison to individual radon and helium precursors. (author)

  4. On the electric field transient anomaly observed at the time of the Kythira M=6.9 earthquake on January 2006

    Directory of Open Access Journals (Sweden)

    M. R. Varley

    2007-11-01

    Full Text Available The study of the Earth's electromagnetic fields prior to the occurrence of strong seismic events has repeatedly revealed cases were transient anomalies, often deemed as possible earthquake precursors, were observed on electromagnetic field recordings of surface, atmosphere and near space carried out measurements. In an attempt to understand the nature of such signals several models have been proposed based upon the exhibited characteristics of the observed anomalies and different possible generation mechanisms, with electric earthquake precursors (EEP appearing to be the main candidates for short-term earthquake precursors. This paper discusses the detection of a ULF electric field transient anomaly and its identification as a possible electric earthquake precursor accompanying the Kythira M=6.9 earthquake occurred on the 8 January 2006.

  5. Meat flavor precursors and factors influencing flavor precursors--A systematic review.

    Science.gov (United States)

    Khan, Muhammad Issa; Jo, Cheorun; Tariq, Muhammad Rizwan

    2015-12-01

    Flavor is the sensory impression sensed by taste and smell buds and is a leading factor determining the meat quality and purchasing decision of the consumer. Meat flavor is characteristic of volatiles produced as a result of reactions of non-volatile components that are induced thermally. The water soluble compounds having low molecular weight and meat lipids are important precursors of cooked meat flavor. The Maillard reaction, lipid oxidation, and vitamin degradation are leading reactions during cooking which develop meat flavor from uncooked meat with little aroma and bloody taste. The pre-slaughter and postmortem factors like animal breed, sex, age, feed, aging and cooking conditions contribute to flavor development of cooked meat. The objective of this review is to highlight the flavor chemistry, meat flavor precursors and factors affecting meat flavor precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Can mine tremors be predicted? Observational studies of earthquake nucleation, triggering and rupture in South African mines

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2012-05-01

    Full Text Available Earthquakes, and the tsunamis and landslides they trigger, pose a serious risk to people living close to plate boundaries, and a lesser but still significant risk to inhabitants of stable continental regions where destructive earthquakes are rare... of experiments that seek to identify reliable precursors of damaging seismic events. 1. Introduction Earthquakes, and the tsunamis and landslides they trigger, pose a serious risk to people living close to plate boundaries, and a lesser but still significant...

  7. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui

    2015-01-01

    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  8. Relaxation creep model of impending earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Morgounov, V. A. [Russian Academy of Sciences, Institute of Physics of the Earth, Moscow (Russian Federation)

    2001-04-01

    The alternative view of the current status and perspective of seismic prediction studies is discussed. In the problem of the ascertainment of the uncertainty relation Cognoscibility-Unpredictability of Earthquakes, priorities of works on short-term earthquake prediction are defined due to the advantage that the final stage of nucleation of earthquake is characterized by a substantial activation of the process while its strain rate increases by the orders of magnitude and considerably increased signal-to-noise ratio. Based on the creep phenomenon under stress relaxation conditions, a model is proposed to explain different images of precursors of impending tectonic earthquakes. The onset of tertiary creep appears to correspond to the onset of instability and inevitably fails unless it unloaded. At this stage, the process acquires the self-regulating character to the greatest extent the property of irreversibility, one of the important components of prediction reliability. Data in situ suggest a principal possibility to diagnose the process of preparation by ground measurements of acoustic and electromagnetic emission in the rocks under constant strain in the condition of self-relaxed stress until the moment of fracture are discussed in context. It was obtained that electromagnetic emission precedes but does not accompany the phase of macrocrak development.

  9. Earthquake at 40 feet

    Science.gov (United States)

    Miller, G. J.

    1976-01-01

    The earthquake that struck the island of Guam on November 1, 1975, at 11:17 a.m had many unique aspects-not the least of which was the experience of an earthquake of 6.25 Richter magnitude while at 40 feet. My wife Bonnie, a fellow diver, Greg Guzman, and I were diving at Gabgab Beach in teh outer harbor of Apra Harbor, engaged in underwater phoyography when the earthquake struck. 

  10. Earthquakes and economic growth

    OpenAIRE

    Fisker, Peter Simonsen

    2012-01-01

    This study explores the economic consequences of earthquakes. In particular, it is investigated how exposure to earthquakes affects economic growth both across and within countries. The key result of the empirical analysis is that while there are no observable effects at the country level, earthquake exposure significantly decreases 5-year economic growth at the local level. Areas at lower stages of economic development suffer harder in terms of economic growth than richer areas. In addition,...

  11. Earthquake precursory events around epicenters and local active faults

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S. B.; Haydari Azad, F.

    2013-05-01

    The chain of underground events which are triggered by seismic activities and physical/chemical interactions prior to a shake in the earth's crust may produce surface and above surface phenomena. During the past decades many researchers have been carried away to seek the possibility of short term earthquake prediction using remote sensing data. Currently, there are several theories about the preparation stages of earthquakes most of which stress on raises in heat and seismic waves as the main signs of an impending earthquakes. Their differences only lie in the secondary phenomena which are triggered by these events. In any case, with the recent advances in remote sensing sensors and techniques now we are able to provide wider, more accurate monitoring of land, ocean and atmosphere. Among all theoretical factors, changes in Surface Latent Heat Flux (SLHF), Sea & Land Surface Temperature (SST & LST) and surface chlorophyll-a are easier to record from earth observing satellites. SLHF is the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere. Abnormal variations in this factor have been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. In case of oceanic earthquakes, higher temperature at the ocean beds may lead to higher amount of Chl-a on the sea surface. On the other hand, it has been also said that the leak of Radon gas which occurs as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT). We have chosen to perform a statistical, long-term, and short-term approach by considering the reoccurrence intervals of past

  12. Implication of conjugate faulting in the earthquake brewing and originating process

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L.M. (Massachusetts Inst. of Tech., Cambridge); Deng, Q.; Jiang, P.

    1980-03-01

    The earthquake sequence, precursory and geologo-structural background of the Haicheng, Tangshan, Songpan-Pingwu earthquakes are discussed in this article. All of these earthquakes occurred in a seismic zone controlled by the main boundary faults of an intraplate fault block. However, the fault plane of a main earthquake does not consist of the same faults, but is rather a related secondary fault. They formed altogether a conjugate shearing rupture zone under the action of a regional tectonic stress field. As to the earthquake sequence, the foreshocks and aftershocks might occur on the conjugate fault planes within an epicentral region rather than be limited to the fault plane of a main earthquake, such as the distribution of foreshocks and aftershocks of the Haicheng earthquake. The characteristics of the long-, medium-, and imminent-term earthquake precursory anomalies of the three mentioned earthquakes, especially the character of well-studies anomaly phenomena in electrical resistivity, radon emission, groundwater and animal behavior, have been investigated. The studies of these earthquake precursors show that they were distributed in an area rather more extensive than the epicentral region. Some fault zones in the conjugate fault network usually appeared as distributed belts or concentrated zones of earthquake precursory anomalies, and can be traced in the medium-long term precursory field, but seem more distinct in the short-imminent term precursory anomalous field. These characteristics can be explained by the rupture and sliding originating along the conjugate shear network and the concentration of stress in the regional stress field.

  13. Could ionospheric variations be precursors of a seismic event? A short discussion

    Energy Technology Data Exchange (ETDEWEB)

    Kouris, S.S. [Thessaloniki Univ., Thessaloniki (Greece). Dept. of Electrical and Computer Engineering; Spalla, P. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca Onde Elettromagnetiche, Florence (Italy); Zolesi, B. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy)

    2001-04-01

    A short review of published papers on the perturbations in the ionosphere due to seismogenic effects is reported. The method to correlate different classes of phenomena as ionospheric variations and subsequent seismic events is discussed. Even if the theoretical attempts to understand or to explain the electromagnetic phenomena in the ionosphere, as precursors of earthquakes are not satisfactory, the reported results encourage further investigations.

  14. An interdisciplinary approach to study Pre-Earthquake processes

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S. A.; Hattori, K.; Taylor, P. T.

    2017-12-01

    We will summarize a multi-year research effort on wide-ranging observations of pre-earthquake processes. Based on space and ground data we present some new results relevant to the existence of pre-earthquake signals. Over the past 15-20 years there has been a major revival of interest in pre-earthquake studies in Japan, Russia, China, EU, Taiwan and elsewhere. Recent large magnitude earthquakes in Asia and Europe have shown the importance of these various studies in the search for earthquake precursors either for forecasting or predictions. Some new results were obtained from modeling of the atmosphere-ionosphere connection and analyses of seismic records (foreshocks /aftershocks), geochemical, electromagnetic, and thermodynamic processes related to stress changes in the lithosphere, along with their statistical and physical validation. This cross - disciplinary approach could make an impact on our further understanding of the physics of earthquakes and the phenomena that precedes their energy release. We also present the potential impact of these interdisciplinary studies to earthquake predictability. A detail summary of our approach and that of several international researchers will be part of this session and will be subsequently published in a new AGU/Wiley volume. This book is part of the Geophysical Monograph series and is intended to show the variety of parameters seismic, atmospheric, geochemical and historical involved is this important field of research and will bring this knowledge and awareness to a broader geosciences community.

  15. OMG Earthquake! Can Twitter improve earthquake response?

    Science.gov (United States)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  16. Earthquakes and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.…

  17. Bam Earthquake in Iran

    CERN Multimedia

    2004-01-01

    Following their request for help from members of international organisations, the permanent Mission of the Islamic Republic of Iran has given the following bank account number, where you can donate money to help the victims of the Bam earthquake. Re: Bam earthquake 235 - UBS 311264.35L Bubenberg Platz 3001 BERN

  18. Tradable Earthquake Certificates

    NARCIS (Netherlands)

    Woerdman, Edwin; Dulleman, Minne

    2018-01-01

    This article presents a market-based idea to compensate for earthquake damage caused by the extraction of natural gas and applies it to the case of Groningen in the Netherlands. Earthquake certificates give homeowners a right to yearly compensation for both property damage and degradation of living

  19. Historic Eastern Canadian earthquakes

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchinson, R.J.

    1981-01-01

    Nuclear power plants licensed in Canada have been designed to resist earthquakes: not all plants, however, have been explicitly designed to the same level of earthquake induced forces. Understanding the nature of strong ground motion near the source of the earthquake is still very tentative. This paper reviews historical and scientific accounts of the three strongest earthquakes - St. Lawrence (1925), Temiskaming (1935), Cornwall (1944) - that have occurred in Canada in 'modern' times, field studies of near-field strong ground motion records and their resultant damage or non-damage to industrial facilities, and numerical modelling of earthquake sources and resultant wave propagation to produce accelerograms consistent with the above historical record and field studies. It is concluded that for future construction of NPP's near-field strong motion must be explicitly considered in design

  20. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    Science.gov (United States)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  1. Creep and slip: Seismic precursors to the Nuugaatsiaq landslide (Greenland)

    Science.gov (United States)

    Poli, Piero

    2017-09-01

    Precursory signals to material's failure are predicted by numerical models and observed in laboratory experiments or using field data. These precursory signals are a marker of slip acceleration on weak regions, such as crustal faults. Observation of these precursory signals of catastrophic natural events, such as earthquakes and landslides, is necessary for improving our knowledge about the physics of the nucleation process. Furthermore, observing such precursory signals may help to forecast these catastrophic events or reduce their hazard. I report here the observation of seismic precursors to the Nuugaatsiaq landslide in Greenland. Time evolution of the detected precursors implies that an aseismic slip event is taking place for hours before the landslide, with an exponential increase of slip velocity. Furthermore, time evolution of the precursory signals' amplitude sheds light on the evolution of the fault physics during the nucleation process.

  2. Earthquakes, November-December 1977

    Science.gov (United States)

    Person, W.J.

    1978-01-01

    Two major earthquakes occurred in the last 2 months of the year. A magnitude 7.0 earthquake struck San Juan Province, Argentina, on November 23, causing fatalities and damage. The second major earthquake was a magnitude 7.0 in the Bonin Islands region, an unpopulated area. On December 19, Iran experienced a destructive earthquake, which killed over 500.

  3. Earthquakes, September-October 1986

    Science.gov (United States)

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  4. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  5. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  6. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  7. Earthquake Prediction in a Big Data World

    Science.gov (United States)

    Kossobokov, V. G.

    2016-12-01

    The digital revolution started just about 15 years ago has already surpassed the global information storage capacity of more than 5000 Exabytes (in optimally compressed bytes) per year. Open data in a Big Data World provides unprecedented opportunities for enhancing studies of the Earth System. However, it also opens wide avenues for deceptive associations in inter- and transdisciplinary data and for inflicted misleading predictions based on so-called "precursors". Earthquake prediction is not an easy task that implies a delicate application of statistics. So far, none of the proposed short-term precursory signals showed sufficient evidence to be used as a reliable precursor of catastrophic earthquakes. Regretfully, in many cases of seismic hazard assessment (SHA), from term-less to time-dependent (probabilistic PSHA or deterministic DSHA), and short-term earthquake forecasting (StEF), the claims of a high potential of the method are based on a flawed application of statistics and, therefore, are hardly suitable for communication to decision makers. Self-testing must be done in advance claiming prediction of hazardous areas and/or times. The necessity and possibility of applying simple tools of Earthquake Prediction Strategies, in particular, Error Diagram, introduced by G.M. Molchan in early 1990ies, and Seismic Roulette null-hypothesis as a metric of the alerted space, is evident. The set of errors, i.e. the rates of failure and of the alerted space-time volume, can be easily compared to random guessing, which comparison permits evaluating the SHA method effectiveness and determining the optimal choice of parameters in regard to a given cost-benefit function. These and other information obtained in such a simple testing may supply us with a realistic estimates of confidence and accuracy of SHA predictions and, if reliable but not necessarily perfect, with related recommendations on the level of risks for decision making in regard to engineering design, insurance

  8. The bipyridine adducts of N-phenyldithiocarbamato complexes of Zn(II) and Cd(II); synthesis, spectral, thermal decomposition studies and use as precursors for ZnS and CdS nanoparticles

    Science.gov (United States)

    Onwudiwe, Damian C.; Strydom, Christien A.

    2015-01-01

    Bipyridine adducts of N-phenyldithiocarbamato complexes, [ML12L2] (M = Cd(II), Zn(II); L1 = N-phenyldithiocarbamate, L2 = 2,2‧ bipyridine), have been synthesized and characterised. The decomposition of these complexes to metal sulphides has been investigated by thermogravimetric analysis (TGA). The complexes were used as single-source precursors to synthesize MS (M = Zn, Cd) nanoparticles (NPs) passivated by hexadecyl amine (HDA). The growth of the nanoparticles was carried out at two different temperatures: 180 and 220 °C, and the optical and structural properties of the nanoparticles were studied using UV-Vis spectroscopy, photoluminescence spectroscopy (PL), transmission emission microscopy (TEM) and powdered X-ray diffraction (p-XRD). Nanoparticles, whose average diameters are 2.90 and 3.54 nm for ZnS, and 8.96 and 9.76 nm for CdS grown at 180 and 220 °C respectively, were obtained.

  9. Earthquake Ground Motion Selection

    Science.gov (United States)

    2012-05-01

    Nonlinear analyses of soils, structures, and soil-structure systems offer the potential for more accurate characterization of geotechnical and structural response under strong earthquake shaking. The increasing use of advanced performance-based desig...

  10. 1988 Spitak Earthquake Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1988 Spitak Earthquake database is an extensive collection of geophysical and geological data, maps, charts, images and descriptive text pertaining to the...

  11. Groundwater electrical conductivity and soil radon gas monitoring for earthquake precursory studies in Koyna, India

    International Nuclear Information System (INIS)

    Reddy, D.V.; Nagabhushanam, P.

    2011-01-01

    Research highlights: → It is the first hydrochemical precursory study in the Koyna region, India. → Discrete conductivity measurements indicated progressive increase for 4 years. → Strong precursory EC change observed 40 h before the M 5.1 earthquake. → Precursory increase of soil Rn gas 20 days earlier than earthquakes M 4.7 and 5.1. → On-line monitoring of these parameters may help in earthquake forecast. - Abstract: Hourly monitoring of electrical conductivity (EC) of groundwater along with groundwater levels in the 210 m deep boreholes (specially drilled for pore pressure/earthquake studies) and soil Rn gas at 60 cm below ground level in real time, in the Koyna-Warna region (characterized by basaltic rocks, >1500 m thick, and dotted with several sets of fault systems), western India, provided strong precursory signatures in response to two earthquakes (M 4.7 on 14/11/09, and M 5.1 on 12/12/09) that occurred in the study region. The EC measured in Govare well water showed precursory perturbations about 40 h prior to the M 5.1 earthquake and continued further for about 20 h after the earthquake. In response to the M 4.7 earthquake, there were EC perturbations 8 days after the earthquake. In another well (Koyna) which is located 4 km north of Govare well, no precursory signatures were found for the M 4.7 earthquake, while for M 5.1 earthquake, post-seismic precursors were found 18 days after the earthquake. Increased porosity and reduced pressure head accompanied by mixing of a freshwater component from the top zone due to earthquakes are the suggested mechanisms responsible for the observed anomalies in EC. Another parameter, soil Rn gas showed relatively proportional strength signals corresponding to these two earthquakes. In both the cases, the pre-seismic increase in Rn concentration started about 20 days in advance. The co-seismic drop in Rn levels was less by 30% from its peak value for the M 4.7 earthquake and 50% for the M 5.1 earthquake. The Rn

  12. A new copper(I) coordination polymer with N.sub.2./sub.-donor schiff base and Its use as precursor for CuO nanoparticle: Spectroscopic, thermal and structural studies

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Rohlíček, Jan; Machek, Pavel; Das, D.

    2014-01-01

    Roč. 25, č. 5 (2014), s. 1425-1434 ISSN 1040-7278 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : copper(I) complex * schiff base * spectroscopy * thermal study * nanoparticle * SEM * XRD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.302, year: 2014

  13. Electromagnetic Manifestation of Earthquakes

    OpenAIRE

    Uvarov Vladimir

    2017-01-01

    In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  14. Electromagnetic Manifestation of Earthquakes

    Directory of Open Access Journals (Sweden)

    Uvarov Vladimir

    2017-01-01

    Full Text Available In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  15. Goce derived geoid changes before the Pisagua 2014 earthquake

    Directory of Open Access Journals (Sweden)

    Orlando Álvarez

    2018-01-01

    Full Text Available The analysis of space – time surface deformation during earthquakes reveals the variable state of stress that occurs at deep crustal levels, and this information can be used to better understand the seismic cycle. Understanding the possible mechanisms that produce earthquake precursors is a key issue for earthquake prediction. In the last years, modern geodesy can map the degree of seismic coupling during the interseismic period, as well as the coseismic and postseismic slip for great earthquakes along subduction zones. Earthquakes usually occur due to mass transfer and consequent gravity variations, where these changes have been monitored for intraplate earthquakes by means of terrestrial gravity measurements. When stresses and correspondent rupture areas are large, affecting hundreds of thousands of square kilometres (as occurs in some segments along plate interface zones, satellite gravimetry data become relevant. This is due to the higher spatial resolution of this type of data when compared to terrestrial data, and also due to their homogeneous precision and availability across the whole Earth. Satellite gravity missions as GOCE can map the Earth gravity field with unprecedented precision and resolution. We mapped geoid changes from two GOCE satellite models obtained by the direct approach, which combines data from other gravity missions as GRACE and LAGEOS regarding their best characteristics. The results show that the geoid height diminished from a year to five months before the main seismic event in the region where maximum slip occurred after the Pisagua Mw = 8.2 great megathrust earthquake. This diminution is interpreted as accelerated inland-directed interseismic mass transfer before the earthquake, coinciding with the intermediate degree of seismic coupling reported in the region. We highlight the advantage of satellite data for modelling surficial deformation related to pre-seismic displacements. This deformation, combined to

  16. Earthquake precursory events around epicenters and local active faults; the cases of two inland earthquakes in Iran

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S.; Haydari Azad, F.

    2012-12-01

    The possibility of earthquake prediction in the frame of several days to few minutes before its occurrence has stirred interest among researchers, recently. Scientists believe that the new theories and explanations of the mechanism of this natural phenomenon are trustable and can be the basis of future prediction efforts. During the last thirty years experimental researches resulted in some pre-earthquake events which are now recognized as confirmed warning signs (precursors) of past known earthquakes. With the advances in in-situ measurement devices and data analysis capabilities and the emergence of satellite-based data collectors, monitoring the earth's surface is now a regular work. Data providers are supplying researchers from all over the world with high quality and validated imagery and non-imagery data. Surface Latent Heat Flux (SLHF) or the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere has been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. On the other hand, the leak of Radon gas occurred as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT) prior to main event. Although co-analysis of direct and indirect observation for precursory events is considered as a promising method for future successful earthquake prediction, without proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will not be able to identify anomalies due to seismic activity in the earth's crust. Active faulting is a key factor in identification of the

  17. Temporal variation of gravity field prior to the Ludian Ms6.5 and Kangding Ms6.3 earthquakes

    Directory of Open Access Journals (Sweden)

    Hongtao Hao

    2015-11-01

    Full Text Available Using mobile gravity data from the central area of Sichuan and Yunnan Provinces, the relationship between gravity variation and earthquakes was studied based on the Ludian Ms6.5 earthquake that occurred on August 3rd, 2014, and the Kangding Ms6.3 earthquake that occurred on November 22nd, 2014; the mechanism of gravity variation was also explored. The results are as follows: (1 Prior to both earthquakes, gravity variation exhibited similar characteristics as those observed before both the Tangshan and Wenchuan earthquakes, in which typical precursor anomalies were positive gravity variation near the epicenter and the occurrence of a high-gravity-gradient zone across the epicenter prior to the earthquake. (2 A relatively accurate prediction of the occurrence locations of the two earthquakes was made by the Gravity Network Center of China (GNCC based on these precursor anomalies. In the gravity study report on the 2014 earthquake trends submitted at the end of 2013, the Daofu-Shimian section at the junction of the Xianshuihe and Longmenshan fault zones was noted as an earthquake-risk region with a predicted magnitude of 6.5, which covered the epicenter of the Kangding Ms6.3 earthquake. In another report on earthquake trends in southwestern China submitted in mid-2014, the Lianfeng, Zhaotong fault zone was also classified as an earthquake-risk region with a magnitude of 6.0, and the central area of this region basically overlapped with the epicenter of the Ludian Ms6.5 earthquake. (3 The gravity variation characteristics are reasonably consistent with crustal movements, and deep material migration is likely the primary cause of gravity variation.

  18. Charles Darwin's earthquake reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of ‘ …the rending of strata, at a point not very deep below the surface of the earth…' and ‘…when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ‘...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the

  19. Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor

    Science.gov (United States)

    Shelly, David R.

    2009-01-01

    Earthquake predictability depends, in part, on the degree to which sudden slip is preceded by slow aseismic slip. Recently, observations of deep tremor have enabled inferences of deep slow slip even when detection by other means is not possible, but these data are limited to certain areas and mostly the last decade. The region near Parkfield, California, provides a unique convergence of several years of high-quality tremor data bracketing a moderate earthquake, the 2004 magnitude 6.0 event. Here, I present detailed observations of tectonic tremor from mid-2001 through 2008 that indicate deep fault slip both before and after the Parkfield earthquake that cannot be detected with surface geodetic instruments. While there is no obvious short-term precursor, I find unidirectional tremor migration accompanied by elevated tremor rates in the 3 months prior to the earthquake, which suggests accelerated creep on the fault ∼16 km beneath the eventual earthquake hypocenter.

  20. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  1. Toward a theory of precursors

    International Nuclear Information System (INIS)

    Freivogel, Ben; Giddings, Steven B.; Lippert, Matthew

    2002-01-01

    To better understand the possible breakdown of locality in quantum gravitational systems, we pursue the identity of precursors in the context of the anti-de Sitter/conformal field theory correspondence. Holography implies a breakdown of standard bulk locality which we expect to occur only at extremely high energy. We consider precursors that encode bulk information causally disconnected from the boundary and whose measurement involves nonlocal bulk processes. We construct a toy model of holography which encapsulates the expected properties of precursors and compare it with previous such discussions. If these precursors can be identified in the gauge theory, they are almost certainly Wilson loops, perhaps with decorations, but the relevant information is encoded in the high-energy sector of the theory and should not be observable by low energy measurements. This would be in accord with the locality bound, which serves as a criterion for situations where breakdown of bulk locality is expected

  2. Correlation between Earthquakes and AE Monitoring of Historical Buildings in Seismic Areas

    Directory of Open Access Journals (Sweden)

    Giuseppe Lacidogna

    2015-12-01

    Full Text Available In this contribution a new method for evaluating seismic risk in regional areas based on the acoustic emission (AE technique is proposed. Most earthquakes have precursors, i.e., phenomena of changes in the Earth’s physical-chemical properties that take place prior to an earthquake. Acoustic emissions in materials and earthquakes in the Earth’s crust, despite the fact that they take place on very different scales, are very similar phenomena; both are caused by a release of elastic energy from a source located in a medium. For the AE monitoring, two important constructions of Italian cultural heritage are considered: the chapel of the “Sacred Mountain of Varallo” and the “Asinelli Tower” of Bologna. They were monitored during earthquake sequences in their relative areas. By using the Grassberger-Procaccia algorithm, a statistical method of analysis was developed that detects AEs as earthquake precursors or aftershocks. Under certain conditions it was observed that AEs precede earthquakes. These considerations reinforce the idea that the AE monitoring can be considered an effective tool for earthquake risk evaluation.

  3. Nowcasting Earthquakes and Tsunamis

    Science.gov (United States)

    Rundle, J. B.; Turcotte, D. L.

    2017-12-01

    The term "nowcasting" refers to the estimation of the current uncertain state of a dynamical system, whereas "forecasting" is a calculation of probabilities of future state(s). Nowcasting is a term that originated in economics and finance, referring to the process of determining the uncertain state of the economy or market indicators such as GDP at the current time by indirect means. We have applied this idea to seismically active regions, where the goal is to determine the current state of a system of faults, and its current level of progress through the earthquake cycle (http://onlinelibrary.wiley.com/doi/10.1002/2016EA000185/full). Advantages of our nowcasting method over forecasting models include: 1) Nowcasting is simply data analysis and does not involve a model having parameters that must be fit to data; 2) We use only earthquake catalog data which generally has known errors and characteristics; and 3) We use area-based analysis rather than fault-based analysis, meaning that the methods work equally well on land and in subduction zones. To use the nowcast method to estimate how far the fault system has progressed through the "cycle" of large recurring earthquakes, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. We select a "small" region in which the nowcast is to be made, and compute the statistics of a much larger region around the small region. The statistics of the large region are then applied to the small region. For an application, we can define a small region around major global cities, for example a "small" circle of radius 150 km and a depth of 100 km, as well as a "large" earthquake magnitude, for example M6.0. The region of influence of such earthquakes is roughly 150 km radius x 100 km depth, which is the reason these values were selected. We can then compute and rank the seismic risk of the world's major cities in terms of their relative seismic risk

  4. The bipyridine adducts of N-phenyldithiocarbamato complexes of Zn(II) and Cd(II); synthesis, spectral, thermal decomposition studies and use as precursors for ZnS and CdS nanoparticles.

    Science.gov (United States)

    Onwudiwe, Damian C; Strydom, Christien A

    2015-01-25

    Bipyridine adducts of N-phenyldithiocarbamato complexes, [ML(1)2L(2)] (M=Cd(II), Zn(II); L(1)=N-phenyldithiocarbamate, L(2)=2,2' bipyridine), have been synthesized and characterised. The decomposition of these complexes to metal sulphides has been investigated by thermogravimetric analysis (TGA). The complexes were used as single-source precursors to synthesize MS (M=Zn, Cd) nanoparticles (NPs) passivated by hexadecyl amine (HDA). The growth of the nanoparticles was carried out at two different temperatures: 180 and 220 °C, and the optical and structural properties of the nanoparticles were studied using UV-Vis spectroscopy, photoluminescence spectroscopy (PL), transmission emission microscopy (TEM) and powdered X-ray diffraction (p-XRD). Nanoparticles, whose average diameters are 2.90 and 3.54 nm for ZnS, and 8.96 and 9.76 nm for CdS grown at 180 and 220 °C respectively, were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Along-strike variations in fault frictional properties along the San Andreas Fault near Cholame, California from joint earthquake and low-frequency earthquake relocations

    Science.gov (United States)

    Harrington, Rebecca M.; Cochran, Elizabeth S.; Griffiths, Emily M.; Zeng, Xiangfang; Thurber, Clifford H.

    2016-01-01

    Recent observations of low‐frequency earthquakes (LFEs) and tectonic tremor along the Parkfield–Cholame segment of the San Andreas fault suggest slow‐slip earthquakes occur in a transition zone between the shallow fault, which accommodates slip by a combination of aseismic creep and earthquakes (fault, which accommodates slip by stable sliding (>35  km depth). However, the spatial relationship between shallow earthquakes and LFEs remains unclear. Here, we present precise relocations of 34 earthquakes and 34 LFEs recorded during a temporary deployment of 13 broadband seismic stations from May 2010 to July 2011. We use the temporary array waveform data, along with data from permanent seismic stations and a new high‐resolution 3D velocity model, to illuminate the fine‐scale details of the seismicity distribution near Cholame and the relation to the distribution of LFEs. The depth of the boundary between earthquakes and LFE hypocenters changes along strike and roughly follows the 350°C isotherm, suggesting frictional behavior may be, in part, thermally controlled. We observe no overlap in the depth of earthquakes and LFEs, with an ∼5  km separation between the deepest earthquakes and shallowest LFEs. In addition, clustering in the relocated seismicity near the 2004 Mw 6.0 Parkfield earthquake hypocenter and near the northern boundary of the 1857 Mw 7.8 Fort Tejon rupture may highlight areas of frictional heterogeneities on the fault where earthquakes tend to nucleate.

  6. Indoor radon and earthquake

    International Nuclear Information System (INIS)

    Saghatelyan, E.; Petrosyan, L.; Aghbalyan, Yu.; Baburyan, M.; Araratyan, L.

    2004-01-01

    For the first time on the basis of the Spitak earthquake of December 1988 (Armenia, December 1988) experience it is found out that the earthquake causes intensive and prolonged radon splashes which, rapidly dispersing in the open space of close-to-earth atmosphere, are contrastingly displayed in covered premises (dwellings, schools, kindergartens) even if they are at considerable distance from the earthquake epicenter, and this multiplies the radiation influence on the population. The interval of splashes includes the period from the first fore-shock to the last after-shock, i.e. several months. The area affected by radiation is larger vs. Armenia's territory. The scale of this impact on population is 12 times higher than the number of people injured in Spitak, Leninakan and other settlements (toll of injured - 25 000 people, radiation-induced diseases in people - over 300 000). The influence of radiation directly correlates with the earthquake force. Such a conclusion is underpinned by indoor radon monitoring data for Yerevan since 1987 (120 km from epicenter) 5450 measurements and multivariate analysis with identification of cause-and-effect linkages between geo dynamics of indoor radon under stable and conditions of Earth crust, behavior of radon in different geological mediums during earthquakes, levels of room radon concentrations and effective equivalent dose of radiation impact of radiation dose on health and statistical data on public health provided by the Ministry of Health. The following hitherto unexplained facts can be considered as consequences of prolonged radiation influence on human organism: long-lasting state of apathy and indifference typical of the population of Armenia during the period of more than a year after the earthquake, prevalence of malignant cancer forms in disaster zones, dominating lung cancer and so on. All urban territories of seismically active regions are exposed to the threat of natural earthquake-provoked radiation influence

  7. Thermally switchable dielectrics

    Science.gov (United States)

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  8. Can Vrancea earthquakes be accurately predicted from unusual bio-system behavior and seismic-electromagnetic records?

    International Nuclear Information System (INIS)

    Enescu, D.; Chitaru, C.; Enescu, B.D.

    1999-01-01

    The relevance of bio-seismic research for the short-term prediction of strong Vrancea earthquakes is underscored. An unusual animal behavior before and during Vrancea earthquakes is described and illustrated in the individual case of the major earthquake of March 4, 1977. Several hypotheses to account for the uncommon behavior of bio-systems in relation to earthquakes in general and strong Vrancea earthquakes in particular are discussed in the second section. It is reminded that promising preliminary results concerning the identification of seismic-electromagnetic precursor signals have been obtained in the Vrancea seismogenic area using special, highly sensitive equipment. The need to correlate bio-seismic and seismic-electromagnetic researches is evident. Further investigations are suggested and urgent steps are proposed in order to achieve a successful short-term prediction of strong Vrancea earthquakes. (authors)

  9. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  10. Synthesis, spectral and thermal studies of pyridyl adducts of Zn(II) and Cd(II) dithiocarbamates, and their use as single source precursors for ZnS and CdS nanoparticles

    OpenAIRE

    Onwudiwe, Damian C.; Strydom, Christien A.; Jordaan, Anine; Oluwafemi, Oluwatobi S.; Hosten, Eric

    2014-01-01

    The synthesis, spectroscopic characterisation, and thermal studies of pyridyl adducts of Zn(II) and Cd(II) complexes of N-ethyl-N-phenyl dithiocarbamate, represented as [ZnL2py] and [CdL2py2], are reported. Single-crystal X-ray structural analysis of the Zn compound showed that it is five-coordinate with four sulphurs from dithiocarbamate and one nitrogen from pyridine in a distorted square pyramidal geometry. The thermogravimetric studies indicate that the zinc and cadmium compou...

  11. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  12. Earthquakes and Earthquake Engineering. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    An earthquake is a shaking of the ground resulting from a disturbance in the earth's interior. Seismology is the (1) study of earthquakes; (2) origin, propagation, and energy of seismic phenomena; (3) prediction of these phenomena; and (4) investigation of the structure of the earth. Earthquake engineering or engineering seismology includes the…

  13. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.; Mai, Paul Martin; Schorlemmer, Danijel

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data

  14. Earthquakes; May-June 1982

    Science.gov (United States)

    Person, W.J.

    1982-01-01

    There were four major earthquakes (7.0-7.9) during this reporting period: two struck in Mexico, one in El Salvador, and one in teh Kuril Islands. Mexico, El Salvador, and China experienced fatalities from earthquakes.

  15. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    Science.gov (United States)

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  16. Sensing the earthquake

    Science.gov (United States)

    Bichisao, Marta; Stallone, Angela

    2017-04-01

    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  17. Turkish Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  18. Earthquakes, May-June 1991

    Science.gov (United States)

    Person, W.J.

    1992-01-01

    One major earthquake occurred during this reporting period. This was a magntidue 7.1 in Indonesia (Minahassa Peninsula) on June 20. Earthquake-related deaths were reported in the Western Caucasus (Georgia, USSR) on May 3 and June 15. One earthquake-related death was also reported El Salvador on June 21. 

  19. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  20. The 1976 Tangshan earthquake

    Science.gov (United States)

    Fang, Wang

    1979-01-01

    The Tangshan earthquake of 1976 was one of the largest earthquakes in recent years. It occurred on July 28 at 3:42 a.m, Beijing (Peking) local time, and had magnitude 7.8, focal depth of 15 kilometers, and an epicentral intensity of XI on the New Chinese Seismic Intensity Scale; it caused serious damage and loss of life in this densely populated industrial city. Now, with the help of people from all over China, the city of Tangshan is being rebuild. 

  1. [Earthquakes in El Salvador].

    Science.gov (United States)

    de Ville de Goyet, C

    2001-02-01

    The Pan American Health Organization (PAHO) has 25 years of experience dealing with major natural disasters. This piece provides a preliminary review of the events taking place in the weeks following the major earthquakes in El Salvador on 13 January and 13 February 2001. It also describes the lessons that have been learned over the last 25 years and the impact that the El Salvador earthquakes and other disasters have had on the health of the affected populations. Topics covered include mass-casualties management, communicable diseases, water supply, managing donations and international assistance, damages to the health-facilities infrastructure, mental health, and PAHO's role in disasters.

  2. Silicon dioxide obtained by Polymeric Precursor Method

    International Nuclear Information System (INIS)

    Oliveira, C.T.; Granado, S.R.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The Polymeric Precursor Method is able for obtaining several oxide material types with high surface area even obtained in particle form. Several MO 2 oxide types such as titanium, silicon and zirconium ones can be obtained by this methodology. In this work, the synthesis of silicon oxide was monitored by thermal analysis, XRD and surface area analysis in order to demonstrate the influence of the several synthesis and calcining parameters. Surface area values as higher as 370m2/g and increasing in the micropore volume nm were obtained when the material was synthesized by using ethylene glycol as polymerizing agent. XRD analysis showed that the material is amorphous when calcinated at 600°C in despite of the time of calcining, but the material morphology is strongly influenced by the polymeric resin composition. Using Glycerol as polymerizing agent, the pore size increase and the surface area goes down with the increasing in decomposition time, when compared to ethylene glycol. (author)

  3. Earthquake Culture: A Significant Element in Earthquake Disaster Risk Assessment and Earthquake Disaster Risk Management

    OpenAIRE

    Ibrion, Mihaela

    2018-01-01

    This book chapter brings to attention the dramatic impact of large earthquake disasters on local communities and society and highlights the necessity of building and enhancing the earthquake culture. Iran was considered as a research case study and fifteen large earthquake disasters in Iran were investigated and analyzed over more than a century-time period. It was found that the earthquake culture in Iran was and is still conditioned by many factors or parameters which are not integrated and...

  4. Thermal stress and seismogenesis

    International Nuclear Information System (INIS)

    Zhou Huilan; Wei Dongping

    1989-05-01

    In this paper, the Fourier stress method was applied to deal with the problem of plane thermal stress, and a computing formula was given. As an example, we set up a variate temperature field to describe the uplifted upper mantle in Bozhong area of China, and the computing results shows that the maximum value of thermal plane shear stress is up to nearly 7x10 7 P α in two regions of this area. Since the Bohai earthquake (18 July, 1969, M s = 7.4) occurred at the edge of one of them and Tangshan earthquake (28 July, 1976, M s = 7.8) within another, their occurrences can be related reasonably to the thermal stress. (author). 15 refs, 7 figs

  5. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    Science.gov (United States)

    Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C.

    2016-01-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic faults fail in a spectrum of modes and little is known about precursors for those modes3. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real time monitoring of active faults may be a means to detect earthquake precursors. PMID:27597879

  6. Trending analysis of precursor events

    International Nuclear Information System (INIS)

    Watanabe, Norio

    1998-01-01

    The Accident Sequence Precursor (ASP) Program of United States Nuclear Regulatory Commission (U.S.NRC) identifies and categorizes operational events at nuclear power plants in terms of the potential for core damage. The ASP analysis has been performed on yearly basis and the results have been published in the annual reports. This paper describes the trends in initiating events and dominant sequences for 459 precursors identified in the ASP Program during the 1969-94 period and also discusses a comparison with dominant sequences predicted in the past Probabilistic Risk Assessment (PRA) studies. These trends were examined for three time periods, 1969-81, 1984-87 and 1988-94. Although the different models had been used in the ASP analyses for these three periods, the distribution of precursors by dominant sequences show similar trends to each other. For example, the sequences involving loss of both main and auxiliary feedwater were identified in many PWR events and those involving loss of both high and low coolant injection were found in many BWR events. Also, it was found that these dominant sequences were comparable to those determined to be dominant in the predictions by the past PRAs. As well, a list of the 459 precursors identified are provided in Appendix, indicating initiating event types, unavailable systems, dominant sequences, conditional core damage probabilities, and so on. (author)

  7. Synthesis of labelled ecdysone precursors

    International Nuclear Information System (INIS)

    Haag, T.; Hetru, C.; Nakatani, Y.; Luu, B.; Meister, M.; Pichat, L.; Audinot, M.

    1985-01-01

    High specific activity tritiated 3β,14α-dihydroxy-5β-cholest-7-en-6-one, has been prepared using a precursor which permits rapid and easy labelling. This compound is converted to ecdysone under in vitro conditions by insect prothoracic glands, a well known site of ecdysone biosynthesis. (author)

  8. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  9. The HayWired Earthquake Scenario—Earthquake Hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  10. Earth Observing System precursor data sets

    Science.gov (United States)

    Mah, Grant R.; Eidenshink, Jeff C.; Sheffield, K. W.; Myers, Jeffrey S.

    1993-08-01

    The Land Processes Distributed Active Archive Center (DAAC) is archiving and processing precursor data from airborne and spaceborne instruments such as the thermal infrared multispectral scanner (TIMS), the NS-001 and thematic mapper simulators (TMS), and the advanced very high resolution radiometer (AVHRR). The instrument data are being used to construct data sets that simulate the spectral and spatial characteristics of the advanced spaceborne thermal emission and reflection radiometer (ASTER) and the moderate resolution imaging spectrometer (MODIS) flight instruments scheduled to be flown on the EOS-AM spacecraft. Ames Research Center has developed and is flying a MODIS airborne simulator (MAS), which provides coverage in both MODIS and ASTER bands. A simulation of an ASTER data set over Death Valley, California has been constructed using a combination of TMS and TIMS data, along with existing digital elevation models that were used to develop the topographic information. MODIS data sets are being simulated by using MAS for full-band site coverage at high resolution and AVHRR for global coverage at 1 km resolution.

  11. Historical earthquake research in Austria

    Science.gov (United States)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  12. Possible association between some geomagnetic anomalies and Vrancea (Romania) significant earthquakes occurred in the year 2005

    International Nuclear Information System (INIS)

    Enescu, D.

    2006-01-01

    The association between geoelectromagnetic anomalies and Vrancea earthquakes of moment magnitudes 3.7 ≤ M W ≤ 5 was first proved by Enescu et al. in some earlier papers. This finding was extended by Enescu to a broader magnitude range 3.7 ≤ M W ≤ 6.3. That study proved that observable precursory anomalies in the geomagnetic impedance have preceded all Vrancea earthquakes of moment magnitudes M W ≥ 4.0 occurring in 2004 year. A similar study is made in the present paper for data recorded in 2005 year. This study confirms the main result obtained in the earlier papers, namely that the great majority of Vrancea earthquakes of magnitudes higher than 4 are associated with precursory anomalies in the geomagnetic impedance. It also seems that neither the precursor time or the amplitude of the precursory magnetic anomaly can be linked reliably with the magnitude of the anticipated earthquake. (author)

  13. Earthquake hazard evaluation for Switzerland

    International Nuclear Information System (INIS)

    Ruettener, E.

    1995-01-01

    Earthquake hazard analysis is of considerable importance for Switzerland, a country with moderate seismic activity but high economic values at risk. The evaluation of earthquake hazard, i.e. the determination of return periods versus ground motion parameters, requires a description of earthquake occurrences in space and time. In this study the seismic hazard for major cities in Switzerland is determined. The seismic hazard analysis is based on historic earthquake records as well as instrumental data. The historic earthquake data show considerable uncertainties concerning epicenter location and epicentral intensity. A specific concept is required, therefore, which permits the description of the uncertainties of each individual earthquake. This is achieved by probability distributions for earthquake size and location. Historical considerations, which indicate changes in public earthquake awareness at various times (mainly due to large historical earthquakes), as well as statistical tests have been used to identify time periods of complete earthquake reporting as a function of intensity. As a result, the catalog is judged to be complete since 1878 for all earthquakes with epicentral intensities greater than IV, since 1750 for intensities greater than VI, since 1600 for intensities greater than VIII, and since 1300 for intensities greater than IX. Instrumental data provide accurate information about the depth distribution of earthquakes in Switzerland. In the Alps, focal depths are restricted to the uppermost 15 km of the crust, whereas below the northern Alpine foreland earthquakes are distributed throughout the entire crust (30 km). This depth distribution is considered in the final hazard analysis by probability distributions. (author) figs., tabs., refs

  14. Earthquake likelihood model testing

    Science.gov (United States)

    Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A.

    2007-01-01

    INTRODUCTIONThe Regional Earthquake Likelihood Models (RELM) project aims to produce and evaluate alternate models of earthquake potential (probability per unit volume, magnitude, and time) for California. Based on differing assumptions, these models are produced to test the validity of their assumptions and to explore which models should be incorporated in seismic hazard and risk evaluation. Tests based on physical and geological criteria are useful but we focus on statistical methods using future earthquake catalog data only. We envision two evaluations: a test of consistency with observed data and a comparison of all pairs of models for relative consistency. Both tests are based on the likelihood method, and both are fully prospective (i.e., the models are not adjusted to fit the test data). To be tested, each model must assign a probability to any possible event within a specified region of space, time, and magnitude. For our tests the models must use a common format: earthquake rates in specified “bins” with location, magnitude, time, and focal mechanism limits.Seismology cannot yet deterministically predict individual earthquakes; however, it should seek the best possible models for forecasting earthquake occurrence. This paper describes the statistical rules of an experiment to examine and test earthquake forecasts. The primary purposes of the tests described below are to evaluate physical models for earthquakes, assure that source models used in seismic hazard and risk studies are consistent with earthquake data, and provide quantitative measures by which models can be assigned weights in a consensus model or be judged as suitable for particular regions.In this paper we develop a statistical method for testing earthquake likelihood models. A companion paper (Schorlemmer and Gerstenberger 2007, this issue) discusses the actual implementation of these tests in the framework of the RELM initiative.Statistical testing of hypotheses is a common task and a

  15. Earthquake early warning system using real-time signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R.R. Jr.; Dowla, F.U.

    1996-02-01

    An earthquake warning system has been developed to provide a time series profile from which vital parameters such as the time until strong shaking begins, the intensity of the shaking, and the duration of the shaking, can be derived. Interaction of different types of ground motion and changes in the elastic properties of geological media throughout the propagation path result in a highly nonlinear function. We use neural networks to model these nonlinearities and develop learning techniques for the analysis of temporal precursors occurring in the emerging earthquake seismic signal. The warning system is designed to analyze the first-arrival from the three components of an earthquake signal and instantaneously provide a profile of impending ground motion, in as little as 0.3 sec after first ground motion is felt at the sensors. For each new data sample, at a rate of 25 samples per second, the complete profile of the earthquake is updated. The profile consists of a magnitude-related estimate as well as an estimate of the envelope of the complete earthquake signal. The envelope provides estimates of damage parameters, such as time until peak ground acceleration (PGA) and duration. The neural network based system is trained using seismogram data from more than 400 earthquakes recorded in southern California. The system has been implemented in hardware using silicon accelerometers and a standard microprocessor. The proposed warning units can be used for site-specific applications, distributed networks, or to enhance existing distributed networks. By producing accurate, and informative warnings, the system has the potential to significantly minimize the hazards of catastrophic ground motion. Detailed system design and performance issues, including error measurement in a simple warning scenario are discussed in detail.

  16. Retrospective analysis for detecting seismic precursors in groundwater argon content

    Directory of Open Access Journals (Sweden)

    P. F. Biagi

    2004-01-01

    Full Text Available We examined the groundwater Argon content data sampled from 1988 to 2001 at two wells in Kamchatka (Russia and anomalous increases appeared clearly during June-July 1996. On 21 June, a shallow (1km earthquake with M=7.1 occurred at a distance less than 250km from the wells and so the previous increases could be related to this earthquake and, in particular, could be considered premonitory anomalies. In order to support this raw interpretation, we analysed the data collected in details. At first we smoothed out the high frequency fluctuations arising from the errors in a single measurement. Next we considered the known external effects on the water of a well that are the slow tectonic re-adjustment processes, the meteorology and the gravity tides and we separated these effects applying band-pass filters to the Argon content raw trends. Then we identified the largest fluctuations in these trends applying the 3 σ criterion and we found three anomalies in a case and two anomalies in other case. Comparing the time occurrence of the anomalies at the two wells we found out that a coincidence exists only in the case of the premonitory anomalies we are studying. The simultaneous appearance of well definite anomalies in the residual trends of the same parameter at two different sites supports their meaning and the possibility that they are related to some large scale effect, as the occurrence of a strong earthquake. But, other earthquakes similar to the June 1996 event took place during the Argon content measurements time and no anomaly appeared in this content. In the past, some of the authors of this paper studied the Helium content data collected in three natural springs of the Caucasus during seven years. A very similar result, that is the simultaneous appearance of clear premonitory anomalies only on the occasion of a strong (M=7.0 but shallow (2–4km earthquake, was obtained. The correspondence with the case of the Caucasus validates the

  17. The Innate Lymphoid Cell Precursor.

    Science.gov (United States)

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  18. Precursor polymer compositions comprising polybenzimidazole

    Science.gov (United States)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  19. Precursor incident program at EDF

    International Nuclear Information System (INIS)

    Fourest, B.; Maliverney, B.; Rozenholc, M.; Piovesan, C.

    1998-01-01

    The precursor program was started by EDF in 1994, after an investigation of the US NRC's Accident Sequence Precursor Program. Since then, reported operational events identified as Safety Outstanding Events have been analyzed whenever possible using probabilistic methods based on PSAs. Analysis provides an estimate of the remaining protection against core damage at the time the incident occurred. Measuring the incidents' severity enables to detect incidents important regarding safety. Moreover, the most efficient feedback actions can be derived from the main accident sequences identified through the analysis. Therefore, incident probabilistic analysis provides a way to assess priorities in terms of treatment and resource allocation, and so, to implement countermeasures preventing further occurrence and development of the most significant incidents. As some incidents cannot be analyzed using this method, probabilistic analysis can only be one among the methods used to assess the nuclear power plants' safety level. Nevertheless, it provides an interesting complement to classical methods of deterministic studies. (author)

  20. Geophysical Anomalies and Earthquake Prediction

    Science.gov (United States)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  1. Solution precursor plasma deposition of nanostructured ZnO coatings

    International Nuclear Information System (INIS)

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2011-01-01

    Highlights: → The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. → It is highly capable of developing tailorable nanostructures. → This technique can be employed to spray the coatings on any kind of substrates including polymers. → The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance (∼65-80%) and reflectivity (∼65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 mΩ cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  2. Solution precursor plasma deposition of nanostructured ZnO coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Raghavender [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Guduru, Ramesh K., E-mail: rkguduru@umich.edu [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Mohanty, Pravansu S. [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States)

    2011-08-15

    Highlights: {yields} The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. {yields} It is highly capable of developing tailorable nanostructures. {yields} This technique can be employed to spray the coatings on any kind of substrates including polymers. {yields} The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance ({approx}65-80%) and reflectivity ({approx}65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 m{Omega} cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  3. The typical seismic behavior in the vicinity of a large earthquake

    Science.gov (United States)

    Rodkin, M. V.; Tikhonov, I. N.

    2016-10-01

    The Global Centroid Moment Tensor catalog (GCMT) was used to construct the spatio-temporal generalized vicinity of a large earthquake (GVLE) and to investigate the behavior of seismicity in GVLE. The vicinity is made of earthquakes falling into the zone of influence of a large number (100, 300, or 1000) of largest earthquakes. The GVLE construction aims at enlarging the available statistics, diminishing a strong random component, and revealing typical features of pre- and post-shock seismic activity in more detail. As a result of the GVLE construction, the character of fore- and aftershock cascades was examined in more detail than was possible without of the use of the GVLE approach. As well, several anomalies in the behavior exhibited by a variety of earthquake parameters were identified. The amplitudes of all these anomalies increase with the approaching time of the generalized large earthquake (GLE) as the logarithm of the time interval from the GLE occurrence. Most of the discussed anomalies agree with common features well expected in the evolution of instability. In addition to these common type precursors, one earthquake-specific precursor was found. The decrease in mean earthquake depth presumably occurring in a smaller GVLE probably provides evidence of a deep fluid being involved in the process. The typical features in the evolution of shear instability as revealed in GVLE agree with results obtained in laboratory studies of acoustic emission (AE). The majority of the anomalies in earthquake parameters appear to have a secondary character, largely connected with an increase in mean magnitude and decreasing fraction of moderate size events (mw5.0-6.0) in the immediate GLE vicinity. This deficit of moderate size events could hardly be caused entirely by their incomplete reporting and can presumably reflect some features in the evolution of seismic instability.

  4. Pain after earthquake

    Directory of Open Access Journals (Sweden)

    Angeletti Chiara

    2012-06-01

    Full Text Available Abstract Introduction On 6 April 2009, at 03:32 local time, an Mw 6.3 earthquake hit the Abruzzi region of central Italy causing widespread damage in the City of L Aquila and its nearby villages. The earthquake caused 308 casualties and over 1,500 injuries, displaced more than 25,000 people and induced significant damage to more than 10,000 buildings in the L'Aquila region. Objectives This observational retrospective study evaluated the prevalence and drug treatment of pain in the five weeks following the L'Aquila earthquake (April 6, 2009. Methods 958 triage documents were analysed for patients pain severity, pain type, and treatment efficacy. Results A third of pain patients reported pain with a prevalence of 34.6%. More than half of pain patients reported severe pain (58.8%. Analgesic agents were limited to available drugs: anti-inflammatory agents, paracetamol, and weak opioids. Reduction in verbal numerical pain scores within the first 24 hours after treatment was achieved with the medications at hand. Pain prevalence and characterization exhibited a biphasic pattern with acute pain syndromes owing to trauma occurring in the first 15 days after the earthquake; traumatic pain then decreased and re-surged at around week five, owing to rebuilding efforts. In the second through fourth week, reports of pain occurred mainly owing to relapses of chronic conditions. Conclusions This study indicates that pain is prevalent during natural disasters, may exhibit a discernible pattern over the weeks following the event, and current drug treatments in this region may be adequate for emergency situations.

  5. State Vector: A New Approach to Prediction of the Failure of Brittle Heterogeneous Media and Large Earthquakes

    Science.gov (United States)

    Yu, Huai-Zhong; Yin, Xiang-Chu; Zhu, Qing-Yong; Yan, Yu-Ding

    2006-12-01

    The concept of state vector stems from statistical physics, where it is usually used to describe activity patterns of a physical field in its manner of coarsegrain. In this paper, we propose an approach by which the state vector was applied to describe quantitatively the damage evolution of the brittle heterogeneous systems, and some interesting results are presented, i.e., prior to the macro-fracture of rock specimens and occurrence of a strong earthquake, evolutions of the four relevant scalars time series derived from the state vectors changed anomalously. As retrospective studies, some prominent large earthquakes occurred in the Chinese Mainland (e.g., the M 7.4 Haicheng earthquake on February 4, 1975, and the M 7.8 Tangshan earthquake on July 28, 1976, etc) were investigated. Results show considerable promise that the time-dependent state vectors could serve as a kind of precursor to predict earthquakes.

  6. Fault lubrication during earthquakes.

    Science.gov (United States)

    Di Toro, G; Han, R; Hirose, T; De Paola, N; Nielsen, S; Mizoguchi, K; Ferri, F; Cocco, M; Shimamoto, T

    2011-03-24

    The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip. Given the difficulty in determining friction by seismological methods, elucidating constraints are derived from experimental studies. Here we review a large set of published and unpublished experiments (∼300) performed in rotary shear apparatus at slip rates of 0.1-2.6 m s(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built, quartz-built and carbonate-built) rocks and non-cohesive rocks (clay-rich, anhydrite, gypsum and dolomite gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved.

  7. Housing Damage Following Earthquake

    Science.gov (United States)

    1989-01-01

    An automobile lies crushed under the third story of this apartment building in the Marina District after the Oct. 17, 1989, Loma Prieta earthquake. The ground levels are no longer visible because of structural failure and sinking due to liquefaction. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: J.K. Nakata, U.S. Geological Survey.

  8. Ionospheric effects of earthquakes in Japan in March 2011 obtained from observations of lightning electromagnetic radio signals

    Directory of Open Access Journals (Sweden)

    V. A. Mullayarov

    2012-10-01

    Full Text Available Manifestations of disturbances in the lower ionosphere caused by a complex series of earthquakes (the strong earthquakes with M = 7.3 and M = 9 – known as M9 Tohoku EQ – and the subsequent aftershocks that occurred near the Japanese island of Honshu have been considered with the use of monitoring measurements of the amplitude of lightning electromagnetic signals (atmospherics received at Yakutsk. Some data of one-point lightning location systems have been compared with the data of the WWLLN network.

    The analysis of hourly values variation of the atmospheric amplitude passing over the earthquake epicenters shows that during the initial period (the strong earthquakes on 9 March and 11 March a typical pattern of variations was observed. It was manifested in the increased amplitude after both earthquakes. There were also possible precursors in the form of the increase in amplitude 12–14 days before the events. Though the focuses of these earthquakes were very close to each other, the registration of both precursors may indicate that both of the lithospheric processes developed to a certain extent independently.

    During all the days of the atmospheric amplitude enhancement the quasi-periodic variation trains were recorded. Together with the delay of earthquake effects relative to the time of the events, they may testify in favor of transferring the energy of lithospheric processes into the lower ionosphere by means of atmospheric gravity waves.

  9. Do Earthquakes Shake Stock Markets?

    Science.gov (United States)

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  10. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  11. Validating of Atmospheric Signals Associated with some of the Major Earthquakes in Asia (2003-2009)

    Science.gov (United States)

    Ouzounov, D. P.; Pulinets, S.; Liu, J. Y.; Hattori, K.; Oarritm N,; Taylor, P. T.

    2010-01-01

    The recent catastrophic earthquake in Haiti (January 2010) has provided and renewed interest in the important question of the existence of precursory signals related to strong earthquakes. Latest studies (VESTO workshop in Japan 2009) have shown that there were precursory atmospheric signals observed on the ground and in space associated with several recent earthquakes. The major question, still widely debated in the scientific community is whether such signals systematically precede major earthquakes. To address this problem we have started to validate the anomalous atmospheric signals during the occurrence of large earthquakes. Our approach is based on integration analysis of several physical and environmental parameters (thermal infrared radiation, electron concentration in the ionosphere, Radon/ion activities, air temperature and seismicity) that were found to be associated with earthquakes. We performed hind-cast detection over three different regions with high seismicity Taiwan, Japan and Kamchatka for the period of 2003-2009. We are using existing thermal satellite data (Aqua and POES); in situ atmospheric data (NOAA/NCEP); and ionospheric variability data (GPS/TEC and DEMETER). The first part of this validation included 42 major earthquakes (M greater than 5.9): 10 events in Taiwan, 15 events in Japan, 15 events in Kamchatka and four most recent events for M8.0 Wenchuan earthquake (May 2008) in China and M7.9 Samoa earthquakes (Sep 2009). Our initial results suggest a systematic appearance of atmospheric anomalies near the epicentral area, 1 to 5 days prior to the largest earthquakes, that could be explained by a coupling process between the observed physical parameters, and the earthquake preparation processes.

  12. Characteristic behavior of water radon associated with Wenchuan and Lushan earthquakes along Longmenshan fault

    International Nuclear Information System (INIS)

    Ye, Qing; Singh, Ramesh P.; He, Anhua; Ji, Shouwen; Liu, Chunguo

    2015-01-01

    In China, numerous subsurface, surface water well and spring parameters are being monitored through a large network of stations distributed in China sponsored by China Earthquake Administration (CEA). All the data from these network is managed by China Earthquake Network Center (CENC). In this paper, we have used numerous data (water radon, gas radon, water level, water temperature) available through CENC for the period 2002–2014 and studied the behavior and characteristics of water 222 radon [Rn(w)]. The observed parameters were also complemented by rainfall data retrieved from Tropical Rainfall Measuring Mission (TRMM) satellite. Our detailed analysis shows pronounced changes in the observed parameters (especially water and gas radon) prior to the earthquake. The changes in water radon, ground water level and rainfall showing characteristics behavior for Wenchuan and Lushan earthquakes. The long term data analysis of water radon and water level at various locations around epicenters of two major earthquakes along Longmenshan fault show a positive and negative relation of water radon and water level prior to these earthquakes. It is difficult to find any trend of water radon and changes in water radon pattern with these two earthquakes that could prove as a reliable precursor of earthquakes. Changes in the water radon concentrations from one location to other may be associated with the changes in ground water regime and geological settings in the epicentral and surrounding regions. - Highlights: • Long trend of water radon measured in China during 2003–2014 at six stations round Longmenshan fault. • Water radon shows characteristics behavior associated with Wenchuan and Lushan earthquakes. • Water radon shows one to one relation with rainfall and ground water level variations. • Sharp increase or decrease in water radon concentrations are found few days prior to the earthquake

  13. Earthquake resistant design of structures

    International Nuclear Information System (INIS)

    Choi, Chang Geun; Kim, Gyu Seok; Lee, Dong Geun

    1990-02-01

    This book tells of occurrence of earthquake and damage analysis of earthquake, equivalent static analysis method, application of equivalent static analysis method, dynamic analysis method like time history analysis by mode superposition method and direct integration method, design spectrum analysis considering an earthquake-resistant design in Korea. Such as analysis model and vibration mode, calculation of base shear, calculation of story seismic load and combine of analysis results.

  14. Automated radon-thoron monitoring for earthquake prediction research

    International Nuclear Information System (INIS)

    Shapiro, M.H.; Melvin, J.D.; Copping, N.A.; Tombrello, T.A.; Whitcomb, J.H.

    1980-01-01

    This paper describes an automated instrument for earthquake prediction research which monitors the emission of radon ( 222 Rn) and thoron ( 220 Rn) from rock. The instrument uses aerosol filtration techniques and beta counting to determine radon and thoron levels. Data from the first year of operation of a field prototype suggest an annual cycle in the radon level at the site which is related to thermoelastic strains in the crust. Two anomalous increases in the radon level of short duration have been observed during the first year of operation. One anomaly appears to have been a precursor for a nearby earthquake (2.8 magnitude, Richter scale), and the other may have been associated with changing hydrological conditions resulting from heavy rainfall

  15. The severity of an earthquake

    Science.gov (United States)

    ,

    1997-01-01

    The severity of an earthquake can be expressed in terms of both intensity and magnitude. However, the two terms are quite different, and they are often confused. Intensity is based on the observed effects of ground shaking on people, buildings, and natural features. It varies from place to place within the disturbed region depending on the location of the observer with respect to the earthquake epicenter. Magnitude is related to the amount of seismic energy released at the hypocenter of the earthquake. It is based on the amplitude of the earthquake waves recorded on instruments

  16. Integrated study of geophysical and biological anomalies before earthquakes (seismic and non-seismic), in Austria and Indonesia

    Science.gov (United States)

    Straka, Wolfgang; Assef, Rizkita; Faber, Robert; Ferasyi, Reza

    2015-04-01

    Earthquakes are commonly seen as unpredictable. Even when scientists believe an earthquake is likely, it is still hard to understand the indications observed, as well as their theoretical and practical implications. There is some controversy surrounding the concept of using animals as a precursor of earthquakes. Nonetheless, several institutes at University of Natural Resources and Life Sciences, and Vienna University of Technology, both Vienna, Austria, and Syiah Kuala University, Banda Aceh, as well as Terramath Indonesia, Buleleng, both Indonesia, cooperate in a long-term project, funded by Red Bull Media House, Salzburg, Austria, which aims at getting some decisive step forward from anecdotal to scientific evidence of those interdependencies, and show their possible use in forecasting seismic hazard on a short-term basis. Though no conclusive research has yet been published, an idea in this study is that even if animals do not respond to specific geophysical precursors and with enough notice to enable earthquake forecasting on that basis, they may at least enhance, in conjunction with other indications, the degree of certainty we can get of a prediction of an impending earthquake. In Indonesia, indeed, before the great earthquakes of 2004 and 2005, ominous geophysical as well as biological phenomena occurred (but were realized as precursors only in retrospect). Numerous comparable stories can be told from other times and regions. Nearly 2000 perceptible earthquakes (> M3.5) occur each year in Indonesia. Also, in 2007, the government has launched a program, focused on West Sumatra, for investigating earthquake precursors. Therefore, Indonesia is an excellent target area for a study concerning possible interconnections between geophysical and biological earthquake precursors. Geophysical and atmospheric measurements and behavioral observation of several animal species (elephant, domestic cattle, water buffalo, chicken, rat, catfish) are conducted in three areas

  17. Boron nitride ceramics from molecular precursors: synthesis, properties and applications.

    Science.gov (United States)

    Bernard, Samuel; Salameh, Chrystelle; Miele, Philippe

    2016-01-21

    Hexagonal boron nitride (h-BN) attracts considerable interest because its structure is similar to that of carbon graphite while it displays different properties which are of interest for environmental and green technologies. The polar nature of the B-N bond in sp(2)-bonded BN makes it a wide band gap insulator with different chemistry on its surface and particular physical and chemical properties such as a high thermal conductivity, a high temperature stability, a high resistance to corrosion and oxidation and a strong UV emission. It is chemically inert and nontoxic and has good environmental compatibility. h-BN also has enhanced physisorption properties due to the dipolar fields near its surface. Such properties are closely dependent on the processing method. Bottom-up approaches consist of transforming molecular precursors into non-oxide ceramics with retention of the structural units inherent to the precursor molecule. The purpose of the present review is to give an up-to-date overview on the most recent achievements in the preparation of h-BN from borazine-based molecular single-source precursors including borazine and 2,4,6-trichloroborazine through both vapor phase syntheses and methods in the liquid/solid state involving polymeric intermediates, called the Polymer-Derived Ceramics (PDCs) route. In particular, the effect of the chemistry, composition and architecture of the borazine-based precursors and derived polymers on the shaping ability as well as the properties of h-BN is particularly highlighted.

  18. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    Science.gov (United States)

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  19. Spectroscopy Study of Synthetic Forsterite Obtained from Zeolite Precursors

    Directory of Open Access Journals (Sweden)

    Subotić, B.

    2008-02-01

    Full Text Available Important ceramics materials are prepared from aluminosilicate based precursors using novel methods, offering at the same time a better control over many important properties. Forsterite, due to its good refractoriness with melting point at 2163 K, excellent electrical insulation properties even at high temperatures, low dielectric permittivity, thermal expansion and chemical stability, is a material of interest to engineers and designers especially as an active medium for tuneable laser and is also a material of interest to SOFC (Solid oxide fuel cells manufacturers. The aim of this study is to investigate the synthesis of crystalline forsterite using different zeolite precursors previously activated by ball milling. Synthetic forsterite was synthesized from different zeolite precursors and MgO combining highenergy ball milling and thermal treatment of the mixture under determined conditions of time and temperature for each operation. In this research are studied the solid-state phase transformations taking place at temperatures below 1273 K. The obtained products were characterized using different spectroscopy techniques in comparison with surface analysis method and X-ray diffraction.

  20. Generation of earthquake signals

    International Nuclear Information System (INIS)

    Kjell, G.

    1994-01-01

    Seismic verification can be performed either as a full scale test on a shaker table or as numerical calculations. In both cases it is necessary to have an earthquake acceleration time history. This report describes generation of such time histories by filtering white noise. Analogue and digital filtering methods are compared. Different methods of predicting the response spectrum of a white noise signal filtered by a band-pass filter are discussed. Prediction of both the average response level and the statistical variation around this level are considered. Examples with both the IEEE 301 standard response spectrum and a ground spectrum suggested for Swedish nuclear power stations are included in the report

  1. Earthquakes Threaten Many American Schools

    Science.gov (United States)

    Bailey, Nancy E.

    2010-01-01

    Millions of U.S. children attend schools that are not safe from earthquakes, even though they are in earthquake-prone zones. Several cities and states have worked to identify and repair unsafe buildings, but many others have done little or nothing to fix the problem. The reasons for ignoring the problem include political and financial ones, but…

  2. Make an Earthquake: Ground Shaking!

    Science.gov (United States)

    Savasci, Funda

    2011-01-01

    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  3. Ionospheric Anomalies of the 2011 Tohoku Earthquake with Multiple Observations during Magnetic Storm Phase

    Science.gov (United States)

    Liu, Yang

    2017-04-01

    Ionospheric anomalies linked with devastating earthquakes have been widely investigated by scientists. It was confirmed that GNSS TECs suffered from drastically increase or decrease in some diurnal periods prior to the earthquakes. Liu et al (2008) applied a TECs anomaly calculation method to analyze M>=5.9 earthquakes in Indonesia and found TECs decadence within 2-7 days prior to the earthquakes. Nevertheless, strong TECs enhancement was observed before M8.0 Wenchuan earthquake (Zhao et al 2008). Moreover, the ionospheric plasma critical frequency (foF2) has been found diminished before big earthquakes (Pulinets et al 1998; Liu et al 2006). But little has been done regarding ionospheric irregularities and its association with earthquake. Still it is difficult to understand real mechanism between ionospheric anomalies activities and its precursor for the huge earthquakes. The M9.0 Tohoku earthquake, happened on 11 March 2011, at 05:46 UT time, was recognized as one of the most dominant events in related research field (Liu et al 2011). A median geomagnetic disturbance also occurred accompanied with the earthquake, which makes the ionospheric anomalies activities more sophisticated to study. Seismic-ionospheric disturbance was observed due to the drastic activities of earth. To further address the phenomenon, this paper investigates different categories of ionospheric anomalies induced by seismology activity, with multiple data sources. Several GNSS ground data were chosen along epicenter from IGS stations, to discuss the spatial-temporal correlations of ionospheric TECs in regard to the distance of epicenter. We also apply GIM TEC maps due to its global coverage to find diurnal differences of ionospheric anomalies compared with geomagnetic quiet day in the same month. The results in accordance with Liu's conclusions that TECs depletion occurred at days quite near the earthquake day, however the variation of TECs has special regulation contrast to the normal quiet

  4. Earthquake Catalogue of the Caucasus

    Science.gov (United States)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  5. Fluorescing macerals from wood precursors

    Energy Technology Data Exchange (ETDEWEB)

    Stout, S A; Bensley, D F

    1987-01-01

    A preliminary investigation into the origin of wood-derived macerals has established the existence of autofluorescent maceral precursors in the secondary xylem of swamp-inhabiting plant species. The optical character and fluorescent properties of microtomed thin-sections of modern woods from the Florida Everglades and Okefenokee Swamp, Georgia are compared to the character and properties of their peatified equivalents from various Everglades and Okefenokee peat horizons and their lignitic equivalents from the Brandon lignite of Vermont and the Trail Ridge lignitic peat from northern Florida. The inherent fluorescence of woody cell walls is believed to be caused by lignin though other cell wall components may contribute. The fluorescence spectra for several wood and cell types had a ..gamma../sub m//sub a//sub x/ of 452 nm and Q value of 0.00. The color as observed in blue light and the spectral geometry as measured in UV light of peatified and lignitic woody cell walls (potential textinites) may change progressively during early coalification. Cell wall-derived maceral material is shown to maintain its fluorescing properties after being converted to a structureless material, perhaps a corpohuminite or humodetrinite precursor. Fluorescing xylem cell contents, such as condensed tannins or essential oils, can maintain the fluorescent character through early coalification. Xylem cell walls and xylem cell contents are shown to provide fluorescing progenitor materials which would not require subsequent infusion with 'lipid' materials to account for their fluorescence as phytoclast material or as macerals in coal. 35 references.

  6. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  7. Structural phase transition and precursor phenomena in V3Si

    International Nuclear Information System (INIS)

    Kobayashi, T.; Fukase, T.; Toyota, N.; Muto, Y.

    1982-01-01

    Thermal dilation experiments on the transforming single crystals V 3 Si indicated that the precursor of the structural transformation at Tsub(m) of about 21 K starts at anomalously high temperatures (proportional70 K) and grows drastically near Tsub(m). This anomaly is also accompanied by the critical increment of electrical resistivity showing a sharp peak at Tsub(m). The application of the uniaxial stress suppresses the resistivity anomaly and makes the superconducting transition width narrower. We propose a model for the precursor phenomena in terms of (1) the directional strain fields (non-cubic) pinned near the defects and (2) the memory effect of orientation of the tetragonal domains born by the defects such as dislocations. (orig.)

  8. Inter-Disciplinary Validation of Pre Earthquake Signals. Case Study for Major Earthquakes in Asia (2004-2010) and for 2011 Tohoku Earthquake

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Hattori, K.; Liu, J.-Y.; Yang. T. Y.; Parrot, M.; Kafatos, M.; Taylor, P.

    2012-01-01

    We carried out multi-sensors observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several physical and environmental parameters, which we found, associated with the earthquake processes: thermal infrared radiation, temperature and concentration of electrons in the ionosphere, radon/ion activities, and air temperature/humidity in the atmosphere. We used satellite and ground observations and interpreted them with the Lithosphere-Atmosphere- Ionosphere Coupling (LAIC) model, one of possible paradigms we study and support. We made two independent continues hind-cast investigations in Taiwan and Japan for total of 102 earthquakes (M>6) occurring from 2004-2011. We analyzed: (1) ionospheric electromagnetic radiation, plasma and energetic electron measurements from DEMETER (2) emitted long-wavelength radiation (OLR) from NOAA/AVHRR and NASA/EOS; (3) radon/ion variations (in situ data); and 4) GPS Total Electron Content (TEC) measurements collected from space and ground based observations. This joint analysis of ground and satellite data has shown that one to six (or more) days prior to the largest earthquakes there were anomalies in all of the analyzed physical observations. For the latest March 11 , 2011 Tohoku earthquake, our analysis shows again the same relationship between several independent observations characterizing the lithosphere /atmosphere coupling. On March 7th we found a rapid increase of emitted infrared radiation observed from satellite data and subsequently an anomaly developed near the epicenter. The GPS/TEC data indicated an increase and variation in electron density reaching a maximum value on March 8. Beginning from this day we confirmed an abnormal TEC variation over the epicenter in the lower ionosphere. These findings revealed the existence of atmospheric and ionospheric phenomena occurring prior to the 2011 Tohoku earthquake, which indicated new evidence of a distinct

  9. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell

    2011-08-01

    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  10. The CATDAT damaging earthquakes database

    Science.gov (United States)

    Daniell, J. E.; Khazai, B.; Wenzel, F.; Vervaeck, A.

    2011-08-01

    The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture) database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes. Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon. Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected), and economic losses (direct, indirect, aid, and insured). Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto (214 billion USD damage; 2011 HNDECI-adjusted dollars) compared to the 2011 Tohoku (>300 billion USD at time of writing), 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product), exchange rate, wage information, population, HDI (Human Development Index), and insurance information have been collected globally to form comparisons. This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global reinsurance field.

  11. Earthquake prediction in Japan and natural time analysis of seismicity

    Science.gov (United States)

    Uyeda, S.; Varotsos, P.

    2011-12-01

    M9 super-giant earthquake with huge tsunami devastated East Japan on 11 March, causing more than 20,000 casualties and serious damage of Fukushima nuclear plant. This earthquake was predicted neither short-term nor long-term. Seismologists were shocked because it was not even considered possible to happen at the East Japan subduction zone. However, it was not the only un-predicted earthquake. In fact, throughout several decades of the National Earthquake Prediction Project, not even a single earthquake was predicted. In reality, practically no effective research has been conducted for the most important short-term prediction. This happened because the Japanese National Project was devoted for construction of elaborate seismic networks, which was not the best way for short-term prediction. After the Kobe disaster, in order to parry the mounting criticism on their no success history, they defiantly changed their policy to "stop aiming at short-term prediction because it is impossible and concentrate resources on fundamental research", that meant to obtain "more funding for no prediction research". The public were and are not informed about this change. Obviously earthquake prediction would be possible only when reliable precursory phenomena are caught and we have insisted this would be done most likely through non-seismic means such as geochemical/hydrological and electromagnetic monitoring. Admittedly, the lack of convincing precursors for the M9 super-giant earthquake has adverse effect for us, although its epicenter was far out off shore of the range of operating monitoring systems. In this presentation, we show a new possibility of finding remarkable precursory signals, ironically, from ordinary seismological catalogs. In the frame of the new time domain termed natural time, an order parameter of seismicity, κ1, has been introduced. This is the variance of natural time kai weighted by normalised energy release at χ. In the case that Seismic Electric Signals

  12. Polymethacrylic acid as a new precursor of CuO nanoparticles

    Science.gov (United States)

    Hosny, Nasser Mohammed; Zoromba, Mohamed Shafick

    2012-11-01

    Polymethacrylic acid and its copper complexes have been synthesized and characterized. These complexes have been used as precursors to produce CuO nanoparticles by thermal decomposition in air. The stages of decompositions and the calcination temperature of the precursors have been determined from thermal analyses (TGA). The obtained CuO nanoparticles have been characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). XRD showed a monoclinic structure with particle size 8-20 nm for the synthesized copper oxide nanoparticles. These nanoparticles are catalytically active in decomposing hydrogen peroxide and a mechanism of decomposition has been suggested.

  13. Earthquake Emergency Education in Dushanbe, Tajikistan

    Science.gov (United States)

    Mohadjer, Solmaz; Bendick, Rebecca; Halvorson, Sarah J.; Saydullaev, Umed; Hojiboev, Orifjon; Stickler, Christine; Adam, Zachary R.

    2010-01-01

    We developed a middle school earthquake science and hazards curriculum to promote earthquake awareness to students in the Central Asian country of Tajikistan. These materials include pre- and post-assessment activities, six science activities describing physical processes related to earthquakes, five activities on earthquake hazards and mitigation…

  14. Determination of Design Basis Earthquake ground motion

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1997-01-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  15. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  16. Earthquake-proof supporting structure in reactor vessel

    International Nuclear Information System (INIS)

    Sakurai, Akio; Sekine, Katsuhisa; Madokoro, Manabu; Katoono, Shin-ichi; Konno, Mutsuo; Suzuki, Takuro.

    1990-01-01

    Conventional earthquake-proof structure comprises a vessel vibration stopper integrated to a reactor vessel, powder for restricting the horizontal displacements, a safety vessel surrounds the outer periphery of the reactor vessel and a safety vessel vibration stopper integrated therewith, which are fixed to buildings. However, there was a problem that a great amount of stresses are generated in the base of the reactor vessel vibration stopper due to reaction of the powders which restrict thermal expansion. In order to remarkably reduce the reaction of the powers, powders are charged into a spaces formed between each of the reactor vessel vibration stopper, the safety vessel vibration stopper and the flexible member disposed between them. According to this constitution, the reactor vessel vibration stopper does not undergo a great reaction of the powers upon thermal expansion of the reactor vessel to moderate the generated stresses, maintain the strength and provide earthquake-proof supporting function. (N.H.)

  17. Earthquake Hazard Assessment: an Independent Review

    Science.gov (United States)

    Kossobokov, Vladimir

    2016-04-01

    Seismic hazard assessment (SHA), from term-less (probabilistic PSHA or deterministic DSHA) to time-dependent (t-DASH) including short-term earthquake forecast/prediction (StEF), is not an easy task that implies a delicate application of statistics to data of limited size and different accuracy. Regretfully, in many cases of SHA, t-DASH, and StEF, the claims of a high potential and efficiency of the methodology are based on a flawed application of statistics and hardly suitable for communication to decision makers. The necessity and possibility of applying the modified tools of Earthquake Prediction Strategies, in particular, the Error Diagram, introduced by G.M. Molchan in early 1990ies for evaluation of SHA, and the Seismic Roulette null-hypothesis as a measure of the alerted space, is evident, and such a testing must be done in advance claiming hazardous areas and/or times. The set of errors, i.e. the rates of failure and of the alerted space-time volume, compared to those obtained in the same number of random guess trials permits evaluating the SHA method effectiveness and determining the optimal choice of the parameters in regard to specified cost-benefit functions. These and other information obtained in such a testing may supply us with a realistic estimate of confidence in SHA results and related recommendations on the level of risks for decision making in regard to engineering design, insurance, and emergency management. These basics of SHA evaluation are exemplified with a few cases of misleading "seismic hazard maps", "precursors", and "forecast/prediction methods".

  18. Physics of Earthquake Rupture Propagation

    Science.gov (United States)

    Xu, Shiqing; Fukuyama, Eiichi; Sagy, Amir; Doan, Mai-Linh

    2018-05-01

    A comprehensive understanding of earthquake rupture propagation requires the study of not only the sudden release of elastic strain energy during co-seismic slip, but also of other processes that operate at a variety of spatiotemporal scales. For example, the accumulation of the elastic strain energy usually takes decades to hundreds of years, and rupture propagation and termination modify the bulk properties of the surrounding medium that can influence the behavior of future earthquakes. To share recent findings in the multiscale investigation of earthquake rupture propagation, we held a session entitled "Physics of Earthquake Rupture Propagation" during the 2016 American Geophysical Union (AGU) Fall Meeting in San Francisco. The session included 46 poster and 32 oral presentations, reporting observations of natural earthquakes, numerical and experimental simulations of earthquake ruptures, and studies of earthquake fault friction. These presentations and discussions during and after the session suggested a need to document more formally the research findings, particularly new observations and views different from conventional ones, complexities in fault zone properties and loading conditions, the diversity of fault slip modes and their interactions, the evaluation of observational and model uncertainties, and comparison between empirical and physics-based models. Therefore, we organize this Special Issue (SI) of Tectonophysics under the same title as our AGU session, hoping to inspire future investigations. Eighteen articles (marked with "this issue") are included in this SI and grouped into the following six categories.

  19. Radon observation for earthquake prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wakita, Hiroshi [Tokyo Univ. (Japan)

    1998-12-31

    Systematic observation of groundwater radon for the purpose of earthquake prediction began in Japan in late 1973. Continuous observations are conducted at fixed stations using deep wells and springs. During the observation period, significant precursory changes including the 1978 Izu-Oshima-kinkai (M7.0) earthquake as well as numerous coseismic changes were observed. At the time of the 1995 Kobe (M7.2) earthquake, significant changes in chemical components, including radon dissolved in groundwater, were observed near the epicentral region. Precursory changes are presumably caused by permeability changes due to micro-fracturing in basement rock or migration of water from different sources during the preparation stage of earthquakes. Coseismic changes may be caused by seismic shaking and by changes in regional stress. Significant drops of radon concentration in groundwater have been observed after earthquakes at the KSM site. The occurrence of such drops appears to be time-dependent, and possibly reflects changes in the regional stress state of the observation area. The absence of radon drops seems to be correlated with periods of reduced regional seismic activity. Experience accumulated over the two past decades allows us to reach some conclusions: 1) changes in groundwater radon do occur prior to large earthquakes; 2) some sites are particularly sensitive to earthquake occurrence; and 3) the sensitivity changes over time. (author)

  20. Precisely locating the Klamath Falls, Oregon, earthquakes

    Science.gov (United States)

    Qamar, A.; Meagher, K.L.

    1993-01-01

    The Klamath Falls earthquakes on September 20, 1993, were the largest earthquakes centered in Oregon in more than 50 yrs. Only the magnitude 5.75 Milton-Freewater earthquake in 1936, which was centered near the Oregon-Washington border and felt in an area of about 190,000 sq km, compares in size with the recent Klamath Falls earthquakes. Although the 1993 earthquakes surprised many local residents, geologists have long recognized that strong earthquakes may occur along potentially active faults that pass through the Klamath Falls area. These faults are geologically related to similar faults in Oregon, Idaho, and Nevada that occasionally spawn strong earthquakes

  1. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina

    2001-01-01

    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  2. Technical NoteEarthquake dates and water level changes in wells in the Eskisehir region, Turkey

    Directory of Open Access Journals (Sweden)

    G. Yuce

    2003-01-01

    Full Text Available Although satisfactory results have yet to be obtained in earthquake prediction, one of the most common indicators of an anomalous precursor is a change in groundwater level in existing wells. Further wells should thus be drilled in unconfined aquifers since these are more susceptible to seismic waves. The Eskisehir region lies in the transition zone between the Aegean extensional domain and the compressible northern Anatolian block. Limnigraphs, installed in 19 exploration wells in the Eskisehir region, recorded pre-seismic, co-seismic and post-seismic level changes during the earthquakes of 17 August Izmit (Mw= 7.4 and 12 November Duzce (Mw= 7.2 1999 that occurred along the North Anatolian Fault Zone. The Izmit and Duzce earthquakes affected groundwater levels, especially in confined aquifers. The aquifer characteristics before and after the earthquakes were unchanged so the aquifer is elastic in its behaviour. Further detailed geo-mechanical investigation of the confined aquifer in the Eskisehir region may improve understanding of earthquake prediction. Keywords: earthquake prediction, Eskisehir, hydrological warning, monitoring groundwater levels

  3. Initiation process of earthquakes and its implications for seismic hazard reduction strategy.

    Science.gov (United States)

    Kanamori, H

    1996-04-30

    For the average citizen and the public, "earthquake prediction" means "short-term prediction," a prediction of a specific earthquake on a relatively short time scale. Such prediction must specify the time, place, and magnitude of the earthquake in question with sufficiently high reliability. For this type of prediction, one must rely on some short-term precursors. Examinations of strain changes just before large earthquakes suggest that consistent detection of such precursory strain changes cannot be expected. Other precursory phenomena such as foreshocks and nonseismological anomalies do not occur consistently either. Thus, reliable short-term prediction would be very difficult. Although short-term predictions with large uncertainties could be useful for some areas if their social and economic environments can tolerate false alarms, such predictions would be impractical for most modern industrialized cities. A strategy for effective seismic hazard reduction is to take full advantage of the recent technical advancements in seismology, computers, and communication. In highly industrialized communities, rapid earthquake information is critically important for emergency services agencies, utilities, communications, financial companies, and media to make quick reports and damage estimates and to determine where emergency response is most needed. Long-term forecast, or prognosis, of earthquakes is important for development of realistic building codes, retrofitting existing structures, and land-use planning, but the distinction between short-term and long-term predictions needs to be clearly communicated to the public to avoid misunderstanding.

  4. Hydrodeoxygenation of coal using organometallic catalyst precursors

    Science.gov (United States)

    Kirby, Stephen R.

    2002-04-01

    The objective of this dissertation was to determine the desirability of organometallic compounds for the hydrodeoxygenation (HDO) of coal during liquefaction. The primary focus of this study was the removal of phenol-like compounds from coal liquids for the production of a thermally stable jet fuel. Investigation of the HDO ability of an organometallic compound containing both cobalt and molybdenum (CoMo-T2) was achieved using a combination of model compound and coal experiments. Model compounds were chosen representing four oxygen functional groups present in a range of coals. Electron density and bond order calculations were performed for anthrone, dinaphthyl ether, xanthene, di-t-butylmethylphenol, and some of their derivatives to ascertain a potential order of hydrogenolysis and hydrogenation reactivity for these compounds. The four model compounds were then reacted with CoMo-T2, as well as ammonium tetrathiomolybdate (ATTM). Products of reaction were grouped as compounds that had undergone deoxygenation, those that had aromatic rings reduced, those that were products of both reaction pathways, and those produced through other routes. ATTM had an affinity for both reaction types. Its reaction order for the four model compounds with respect to deoxygenated compounds was the same as that estimated from electron density calculations for hydrogenolysis reactivity. CoMo-T2 appeared to show a preference toward hydrogenation, although deoxygenated products were still achieved in similar, or greater, yields, for almost all the model compounds. The reactivity order achieved for the four compounds with CoMo-T2 was similar to that estimated from bond order calculations for hydrogenation reactivity. Three coals were selected representing a range of coal ranks and oxygen contents. DECS-26 (Wyodak), DECS-24 (Illinois #6), and DECS-23 (Pittsburgh #8) were analyzed by CPMAS 13C NMR and pyrolysis-GC-MS to determine the functional groups comprising the oxygen content of these

  5. The Pocatello Valley, Idaho, earthquake

    Science.gov (United States)

    Rogers, A. M.; Langer, C.J.; Bucknam, R.C.

    1975-01-01

    A Richter magnitude 6.3 earthquake occurred at 8:31 p.m mountain daylight time on March 27, 1975, near the Utah-Idaho border in Pocatello Valley. The epicenter of the main shock was located at 42.094° N, 112.478° W, and had a focal depth of 5.5 km. This earthquake was the largest in the continental United States since the destructive San Fernando earthquake of February 1971. The main shock was preceded by a magnitude 4.5 foreshock on March 26. 

  6. The threat of silent earthquakes

    Science.gov (United States)

    Cervelli, Peter

    2004-01-01

    Not all earthquakes shake the ground. The so-called silent types are forcing scientists to rethink their understanding of the way quake-prone faults behave. In rare instances, silent earthquakes that occur along the flakes of seaside volcanoes may cascade into monstrous landslides that crash into the sea and trigger towering tsunamis. Silent earthquakes that take place within fault zones created by one tectonic plate diving under another may increase the chance of ground-shaking shocks. In other locations, however, silent slip may decrease the likelihood of destructive quakes, because they release stress along faults that might otherwise seem ready to snap.

  7. USGS Earthquake Program GPS Use Case : Earthquake Early Warning

    Science.gov (United States)

    2015-03-12

    USGS GPS receiver use case. Item 1 - High Precision User (federal agency with Stafford Act hazard alert responsibilities for earthquakes, volcanoes and landslides nationwide). Item 2 - Description of Associated GPS Application(s): The USGS Eart...

  8. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  9. The Gutenberg-Richter b value: Precursors to the M9-class 2011 Tohoku and 2004 Sumatra quakes

    Science.gov (United States)

    Nanjo, K.; Hirata, N.; Obara, K.; Kasahara, K.

    2011-12-01

    The Gutenberg-Richter frequency-magnitude law of earthquakes is long established in seismology. This law states that the cumulative number (N) of earthquakes with magnitudes larger than or equal to M is well approximated by the relation: logN=A-bM, where the constant A is a measure of the fertility of earthquakes and the other constant b characterizes their size distribution. The b value is typically close to 1, but spatial and temporal changes in b are also known to reflect the state of stress in the Earth's crust and to be associated with asperities and frictional properties. Laboratory experiments predicted systematic decrease in b toward the end of a seismic cycle. In this context, we investigated b values over an extensive range of space and time for the 11 March 2011 Mw9.0 Tohoku earthquake and 26 December 2004 Mw9.1 Sumatra earthquake. In this presentation, we show that significant decade-scale decrease in b is a common precursor to both mega-quakes around their hypocenters. This is the first time to confirm predicted change in b from laboratory experiment for M9-class quakes. We propose that b value can be an important indicator to infer a next great earthquake, showing the great potential for a future large quake off the Pacific coast of Hokkaido district. The results demonstrate that the use of b helps to improve probabilistic seismic hazard assessment. Along this line, we present a progress report on b value analysis conducted for greater Tokyo and discuss future directions of this research toward moving to a new generation of the capital's earthquake hazards. This is supported by the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area.

  10. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  11. Synthesis of carbon nanotubes using natural carbon precursor: Castor oil

    Science.gov (United States)

    Raziah, A. Z.; Junizah, A. R.; Saifuddin, N.

    2012-09-01

    Castor oil has long been an article of commerce due to its versatility as it is widely used as a starting material for many industrial chemical products because of its unique structure. In this study, carbon nanotubes has been synthesized by thermal decomposition of castor oil in nitrogen atmosphere at 300-400δC using custom-made microwave processing unit. The precursor material was catalyzed by iron clusters originating from the addition of ferrocene. The morphology and characterization of the CNTs were studied and discussed by transmission electron microscopy (TEM).

  12. Graphene nanoribbons synthesized from molecular precursor polymerization on Au(110)

    Energy Technology Data Exchange (ETDEWEB)

    Massimi, Lorenzo; Ourdjini, Oualid; Della Pia, Ada; Mariani, Carlo; Betti, Maria Grazia [Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma (Italy); Cavaliere, Emanuele; Gavioli, Luca [i-LAMP & Dipartimento di Matematica e Fisica, Università Cattolica, 25121 Brescia (Italy)

    2015-06-23

    A spectroscopic study of 10,10-dibromo-9,9 bianthracene (DBBA) molecules deposited on the Au(110) surface is presented, by means of ultraviolet and X-ray photoemission, and X-ray absorption spectroscopy. Through a thermally activated procedure, these molecular precursors polymerize and eventually form graphene nanoribbons (GNRs) with atomically controlled shape and width, very important building blocks for several technological applications. The GNRs observed by scanning tunneling microscopy (STM) appear as short segments on top of the gold surface reconstruction, pointing out the delicate balance among surface diffusion and surface corrugation in their synthesis on the Au(110) surface.

  13. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  14. Investigation of radon-222 in subsurface waters as an earthquake predictor

    International Nuclear Information System (INIS)

    Smith, A.R.; Bowman, H.R.; Mosier, D.F.; Asaro, F.; Wollenberg, H.A.; King, C.Y.

    1975-11-01

    Changes of radon-222 content of well waters in seismically active regions may provide earthquake precursor signals, according to reports of recent Chinese and Russian work. A high-precision γ-ray system for continuous monitoring of radon in wells and springs has been developed at the Lawrence Berkeley Laboratory, where monitoring began in April 1975, and has been extended to other sites including the San Andreas fault zone

  15. Investigation of 222Rn in subsurface waters as an earthquake predictor

    International Nuclear Information System (INIS)

    Smith, A.R.; Bowman, H.R.; Mosier, D.F.; Asaro, F.; Wollenberg, H.A.; King, C.Y.

    1976-01-01

    Changes of 222 Ra content of well waters in seismically active regions may provide earthquake precursor signals, according to reports of recent Chinese and Russian work. A high-precision γ-ray system for continuous monitoring of radon in wells and springs has been developed at the Lawrence Berkeley Laboratory, where monitoring began in April 1975, and has been extended to other sites including the San Andreas fault zone

  16. Centrality in earthquake multiplex networks

    Science.gov (United States)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  17. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    Science.gov (United States)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  18. Rapid synthesis of macrocycles from diol precursors

    DEFF Research Database (Denmark)

    Wingstrand, Magnus; Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2009-01-01

    A method for the formation of synthetic macrocycles with different ring sizes from diols is presented. Reacting a simple diol precursor with electrophilic reagents leads to a cyclic carbonate, sulfite or phosphate in a single step in 25-60% yield. Converting the cyclization precursor to a bis-ele...

  19. Precursors in photonic crystals - art. no. 618218

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.; DeLaRue, RM; Viktorovitch, P; Lopez, C; Midrio, M

    2006-01-01

    We derive the Sommerfeld precursor and present the first calculations for the Brillouin precursor that result from the transmission of a pulse through a photonic crystal. The photonic crystal is modelled by a one-dimensional N-layer medium and the pulse is a generic electromagnetic plane wave packet

  20. The Sommerfeld precursor in photonic crystals

    NARCIS (Netherlands)

    Uitham, R; Hoenders, BJ

    2006-01-01

    We calculate the Sommerfeld precursor that results after transmission of a generic electromagnetic plane wave pulse with transverse electric polarization, through a one-dimensional rectangular N-layer photonic crystal with two slabs per layer. The shape of this precursor equals the shape of the

  1. Bioinspired magnetite synthesis via solid precursor phases

    NARCIS (Netherlands)

    Lenders, J.J.M.; Mirabello, G.; Sommerdijk, N.A.J.M.

    2016-01-01

    Living organisms often exploit solid but poorly ordered mineral phases as precursors in the biomineralization of their inorganic body parts. Generally speaking, such precursor-based approaches allow the organisms-without the need of high supersaturation levels-to accumulate significant quantities of

  2. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Science.gov (United States)

    Gao, Meng-Tan; Jin, Xue-Shen; An, Wei-Ping; Lü, Xiao-Jian

    2004-07-01

    The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  3. Earthquake data base for Romania

    International Nuclear Information System (INIS)

    Rizescu, M.; Ghica, D.; Grecu, B.; Popa, M.; Borcia, I. S.

    2002-01-01

    A new earthquake database for Romania is being constructed, comprising complete earthquake information and being up-to-date, user-friendly and rapidly accessible. One main component of the database consists from the catalog of earthquakes occurred in Romania since 984 up to present. The catalog contains information related to locations and other source parameters, when available, and links to waveforms of important earthquakes. The other very important component is the 'strong motion database', developed for strong intermediate-depth Vrancea earthquakes where instrumental data were recorded. Different parameters to characterize strong motion properties as: effective peak acceleration, effective peak velocity, corner periods T c and T d , global response spectrum based intensities were computed and recorded into this database. Also, information on the recording seismic stations as: maps giving their positioning, photographs of the instruments and site conditions ('free-field or on buildings) are included. By the huge volume and quality of gathered data, also by its friendly user interface, the Romania earthquake data base provides a very useful tool for geosciences and civil engineering in their effort towards reducing seismic risk in Romania. (authors)

  4. Mapping Tectonic Stress Using Earthquakes

    International Nuclear Information System (INIS)

    Arnold, Richard; Townend, John; Vignaux, Tony

    2005-01-01

    An earthquakes occurs when the forces acting on a fault overcome its intrinsic strength and cause it to slip abruptly. Understanding more specifically why earthquakes occur at particular locations and times is complicated because in many cases we do not know what these forces actually are, or indeed what processes ultimately trigger slip. The goal of this study is to develop, test, and implement a Bayesian method of reliably determining tectonic stresses using the most abundant stress gauges available - earthquakes themselves.Existing algorithms produce reasonable estimates of the principal stress directions, but yield unreliable error bounds as a consequence of the generally weak constraint on stress imposed by any single earthquake, observational errors, and an unavoidable ambiguity between the fault normal and the slip vector.A statistical treatment of the problem can take into account observational errors, combine data from multiple earthquakes in a consistent manner, and provide realistic error bounds on the estimated principal stress directions.We have developed a realistic physical framework for modelling multiple earthquakes and show how the strong physical and geometrical constraints present in this problem allow inference to be made about the orientation of the principal axes of stress in the earth's crust

  5. Swedish earthquakes and acceleration probabilities

    International Nuclear Information System (INIS)

    Slunga, R.

    1979-03-01

    A method to assign probabilities to ground accelerations for Swedish sites is described. As hardly any nearfield instrumental data is available we are left with the problem of interpreting macroseismic data in terms of acceleration. By theoretical wave propagation computations the relation between seismic strength of the earthquake, focal depth, distance and ground accelerations are calculated. We found that most Swedish earthquake of the area, the 1904 earthquake 100 km south of Oslo, is an exception and probably had a focal depth exceeding 25 km. For the nuclear power plant sites an annual probability of 10 -5 has been proposed as interesting. This probability gives ground accelerations in the range 5-20 % for the sites. This acceleration is for a free bedrock site. For consistency all acceleration results in this study are given for bedrock sites. When applicating our model to the 1904 earthquake and assuming the focal zone to be in the lower crust we get the epicentral acceleration of this earthquake to be 5-15 % g. The results above are based on an analyses of macrosismic data as relevant instrumental data is lacking. However, the macroseismic acceleration model deduced in this study gives epicentral ground acceleration of small Swedish earthquakes in agreement with existent distant instrumental data. (author)

  6. Building with Earthquakes in Mind

    Science.gov (United States)

    Mangieri, Nicholas

    2016-04-01

    Earthquakes are some of the most elusive and destructive disasters humans interact with on this planet. Engineering structures to withstand earthquake shaking is critical to ensure minimal loss of life and property. However, the majority of buildings today in non-traditional earthquake prone areas are not built to withstand this devastating force. Understanding basic earthquake engineering principles and the effect of limited resources helps students grasp the challenge that lies ahead. The solution can be found in retrofitting existing buildings with proper reinforcements and designs to deal with this deadly disaster. The students were challenged in this project to construct a basic structure, using limited resources, that could withstand a simulated tremor through the use of an earthquake shake table. Groups of students had to work together to creatively manage their resources and ideas to design the most feasible and realistic type of building. This activity provided a wealth of opportunities for the students to learn more about a type of disaster they do not experience in this part of the country. Due to the fact that most buildings in New York City were not designed to withstand earthquake shaking, the students were able to gain an appreciation for how difficult it would be to prepare every structure in the city for this type of event.

  7. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  8. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Hustrulid, W.A.; Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository

  9. Global earthquake fatalities and population

    Science.gov (United States)

    Holzer, Thomas L.; Savage, James C.

    2013-01-01

    Modern global earthquake fatalities can be separated into two components: (1) fatalities from an approximately constant annual background rate that is independent of world population growth and (2) fatalities caused by earthquakes with large human death tolls, the frequency of which is dependent on world population. Earthquakes with death tolls greater than 100,000 (and 50,000) have increased with world population and obey a nonstationary Poisson distribution with rate proportional to population. We predict that the number of earthquakes with death tolls greater than 100,000 (50,000) will increase in the 21st century to 8.7±3.3 (20.5±4.3) from 4 (7) observed in the 20th century if world population reaches 10.1 billion in 2100. Combining fatalities caused by the background rate with fatalities caused by catastrophic earthquakes (>100,000 fatalities) indicates global fatalities in the 21st century will be 2.57±0.64 million if the average post-1900 death toll for catastrophic earthquakes (193,000) is assumed.

  10. The rupture process of the Manjil, Iran earthquake of 20 june 1990 and implications for intraplate strike-slip earthquakes

    Science.gov (United States)

    Choy, G.L.; Zednik, J.

    1997-01-01

    In terms of seismically radiated energy or moment release, the earthquake of 20 January 1990 in the Manjil Basin-Alborz Mountain region of Iran is the second largest strike-slip earthquake to have occurred in an intracontinental setting in the past decade. It caused enormous loss of life and the virtual destruction of several cities. Despite a very large meizoseismal area, the identification of the causative faults has been hampered by the lack of reliable earthquake locations and conflicting field reports of surface displacement. Using broadband data from global networks of digitally recording seismographs, we analyse broadband seismic waveforms to derive characteristics of the rupture process. Complexities in waveforms generated by the earthquake indicate that the main shock consisted of a tiny precursory subevent followed in the next 20 seconds by a series of four major subevents with depths ranging from 10 to 15 km. The focal mechanisms of the major subevents, which are predominantly strike-slip, have a common nodal plane striking about 285??-295??. Based on the coincidence of this strike with the dominant tectonic fabric of the region we presume that the EW striking planes are the fault planes. The first major subevent nucleated slightly south of the initial precursor. The second subevent occurred northwest of the initial precursor. The last two subevents moved progressively southeastward of the first subevent in a direction collinear with the predominant strike of the fault planes. The offsets in the relative locations and the temporal delays of the rupture subevents indicate heterogeneous distribution of fracture strength and the involvement of multiple faults. The spatial distribution of teleseismic aftershocks, which at first appears uncorrelated with meizoseismal contours, can be decomposed into stages. The initial activity, being within and on the periphery of the rupture zone, correlates in shape and length with meizoseismal lines. In the second stage

  11. Design and investigation of a continuous radon monitoring network for earthquake precursory process in Great Tehran

    International Nuclear Information System (INIS)

    Negarestani, A.; Namvaran, M.; Hashemi, S.M.; Shahpasandzadeh, M.; Fatemi, S.J.; Alavi, S.A.; Mokhtari, M.

    2014-01-01

    Earthquakes usually occur after some preliminary anomalies in the physical and chemical characteristics of environment and earth interior. Construction of the models which can explain these anomalies, prompt scientists to monitor geophysical and geochemical characteristics in the seismic areas for earthquake prediction. A review of studies has been done so far, denoted that radon gas shows more sensitivity than other geo-gas as a precursor. Based on previous researches, radon is a short-term precursor of earthquake from time point of view. There are equal experimental equations about the relation between earthquake magnitude and its effective distance on radon concentration variations. In this work, an algorithm based on Dobrovolsky equation (D=10 0.43M ) with defining the Expectation and Investigation circles for great Tehran has been used. Radon concentration was measured with RAD7 detector in the more than 40 springs. Concentration of radon in spring, spring discharge, water temperature and the closeness of spring location to active faults, have been considered as the significant factors to select the best spring for a radon continuous monitoring site implementation. According to these factors, thirteen springs have been selected as follow: Bayjan, Mahallat-Hotel, Avaj, Aala, Larijan, Delir, Lavij, Ramsar, Semnan, Lavieh, Legahi, Kooteh-Koomeh and Sarein. (author)

  12. The interrelationships of mathematical precursors in kindergarten.

    Science.gov (United States)

    Cirino, Paul T

    2011-04-01

    This study evaluated the interrelations among cognitive precursors across quantitative, linguistic, and spatial attention domains that have been implicated for math achievement in young children. The dimensionality of the quantity precursors was evaluated in 286 kindergarteners via latent variable techniques, and the contribution of precursors from each domain was established for small sums addition. Results showed a five-factor structure for the quantity precursors, with the major distinction being between nonsymbolic and symbolic tasks. The overall model demonstrated good fit and strong predictive power (R(2)=55%) for addition number combinations. Linguistic and spatial attention domains showed indirect relationships with outcomes, with their effects mediated by symbolic quantity measures. These results have implications for the measurement of mathematical precursors and yield promise for predicting future math performance. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Flicker-noise Spectroscopy In Earthquake Prediction Research

    Science.gov (United States)

    Desherevsky, A. V.; Lukk, A. A.; Sidorin, A. Y.; Timashev, S. F.

    It has been found out that a two-component model including a seasonal and a flicker- noise components occurs to be a more adequate model of statistical structure of time series of long-term geophysical observations' data. Unlike a white noise which sig- nifies absence of any relation between the system's current dynamics and past events in it, presence of flicker-noise indicates that such a relation in the system does ex- ist. Flicker-noise pertains a property of scale invariance. It seems natural to relate self-similarity of statistical properties of geophysical parameters' variations on dif- ferent scales to self-similar (fractal) properties of geophysical medium. At the same time self-similar time variations of geophysical parameters may indicate to presence of deterministic chaos in geophysical system's evolution. An important element of a proposed approach is application of stochastic models of preparation of each concrete large seismic event. Instead of regular, for example bay-form precursor variations, occurrence of precursors of another kind associated in particular with variation in parameter fluctuations should be expected. To solve a problem of large earthquakes prediction we use Flicker-Noise Spectroscopy (FNS) as a basis of a new approach proposed by us. The basis of the FNS methodology is a postulate about the impor- tant information significance of sequences of various dynamic irregularities (bursts or spikes, jumps with different characteristic values, discontinuities of derivatives) of the measured temporal, spatial and energetic variables on each level of hierarchical orga- nization of studied systems. A proposed new method using integral values of analyzed signals - power spectra and different moments ("structural functions") of a different order as information relations, has demonstrated principally new opportunities in a search of large earthquake precursors already at a preliminary stage of some data analysis. This research was supported by

  14. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  15. Four Examples of Short-Term and Imminent Prediction of Earthquakes

    Science.gov (United States)

    zeng, zuoxun; Liu, Genshen; Wu, Dabin; Sibgatulin, Victor

    2014-05-01

    We show here 4 examples of short-term and imminent prediction of earthquakes in China last year. They are Nima Earthquake(Ms5.2), Minxian Earthquake(Ms6.6), Nantou Earthquake (Ms6.7) and Dujiangyan Earthquake (Ms4.1) Imminent Prediction of Nima Earthquake(Ms5.2) Based on the comprehensive analysis of the prediction of Victor Sibgatulin using natural electromagnetic pulse anomalies and the prediction of Song Song and Song Kefu using observation of a precursory halo, and an observation for the locations of a degasification of the earth in the Naqu, Tibet by Zeng Zuoxun himself, the first author made a prediction for an earthquake around Ms 6 in 10 days in the area of the degasification point (31.5N, 89.0 E) at 0:54 of May 8th, 2013. He supplied another degasification point (31N, 86E) for the epicenter prediction at 8:34 of the same day. At 18:54:30 of May 15th, 2013, an earthquake of Ms5.2 occurred in the Nima County, Naqu, China. Imminent Prediction of Minxian Earthquake (Ms6.6) At 7:45 of July 22nd, 2013, an earthquake occurred at the border between Minxian and Zhangxian of Dingxi City (34.5N, 104.2E), Gansu province with magnitude of Ms6.6. We review the imminent prediction process and basis for the earthquake using the fingerprint method. 9 channels or 15 channels anomalous components - time curves can be outputted from the SW monitor for earthquake precursors. These components include geomagnetism, geoelectricity, crust stresses, resonance, crust inclination. When we compress the time axis, the outputted curves become different geometric images. The precursor images are different for earthquake in different regions. The alike or similar images correspond to earthquakes in a certain region. According to the 7-year observation of the precursor images and their corresponding earthquake, we usually get the fingerprint 6 days before the corresponding earthquakes. The magnitude prediction needs the comparison between the amplitudes of the fingerpringts from the same

  16. Study of a sol–gel precursor and its evolution towards ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Núñez, Alberto [University of Barcelona, Department of Electronics, Martí i Franquès 1, E08028 Barcelona (Spain); López, Concepción [University of Barcelona, Department of Inorganic Chemistry, Martí i Franquès 1, E08028 Barcelona (Spain); Alonso-Gil, Santiago [University of Barcelona, Department of Organic Chemistry, Martí i Franquès 1, E08028 Barcelona (Spain); Roura, Pere [University of Girona, Department of Physics, Campus Montilivi, Edif. PII, E17071 Girona (Spain); Vilà, Anna, E-mail: anna.vila@ub.edu [University of Barcelona, Department of Electronics, Martí i Franquès 1, E08028 Barcelona (Spain)

    2015-07-15

    The processes involved in the assembly of zinc acetate dihydrate {Zn(CH_3COO)_2·2H_2O} and ethanolamine (H{sub 2}NCH{sub 2}CH{sub 2}OH), with or without 2-methoxyethanol as solvent, have been analysed by infrared spectra, mass spectrometry, nuclear magnetic resonance, powder X-ray diffraction and computational studies. Thermal evolution of the mixtures was characterized by thermoanalytical and structural techniques (thermogravimetry, differential thermal analysis, differential scanning calorimetry, X-ray diffraction and X-Ray photoelectron spectroscopy). Computational studies together with experiments served to thoroughly describe the precursor and its decomposition. The thermal decomposition of the mixture and its transformation into crystalline ZnO take place in a temperature range between 50 and 450 °C through different processes. With solvent, the processes need temperatures 90 °C higher with respect to the mixture without solvent, and ZnO arises at 250 °C. - Graphical abstract: Display Omitted - Highlights: • Tetramer structure of the zinc-acetate plus ethanolamine precursor confirmed by IR, MS and theoretical calculations. • Precursor crystal structure determined to be of the monoclinic P2{sub 1}/m system. • High influence of the metoxyethanol solvent on the formation temperature of ZnO. • Detailed description of the thermal evolution from the zinc-based precursor to ZnO.

  17. Evidence for Ancient Mesoamerican Earthquakes

    Science.gov (United States)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  18. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  19. Fault on-off versus strain rate and earthquakes energy

    Directory of Open Access Journals (Sweden)

    C. Doglioni

    2015-03-01

    Full Text Available We propose that the brittle-ductile transition (BDT controls the seismic cycle. In particular, the movements detected by space geodesy record the steady state deformation in the ductile lower crust, whereas the stick-slip behavior of the brittle upper crust is constrained by its larger friction. GPS data allow analyzing the strain rate along active plate boundaries. In all tectonic settings, we propose that earthquakes primarily occur along active fault segments characterized by relative minima of strain rate, segments which are locked or slowly creeping. We discuss regional examples where large earthquakes happened in areas of relative low strain rate. Regardless the tectonic style, the interseismic stress and strain pattern inverts during the coseismic stage. Where a dilated band formed during the interseismic stage, this will be shortened at the coseismic stage, and vice-versa what was previously shortened, it will be dilated. The interseismic energy accumulation and the coseismic expenditure rather depend on the tectonic setting (extensional, contractional, or strike-slip. The gravitational potential energy dominates along normal faults, whereas the elastic energy prevails for thrust earthquakes and performs work against the gravity force. The energy budget in strike-slip tectonic setting is also primarily due elastic energy. Therefore, precursors may be different as a function of the tectonic setting. In this model, with a given displacement, the magnitude of an earthquake results from the coseismic slip of the deformed volume above the BDT rather than only on the fault length, and it also depends on the fault kinematics.

  20. Do earthquakes exhibit self-organized criticality?

    International Nuclear Information System (INIS)

    Yang Xiaosong; Ma Jin; Du Shuming

    2004-01-01

    If earthquakes are phenomena of self-organized criticality (SOC), statistical characteristics of the earthquake time series should be invariant after the sequence of events in an earthquake catalog are randomly rearranged. In this Letter we argue that earthquakes are unlikely phenomena of SOC because our analysis of the Southern California Earthquake Catalog shows that the first-return-time probability P M (T) is apparently changed after the time series is rearranged. This suggests that the SOC theory should not be used to oppose the efforts of earthquake prediction

  1. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat

    1995-06-01

    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  2. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  3. Laboratory generated M -6 earthquakes

    Science.gov (United States)

    McLaskey, Gregory C.; Kilgore, Brian D.; Lockner, David A.; Beeler, Nicholas M.

    2014-01-01

    We consider whether mm-scale earthquake-like seismic events generated in laboratory experiments are consistent with our understanding of the physics of larger earthquakes. This work focuses on a population of 48 very small shocks that are foreshocks and aftershocks of stick–slip events occurring on a 2.0 m by 0.4 m simulated strike-slip fault cut through a large granite sample. Unlike the larger stick–slip events that rupture the entirety of the simulated fault, the small foreshocks and aftershocks are contained events whose properties are controlled by the rigidity of the surrounding granite blocks rather than characteristics of the experimental apparatus. The large size of the experimental apparatus, high fidelity sensors, rigorous treatment of wave propagation effects, and in situ system calibration separates this study from traditional acoustic emission analyses and allows these sources to be studied with as much rigor as larger natural earthquakes. The tiny events have short (3–6 μs) rise times and are well modeled by simple double couple focal mechanisms that are consistent with left-lateral slip occurring on a mm-scale patch of the precut fault surface. The repeatability of the experiments indicates that they are the result of frictional processes on the simulated fault surface rather than grain crushing or fracture of fresh rock. Our waveform analysis shows no significant differences (other than size) between the M -7 to M -5.5 earthquakes reported here and larger natural earthquakes. Their source characteristics such as stress drop (1–10 MPa) appear to be entirely consistent with earthquake scaling laws derived for larger earthquakes.

  4. The 2012 MW5.6 earthquake in the vicinity of the city of Sofia

    Science.gov (United States)

    Simeonova, Stela; Solakov, Dimcho; Aleksandrova, Irena; Dimitrova, Liliya; Popova, Iliana; Raykova, Plamena

    2013-04-01

    The territory of Bulgaria represents a typical example of high seismic risk area in the eastern part of the Balkan Peninsula. The neotectonic movements on the Balkan Peninsula were controlled by extensional collapse of the Late Alpin orogen, and were influenced by extension behind the Aegean arc and by the complicated vertical and horizontal movements in the Pannonian region. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia seismic zone that is the most populated (more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. Seismicity in the zone is related mainly to the marginal neotectonic faults of Sofia graben. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=IX-X MSK64. The 1858 earthquake caused heavy destruction in the town of Sofia and the appearance of thermal springs in the western part of the town. After a quiescence of about 50 years a strong event with M=6.5 occurred in 1905 near the western marginal part of the Sofia zone. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64). The earthquake caused a lot of damages in the town and changed the capacity of the thermal mineral springs in Sofia and the surrounding villages. The earthquake was felt in an area of 50000 km2 and followed by aftershocks, which lasted more than one year. Almost a century later (95 years) an earthquake of moment magnitude 5.6 hit Sofia seismic zone, on May 22nd, 2012, at 25 km south west of the city of Sofia. This shallow earthquake was largely felt in the region and up to Greece, FYROM, Serbia and Romania. No severe injuries have been reported so far, though

  5. Seismomagnetic effects from the long-awaited 28 September 2004 M 6.0 parkfield earthquake

    Science.gov (United States)

    Johnston, M.J.S.; Sasai, Y.; Egbert, G.D.; Mueller, R.J.

    2006-01-01

    , and this may have played a role in the final occurrence of the 28 September 2004 M 6.0 Parkfield earthquake. The absence of electric and magnetic field precursors for this, and other earthquakes with M 5-7.3 elsewhere in the San Andreas fault system, indicates useful prediction of damaging earthquakes seems unlikely using these electromagnetic data.

  6. The music of earthquakes and Earthquake Quartet #1

    Science.gov (United States)

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  7. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  8. PARTITIONING TUNGSTEN BETWEEN MATRIX PRECURSORS AND CHONDRULE PRECURSORS THROUGH RELATIVE SETTLING

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Alexander, E-mail: ahubbard@amnh.org [American Museum of Natural History, New York, NY (United States)

    2016-08-01

    Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interacted with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.

  9. PARTITIONING TUNGSTEN BETWEEN MATRIX PRECURSORS AND CHONDRULE PRECURSORS THROUGH RELATIVE SETTLING

    International Nuclear Information System (INIS)

    Hubbard, Alexander

    2016-01-01

    Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interacted with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.

  10. Global Earthquake Hazard Frequency and Distribution

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Earthquake Hazard Frequency and Distribution is a 2.5 minute grid utilizing Advanced National Seismic System (ANSS) Earthquake Catalog data of actual...

  11. Unbonded Prestressed Columns for Earthquake Resistance

    Science.gov (United States)

    2012-05-01

    Modern structures are able to survive significant shaking caused by earthquakes. By implementing unbonded post-tensioned tendons in bridge columns, the damage caused by an earthquake can be significantly lower than that of a standard reinforced concr...

  12. Extreme value distribution of earthquake magnitude

    Science.gov (United States)

    Zi, Jun Gan; Tung, C. C.

    1983-07-01

    Probability distribution of maximum earthquake magnitude is first derived for an unspecified probability distribution of earthquake magnitude. A model for energy release of large earthquakes, similar to that of Adler-Lomnitz and Lomnitz, is introduced from which the probability distribution of earthquake magnitude is obtained. An extensive set of world data for shallow earthquakes, covering the period from 1904 to 1980, is used to determine the parameters of the probability distribution of maximum earthquake magnitude. Because of the special form of probability distribution of earthquake magnitude, a simple iterative scheme is devised to facilitate the estimation of these parameters by the method of least-squares. The agreement between the empirical and derived probability distributions of maximum earthquake magnitude is excellent.

  13. Applications of the gambling score in evaluating earthquake predictions and forecasts

    Science.gov (United States)

    Zhuang, Jiancang; Zechar, Jeremy D.; Jiang, Changsheng; Console, Rodolfo; Murru, Maura; Falcone, Giuseppe

    2010-05-01

    This study presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points bet by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. For discrete predictions, we apply this method to evaluate performance of Shebalin's predictions made by using the Reverse Tracing of Precursors (RTP) algorithm and of the outputs of the predictions from the Annual Consultation Meeting on Earthquake Tendency held by China Earthquake Administration. For the continuous case, we use it to compare the probability forecasts of seismicity in the Abruzzo region before and after the L'aquila earthquake based on the ETAS model and the PPE model.

  14. Anomalous migration of shallow groundwater and gases in the Beijing region and the 1976 Tangshan earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Shi, H. (Seismological Brigade of Beijing, China); Cai, Z.; Gao, M.

    1980-02-01

    The character and cause of blowing out of gases and emission of sound from dry wells and of water becoming muddy and changing of level in water wells of the Beijing region immediately before the 1976 Tangshan earthquake and its strong aftershocks are investigated. These phenomena, taken as possible precursors of the earthquakes as well as the motivating force, mechanism, geological background and material sources of the anomalous migration are discussed. Besides, the paper also deals with the relation between these anomalies and the Tangshan earthquake and the significance of the study of groundwater as far as earthquake prediction is concerned. No gaseous gushing from great depth in considerable quantities appeared so that migration should be regarded only as the migration of shallow groundwater and gases. This is referred to the consequence of the action on certain hydrogeological structures of an impulse-like extra tectonic stress field on the active faults in the Beijing region under a unified regional stress field. The present authors suppose that further studies of the anomalous migration of groundwater and gases possibly may be fruitful to earthquake prediction work.

  15. Anomalous migration of shallow groundwater and gases in the Beijing region and the 1976 Tangshan earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Shi, H.; Cai, Z.; Gao, M.

    1980-02-01

    The character and cause of blowing out of gases and emission of sound from dry wells and of water becoming muddy and changing of level in water wells of the Beijing region immediately before the 1976 Tangshan earthquake and its strong aftershocks are investigated. These phenomena, taken as possible precursors of the earthquakes as well as the motivating force, mechanism, geological background and material sources of the anomalous migration, are discussed. In addition, the paper also deals with the relation between these anomalies and the Tangshan earthquake and the significance of the study of groundwater as far as earthquake prediction is concerned. No gaseous gushing from great depth in considerable quantities appeared so that migration should be regarded only as the migration of shallow groundwater and gases. This is referred to as the consequence of the action on certain hydrogeological structures of an impulse-like extra tectonic stress field on the active faults in the Beijing region under a unified regional stress field. The present authors suppose that further studies of the anomalous migration of groundwater and gases possibly may be fruitful to earthquake prediction work.

  16. Abnormal animal behavior prior to the Vrancea (Romania) major subcrustal earthquakes

    Science.gov (United States)

    Constantin, Angela; Pantea, Aurelian

    2013-04-01

    The goal of this paper is to present some observations about abnormal animal behavior prior and during of some Romanian subcrustal earthquakes. The major Vrancea earthquakes of 4 March 1977 (Mw = 7.4, Imax = IX-X MSK), 30 August 1986 (Mw = 7.1, Io = VIII-IX MSK) and 30 May 1990 (Mw = 6.9, Io = VIII MSK), were preceded by extensive occurrences of anomalous animal behavior. These data were collected immediately after the earthquakes from the areas affected by these. Some species of animals became excited, nervous and panicked before and during the earthquakes, such as: dogs (barking and running in panic), cats, snakes, mice and rats (came into the houses and have lost their fear), birds (hens, geese, parrots), horses, fishes etc. These strange manifestations of the animals were observed on the entire territory of country, especially in the extra-Carpathian area. This unusual behavior was noticed within a few hours to days before the seismic events, but for the most of cases the time of occurrence was within two hours of the quakes. We can hope that maybe one day the abnormal animal behavior will be used as a reliable seismic precursor for the intermediate depth earthquakes.

  17. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals

  18. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  19. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  20. Probabilistic precursor analysis - an application of PSA

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Gopika, V.; Sanyasi Rao, V.V.S.; Vaze, K.K.

    2011-01-01

    Incidents are inevitably part of the operational life of any complex industrial facility, and it is hard to predict how various contributing factors combine to cause the outcome. However, it should be possible to detect the existence of latent conditions that, together with the triggering failure(s), result in abnormal events. These incidents are called precursors. Precursor study, by definition, focuses on how a particular event might have adversely developed. This paper focuses on the events which can be analyzed to assess their potential to develop into core damage situation and looks into extending Probabilistic Safety Assessment techniques to precursor studies and explains the benefits through a typical case study. A preliminary probabilistic precursor analysis has been carried out for a typical NPP. The major advantages of this approach are the strong potential for augmenting event analysis which is currently carried out purely on deterministic basis. (author)

  1. nanoparticles synthesized by citrate precursor m

    African Journals Online (AJOL)

    user

    (M=Co, Cu) nanoparticles synthesized by citrate precursor method ... The structural characterization was carried out using an X-ray Diffractometer (Rikagu Miniflex, Japan) ..... His current area of interest includes magnetic nanomaterials.

  2. EARTHQUAKE RESEARCH PROBLEMS OF NUCLEAR POWER GENERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Housner, G. W.; Hudson, D. E.

    1963-10-15

    Earthquake problems associated with the construction of nuclear power generators require a more extensive and a more precise knowledge of earthquake characteristics and the dynamic behavior of structures than was considered necessary for ordinary buildings. Economic considerations indicate the desirability of additional research on the problems of earthquakes and nuclear reactors. The nature of these earthquake-resistant design problems is discussed and programs of research are recommended. (auth)

  3. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  4. Historical earthquake investigations in Greece

    Directory of Open Access Journals (Sweden)

    K. Makropoulos

    2004-06-01

    Full Text Available The active tectonics of the area of Greece and its seismic activity have always been present in the country?s history. Many researchers, tempted to work on Greek historical earthquakes, have realized that this is a task not easily fulfilled. The existing catalogues of strong historical earthquakes are useful tools to perform general SHA studies. However, a variety of supporting datasets, non-uniformly distributed in space and time, need to be further investigated. In the present paper, a review of historical earthquake studies in Greece is attempted. The seismic history of the country is divided into four main periods. In each one of them, characteristic examples, studies and approaches are presented.

  5. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  6. Planar half-cell shaped precursor body

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a half-cell shaped precursor body of either anode type or cathode type, the half-cell shaped precursor body being prepared to be free sintered to form a sintered or pre-sintered half-cell being adapted to be stacked in a solid oxide fuel cell stack. The obtained half......-cell has an improved planar shape, which remains planar also after a sintering process and during temperature fluctuations....

  7. Fault failure with moderate earthquakes

    Science.gov (United States)

    Johnston, M. J. S.; Linde, A. T.; Gladwin, M. T.; Borcherdt, R. D.

    1987-12-01

    High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake ( ML = 6.7, Δ = 51 km), the August 4, 1985, Kettleman Hills earthquake ( ML = 5.5, Δ = 34 km), the April 1984 Morgan Hill earthquake ( ML = 6.1, Δ = 55 km), the November 1984 Round Valley earthquake ( ML = 5.8, Δ = 54 km), the January 14, 1978, Izu, Japan earthquake ( ML = 7.0, Δ = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10 -8), with borehole dilatometers (resolution 10 -10) and a 3-component borehole strainmeter (resolution 10 -9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure.

  8. Pulverization provides a mechanism for the nucleation of earthquakes at low stress on strong faults

    Science.gov (United States)

    Felzer, Karen R.

    2014-01-01

    An earthquake occurs when rock that has been deformed under stress rebounds elastically along a fault plane (Gilbert, 1884; Reid, 1911), radiating seismic waves through the surrounding earth. Rupture along the entire fault surface does not spontaneously occur at the same time, however. Rather the rupture starts in one tiny area, the rupture nucleation zone, and spreads sequentially along the fault. Like a row of dominoes, one bit of rebounding fault triggers the next. This triggering is understood to occur because of the large dynamic stresses at the tip of an active seismic rupture. The importance of these crack tip stresses is a central question in earthquake physics. The crack tip stresses are minimally important, for example, in the time predictable earthquake model (Shimazaki and Nakata, 1980), which holds that prior to rupture stresses are comparable to fault strength in many locations on the future rupture plane, with bits of variation. The stress/strength ratio is highest at some point, which is where the earthquake nucleates. This model does not require any special conditions or processes at the nucleation site; the whole fault is essentially ready for rupture at the same time. The fault tip stresses ensure that the rupture occurs as a single rapid earthquake, but the fact that fault tip stresses are high is not particularly relevant since the stress at most points does not need to be raised by much. Under this model it should technically be possible to forecast earthquakes based on the stress-renewaql concept, or estimates of when the fault as a whole will reach the critical stress level, a practice used in official hazard mapping (Field, 2008). This model also indicates that physical precursors may be present and detectable, since stresses are unusually high over a significant area before a large earthquake.

  9. Bound volatile precursors in genotypes in the pedigree of 'Marion' blackberry (Rubus sp.).

    Science.gov (United States)

    Du, Xiaofen; Finn, Chad E; Qian, Michael C

    2010-03-24

    Glycosidically bound volatiles and precursors in genotypes representing the pedigree for 'Marion' blackberry were investigated over two growing seasons. The volatile precursors were isolated using a C18 solid-phase extraction column. After enzymatic hydrolysis, the released volatiles were analyzed using stir bar sorptive extraction gas chromatography-mass spectrometry (GC-MS) and direct microvial insert thermal desorption GC-MS. The most abundant volatile precursors in the genotypes were alcohols, followed by shikimic acid derivatives. High amounts of furanone glycosides were also detected, while norisoprenoids only existed in a small amount in blackberries. The volatile precursor composition in the genotypes in the 'Marion' pedigree was very similar to their free volatile distribution. 'Logan' and 'Olallie' predominantly had bound norisoprenoids. Wild 'Himalaya' predominated with terpene alcohol and furaneol glycosides, whereas 'Santiam' and 'Chehalem' contained a high level of terpene alcohol glycosides. A similar inheritance pattern was also observed for some volatile precursors in the genotypes in the 'Marion' pedigree. A high content of linalool, hydroxylinalool, and alpha-ionol glycosides in 'Olallie' and a low content in 'Chehalem' resulted in a moderate level in their offspring 'Marion', while a low content of (E)-linalool oxide precursor in 'Olallie' and a high content in 'Chehalem' also resulted in a moderate level in 'Marion'. However, the concentration of furaneol glycosides in 'Marion' exceeded that of its two parents.

  10. Synthesis and characterization of a boron-containing precursor for ZrB{sub 2} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Tao, X.Y.; Xiang, Z.; Zhou, S.; Zhu, Y. [China Univ. of Mining and Technology, Xuzhou (China). School of Materials Science and Engineering; Qiu, W.; Zhao, T. [Chinese Academy of Sciences, Beijing (China). Lab. of Advanced Polymer Materials

    2016-07-01

    A precursor for ZrB{sub 2} ceramic was successfully synthesized in a chemical reaction between polyzirconoxanesal (PZS) and boric acid. The molecular structure of the precursor, thermal properties and the pyrolysis behavior of the precursor were investigated. The results showed that the as-synthesized precursor was a polymer based on Zr-O-C-B bonds. The precursor was stable in air atmosphere and soluble in common organic solvents. The ceramic yield of the precursor at 1200 C was around 65.5 % under N{sub 2} atmosphere. The derived ceramics obtained at 1200 C were composed of B{sub 2}O{sub 3}, ZrO{sub 2} and carbon. When the temperature was increased up to 1300 C, peaks of ZrC emerged owing to carbothermal reduction. m-ZrO{sub 2} and t-ZrO{sub 2} disappeared when the pyrolysis temperature was increased to above 1400 C. ZrB{sub 2} became the predominant phase when the pyrolysis temperature was increased up to 1500 C.

  11. Modeling, Forecasting and Mitigating Extreme Earthquakes

    Science.gov (United States)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  12. 13 CFR 120.174 - Earthquake hazards.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  13. Computational methods in earthquake engineering

    CERN Document Server

    Plevris, Vagelis; Lagaros, Nikos

    2017-01-01

    This is the third book in a series on Computational Methods in Earthquake Engineering. The purpose of this volume is to bring together the scientific communities of Computational Mechanics and Structural Dynamics, offering a wide coverage of timely issues on contemporary Earthquake Engineering. This volume will facilitate the exchange of ideas in topics of mutual interest and can serve as a platform for establishing links between research groups with complementary activities. The computational aspects are emphasized in order to address difficult engineering problems of great social and economic importance. .

  14. Earthquake Education in Prime Time

    Science.gov (United States)

    de Groot, R.; Abbott, P.; Benthien, M.

    2004-12-01

    Since 2001, the Southern California Earthquake Center (SCEC) has collaborated on several video production projects that feature important topics related to earthquake science, engineering, and preparedness. These projects have also fostered many fruitful and sustained partnerships with a variety of organizations that have a stake in hazard education and preparedness. The Seismic Sleuths educational video first appeared in the spring season 2001 on Discovery Channel's Assignment Discovery. Seismic Sleuths is based on a highly successful curriculum package developed jointly by the American Geophysical Union and The Department of Homeland Security Federal Emergency Management Agency. The California Earthquake Authority (CEA) and the Institute for Business and Home Safety supported the video project. Summer Productions, a company with a reputation for quality science programming, produced the Seismic Sleuths program in close partnership with scientists, engineers, and preparedness experts. The program has aired on the National Geographic Channel as recently as Fall 2004. Currently, SCEC is collaborating with Pat Abbott, a geology professor at San Diego State University (SDSU) on the video project Written In Stone: Earthquake Country - Los Angeles. Partners on this project include the California Seismic Safety Commission, SDSU, SCEC, CEA, and the Insurance Information Network of California. This video incorporates live-action demonstrations, vivid animations, and a compelling host (Abbott) to tell the story about earthquakes in the Los Angeles region. The Written in Stone team has also developed a comprehensive educator package that includes the video, maps, lesson plans, and other supporting materials. We will present the process that facilitates the creation of visually effective, factually accurate, and entertaining video programs. We acknowledge the need to have a broad understanding of the literature related to communication, media studies, science education, and

  15. Dancing Earthquake Science Assists Recovery from the Christchurch Earthquakes

    Science.gov (United States)

    Egan, Candice J.; Quigley, Mark C.

    2015-01-01

    The 2010-2012 Christchurch (Canterbury) earthquakes in New Zealand caused loss of life and psychological distress in residents throughout the region. In 2011, student dancers of the Hagley Dance Company and dance professionals choreographed the performance "Move: A Seismic Journey" for the Christchurch Body Festival that explored…

  16. Spatial and Temporal Characteristics of the Microseismicity Preceding the 2016 M L 6.6 Meinong Earthquake in Southern Taiwan

    Science.gov (United States)

    Pu, Hsin-Chieh

    2018-02-01

    Before the M L 6.6 Meinong earthquake in 2016, intermediate-term quiescence (Q i), foreshocks, and short-term quiescence (Q s) were extracted from a comprehensive earthquake catalog. In practice, these behaviors are thought to be the seismic indicators of an earthquake precursor, and their spatiotemporal characteristics may be associated with location, magnitude, and occurrence time of the following main shock. Hence, detailed examinations were carried out to derive the spatiotemporal characteristics of these meaningful seismic behaviors. First, the spatial range of the Q i that occurred for 96 days was revealed in and around the Meinong earthquake. Second, a series of foreshocks was present for 1 day, clustered at the southeastern end of the Meinong earthquake. Third, Q s was present for 3 days and was pronounced after the foreshocks. Although these behaviors were recorded difficultly because the Q i was characterized by microseismicity at the lower cut-off magnitude, between M L 1.2 and 1.6, and most of the foreshocks were comprised of earthquakes with a magnitude lower than 1.8, they carried meaningful precursory indicators preceding the Meinong earthquake. These indicators provide the information of (1) the hypocenter, which was indicated by the area including the Q i, foreshocks, and Q s; (2) the magnitude, which could be associated to the spatial range of the Q i; (3) the asperity locations, which might be related to the areas of extraordinary low seismicity; and (4) a short-term warning leading of 3 days, which could have been announced based on the occurrence of the Q s. Particularly, Q i also appeared before strong inland earthquakes so that Q i might be an anticipative phenomenon before a strong earthquake in Taiwan.

  17. Satellite Infrared Radiation Measurements Prior to the Major Earthquakes

    Science.gov (United States)

    Ouzounov, Dimitar; Pulintes, S.; Bryant, N.; Taylor, Patrick; Freund, F.

    2005-01-01

    This work describes our search for a relationship between tectonic stresses and increases in mid-infrared (IR) flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. We present and &scuss observed variations in thermal transients and radiation fields prior to the earthquakes of Jan 22, 2003 Colima (M6.7) Mexico, Sept. 28 .2004 near Parkfield (M6.0) in California and Northern Sumatra (M8.5) Dec. 26,2004. Previous analysis of earthquake events has indicated the presence of an IR anomaly, where temperatures increased or did not return to its usual nighttime value. Our procedures analyze nighttime satellite data that records the general condtion of the ground after sunset. We have found from the MODIS instrument data that five days before the Colima earthquake the IR land surface nighttime temperature rose up to +4 degrees C in a 100 km radius around the epicenter. The IR transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +1 degree C and is significantly smaller than the IR anomaly around the Colima epicenter. Ground surface temperatures near the Parkfield epicenter four days prior to the earthquake show steady increase. However, on the night preceding the quake, a significant drop in relative humidity was indicated, process similar to those register prior to the Colima event. Recent analyses of continuous ongoing long- wavelength Earth radiation (OLR) indicate significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and/or gas composition prior to the earthquake. The OLR anomaly usually covers large areas surrounding the main epicenter. We have found strong anomalies signal (two sigma) along the epicentral area signals on Dec 21

  18. Earthquake Warning Performance in Vallejo for the South Napa Earthquake

    Science.gov (United States)

    Wurman, G.; Price, M.

    2014-12-01

    In 2002 and 2003, Seismic Warning Systems, Inc. installed first-generation QuakeGuardTM earthquake warning devices at all eight fire stations in Vallejo, CA. These devices are designed to detect the P-wave of an earthquake and initiate predetermined protective actions if the impending shaking is estimated at approximately Modifed Mercalli Intensity V or greater. At the Vallejo fire stations the devices were set up to sound an audio alert over the public address system and to command the equipment bay doors to open. In August 2014, after more than 11 years of operating in the fire stations with no false alarms, the five units that were still in use triggered correctly on the MW 6.0 South Napa earthquake, less than 16 km away. The audio alert sounded in all five stations, providing fire fighters with 1.5 to 2.5 seconds of warning before the arrival of the S-wave, and the equipment bay doors opened in three of the stations. In one station the doors were disconnected from the QuakeGuard device, and another station lost power before the doors opened completely. These problems highlight just a small portion of the complexity associated with realizing actionable earthquake warnings. The issues experienced in this earthquake have already been addressed in subsequent QuakeGuard product generations, with downstream connection monitoring and backup power for critical systems. The fact that the fire fighters in Vallejo were afforded even two seconds of warning at these epicentral distances results from the design of the QuakeGuard devices, which focuses on rapid false positive rejection and ground motion estimates. We discuss the performance of the ground motion estimation algorithms, with an emphasis on the accuracy and timeliness of the estimates at close epicentral distances.

  19. Earthquake predictions using seismic velocity ratios

    Science.gov (United States)

    Sherburne, R. W.

    1979-01-01

    Since the beginning of modern seismology, seismologists have contemplated predicting earthquakes. The usefulness of earthquake predictions to the reduction of human and economic losses and the value of long-range earthquake prediction to planning is obvious. Not as clear are the long-range economic and social impacts of earthquake prediction to a speicifc area. The general consensus of opinion among scientists and government officials, however, is that the quest of earthquake prediction is a worthwhile goal and should be prusued with a sense of urgency. 

  20. Measuring the size of an earthquake

    Science.gov (United States)

    Spence, W.; Sipkin, S.A.; Choy, G.L.

    1989-01-01

    Earthquakes range broadly in size. A rock-burst in an Idaho silver mine may involve the fracture of 1 meter of rock; the 1965 Rat Island earthquake in the Aleutian arc involved a 650-kilometer length of the Earth's crust. Earthquakes can be even smaller and even larger. If an earthquake is felt or causes perceptible surface damage, then its intensity of shaking can be subjectively estimated. But many large earthquakes occur in oceanic areas or at great focal depths and are either simply not felt or their felt pattern does not really indicate their true size.

  1. Earthquakes-Rattling the Earth's Plumbing System

    Science.gov (United States)

    Sneed, Michelle; Galloway, Devin L.; Cunningham, William L.

    2003-01-01

    Hydrogeologic responses to earthquakes have been known for decades, and have occurred both close to, and thousands of miles from earthquake epicenters. Water wells have become turbid, dry or begun flowing, discharge of springs and ground water to streams has increased and new springs have formed, and well and surface-water quality have become degraded as a result of earthquakes. Earthquakes affect our Earth’s intricate plumbing system—whether you live near the notoriously active San Andreas Fault in California, or far from active faults in Florida, an earthquake near or far can affect you and the water resources you depend on.

  2. Load-Unload Response Ratio (LURR), Accelerating Moment/Energy Release (AM/ER) and State Vector Saltation as Precursors to Failure of Rock Specimens

    Science.gov (United States)

    Yin, Xiang-Chu; Yu, Huai-Zhong; Kukshenko, Victor; Xu, Zhao-Yong; Wu, Zhishen; Li, Min; Peng, Keyin; Elizarov, Surgey; Li, Qi

    2004-12-01

    In order to verify some precursors such as LURR (Load/Unload Response Ratio) and AER (Accelerating Energy Release) before large earthquakes or macro-fracture in heterogeneous brittle media, four acoustic emission experiments involving large rock specimens under tri-axial stress, have been conducted. The specimens were loaded in two ways: monotonous or cycling. The experimental results confirm that LURR and AER are precursors of macro-fracture in brittle media. A new measure called the state vector has been proposed to describe the damage evolution of loaded rock specimens.

  3. Summary of earthquake experience database

    International Nuclear Information System (INIS)

    1999-01-01

    Strong-motion earthquakes frequently occur throughout the Pacific Basin, where power plants or industrial facilities are included in the affected areas. By studying the performance of these earthquake-affected (or database) facilities, a large inventory of various types of equipment installations can be compiled that have experienced substantial seismic motion. The primary purposes of the seismic experience database are summarized as follows: to determine the most common sources of seismic damage, or adverse effects, on equipment installations typical of industrial facilities; to determine the thresholds of seismic motion corresponding to various types of seismic damage; to determine the general performance of equipment during earthquakes, regardless of the levels of seismic motion; to determine minimum standards in equipment construction and installation, based on past experience, to assure the ability to withstand anticipated seismic loads. To summarize, the primary assumption in compiling an experience database is that the actual seismic hazard to industrial installations is best demonstrated by the performance of similar installations in past earthquakes

  4. Earthquake design for controlled structures

    Directory of Open Access Journals (Sweden)

    Nikos G. Pnevmatikos

    2017-04-01

    Full Text Available An alternative design philosophy, for structures equipped with control devices, capable to resist an expected earthquake while remaining in the elastic range, is described. The idea is that a portion of the earthquake loading is under¬taken by the control system and the remaining by the structure which is designed to resist elastically. The earthquake forces assuming elastic behavior (elastic forces and elastoplastic behavior (design forces are first calculated ac¬cording to the codes. The required control forces are calculated as the difference from elastic to design forces. The maximum value of capacity of control devices is then compared to the required control force. If the capacity of the control devices is larger than the required control force then the control devices are accepted and installed in the structure and the structure is designed according to the design forces. If the capacity is smaller than the required control force then a scale factor, α, reducing the elastic forces to new design forces is calculated. The structure is redesigned and devices are installed. The proposed procedure ensures that the structure behaves elastically (without damage for the expected earthquake at no additional cost, excluding that of buying and installing the control devices.

  5. Using Smartphones to Detect Earthquakes

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2012-12-01

    We are using the accelerometers in smartphones to record earthquakes. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. Given the potential number of smartphones, and small separation of sensors, this new type of seismic dataset has significant potential provides that the signal can be separated from the noise. We developed an application for android phones to record the acceleration in real time. These records can be saved on the local phone or transmitted back to a server in real time. The accelerometers in the phones were evaluated by comparing performance with a high quality accelerometer while located on controlled shake tables for a variety of tests. The results show that the accelerometer in the smartphone can reproduce the characteristic of the shaking very well, even the phone left freely on the shake table. The nature of these datasets is also quite different from traditional networks due to the fact that smartphones are moving around with their owners. Therefore, we must distinguish earthquake signals from other daily use. In addition to the shake table tests that accumulated earthquake records, we also recorded different human activities such as running, walking, driving etc. An artificial neural network based approach was developed to distinguish these different records. It shows a 99.7% successful rate of distinguishing earthquakes from the other typical human activities in our database. We are now at the stage ready to develop the basic infrastructure for a smartphone seismic network.

  6. Explanation of earthquake response spectra

    OpenAIRE

    Douglas, John

    2017-01-01

    This is a set of five slides explaining how earthquake response spectra are derived from strong-motion records and simple models of structures and their purpose within seismic design and assessment. It dates from about 2002 and I have used it in various introductory lectures on engineering seismology.

  7. Acoustic, electromagnetic, neutron emissions from fracture and earthquakes

    CERN Document Server

    Lacidogna, Giuseppe; Manuello, Amedeo

    2015-01-01

    This book presents the relevant consequences of recently discovered and interdisciplinary phenomena, triggered by local mechanical instabilities. In particular, it looks at emissions from nano-scale mechanical instabilities such as fracture, turbulence, buckling and cavitation, focussing on vibrations at the TeraHertz frequency and Piezonuclear reactions. Future applications for this work could include earthquake precursors, climate change, energy production, and cellular biology. A series of fracture experiments on natural rocks demonstrates that the TeraHertz vibrations are able to induce fission reactions on medium weight elements accompanied by neutron emissions. The same phenomenon appears to have occurred in several different situations, particularly in the chemical evolution of the Earth and Solar System, through seismicity (rocky planets) and storms (gaseous planets). As the authors explore, these phenomena can also explain puzzles related to the history of our planet, like the ocean formation or th...

  8. Solar eruptions - soil radon - earthquakes

    International Nuclear Information System (INIS)

    Saghatelyan, E.; Petrosyan, L.; Aghbalyan, Yu.; Baburyan, M.; Araratyan, L.

    2004-01-01

    For the first time a new natural phenomenon was established: a contrasting increase in the soil radon level under the influence of solar flares. Such an increase is one of geochemical indicators of earthquakes. Most researchers consider this a phenomenon of exclusively terrestrial processes. Investigations regarding the link of earthquakes to solar activity carried out during the last decade in different countries are based on the analysis of statistical data ΣΕ (t) and W (t). As established, the overall seismicity of the Earth and its separate regions depends of an 11-year long cycle of solar activity. Data provided in the paper based on experimental studies serve the first step on the way of experimental data on revealing cause-and-reason solar-terrestrials bonds in a series s olar eruption-lithosphere radon-earthquakes . They need further collection of experimental data. For the first time, through radon constituent of terrestrial radiation objectification has been made of elementary lattice of the Hartmann's network contoured out by bio location method. As found out, radon concentration variations in Hartmann's network nodes determine the dynamics of solar-terrestrial relationships. Of the three types of rapidly running processes conditioned by solar-terrestrial bonds earthquakes are attributed to rapidly running destructive processes that occur in the most intense way at the juncture of tectonic massifs, along transformed and deep failures. The basic factors provoking the earthquakes are both magnetic-structural effects and a long-term (over 5 months) bombing of the surface of lithosphere by highly energetic particles of corpuscular solar flows, this being approved by photometry. As a result of solar flares that occurred from 29 October to 4 November 2003, a sharply contrasting increase in soil radon was established which is an earthquake indicator on the territory of Yerevan City. A month and a half later, earthquakes occurred in San-Francisco, Iran, Turkey

  9. Formation and characterization of samarium oxide generated from different precursors

    International Nuclear Information System (INIS)

    Hussein, G.A.M.; Buttrey, D.J.; DeSanto, P.; Abd-Elgaber, A.A.; Roshdy, Heba; Myhoub, Ali Y.Z.

    2003-01-01

    Sm(NO 3 ) 3 ·6H 2 O and Sm 2 (C 2 O 4 ) 3 ·10H 2 O were used as precursors for the formation of Sm 2 O 3 . Thermal processes involved in the decomposition course of both salts up to 800 deg. C in air were monitored by nonisothermal gravimetry and differential thermal analysis. Intermediates and final solid products were characterized by IR-spectroscopy, X-ray diffraction and scanning electron microscopy. The results showed that Sm(NO 3 ) 3 ·6H 2 O decomposes completely through nine endothermic mass loss processes. The dehydration occurs through the first four steps at 90, 125, 195, and 240 deg. C, culminating in a crystalline nitrate monohydrate, which subsequently decomposes to Sm(OH)(NO 3 ) 2 at 355 deg. C. The latter decomposes rapidly to form a stable and crystalline SmO(NO 3 ) at 460 deg. C, through nonstoichoimetric unstable intermediates. Finally Sm 2 O 3 forms at 520 deg. C. For the oxalate, the dehydration occurs in five steps: the anhydrous oxalate is thermally unstable and immediately decomposes to Sm 2 O 3 at 645 deg. C through two unstable intermediates. The crystalline oxide obtained from the nitrate contains larger pores than the oxide obtained from the oxalate, as indicated from scanning electron microscopy (SEM) results

  10. Multi-Sensor Observations of Earthquake Related Atmospheric Signals over Major Geohazard Validation Sites

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Davindenko, D.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    We are conducting a scientific validation study involving multi-sensor observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several atmospheric and environmental parameters, which we found, are associated with the earthquakes, namely: thermal infrared radiation, outgoing long-wavelength radiation, ionospheric electron density, and atmospheric temperature and humidity. For first time we applied this approach to selected GEOSS sites prone to earthquakes or volcanoes. This provides a new opportunity to cross validate our results with the dense networks of in-situ and space measurements. We investigated two different seismic aspects, first the sites with recent large earthquakes, viz.- Tohoku-oki (M9, 2011, Japan) and Emilia region (M5.9, 2012,N. Italy). Our retrospective analysis of satellite data has shown the presence of anomalies in the atmosphere. Second, we did a retrospective analysis to check the re-occurrence of similar anomalous behavior in atmosphere/ionosphere over three regions with distinct geological settings and high seismicity: Taiwan, Japan and Kamchatka, which include 40 major earthquakes (M>5.9) for the period of 2005-2009. We found anomalous behavior before all of these events with no false negatives; false positives were less then 10%. Our initial results suggest that multi-instrument space-borne and ground observations show a systematic appearance of atmospheric anomalies near the epicentral area that could be explained by a coupling between the observed physical parameters and earthquake preparation processes.

  11. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults

    Science.gov (United States)

    McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.

    2012-01-01

    Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip

  12. High-quality CdTe films from nanoparticle precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, D.L.; Pehnt, M.; Urgiles, E. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    In this paper the authors demonstrate that nanoparticulate precursors coupled with spray deposition offers an attractive route into electronic materials with improved smoothness, density, and lower processing temperatures. Employing a metathesis approach, cadmium iodide was reacted with sodium telluride in methanol solvent, resulting in the formation of soluble NaI and insoluble CdTe nanoparticles. After appropriate chemical workup, methanol-capped CdTe colloids were isolated. CdTe thin film formation was achieved by spray depositing the nanoparticle colloids (25-75 {Angstrom} diameter) onto substrates at elevated temperatures (T = 280-440{degrees}C) with no further thermal treatment. These films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Cubic CdTe phase formation was observed by XRD, with a contaminant oxide phase also detected. XPS analysis showed that CdTe films produced by this one-step method contained no Na or C and substantial O. AFM gave CdTe grain sizes of {approx}0.1-0.3 {mu}m for film sprayed at 400{degrees}C. A layer-by-layer film growth mechanism proposed for the one-step spray deposition of nanoparticle precursors will be discussed.

  13. Silicone Resin Applications for Ceramic Precursors and Composites

    Directory of Open Access Journals (Sweden)

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  14. Progress in Understanding the Pre-Earthquake Associated Events by Analyzing IR Satellite Data

    Science.gov (United States)

    Ouzounov, Dimitar; Taylor, Patrick; Bryant, Nevin

    2004-01-01

    We present latest result in understanding the potential relationship between tectonic stress, electro-chemical and thermodynamic processes in the Earths crust and atmosphere with an increase in IR flux as a potential signature of electromagnetic (EM) phenomena that are related to earthquake activity, either pre-, co- or post seismic. Thermal infra-red (TIR) surveys performed by the polar orbiting (NOAA/AVHRR MODIS) and geosynchronous weather satellites (GOES, METEOSAT) gave an indication of the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients that are associated with the location (epicenter and local tectonic structures) and time of a number of major earthquakes with M>5 and focal depths less than 50km. We analyzed broad category of associated pre-earthquake events, which provided evidence for changes in surface temperature, surface latent heat flux, chlorophyll concentrations, soil moisture, brightness temperature, emissivity of surface, water vapour in the atmosphere prior to the earthquakes occurred in Algeria, India, Iran, Italy, Mexico and Japan. The cause of such anomalies has been mainly related to the change of near-surface thermal properties due to complex lithosphere-hydrosphere-atmospheric interactions. As final results we present examples from the most recent (2000-2004) worldwide strong earthquakes and the techniques used to capture the tracks of EM emission mid-IR anomalies and a methodology for practical future use of such phenomena in the early warning systems.

  15. Groundwater oxygen isotope anomaly before the M6.6 Tottori earthquake in Southwest Japan.

    Science.gov (United States)

    Onda, Satoki; Sano, Yuji; Takahata, Naoto; Kagoshima, Takanori; Miyajima, Toshihiro; Shibata, Tomo; Pinti, Daniele L; Lan, Tefang; Kim, Nak Kyu; Kusakabe, Minoru; Nishio, Yoshiro

    2018-03-19

    Geochemical monitoring of groundwater in seismically-active regions has been carried out since 1970s. Precursors were well documented, but often criticized for anecdotal or fragmentary signals, and for lacking a clear physico-chemical explanation for these anomalies. Here we report - as potential seismic precursor - oxygen isotopic ratio anomalies of +0.24‰ relative to the local background measured in groundwater, a few months before the Tottori earthquake (M 6.6) in Southwest Japan. Samples were deep groundwater located 5 km west of the epicenter, packed in bottles and distributed as drinking water between September 2015 and July 2017, a time frame which covers the pre- and post-event. Small but substantial increase of 0.07‰ was observed soon after the earthquake. Laboratory crushing experiments of aquifer rock aimed to simulating rock deformation under strain and tensile stresses were carried out. Measured helium degassing from the rock and 18 O-shift suggest that the co-seismic oxygen anomalies are directly related to volumetric strain changes. The findings provide a plausible physico-chemical basis to explain geochemical anomalies in water and may be useful in future earthquake prediction research.

  16. Patterned YBa2Cu3O7-x thin films from photopolymerizable precursors

    International Nuclear Information System (INIS)

    Hung, Y.; Agostinelli, J.A.

    1990-01-01

    A technique which combines the fabrication and patterning of thin films of the high T c superconductor YBa 2 Cu 3 O 7-x has been developed. The technique possesses the essential features of the metalorganic decomposition method with the additional attribute that the metalorganic precursor is photopolymerizable. Patterns are generated directly in the precursor film using optical exposure through a mask followed by development in a solvent. A subsequent thermal treatment transforms the patterned precursor film to the oriented superconducting phase with c axis perpendicular to the substrate surface. Resistivity measurements for such a patterned film on a single crystal (100)MgO substrate show an onset to the superconducting state occurring at 85 K with zero resistivity below 67 K

  17. Designing high performance precursors for atomic layer deposition of silicon oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mallikarjunan, Anupama, E-mail: mallika@airproducts.com; Chandra, Haripin; Xiao, Manchao; Lei, Xinjian; Pearlstein, Ronald M.; Bowen, Heather R.; O' Neill, Mark L. [Air Products and Chemicals, Inc., 1969 Palomar Oaks Way, Carlsbad, California 92011 (United States); Derecskei-Kovacs, Agnes [Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, Pennsylvania 18195 (United States); Han, Bing [Air Products and Chemicals, Inc., 2 Dongsanhuan North Road, Chaoyang District, Beijing 100027 (China)

    2015-01-15

    Conformal and continuous silicon oxide films produced by atomic layer deposition (ALD) are enabling novel processing schemes and integrated device structures. The increasing drive toward lower temperature processing requires new precursors with even higher reactivity. The aminosilane family of precursors has advantages due to their reactive nature and relative ease of use. In this paper, the authors present the experimental results that reveal the uniqueness of the monoaminosilane structure [(R{sub 2}N)SiH{sub 3}] in providing ultralow temperature silicon oxide depositions. Disubstituted aminosilanes with primary amines such as in bis(t-butylamino)silane and with secondary amines such as in bis(diethylamino)silane were compared with a representative monoaminosilane: di-sec-butylaminosilane (DSBAS). DSBAS showed the highest growth per cycle in both thermal and plasma enhanced ALD. These findings show the importance of the arrangement of the precursor's organic groups in an ALD silicon oxide process.

  18. The continuous automatic monitoring network installed in Tuscany (Italy) since late 2002, to study earthquake precursory phenomena

    Science.gov (United States)

    Pierotti, Lisa; Cioni, Roberto

    2010-05-01

    Since late 2002, a continuous automatic monitoring network (CAMN) was designed, built and installed in Tuscany (Italy), in order to investigate and define the geochemical response of the aquifers to the local seismic activity. The purpose of the investigation was to identify eventual earthquake precursors. The CAMN is constituted by two groups of five measurement stations each. A first group has been installed in the Serchio and Magra graben (Garfagnana and Lunigiana Valleys, Northern Tuscany), while the second one, in the area of Mt. Amiata (Southern Tuscany), an extinct volcano. Garfagnana, Lunigiana and Mt. Amiata regions belong to the inner zone of the Northern Apennine fold-and-thrust belt. This zone has been involved in the post-collision extensional tectonics since the Upper Miocene-Pliocene. Such tectonic activity has produced horst and graben structures oriented from N-S to NW-SE that are transferred by NE-SW system. Both Garfagnana (Serchio graben) and Lunigiana (Magra graben) belong to the most inner sector of the belt where the seismic sources, responsible for the strongest earthquakes of the northern Apennine, are located (e.g. the M=6.5 earthquake of September 1920). The extensional processes in southern Tuscany have been accompanied by magmatic activity since the Upper Miocene, developing effusive and intrusive products traditionally attributed to the so-called Tuscan Magmatic Province. Mt. Amiata, whose magmatic activity ceased about 0.3 M.y. ago, belongs to the extensive Tyrrhenian sector that is characterized by high heat flow and crustal thinning. The whole zone is characterized by wide-spread but moderate seismicity (the maximum recorded magnitude has been 5.1 with epicentre in Piancastagnaio, 1919). The extensional regime in both the Garfagnana-Lunigiana and Mt. Amiata area is confirmed by the focal mechanisms of recent earthquakes. An essential phase of the monitoring activities has been the selection of suitable sites for the installation of

  19. Radiochemical Means of Investigating Delayed Neutron Precursors

    International Nuclear Information System (INIS)

    Marmol, P. del

    1968-01-01

    Fast radiochemical methods used now for the determination of delayed neutron precursors are classified and reviewed: precipitations, solvent extractions, range experiments, milking, gas sweeping, isotopic and ion exchange, hot atom reactions and diffusion loss. Advantages and limitations of irradiation systems with respect to fast separations are discussed: external beams which allow faster separations only have low neutron fluxes, internal beams which are mostly fit for gaseous reactions; and rabbits for solution irradiations. Future prospects of radiochemical procedures are presented; among these, studies should be mostly oriented towards gaseous reactions which offer possibilities of isolating very short-lived delayed neutron precursors. Chemical procedures for delayed neutron precursor detection are compared with mass spectrometric and isotope separator techniques; it is concluded that the methods are complementary. (author)

  20. Radiochemical Means of Investigating Delayed Neutron Precursors

    International Nuclear Information System (INIS)

    Marmol, P. del

    1968-01-01

    Fast radiochemical methods used now for the determination of delayed neutron precursors are classified and reviewed: precipitations, solvent extractions, range experiments, milking, gas sweeping, isotopic and ion exchange, hot-atom reactions and diffusion loss. Advantages and limitations of irradiation systems with respect to fast separations are discussed: external beams which allow faster separations only have low neutron fluxes, internal beams which are mostly fit for gaseous reactions; and rabbits for solution irradiations. Future prospects of radiochemical procedures are presented; among these, studies should be mostly oriented towards gaseous reactions which offer possibilities of isolating very short-lived delayed neutron precursors. Chemical procedures for delayed neutron precursor detection are compared with mass spectrometric and isotope-separator techniques; it is concluded that the methods are complementary. (author)

  1. Resonant infrared pulsed laser deposition of a polyimide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dygert, N L; Schriver, K E; Jr, R F Haglund [Department of Physics and Astronomy and W M Keck Foundation Free-Electron Laser Centre, Vanderbilt University, Nashville TN 37235 (United States)

    2007-04-15

    Poly(amic acid) (PAA), a precursor to polyimide, was successfully deposited on substrates without reaching curing temperature, by resonant infrared pulsed laser ablation. The PAA was prepared by dissolving pyromellitic dianhydride and 4, 4' oxidianiline in the polar solvent Nmethyl pyrrolidinone (NMP). The PAA was deposited in droplet-like morphologies when ablation occurred in air, and in string-like moieties in the case of ablation in vacuum. In the as-deposited condition, the PAA was easily removed by washing with NMP; however, once cured thermally for thirty minutes, the PAA hardened, indicating the expected thermosetting property. Plume shadowgraphy showed very clear contrasts in the ablation mechanism between ablation of the solvent alone and the ablation of the PAA, even at low concentrations. A Wavelength dependence in plume velocity was also observed.

  2. Review of Dolomite as Precursor of Geopolymer Materials

    Directory of Open Access Journals (Sweden)

    Azimi E.A.

    2016-01-01

    Full Text Available Geopolymer is an environmentally friendly cementitious binder that does not require the existence of ordinary Portland cement (OPC. Geopolymer has many excellent advantages, including high early strength, low shrinkage, good thermal resistance and good chemical resistance. Previous commonly used materials include fly ash, clay and slag. The used of dolomite as precursor material in geopolymer field is still new and at the early stage of study. Only a few researchers have done studies on dolomite in geopolymer. Dolomite (CaMg(CO32 is abundant and generally inexpensive natural minerals. The possible use of these bulk calcium carbonate materials in improving the mechanical properties of geopolymers will therefore be of great interest. This paper summarizes some research outcomes on dolomite in geopolymer along with the potential of dolomite as geopolymer composites.

  3. Precursors prior to type IIn supernova explosions are common: Precursor rates, properties, and correlations

    Energy Technology Data Exchange (ETDEWEB)

    Ofek, Eran O.; Steinbok, Aviram; Arcavi, Iair; Gal-Yam, Avishay; Tal, David; Ben-Ami, Sagi; Yaron, Ofer [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Shaviv, Nir J. [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Kulkarni, Shrinivas R. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Kasliwal, Mansi M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA/Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Bloom, Joshua S.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2014-07-10

    There is a growing number of Type IIn supernovae (SNe) which present an outburst prior to their presumably final explosion. These precursors may affect the SN display, and are likely related to poorly charted phenomena in the final stages of stellar evolution. By coadding Palomar Transient Factory (PTF) images taken prior to the explosion, here we present a search for precursors in a sample of 16 Type IIn SNe. We find five SNe IIn that likely have at least one possible precursor event (PTF 10bjb, SN 2010mc, PTF 10weh, SN 2011ht, and PTF 12cxj), three of which are reported here for the first time. For each SN we calculate the control time. We find that precursor events among SNe IIn are common: at the one-sided 99% confidence level, >50% of SNe IIn have at least one pre-explosion outburst that is brighter than 3 × 10{sup 7} L{sub ☉} taking place up to 1/3 yr prior to the SN explosion. The average rate of such precursor events during the year prior to the SN explosion is likely ≳ 1 yr{sup –1}, and fainter precursors are possibly even more common. Ignoring the two weakest precursors in our sample, the precursors rate we find is still on the order of one per year. We also find possible correlations between the integrated luminosity of the precursor and the SN total radiated energy, peak luminosity, and rise time. These correlations are expected if the precursors are mass-ejection events, and the early-time light curve of these SNe is powered by interaction of the SN shock and ejecta with optically thick circumstellar material.

  4. Napa earthquake: An earthquake in a highly connected world

    Science.gov (United States)

    Bossu, R.; Steed, R.; Mazet-Roux, G.; Roussel, F.

    2014-12-01

    The Napa earthquake recently occurred close to Silicon Valley. This makes it a good candidate to study what social networks, wearable objects and website traffic analysis (flashsourcing) can tell us about the way eyewitnesses react to ground shaking. In the first part, we compare the ratio of people publishing tweets and with the ratio of people visiting EMSC (European Mediterranean Seismological Centre) real time information website in the first minutes following the earthquake occurrence to the results published by Jawbone, which show that the proportion of people waking up depends (naturally) on the epicentral distance. The key question to evaluate is whether the proportions of inhabitants tweeting or visiting the EMSC website are similar to the proportion of people waking up as shown by the Jawbone data. If so, this supports the premise that all methods provide a reliable image of the relative ratio of people waking up. The second part of the study focuses on the reaction time for both Twitter and EMSC website access. We show, similarly to what was demonstrated for the Mineral, Virginia, earthquake (Bossu et al., 2014), that hit times on the EMSC website follow the propagation of the P waves and that 2 minutes of website traffic is sufficient to determine the epicentral location of an earthquake on the other side of the Atlantic. We also compare with the publication time of messages on Twitter. Finally, we check whether the number of tweets and the number of visitors relative to the number of inhabitants is correlated to the local level of shaking. Together these results will tell us whether the reaction of eyewitnesses to ground shaking as observed through Twitter and the EMSC website analysis is tool specific (i.e. specific to Twitter or EMSC website) or whether they do reflect people's actual reactions.

  5. Source complexity and the physical mechanism of the 2015 Mw 7.9 Bonin Island earthquake

    Science.gov (United States)

    Chen, Y.; Meng, L.; Wen, L.

    2015-12-01

    The 30 May 2015 Mw 7.9 Bonin Island earthquake is the largest instrument-recorded deep-focus earthquake in the Izu-Bonin arc. It occurred approximately 100 km deeper than the previous seismicity, in the region unlikely to be within the core of the subducting Izu-Bonin slab. The earthquake provides an unprecedented opportunity to understand the unexpected occurrence of such isolated deep earthquakes. Multiple source inversion of the P, SH, pP and sSH phases and a novel fully three-dimensional back-projection of P and pP phases are applied to study the coseismic source process. The subevents locations and short-period energy radiations both show a L-shape bilateral rupture propagating initially in the SW direction then in the NW direction with an average rupture speed of 2.0 km/s. The decrease of focal depth on the NW branch suggests that the rupture is consistent with a single sub-horizontal plane inferred from the GCMT solution. The multiple source inversion further indicates slight variation of the focal strikes of the sub-events with the curvature of the subducting Izu-Bonin slab. The rupture is confined within an area of 20 km x 35 km, rather compact compared with the shallow earthquake of similar magnitude. The earthquake is of high stress drop on the order of 100 MPa and a low seismic efficiency of 0.19, indicating large frictional heat dissipation. The only aftershock is 11 km to the east of the mainshock hypocenter and 3 km away from the centroid of the first sub-event. Analysis of the regional tomography and nearby seismicity suggests that the earthquake may occur at the edge/periphery of the bending slab and is unlikely to be within the "cold" metastable olivine wedge. Our results suggest the spontaneous nucleation of the thermally induced shear instability is a possible mechanism for such isolated deep earthquakes.

  6. Countermeasures to earthquakes in nuclear plants

    International Nuclear Information System (INIS)

    Sato, Kazuhide

    1979-01-01

    The contribution of atomic energy to mankind is unmeasured, but the danger of radioactivity is a special thing. Therefore in the design of nuclear power plants, the safety has been regarded as important, and in Japan where earthquakes occur frequently, the countermeasures to earthquakes have been incorporated in the examination of safety naturally. The radioactive substances handled in nuclear power stations and spent fuel reprocessing plants are briefly explained. The occurrence of earthquakes cannot be predicted effectively, and the disaster due to earthquakes is apt to be remarkably large. In nuclear plants, the prevention of damage in the facilities and the maintenance of the functions are required at the time of earthquakes. Regarding the location of nuclear plants, the history of earthquakes, the possible magnitude of earthquakes, the properties of ground and the position of nuclear plants should be examined. After the place of installation has been decided, the earthquake used for design is selected, evaluating live faults and determining the standard earthquakes. As the fundamentals of aseismatic design, the classification according to importance, the earthquakes for design corresponding to the classes of importance, the combination of loads and allowable stress are explained. (Kako, I.)

  7. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2017-07-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  8. The Trembling Earth Before Wenchuan Earthquake: Recognition of Precursory Anomalies through High Frequency Sampling Data of Groundwater

    Science.gov (United States)

    Huang, F.

    2017-12-01

    With a magnitude of MS8.0, the 2008 Wenchuan earthquake is classified as one of the "great earthquakes", which are potentially the most destructive, since it occurred at shallow depth close to a highly populated area without prediction, due to no confirmative precursors which were detected from a large amount of newly carried out digital observation data. Scientists who specilize in prediction routine work had been condemned and self-condemned for a long time then. After the pain of defeat passed, scientists have been some thinking to analyze the old observation data in new perspectives from longer temporal process, multiple-disciplinaries, and in different frequency. This presentation will show the preliminary results from groundwater level and temperature observed in 3 wells which distribute along the boundaries of tectonic blocks nearby and far from Wenchuan earthquake rupture.

  9. Evaluation of earthquake vibration on aseismic design of nuclear power plant judging from recent earthquakes

    International Nuclear Information System (INIS)

    Dan, Kazuo

    2006-01-01

    The Regulatory Guide for Aseismic Design of Nuclear Reactor Facilities was revised on 19 th September, 2006. Six factors for evaluation of earthquake vibration are considered on the basis of the recent earthquakes. They are 1) evaluation of earthquake vibration by method using fault model, 2) investigation and approval of active fault, 3) direct hit earthquake, 4) assumption of the short active fault as the hypocentral fault, 5) locality of the earthquake and the earthquake vibration and 6) remaining risk. A guiding principle of revision required new evaluation method of earthquake vibration using fault model, and evaluation of probability of earthquake vibration. The remaining risk means the facilities and people get into danger when stronger earthquake than the design occurred, accordingly, the scattering has to be considered at evaluation of earthquake vibration. The earthquake belt of Hyogo-Nanbu earthquake and strong vibration pulse in 1995, relation between length of surface earthquake fault and hypocentral fault, and distribution of seismic intensity of off Kushiro in 1993 are shown. (S.Y.)

  10. Report on Fukushima Daiichi NPP precursor events

    International Nuclear Information System (INIS)

    2014-01-01

    The main questions to be answered by this report were: The Fukushima Daiichi NPP accident, could it have been prevented? If there is a next severe accident, may it be prevented? To answer the first question, the report addressed several aspects. First, the report investigated whether precursors to the Fukushima Daiichi NPP accident existed in the operating experience; second, the reasons why these precursors did not evolve into a severe accident. Third, whether lessons learned from these precursor events were adequately considered by member countries; and finally, if the operating experience feedback system needs to be improved, based on the previous analysis. To address the second question which is much more challenging, the report considered precursor events identified through a search and analysis of the IRS database and also precursors events based on risk significance. Both methods can point out areas where further work may be needed, even if it depends heavily on design and site-specific factors. From the operating experience side, more efforts are needed to ensure timely and full implementation of lessons learnt from precursor events. Concerning risk considerations, a combined use of risk precursors and operating experience may drive to effective changes to plants to reduce risk. The report also contains a short description and evaluation of selected precursors that are related to the course of the Fukushima Daiichi NPP accident. The report addresses the question whether operating experience feedback can be effectively used to identify plant vulnerabilities and minimize potential for severe core damage accidents. Based on several of the precursor events national or international in-depth evaluations were started. The vulnerability of NPPs due to external and internal flooding has clearly been addressed. In addition to the IRS based investigation, the WGRISK was asked to identify important precursor events based on risk significance. These precursors have

  11. Plasma turbulence in the ionosphere prior to earthquakes, some remarks on the DEMETER registrations

    Science.gov (United States)

    Błęcki, Jan; Parrot, Michel; Wronowski, Roman

    2011-06-01

    The question about presence of some precursors of the earthquakes has a long history. The answer is still not resolved, but researchers are looking for the effects which can be registered prior to earthquakes. One of the factors which has been found is the variation of the electromagnetic field observed on ground as well as onboard satellites. The disturbances of the electromagnetic field around areas of the earthquakes as pre-seismic events can occur few hours or even few days before the main shock. The payload of the DEMETER French microsatellite allows to measure waves and also some important plasma parameters (ion composition, electron density and temperature, energetic particles) with high temporal resolution in the ionosphere over the seismic regions. In the present work, analysis of the low frequency fluctuations of the electric fields for selected strong earthquakes in Japan (2004), China (2008), Taiwan (2006) and New Zealand (2009) are given. Special attention will be given to the study of the spectral characteristics of these variations and the search for nonlinear effects. This analysis is possible in the time interval where the waveform has been transmitted. The mechanism of the energy transmission from earthquakes to the ionosphere is not clear, but we can discuss the behavior of the ionospheric plasma and the search for instabilities which could be a source of electromagnetic field variations. A brief discussion of the characteristics of the spectra and multi-spectra is given in this paper. Attention is particularly given to the effect prior to the earthquake in New Zealand, when a nonlinear interaction leading to a lower hybrid wave generation was directly seen.

  12. A smartphone application for earthquakes that matter!

    Science.gov (United States)

    Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert

    2014-05-01

    Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public, some of them having been downloaded more than 1 million times! The advantages are obvious: wherever someone's own location is, they can be automatically informed when an earthquake has struck. Just by setting a magnitude threshold and an area of interest, there is no longer the need to browse the internet as the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? What are the earthquakes that really matters to laypeople? One clue may be derived from some newspaper reports that show that a while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones that matter the most for the public (and authorities). They are the ones of societal importance even when of small magnitude. A smartphone application developed by EMSC (Euro-Med Seismological Centre) with the financial support of the Fondation MAIF aims at providing suitable notifications for earthquakes by collating different information threads covering tsunamigenic, potentially damaging and felt earthquakes. Tsunamigenic earthquakes are considered here to be those ones that are the subject of alert or information messages from the PTWC (Pacific Tsunami Warning Centre). While potentially damaging earthquakes are identified through an automated system called EQIA (Earthquake Qualitative Impact Assessment) developed and operated at EMSC. This rapidly assesses earthquake impact by comparing the population exposed to each expected

  13. Effect of precursor solutions on ZnO film via solution precursor plasma spray and corresponding gas sensing performances

    Science.gov (United States)

    Yu, Z. X.; Ma, Y. Z.; Zhao, Y. L.; Huang, J. B.; Wang, W. Z.; Moliere, M.; Liao, H. L.

    2017-08-01

    Solution precursor plasma spraying (SPPS) as a novel thermal spray method was employed to deposit nano-structured ZnO thin film using different formulations of the precursor solution. This article focuses on the influence of the solution composition on the preferential orientation of crystal growth, on crystal size and surface morphology of the resulting ZnO films. The trend of preferential growth along (002) lattice plane of ZnO film was studied by slow scanning X-ray diffraction using a specific coefficient P(002). It appears that the thermal spray process promotes the buildup of ZnO films preferentially oriented along the c-axis. The shape of single particle tends to change from round shaped beads to hexagonal plates by increasing the volume ratio of ethanol in the solvent. Both cauliflower and honeycomb-like surface morphologies featuring high specific surface area and roughness were obtained through the SPPS process by varying solution composition. These ZnO films are hydrophobic with contact angle as high as 136°, which is seemingly associated with micro reliefs developing high surface specific area. Then the gas sensing performances of ZnO films preferentially oriented along (002) face were tentatively predicted using the "first principle calculation method" and were compared with those of conventional films that are mainly oriented along the (101) face. The (002) face displays better hydrogen adsorption capability than the (101) face with much larger resulting changes in electrical resistance. In conclusion, the c-axis oriented ZnO films obtained through SSPS have favorable performances to be used as sensitive layer in gas sensing applications.

  14. Renormalization group theory of earthquakes

    Directory of Open Access Journals (Sweden)

    H. Saleur

    1996-01-01

    Full Text Available We study theoretically the physical origin of the proposed discrete scale invariance of earthquake processes, at the origin of the universal log-periodic corrections to scaling, recently discovered in regional seismic activity (Sornette and Sammis (1995. The discrete scaling symmetries which may be present at smaller scales are shown to be robust on a global scale with respect to disorder. Furthermore, a single complex exponent is sufficient in practice to capture the essential properties of the leading correction to scaling, whose real part may be renormalized by disorder, and thus be specific to the system. We then propose a new mechanism for discrete scale invariance, based on the interplay between dynamics and disorder. The existence of non-linear corrections to the renormalization group flow implies that an earthquake is not an isolated 'critical point', but is accompanied by an embedded set of 'critical points', its foreshocks and any subsequent shocks for which it may be a foreshock.

  15. The 2016 Kumamoto earthquake sequence.

    Science.gov (United States)

    Kato, Aitaro; Nakamura, Kouji; Hiyama, Yohei

    2016-01-01

    Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An M j 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an M j 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest.

  16. Earthquake lights and rupture processes

    Directory of Open Access Journals (Sweden)

    T. V. Losseva

    2005-01-01

    Full Text Available A physical model of earthquake lights is proposed. It is suggested that the magnetic diffusion from the electric and magnetic fields source region is a dominant process, explaining rather high localization of the light flashes. A 3D numerical code allowing to take into account the arbitrary distribution of currents caused by ground motion, conductivity in the ground and at its surface, including the existence of sea water above the epicenter or (and near the ruptured segments of the fault have been developed. Simulations for the 1995 Kobe earthquake were conducted taking into account the existence of sea water with realistic geometry of shores. The results do not contradict the eyewitness reports and scarce measurements of the electric and magnetic fields at large distances from the epicenter.

  17. The 2016 Kumamoto earthquake sequence

    Science.gov (United States)

    KATO, Aitaro; NAKAMURA, Kouji; HIYAMA, Yohei

    2016-01-01

    Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An Mj 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an Mj 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest. PMID:27725474

  18. Double seismic zone for deep earthquakes in the izu-bonin subduction zone.

    Science.gov (United States)

    Iidaka, T; Furukawa, Y

    1994-02-25

    A double seismic zone for deep earthquakes was found in the Izu-Bonin region. An analysis of SP-converted phases confirms that the deep seismic zone consists of two layers separated by approximately 20 kilometers. Numerical modeling of the thermal structure implies that the hypocenters are located along isotherms of 500 degrees to 550 degrees C, which is consistent with the hypothesis that deep earthquakes result from the phase transition of metastable olivine to a high-pressure phase in the subducting slab.

  19. Tectonic environment and cause of earthquakes in the Three Gorges reservoir area

    Directory of Open Access Journals (Sweden)

    Li Qiang

    2011-02-01

    Full Text Available Seismotectonics in the Three Gorges reservoir area is investigated by using the P-wave tomography with earthquakes that occurred before the impoundment of the reservoir. The result indicates that most of these events occurred in or around the velocity-gradient belts between high-velocity and low-velocity anomalies. These belts have similar characteristics to bured-fault zones. Stresses generated by movement of partially molten upper-mantle materials and thermal stress may have jointly contributed to the seismic activities along the faults and such buried faults, and possibly activated new earthquake ruptures.

  20. Dim prospects for earthquake prediction

    Science.gov (United States)

    Geller, Robert J.

    I was misquoted by C. Lomnitz's [1998] Forum letter (Eos, August 4, 1998, p. 373), which said: [I wonder whether Sasha Gusev [1998] actually believes that branding earthquake prediction a ‘proven nonscience’ [Geller, 1997a] is a paradigm for others to copy.”Readers are invited to verify for themselves that neither “proven nonscience” norv any similar phrase was used by Geller [1997a].

  1. Electromagnetic Energy Released in the Subduction (Benioff) Zone in Weeks Previous to Earthquake Occurrence in Central Peru and the Estimation of Earthquake Magnitudes.

    Science.gov (United States)

    Heraud, J. A.; Centa, V. A.; Bleier, T.

    2017-12-01

    During the past four years, magnetometers deployed in the Peruvian coast have been providing evidence that the ULF pulses received are indeed generated at the subduction or Benioff zone and are connected with the occurrence of earthquakes within a few kilometers of the source of such pulses. This evidence was presented at the AGU 2015 Fall meeting, showing the results of triangulation of pulses from two magnetometers located in the central area of Peru, using data collected during a two-year period. Additional work has been done and the method has now been expanded to provide the instantaneous energy released at the stress areas on the Benioff zone during the precursory stage, before an earthquake occurs. Collected data from several events and in other parts of the country will be shown in a sequential animated form that illustrates the way energy is released in the ULF part of the electromagnetic spectrum. The process has been extended in time and geographical places. Only pulses associated with the occurrence of earthquakes are taken into account in an area which is highly associated with subduction-zone seismic events and several pulse parameters have been used to estimate a function relating the magnitude of the earthquake with the value of a function generated with those parameters. The results shown, including the animated data video, constitute additional work towards the estimation of the magnitude of an earthquake about to occur, based on electromagnetic pulses that originated at the subduction zone. The method is providing clearer evidence that electromagnetic precursors in effect conveys physical and useful information prior to the advent of a seismic event

  2. Sol-gel precursors and products thereof

    Science.gov (United States)

    Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.

    2017-02-14

    The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##

  3. Precursor Dependent Structural Properties and Antibacterial Activity ...

    Indian Academy of Sciences (India)

    71

    10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30 ... absorption spectroscopy, Scanning electron microscopy (SEM) and Zeta ... The antibacterial activity of the synthesized CuO were studied against human .... Sample d : Copper oxide synthesized with cupric sulphate as precursor ...... Chem.4 86.

  4. Biochemical Removal of HAP Precursors from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gregory J

    1997-05-12

    Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory's (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

  5. Directed deposition of silicon nanowires using neopentasilane as precursor and gold as catalyst

    Directory of Open Access Journals (Sweden)

    Britta Kämpken

    2012-07-01

    Full Text Available In this work the applicability of neopentasilane (Si(SiH34 as a precursor for the formation of silicon nanowires by using gold nanoparticles as a catalyst has been explored. The growth proceeds via the formation of liquid gold/silicon alloy droplets, which excrete the silicon nanowires upon continued decomposition of the precursor. This mechanism determines the diameter of the Si nanowires. Different sources for the gold nanoparticles have been tested: the spontaneous dewetting of gold films, thermally annealed gold films, deposition of preformed gold nanoparticles, and the use of “liquid bright gold”, a material historically used for the gilding of porcelain and glass. The latter does not only form gold nanoparticles when deposited as a thin film and thermally annealed, but can also be patterned by using UV irradiation, providing access to laterally structured layers of silicon nanowires.

  6. On the plant operators performance during earthquake

    International Nuclear Information System (INIS)

    Kitada, Y.; Yoshimura, S.; Abe, M.; Niwa, H.; Yoneda, T.; Matsunaga, M.; Suzuki, T.

    1994-01-01

    There is little data on which to judge the performance of plant operators during and after strong earthquakes. In order to obtain such data to enhance the reliability on the plant operation, a Japanese utility and a power plant manufacturer carried out a vibration test using a shaking table. The purpose of the test was to investigate operator performance, i.e., the quickness and correctness in switch handling and panel meter read-out. The movement of chairs during earthquake as also of interest, because if the chairs moved significantly or turned over during a strong earthquake, some arresting mechanism would be required for the chair. Although there were differences between the simulated earthquake motions used and actual earthquakes mainly due to the specifications of the shaking table, the earthquake motions had almost no influence on the operators of their capability (performance) for operating the simulated console and the personal computers

  7. Earthquake evaluation of a substation network

    International Nuclear Information System (INIS)

    Matsuda, E.N.; Savage, W.U.; Williams, K.K.; Laguens, G.C.

    1991-01-01

    The impact of the occurrence of a large, damaging earthquake on a regional electric power system is a function of the geographical distribution of strong shaking, the vulnerability of various types of electric equipment located within the affected region, and operational resources available to maintain or restore electric system functionality. Experience from numerous worldwide earthquake occurrences has shown that seismic damage to high-voltage substation equipment is typically the reason for post-earthquake loss of electric service. In this paper, the authors develop and apply a methodology to analyze earthquake impacts on Pacific Gas and Electric Company's (PG and E's) high-voltage electric substation network in central and northern California. The authors' objectives are to identify and prioritize ways to reduce the potential impact of future earthquakes on our electric system, refine PG and E's earthquake preparedness and response plans to be more realistic, and optimize seismic criteria for future equipment purchases for the electric system

  8. Earthquake forewarning in the Cascadia region

    Science.gov (United States)

    Gomberg, Joan S.; Atwater, Brian F.; Beeler, Nicholas M.; Bodin, Paul; Davis, Earl; Frankel, Arthur; Hayes, Gavin P.; McConnell, Laura; Melbourne, Tim; Oppenheimer, David H.; Parrish, John G.; Roeloffs, Evelyn A.; Rogers, Gary D.; Sherrod, Brian; Vidale, John; Walsh, Timothy J.; Weaver, Craig S.; Whitmore, Paul M.

    2015-08-10

    This report, prepared for the National Earthquake Prediction Evaluation Council (NEPEC), is intended as a step toward improving communications about earthquake hazards between information providers and users who coordinate emergency-response activities in the Cascadia region of the Pacific Northwest. NEPEC charged a subcommittee of scientists with writing this report about forewarnings of increased probabilities of a damaging earthquake. We begin by clarifying some terminology; a “prediction” refers to a deterministic statement that a particular future earthquake will or will not occur. In contrast to the 0- or 100-percent likelihood of a deterministic prediction, a “forecast” describes the probability of an earthquake occurring, which may range from >0 to processes or conditions, which may include Increased rates of M>4 earthquakes on the plate interface north of the Mendocino region 

  9. Data base pertinent to earthquake design basis

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1988-01-01

    Mitigation of earthquake risk from impending strong earthquakes is possible provided the hazard can be assessed, and translated into appropriate design inputs. This requires defining the seismic risk problem, isolating the risk factors and quantifying risk in terms of physical parameters, which are suitable for application in design. Like all other geological phenomena, past earthquakes hold the key to the understanding of future ones. Quantificatio n of seismic risk at a site calls for investigating the earthquake aspects of the site region and building a data base. The scope of such investigations is il lustrated in Figure 1 and 2. A more detailed definition of the earthquake problem in engineering design is given elsewhere (Sharma, 1987). The present document discusses the earthquake data base, which is required to support a seismic risk evaluation programme in the context of the existing state of the art. (author). 8 tables, 10 figs., 54 refs

  10. MOCVD and ALD of rare earth containing multifunctional materials. From precursor chemistry to thin film deposition and applications

    International Nuclear Information System (INIS)

    Milanov, Andrian Petrov

    2010-01-01

    The present thesis deals with the development of metal-organic complexes of rare elements. They should be used as novel precursors for the production of rare earth thin films by metal-organic chemical vapor deposition (MOCVD) and Atomic Layer Deposition (ALD). Within the work two precursor classes were examined, the tris-Malonato-complexes as well as the tris-Guanidinato-complexes of a series of rare earth metals. The latter showed excellent properties regarding to their volatility, their thermal stability, the defined decomposition and high reactivity towards water. They have been successfully used as precursors for the MOCVD of rare earth oxide layers. By using of a gadolinium guanidinate it could also be shown that the rare earth guanidinates are promising precursors for ALD of rare earth oxide and MOCVD of rare earth nitride layers. [de

  11. Understanding Great Earthquakes in Japan's Kanto Region

    Science.gov (United States)

    Kobayashi, Reiji; Curewitz, Daniel

    2008-10-01

    Third International Workshop on the Kanto Asperity Project; Chiba, Japan, 16-19 February 2008; The 1703 (Genroku) and 1923 (Taisho) earthquakes in Japan's Kanto region (M 8.2 and M 7.9, respectively) caused severe damage in the Tokyo metropolitan area. These great earthquakes occurred along the Sagami Trough, where the Philippine Sea slab is subducting beneath Japan. Historical records, paleoseismological research, and geophysical/geodetic monitoring in the region indicate that such great earthquakes will repeat in the future.

  12. Earthquake-triggered landslides in southwest China

    OpenAIRE

    X. L. Chen; Q. Zhou; H. Ran; R. Dong

    2012-01-01

    Southwest China is located in the southeastern margin of the Tibetan Plateau and it is a region of high seismic activity. Historically, strong earthquakes that occurred here usually generated lots of landslides and brought destructive damages. This paper introduces several earthquake-triggered landslide events in this region and describes their characteristics. Also, the historical data of earthquakes with a magnitude of 7.0 or greater, having occurred in this region, is col...

  13. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases

    KAUST Repository

    Munir, Rahim

    2016-11-07

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  14. Alkynyl substituted carboranes as precursors to boron carbide thin films, fibers and composites

    International Nuclear Information System (INIS)

    Johnson, S.E.; Yang, X.; Hawthorne, M.F.; Mackenzie, J.D.; Thorne, K.J.; Zheng, H.

    1992-01-01

    In this paper the use of alkynyl substituted derivatives of o-carborane as precursors to boron containing ceramics is described. These compounds undergo a thermally or photochemically induced polymerization to afford cross linked polyakynyl-o-carborane derivatives. The increase in molecular weight should allow for increased Tg's and the retention of modelled polymer preforms. In this report, these modification reactions are described. In addition, the retention of molded polymer preforms were analyzed after UV exposure and inert atmosphere pyrolysis

  15. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases

    KAUST Repository

    Munir, Rahim; Sheikh, Arif D.; Abdelsamie, Maged; Hu, Hanlin; Yu, Liyang; Zhao, Kui; Kim, Taesoo; El Tall, Omar; Li, Ruipeng; Smilgies, Detlef M.; Amassian, Aram

    2016-01-01

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  16. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    International Nuclear Information System (INIS)

    Gómez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martínez, E.; Beltrán, A.; Sapiña, F.; Vicent, M.; Sánchez, E.

    2013-01-01

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10–15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr 1−x A x O 2−x/2 (A=Y, Sc; 0≤x≤0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: ► Zr 1−x A x O 2−x/2 (A=Y, Sc; 0≤x≤0.12) solid solutions have been prepared as nanostructured powders. ► The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. ► The temperature of the thermal treatment controls particle sizes. ► The preparation procedure has been scaled up to the 100 g scale. ► This method is appropriate for the large-scale industrial preparation of multimetallic systems.

  17. Scientific Research Database of the 2008 Ms8.0 Wenchuan Earthquake

    Science.gov (United States)

    Liang, C.; Yang, Y.; Yu, Y.

    2013-12-01

    Nearly 5 years after the 2008 Ms8.0 Wenchuan Earthquake, the Ms7.0 Lushan earthquake stroke 70km away along the same fault system. Given the tremendous life loss and property damages as well as the short time and distance intervals between the two large magnitude events, the scientific probing into their causing factors and future seismic activities in the nearby region will continue to be in the center of earthquake research in China and even the world for years to come. In the past five years, scientists have made significant efforts to study the Wenchuan earthquake from various aspects using different datasets and methods. Their studies cover a variety of topics including seismogenic environment, earthquake precursors, rupture process, co-seismic phenomenon, hazard relief, reservoir induced seismicity and more. These studies have been published in numerous journals in Chinese, English and many other languages. In addition, 54 books regarding to this earthquake have been published. The extremely diversified nature of all publications makes it very difficult and time-consuming, if not impossible, to sort out information needed by individual researcher in an efficient way. An information platform that collects relevant scientific information and makes them accessible in various ways can be very handy. With this mission in mind, the Earthquake Research Group in the Chengdu University of Technology has developed a website www.wceq.org to attack this target: (1) articles published by major journals and books are recorded into a database. Researchers will be able to find articles by topics, journals, publication dates, authors and keywords e.t.c by a few clicks; (2) to fast track the latest developments, researchers can also follow upon updates in the current month, last 90days, 180 days and 365 days by clicking on corresponding links; (3) the modern communication tools such as Facebook, Twitter and their Chinese counterparts are accommodated in this site to share

  18. Contribution towards ALD and MOCVD of rare earth oxides and hafnium oxide. From precursor evaluation to process development and thin film characterization

    International Nuclear Information System (INIS)

    Xu, Ke

    2013-01-01

    This PhD thesis is consisted of two major parts: precursor development for ALD and MOCVD applications as well as thin film deposition using ALD and MOCVD with self developed precursors. The first part of this work presents the synthesis, characterization and detailed thermal property investigations of different novel group IV and rare earth precursor classes (guandinate, guanidine and ketoiminate). The second part of this work presents the ALD and MOCVD depositions using various guanidinate precursors for forming corresponding metal oxide thin films. The overall motivation of this work is to fulfill the lack of precursors of rare earth and group IV elements for ALD and MOCVD applications that satisfy the stringent requirements for the modern microelectronic and optoelectronic technologies. The aspect of the precursor engineering part is focusing on influence of ligand sphere on precursors' chemical and thermal properties. In this way, we successfully introduced guanidine and ketoiminate as potential ligands for the precursor design. The thin film deposition part of this work is ALD of rare earth oxides and group IV oxides employing literature known compounds which were previously developed in our research group. The main focus was dedicated to the process optimization, the characterization of the structural, morphological, compositional and functional properties of the deposited thin films. Certain film properties were discussed comparatively with the corresponding thin films deposited with literature known precursors. It was already shortly demonstrated in Chapter 6 that the guanidine ligand showed potential interest as suitable ligand for precursor engineering. This titan guanidine precursor [Ti(NC(NMe 2 ) 2 ) 4 ] (GD1) possesses higher thermal stability compared to its parent amide, [Ti(NMe 2 ) 4 ], while reactivity against water is not significantly affected. It could be very interesting to transfer this ligand for the precursor development of rare earth

  19. Retrospective analysis of the Spitak earthquake

    Directory of Open Access Journals (Sweden)

    A. K. Tovmassian

    1995-06-01

    Full Text Available Based on the retrospective analysis of numerous data and studies of the Spitak earthquake the present work at- tempts to shed light on different aspects of that catastrophic seismic event which occurred in Northern Arme- nia on December 7, 1988. The authors follow a chronological order of presentation, namely: changes in geo- sphere, atmosphere, biosphere during the preparation of the Spitak earthquake, foreshocks, main shock, after- shocks, focal mechanisms, historical seismicity; seismotectonic position of the source, strong motion records, site effects; the macroseismic effect, collapse of buildings and structures; rescue activities; earthquake conse- quences; and the lessons of the Spitak earthquake.

  20. Smoking prevalence increases following Canterbury earthquakes.

    Science.gov (United States)

    Erskine, Nick; Daley, Vivien; Stevenson, Sue; Rhodes, Bronwen; Beckert, Lutz

    2013-01-01

    A magnitude 7.1 earthquake hit Canterbury in September 2010. This earthquake and associated aftershocks took the lives of 185 people and drastically changed residents' living, working, and social conditions. To explore the impact of the earthquakes on smoking status and levels of tobacco consumption in the residents of Christchurch. Semistructured interviews were carried out in two city malls and the central bus exchange 15 months after the first earthquake. A total of 1001 people were interviewed. In August 2010, prior to any earthquake, 409 (41%) participants had never smoked, 273 (27%) were currently smoking, and 316 (32%) were ex-smokers. Since the September 2010 earthquake, 76 (24%) of the 316 ex-smokers had smoked at least one cigarette and 29 (38.2%) had smoked more than 100 cigarettes. Of the 273 participants who were current smokers in August 2010, 93 (34.1%) had increased consumption following the earthquake, 94 (34.4%) had not changed, and 86 (31.5%) had decreased their consumption. 53 (57%) of the 93 people whose consumption increased reported that the earthquake and subsequent lifestyle changes as a reason to increase smoking. 24% of ex-smokers resumed smoking following the earthquake, resulting in increased smoking prevalence. Tobacco consumption levels increased in around one-third of current smokers.

  1. Real Time Earthquake Information System in Japan

    Science.gov (United States)

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  2. Impact- and earthquake- proof roof structure

    International Nuclear Information System (INIS)

    Shohara, Ryoichi.

    1990-01-01

    Building roofs are constituted with roof slabs, an earthquake proof layer at the upper surface thereof and an impact proof layer made of iron-reinforced concrete disposed further thereover. Since the roofs constitute an earthquake proof structure loading building dampers on the upper surface of the slabs by the concrete layer, seismic inputs of earthquakes to the buildings can be moderated and the impact-proof layer is formed, to ensure the safety to external conditions such as earthquakes or falling accidents of airplane in important facilities such as reactor buildings. (T.M.)

  3. A minimalist model of characteristic earthquakes

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; González, Á.; Gómez, J.B.

    2002-01-01

    In a spirit akin to the sandpile model of self- organized criticality, we present a simple statistical model of the cellular-automaton type which simulates the role of an asperity in the dynamics of a one-dimensional fault. This model produces an earthquake spectrum similar to the characteristic-earthquake...... behaviour of some seismic faults. This model, that has no parameter, is amenable to an algebraic description as a Markov Chain. This possibility illuminates some important results, obtained by Monte Carlo simulations, such as the earthquake size-frequency relation and the recurrence time...... of the characteristic earthquake....

  4. Global Significant Earthquake Database, 2150 BC to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Significant Earthquake Database is a global listing of over 5,700 earthquakes from 2150 BC to the present. A significant earthquake is classified as one that...

  5. How "Hot Precursors" Modify Island Nucleation: A Rate-Equation Model

    Science.gov (United States)

    Morales-Cifuentes, Josue R.; Einstein, T. L.; Pimpinelli, A.

    2014-12-01

    We propose a novel island nucleation and growth model explicitly including transient (ballistic) mobility of the monomers deposited at rate F , assumed to be in a hot precursor state before thermalizing. In limiting regimes, corresponding to fast (diffusive) and slow (ballistic) thermalization, the island density N obeys scaling N ∝Fα . In between is found a rich, complex behavior, with various distinctive scaling regimes, characterized by effective exponents αeff and activation energies that we compute exactly. Application to N (F ,T ) of recent organic-molecule deposition experiments yields an excellent fit.

  6. Integrating Real-time Earthquakes into Natural Hazard Courses

    Science.gov (United States)

    Furlong, K. P.; Benz, H. M.; Whitlock, J. S.; Bittenbinder, A. N.; Bogaert, B. B.

    2001-12-01

    Natural hazard courses are playing an increasingly important role in college and university earth science curricula. Students' intrinsic curiosity about the subject and the potential to make the course relevant to the interests of both science and non-science students make natural hazards courses popular additions to a department's offerings. However, one vital aspect of "real-life" natural hazard management that has not translated well into the classroom is the real-time nature of both events and response. The lack of a way to entrain students into the event/response mode has made implementing such real-time activities into classroom activities problematic. Although a variety of web sites provide near real-time postings of natural hazards, students essentially learn of the event after the fact. This is particularly true for earthquakes and other events with few precursors. As a result, the "time factor" and personal responsibility associated with natural hazard response is lost to the students. We have integrated the real-time aspects of earthquake response into two natural hazard courses at Penn State (a 'general education' course for non-science majors, and an upper-level course for science majors) by implementing a modification of the USGS Earthworm system. The Earthworm Database Management System (E-DBMS) catalogs current global seismic activity. It provides earthquake professionals with real-time email/cell phone alerts of global seismic activity and access to the data for review/revision purposes. We have modified this system so that real-time response can be used to address specific scientific, policy, and social questions in our classes. As a prototype of using the E-DBMS in courses, we have established an Earthworm server at Penn State. This server receives national and global seismic network data and, in turn, transmits the tailored alerts to "on-duty" students (e-mail, pager/cell phone notification). These students are responsible to react to the alarm

  7. Silicon deposition in nanopores using a liquid precursor

    Science.gov (United States)

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-01

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  8. Spatial Evaluation and Verification of Earthquake Simulators

    Science.gov (United States)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.

    2017-06-01

    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  9. Metabolic Precursors to Amphetamine and Methamphetamine.

    Science.gov (United States)

    Cody, J D

    1993-12-01

    Analysis and interpretation of amphetamine results is a challenging process made difficult by a number of factors. One of the complications comes from determination of the origin of amphetamine or methamphetamine in a sample. Given the relatively rare occasions that either of these two drugs are prescribed, legal prescription of one of these drugs is seldom a reason for positive findings. A number of other precursor compounds are metabolized by the body to amphetamine or methamphetamine, many of which could be used for legitimate reasons. Fourteen different metabolic precursors of amphetamine or methamphetamine are included in this review. They are amphetaminil, benzphetamine, clobenzorex, deprenyl, dimethylamphetamine, ethylamphetamine, famprofazone, fencamine, fenethylline, fenproporex, furfenorex, mefenorex, mesocarb, and prenylamine. Medical use, metabolism, analysis, and interpretation are described to afford sufficient information to evaluate the possible involvement of these drugs in positive amphetamine or methamphetamine results. Copyright © 1993 Central Police University.

  10. Investigations on precursor measures for aeroelastic flutter

    Science.gov (United States)

    Venkatramani, J.; Sarkar, Sunetra; Gupta, Sayan

    2018-04-01

    Wind tunnel experiments carried out on a pitch-plunge aeroelastic system in the presence of fluctuating flows reveal that flutter instability is presaged by a regime of intermittency. It is observed that as the flow speed gradually increases towards the flutter speed, there appears intermittent bursts of periodic oscillations which become more frequent as the wind speed increases and eventually the dynamics transition into fully developed limit cycle oscillations, marking the onset of flutter. The signature from these intermittent oscillations are exploited to develop measures that forewarn a transition to flutter and can serve as precursors. This study investigates a suite of measures that are obtained directly from the time history of measurements and are hence model independent. The dependence of these precursors on the size of the measured data set and the time required for their computation is investigated. These measures can be useful in structural health monitoring of aeroelastic structures.

  11. Comparison exercise of probabilistic precursor analysis

    International Nuclear Information System (INIS)

    Fauchille, V.; Babst, S.

    2004-01-01

    From 2000 up to 2003, a comparison exercise concerning accident precursor programs was performed by IRSN, GRS, and NUPEC (Japan). The objective of this exercise was to compare the methodologies used to quantify conditional core damage probability related to incidents which can be considered as accident precursors. This exercise provided interesting results concerning the interpretation of such events. Generally, the participants identified similar scenarios of potential degradation. However, for several dominant sequences, differences in the results were noticed. The differences can be attributed to variations in the plant design, the strategy of management and in the methodological approach. For many reasons, comparison of human reliability analysis was difficult and perhaps another exercise in the future could provide more information about this subject. On the other hand, interesting outcomes have been obtained from the quantification of both common cause failures and potential common cause failures. (orig.)

  12. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential...... functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed......, where living anionic polymerization and atom transfer radical polymerization (ATRP) are combined to synthesize a polydimethylsiloxane-b-poly(tert-butyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer precursor. By using either anhydrous hydrogen fluoride or trifluoroacetic acid, PtBA block...

  13. Nonlinear magnetohydrodynamics of edge localized mode precursors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. B., E-mail: guozhipku@gmail.com [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China); WCI Center for Fusion Theory, NFRI, Gwahangno 113, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Wang, Lu [SEEE, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang, X. G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China)

    2015-02-15

    A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.

  14. Study on the fixed point in crustal deformation before strong earthquake

    Science.gov (United States)

    Niu, A.; Li, Y.; Yan, W. Mr

    2017-12-01

    earthquake rupture precursor. 1) The observations for crust deformation in natural conditions are different with dry and static experiments, and the former had the meaning of stress wave.2)The earthquake rupture has a special triggering mechanism that is different from the experiment with limited scale rock fracture.

  15. GEM - The Global Earthquake Model

    Science.gov (United States)

    Smolka, A.

    2009-04-01

    Over 500,000 people died in the last decade due to earthquakes and tsunamis, mostly in the developing world, where the risk is increasing due to rapid population growth. In many seismic regions, no hazard and risk models exist, and even where models do exist, they are intelligible only by experts, or available only for commercial purposes. The Global Earthquake Model (GEM) answers the need for an openly accessible risk management tool. GEM is an internationally sanctioned public private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) which will establish an authoritative standard for calculating and communicating earthquake hazard and risk, and will be designed to serve as the critical instrument to support decisions and actions that reduce earthquake losses worldwide. GEM will integrate developments on the forefront of scientific and engineering knowledge of earthquakes, at global, regional and local scale. The work is organized in three modules: hazard, risk, and socio-economic impact. The hazard module calculates probabilities of earthquake occurrence and resulting shaking at any given location. The risk module calculates fatalities, injuries, and damage based on expected shaking, building vulnerability, and the distribution of population and of exposed values and facilities. The socio-economic impact module delivers tools for making educated decisions to mitigate and manage risk. GEM will be a versatile online tool, with open source code and a map-based graphical interface. The underlying data will be open wherever possible, and its modular input and output will be adapted to multiple user groups: scientists and engineers, risk managers and decision makers in the public and private sectors, and the public-at- large. GEM will be the first global model for seismic risk assessment at a national and regional scale, and aims to achieve broad scientific participation and independence. Its development will occur in a

  16. Relative importance and interactions of furan precursors in sterilised, vegetable-based food systems.

    Science.gov (United States)

    Palmers, Stijn; Grauwet, Tara; Buvé, Carolien; Vanratingen, Koen; Kebede, Biniam T; Goos, Peter; Hendrickx, Marc E; Van Loey, Ann

    2016-01-01

    Mitigation strategies aimed at an intervention in the reaction pathways for furan formation (e.g., by adjusting precursor concentrations) might offer an additional route for furan reduction in sterilised, vegetable-based foods, without adverse effects on other food safety or quality attributes. As a first step towards product reformulation, the aim of the present study was to determine the relative importance and interactions of possible furan precursors in these types of foods. Based on an I-optimal experimental design, potato purée (naturally low in furan precursors) was spiked with known amounts of sugars, ascorbic acid, olive oil and β-carotene, and subjected to a thermal sterilisation. Significant correlations were observed between furan concentrations after thermal treatment and starting concentrations of ascorbic acid and monosaccharides (i.e., fructose and glucose). Ascorbic acid had a clear furan-reducing effect as an antioxidant by protecting (polyunsaturated) fatty acids against oxidative degradation. Fructose and glucose were the main precursors, which can most probably be attributed to their high, but realistic, concentrations in the product. The contributions of fatty acids and β-carotene were strongly dependent on redox interactions with other food constituents. In the same potato purées, only low concentrations (0-2 ng g(-1) purée) of 2-methylfuran were detected, indicating that the direct importance of the spiked food constituents as a precursor for methylfuran formation was rather small. Based on the results of this study, reducing the amount of monosaccharides or adjusting the redox conditions of the matrix are suggested as two possible approaches for furan mitigation on the product side.

  17. Lunar Robotic Precursor Missions Using Electric Propulsion

    OpenAIRE

    Winski, Richard G.

    2006-01-01

    A trade study is carried out for the design of electric propulsion based lunar robotic precursor missions. The focus is to understand the relationships between payload mass delivered, electric propulsion power, and trip time. The results are compared against a baseline system using chemical propulsion with LOX/H2. The major differences between the chemical propulsion based and electric propulsion based systems are presented in terms of the payload mass and trip time. It is shown that solar e...

  18. Novel precursors for the deposition of rare earth oxides

    International Nuclear Information System (INIS)

    Ahlers, Mareike

    2010-01-01

    During this work rare earth solvates with nitrate and perchlorate anions have been investigated. All compounds have been structurally characterized and analyzed using thermal gravimetric analysis. The decomposition residues were analyzed using powder diffraction methods. Almost all compounds showed a characteristically intense exothermic decomposition step during the thermal decomposition, most likely caused by an intramolecular redox reaction between the nitrate or perchlorate anion respectively and the organic solvent molecules. The nitrates RE(NO 3 ) 3 (CH(OCH 3 ) 3 ) 2 (RE = Sm, Eu) were isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. The known compound group of dimethoxyethane solvates was then expanded with RE(NO 3 ) 3 (O 2 C 4 H 10 ) (RE = La, Sm, Eu). Considering the possible use as precursor material the already described neodymium compound is also discussed. The thermal decomposition of these compounds yields the respective cubic rare earth oxide and shows the typical intense exothermic decomposition reaction. A variety of different precursor system based on nitrate solvates for the deposition of rare earth oxide layers on a silicon surface was developed and investigated in collaboration with the group of Prof. Dr. Al-Shamery (Univ. Oldenburg). Ultra thin films on a H-Si(111) surface were obtained via the deposition of the precursor, which was dissolved in organic solvents. An oxide layer was detected after the heating of the sample. The film thickness was measured as < 10 nm, whereas the thickness of the film was controlled by the concentration of the precursor solution. Sm(ClO 4 ) 3 (CH(OCH 3 ) 3 ) 3 was isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. Eu(ClO 4 ) 3 (CH(OCH 3 ) 3 ) 2 (MeOH) 2 was obtained without recrystallization. The methanol molecules, formed during the hydrolysis of the trimethyl

  19. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    Science.gov (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  20. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  1. Stress triggering of the Lushan M7. 0 earthquake by the Wenchuan Ms8. 0 earthquake

    Directory of Open Access Journals (Sweden)

    Wu Jianchao

    2013-08-01

    Full Text Available The Wenchuan Ms8. 0 earthquake and the Lushan M7. 0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8. 0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan M7. 0 earthquake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 – 0. 152 bar in the source of the Lushan M7. 0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7. 0 earthquake was most likely triggered by the coulomb failure stress change.

  2. Foreshock occurrence before large earthquakes

    Science.gov (United States)

    Reasenberg, P.A.

    1999-01-01

    Rates of foreshock occurrence involving shallow M ??? 6 and M ??? 7 mainshocks and M ??? 5 foreshocks were measured in two worldwide catalogs over ???20-year intervals. The overall rates observed are similar to ones measured in previous worldwide and regional studies when they are normalized for the ranges of magnitude difference they each span. The observed worldwide rates were compared to a generic model of earthquake clustering based on patterns of small and moderate aftershocks in California. The aftershock model was extended to the case of moderate foreshocks preceding large mainshocks. Overall, the observed worldwide foreshock rates exceed the extended California generic model by a factor of ???2. Significant differences in foreshock rate were found among subsets of earthquakes defined by their focal mechanism and tectonic region, with the rate before thrust events higher and the rate before strike-slip events lower than the worldwide average. Among the thrust events, a large majority, composed of events located in shallow subduction zones, had a high foreshock rate, while a minority, located in continental thrust belts, had a low rate. These differences may explain why previous surveys have found low foreshock rates among thrust events in California (especially southern California), while the worldwide observations suggests the opposite: California, lacking an active subduction zone in most of its territory, and including a region of mountain-building thrusts in the south, reflects the low rate apparently typical for continental thrusts, while the worldwide observations, dominated by shallow subduction zone events, are foreshock-rich. If this is so, then the California generic model may significantly underestimate the conditional probability for a very large (M ??? 8) earthquake following a potential (M ??? 7) foreshock in Cascadia. The magnitude differences among the identified foreshock-mainshock pairs in the Harvard catalog are consistent with a uniform

  3. Earthquakes, detecting and understanding them

    International Nuclear Information System (INIS)

    2008-05-01

    The signatures at the surface of the Earth is continually changing on a geological timescale. The tectonic plates, which make up this surface, are moving in relation to each other. On human timescale, these movements are the result of earthquakes, which suddenly, release energy accumulated over a period of time. The vibrations they produce propagate through the interior of the Earth: these are seismic waves. However, other phenomena can generate seismic waves, such as volcanoes, quarry blasts, etc. The surf of the ocean waves on the coasts, the wind in the trees and human activity (industry and road traffic) all contribute to the 'seismic background noise'. Sensors are able to detect signals from events which are then discriminated, analyzed and located. Earthquakes and active volcanoes are not distributed randomly over the surface of the globe: they mainly coincide with mountain chains and ocean trenches and ridges. 'An earthquake results from the abrupt release of the energy accumulated by movements and rubbing of different plates'. The study of the propagation of seismic waves has allowed to determine the outline of the plates inside the Earth and has highlighted their movements. There are seven major plates which are colliding, diverging or sliding past each other. Each year the continents move several centimeters with respect to one another. This process, known as 'continental drift', was finally explained by plate tectonics. The initial hypothesis for this science dates from the beginning of the 20. century, but it was not confirmed until the 1960's. It explains that convection inside the Earth is the source of the forces required for these movements. This science, as well as explaining these great movements, has provided a coherent, unifying and quantitative framework, which unites the explanations for all the geophysical phenomena under one mechanism. (authors)

  4. Cellular Kinetics of Perivascular MSC Precursors

    Directory of Open Access Journals (Sweden)

    William C. W. Chen

    2013-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.

  5. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  6. Statistical properties of earthquakes clustering

    Directory of Open Access Journals (Sweden)

    A. Vecchio

    2008-04-01

    Full Text Available Often in nature the temporal distribution of inhomogeneous stochastic point processes can be modeled as a realization of renewal Poisson processes with a variable rate. Here we investigate one of the classical examples, namely, the temporal distribution of earthquakes. We show that this process strongly departs from a Poisson statistics for both catalogue and sequence data sets. This indicate the presence of correlations in the system probably related to the stressing perturbation characterizing the seismicity in the area under analysis. As shown by this analysis, the catalogues, at variance with sequences, show common statistical properties.

  7. Refresher Course on Physics of Earthquakes -98 ...

    Indian Academy of Sciences (India)

    The objective of this course is to help teachers gain an understanding of the earhquake phenomenon and the physical processes involved in its genesis as well as offhe earthquake waves which propagate the energy released by the earthquake rupture outward from the source. The Course will begin with mathematical ...

  8. Tutorial on earthquake rotational effects: historical examples

    Czech Academy of Sciences Publication Activity Database

    Kozák, Jan

    2009-01-01

    Roč. 99, 2B (2009), s. 998-1010 ISSN 0037-1106 Institutional research plan: CEZ:AV0Z30120515 Keywords : rotational seismic models * earthquake rotational effects * historical earthquakes Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.860, year: 2009

  9. Wood-framed houses for earthquake zones

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg

    Wood-framed houses with a sheathing are suitable for use in earthquake zones. The Direction describes a method of determining the earthquake forces in a house and shows how these forces can be resisted by diaphragm action in the walls, floors, and roof, of the house. An appendix explains how...

  10. Earthquake effect on the geological environment

    International Nuclear Information System (INIS)

    Kawamura, Makoto

    1999-01-01

    Acceleration caused by the earthquake, changes in the water pressure, and the rock-mass strain were monitored for a series of 344 earthquakes from 1990 to 1998 at Kamaishi In Situ Test Site. The largest acceleration was registered to be 57.14 gal with the earthquake named 'North coast of Iwate Earthquake' (M4.4) occurred in June, 1996. Changes of the water pressure were recorded with 27 earthquakes; the largest change was -0.35 Kgt/cm 2 . The water-pressure change by earthquake was, however, usually smaller than that caused by rainfall in this area. No change in the electric conductivity or pH of ground water was detected before and after the earthquake throughout the entire period of monitoring. The rock-mass strain was measured with a extensometer whose detection limit was of the order of 10 -8 to 10 -9 degrees and the remaining strain of about 2.5x10 -9 degrees was detected following the 'Offshore Miyagi Earthquake' (M5.1) in October, 1997. (H. Baba)

  11. Designing an Earthquake-Resistant Building

    Science.gov (United States)

    English, Lyn D.; King, Donna T.

    2016-01-01

    How do cross-bracing, geometry, and base isolation help buildings withstand earthquakes? These important structural design features involve fundamental geometry that elementary school students can readily model and understand. The problem activity, Designing an Earthquake-Resistant Building, was undertaken by several classes of sixth- grade…

  12. Passive containment system in high earthquake motion

    International Nuclear Information System (INIS)

    Kleimola, F.W.; Falls, O.B. Jr.

    1977-01-01

    High earthquake motion necessitates major design modifications in the complex of plant structures, systems and components in a nuclear power plant. Distinctive features imposed by seismic category, safety class and quality classification requirements for the high seismic ground acceleration loadings significantly reflect in plant costs. The design features in the Passive Containment System (PCS) responding to high earthquake ground motion are described

  13. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  14. Instruction system upon occurrence of earthquakes

    International Nuclear Information System (INIS)

    Inagaki, Masakatsu; Morikawa, Matsuo; Suzuki, Satoshi; Fukushi, Naomi.

    1987-01-01

    Purpose: To enable rapid re-starting of a nuclear reactor after earthquakes by informing various properties of encountered earthquake to operators and properly displaying the state of damages in comparison with designed standard values of facilities. Constitution: Even in a case where the maximum accelerations due to the movements of earthquakes encountered exceed designed standard values, it may be considered such a case that equipments still remain intact depending on the wave components of the seismic movements and the vibration properties inherent to the equipments. Taking notice of the fact, the instruction device comprises a system that indicates the relationship between the seismic waveforms of earthquakes being encountered and the scram setting values, a system for indicating the comparison between the floor response spectrum of the seismic waveforms of the encountered earthquakes and the designed floor response spectrum used for the design of the equipments and a system for indicating those equipments requiring inspection after the earthquakes. Accordingly, it is possible to improve the operationability upon scram of a nuclear power plant undergoing earthquakes and improve the power saving and safety by clearly defining the inspection portion after the earthquakes. (Kawakami, Y.)

  15. Earthquake Hazard Analysis Methods: A Review

    Science.gov (United States)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time re