WorldWideScience

Sample records for earthquake engineering

  1. Earthquake engineering research: 1982

    Science.gov (United States)

    The Committee on Earthquake Engineering Research addressed two questions: What progress has research produced in earthquake engineering and which elements of the problem should future earthquake engineering pursue. It examined and reported in separate chapters of the report: Applications of Past Research, Assessment of Earthquake Hazard, Earthquake Ground Motion, Soil Mechanics and Earth Structures, Analytical and Experimental Structural Dynamics, Earthquake Design of Structures, Seismic Interaction of Structures and Fluids, Social and Economic Aspects, Earthquake Engineering Education, Research in Japan.

  2. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui

    2015-01-01

    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  3. Earthquake engineering in Peru

    Science.gov (United States)

    Vargas, N.J

    1983-01-01

    During the last decade, earthquake engineering research in Peru has been carried out at the Catholic University of Peru and at the Universidad Nacional de Ingeniera (UNI). The Geophysical Institute (IGP) under the auspices of the Organization of American States (OAS) has initiated in Peru other efforts in regional seismic hazard assessment programs with direct impact to the earthquake engineering program. Further details on these programs have been reported by L. Ocola in the Earthquake Information Bulletin, January-February 1982, vol. 14, no. 1, pp. 33-38. 

  4. Earthquake engineering in China

    Institute of Scientific and Technical Information of China (English)

    胡聿贤

    2002-01-01

    The development of earthquake engineering in China is described into three stages.The initial stage in 1950's -1960's was marked with the initiation of this branch of science from its creation in the first national 12-year plan of science andtechnology by specifying earthquake engineering as a branch item and IEM was one participant. The first earthquake zonationmap and the first seismic design code were soon completed and used in engineering design. Site effect on structural design andsite selection were seriously studied. The second stage marked with the occurrence of quite a few strong earthquakes in China,from which many lessons were learned and corresponding considerations were specified in our design codes and followed inconstruction practice. The third stage is a stage of disaster management, which is marked by a series of governmentdocumentations, leading by a national law of the People's Republic of China on the protecting against and mitigating earthquakedisasters adopted at the meeting of the Standing Committee of the National People's Congress of the People's Republic of Chinain 1997, and then followed by some provincial and municipal laws to force the actions outlined in the national law. It may beexpected that our society will be much more safer to resist the attack of future strong earthquakes with less losses. Lastly,possible future developments are also discussed.

  5. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  6. Computational methods in earthquake engineering

    CERN Document Server

    Plevris, Vagelis; Lagaros, Nikos

    2017-01-01

    This is the third book in a series on Computational Methods in Earthquake Engineering. The purpose of this volume is to bring together the scientific communities of Computational Mechanics and Structural Dynamics, offering a wide coverage of timely issues on contemporary Earthquake Engineering. This volume will facilitate the exchange of ideas in topics of mutual interest and can serve as a platform for establishing links between research groups with complementary activities. The computational aspects are emphasized in order to address difficult engineering problems of great social and economic importance. .

  7. Earthquake Engineering Research Center: 25th anniversry edition

    Science.gov (United States)

    1993-10-01

    The Earthquake Engineering Research Center exists to conduct research and develop technical information in all areas pertaining to earthquake engineering, including strong ground motion and ground failure, response of natural and manmade structures to earthquakes, design of structures to resist earthquakes, development of new systems for earthquake protection, and development of architectural and public policy aspects of earthquake engineering. The annual report for 1992-93 presents information on: Current Research Programs; Contracts and Grants; Public Service Program; National Information Service for Earthquake Engineering; Core Administration; Committees of the Earthquake Engineering Research Center; Research Participants - Faculty; and Research Participants - Students.

  8. 10th World Earthquake Engineering Conference

    Science.gov (United States)

    Ranguelov, Boyko; Housner, George

    The 10th World Conference on Earthquake Engineering (10WCEE) took place from July 19 to 24 in Madrid, Spain. More than 1500 participants from 51 countries attended the conference. All aspects of earthquake engineering were covered and a worldwide update of modern research and practice, as well as future directions in the field, was provided through reports, papers, posters, two keynote lectures, ten state-ofthe-art reports, and eleven special theme sessions.

  9. International Handbook of Earthquake and Engineering Seismology

    Institute of Scientific and Technical Information of China (English)

    陈运泰; 吴忠良

    2004-01-01

    @@ To celebrate the 100 Anniversary of the International Association of Seismology (now International Association of Seismology and Physics of the Earth's Interior, IASPEI), the International Handbook of Earthquake and Engineering Seismology, Volumes 1 and 2, were published by Academic Press in 2002 and 2003, respectively.

  10. Strong motions and engineering structure performances in recent major earthquakes

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Li

    2010-01-01

    @@ In recent years, a series of major earthquakes occurred, which resulted in considerable engineering damage and collapse, triggered heavy geological hazards, and caused extremely high casualties and huge property and economic loss. The earthquakes include the 1994 Northridge earthquake (M6.8), the 1995 Kobe earthquake (M6.8), the 1999 Izmit earthquake (M7.6), the 1999 Jiji (Chi-Chi) earthquake (M7.6), the 2005 northern Pakistan earthquake (M7.6), the 2008 Wenchuan earthquake (M8.0) and the 2010 Haiti earthquake (M7.0). Some villages, towns and even cities were devastated in the earthquakes, especially in the 2005 northern Pakistan earthquake, the 2008 Wenchuan earthquake and the 2010 Haiti earthquake.

  11. Real-time earthquake monitoring using a search engine method.

    Science.gov (United States)

    Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong

    2014-12-04

    When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake's parameters in <1 s after receiving the long-period surface wave data.

  12. Modern earthquake engineering offshore and land-based structures

    CERN Document Server

    Jia, Junbo

    2017-01-01

    This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.

  13. Real-time earthquake monitoring using a search engine method

    Science.gov (United States)

    Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong

    2014-12-01

    When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake’s parameters in <1 s after receiving the long-period surface wave data.

  14. Basic earthquake engineering from seismology to analysis and design

    CERN Document Server

    Sucuoğlu, Halûk

    2014-01-01

    This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building struc­tures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calcu...

  15. Application Of Long Range Holography In Earthquake Engineering

    Science.gov (United States)

    Trolinger, James D.; Weber, David C.; Pardoen, Gary; Gunnarsson, G. T.; Fagan, William F.

    1990-04-01

    Holography concepts have been evaluated as nonintrusive tools that can measure earthquake effects and earthquake resistance of structures. The methods offer potential for removing limitations currently obstructing the application of advanced design techniques in civil and earthquake engineering. Methods under study can result in a capability to holographically monitor large, distant surfaces such as the face of a building, bridge foundation, liquid storage tank, or dam during interaction with geological or meteorological forces. This work included the successful demonstration that holography could be used to obtain modal information from a 3.4-meter-tall, liquid storage tank at a distance of 20 meters.

  16. Engineering and Design: Interim Procedure for Specifying Earthquake Motions

    Science.gov (United States)

    2007-11-02

    Earthquake Engineering, Instituto di Scienza e Techn?.ca delle. Construzioni Politechico di Milano, Piazza da Leonardo da Vinci, 32, 20133 Milano, Italia ...Construzioni Politechico di Milano, Piazza da Leonardo da Vinci, 32, 20133 Milano, Italia . 17. Seed, H. B., Murarka, R., Lysmer, J., and Idriss, I. M. 1976

  17. Physical modelling in Geotechnical Earthquake Engineering – 2: Session Report

    OpenAIRE

    Madabhushi, Gopal

    2015-01-01

    This is the accepted manuscript. The final version is available at http://www.icevirtuallibrary.com/content/article/10.1680/ijpmg.14.00033. Geotechncial earthquake engineering continues to be an important area of research for physical modellers. There were 13 papers presented in this session. These papers and the direction of future research in this area are discussed in this session report.

  18. Investigation of earthquake mechanisms and their impact on certain basic concepts in earthquake engineering and seismology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, mantle circulation flow, continental drift, earthquake origin and other mechanical principles are examined as they apply to earthquake engineering, seismology and dynamics of fluid saturated porous medium. The relationship of mantle flow to earthquakes is examined and clarified, and a new model, different from Haskell's, is proposed for the earthquake mechanism. The proposed new model is based on the discovery that two pairs of jump stress and jump velocity will start to act from the fault plane. Records obtained directly from recent earthquakes nearby and right on the fault break show a very large velocity impulse, which verify, indirectly, the new mechanism proposed by the author. Further, at least two physical parameters that characterize the seismic intensity must be specified, because according to the discontinuous (jump) wave theory, at the earthquake source, the stress jump and the velocity jump of particle motion should act simultaneously when a sudden break occurs. The third key parameter is shown to be the break (fracture) propagation speed together with the break plane area. This parameter influences the form of the unloading time function at the source. The maximum seismic stress in and displacement of a building are estimated for two unfavorable combinations of the building and its base ground in terms of their relative rigidity. Finally, it is shown that Bjot's theory of wave propagation in fluid saturated porous media is valid only when fluid flow cannot occur.

  19. New Developments in Geotechnical Earthquake Engineering

    OpenAIRE

    Yang Changwei; Su Tianbao; Zhang Jianjing; Du Lin

    2014-01-01

    Based on the review on the advances of several important problems in geotechnical seismic engineering, the authors propose the initial analysis theory of time-frequency-amplitude (known as TFA for short), in an effort to realize the organic combination of time and frequency information and develop a groundbreaking concept to the traditional idea in the geotechnical seismic engineering area.

  20. New Developments in Geotechnical Earthquake Engineering

    Directory of Open Access Journals (Sweden)

    Yang Changwei

    2014-01-01

    Full Text Available Based on the review on the advances of several important problems in geotechnical seismic engineering, the authors propose the initial analysis theory of time-frequency-amplitude (known as TFA for short, in an effort to realize the organic combination of time and frequency information and develop a groundbreaking concept to the traditional idea in the geotechnical seismic engineering area.

  1. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants..., as specified in § 50.54(ff), nuclear power plants that have implemented the earthquake...

  2. Introduction: seismology and earthquake engineering in Mexico and Central and South America.

    Science.gov (United States)

    Espinosa, A.F.

    1982-01-01

    The results from seismological studies that are used by the engineering community are just one of the benefits obtained from research aimed at mitigating the earthquake hazard. In this issue of Earthquake Information Bulletin current programs in seismology and earthquake engineering, seismic networks, future plans and some of the cooperative programs with different internation organizations are described by Latin-American seismologists. The article describes the development of seismology in Latin America and the seismological interest of the OAS. -P.N.Chroston

  3. Revolutionising engineering education in the Middle East region to promote earthquake-disaster mitigation

    Science.gov (United States)

    Baytiyeh, Hoda; Naja, Mohamad K.

    2014-09-01

    Due to the high market demands for professional engineers in the Arab oil-producing countries, the appetite of Middle Eastern students for high-paying jobs and challenging careers in engineering has sharply increased. As a result, engineering programmes are providing opportunities for more students to enrol on engineering courses through lenient admission policies that do not compromise academic standards. This strategy has generated an influx of students who must be carefully educated to enhance their professional knowledge and social capital to assist in future earthquake-disaster risk-reduction efforts. However, the majority of Middle Eastern engineering students are unaware of the valuable acquired engineering skills and knowledge in building the resilience of their communities to earthquake disasters. As the majority of the countries in the Middle East are exposed to seismic hazards and are vulnerable to destructive earthquakes, engineers have become indispensable assets and the first line of defence against earthquake threats. This article highlights the contributions of some of the engineering innovations in advancing technologies and techniques for effective disaster mitigation and it calls for the incorporation of earthquake-disaster-mitigation education into academic engineering programmes in the Eastern Mediterranean region.

  4. Research in seismology and earthquake engineering in Venezuela

    Science.gov (United States)

    Urbina, L.; Grases, J.

    1983-01-01

    Venezuela has been affected by destructive earthquakes for the past four centuries. According to entries in the national seismic catalog, there have been about 180 earthquakes which have caused some type of damage to the country. The most catastrophic earthquake occurred on March 26, 1812, on the Bocono fault system and caused widespread destruction in the cities of Merida and Caracas and claimed an estimated 30,000 lives.

  5. Transportations Systems Modeling and Applications in Earthquake Engineering

    Science.gov (United States)

    2010-07-01

    earthquake (Japan) The 1995 Hanshin-Awaji earthquake ( wM 6.8) in the Osaka -Kobe area had an even greater impact on the transportation systems compared...with the Loma Prieta and Northridge earthquakes in the U.S. The span collapses of the elevated Osaka -Kobe expressway (Route 3) caused long- time...nation’s economy and society. The numerical case study focuses on the road network in the Memphis metropolitan area. The road network information

  6. Eleventh regional seminar on earthquake engineering, granada, september 1984.

    Science.gov (United States)

    Vogt, J; Davagnier, M; Jimenez, E

    1985-06-01

    Some of the problems of combining macroseismic (descriptive) and instrumental information on modern and historical earthquakes are discussed, together with the relationships that have evolved between these two fields of study. The paper emphasises the dangers of transferring macroseismic information straight into computer databanks, without taking full account of the levels of confidence attached to the information and its suitability for earthquake risk analysis.

  7. Engineering geological aspect of Gorkha Earthquake 2015, Nepal

    Science.gov (United States)

    Adhikari, Basanta Raj; Andermann, Christoff; Cook, Kristen

    2016-04-01

    Strong shaking by earthquake causes massif landsliding with severe effects on infrastructure and human lives. The distribution of landslides and other hazards are depending on the combination of earthquake and local characteristics which influence the dynamic response of hillslopes. The Himalayas are one of the most active mountain belts with several kilometers of relief and is very prone to catastrophic mass failure. Strong and shallow earthquakes are very common and cause wide spread collapse of hillslopes, increasing the background landslide rate by several magnitude. The Himalaya is facing many small and large earthquakes in the past i.e. earthquakes i.e. Bihar-Nepal earthquake 1934 (Ms 8.2); Large Kangra earthquake of 1905 (Ms 7.8); Gorkha earthquake 2015 (Mw 7.8). The Mw 7.9 Gorkha earthquake has occurred on and around the main Himalayan Thrust with a hypocentral depth of 15 km (GEER 2015) followed by Mw 7.3 aftershock in Kodari causing 8700+ deaths and leaving hundreds of thousands of homeless. Most of the 3000 aftershocks located by National Seismological Center (NSC) within the first 45 days following the Gorkha Earthquake are concentrated in a narrow 40 km-wide band at midcrustal to shallow depth along the strike of the southern slope of the high Himalaya (Adhikari et al. 2015) and the ground shaking was substantially lower in the short-period range than would be expected for and earthquake of this magnitude (Moss et al. 2015). The effect of this earthquake is very unique in affected areas by showing topographic effect, liquefaction and land subsidence. More than 5000 landslides were triggered by this earthquake (Earthquake without Frontiers, 2015). Most of the landslides are shallow and occurred in weathered bedrock and appear to have mobilized primarily as raveling failures, rock slides and rock falls. Majority of landslides are limited to a zone which runs east-west, approximately parallel the lesser and higher Himalaya. There are numerous cracks in

  8. Earthquake

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    正A serious earthquake happened in Wenchuan, Sichuan. Over 60,000 people died in the earhtquake, millins of people lost their homes. After the earthquake, people showed their love in different ways. Some gave food, medicine and everything necessary, some gave money,

  9. Advancing Integrated STEM Learning through Engineering Design: Sixth-Grade Students' Design and Construction of Earthquake Resistant Buildings

    Science.gov (United States)

    English, Lyn D.; King, Donna; Smeed, Joanna

    2017-01-01

    As part of a 3-year longitudinal study, 136 sixth-grade students completed an engineering-based problem on earthquakes involving integrated STEM learning. Students employed engineering design processes and STEM disciplinary knowledge to plan, sketch, then construct a building designed to withstand earthquake damage, taking into account a number of…

  10. Simulating and analyzing engineering parameters of Kyushu Earthquake, Japan, 1997, by empirical Green function method

    Science.gov (United States)

    Li, Zongchao; Chen, Xueliang; Gao, Mengtan; Jiang, Han; Li, Tiefei

    2016-09-01

    Earthquake engineering parameters are very important in the engineering field, especially engineering anti-seismic design and earthquake disaster prevention. In this study, we focus on simulating earthquake engineering parameters by the empirical Green's function method. The simulated earthquake (MJMA6.5) occurred in Kyushu, Japan, 1997. Horizontal ground motion is separated as fault parallel and fault normal, in order to assess characteristics of two new direction components. Broadband frequency range of ground motion simulation is from 0.1 to 20 Hz. Through comparing observed parameters and synthetic parameters, we analyzed distribution characteristics of earthquake engineering parameters. From the comparison, the simulated waveform has high similarity with the observed waveform. We found the following. (1) Near-field PGA attenuates radically all around with strip radiation patterns in fault parallel while radiation patterns of fault normal is circular; PGV has a good similarity between observed record and synthetic record, but has different distribution characteristic in different components. (2) Rupture direction and terrain have a large influence on 90 % significant duration. (3) Arias Intensity is attenuating with increasing epicenter distance. Observed values have a high similarity with synthetic values. (4) Predominant period is very different in the part of Kyushu in fault normal. It is affected greatly by site conditions. (5) Most parameters have good reference values where the hypo-central is less than 35 km. (6) The GOF values of all these parameters are generally higher than 45 which means a good result according to Olsen's classification criterion. Not all parameters can fit well. Given these synthetic ground motion parameters, seismic hazard analysis can be performed and earthquake disaster analysis can be conducted in future urban planning.

  11. Simulating and analyzing engineering parameters of Kyushu Earthquake, Japan, 1997, by empirical Green function method

    Science.gov (United States)

    Li, Zongchao; Chen, Xueliang; Gao, Mengtan; Jiang, Han; Li, Tiefei

    2017-03-01

    Earthquake engineering parameters are very important in the engineering field, especially engineering anti-seismic design and earthquake disaster prevention. In this study, we focus on simulating earthquake engineering parameters by the empirical Green's function method. The simulated earthquake (MJMA6.5) occurred in Kyushu, Japan, 1997. Horizontal ground motion is separated as fault parallel and fault normal, in order to assess characteristics of two new direction components. Broadband frequency range of ground motion simulation is from 0.1 to 20 Hz. Through comparing observed parameters and synthetic parameters, we analyzed distribution characteristics of earthquake engineering parameters. From the comparison, the simulated waveform has high similarity with the observed waveform. We found the following. (1) Near-field PGA attenuates radically all around with strip radiation patterns in fault parallel while radiation patterns of fault normal is circular; PGV has a good similarity between observed record and synthetic record, but has different distribution characteristic in different components. (2) Rupture direction and terrain have a large influence on 90 % significant duration. (3) Arias Intensity is attenuating with increasing epicenter distance. Observed values have a high similarity with synthetic values. (4) Predominant period is very different in the part of Kyushu in fault normal. It is affected greatly by site conditions. (5) Most parameters have good reference values where the hypo-central is less than 35 km. (6) The GOF values of all these parameters are generally higher than 45 which means a good result according to Olsen's classification criterion. Not all parameters can fit well. Given these synthetic ground motion parameters, seismic hazard analysis can be performed and earthquake disaster analysis can be conducted in future urban planning.

  12. EU H2020 SERA: Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe

    Science.gov (United States)

    Giardini, Domenico; Saleh, Kauzar; SERA Consortium, the

    2017-04-01

    SERA - Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe - is a new infrastructure project awarded in the last Horizon 2020 call for Integrating Activities for Advanced Communities (INFRAIA-01-2016-2017). Building up on precursor projects like NERA, SHARE, NERIES, SERIES, etc., SERA is expected to contribute significantly to the access of data, services and research infrastructures, and to develop innovative solutions in seismology and earthquake engineering, with the overall objective of reducing the exposure to risks associated to natural and anthropogenic earthquakes. For instance, SERA will revise the European Seismic Hazard reference model for input in the current revision of the Eurocode 8 on Seismic Design of Buildings; we also foresee to develop the first comprehensive framework for seismic risk modeling at European scale, and to develop new standards for future experimental observations and instruments for earthquake engineering and seismology. To that aim, SERA is engaging 31 institutions across Europe with leading expertise in the operation of research facilities, monitoring infrastructures, data repositories and experimental facilities in the fields of seismology, anthropogenic hazards and earthquake engineering. SERA comprises 26 activities, including 5 Networking Activities (NA) to improve the availability and access of data through enhanced community coordination and pooling of resources, 6 Joint Research Activities (JRA) aimed at creating new European standards for the optimal use of the data collected by the European infrastructures, Virtual Access (VA) to the 5 main European services for seismology and engineering seismology, and Trans-national Access (TA) to 10 high-class experimental facilities for earthquake engineering and seismology in Europe. In fact, around 50% of the SERA resources will be dedicated to virtual and transnational access. SERA and EPOS (European Platform Observing System, a European Research

  13. January 17, 1995, Hyogo-ken Nanbu Earthquake. Viewpoint of engineering geology; Hyogoken Nanbu Jishin. Oyo chishitsugaku kara no shiten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-10

    Hanshin-Awaji earthquake investigation committee was organized by Japanese Engineering Geology Society to carry out the investigation in respect of Hyogo-ken Nanbu Earthquake occurred on January 17, 1995. In this feature edition, reports of said committee including `Crustal movement and seismic faulting`, `Earthquake motion: geology and structure damage`, `Actual circumstances and geological conditions of ground disasters` and `Groundwater fluctuations caused by the earthquake` are gathered. In compilation of `Earthquake motion and active fault`, the investigation on seismic fault and active fault is conducted and the evaluation as well as the studying theme in respect of seismic fault is summarized. In compilation of `Ground, earthquake motion and structure damage`, damage due to the earthquake motion caused by earthquake is concluded from the relations of geographical feature, geological structure and ground. In compilation of `Actual state of earthquake damage and ground condition`, the characteristics of ground damage are analyzed and the relations of such damages with geological structure and geographical feature are investigated. In compilation of `Groundwater fluctuation caused by the earthquake`, the characteristics of groundwater behaviors before and after earthquake are analyzed. 303 refs., 118 figs., 10 tabs.

  14. A review of large-scale testing facilities in geotechnical earthquake engineering

    OpenAIRE

    Elgamal, A; Pitilakis, K.; Raptakis, D.; J. Garnier; GOPAL MADABHUSHI, SP; Pinto, A; Steidl, J.; STEWART, HE; STOKOE, KH; TAUCER, F; TOKIMATSU, K; WALLACE, JW

    2007-01-01

    In this new century, new large-scale testing facilities are being developed worldwide for earthquake engineering research. Concurrently, the advances in Information Technology (IT) are increasingly allowing unprecedented opportunities for : - remote access and tele-presence during extended remote off-site experimentation, - hybrid simulation of entire structural systems through a multi-site experimentation and computational overall model, and - near-real time data archival, processing and sha...

  15. USACE Geotechnical Earthquake Engineering Software, Report 1 WESHAKE for Personal Computers (Version 1.0)

    Science.gov (United States)

    1992-09-01

    Paducah Gaseous Diffusion Plant , Paducah , Kentucky," Report K/GDP/SAR/SUB-l, Department of Energy, Oak Ridge...34Site-Specific Earthquake Response Analysis of Soil Columns at Paducah Gaseous Diffusion Plant , Paducah , KY," Miscellaneous Paper GL-92-?? (draft in DOE...Columns at Portsmouth Gaseous Diffusion Plant , Portsmouth, OH," Miscellaneous Paper GL-92-?? (draft in DOE review process), US Army Engineer

  16. Strong Earthquake Motion Estimates for the UCSB Campus, and Related Response of the Engineering 1 Building

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, R.; Bonilla, F.; Doroudian, M.; Elgamal, A.; Hueze, F.

    2000-06-06

    This is the second report on the UC/CLC Campus Earthquake Program (CEP), concerning the estimation of exposure of the U.C. Santa Barbara campus to strong earthquake motions (Phase 2 study). The main results of Phase 1 are summarized in the current report. This document describes the studies which resulted in site-specific strong motion estimates for the Engineering I site, and discusses the potential impact of these motions on the building. The main elements of Phase 2 are: (1) determining that a M 6.8 earthquake on the North Channel-Pitas Point (NCPP) fault is the largest threat to the campus. Its recurrence interval is estimated at 350 to 525 years; (2) recording earthquakes from that fault on March 23, 1998 (M 3.2) and May 14, 1999 (M 3.2) at the new UCSB seismic station; (3) using these recordings as empirical Green's functions (EGF) in scenario earthquake simulations which provided strong motion estimates (seismic syntheses) at a depth of 74 m under the Engineering I site; 240 such simulations were performed, each with the same seismic moment, but giving a broad range of motions that were analyzed for their mean and standard deviation; (4) laboratory testing, at U.C. Berkeley and U.C. Los Angeles, of soil samples obtained from drilling at the UCSB station site, to determine their response to earthquake-type loading; (5) performing nonlinear soil dynamic calculations, using the soil properties determined in-situ and in the laboratory, to calculate the surface strong motions resulting from the seismic syntheses at depth; (6) comparing these CEP-generated strong motion estimates to acceleration spectra based on the application of state-of-practice methods - the IBC 2000 code, UBC 97 code and Probabilistic Seismic Hazard Analysis (PSHA), this comparison will be used to formulate design-basis spectra for future buildings and retrofits at UCSB; and (7) comparing the response of the Engineering I building to the CEP ground motion estimates and to the design

  17. The Structural Engineering Challenges Following the Wenchuan Earthquake

    Institute of Scientific and Technical Information of China (English)

    GRUNDY Paul

    2009-01-01

    Ihe 5 · 12 Wenchuan Larthquake presents two challenges-reconstruction of the devastated areas and building adequate seismic resistance into the rest of China. The stages in recovery include structural condition assessment , identification of seismic weaknesses, appreciation of the variable seismicity of PR China, the development of a seismic performance index to aid the decision to relocate, rebuild or retrofit, development and application of the principles of retrofitting which recycles rubble and waste from Wenchuan "5 ? 12" , with an emphasis on integrating masonry construction into seismic resistance. The recovery and resilience achieved through structural engineering must be integrated into a broader community involvement in disaster risk reduction.

  18. Reconnaissance engineering geology of the Ketchikan area, Alaska, with emphasis on evaluation of earthquake and other geologic hazards

    Energy Technology Data Exchange (ETDEWEB)

    Lemke, R.W.

    1975-01-01

    The Alaska earthquake of Mar 27, 1964, dramatically emphasized the need for engineering geology studies of urban areas in seismically active regions. A reconnaissance study of the Ketchikan area in southeastern Alaska is part of a program to evaluate earthquake and other geologic hazards in most of the larger Alaska coastal communities. These evaluations in the Ketchikan area should provide broad guidelines useful in city and land-use planning. The following sections are contained in the report: Geography; Glaciation and associated land- and sea-level changes; Descriptive geology; Structure; Earthquake probability; Inferred effects from future earthquakes; Inferred future effects from geologic hazards other than those caused by earthquakes; Recommendations for additional studies.

  19. Earthquakes, Cities, and Lifelines: lessons integrating tectonics, society, and engineering in middle school Earth Science

    Science.gov (United States)

    Toke, N.; Johnson, A.; Nelson, K.

    2010-12-01

    Earthquakes are one of the most widely covered geologic processes by the media. As a result students, even at the middle school level, arrive in the classroom with preconceptions about the importance and hazards posed by earthquakes. Therefore earthquakes represent not only an attractive topic to engage students when introducing tectonics, but also a means to help students understand the relationships between geologic processes, society, and engineering solutions. Facilitating understanding of the fundamental connections between science and society is important for the preparation of future scientists and engineers as well as informed citizens. Here, we present a week-long lesson designed to be implemented in five one hour sessions with classes of ~30 students. It consists of two inquiry-based mapping investigations, motivational presentations, and short readings that describe fundamental models of plate tectonics, faults, and earthquakes. The readings also provide examples of engineering solutions such as the Alaskan oil pipeline which withstood multi-meter surface offset in the 2002 Denali Earthquake. The first inquiry-based investigation is a lesson on tectonic plates. Working in small groups, each group receives a different world map plotting both topography and one of the following data sets: GPS plate motion vectors, the locations and types of volcanoes, the location of types of earthquakes. Using these maps and an accompanying explanation of the data each group’s task is to map plate boundary locations. Each group then presents a ~10 minute summary of the type of data they used and their interpretation of the tectonic plates with a poster and their mapping results. Finally, the instructor will facilitate a class discussion about how the data types could be combined to understand more about plate boundaries. Using student interpretations of real data allows student misconceptions to become apparent. Throughout the exercise we record student preconceptions

  20. Assessment of Simulated Ground Motions in Earthquake Engineering Practice: A Case Study for Duzce (Turkey)

    Science.gov (United States)

    Karimzadeh, Shaghayegh; Askan, Aysegul; Yakut, Ahmet

    2017-07-01

    Simulated ground motions can be used in structural and earthquake engineering practice as an alternative to or to augment the real ground motion data sets. Common engineering applications of simulated motions are linear and nonlinear time history analyses of building structures, where full acceleration records are necessary. Before using simulated ground motions in such applications, it is important to assess those in terms of their frequency and amplitude content as well as their match with the corresponding real records. In this study, a framework is outlined for assessment of simulated ground motions in terms of their use in structural engineering. Misfit criteria are determined for both ground motion parameters and structural response by comparing the simulated values against the corresponding real values. For this purpose, as a case study, the 12 November 1999 Duzce earthquake is simulated using stochastic finite-fault methodology. Simulated records are employed for time history analyses of frame models of typical residential buildings. Next, the relationships between ground motion misfits and structural response misfits are studied. Results show that the seismological misfits around the fundamental period of selected buildings determine the accuracy of the simulated responses in terms of their agreement with the observed responses.

  1. Frequency-Domain Assessment of Integration Schemes for Earthquake Engineering Problems

    Directory of Open Access Journals (Sweden)

    Juana Arias-Trujillo

    2015-01-01

    Full Text Available Although numerical integration is a technique commonly employed in many time-dependent problems, usually its accuracy relied on a time interval small enough. However, taking into account that time integration formulae can be considered to be recursive digital filters, in this research a criterion based on transfer functions has been employed to characterize a wide range of integration algorithms from a frequency approach, both in amplitude and in phase. By adopting Nyquist’s criterion to avoid the aliasing phenomena, a total of seven integration schemes have been reviewed in terms of accuracy and distortion effects on the frequency content of the signal. Some of these schemes are very well-known polynomial approximations with different degrees of interpolation, but others have been especially defined for solving earthquake engineering problems or have been extracted from the digital signal processing methodology. Finally, five examples have been developed to validate this frequency approach and to investigate its influence on practical dynamic problems. This research, focused on earthquake and structural engineering, reveals that numerical integration formulae are clearly frequency-dependent, a conclusion that obviously has a relevant interest in all dynamic engineering problems, even when they are formulated and solved in the time-domain.

  2. Ground Shaking and Earthquake Engineering Aspects of the M 8.8 Chile Earthquake of 2010 - Applications to Cascadia and Other Subduction Zones (Invited)

    Science.gov (United States)

    Cassidy, J. F.; Boroschek, R.; Ventura, C.; Huffman, S.

    2010-12-01

    The M 8.8 Maule, Chile earthquake of February 27, 2010 was the fifth largest earthquake ever recorded by seismographs and provides a rare opportunity to compare strong shaking observations with earthquake rupture and damage patterns. This subduction earthquake was caused by up to 13 m of eastward slip of the Nazca plate beneath the South American plate. The rupture zone extended nearly 600 km along the Chile coast and covered the most populated region of the country - extending from south of Concepcion to just south of Valpraiso (near the latitude of Santiago). As this is the type of earthquake that is expected along the Cascadia subduction zone of western Canada and the U.S., and given that modern building codes and construction styles in Chile and Cascadia are very similar, the Canadian Association of Earthquake Engineers sent a team of 10 engineers and a seismologist to the earthquake zone to learn from this earthquake. In this presentation we focus on sites where strong ground shaking was recorded (the data available to date range from about 0.1g to 0.66g). The recorded waveforms showed strong shaking for up to 2-3 minutes, with two distinct bursts of energy that may correspond to two large asperities that ruptured. At many locations, particularly along the coast, the recorded shaking levels exceeded code values, especially at longer periods (~ 1 second and longer). There was significant damage to older hospitals and schools. Twenty-five hospitals were severely damaged (17 collapsed, 8 repairable) and in the Maule region, 45% of the hospital beds were lost. More than 2500 schools were damaged and more than 780,000 students were affected. Of about 12,000 bridges in Chile, only 40 were damaged, 20 severely (many of these were newer overpasses). Modern high-rise buildings, in general, did very well. Of the 10,000 3-storey or higher buildings constructed since 1985, only 4 collapsed, and 50-150 were badly damaged. This clearly demonstrates the importance of modern

  3. A refined Frequency Domain Decomposition tool for structural modal monitoring in earthquake engineering

    Science.gov (United States)

    Pioldi, Fabio; Rizzi, Egidio

    2017-07-01

    Output-only structural identification is developed by a refined Frequency Domain Decomposition ( rFDD) approach, towards assessing current modal properties of heavy-damped buildings (in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type II bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames (with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field" (22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes.

  4. Principles for selecting earthquake motions in engineering design of large dams

    Science.gov (United States)

    Krinitzsky, E.L.; Marcuson, William F.

    1983-01-01

    This report gives a synopsis of the various tools and techniques used in selecting earthquake ground motion parameters for large dams. It presents 18 charts giving newly developed relations for acceleration, velocity, and duration versus site earthquake intensity for near- and far-field hard and soft sites and earthquakes having magnitudes above and below 7. The material for this report is based on procedures developed at the Waterways Experiment Station. Although these procedures are suggested primarily for large dams, they may also be applicable for other facilities. Because no standard procedure exists for selecting earthquake motions in engineering design of large dams, a number of precautions are presented to guide users. The selection of earthquake motions is dependent on which one of two types of engineering analyses are performed. A pseudostatic analysis uses a coefficient usually obtained from an appropriate contour map; whereas, a dynamic analysis uses either accelerograms assigned to a site or specified respunse spectra. Each type of analysis requires significantly different input motions. All selections of design motions must allow for the lack of representative strong motion records, especially near-field motions from earthquakes of magnitude 7 and greater, as well as an enormous spread in the available data. Limited data must be projected and its spread bracketed in order to fill in the gaps and to assure that there will be no surprises. Because each site may have differing special characteristics in its geology, seismic history, attenuation, recurrence, interpreted maximum events, etc., as integrated approach gives best results. Each part of the site investigation requires a number of decisions. In some cases, the decision to use a 'least ork' approach may be suitable, simply assuming the worst of several possibilities and testing for it. Because there are no standard procedures to follow, multiple approaches are useful. For example, peak motions at

  5. Application of dynamic analysis of strength reduction in the slope engineering under earthquake

    Institute of Scientific and Technical Information of China (English)

    Ye Hailin; Zheng Yingren; Huang Runqiu; Li Anhong; Du Xiuli

    2010-01-01

    At present,the methods of analyzing the stability of slope under earthquake are not accurate and reasonable because of some limitations.Based on the real dynamic tensile-shear failure mechanism of slope,the paper proposes dynamic analysis of strength reduction FEM(finite element method)and takes the reduction of shear strength parameters and tensile strength parameters into consideration.And it comprehensively takes the transfixion of the failure surface,the non-convergence of calculation and mutation of displacement as the criterion of dynamic instability and failure of the slope.The strength reduction factor under limit state is regarded as the dynamic safety factor of the slope under earthquake effect and its advantages are introduced.Finally,the method is applied in the seismic design of anchors supporting and anti-slide pile supporting of the slope.Calculation examples show that the application of dynamic analysis of strength reduction is feasible in the seismic design of slope engineering,which can consider dynamic interaction of supporting structure and rock-soil mass.Owing to its preciseness and great advantages,it is a new method in the seismic design of slope supporting.

  6. USACE geotechnical earthquake engineering software, report 1 WESHAKE for personal computers (version 1.0)

    Science.gov (United States)

    Sykora, David W.; Wahl, Ronald E.; Wallace, David C.

    1992-09-01

    One of the basic problems to be solved by geotechnical engineers in regions where earthquake hazards exist is to estimate the site-specific dynamic response of a layered soil deposit under a level ground surface. This problem is commonly referred to as a site-specific response analysis or soil amplification study (although motions may be deamplified). The solution of this problem allows the geotechnical engineer to evaluate the potential for liquefaction, to conduct the first analytical phase of seismic stability evaluations for slopes and embankments, to calculate site natural periods, to assess ground motion amplification, and to provide structural engineers with various parameters, primarily response spectra, for design and safety evaluations of structures. The computer program described and provided in this report, WESHAKE, may be used to accomplish this task. WESHAKE is an adaptation of the original computer program, SHAKE, written at the University of California at Berkeley by Schnabel, Lysmer, and Seed (1972). WESHAKE was created and has been continually modified by WES to keep pace with state-of-the-art technology and provide a user-friendly interface.

  7. Preliminary engineering analysis of the August 24th 2016, ML 6.0 central Italy earthquake records

    Directory of Open Access Journals (Sweden)

    Iunio Iervolino

    2016-12-01

    Full Text Available An earthquake of estimated local magnitude (ML 6.0 struck central Italy on the 24th of August (01:36:32 UTC in the vicinity of Accumoli (close to Rieti, central Italy initiating a long-lasting seismic sequence that also featured events of larger magnitude within a few months. The earthquake caused widespread building damage and around three-hundred fatalities. Ground motion was recorded by hundreds of seis-mic stations. This work uses accelerometric records for a preliminary discussion, from the earthquake en-gineering perspective, of strong motion caused by the earthquake. Peak and integral ground motion inten-sity measures, are presented. The response spectra at some select stations are analysed with respect to the code-mandated design actions for various return periods at the recording sites. Hazard disaggregation for different return periods is discussed referring to the site of the epicentre of the earthquake. Finally, some preliminary considerations are made concerning the impact of rupture propagation on near-source ground motion; i.e., the records are scanned for traces of pulse-like forward-directivity effects.

  8. Reconnaissance engineering geology of the Metlakatla area, Annette Island, Alaska, with emphasis on evaluation of earthquakes and other geologic hazards

    Science.gov (United States)

    Yehle, Lynn A.

    1977-01-01

    A program to study the engineering geology of most larger Alaska coastal communities and to evaluate their earthquake and other geologic hazards was started following the 1964 Alaska earthquake; this report about the Metlakatla area, Annette Island, is a product of that program. Field-study methods were of a reconnaissance nature, and thus the interpretations in the report are tentative. Landscape of the Metlakatla Peninsula, on which the city of Metlakatla is located, is characterized by a muskeg-covered terrane of very low relief. In contrast, most of the rest of Annette Island is composed of mountainous terrane with steep valleys and numerous lakes. During the Pleistocene Epoch the Metlakatla area was presumably covered by ice several times; glaciers smoothed the present Metlakatla Peninsula and deeply eroded valleys on the rest. of Annette Island. The last major deglaciation was completed probably before 10,000 years ago. Rebound of the earth's crust, believed to be related to glacial melting, has caused land emergence at Metlakatla of at least 50 ft (15 m) and probably more than 200 ft (61 m) relative to present sea level. Bedrock in the Metlakatla area is composed chiefly of hard metamorphic rocks: greenschist and greenstone with minor hornfels and schist. Strike and dip of beds are generally variable and minor offsets are common. Bedrock is of late Paleozoic to early Mesozoic age. Six types of surficial geologic materials of Quaternary age were recognized: firm diamicton, emerged shore, modern shore and delta, and alluvial deposits, very soft muskeg and other organic deposits, and firm to soft artificial fill. A combination map unit is composed of bedrock or diamicton. Geologic structure in southeastern Alaska is complex because, since at least early Paleozoic time, there have been several cycles of tectonic deformation that affected different parts of the region. Southeastern Alaska is transected by numerous faults and possible faults that attest to major

  9. Analog earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, R.B. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.

  10. Earthquake Resistant Engineering and Application of Seismic Zonation Map of China

    Institute of Scientific and Technical Information of China (English)

    ShiZhenliang; LiYuche; ZhangXiaodong

    2004-01-01

    China is a country with high seismieity. It is very important for industry and structure to fortify against earthquakes. In this paper the outline of seismicity in China, the criteria for fortification against earthquakes and the contents of seismic zonation map of China are described. The contents of seismic safety evaluation for major construction projects, such as large dams, large bridges, long distance pipe lines for transporting oil and natural gas, nuclear plants, petrochemical enterprises and so on, are presented. Some geological disasters caused by destructive earthquake, such as earthquake-caused collapse and landslide, liquefaction of saturated soll and earthquake fault and so on, are also presented. Preventive countermeasures for these disasters are discussed.

  11. Reconnaissance engineering geology of Sitka and vicinity, Alaska, with emphasis on evaluation of earthquake and other geologic hazards

    Science.gov (United States)

    Yehle, Lynn A.

    1974-01-01

    A program to study the engineering geology of most of the larger Alaska coastal communities and to evaluate their earthquake and other geologic hazards was started following the 1964 Alaska earthquake; this report about Sitka and vicinity is a product of that program. Field-study methods were of a reconnaissance nature, and thus the interpretations in the report are subject to revision as further information becomes available. This report can provide broad geologic guidelines for planners and engineers during preparation of land-use plans. The use of this information should lead to minimizing future loss of life and property due to geologic hazards, especially during very large earthquakes. Landscape of Sitka and surrounding area is characterized by numerous islands and a narrow strip of gently rolling ground adjacent to rugged mountains; steep valleys and some fiords cut sharply into the mountains. A few valley floors are wide and flat and grade into moderate-sized deltas. Glaciers throughout southeastern Alaska and elsewhere became vastly enlarged during the Pleistocene Epoch. The Sitka area presumably was covered by ice several times; glaciers deeply eroded some valleys and removed fractured bedrock along some faults. The last major deglaciation occurred sometime before 10,000 years ago. Crustal rebound believed to be related to glacial melting caused land emergence at Sitka of at least 35 feet (10.7 m) relative to present sea level. Bedrock at Sitka and vicinity is composed mostly of bedded, hard, dense graywacke and some argillite. Beds strike predominantly northwest and are vertical or steeply dipping. Locally, bedded rocks are cut by dikes of fine-grained igneous rock. Host bedrock is of Jurassic and Cretaceous age. Eight types of surficial deposits of Quaternary age were recognized. Below altitudes of 3S feet (10.7 m), the dominant deposits are those of modern and elevated shores and deltas; at higher altitudes, widespread muskeg overlies a mantle of

  12. Scientific, Engineering, and Financial Factors of the 1989 Human-Triggered Newcastle Earthquake in Australia

    Science.gov (United States)

    Klose, C. D.

    2006-12-01

    This presentation emphasizes the dualism of natural resources exploitation and economic growth versus geomechanical pollution and risks of human-triggered earthquakes. Large-scale geoengineering activities, e.g., mining, reservoir impoundment, oil/gas production, water exploitation or fluid injection, alter pre-existing lithostatic stress states in the earth's crust and are anticipated to trigger earthquakes. Such processes of in- situ stress alteration are termed geomechanical pollution. Moreover, since the 19th century more than 200 earthquakes have been documented worldwide with a seismic moment magnitude of 4.5financial losses of triggered earthquakes. An hazard assessment, based on a geomechanical crust model, shows that only four deep coal mines were responsible for triggering this severe earthquake. A small-scale economic risk assessment identifies that the financial loss due to earthquake damage has reduced mining profits that have been re-invested in the Newcastle region for over two centuries beginning in 1801. Furthermore, large-scale economic risk assessment reveals that the financial loss is equivalent to 26% of the Australian Gross Domestic Product (GDP) growth in 1988/89. These costs account for 13% of the total costs of all natural disasters (e.g., flooding, drought, wild fires) and 94% of the costs of all earthquakes recorded in Australia between 1967 and 1999. In conclusion, the increasing number and size of geoengineering activities, such as coal mining near Newcastle or planned carbon dioxide Geosequestration initiatives, represent a growing hazard potential, which can negatively affect socio-economic growth and sustainable development. Finally, hazard and risk degrees, based on geomechanical-mathematical models, can be forecasted in space and over time for urban planning in order to prevent economic losses of human-triggered earthquakes in the future.

  13. Engineering-geological model of the landslide of Güevejar (S Spain) reactivated by historical earthquakes

    Science.gov (United States)

    Delgado, José; García-Tortosa, Francisco J.; Garrido, Jesús; Giner, José; Lenti, Luca; López-Casado, Carlos; Martino, Salvatore; Peláez, José A.; Sanz de Galdeano, Carlos; Soler, Juan L.

    2015-04-01

    Landslides are a common ground effect induced by earthquakes of moderate to large magnitude. Most of them correspond to first-time instabilities induced by the seismic event, being the reactivation of pre-existing landslides less frequent in practice. The landslide of Güevejar (Granada province, S Spain) represents a case study of landslide that was reactivated, at least, two times by far field earthquakes: the Mw 8.7, 1755, Lisbon earthquake (with estimated epicentral distance of 680 km), and the Mw 6.5, 1884, Andalucia event (estimated epicentral distance of 45 km), but not by near field events of moderate magnitude (Mw 50 m) sliding surface. The engineering-geological model constitutes the first step in an ongoing research devoted to understand how it could be reactivated during far field events. The authors would like to thank the ERDF of European Union for financial support via project "Monitorización sísmica de deslizamientos. Criterios de reactivación y alerta temprana" of the "Programa Operativo FEDER de Andalucía 2007-2015". We also thank all Public Works Agency and Ministry of Public Works and Housing of the Regional Government of Andalusia.

  14. Virtual earthquake engineering laboratory with physics-based degrading materials on parallel computers

    Science.gov (United States)

    Cho, In Ho

    For the last few decades, we have obtained tremendous insight into underlying microscopic mechanisms of degrading quasi-brittle materials from persistent and near-saintly efforts in laboratories, and at the same time we have seen unprecedented evolution in computational technology such as massively parallel computers. Thus, time is ripe to embark on a novel approach to settle unanswered questions, especially for the earthquake engineering community, by harmoniously combining the microphysics mechanisms with advanced parallel computing technology. To begin with, it should be stressed that we placed a great deal of emphasis on preserving clear meaning and physical counterparts of all the microscopic material models proposed herein, since it is directly tied to the belief that by doing so, the more physical mechanisms we incorporate, the better prediction we can obtain. We departed from reviewing representative microscopic analysis methodologies, selecting out "fixed-type" multidirectional smeared crack model as the base framework for nonlinear quasi-brittle materials, since it is widely believed to best retain the physical nature of actual cracks. Microscopic stress functions are proposed by integrating well-received existing models to update normal stresses on the crack surfaces (three orthogonal surfaces are allowed to initiate herein) under cyclic loading. Unlike the normal stress update, special attention had to be paid to the shear stress update on the crack surfaces, due primarily to the well-known pathological nature of the fixed-type smeared crack model---spurious large stress transfer over the open crack under nonproportional loading. In hopes of exploiting physical mechanism to resolve this deleterious nature of the fixed crack model, a tribology-inspired three-dimensional (3d) interlocking mechanism has been proposed. Following the main trend of tribology (i.e., the science and engineering of interacting surfaces), we introduced the base fabric of solid

  15. Discussion on Some Issues of Earthquake Early Warning Engineering%地震预警工程的若干问题探讨

    Institute of Scientific and Technical Information of China (English)

    张晁军; 陈会忠; 蔡晋安; 侯燕燕; 许洪华; 李卫东

    2014-01-01

    地震预警是国内外地学研究的热点,是复杂的社会工程。地震预警工程是跨学科的工程,特别是涉及自然科学和社会科学的结合。本文就地震预警的一些基本概念和由地震预警原理带来的工程上的若干问题,进行了比较详细的讨论。介绍了地震预警的概念和种类、地震预警的模式、地震预警的能力,强调了地震预警盲区、受益区、无效区的不同能力,提出了地震预警第一报的重要性。指出了地震预警技术不仅带来减灾效果,还催生了密集地震观测网,突破了传统地震观测网的观测方式和处理方法,将为传统的地震观测学和实时地震学带来创新和变革。论述了当前地震预警技术的局限和存在的问题。结合国内外地震预警的现状,提出了地震预警工程需要注意的问题及需要研究的方向,指出地震预警是复杂的社会工程,首次提出了地震预警的社会容忍度及社会对地震预警容忍度的差异,同时探讨了地震预警效益和风险。%Earthquake early warning (EEW) is a hot topic in domestic and foreign research. It is a complex social engineering. Earthquake early warning engineering is an interdisciplinary engineering, particularly in the combination between natural science and social science. In this paper, some problems about some basic concepts of earthquake early warning and some problems brought by the earthquake early warning theory, are discussed in detail. This paper introduces the concept and types of earthquake early warning, earthquake early warning model, ability of earthquake early warning and it also emphasizes the different ability of earthquake early warning, benefit area, blind area of invalid area and points out the importance of the first report of earthquake early warning. This paper points out that the earthquake early warning technology not only brings mitigation for disaster, but also stimulates a

  16. Revolutionising Engineering Education in the Middle East Region to Promote Earthquake-Disaster Mitigation

    Science.gov (United States)

    Baytiyeh, Hoda; Naja, Mohamad K.

    2014-01-01

    Due to the high market demands for professional engineers in the Arab oil-producing countries, the appetite of Middle Eastern students for high-paying jobs and challenging careers in engineering has sharply increased. As a result, engineering programmes are providing opportunities for more students to enroll on engineering courses through lenient…

  17. Revolutionising Engineering Education in the Middle East Region to Promote Earthquake-Disaster Mitigation

    Science.gov (United States)

    Baytiyeh, Hoda; Naja, Mohamad K.

    2014-01-01

    Due to the high market demands for professional engineers in the Arab oil-producing countries, the appetite of Middle Eastern students for high-paying jobs and challenging careers in engineering has sharply increased. As a result, engineering programmes are providing opportunities for more students to enroll on engineering courses through lenient…

  18. GLASS 2.0: An Operational, Multimodal, Bayesian Earthquake Data Association Engine

    Science.gov (United States)

    Benz, H.; Johnson, C. E.; Patton, J. M.; McMahon, N. D.; Earle, P. S.

    2015-12-01

    The legacy approach to automated detection and determination of hypocenters is arrival time stacking algorithms. Examples of such algorithms are the associator, Binder, which has been in continuous use in many USGS-supported regional seismic networks since the 1980s and the spherical earth successor, GLASS 1.0, currently in service at the USGS National Earthquake Information Center for over 10 years. The principle short-comings of the legacy approach are 1) it can only use phase arrival times, 2) it does not adequately address the problems of extreme variations in station density worldwide, 3) it cannot incorporate multiple phase models or statistical attributes of phases with distance, and 4) it cannot incorporate noise model attributes of individual stations. Previously we introduced a theoretical framework of a new associator using a Bayesian kernel stacking approach to approximate a joint probability density function for hypocenter localization. More recently we added station- and phase-specific Bayesian constraints to the association process. GLASS 2.0 incorporates a multiplicity of earthquake related data including phase arrival times, back-azimuth and slowness information from array beamforming, arrival times from waveform cross correlation processing, and geographic constraints from real-time social media reports of ground shaking. We demonstrate its application by modeling an aftershock sequence using dozens of stations that recorded tens of thousands of earthquakes over a period of one month. We also demonstrate Glass 2.0 performance regionally and teleseismically using the globally distributed real-time monitoring system at NEIC.

  19. Engineering geologic assessment of the slope movements and liquefaction failures of the 23 October 2011 Van earthquake (Mw= 7.2)

    Science.gov (United States)

    Karakaş, A.; Coruk, Ö.; Doğan, B.

    2013-04-01

    On 23 October 2011, a Mw = 7.2 earthquake occurred in the Van Province in eastern Turkey, killing 604 people. The earthquake was triggered by a thrust fault due to a compression stress in the region, and caused extensive damage over a large area. Many structures in the earthquake region collapsed, and the damage spread from the city of Van to the town of Erciş, in a distance of 60 km. The earthquake generated several slope movements and liquefaction failures in the region, and this study evaluates these processes from the perspective of engineering geology, and presents field and laboratory results related to these processes. Attenuation relationships were used for estimation of peak ground accelerations (PGAs), and an empirical liquefaction evaluation method employing ground accelerations was used to define threshold accelerations initiating the liquefaction. The results demonstrate that landslides were widespread and more frequently observed in the field in comparison with earthflows and rockfalls. Flow-type liquefaction and lateral spreading was found to be widespread and more common than the liquefaction-related settlement. The minimum threshold acceleration value for the initiation of soil liquefaction was calculated to be 188.87 cm s-2 (~0.19 g) in the earthquake region. Laboratory results indicated that the soil liquefaction was closely associated with grain size. The slope instabilities, liquefaction and associated ground failures occurred mainly in rural areas, and their impact on structures was quite low as compared to the human loss and structural damage by the earthquake.

  20. The Beni Haoua, Algeria, Mw 4.9 earthquake: source parameters, engineering, and seismotectonic implications

    Science.gov (United States)

    Abbes, Khadidja; Dorbath, Louis; Dorbath, Catherine; Djeddi, Mohamed; Ousadou, Farida; Maouche, Said; Benkaci, Nassima; Slimani, Abdennasser; Larbes, Said; Bouziane, Djillali

    2016-04-01

    A moderate Mw 4.9 earthquake struck the Beni Haoua (Algeria) coastal area on April 25, 2012. The mainshock was largely recorded by the accelerograph network of the Centre National de Recherche Appliquée en Génie Parasismique (CGS). The same day the earthquake occurred, eight mobile short period stations were deployed through the epicentral area. In this study, we use accelerogram and seismogram data recorded by these two networks. We combined the focal mechanism built from the first motion of P waves and from waveform inversion, and the distribution of aftershocks to well constrain the source parameters. The mainshock is located with a shallow focal depth, ˜9 km, and the focal mechanism shows a nearly pure left lateral strike slip motion, with total seismic moment of 2.8 × 1016 N.m (Mw = 4.9). The aftershocks mainly cluster on a narrow NS strip, starting at the coast up to 3-4 km inland. This cluster, almost vertical, is concentrated between 6 and 10 km depth. The second part of this work concerns the damage distribution and estimated intensity in the epicentral area. The damage distribution is discussed in connection with the observed maximum strong motion. The acceleration response spectrum with 5 % damping of the mainshock and aftershocks give the maximum amplitude in high frequency which directly affects the performance of the high-frequency structures. Finally, we tie this earthquake with the seismotectonic of the region, leading to conclude that it occurred on a N-S transform zone between two major compressional fault zones oriented NE-SW.

  1. Site Earthquake Characteristics and Dynamic Parameter Test of Phase Ⅲ Qinshan Nuclear Power Engineering

    Institute of Scientific and Technical Information of China (English)

    ZHOV Nian-qing; ZHAO Zai-li; QIN Min

    2009-01-01

    The earthquake characteristics and geological structure of the site to sitting the Qinshan Nuclear Power Station are closely related. According to site investigation drilling, sampling, seismic sound logging wave test in single-hole and cross-hole, laboratory wave velocity test of intact rock, together with analysis of the site geological conditions, the seismic wave test results of the site between strata lithology and the geologic structure were studied. The relationships of seismic waves with the site lithology and the geologic structure were set up.The dynamic parameters of different grades of weathering profile were deduced. The results assist the seismic design of Phase Ⅲ Qinshan Nuclear Power Plant, China.

  2. High-performance computing for structural mechanics and earthquake/tsunami engineering

    CERN Document Server

    Hori, Muneo; Ohsaki, Makoto

    2016-01-01

    Huge earthquakes and tsunamis have caused serious damage to important structures such as civil infrastructure elements, buildings and power plants around the globe.  To quantitatively evaluate such damage processes and to design effective prevention and mitigation measures, the latest high-performance computational mechanics technologies, which include telascale to petascale computers, can offer powerful tools. The phenomena covered in this book include seismic wave propagation in the crust and soil, seismic response of infrastructure elements such as tunnels considering soil-structure interactions, seismic response of high-rise buildings, seismic response of nuclear power plants, tsunami run-up over coastal towns and tsunami inundation considering fluid-structure interactions. The book provides all necessary information for addressing these phenomena, ranging from the fundamentals of high-performance computing for finite element methods, key algorithms of accurate dynamic structural analysis, fluid flows ...

  3. Reduction of earthquake disasters

    Institute of Scientific and Technical Information of China (English)

    陈顒; 陈祺福; 黄静; 徐文立

    2003-01-01

    The article summarizes the researches on mitigating earthquake disasters of the past four years in China. The studyof earthquake disasters′ quantification shows that the losses increase remarkably when population concentrates inurban area and social wealth increase. The article also summarizes some new trends of studying earthquake disas-ters′ mitigation, which are from seismic hazard to seismic risk, from engineering disaster to social disaster andintroduces the community-centered approach.

  4. Changes in Science Teachers' Conceptions and Connections of STEM Concepts and Earthquake Engineering

    Science.gov (United States)

    Cavlazoglu, Baki; Stuessy, Carol

    2017-01-01

    The authors find justification for integrating science, technology, engineering, and mathematics (STEM) in the complex problems that today's students will face as tomorrow's STEM professionals. Teachers with individual subject-area specialties in the STEM content areas have limited experience in integrating STEM. In this study, the authors…

  5. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  6. Engineering

    National Research Council Canada - National Science Library

    Includes papers in the following fields: Aerospace Engineering, Agricultural Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering, Environmental Engineering, Industrial Engineering, Materials Engineering, Mechanical...

  7. Mechanism and bounding of earthquake energy input to building structure on surface ground subjected to engineering bedrock motion

    OpenAIRE

    Kojima, K; Sakaguchi, K; Takewaki, I.

    2015-01-01

    The mechanism of earthquake energy input to building structures is clarified by considering the surface ground amplification and soil–structure interaction. The earthquake input energies to superstructures, soil–foundation systems and total swaying–rocking system are obtained by taking the corresponding appropriate free bodies into account and defining the energy transfer functions. It has been made clear that, when the ground surface motion is white, the input energy to the swaying–rocking m...

  8. State-of-the-Art for Assessing Earthquake Hazards in the United States. Report 28. Recommended Accelerograms for Earthquake Ground Motions

    Science.gov (United States)

    1992-06-01

    UNAM, Preliminary Report GAA-1A. Quaas, Roberto , Anderson, John G, et al., October 1985. The Michoacan- Guerrero, Mexico Earthquake of September 1985...Skopje. Yugoslavia 1979 Leeds, Arline, ed., November 1980. Reconnaissance Report: Montenegro , Yugoslavia Earthquake, April 15, 1979: Earthquake...the April 15, 1979 Montenegro -Yugoslavia Earthquake: Institute of Earthquake Engineering and Engineering Seismology, University "Kiril and Metodij

  9. Defeating Earthquakes

    Science.gov (United States)

    Stein, R. S.

    2012-12-01

    The 2004 M=9.2 Sumatra earthquake claimed what seemed an unfathomable 228,000 lives, although because of its size, we could at least assure ourselves that it was an extremely rare event. But in the short space of 8 years, the Sumatra quake no longer looks like an anomaly, and it is no longer even the worst disaster of the Century: 80,000 deaths in the 2005 M=7.6 Pakistan quake; 88,000 deaths in the 2008 M=7.9 Wenchuan, China quake; 316,000 deaths in the M=7.0 Haiti, quake. In each case, poor design and construction were unable to withstand the ferocity of the shaken earth. And this was compounded by inadequate rescue, medical care, and shelter. How could the toll continue to mount despite the advances in our understanding of quake risk? The world's population is flowing into megacities, and many of these migration magnets lie astride the plate boundaries. Caught between these opposing demographic and seismic forces are 50 cities of at least 3 million people threatened by large earthquakes, the targets of chance. What we know for certain is that no one will take protective measures unless they are convinced they are at risk. Furnishing that knowledge is the animating principle of the Global Earthquake Model, launched in 2009. At the very least, everyone should be able to learn what his or her risk is. At the very least, our community owes the world an estimate of that risk. So, first and foremost, GEM seeks to raise quake risk awareness. We have no illusions that maps or models raise awareness; instead, earthquakes do. But when a quake strikes, people need a credible place to go to answer the question, how vulnerable am I, and what can I do about it? The Global Earthquake Model is being built with GEM's new open source engine, OpenQuake. GEM is also assembling the global data sets without which we will never improve our understanding of where, how large, and how frequently earthquakes will strike, what impacts they will have, and how those impacts can be lessened by

  10. Proposal from the Japan Society of Engineering Geology in the report meeting on Hyogo-ken Nanbu earthquake; Hyogoken nanbu jishin hokokukai ni okeru Nippon oyo chishitsu gakkai kara no teian

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-10

    Contribution to disaster protection measures and earthquake resistance technology are important activities except application of geology for Japan Society of Engineering Geology. The society carries out field measurement and analysis, and offers analytical method and inverse analytical method for engineering analyses of data. An analytical method uses physical properties of ground and seismic forces as input data, and verifies the stability and safety of some supposed structures at earthquake. It is important to acquire physical properties of ground enough and to measure accurately information of external forces. An inverse analytical method surveys various phenomena at earthquake, and diagnoses the causes of such phenomena. In this time, the engineering survey, evaluation and analysis of active faults and seismic faults are insufficient. It is also one of the issues that the society couldn`t acquire data systematically from the observation hole of underground water. It is also important to consider the point of contact with the actual world. 2 figs.

  11. Proceedings of the Regional Seminar on Earthquake Engineering (13th) Held in Istanbul, Turkey on 14-24 September 1987.

    Science.gov (United States)

    1987-09-01

    Tim .2’, Since the liberation of the country on [ovember 29, 1944 the consequences of the earthouakes are completely liquida - ted, within a short...acceleration velocity, dieta ne from source, and local site conditions for moderately strong earthquakes. Selemol. So@. America Bull., v. 66, 1976. 4. Seed H.B

  12. Reconnaissance engineering geology of the Haines area, Alaska, with emphasis on evaluation of earthquake and other geologic hazards

    Science.gov (United States)

    Lemke, Richard Walter; Yehle, Lynn A.

    1972-01-01

    The Alaska earthquake of March 27, 1964, brought into sharp focus the need for engineering geologic studies in urban areas. Study of the Haines area constitutes an integral part of an overall program to evaluate earthquake and other geologic hazards in most of the larger Alaska coastal communities. The evaluations of geologic hazards that follow, although based only upon reconnaissance studies and, therefore, subject to revision, will provide broad guidelines useful in city and land-use planning. It is hoped that the knowledge gained will result in new facilities being built in the best possible geologic environments and being designed so as to minimize future loss of life and property damage. Haines, which is in the northern part of southeastern Alaska approximately 75 miles northwest of Juneau, had a population, of about 700 people in 1970. It is built at the northern end of the Chilkat Peninsula and lies within the Coast Mountains of the Pacific Mountain system. The climate is predominantly marine and is characterized by mild winters and cool summers. The mapped area described in this report comprises about 17 square miles of land; deep fiords constitute most of the remaining mapped area that is evaluated in this study. The Haines area was covered by glacier ice at least once and probably several times during the Pleistocene Epoch. The presence of emergent marine deposits, several hundred feet above sea level, demonstrates that the land has been uplifted relative to sea level since the last major deglaciation of the region about 10,000 years ago. The rate of relative uplift of the land at Haines during the past 39 years is 2.26 cm per year. Most or all of this uplift appears to be due to rebound as a result of deglaciation. Both bedrock and surficial deposits are present in the area. Metamorphic and igneous rocks constitute the exposed bedrock. The metamorphic rocks consist of metabasalt of Mesozoic age and pyroxenite of probable early middle Cretaceous age. The

  13. Nowcasting Earthquakes

    Science.gov (United States)

    Rundle, J. B.; Donnellan, A.; Grant Ludwig, L.; Turcotte, D. L.; Luginbuhl, M.; Gail, G.

    2016-12-01

    Nowcasting is a term originating from economics and finance. It refers to the process of determining the uncertain state of the economy or markets at the current time by indirect means. We apply this idea to seismically active regions, where the goal is to determine the current state of the fault system, and its current level of progress through the earthquake cycle. In our implementation of this idea, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. Our method does not involve any model other than the idea of an earthquake cycle. Rather, we define a specific region and a specific large earthquake magnitude of interest, ensuring that we have enough data to span at least 20 or more large earthquake cycles in the region. We then compute the earthquake potential score (EPS) which is defined as the cumulative probability distribution P(nearthquakes in the region. From the count of small earthquakes since the last large earthquake, we determine the value of EPS = P(nearthquake cycle in the defined region at the current time.

  14. Earthquake Facts

    Science.gov (United States)

    Jump to Navigation Earthquake Facts The largest recorded earthquake in the United States was a magnitude 9.2 that struck Prince William Sound, ... we know, there is no such thing as "earthquake weather" . Statistically, there is an equal distribution of ...

  15. Nowcasting earthquakes

    Science.gov (United States)

    Rundle, J. B.; Turcotte, D. L.; Donnellan, A.; Grant Ludwig, L.; Luginbuhl, M.; Gong, G.

    2016-11-01

    Nowcasting is a term originating from economics and finance. It refers to the process of determining the uncertain state of the economy or markets at the current time by indirect means. We apply this idea to seismically active regions, where the goal is to determine the current state of the fault system and its current level of progress through the earthquake cycle. In our implementation of this idea, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. Our method does not involve any model other than the idea of an earthquake cycle. Rather, we define a specific region and a specific large earthquake magnitude of interest, ensuring that we have enough data to span at least 20 or more large earthquake cycles in the region. We then compute the earthquake potential score (EPS) which is defined as the cumulative probability distribution P(n < n(t)) for the current count n(t) for the small earthquakes in the region. From the count of small earthquakes since the last large earthquake, we determine the value of EPS = P(n < n(t)). EPS is therefore the current level of hazard and assigns a number between 0% and 100% to every region so defined, thus providing a unique measure. Physically, the EPS corresponds to an estimate of the level of progress through the earthquake cycle in the defined region at the current time.

  16. Identifying and Verifying Earthquake Engineering Concepts to Create a Knowledge Base in STEM Education: A Modified Delphi Study

    Science.gov (United States)

    Cavlazoglu, Baki; Stuessy, Carol L.

    2017-01-01

    Stakeholders in STEM education have called for integrating engineering content knowledge into STEM-content classrooms. To answer the call, stakeholders in science education announced a new framework, Next Generation Science Standards, which focuses on the integration of science and engineering in K-12 science education. However, research indicates…

  17. The Electronic Encyclopedia of Earthquakes

    Science.gov (United States)

    Benthien, M.; Marquis, J.; Jordan, T.

    2003-12-01

    The Electronic Encyclopedia of Earthquakes is a collaborative project of the Southern California Earthquake Center (SCEC), the Consortia of Universities for Research in Earthquake Engineering (CUREE) and the Incorporated Research Institutions for Seismology (IRIS). This digital library organizes earthquake information online as a partner with the NSF-funded National Science, Technology, Engineering and Mathematics (STEM) Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). When complete, information and resources for over 500 Earth science and engineering topics will be included, with connections to curricular materials useful for teaching Earth Science, engineering, physics and mathematics. Although conceived primarily as an educational resource, the Encyclopedia is also a valuable portal to anyone seeking up-to-date earthquake information and authoritative technical sources. "E3" is a unique collaboration among earthquake scientists and engineers to articulate and document a common knowledge base with a shared terminology and conceptual framework. It is a platform for cross-training scientists and engineers in these complementary fields and will provide a basis for sustained communication and resource-building between major education and outreach activities. For example, the E3 collaborating organizations have leadership roles in the two largest earthquake engineering and earth science projects ever sponsored by NSF: the George E. Brown Network for Earthquake Engineering Simulation (CUREE) and the EarthScope Project (IRIS and SCEC). The E3 vocabulary and definitions are also being connected to a formal ontology under development by the SCEC/ITR project for knowledge management within the SCEC Collaboratory. The E3 development system is now fully operational, 165 entries are in the pipeline, and the development teams are capable of producing 20 new, fully reviewed encyclopedia entries each month. Over the next two years teams will

  18. An Inhomogeneous Distribution Model of Strong Earthquakes along Strike-Slip Active Fault Segments on the Chinese Continent and Its Implication in Engineering Seismology

    Institute of Scientific and Technical Information of China (English)

    Zhou Bengang; Ran Hongliu; Song Xinchu; Zhou Qin

    2004-01-01

    Through the statistical analysis of earthquake distribution along 51 strike-slip active fault segments on the Chinese continent, we found that strong earthquake distribution along the seismogenic fault segments is inhomogeneous and the distribution probability density p (K) can be stated asp(K) = 1.1206e-3.947K2in which K = S/( L/2), S refers to the distance from earthquake epicenter to the center of a fault segment, L is the length of the fault segment. The above model can be utilized to modify the probability density of earthquake occurrence of the maximum magnitude interval in a potential earthquake source. Nevertheless, it is only suitable for those potential earthquake sources delineated along a single seismogenic fault.This inhomogeneous model has certain effects on seismic risk assessment, especially for those potential earthquake sources with higher earthquake reoccurrence rates of the maximum magnitude interval. In general, higher reoccurrence rate of the maximum magnitude interval and lower exceeding probability level may bring larger difference of the results in seismic risk analysis by adopting the inhomogeneous model, the PGA values increase inner the potential earthquake source, but reduce near the vicinity and out of the potential earthquake source.Taking the Tangyin potential earthquake source as an example, with exceeding probability of 10 % and 2 % in 50 years, the difference of the PGA values between inhomogeneous model and homogenous models can reach 12%.

  19. 第六届国际地震岩土工程大会综述%An Overview of the Sixth International Conference on Earthquake Geotechnical Engineering

    Institute of Scientific and Technical Information of China (English)

    王兰民

    2015-01-01

    第六届国际地震岩土工程大会于2015年11月1-4日在新西兰克莱斯特彻奇市召开。本文介绍了大会概况;阐述了大会设置的21个专题,并综述了场地效应和小区划,斜坡、河堤、大坝与废弃物填埋场,地震危险性与强地面运动,土壤液化与侧向扩展共4个重要专题分会的交流内容;通报了国际地震岩土工程及其问题技术委员会(TC203)全委会内容和决议事项;论述了相关领域的研究进展与亮点,包括新西兰坎特伯雷地震灾后重建催生了岩土工程共享数据库建设取得突破性进展;土壤液化与侧向扩展研究成为国际岩土地震工程一大热点研究领域;提出了在液化机理、液化势评价、液化后变形和基于性能的抗液化工程设计等方面需要进一步研究的重要问题;运动颗粒模拟方法实现了对斜坡破坏的全过程数值模拟;“Ishihara-Idriss-Finn演讲特别分会”成为本次会议一大亮点;2010-2011年新西兰坎特伯雷地震序列(CES)发生后,美国与新西兰开展了非常紧密的合作调查与研究工作,并在地震序列认识、灾害快速评估、确保稳健恢复的政策与规划分析等方面取得了多方受益的科学进展。%The sixth International Conference on Earthquake Geotechnical Engineering was held in Christchurch,New Zealand,from November 1 to 4,2015.This study provides an overview of the conference.In the conference,21 oral session topics were introduced.We summarize the contents of the academic exchange particularly in four oral sessions:those addressing (1 )site effect and microzonation;(2)slopes,embankments,dams,and landfills;(3)seismic hazards and strong ground motion;and (4)soil liquefaction and lateral spreading.We also report the contents and decisions of the Technical Committee on Earthquake Geotechnical Engineering and Associated Problems (TC203)of ISSMGE and evaluate research advances and highlights in

  20. Charles Darwin's earthquake reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    problems which began to discuss only during the last time. Earthquakes often precede volcanic eruptions. According to Darwin, the earthquake-induced shock may be a common mechanism of the simultaneous eruptions of the volcanoes separated by long distances. In particular, Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…'. According to Darwin the crust is a system where fractured zones, and zones of seismic and volcanic activities interact. Darwin formulated the task of considering together the processes studied now as seismology and volcanology. However the difficulties are such that the study of interactions between earthquakes and volcanoes began only recently and his works on this had relatively little impact on the development of geosciences. In this report, we discuss how the latest data on seismic and volcanic events support the Darwin's observations and ideas about the 1835 Chilean earthquake. The material from researchspace. auckland. ac. nz/handle/2292/4474 is used. We show how modern mechanical tests from impact engineering and simple experiments with weakly-cohesive materials also support his observations and ideas. On the other hand, we developed the mathematical theory of the earthquake-induced catastrophic wave phenomena. This theory allow to explain the most important aspects the Darwin's earthquake reports. This is achieved through the simplification of fundamental governing equations of considering problems to strongly-nonlinear wave equations. Solutions of these equations are constructed with the help of analytic and numerical techniques. The solutions can model different strongly-nonlinear wave phenomena which generate in a variety of physical context. A comparison with relevant experimental observations is also presented.

  1. Field reconnaissance of the 2007 Niigata-Chuetsu Oki earthquake

    Institute of Scientific and Technical Information of China (English)

    Georgios Apostolakis; Bing Qu; Nurhan Ecemis; Seda Dogruel

    2007-01-01

    As part of the 2007 Yri-Center Field Mission to Japan,a reconnaissance team comprised of fourteen graduate students and three faculty members from three U.S. earthquake engineering research centers,namely,Multidisciplinary Center for Earthquake Engineering Research (MCEER),Mid-America Earthquake Center(MAE),and Pacific Earthquake Engineering Research Center (PEER),undertook a reconnaissance visit to the affected area shortly after the 2007 NiigataChuetsu Oki earthquake.This mission provided an opportunity to review the nature of the earthquake damage that occurred,as well as to assess the significance of the damage from an educational perspective.This paper reports on the seismological characteristics of the earthquake,preliminary findings of geotechnical and structural damage,and the causes of the observed failures or collapses.In addition,economic and socio-economic considerations and experiences to enhance earthquake resilience are presented.

  2. Field reconnaissance of the 2007 Niigata-Chuetsu Oki earthquake

    Science.gov (United States)

    Apostolakis, Georgios; Qu, Bing; Ecemis, Nurhan; Dogruel, Seda

    2007-12-01

    As part of the 2007 Tri-Center Field Mission to Japan, a reconnaissance team comprised of fourteen graduate students and three faculty members from three U.S. earthquake engineering research centers, namely, Multidisciplinary Center for Earthquake Engineering Research (MCEER), Mid-America Earthquake Center (MAE), and Pacific Earthquake Engineering Research Center (PEER), undertook a reconnaissance visit to the affected area shortly after the 2007 Niigata-Chuetsu Oki earthquake. This mission provided an opportunity to review the nature of the earthquake damage that occurred, as well as to assess the significance of the damage from an educational perspective. This paper reports on the seismological characteristics of the earthquake, preliminary findings of geotechnical and structural damage, and the causes of the observed failures or collapses. In addition, economic and socio-economic considerations and experiences to enhance earthquake resilience are presented.

  3. Earthquake impact scale

    Science.gov (United States)

    Wald, D.J.; Jaiswal, K.S.; Marano, K.D.; Bausch, D.

    2011-01-01

    also be both specific (although allowably uncertain) and actionable. In this analysis, an attempt is made at both simple and intuitive color-coded alerting criteria; yet the necessary uncertainty measures by which one can gauge the likelihood for the alert to be over- or underestimated are preserved. The essence of the proposed impact scale and alerting is that actionable loss information is now available in the immediate aftermath of significant earthquakes worldwide on the basis of quantifiable loss estimates. Utilizing EIS, PAGER's rapid loss estimates can adequately recommend alert levels and suggest appropriate response protocols, despite the uncertainties; demanding or awaiting observations or loss estimates with a high level of accuracy may increase the losses. ?? 2011 American Society of Civil Engineers.

  4. Global review of human-induced earthquakes.

    OpenAIRE

    Foulger, Gillian R.; Wilson, Miles; Gluyas, Jon; Julian, Bruce R.; Davies, Richard

    2017-01-01

    The Human-induced Earthquake Database, HiQuake, is a comprehensive record of earthquake sequences postulated to be induced by anthropogenic activity. It contains over 700 cases spanning the period 1868–2016. Activities that have been proposed to induce earthquakes include the impoundment of water reservoirs, erecting tall buildings, coastal engineering, quarrying, extraction of groundwater, coal, minerals, gas, oil and geothermal fluids, excavation of tunnels, and adding material to the subsu...

  5. 76 FR 11821 - Submission for OMB Review; Comment Request Survey of Principal Investigators on Earthquake...

    Science.gov (United States)

    2011-03-03

    ... Submission for OMB Review; Comment Request Survey of Principal Investigators on Earthquake Engineering... Investigators on Earthquake Engineering Research Awards Made by the National Science Foundation, 2003-2009. Type... George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES). The purpose of the proposed...

  6. 76 FR 64325 - Advisory Committee on Earthquake Hazards Reduction Meeting

    Science.gov (United States)

    2011-10-18

    ..., to review the conclusions of the National Research Council Report on National Earthquake Resilience... National Research Council Report on National Earthquake Resilience, and to review NEHRP agency updates on... developments in the science and engineering of earthquake hazards reduction; The effectiveness of NEHRP...

  7. Road Damage Following Earthquake

    Science.gov (United States)

    1989-01-01

    Ground shaking triggered liquefaction in a subsurface layer of water-saturated sand, producing differential lateral and vertical movement in a overlying carapace of unliquified sand and slit, which moved from right to left towards the Pajaro River. This mode of ground failure, termed lateral spreading, is a principal cause of liquefaction-related earthquake damage caused by the Oct. 17, 1989, Loma Prieta earthquake. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: S.D. Ellen, U.S. Geological Survey

  8. Earthquake Hazards Program: Earthquake Scenarios

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A scenario represents one realization of a potential future earthquake by assuming a particular magnitude, location, and fault-rupture geometry and estimating...

  9. Earthquakes in Arkansas and vicinity 1699-2010

    Science.gov (United States)

    Dart, Richard L.; Ausbrooks, Scott M.

    2011-01-01

    This map summarizes approximately 300 years of earthquake activity in Arkansas. It is one in a series of similar State earthquake history maps. Work on the Arkansas map was done in collaboration with the Arkansas Geological Survey. The earthquake data plotted on the map are from several sources: the Arkansas Geological Survey, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Mississippi Department of Environmental Quality. In addition to earthquake locations, other materials presented include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Arkansas and parts of adjacent states. Arkansas has undergone a number of significant felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Arkansas and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.

  10. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes.

  11. Connecting slow earthquakes to huge earthquakes

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes.

  12. Use of certain geology-engineering and geophysical parameters of rock in certain sectors of Kyzykkum for estimating the increase in earthquake intensity

    Energy Technology Data Exchange (ETDEWEB)

    Dzhuraev, N.M.; Tillyabaev, R.A.; Tuichieva, M.A.

    1979-01-01

    An examination is made of the relationship of increases in earthquake intensity (..delta..I) to density (omicron), velocity (..nu..) and the specific electric resistance (P) of near-surface deposits of the Zarafshan sector. A table of such values is presented. 4 references, 1 table.

  13. Is Earthquake Triggering Driven by Small Earthquakes?

    CERN Document Server

    Helmstetter, A

    2002-01-01

    Using a catalog of seismicity for Southern California, we measure how the number of triggered earthquakes increases with the earthquake magnitude. The trade-off between this scaling and the distribution of earthquake magnitudes controls the relative role of small compared to large earthquakes. We show that seismicity triggering is driven by the smallest earthquakes, which trigger fewer aftershocks than larger earthquakes, but which are much more numerous. We propose that the non-trivial scaling of the number of aftershocks emerges from the fractal spatial distribution of aftershocks.

  14. Earthquakes in Mississippi and vicinity 1811-2010

    Science.gov (United States)

    Dart, Richard L.; Bograd, Michael B.E.

    2011-01-01

    This map summarizes two centuries of earthquake activity in Mississippi. Work on the Mississippi map was done in collaboration with the Mississippi Department of Environmental Quality, Office of Geology. The earthquake data plotted on the map are from several sources: the Mississippi Department of Environmental Quality, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Arkansas Geological Survey. In addition to earthquake locations, other materials include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Mississippi and parts of adjacent States. Mississippi has undergone a number of felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Mississippi and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.

  15. Predictable earthquakes?

    Science.gov (United States)

    Martini, D.

    2002-12-01

    acceleration) and global number of earthquake for this period from published literature which give us a great picture about the dynamical geophysical phenomena. Methodology: The computing of linear correlation coefficients gives us a chance to quantitatively characterise the relation among the data series, if we suppose a linear dependence in the first step. The correlation coefficients among the Earth's rotational acceleration and Z-orbit acceleration (perpendicular to the ecliptic plane) and the global number of the earthquakes were compared. The results clearly demonstrate the common feature of both the Earth's rotation and Earth's Z-acceleration around the Sun and also between the Earth's rotational acceleration and the earthquake number. This fact might means a strong relation among these phenomena. The mentioned rather strong correlation (r = 0.75) and the 29 year period (Saturn's synodic period) was clearly shown in the counted cross correlation function, which gives the dynamical characteristic of correlation, of Earth's orbital- (Z-direction) and rotational acceleration. This basic period (29 year) was also obvious in the earthquake number data sets with clear common features in time. Conclusion: The Core, which involves the secular variation of the Earth's magnetic field, is the only sufficiently mobile part of the Earth with a sufficient mass to modify the rotation which probably effects on the global time distribution of the earthquakes. Therefore it might means that the secular variation of the earthquakes is inseparable from the changes in Earth's magnetic field, i.e. the interior process of the Earth's core belongs to the dynamical state of the solar system. Therefore if the described idea is real the global distribution of the earthquakes in time is predictable.

  16. A review of recent advances in soil dynamics and geotechnical earthquake engineering%土动力学与土工抗震研究进展综述

    Institute of Scientific and Technical Information of China (English)

    刘汉龙

    2012-01-01

    In this paper, the recent advances in soil dynamics and geotechnical earthquake are summarized including soil dynamic properties and constitutive relation, geotechnical earthquake response analysis, soil dynamic testing, soil vibration liquefaction, soil earthquake permanent deformation, soil traffic loading properties, geotechnical aseismic measures and etc. The advantages and disadvantages of each method are discussed and compared and further research topics are suggested.%综述当前国内外土动力学与土工抗震方面的研究进展,包括土体动力特性与本构关系、土工地震反应分析、土体动力测试、土体振动液化、土体地震永久变形、交通荷载作用下土体动力特性和土工抗震措施等内容。对各种方法的优缺点进行比较和评述。进一步阐述今后的研究方向。

  17. The Road to Total Earthquake Safety

    Science.gov (United States)

    Frohlich, Cliff

    Cinna Lomnitz is possibly the most distinguished earthquake seismologist in all of Central and South America. Among many other credentials, Lomnitz has personally experienced the shaking and devastation that accompanied no fewer than five major earthquakes—Chile, 1939; Kern County, California, 1952; Chile, 1960; Caracas,Venezuela, 1967; and Mexico City, 1985. Thus he clearly has much to teach someone like myself, who has never even actually felt a real earthquake.What is this slim book? The Road to Total Earthquake Safety summarizes Lomnitz's May 1999 presentation at the Seventh Mallet-Milne Lecture, sponsored by the Society for Earthquake and Civil Engineering Dynamics. His arguments are motivated by the damage that occurred in three earthquakes—Mexico City, 1985; Loma Prieta, California, 1989; and Kobe, Japan, 1995. All three quakes occurred in regions where earthquakes are common. Yet in all three some of the worst damage occurred in structures located a significant distance from the epicenter and engineered specifically to resist earthquakes. Some of the damage also indicated that the structures failed because they had experienced considerable rotational or twisting motion. Clearly, Lomnitz argues, there must be fundamental flaws in the usually accepted models explaining how earthquakes generate strong motions, and how we should design resistant structures.

  18. Earthquake Loss Estimation Uncertainties

    Science.gov (United States)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Aleksander

    2013-04-01

    The paper addresses the reliability issues of strong earthquakes loss assessment following strong earthquakes with worldwide Systems' application in emergency mode. Timely and correct action just after an event can result in significant benefits in saving lives. In this case the information about possible damage and expected number of casualties is very critical for taking decision about search, rescue operations and offering humanitarian assistance. Such rough information may be provided by, first of all, global systems, in emergency mode. The experience of earthquakes disasters in different earthquake-prone countries shows that the officials who are in charge of emergency response at national and international levels are often lacking prompt and reliable information on the disaster scope. Uncertainties on the parameters used in the estimation process are numerous and large: knowledge about physical phenomena and uncertainties on the parameters used to describe them; global adequacy of modeling techniques to the actual physical phenomena; actual distribution of population at risk at the very time of the shaking (with respect to immediate threat: buildings or the like); knowledge about the source of shaking, etc. Needless to be a sharp specialist to understand, for example, that the way a given building responds to a given shaking obeys mechanical laws which are poorly known (if not out of the reach of engineers for a large portion of the building stock); if a carefully engineered modern building is approximately predictable, this is far not the case for older buildings which make up the bulk of inhabited buildings. The way population, inside the buildings at the time of shaking, is affected by the physical damage caused to the buildings is not precisely known, by far. The paper analyzes the influence of uncertainties in strong event parameters determination by Alert Seismological Surveys, of simulation models used at all stages from, estimating shaking intensity

  19. Hurricane Sandy and earthquakes

    OpenAIRE

    MAVASHEV BORIS; MAVASHEV IGOR

    2013-01-01

    Submit for consideration the connection between formation of a hurricane Sandy and earthquakes. As a rule, weather anomalies precede and accompany earthquakes. The hurricane Sandy emerged 2 days prior to strong earthquakes that occurred in the area. And the trajectory of the hurricane Sandy matched the epicenter of the earthquakes. Possibility of early prediction of natural disasters will minimize the moral and material damage.

  20. Earthquake Education in Prime Time

    Science.gov (United States)

    de Groot, R.; Abbott, P.; Benthien, M.

    2004-12-01

    Since 2001, the Southern California Earthquake Center (SCEC) has collaborated on several video production projects that feature important topics related to earthquake science, engineering, and preparedness. These projects have also fostered many fruitful and sustained partnerships with a variety of organizations that have a stake in hazard education and preparedness. The Seismic Sleuths educational video first appeared in the spring season 2001 on Discovery Channel's Assignment Discovery. Seismic Sleuths is based on a highly successful curriculum package developed jointly by the American Geophysical Union and The Department of Homeland Security Federal Emergency Management Agency. The California Earthquake Authority (CEA) and the Institute for Business and Home Safety supported the video project. Summer Productions, a company with a reputation for quality science programming, produced the Seismic Sleuths program in close partnership with scientists, engineers, and preparedness experts. The program has aired on the National Geographic Channel as recently as Fall 2004. Currently, SCEC is collaborating with Pat Abbott, a geology professor at San Diego State University (SDSU) on the video project Written In Stone: Earthquake Country - Los Angeles. Partners on this project include the California Seismic Safety Commission, SDSU, SCEC, CEA, and the Insurance Information Network of California. This video incorporates live-action demonstrations, vivid animations, and a compelling host (Abbott) to tell the story about earthquakes in the Los Angeles region. The Written in Stone team has also developed a comprehensive educator package that includes the video, maps, lesson plans, and other supporting materials. We will present the process that facilitates the creation of visually effective, factually accurate, and entertaining video programs. We acknowledge the need to have a broad understanding of the literature related to communication, media studies, science education, and

  1. The effects of earthquake measurement concepts and magnitude anchoring on individuals' perceptions of earthquake risk

    Science.gov (United States)

    Celsi, R.; Wolfinbarger, M.; Wald, D.

    2005-01-01

    The purpose of this research is to explore earthquake risk perceptions in California. Specifically, we examine the risk beliefs, feelings, and experiences of lay, professional, and expert individuals to explore how risk is perceived and how risk perceptions are formed relative to earthquakes. Our results indicate that individuals tend to perceptually underestimate the degree that earthquake (EQ) events may affect them. This occurs in large part because individuals' personal felt experience of EQ events are generally overestimated relative to experienced magnitudes. An important finding is that individuals engage in a process of "cognitive anchoring" of their felt EQ experience towards the reported earthquake magnitude size. The anchoring effect is moderated by the degree that individuals comprehend EQ magnitude measurement and EQ attenuation. Overall, the results of this research provide us with a deeper understanding of EQ risk perceptions, especially as they relate to individuals' understanding of EQ measurement and attenuation concepts. ?? 2005, Earthquake Engineering Research Institute.

  2. Tohoku earthquake: a surprise?

    CERN Document Server

    Kagan, Yan Y

    2011-01-01

    We consider three issues related to the 2011 Tohoku mega-earthquake: (1) how to evaluate the earthquake maximum size in subduction zones, (2) what is the repeat time for the largest earthquakes in Tohoku area, and (3) what are the possibilities of short-term forecasts during the 2011 sequence. There are two quantitative methods which can be applied to estimate the maximum earthquake size: a statistical analysis of the available earthquake record and the moment conservation principle. The latter technique studies how much of the tectonic deformation rate is released by earthquakes. For the subduction zones, the seismic or historical record is not sufficient to provide a reliable statistical measure of the maximum earthquake. The moment conservation principle yields consistent estimates of maximum earthquake size: for all the subduction zones the magnitude is of the order 9.0--9.7, and for major subduction zones the maximum earthquake size is statistically indistinguishable. Starting in 1999 we have carried out...

  3. New geological perspectives on earthquake recurrence models

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, D.P. [Geological Survey, Menlo Park, CA (United States)

    1997-02-01

    In most areas of the world the record of historical seismicity is too short or uncertain to accurately characterize the future distribution of earthquakes of different sizes in time and space. Most faults have not ruptured once, let alone repeatedly. Ultimately, the ability to correctly forecast the magnitude, location, and probability of future earthquakes depends on how well one can quantify the past behavior of earthquake sources. Paleoseismological trenching of active faults, historical surface ruptures, liquefaction features, and shaking-induced ground deformation structures provides fundamental information on the past behavior of earthquake sources. These studies quantify (a) the timing of individual past earthquakes and fault slip rates, which lead to estimates of recurrence intervals and the development of recurrence models and (b) the amount of displacement during individual events, which allows estimates of the sizes of past earthquakes on a fault. When timing and slip per event are combined with information on fault zone geometry and structure, models that define individual rupture segments can be developed. Paleoseismicity data, in the form of timing and size of past events, provide a window into the driving mechanism of the earthquake engine--the cycle of stress build-up and release.

  4. Landslides triggered by the 2004 Niigata Ken Chuetsu, Japan, earthquake

    Science.gov (United States)

    Kieffer, D.S.; Jibson, R.; Rathje, E.M.; Kelson, K.

    2006-01-01

    The Niigata Ken Chuetsu earthquake triggered a vast number of lanslides in the epicentral region. Landslide concentrations were among the highest ever measured after an earthquake, and most of the triggered landslides were relatively shallow failures parallel to the steep slope faces. The dense concentration of landslides can be attributed to steep local topography in relatively weak geologic units, adverse hydrologic conditions caused by significant antecedent rainfall, and very strong shaking. Many of the landslides could be discerned from high-resolution satellite imagery acquired immediately after the earthquake. ?? 2006, Earthquake Engineering Research Institute.

  5. 基于性能的地震工程理念的研究现状与分析%Research and Development of Performance-based Earthquake Engineering

    Institute of Scientific and Technical Information of China (English)

    贾立哲; 段忠东

    2011-01-01

    经过十几年的研究,基于性能的地震工程理念已逐步走向成熟,变得更加完善.其中,基于性能的抗震性能评估方法,经历了从基于历史经验的预测方法到半经验半理论方法,再到今天基于定量理论计算方法的转变;同时也完成了从确定性理论到不确定性理论预测方法的过渡.而对于地面运动强度的量测指标而言,地震动参数正在逐步取代地震烈度.在基于性能的抗震设计方面,主要针对直接基于位移的设计方法,对其从最初基于替代结构的、需要反复迭代的设计方法到无需迭代、通过位移和延性双控的设计方法的转变过程,并对亟待开展基于不确定性理论的设计方法进行了系统的阐述.%Performance-based earthquake engineering (PBEE) past the age of adolescence and become a widely accepted theory.Earthquake performance assessment methodology developed from empirical method and semi-empirical method to theory of quantitative calculation, and deterministic performance assessment method was successively replaced with uncertain assessment method. In additional, ground motion parameter present a preferable indicator of ground motion intensity than earthquake intensity ( Modified Mercalli Intensity, MMI). The direct displacement-based design method of performance-based seismic design theory transited from successive iteration "substitute structure" approach to the displacement and ductility dual-control method, and uncertain theory-based design method is especially significance.

  6. Earthquake Damage - General

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An earthquake is the motion or trembling of the ground produced by sudden displacement of rock in the Earth's crust. Earthquakes result from crustal strain,...

  7. Earthquake Notification Service

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Earthquake Notification Service (ENS) is a free service that sends you automated notifications to your email or cell phone when earthquakes happen.

  8. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  9. Earthquakes in Southern California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — There have been many earthquake occurrences in Southern California. This set of slides shows earthquake damage from the following events: Imperial Valley, 1979,...

  10. The desing of an earthquake immune mounting system for a building

    OpenAIRE

    Aldasoro Manero, Nekane

    2011-01-01

    The focus of this project is to provide the reader with insight into the influence of earthquakes on buildings, and show how, over time, seismologists and engineers have developed designs and insulations to reduce significantly the effects produced by earthquakes. To provide that vision, the project will consist on several parts where different concepts will be explained. • Introduction to earthquakes: To understand the influence of earthquakes on structures, in the first part it wil...

  11. POST Earthquake Debris Management - AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  12. EARTHQUAKE SCALING PARADOX

    Institute of Scientific and Technical Information of China (English)

    WU ZHONG-LIANG

    2001-01-01

    Two measures of earthquakes, the seismic moment and the broadband radiated energy, show completely different scaling relations. For shallow earthquakes worldwide from January 1987 to December 1998, the frequency distribution of the seismic moment shows a clear kink between moderate and large earthquakes, as revealed by previous works. But the frequency distribution of the broadband radiated energy shows a single power law, a classical Gutenberg-Richter relation. This inconsistency raises a paradox in the self-organized criticality model of earthquakes.

  13. Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  14. Earthquake and Schools. [Videotape].

    Science.gov (United States)

    Federal Emergency Management Agency, Washington, DC.

    Designing schools to make them more earthquake resistant and protect children from the catastrophic collapse of the school building is discussed in this videotape. It reveals that 44 of the 50 U.S. states are vulnerable to earthquake, but most schools are structurally unprepared to take on the stresses that earthquakes exert. The cost to the…

  15. School Safety and Earthquakes.

    Science.gov (United States)

    Dwelley, Laura; Tucker, Brian; Fernandez, Jeanette

    1997-01-01

    A recent assessment of earthquake risk to Quito, Ecuador, concluded that many of its public schools are vulnerable to collapse during major earthquakes. A subsequent examination of 60 buildings identified 15 high-risk buildings. These schools were retrofitted to meet standards that would prevent injury even during Quito's largest earthquakes. US…

  16. Redefining Earthquakes and the Earthquake Machine

    Science.gov (United States)

    Hubenthal, Michael; Braile, Larry; Taber, John

    2008-01-01

    The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models…

  17. Redefining Earthquakes and the Earthquake Machine

    Science.gov (United States)

    Hubenthal, Michael; Braile, Larry; Taber, John

    2008-01-01

    The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models…

  18. Operational earthquake forecasting can enhance earthquake preparedness

    Science.gov (United States)

    Jordan, T.H.; Marzocchi, W.; Michael, A.J.; Gerstenberger, M.C.

    2014-01-01

    We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Operational earthquake forecasting (OEF) is the dissemination of authoritative information about these time‐dependent probabilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazard—ground‐motion exceedance probabilities as well as short‐term rupture probabilities—in concert with the long‐term forecasts of probabilistic seismic‐hazard analysis (PSHA).

  19. Developing an Internet Oriented Platform for Earthquake Engineering Application and Web-based Virtual Reality Simulation System for Seismic hazards: Towards Disaster Mitigation in Metropolises

    Directory of Open Access Journals (Sweden)

    Ali Alaghehbandian

    2003-04-01

    Full Text Available This paper reviews the state of the art on risk communication to the public, with an emphasis on simulation of seismic hazards using VRML. Rapid growth computer technologies, especially the Internet provide human beings new measures to deal with engineering and social problems which were hard to solve in traditional ways. This paper presents a prototype of an application platform based on the Internet using VR (Virtual Reality for civil engineering considering building an information system of risk communication for seismic hazards and at the moment in the case of bridge structure.

  20. Estimation of Natural Frequencies During Earthquakes

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A

    1997-01-01

    This paper presents two different recursive prediction error method (RPEM} implementations of multivariate Auto-Regressive Moving- Average (ARMAV) models for identification of a time variant civil engineering structure subject to an earthquake. The two techniques are tested on measurements made...

  1. Ethical considerations for a better collaboration between architects and structural engineers: design of buildings with reinforced concrete frame systems in earthquake zones.

    Science.gov (United States)

    Hurol, Yonca

    2014-06-01

    Architects design building structures, although structural design is the profession of structural engineers. Thus, it is better for architects and structural engineers to collaborate starting from the initial phases of the architectural design. However, this is not very common because of the contradictory design processes and value systems held within the two professions. This article provides a platform upon which architects and structural engineers can resolve the value conflicts between them by analysing phases of the structural design of reinforced concrete frame systems in architecture, the criteria of the structural design for each phase and determining the conflicting values for each criterion. The results shown in the article demonstrate that the architectural design of structures is a complex process, which is based on contradictory values and value systems. Finally, the article suggests to architects and structural engineers to use Value Sensitive Design and to choose an appropriate team leader in order to resolve the unethical conflict between them and to avoid any unreasonable decision making.

  2. Earthquakes trigger the loss of groundwater biodiversity

    Science.gov (United States)

    Galassi, Diana M. P.; Lombardo, Paola; Fiasca, Barbara; di Cioccio, Alessia; di Lorenzo, Tiziana; Petitta, Marco; di Carlo, Piero

    2014-09-01

    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and ``ecosystem engineers'', we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems.

  3. Earthquakes trigger the loss of groundwater biodiversity.

    Science.gov (United States)

    Galassi, Diana M P; Lombardo, Paola; Fiasca, Barbara; Di Cioccio, Alessia; Di Lorenzo, Tiziana; Petitta, Marco; Di Carlo, Piero

    2014-09-03

    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and "ecosystem engineers", we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems.

  4. Earthquake Science: a New Start

    Institute of Scientific and Technical Information of China (English)

    Chen Yun-tai

    2009-01-01

    @@ Understanding the mechanisms which cause earthquakes and thus earthquake prediction, is inher-ently difficult in comparison to other physical phenom-ena. This is due to the inaccessibility of the Earth's inte-rior, the infrequency of large earthquakes, and the com-plexities of the physical processes involved. Conse-quently, in its broadest sense, earthquake science--the science of studying earthquake phenomena, is a com-prehensive and inter-disciplinary field. The disciplines involved in earthquake science include: traditional seismology, earthquake geodesy, earthquake geology, rock mechanics, complex system theory, and informa-tion and communication technologies related to earth-quake studies.

  5. Study on The Earthquake Disaster Reduction Information Management System and Its Application

    Directory of Open Access Journals (Sweden)

    Youhai Guan

    2011-02-01

    Full Text Available It is significant to scientifically carry out the urban earthquake disaster reduction. According to the features of China urban earthquake disaster reduction, this paper designed the urban earthquake disaster reduction information management system, which proposed a system design idea, system composition and function structure. The system adopted the object-oriented language VB6.0 and the component set ArcGIS Engine provided by ESRI for development. We applied a variety of information techniques (GIS and database for spatial information acquisition, analysis and computing, and drew up function modules corresponding to inquiry, spatial analysis, risk analysis and data management. By using this system we can achieve scientific management about the earthquake disaster information in storage and transportation engineering, draw up kinds of earthquake emergency decisions intellectually and make them visual, which improved the efficiency and velocity of earthquake emergency evidently, and assisted the decision-making system effectively for the earthquake emergency work .

  6. Seismogenic Structure Beneath Décollement Inferred from 2009/11/5 ML 6.2 Mingjian Earthquake in Central Taiwan

    OpenAIRE

    Che-Min Lin; Tao-Ming Chang; Kuo-Liang Wen; Chun-Hsiang Kuo; Hung-Hao Hsieh

    2014-01-01

    One decade after the 1999 Chi-Chi earthquake, central Taiwan experienced more strong ground shaking [Central Weather Bureau (CWB), intensity VII] induced by a ML 6.2 earthquake on 5th November 2009. This earthquake occurred in the Mingjian Township of Nantou County, only 12 km southwest of the Chi-Chi earthquake epicenter. The broadband microearthquake monitoring network operated by the National Center for Research on Earthquake Engineering (NCREE) observed numerous aftershocks in the five da...

  7. Lessons learned from the 1994 Northridge Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Eli, M.W.; Sommer, S.C. [Lawrence Livermore National Lab., CA (United States)

    1995-04-01

    Southern California has a history of major earthquakes and also has one of the largest metropolitan areas in the United States. The 1994 Northridge Earthquake challenged the industrial facilities and lifetime infrastructure in the northern Los Angeles (LA) area. Lawrence Livermore National Laboratory (LLNL) sent a team of engineers to conduct an earthquake damage investigation in the Northridge area, on a project funded jointly by the United States Nuclear Regulatory Commission (USNRC) and the United States Department of Energy (USDOE). Many of the structures, systems, and components (SSCs) and lifelines that suffered damage are similar to those found in nuclear power plants and in USDOE facilities. Lessons learned from these experiences can have some applicability at commercial nuclear power plants.

  8. Earthquakes and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.…

  9. More Earthquake Misery

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Less than four months after the devastation of the Wenchuan earthquake on May 12, another quake brings further death and destruction to southwest China on August 30, a 6.1-magnitude earthquake hit southwest China, the border of Sichuan Province and Yunnan Province. Panzhihua City, Huili County in Sichuan and Yuanmou County and Yongren County in Yunnan were worst hit.

  10. Bam Earthquake in Iran

    CERN Multimedia

    2004-01-01

    Following their request for help from members of international organisations, the permanent Mission of the Islamic Republic of Iran has given the following bank account number, where you can donate money to help the victims of the Bam earthquake. Re: Bam earthquake 235 - UBS 311264.35L Bubenberg Platz 3001 BERN

  11. Demand surge following earthquakes

    Science.gov (United States)

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  12. Modeling earthquake dynamics

    Science.gov (United States)

    Charpentier, Arthur; Durand, Marilou

    2015-07-01

    In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.

  13. Incorporating human-triggered earthquake risks into energy and water policies

    Science.gov (United States)

    Klose, C. D.; Seeber, L.; Jacob, K. H.

    2010-12-01

    A comprehensive understanding of earthquake risks in urbanized regions requires an accurate assessment of both urban vulnerabilities and hazards from earthquakes, including ones whose timing might be affected by human activities. Socioeconomic risks associated with human-triggered earthquakes are often misconstrued and receive little scientific, legal, and public attention. Worldwide, more than 200 damaging earthquakes, associated with industrialization and urbanization, were documented since the 20th century. Geomechanical pollution due to large-scale geoengineering activities can advance the clock of earthquakes, trigger new seismic events or even shot down natural background seismicity. Activities include mining, hydrocarbon production, fluid injections, water reservoir impoundments and deep-well geothermal energy production. This type of geohazard has impacts on human security on a regional and national level. Some planned or considered future engineering projects raise particularly strong concerns about triggered earthquakes, such as for instance, sequestration of carbon dioxide by injecting it deep underground and large-scale natural gas production in the Marcellus shale in the Appalacian basin. Worldwide examples of earthquakes are discussed, including their associated losses of human life and monetary losses (e.g., 1989 Newcastle and Volkershausen earthquakes, 2001 Killari earthquake, 2006 Basel earthquake, 2010 Wenchuan earthquake). An overview is given on global statistics of human-triggered earthquakes, including depths and time delay of triggering. Lastly, strategies are described, including risk mitigation measures such as urban planning adaptations and seismic hazard mapping.

  14. Earthquake forecast enrichment scores

    Directory of Open Access Journals (Sweden)

    Christine Smyth

    2012-03-01

    Full Text Available The Collaboratory for the Study of Earthquake Predictability (CSEP is a global project aimed at testing earthquake forecast models in a fair environment. Various metrics are currently used to evaluate the submitted forecasts. However, the CSEP still lacks easily understandable metrics with which to rank the universal performance of the forecast models. In this research, we modify a well-known and respected metric from another statistical field, bioinformatics, to make it suitable for evaluating earthquake forecasts, such as those submitted to the CSEP initiative. The metric, originally called a gene-set enrichment score, is based on a Kolmogorov-Smirnov statistic. Our modified metric assesses if, over a certain time period, the forecast values at locations where earthquakes have occurred are significantly increased compared to the values for all locations where earthquakes did not occur. Permutation testing allows for a significance value to be placed upon the score. Unlike the metrics currently employed by the CSEP, the score places no assumption on the distribution of earthquake occurrence nor requires an arbitrary reference forecast. In this research, we apply the modified metric to simulated data and real forecast data to show it is a powerful and robust technique, capable of ranking competing earthquake forecasts.

  15. Phase Transformations and Earthquakes

    Science.gov (United States)

    Green, H. W.

    2011-12-01

    Phase transformations have been cited as responsible for, or at least involved in, "deep" earthquakes for many decades (although the concept of "deep" has varied). In 1945, PW Bridgman laid out in detail the string of events/conditions that would have to be achieved for a solid/solid transformation to lead to a faulting instability, although he expressed pessimism that the full set of requirements would be simultaneously achieved in nature. Raleigh and Paterson (1965) demonstrated faulting during dehydration of serpentine under stress and suggested dehydration embrittlement as the cause of intermediate depth earthquakes. Griggs and Baker (1969) produced a thermal runaway model of a shear zone under constant stress, culminating in melting, and proposed such a runaway as the origin of deep earthquakes. The discovery of Plate Tectonics in the late 1960s established the conditions (subduction) under which Bridgman's requirements for earthquake runaway in a polymorphic transformation could be possible in nature and Green and Burnley (1989) found that instability during the transformation of metastable olivine to spinel. Recent seismic correlation of intermediate-depth-earthquake hypocenters with predicted conditions of dehydration of antigorite serpentine and discovery of metastable olivine in 4 subduction zones, suggests strongly that dehydration embrittlement and transformation-induced faulting are the underlying mechanisms of intermediate and deep earthquakes, respectively. The results of recent high-speed friction experiments and analysis of natural fault zones suggest that it is likely that similar processes occur commonly during many shallow earthquakes after initiation by frictional failure.

  16. GEM - The Global Earthquake Model

    Science.gov (United States)

    Smolka, A.

    2009-04-01

    Over 500,000 people died in the last decade due to earthquakes and tsunamis, mostly in the developing world, where the risk is increasing due to rapid population growth. In many seismic regions, no hazard and risk models exist, and even where models do exist, they are intelligible only by experts, or available only for commercial purposes. The Global Earthquake Model (GEM) answers the need for an openly accessible risk management tool. GEM is an internationally sanctioned public private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) which will establish an authoritative standard for calculating and communicating earthquake hazard and risk, and will be designed to serve as the critical instrument to support decisions and actions that reduce earthquake losses worldwide. GEM will integrate developments on the forefront of scientific and engineering knowledge of earthquakes, at global, regional and local scale. The work is organized in three modules: hazard, risk, and socio-economic impact. The hazard module calculates probabilities of earthquake occurrence and resulting shaking at any given location. The risk module calculates fatalities, injuries, and damage based on expected shaking, building vulnerability, and the distribution of population and of exposed values and facilities. The socio-economic impact module delivers tools for making educated decisions to mitigate and manage risk. GEM will be a versatile online tool, with open source code and a map-based graphical interface. The underlying data will be open wherever possible, and its modular input and output will be adapted to multiple user groups: scientists and engineers, risk managers and decision makers in the public and private sectors, and the public-at- large. GEM will be the first global model for seismic risk assessment at a national and regional scale, and aims to achieve broad scientific participation and independence. Its development will occur in a

  17. Route Selection Combining Geology and Environmental Geology for Railway Engineering in High -intensity Earthquake Zone%高烈度地震区铁路工程地质与环境地质综合选线

    Institute of Scientific and Technical Information of China (English)

    卿三惠; 杨英; 张明红

    2013-01-01

    Research purposes:For the area of railway from Dali to Lijiang in Yunnan,combining the features of complex seismic geological conditions,highly required environmental protection and difficult route selection therein,the related study is carried out so as to establish,and then promote the technical system for the route selection combining geology and environmental geology for railway engineering in high -intensity earthquake zone. Research conclusions:This paper systemically summarizes the principle of the “route selection combining geology and environmental geology for railway engineering in high -intensity earthquake zone”.By the means of remote sensing interpretation,geological mapping,geophysical prospecting (by electricity,seismic waves,or magnetotellurics etc.), drilling exploration,hole testing,in -situ testing,indoor tests and other comprehensive prospecting technique,as well as seismic safety evaluation (including active fault identification),environmental effect appraisal,this complete system is constituted,which has an important value to promote.An optimal route scheme is selected through overall comparison among three schemes from the aspects of seismic geological conditions and environmental sensitive area,and then verified by engineering construction and practical operation to be scientific and reasonable,which not only protects the ecological environment to a maximum extent,but also includes the route into a “safe island”.With outstanding economic,social and environmental benefits,it is praised by experts from the Ministry of Environmental Protection asthe “Example of Route Selection Combining Engineering Geology and Environmental Geology Organically ”,accumulating experience for railway route selection in similar region.%研究目的:结合云南大理至丽江铁路区域地震地质条件复杂、环境保护要求高、铁路选线难度大等特点开展地质选线研究,建立高烈度地震区工地质与环境地质综合选

  18. Department Director's Fund for Earthquake Relief

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ On May 30,2008,NSFC Department of Chemical Sciences launched its Director's Fund Emergency Program"Technologies for the collection and analysis of the bacteria and viruses in the air of earthquake stricken areas",which was undertaken by Prof.Zhu Tong and his research group from the Environment and Health Research Center and the College of Environmental Sciences and Engineering of Peking University.

  19. Earthquake Disaster Management and Insurance

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    As one of the most powerful tools to reduce the earthquake loss, the Earthquake Disaster Management [EDM] and Insurance [EI] have been highlighted and have had a great progress in many countries in recent years. Earthquake disaster management includes a series of contents, such as earthquake hazard and risk analysis, vulnerability analysis of building and infrastructure, earthquake aware training, and building the emergency response system. EI, which has been included in EDM after this practice has been...

  20. Earthquakes and emergence

    Science.gov (United States)

    Earthquakes and emerging infections may not have a direct cause and effect relationship like tax evasion and jail, but new evidence suggests that there may be a link between the two human health hazards. Various media accounts have cited a massive 1993 earthquake in Maharashtra as a potential catalyst of the recent outbreak of plague in India that has claimed more than 50 lives and alarmed the world. The hypothesis is that the earthquake may have uprooted underground rat populations that carry the fleas infected with the bacterium that causes bubonic plague and can lead to the pneumonic form of the disease that is spread through the air.

  1. The Elmore Ranch and Superstition Hills earthquakes of 24 November 1987: Introduction to the special issue

    OpenAIRE

    Hanks, Thomas C.; Allen, Clarence R.

    1989-01-01

    On 24 November 1987, two significant earthquakes occurred along the southern San Jacinto fault zone and related structural elements in southern California, not far from the International Border. These two events, the Elmore Ranch earthquake (M = 6.2 at 0154 GMT) and the Superstition Hills earthquake (M = 6.6 at 1315 GMT, both moment magnitudes from Sipkin, 1989), and their aftershocks have yielded a rich harvest of geological, seismological, and engineering data pertinent to the cause and ...

  2. Tweet Earthquake Dispatch (TED)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS is offering earthquake alerts via two twitter accounts: @USGSted and @USGSBigQuakes. On average, @USGSted and @USGSBigQuakes will produce about one tweet...

  3. 1988 Spitak Earthquake Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1988 Spitak Earthquake database is an extensive collection of geophysical and geological data, maps, charts, images and descriptive text pertaining to the...

  4. Earthquake Damage to Schools

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of slides graphically illustrates the potential danger that major earthquakes pose to school structures and to the children and adults who happen to be...

  5. Injection-induced earthquakes.

    Science.gov (United States)

    Ellsworth, William L

    2013-07-12

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  6. Injection-induced earthquakes

    Science.gov (United States)

    Ellsworth, William L.

    2013-01-01

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  7. Soft Schemes for Earthquake-Geotechnical Dilemmas

    Directory of Open Access Journals (Sweden)

    Silvia García

    2013-01-01

    Full Text Available Models of real systems are of fundamental importance in virtually all disciplines because they can be useful for gaining a better understanding of the organism. Models make it possible to predict or simulate a system’s behavior; in earthquake geotechnical engineering, they are required for the design of new constructions and for the analysis of those that exist. Since the quality of the model typically determines an upper bound on the quality of the final problem solution, modeling is often the bottleneck in the development of the whole system. As a consequence, a strong demand for advanced modeling and identification schemes arises. During the past years, soft computing techniques have been used for developing unconventional procedures to study earthquake geotechnical problems. Considering the strengths and weaknesses of the algorithms, in this work a criterion to leverage the best features to develop efficient hybrid models is presented. Via the development of schemes for integrating data-driven and theoretical procedures, the soft computing tools are presented as reliable earthquake geotechnical models. This assertion is buttressed using a broad history of seismic events and monitored responses in complicated soils systems. Combining the versatility of fuzzy logic to represent qualitative knowledge, the data-driven efficiency of neural networks to provide fine-tuned adjustments via local search, and the ability of genetic algorithms to perform efficient coarse-granule global search, the earthquake geotechnical problems are observed, analyzed, and solved under a holistic approach.

  8. Quantification of social contributions to earthquake mortality

    Science.gov (United States)

    Main, I. G.; NicBhloscaidh, M.; McCloskey, J.; Pelling, M.; Naylor, M.

    2013-12-01

    Death tolls in earthquakes, which continue to grow rapidly, are the result of complex interactions between physical effects, such as strong shaking, and the resilience of exposed populations and supporting critical infrastructures and institutions. While it is clear that the social context in which the earthquake occurs has a strong effect on the outcome, the influence of this context can only be exposed if we first decouple, as much as we can, the physical causes of mortality from our consideration. (Our modelling assumes that building resilience to shaking is a social factor governed by national wealth, legislation and enforcement and governance leading to reduced levels of corruption.) Here we attempt to remove these causes by statistically modelling published mortality, shaking intensity and population exposure data; unexplained variance from this physical model illuminates the contribution of socio-economic factors to increasing earthquake mortality. We find that this variance partitions countries in terms of basic socio-economic measures and allows the definition of a national vulnerability index identifying both anomalously resilient and anomalously vulnerable countries. In many cases resilience is well correlated with GDP; people in the richest countries are unsurprisingly safe from even the worst shaking. However some low-GDP countries rival even the richest in resilience, showing that relatively low cost interventions can have a positive impact on earthquake resilience and that social learning between these countries might facilitate resilience building in the absence of expensive engineering interventions.

  9. Estimating surface faulting impacts from the shakeout scenario earthquake

    Science.gov (United States)

    Treiman, J.A.; Pontib, D.J.

    2011-01-01

    An earthquake scenario, based on a kinematic rupture model, has been prepared for a Mw 7.8 earthquake on the southern San Andreas Fault. The rupture distribution, in the context of other historic large earthquakes, is judged reasonable for the purposes of this scenario. This model is used as the basis for generating a surface rupture map and for assessing potential direct impacts on lifelines and other infrastructure. Modeling the surface rupture involves identifying fault traces on which to place the rupture, assigning slip values to the fault traces, and characterizing the specific displacements that would occur to each lifeline impacted by the rupture. Different approaches were required to address variable slip distribution in response to a variety of fault patterns. Our results, involving judgment and experience, represent one plausible outcome and are not predictive because of the variable nature of surface rupture. ?? 2011, Earthquake Engineering Research Institute.

  10. Assessment of Structural Resistance of building 4862 to Earthquake and Tornado Forces [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    METCALF, I.L.

    1999-12-06

    This report presents the results of work done for Hanford Engineering Laboratory under contract Y213-544-12662. LATA performed an assessment of building 4862 resistance to earthquake and tornado forces.

  11. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  12. Earthquake and Geothermal Energy

    CERN Document Server

    Kapoor, Surya Prakash

    2013-01-01

    The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

  13. Rupture, waves and earthquakes

    Science.gov (United States)

    UENISHI, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but “extraordinary” phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable. PMID:28077808

  14. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  15. Recurrence Statistics of Great Earthquakes

    CERN Document Server

    Ben-Naim, E; Johnson, P A

    2013-01-01

    We investigate the sequence of great earthquakes over the past century. To examine whether the earthquake record includes temporal clustering, we identify aftershocks and remove those from the record. We focus on the recurrence time, defined as the time between two consecutive earthquakes. We study the variance in the recurrence time and the maximal recurrence time. Using these quantities, we compare the earthquake record with sequences of random events, generated by numerical simulations, while systematically varying the minimal earthquake magnitude Mmin. Our analysis shows that the earthquake record is consistent with a random process for magnitude thresholds 7.0<=Mmin<=8.3, where the number of events is larger. Interestingly, the earthquake record deviates from a random process at magnitude threshold 8.4<=Mmin<= 8.5, where the number of events is smaller; however, this deviation is not strong enough to conclude that great earthquakes are clustered. Overall, the findings are robust both qualitat...

  16. Earthquake Damage to Transportation Systems

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Earthquakes represent one of the most destructive natural hazards known to man. A serious result of large-magnitude earthquakes is the disruption of transportation...

  17. Earthquakes, March-April 1989

    Science.gov (United States)

    Person, W.J.

    1989-01-01

    The first major earthquake (7.0-7.9) of the year hit Mexico on April 25, killing three people and causing some damage. Earthquake-related deaths were also reported from Malawi, China, and New Britain. 

  18. Early earthquakes of the Americas

    Institute of Scientific and Technical Information of China (English)

    Niu Zhijun

    2006-01-01

    @@ In recent decades the science of seismology,in particular the study of individual earthquakes, has expanded dramatically. A seismologist can look for evidence of past earthquakes in the material remains that have been excavated by archaeologists.

  19. The Alaska earthquake, March 27, 1964: lessons and conclusions

    Science.gov (United States)

    Eckel, Edwin B.

    1970-01-01

    One of the greatest earthquakes of all time struck south-central Alaska on March 27, 1964. Strong motion lasted longer than for most recorded earthquakes, and more land surface was dislocated, vertically and horizontally, than by any known previous temblor. Never before were so many effects on earth processes and on the works of man available for study by scientists and engineers over so great an area. The seismic vibrations, which directly or indirectly caused most of the damage, were but surface manifestations of a great geologic event-the dislocation of a huge segment of the crust along a deeply buried fault whose nature and even exact location are still subjects for speculation. Not only was the land surface tilted by the great tectonic event beneath it, with resultant seismic sea waves that traversed the entire Pacific, but an enormous mass of land and sea floor moved several tens of feet horizontally toward the Gulf of Alaska. Downslope mass movements of rock, earth, and snow were initiated. Subaqueous slides along lake shores and seacoasts, near-horizontal movements of mobilized soil (“landspreading”), and giant translatory slides in sensitive clay did the most damage and provided the most new knowledge as to the origin, mechanics, and possible means of control or avoidance of such movements. The slopes of most of the deltas that slid in 1964, and that produced destructive local waves, are still as steep or steeper than they were before the earthquake and hence would be unstable or metastable in the event of another great earthquake. Rockslide avalanches provided new evidence that such masses may travel on cushions of compressed air, but a widely held theory that glaciers surge after an earthquake has not been substantiated. Innumerable ground fissures, many of them marked by copious emissions of water, caused much damage in towns and along transportation routes. Vibration also consolidated loose granular materials. In some coastal areas, local

  20. Improving the Earthquake Resilience of Buildings The worst case approach

    CERN Document Server

    Takewaki, Izuru; Fujita, Kohei

    2013-01-01

    Engineers are always interested in the worst-case scenario. One of the most important and challenging missions of structural engineers may be to narrow the range of unexpected incidents in building structural design. Redundancy, robustness and resilience play an important role in such circumstances. Improving the Earthquake Resilience of Buildings: The worst case approach discusses the importance of worst-scenario approach for improved earthquake resilience of buildings and nuclear reactor facilities. Improving the Earthquake Resilience of Buildings: The worst case approach consists of two parts. The first part deals with the characterization and modeling of worst or critical ground motions on inelastic structures and the related worst-case scenario in the structural design of ordinary simple building structures. The second part of the book focuses on investigating the worst-case scenario for passively controlled and base-isolated buildings. This allows for detailed consideration of a range of topics includin...

  1. Australia: historical earthquake studies

    Directory of Open Access Journals (Sweden)

    K. McCue

    2004-06-01

    Full Text Available Historical studies of earthquakes in Australia using information dating back to 1788 have been comprehensive, if not exhaustive. Newspapers have been the main source of historical earthquake studies. A brief review is given here with an introduction to the pre-European aboriginal dreamtime information. Some of the anecdotal information of the last two centuries has been compiled as isoseismal maps. Relationships between isoseismal radii and magnitude have been established using post-instrumental data allowing magnitudes to be assigned to the pre-instrumental data, which can then be incorporated into the national earthquake database. The studies have contributed to hazard analyses for the building codes and stimulated research into microzonation and paleo-seismology.

  2. Initiatives to Reduce Earthquake Risk of Developing Countries

    Science.gov (United States)

    Tucker, B. E.

    2008-12-01

    The seventeen-year-and-counting history of the Palo Alto-based nonprofit organization GeoHazards International (GHI) is the story of many initiatives within a larger initiative to increase the societal impact of geophysics and civil engineering. GHI's mission is to reduce death and suffering due to earthquakes and other natural hazards in the world's most vulnerable communities through preparedness, mitigation and advocacy. GHI works by raising awareness in these communities about their risk and about affordable methods to manage it, identifying and strengthening institutions in these communities to manage their risk, and advocating improvement in natural disaster management. Some of GHI's successful initiatives include: (1) creating an earthquake scenario for Quito, Ecuador that describes in lay terms the consequences for that city of a probable earthquake; (2) improving the curricula of Pakistani university courses about seismic retrofitting; (3) training employees of the Public Works Department of Delhi, India on assessing the seismic vulnerability of critical facilities such as a school, a hospital, a police headquarters, and city hall; (4) assessing the vulnerability of the Library of Tibetan Works and Archives in Dharamsala, India; (5) developing a seismic hazard reduction plan for a nonprofit organization in Kathmandu, Nepal that works to manage Nepal's seismic risk; and (6) assisting in the formulation of a resolution by the Council of the Organization for Economic Cooperation and Development (OECD) to promote school earthquake safety among OECD member countries. GHI's most important resource, in addition to its staff and Board of Trustees, is its members and volunteer advisors, who include some of the world's leading earth scientists, earthquake engineers, urban planners and architects, from the academic, public, private and nonprofit sectors. GHI is planning several exciting initiatives in the near future. One would oversee the design and construction of

  3. Sensing the earthquake

    Science.gov (United States)

    Bichisao, Marta; Stallone, Angela

    2017-04-01

    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  4. What is a surprise earthquake? The example of the 2002, San Giuliano (Italy event

    Directory of Open Access Journals (Sweden)

    M. Mucciarelli

    2005-06-01

    Full Text Available Both in scientific literature and in the mass media, some earthquakes are defined as «surprise earthquakes». Based on his own judgment, probably any geologist, seismologist or engineer may have his own list of past «surprise earthquakes». This paper tries to quantify the underlying individual perception that may lead a scientist to apply such a definition to a seismic event. The meaning is different, depending on the disciplinary approach. For geologists, the Italian database of seismogenic sources is still too incomplete to allow for a quantitative estimate of the subjective degree of belief. For seismologists, quantification is possible defining the distance between an earthquake and its closest previous neighbor. Finally, for engineers, the San Giuliano quake could not be considered a surprise, since probabilistic site hazard estimates reveal that the change before and after the earthquake is just 4%.

  5. Indonesian Earthquake Decision Support System

    CERN Document Server

    Warnars, Spits

    2010-01-01

    Earthquake DSS is an information technology environment which can be used by government to sharpen, make faster and better the earthquake mitigation decision. Earthquake DSS can be delivered as E-government which is not only for government itself but in order to guarantee each citizen's rights for education, training and information about earthquake and how to overcome the earthquake. Knowledge can be managed for future use and would become mining by saving and maintain all the data and information about earthquake and earthquake mitigation in Indonesia. Using Web technology will enhance global access and easy to use. Datawarehouse as unNormalized database for multidimensional analysis will speed the query process and increase reports variation. Link with other Disaster DSS in one national disaster DSS, link with other government information system and international will enhance the knowledge and sharpen the reports.

  6. Episodic tremor triggers small earthquakes

    Science.gov (United States)

    Balcerak, Ernie

    2011-08-01

    It has been suggested that episodic tremor and slip (ETS), the weak shaking not associated with measurable earthquakes, could trigger nearby earthquakes. However, this had not been confirmed until recently. Vidale et al. monitored seismicity in the 4-month period around a 16-day episode of episodic tremor and slip in March 2010 in the Cascadia region. They observed five small earthquakes within the subducting slab during the ETS episode. They found that the timing and locations of earthquakes near the tremor suggest that the tremor and earthquakes are related. Furthermore, they observed that the rate of earthquakes across the area was several times higher within 2 days of tremor activity than at other times, adding to evidence of a connection between tremor and earthquakes. (Geochemistry, Geophysics, Geosystems, doi:10.1029/2011GC003559, 2011)

  7. ALMA measures Calama earthquake

    Science.gov (United States)

    Brito, R.; Shillue, B.

    2010-04-01

    On 4 March 2010, the ALMA system response to an extraordinarily large disturbance was measured when a magnitude 6.3 earthquake struck near Calama, Chile, relatively close to the ALMA site. Figures 1 through 4 demonstrate the remarkable performance of the ALMA system to a huge disturbance that was more than 100 times the specification for correction accuracy.

  8. The HayWired earthquake scenario—Earthquake hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-01-01

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  9. A preliminary report on the Great Wenchuan Earthquake

    Science.gov (United States)

    Wang, Zifa

    2008-06-01

    The May 12, 2008 Great Wenchuan Earthquake has resulted in more than 68,858 deaths and losses in the hundreds of billions RMB as of May 30, 2008, and these numbers will undoubtedly increase as more information becomes available on the extent of the event. Immediately after the earthquake, the China Earthquake Administration (CEA) responded quickly by sending teams of experts to the affected region, eventually including over 60 staff members from the Institute of Engineering Mechanics (IEM). This paper reports preliminary information that has been gathered in the first 18 days after the event, covering seismicity, search and rescue efforts, observed ground motions, and damage and loss estimates. The extensive field investigation has revealed a number of valuable findings that could be useful in improving research in earthquake engineering in the future. Once again, this earthquake has shown that the vertical component of ground motion is as significant as horizontal ground motions in the near-source area. Finally, note that as more information is gathered, the numbers reported in this paper will need to be adjusted accordingly.

  10. Earthquake Hazard and the Environmental Seismic Intensity (ESI) Scale

    Science.gov (United States)

    Serva, Leonello; Vittori, Eutizio; Comerci, Valerio; Esposito, Eliana; Guerrieri, Luca; Michetti, Alessandro Maria; Mohammadioun, Bagher; Mohammadioun, Georgianna C.; Porfido, Sabina; Tatevossian, Ruben E.

    2016-05-01

    The main objective of this paper was to introduce the Environmental Seismic Intensity scale (ESI), a new scale developed and tested by an interdisciplinary group of scientists (geologists, geophysicists and seismologists) in the frame of the International Union for Quaternary Research (INQUA) activities, to the widest community of earth scientists and engineers dealing with seismic hazard assessment. This scale defines earthquake intensity by taking into consideration the occurrence, size and areal distribution of earthquake environmental effects (EEE), including surface faulting, tectonic uplift and subsidence, landslides, rock falls, liquefaction, ground collapse and tsunami waves. Indeed, EEEs can significantly improve the evaluation of seismic intensity, which still remains a critical parameter for a realistic seismic hazard assessment, allowing to compare historical and modern earthquakes. Moreover, as shown by recent moderate to large earthquakes, geological effects often cause severe damage"; therefore, their consideration in the earthquake risk scenario is crucial for all stakeholders, especially urban planners, geotechnical and structural engineers, hazard analysts, civil protection agencies and insurance companies. The paper describes background and construction principles of the scale and presents some case studies in different continents and tectonic settings to illustrate its relevant benefits. ESI is normally used together with traditional intensity scales, which, unfortunately, tend to saturate in the highest degrees. In this case and in unpopulated areas, ESI offers a unique way for assessing a reliable earthquake intensity. Finally, yet importantly, the ESI scale also provides a very convenient guideline for the survey of EEEs in earthquake-stricken areas, ensuring they are catalogued in a complete and homogeneous manner.

  11. Understanding Earthquake Hazard & Disaster in Himalaya - A Perspective on Earthquake Forecast in Himalayan Region of South Central Tibet

    Science.gov (United States)

    Shanker, D.; Paudyal, ,; Singh, H.

    2010-12-01

    It is not only the basic understanding of the phenomenon of earthquake, its resistance offered by the designed structure, but the understanding of the socio-economic factors, engineering properties of the indigenous materials, local skill and technology transfer models are also of vital importance. It is important that the engineering aspects of mitigation should be made a part of public policy documents. Earthquakes, therefore, are and were thought of as one of the worst enemies of mankind. Due to the very nature of release of energy, damage is evident which, however, will not culminate in a disaster unless it strikes a populated area. The word mitigation may be defined as the reduction in severity of something. The Earthquake disaster mitigation, therefore, implies that such measures may be taken which help reduce severity of damage caused by earthquake to life, property and environment. While “earthquake disaster mitigation” usually refers primarily to interventions to strengthen the built environment, and “earthquake protection” is now considered to include human, social and administrative aspects of reducing earthquake effects. It should, however, be noted that reduction of earthquake hazards through prediction is considered to be the one of the effective measures, and much effort is spent on prediction strategies. While earthquake prediction does not guarantee safety and even if predicted correctly the damage to life and property on such a large scale warrants the use of other aspects of mitigation. While earthquake prediction may be of some help, mitigation remains the main focus of attention of the civil society. Present study suggests that anomalous seismic activity/ earthquake swarm existed prior to the medium size earthquakes in the Nepal Himalaya. The mainshocks were preceded by the quiescence period which is an indication for the occurrence of future seismic activity. In all the cases, the identified episodes of anomalous seismic activity were

  12. Listening to Earthquakes with Infrasound

    Science.gov (United States)

    Mucek, A. E.; Langston, C. A.

    2011-12-01

    A tripartite infrasound array was installed to listen to earthquakes occurring along the Guy-Greenbrier fault in Arkansas. The active earthquake swarm is believed to be caused by deep waste water injections and will allow us to explain the mechanisms causing earthquake "booms" that have been heard during an earthquake. The array has an aperture of 50 meters and is installed next to the X301 seismograph station run by the Center for Earthquake Research and Information (CERI). This arrangement allows simultaneous recording of seismic and acoustic changes from the arrival of an earthquake. Other acoustic and seismic sources that have been found include thunder from thunderstorms, gunshots, quarry explosions and hydraulic fracturing activity from the local gas wells. The duration of the experiment is from the last week of June to the last week of September 2011. During the first month and a half, seven local earthquakes were recorded, along with numerous occurrences of the other infrasound sources. Phase arrival times of the recorded waves allow us to estimate wave slowness and azimuth of infrasound events. Using these two properties, we can determine whether earthquake "booms" occur at a site from the arrival of the P-wave or whether the earthquake "booms" occur elsewhere and travel through the atmosphere. Preliminary results show that the infrasound correlates well to the ground motion during an earthquake for frequencies below 15 Hertz.

  13. Stochastic nature of earthquake ground motion

    Science.gov (United States)

    Kostić, Srđan; Vasović, Nebojša; Perc, Matjaž; Toljić, Marinko; Nikolić, Dobrica

    2013-09-01

    In this paper, we analyze the irregular behavior of earthquake ground motion as recorded during the Kraljevo M5.4 earthquake, which occurred on November 3rd, 2010 in Serbia. We perform the analysis for the ground accelerations recorded at 6 seismological stations: Grua, Ruda, Rada, Bara, Zaga and Bdva. The latter were carefully chosen based on their corresponding tectonic zone and the local geological setting. For each station, we analyze the horizontal component of the ground acceleration in the north-south direction, which is the one of primary interest for engineering design. We employ surrogate data testing and methods of nonlinear time series analysis. The obtained results indicate that strong ground accelerations are stochastic, in particular belonging to a class of linear stationary stochastic processes with Gaussian inputs or distorted by a monotonic, instantaneous, time-independent nonlinear function. This type of motion is detected regardless of the corresponding tectonic setting and the local geological conditions. The revealed stochastic nature is in disagreement with the frequently assumed deterministically chaotic nature of earthquake ground motion.

  14. The HayWired earthquake scenario

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    ForewordThe 1906 Great San Francisco earthquake (magnitude 7.8) and the 1989 Loma Prieta earthquake (magnitude 6.9) each motivated residents of the San Francisco Bay region to build countermeasures to earthquakes into the fabric of the region. Since Loma Prieta, bay-region communities, governments, and utilities have invested tens of billions of dollars in seismic upgrades and retrofits and replacements of older buildings and infrastructure. Innovation and state-of-the-art engineering, informed by science, including novel seismic-hazard assessments, have been applied to the challenge of increasing seismic resilience throughout the bay region. However, as long as people live and work in seismically vulnerable buildings or rely on seismically vulnerable transportation and utilities, more work remains to be done.With that in mind, the U.S. Geological Survey (USGS) and its partners developed the HayWired scenario as a tool to enable further actions that can change the outcome when the next major earthquake strikes. By illuminating the likely impacts to the present-day built environment, well-constructed scenarios can and have spurred officials and citizens to take steps that change the outcomes the scenario describes, whether used to guide more realistic response and recovery exercises or to launch mitigation measures that will reduce future risk.The HayWired scenario is the latest in a series of like-minded efforts to bring a special focus onto the impacts that could occur when the Hayward Fault again ruptures through the east side of the San Francisco Bay region as it last did in 1868. Cities in the east bay along the Richmond, Oakland, and Fremont corridor would be hit hardest by earthquake ground shaking, surface fault rupture, aftershocks, and fault afterslip, but the impacts would reach throughout the bay region and far beyond. The HayWired scenario name reflects our increased reliance on the Internet and telecommunications and also alludes to the

  15. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    Science.gov (United States)

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    , and small-scale maps, as well as links to slideshows of additional photographs and Google Street View™ scenes. Buildings in Anchorage that were severely damaged, sites of major landslides, and locations of post-earthquake engineering responses are highlighted. The web map can be used online as a virtual tour or in a physical self-guided tour using a web-enabled Global Positioning System (GPS) device. This publication serves the purpose of committing most of the content of the web map to a single distributable document. As such, some of the content differs from the online version.

  16. Creating a Global Building Inventory for Earthquake Loss Assessment and Risk Management

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2008-01-01

    Earthquakes have claimed approximately 8 million lives over the last 2,000 years (Dunbar, Lockridge and others, 1992) and fatality rates are likely to continue to rise with increased population and urbanizations of global settlements especially in developing countries. More than 75% of earthquake-related human casualties are caused by the collapse of buildings or structures (Coburn and Spence, 2002). It is disheartening to note that large fractions of the world's population still reside in informal, poorly-constructed & non-engineered dwellings which have high susceptibility to collapse during earthquakes. Moreover, with increasing urbanization half of world's population now lives in urban areas (United Nations, 2001), and half of these urban centers are located in earthquake-prone regions (Bilham, 2004). The poor performance of most building stocks during earthquakes remains a primary societal concern. However, despite this dark history and bleaker future trends, there are no comprehensive global building inventories of sufficient quality and coverage to adequately address and characterize future earthquake losses. Such an inventory is vital both for earthquake loss mitigation and for earthquake disaster response purposes. While the latter purpose is the motivation of this work, we hope that the global building inventory database described herein will find widespread use for other mitigation efforts as well. For a real-time earthquake impact alert system, such as U.S. Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER), (Wald, Earle and others, 2006), we seek to rapidly evaluate potential casualties associated with earthquake ground shaking for any region of the world. The casualty estimation is based primarily on (1) rapid estimation of the ground shaking hazard, (2) aggregating the population exposure within different building types, and (3) estimating the casualties from the collapse of vulnerable buildings. Thus, the

  17. Solar activity and earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, J.

    1979-02-26

    Prolonged astronomical observations have discovered that the Sun, which is the nearest star to the Earth, is not calm and serene. On the solar surface, there are often windstorms, electrical lights, and sometimes large flame eruptions; and there are regularly black spots in patches which are also active. The Sun not only disperses light and heat, but also throws out large quantities of currents of charged particles to be scattered in space and to reach the Earth, sometimes, which are called by some solar winds. These activities in the Sun can induce many physical phenomena on earth, including magnetic storms, polar light, sudden disruption or attenuation of medium- and short-wave radio, and many atmospheric changes. Some scientists believe they are perhaps also related to the occurrence of earthquakes. This paper explains these solar activities and their possible relationship to earthquakes.

  18. Earthquake Hazard Assessment: Basics of Evaluation

    Science.gov (United States)

    Kossobokov, Vladimir

    2016-04-01

    Seismic hazard assessment (SHA) is not an easy task that implies a delicate application of statistics to data of limited size and different accuracy. Earthquakes follow the Unified Scaling Law that generalizes the Gutenberg-Richter relationship by taking into account naturally fractal distribution of their sources. Moreover, earthquakes, including the great and mega events, are clustered in time and their sequences have irregular recurrence intervals. Furthermore, earthquake related observations are limited to the recent most decades (or centuries in just a few rare cases). Evidently, all this complicates reliable assessment of seismic hazard and associated risks. Making SHA claims, either termless or time dependent (so-called t-DASH), quantitatively probabilistic in the frames of the most popular objectivists' viewpoint on probability requires a long series of "yes/no" trials, which cannot be obtained without an extended rigorous testing of the method predictions against real observations. Therefore, we reiterate the necessity and possibility of applying the modified tools of Earthquake Prediction Strategies, in particular, the Error Diagram, introduced by G.M. Molchan in early 1990ies for evaluation of SHA, and the Seismic Roulette null-hypothesis as a measure of the alerted space. The set of errors, i.e. the rates of failure and of the alerted space-time volume, compared to those obtained in the same number of random guess trials permits evaluating the SHA method effectiveness and determining the optimal choice of the parameters in regard to specified cost-benefit functions. These and other information obtained in such a testing supplies us with a realistic estimate of confidence in SHA results and related recommendations on the level of risks for decision making in regard to engineering design, insurance, and emergency management. These basics of SHA evaluation are exemplified in brief with a few examples, which analyses in more detail are given in a poster of

  19. Do Earthquakes Shake Stock Markets?

    Science.gov (United States)

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  20. 9th Structural Engineering Convention 2014

    CERN Document Server

    2015-01-01

    The book presents research papers presented by academicians, researchers, and practicing structural engineers from India and abroad in the recently held Structural Engineering Convention (SEC) 2014 at Indian Institute of Technology Delhi during 22 – 24 December 2014. The book is divided into three volumes and encompasses multidisciplinary areas within structural engineering, such as earthquake engineering and structural dynamics, structural mechanics, finite element methods, structural vibration control, advanced cementitious and composite materials, bridge engineering, and soil-structure interaction. Advances in Structural Engineering is a useful reference material for structural engineering fraternity including undergraduate and postgraduate students, academicians, researchers and practicing engineers.

  1. Pain after earthquake

    Directory of Open Access Journals (Sweden)

    Angeletti Chiara

    2012-06-01

    Full Text Available Abstract Introduction On 6 April 2009, at 03:32 local time, an Mw 6.3 earthquake hit the Abruzzi region of central Italy causing widespread damage in the City of L Aquila and its nearby villages. The earthquake caused 308 casualties and over 1,500 injuries, displaced more than 25,000 people and induced significant damage to more than 10,000 buildings in the L'Aquila region. Objectives This observational retrospective study evaluated the prevalence and drug treatment of pain in the five weeks following the L'Aquila earthquake (April 6, 2009. Methods 958 triage documents were analysed for patients pain severity, pain type, and treatment efficacy. Results A third of pain patients reported pain with a prevalence of 34.6%. More than half of pain patients reported severe pain (58.8%. Analgesic agents were limited to available drugs: anti-inflammatory agents, paracetamol, and weak opioids. Reduction in verbal numerical pain scores within the first 24 hours after treatment was achieved with the medications at hand. Pain prevalence and characterization exhibited a biphasic pattern with acute pain syndromes owing to trauma occurring in the first 15 days after the earthquake; traumatic pain then decreased and re-surged at around week five, owing to rebuilding efforts. In the second through fourth week, reports of pain occurred mainly owing to relapses of chronic conditions. Conclusions This study indicates that pain is prevalent during natural disasters, may exhibit a discernible pattern over the weeks following the event, and current drug treatments in this region may be adequate for emergency situations.

  2. Foreshocks of strong earthquakes

    Science.gov (United States)

    Guglielmi, A. V.; Sobisevich, L. E.; Sobisevich, A. L.; Lavrov, I. P.

    2014-07-01

    The specific enhancement of ultra-low-frequency (ULF) electromagnetic oscillations a few hours prior to the strong earthquakes, which was previously mentioned in the literature, motivated us to search for the distinctive features of the mechanical (foreshock) activity of the Earth's crust in the epicentral zones of the future earthquakes. Activation of the foreshocks three hours before the main shock is revealed, which is roughly similar to the enhancement of the specific electromagnetic ULF emission. It is hypothesized that the round-the-world seismic echo signals from the earthquakes, which form the peak of energy release 2 h 50 min before the main events, act as the triggers of the main shocks due to the cumulative action of the surface waves converging to the epicenter. It is established that the frequency of the fluctuations in the foreshock activity decreases at the final stages of the preparation of the main shocks, which probably testifies to the so-called mode softening at the approach of the failure point according to the catastrophe theory.

  3. Seismic design and engineering research at the U.S. Geological Survey

    Science.gov (United States)

    1988-01-01

    The Engineering Seismology Element of the USGS Earthquake Hazards Reduction Program is responsible for the coordination and operation of the National Strong Motion Network to collect, process, and disseminate earthquake strong-motion data; and, the development of improved methodologies to estimate and predict earthquake ground motion.  Instrumental observations of strong ground shaking induced by damaging earthquakes and the corresponding response of man-made structures provide the basis for estimating the severity of shaking from future earthquakes, for earthquake-resistant design, and for understanding the physics of seismologic failure in the Earth's crust.

  4. Earthquake forecasting: Statistics and Information

    CERN Document Server

    Gertsik, V; Krichevets, A

    2013-01-01

    We present an axiomatic approach to earthquake forecasting in terms of multi-component random fields on a lattice. This approach provides a method for constructing point estimates and confidence intervals for conditional probabilities of strong earthquakes under conditions on the levels of precursors. Also, it provides an approach for setting multilevel alarm system and hypothesis testing for binary alarms. We use a method of comparison for different earthquake forecasts in terms of the increase of Shannon information. 'Forecasting' and 'prediction' of earthquakes are equivalent in this approach.

  5. Earthquake forecasting and its verification

    Directory of Open Access Journals (Sweden)

    J. R. Holliday

    2005-01-01

    Full Text Available No proven method is currently available for the reliable short time prediction of earthquakes (minutes to months. However, it is possible to make probabilistic hazard assessments for earthquake risk. In this paper we discuss a new approach to earthquake forecasting based on a pattern informatics (PI method which quantifies temporal variations in seismicity. The output, which is based on an association of small earthquakes with future large earthquakes, is a map of areas in a seismogenic region ('hotspots'' where earthquakes are forecast to occur in a future 10-year time span. This approach has been successfully applied to California, to Japan, and on a worldwide basis. Because a sharp decision threshold is used, these forecasts are binary--an earthquake is forecast either to occur or to not occur. The standard approach to the evaluation of a binary forecast is the use of the relative (or receiver operating characteristic (ROC diagram, which is a more restrictive test and less subject to bias than maximum likelihood tests. To test our PI method, we made two types of retrospective forecasts for California. The first is the PI method and the second is a relative intensity (RI forecast based on the hypothesis that future large earthquakes will occur where most smaller earthquakes have occurred in the recent past. While both retrospective forecasts are for the ten year period 1 January 2000 to 31 December 2009, we performed an interim analysis 5 years into the forecast. The PI method out performs the RI method under most circumstances.

  6. USGS response to an urban earthquake, Northridge '94

    Science.gov (United States)

    Updike, Randall G.; Brown, William M.; Johnson, Margo L.; Omdahl, Eleanor M.; Powers, Philip S.; Rhea, Susan; Tarr, Arthur C.

    1996-01-01

    The urban centers of our Nation provide our people with seemingly unlimited employment, social, and cultural opportunities as a result of the complex interactions of a diverse population embedded in an highly-engineered environment. Catastrophic events in one or more of the natural earth systems which underlie or envelop urban environment can have radical effects on the integrity and survivability of that environment. Earthquakes have for centuries been the source of cataclysmic events on cities throughout the world. Unlike many other earth processes, the effects of major earthquakes transcend all political, social, and geomorphic boundaries and can have decided impact on cities tens to hundreds of kilometers from the epicenter. In modern cities, where buildings, transportation corridors, and lifelines are complexly interrelated, the life, economic, and social vulnerabilities in the face of a major earthquake can be particularly acute.

  7. Geotechnical hazards from large earthquakes and heavy rainfalls

    CERN Document Server

    Kazama, Motoki; Lee, Wei

    2017-01-01

    This book is a collection of papers presented at the International Workshop on Geotechnical Natural Hazards held July 12–15, 2014, in Kitakyushu, Japan. The workshop was the sixth in the series of Japan–Taiwan Joint Workshops on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, held under the auspices of the Asian Technical Committee No. 3 on Geotechnology for Natural Hazards of the International Society for Soil Mechanics and Geotechnical Engineering. It was co-organized by the Japanese Geotechnical Society and the Taiwanese Geotechnical Society. The contents of this book focus on geotechnical and natural hazard-related issues in Asia such as earthquakes, tsunami, rainfall-induced debris flows, slope failures, and landslides. The book contains the latest information and mitigation technology on earthquake- and rainfall-induced geotechnical natural hazards. By dissemination of the latest state-of-the-art research in the area, the information contained in this book will help researchers, des...

  8. A Stochastical Model for the Earthquake Occurences in Turkey

    Directory of Open Access Journals (Sweden)

    Gamze ÖZEL

    2009-04-01

    Full Text Available The fields of seismology and earthquake engineering deal with the studies for earthquake predictions, hazard assessments and the prevention of possible damage due to destructive earthquakes. Various kind of statistical models are used for the earthquake occurences. The most familiar model is a Poisson process for random series of events. However, the Poisson process is insufficient if the incorporation of more information about the seismic process is required. Recently, a compound Poisson process has been proposed an alternative to the Poisson process for the earthquake analysis. In this study, the compound Poisson process is introduced and the probabilities of earthquake numbers with magnitude M ³ 5.0 which will occur within 3 and 6 months; 5 and 10 years have been obtained for Turkey from the Poisson process. Then, it is shown that the aftershock sequences follow a geometric distribution. By this way, the probabilities of total number of aftershocks which will occur within one year and two years with magnitude M ³ 4.0 in Turkey are obtained from the compound Poisson process. Finally, the expected values of main shocks and total number of aftershocks which will occur within one year and two years are computed. The results show that the earthquake occurrence probability with magnitude M ³ 5.0 increases, whereas the probability of total number of aftershocks with magnitude M ³ 4.0 decreases in Turkey as the time increases. Besides, the total aftershock number with magnitude M ³ 4.0 , after a main shock with magnitude M ³ 5.0, equals to zero with the probability 0.48 within one year. The findings also indicate that approximately 130 main shocks with M ³ 5.0 , 28 aftershocks with magnitude M ³ 4.0 are expected within 30 years in Turkey.

  9. OPERATIONAL EARTHQUAKE FORECASTING. State of Knowledge and Guidelines for Utilization

    Directory of Open Access Journals (Sweden)

    Koshun Yamaoka

    2011-08-01

    earthquake forecasting as the principle means for gathering and disseminating authoritative information about time-dependent seismic hazards to help communities prepare for potentially destructive earthquakes. On short time scales of days and weeks, earthquake sequences show clustering in space and time, as indicated by the aftershocks triggered by large events. Statistical descriptions of clustering explain many features observed in seismicity catalogs, and they can be used to construct forecasts that indicate how earthquake probabilities change over the short term. Properly applied, short-term forecasts have operational utility; for example, in anticipating aftershocks that follow large earthquakes. Although the value of long-term forecasts for ensuring seismic safety is clear, the interpretation of short-term forecasts is problematic, because earthquake probabilities may vary over orders of magnitude but typically remain low in an absolute sense (< 1% per day. Translating such low-probability forecasts into effective decision-making is a difficult challenge. Reports on the current utilization operational forecasting in earthquake risk management were compiled for six countries with high seismic risk: China, Greece, Italy, Japan, Russia, United States. Long-term models are currently the most important forecasting tools for civil protection against earthquake damage, because they guide earthquake safety provisions of building codes, performance-based seismic design, and other risk-reducing engineering practices, such as retrofitting to correct design flaws in older buildings. Short-term forecasting of aftershocks is practiced by several countries among those surveyed, but operational earthquake forecasting has not been fully implemented (i.e., regularly updated and on a national scale in any of them. Based on the experience accumulated in seismically active regions, the ICEF has provided to DPC a set of recommendations on the utilization of operational forecasting in Italy

  10. Living with earthquakes - development and usage of earthquake-resistant construction methods in European and Asian Antiquity

    Science.gov (United States)

    Kázmér, Miklós; Major, Balázs; Hariyadi, Agus; Pramumijoyo, Subagyo; Ditto Haryana, Yohanes

    2010-05-01

    Earthquakes are among the most horrible events of nature due to unexpected occurrence, for which no spiritual means are available for protection. The only way of preserving life and property is applying earthquake-resistant construction methods. Ancient Greek architects of public buildings applied steel clamps embedded in lead casing to hold together columns and masonry walls during frequent earthquakes in the Aegean region. Elastic steel provided strength, while plastic lead casing absorbed minor shifts of blocks without fracturing rigid stone. Romans invented concrete and built all sizes of buildings as a single, unflexible unit. Masonry surrounding and decorating concrete core of the wall did not bear load. Concrete resisted minor shaking, yielding only to forces higher than fracture limits. Roman building traditions survived the Dark Ages and 12th century Crusader castles erected in earthquake-prone Syria survive until today in reasonably good condition. Concrete and steel clamping persisted side-by-side in the Roman Empire. Concrete was used for cheap construction as compared to building of masonry. Applying lead-encased steel increased costs, and was avoided whenever possible. Columns of the various forums in Italian Pompeii mostly lack steel fittings despite situated in well-known earthquake-prone area. Whether frequent recurrence of earthquakes in the Naples region was known to inhabitants of Pompeii might be a matter of debate. Seemingly the shock of the AD 62 earthquake was not enough to apply well-known protective engineering methods throughout the reconstruction of the city before the AD 79 volcanic catastrophe. An independent engineering tradition developed on the island of Java (Indonesia). The mortar-less construction technique of 8-9th century Hindu masonry shrines around Yogyakarta would allow scattering of blocks during earthquakes. To prevent dilapidation an intricate mortise-and-tenon system was carved into adjacent faces of blocks. Only the

  11. Earthquake-induced Landslidingand Ground Damage In New Zealand

    Science.gov (United States)

    Hancox, G. T.; Perrin, N. D.; Dellow, G. D.

    assessments in N.Z. is discussed, and suggestions are made for future EIL research, including detailed studies of important historical earthquakes, and groups of coeval prehistoric landslides that can be attributed to earthquakes. References: Hancox, G.T., Perrin, N.D., and Dellow, G.D. (1997): Earthquake-induced landslides in New Zealand and implications for MM intensity and seismic hazard assessment. GNS Client Report 43601B, 10 Dec 1997. Hancox, G.T., Perrin, N.D., and Dellow, G.D. (in press): Recent studies of historical earthquake- induced landsliding, ground damage, and MM intensity in New Zealand. Paper submitted to Bulletin of the New Zealand Society for Earthquake Engineering November 2001, for publication mid 2002.

  12. Rapid estimation of the economic consequences of global earthquakes

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2011-01-01

    The U.S. Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, operational since mid 2007, rapidly estimates the most affected locations and the population exposure at different levels of shaking intensities. The PAGER system has significantly improved the way aid agencies determine the scale of response needed in the aftermath of an earthquake. For example, the PAGER exposure estimates provided reasonably accurate assessments of the scale and spatial extent of the damage and losses following the 2008 Wenchuan earthquake (Mw 7.9) in China, the 2009 L'Aquila earthquake (Mw 6.3) in Italy, the 2010 Haiti earthquake (Mw 7.0), and the 2010 Chile earthquake (Mw 8.8). Nevertheless, some engineering and seismological expertise is often required to digest PAGER's exposure estimate and turn it into estimated fatalities and economic losses. This has been the focus of PAGER's most recent development. With the new loss-estimation component of the PAGER system it is now possible to produce rapid estimation of expected fatalities for global earthquakes (Jaiswal and others, 2009). While an estimate of earthquake fatalities is a fundamental indicator of potential human consequences in developing countries (for example, Iran, Pakistan, Haiti, Peru, and many others), economic consequences often drive the responses in much of the developed world (for example, New Zealand, the United States, and Chile), where the improved structural behavior of seismically resistant buildings significantly reduces earthquake casualties. Rapid availability of estimates of both fatalities and economic losses can be a valuable resource. The total time needed to determine the actual scope of an earthquake disaster and to respond effectively varies from country to country. It can take days or sometimes weeks before the damage and consequences of a disaster can be understood both socially and economically. The objective of the U.S. Geological Survey's PAGER system is

  13. Gas and Dust Phenomena of Mega-earthquakes and the Cause

    Science.gov (United States)

    Yue, Z.

    2013-12-01

    dense natural (methane) gas suddenly escaped from deep crust traps along deep fault zones. References Yue, ZQ, 2009. The source of energy power directly causing the May 12 Wenchuan Earthquake: Huge extremely pressurized natural gases trapped in deep Longmen Shan faults. News Journal of China Society of Rock Mechanics and Engineering, 86 (2009 (2)), 45-50. Yue, ZQ, 2010. Features and mechanism of coseismic surface ruptures by Wenchuan Earthquake. in Rock Stress and Earthquake, edited by Furen Xie, Taylor & Francis Group, London, ISBN 978-0-415-60165-8, 761-768. Yue, ZQ, 2013a. Natural gas eruption mechanism for earthquake landslides: illustrated with comparison between Donghekou and Papandayan Rockslide-debris flows. in Earthquake-induced Landslides, K. Ugai et al. (eds.), Springer-Verlage Berlin, Chapter 51: pp. 485-494 Yue ZQ, 2013b. On incorrectness in elastic rebound theory for cause of earthquakes. Paper No. S20-003 of Session S20, Proceedings of the 13th International Conference on Fracture, June 16-21, Beijing. Yue ZQ, 2013c. On nature of earthquakes with cause of compressed methane gas expansion and migration in crustal rocks, in Proceedings of Fifth Biot Conference on Poromechanics in Memory of Karl von Terzaghi (1883-1963), July 10-12, Vienna, edited by C. Hellmich et al, @ASCE, pp. 507-516.

  14. Earthquakes Threaten Many American Schools

    Science.gov (United States)

    Bailey, Nancy E.

    2010-01-01

    Millions of U.S. children attend schools that are not safe from earthquakes, even though they are in earthquake-prone zones. Several cities and states have worked to identify and repair unsafe buildings, but many others have done little or nothing to fix the problem. The reasons for ignoring the problem include political and financial ones, but…

  15. Make an Earthquake: Ground Shaking!

    Science.gov (United States)

    Savasci, Funda

    2011-01-01

    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  16. Make an Earthquake: Ground Shaking!

    Science.gov (United States)

    Savasci, Funda

    2011-01-01

    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  17. Anthropogenic triggering of large earthquakes.

    Science.gov (United States)

    Mulargia, Francesco; Bizzarri, Andrea

    2014-08-26

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor "foreshocks", since the induction may occur with a delay up to several years.

  18. Heavy tails and earthquake probabilities

    Science.gov (United States)

    Ellsworth, William L.

    2012-01-01

    The 21st century has already seen its share of devastating earthquakes, some of which have been labeled as “unexpected,” at least in the eyes of some seismologists and more than a few journalists. A list of seismological surprises could include the 2004 Sumatra-Andaman Islands; 2008 Wenchuan, China; 2009 Haiti; 2011 Christchurch, New Zealand; and 2011 Tohoku, Japan, earthquakes

  19. Earthquakes Threaten Many American Schools

    Science.gov (United States)

    Bailey, Nancy E.

    2010-01-01

    Millions of U.S. children attend schools that are not safe from earthquakes, even though they are in earthquake-prone zones. Several cities and states have worked to identify and repair unsafe buildings, but many others have done little or nothing to fix the problem. The reasons for ignoring the problem include political and financial ones, but…

  20. Can Satellites Aid Earthquake Predictions?

    Institute of Scientific and Technical Information of China (English)

    John Roach; 李晓辉

    2004-01-01

    @@ Earthquake prediction is an imprecise science, and to illustrate the point,many experts point to the story of Tangshen①, China. On July 28, 1976, a magnitude② 7. 6 earthquake struck the city of Tangshen, China, without warning. None of the signs of the successful prediction from a year and half earlier were present. An estimated 250,000 people died.

  1. International Civil and Infrastructure Engineering Conference 2014

    CERN Document Server

    Yusoff, Marina; Alisibramulisi, Anizahyati; Amin, Norliyati; Ismail, Zulhabri

    2015-01-01

    The special focus of this proceedings is to cover the areas of infrastructure engineering and sustainability management. The state-of-the art information in infrastructure and sustainable issues in engineering covers earthquake, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems. It provides precise information with regards to innovative research development in construction materials and structures in addition to a compilation of interdisciplinary finding combining nano-materials and engineering.

  2. International Civil and Infrastructure Engineering Conference 2013

    CERN Document Server

    Yusoff, Marina; Ismail, Zulhabri; Amin, Norliyati; Fadzil, Mohd

    2014-01-01

    The special focus of this proceedings is to cover the areas of infrastructure engineering and sustainability management. The state-of-the art information in infrastructure and sustainable issues in engineering covers earthquake, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems. It provides precise information with regards to innovative research development in construction materials and structures in addition to a compilation of interdisciplinary finding combining nano-materials and engineering.

  3. Slope earthquake stability

    CERN Document Server

    Changwei, Yang; Jing, Lian; Wenying, Yu; Jianjing, Zhang

    2017-01-01

    This book begins with the dynamic characteristics of the covering layerbedrock type slope, containing monitoring data of the seismic array, shaking table tests, numerical analysis and theoretical derivation. Then it focuses on the landslide mechanism and assessment method. It also proposes a model that assessing the hazard area based on the field investigations. Many questions, exercises and solutions are given. Researchers and engineers in the field of Geotechnical Engineering and Anti-seismic Engineering can benefit from it.

  4. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  5. Earthquake forecasting: statistics and information

    Directory of Open Access Journals (Sweden)

    Vladimir Gertsik

    2016-01-01

    Full Text Available The paper presents a decision rule forming a mathematical basis of earthquake forecasting problem. We develop an axiomatic approach to earthquake forecasting in terms of multicomponent random fields on a lattice. This approach provides a method for constructing point estimates and confidence intervals for conditional probabilities of strong earthquakes under conditions on the levels of precursors. Also, it provides an approach for setting a multilevel alarm system and hypothesis testing for binary alarms. We use a method of comparison for different algorithms of earthquake forecasts in terms of the increase of Shannon information. ‘Forecasting’ (the calculation of the probabilities and ‘prediction’ (the alarm declaring of earthquakes are equivalent in this approach.

  6. Are Earthquakes a Critical Phenomenon?

    Science.gov (United States)

    Ramos, O.

    2014-12-01

    Earthquakes, granular avalanches, superconducting vortices, solar flares, and even stock markets are known to evolve through power-law distributed events. During decades, the formalism of equilibrium phase transition has coined these phenomena as critical, which implies that they are also unpredictable. This work revises these ideas and uses earthquakes as the paradigm to demonstrate that slowly driven systems evolving through uncorrelated and power-law distributed avalanches (UPLA) are not necessarily critical systems, and therefore not necessarily unpredictable. By linking the correlation length to the pdf of the distribution, and comparing it with the one obtained at a critical point, a condition of criticality is introduced. Simulations in the classical Olami-Feder-Christensen (OFC) earthquake model confirm the findings, showing that earthquakes are not a critical phenomenon. However, one single catastrophic earthquake may show critical properties and, paradoxically, the emergence of this temporal critical behaviour may eventually carry precursory signs of catastrophic events.

  7. Southern California Earthquake Center--Virtual Display of Objects (SCEC-VDO): An Earthquake Research and Education Tool

    Science.gov (United States)

    Perry, S.; Maechling, P.; Jordan, T.

    2006-12-01

    Interns in the program Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT, an NSF Research Experience for Undergraduates Site) have designed, engineered, and distributed SCEC-VDO (Virtual Display of Objects), an interactive software used by earthquake scientists and educators to integrate and visualize global and regional, georeferenced datasets. SCEC-VDO is written in Java/Java3D with an extensible, scalable architecture. An increasing number of SCEC-VDO datasets are obtained on the fly through web services and connections to remote databases; and user sessions may be saved in xml-encoded files. Currently users may display time-varying sequences of earthquake hypocenters and focal mechanisms, several 3-dimensional fault and rupture models, satellite imagery - optionally draped over digital elevation models - and cultural datasets including political boundaries. The ability to juxtapose and interactively explore these data and their temporal and spatial relationships has been particularly important to SCEC scientists who are evaluating fault and deformation models, or who must quickly evaluate the menace of evolving earthquake sequences. Additionally, SCEC-VDO users can annotate the display, plus script and render animated movies with adjustable compression levels. SCEC-VDO movies are excellent communication tools and have been featured in scientific presentations, classrooms, press conferences, and television reports.

  8. Ground motion following selection of SRS design basis earthquake and associated deterministic approach

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section's Seismic Qualification Program for reactor restart.

  9. Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake and aftershocks

    Science.gov (United States)

    Moss, Robb E S; Thompson, Eric; Kieffer, D Scott; Tiwari, Binod; Hashash, Youssef M A; Acharya, Indra; Adhikari, Basanta; Asimaki, Domniki; Clahan, Kevin B.; Collins, Brian D.; Dahal, Sachindra; Jibson, Randall W.; Khadka, Diwakar; Macdonald, Amy; Madugo, Chris L M; Mason, H Benjamin; Pehlivan, Menzer; Rayamajhi, Deepak; Uprety, Sital

    2015-01-01

    This article summarizes the geotechnical effects of the 25 April 2015 M 7.8 Gorkha, Nepal, earthquake and aftershocks, as documented by a reconnaissance team that undertook a broad engineering and scientific assessment of the damage and collected perishable data for future analysis. Brief descriptions are provided of ground shaking, surface fault rupture, landsliding, soil failure, and infrastructure performance. The goal of this reconnaissance effort, led by Geotechnical Extreme Events Reconnaissance, is to learn from earthquakes and mitigate hazards in future earthquakes.

  10. Protection for structures in extreme earthquakes: Full Base Isolation (3-D) by the Swiss Seismafloat System

    Energy Technology Data Exchange (ETDEWEB)

    Staudacher, K.

    1985-02-01

    Full Base Isolation (FBI, 3-D), an antiseismic concept for structures, adds vertical flexibility to horizontal base isolation (HBI, 2-D). Extensive experimental testing at the Swiss Federal Institute of Technology and the University of California, Berkeley, has shown FBI to be a practicable way to reach the final goal of earthquake protection, i.e. elastic behavior of the structural frame in extreme earthquakes. Swiss engineers pioneered base isolation by the construction of the Pestalozzi School at Skopje in 1968. Further development has made Integral Earthquake Protection possible for structures and their contents. (orig.).

  11. Response and recovery lessons from the 2010-2011 earthquake sequence in Canterbury, New Zealand

    Science.gov (United States)

    Pierepiekarz, Mark; Johnston, David; Berryman, Kelvin; Hare, John; Gomberg, Joan S.; Williams, Robert A.; Weaver, Craig S.

    2014-01-01

    The impacts and opportunities that result when low-probability moderate earthquakes strike an urban area similar to many throughout the US were vividly conveyed in a one-day workshop in which social and Earth scientists, public officials, engineers, and an emergency manager shared their experiences of the earthquake sequence that struck the city of Christchurch and surrounding Canterbury region of New Zealand in 2010-2011. Without question, the earthquake sequence has had unprecedented impacts in all spheres on New Zealand society, locally to nationally--10% of the country's population was directly impacted and losses total 8-10% of their GDP. The following paragraphs present a few lessons from Christchurch.

  12. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell

    2011-08-01

    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  13. A Virtual Tour of the 1868 Hayward Earthquake in Google EarthTM

    Science.gov (United States)

    Lackey, H. G.; Blair, J. L.; Boatwright, J.; Brocher, T.

    2007-12-01

    The 1868 Hayward earthquake has been overshadowed by the subsequent 1906 San Francisco earthquake that destroyed much of San Francisco. Nonetheless, a modern recurrence of the 1868 earthquake would cause widespread damage to the densely populated Bay Area, particularly in the east Bay communities that have grown up virtually on top of the Hayward fault. Our concern is heightened by paleoseismic studies suggesting that the recurrence interval for the past five earthquakes on the southern Hayward fault is 140 to 170 years. Our objective is to build an educational web site that illustrates the cause and effect of the 1868 earthquake drawing on scientific and historic information. We will use Google EarthTM software to visually illustrate complex scientific concepts in a way that is understandable to a non-scientific audience. This web site will lead the viewer from a regional summary of the plate tectonics and faulting system of western North America, to more specific information about the 1868 Hayward earthquake itself. Text and Google EarthTM layers will include modeled shaking of the earthquake, relocations of historic photographs, reconstruction of damaged buildings as 3-D models, and additional scientific data that may come from the many scientific studies conducted for the 140th anniversary of the event. Earthquake engineering concerns will be stressed, including population density, vulnerable infrastructure, and lifelines. We will also present detailed maps of the Hayward fault, measurements of fault creep, and geologic evidence of its recurrence. Understanding the science behind earthquake hazards is an important step in preparing for the next significant earthquake. We hope to communicate to the public and students of all ages, through visualizations, not only the cause and effect of the 1868 earthquake, but also modern seismic hazards of the San Francisco Bay region.

  14. The 2015 Gorkha Nepal Earthquake: Insights from Earthquake Damage Survey

    Directory of Open Access Journals (Sweden)

    Katsuichiro eGoda

    2015-06-01

    Full Text Available The 2015 Gorkha Nepal earthquake caused tremendous damage and loss. To gain valuable lessons from this tragic event, an earthquake damage investigation team was dispatched to Nepal from 1 May 2015 to 7 May 2015. A unique aspect of the earthquake damage investigation is that first-hand earthquake damage data were obtained 6 to 11 days after the mainshock. To gain deeper understanding of the observed earthquake damage in Nepal, the paper reviews the seismotectonic setting and regional seismicity in Nepal and analyzes available aftershock data and ground motion data. The earthquake damage observations indicate that the majority of the damaged buildings were stone/brick masonry structures with no seismic detailing, whereas the most of RC buildings were undamaged. This indicates that adequate structural design is the key to reduce the earthquake risk in Nepal. To share the gathered damage data widely, the collected damage data (geo-tagged photos and observation comments are organized using Google Earth and the kmz file is made publicly available.

  15. Post-earthquake ignition vulnerability assessment of Küçükçekmece District

    Science.gov (United States)

    Yildiz, S. S.; Karaman, H.

    2013-12-01

    In this study, a geographic information system (GIS)-based model was developed to calculate the post-earthquake ignition probability of a building, considering damage to the building's interior gas and electrical distribution system and the overturning of appliances. In order to make our model more reliable and realistic, a weighting factor was used to define the possible existence of each appliance or other contents in the given occupancy. A questionnaire was prepared to weigh the relevance of the different components of post-earthquake ignitions using the analytical hierarchy process (AHP). The questionnaire was evaluated by researchers who were experienced in earthquake engineering and post-earthquake fires. The developed model was implemented to HAZTURK's (Hazards Turkey) earthquake loss assessment software, as developed by the Mid-America Earthquake Center with the help of Istanbul Technical University. The developed post-earthquake ignition tool was applied to Küçükçekmece, Istanbul, in Turkey. The results were evaluated according to structure types, occupancy types, the number of storeys, building codes and specified districts. The evaluated results support the theory that post-earthquake ignition probability is inversely proportional to the number of storeys and the construction year, depending upon the building code.

  16. Global Earthquake Casualties due to Secondary Effects: A Quantitative Analysis for Improving PAGER Losses

    Science.gov (United States)

    Wald, David J.

    2010-01-01

    This study presents a quantitative and geospatial description of global losses due to earthquake-induced secondary effects, including landslide, liquefaction, tsunami, and fire for events during the past 40 years. These processes are of great importance to the US Geological Survey’s (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, which is currently being developed to deliver rapid earthquake impact and loss assessments following large/significant global earthquakes. An important question is how dominant are losses due to secondary effects (and under what conditions, and in which regions)? Thus, which of these effects should receive higher priority research efforts in order to enhance PAGER’s overall assessment of earthquakes losses and alerting for the likelihood of secondary impacts? We find that while 21.5% of fatal earthquakes have deaths due to secondary (non-shaking) causes, only rarely are secondary effects the main cause of fatalities. The recent 2004 Great Sumatra–Andaman Islands earthquake is a notable exception, with extraordinary losses due to tsunami. The potential for secondary hazards varies greatly, and systematically, due to regional geologic and geomorphic conditions. Based on our findings, we have built country-specific disclaimers for PAGER that address potential for each hazard (Earle et al., Proceedings of the 14th World Conference of the Earthquake Engineering, Beijing, China, 2008). We will now focus on ways to model casualties from secondary effects based on their relative importance as well as their general predictability.

  17. Global earthquake casualties due to secondary effects: A quantitative analysis for improving rapid loss analyses

    Science.gov (United States)

    Marano, K.D.; Wald, D.J.; Allen, T.I.

    2010-01-01

    This study presents a quantitative and geospatial description of global losses due to earthquake-induced secondary effects, including landslide, liquefaction, tsunami, and fire for events during the past 40 years. These processes are of great importance to the US Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, which is currently being developed to deliver rapid earthquake impact and loss assessments following large/significant global earthquakes. An important question is how dominant are losses due to secondary effects (and under what conditions, and in which regions)? Thus, which of these effects should receive higher priority research efforts in order to enhance PAGER's overall assessment of earthquakes losses and alerting for the likelihood of secondary impacts? We find that while 21.5% of fatal earthquakes have deaths due to secondary (non-shaking) causes, only rarely are secondary effects the main cause of fatalities. The recent 2004 Great Sumatra-Andaman Islands earthquake is a notable exception, with extraordinary losses due to tsunami. The potential for secondary hazards varies greatly, and systematically, due to regional geologic and geomorphic conditions. Based on our findings, we have built country-specific disclaimers for PAGER that address potential for each hazard (Earle et al., Proceedings of the 14th World Conference of the Earthquake Engineering, Beijing, China, 2008). We will now focus on ways to model casualties from secondary effects based on their relative importance as well as their general predictability. ?? Springer Science+Business Media B.V. 2009.

  18. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2016-01-01

    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  19. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  20. Earthquakes: Risk, Monitoring, Notification, and Research

    Science.gov (United States)

    2008-06-19

    far away as Bangladesh , Taiwan, Thailand, and Vietnam. Several large aftershocks have occurred since the main seismic event. The May 12 earthquake...motion of tectonic plates; ! Earthquake geology and paleoseismology: studies of the history, effects, and mechanics of earthquakes; ! Earthquake hazards

  1. Earthquake Shaking and Damage to Buildings: Recent evidence for severe ground shaking raises questions about the earthquake resistance of structures.

    Science.gov (United States)

    Page, R A; Joyner, W B; Blume, J A

    1975-08-22

    Ground shaking close to the causative fault of an earthquake is more intense than it was previously believed to be. This raises the possibility that large numbers of buildings and other structures are not sufficiently resistant for the intense levels of shaking that can occur close to the fault. Many structures were built before earthquake codes were adopted; others were built according to codes formulated when less was known about the intensity of near-fault shaking. Although many building types are more resistant than conventional design analyses imply, the margin of safety is difficult to quantify. Many modern structures, such as freeways, have not been subjected to and tested by near-fault shaking in major earthquakes (magnitude 7 or greater). Damage patterns in recent moderate-sized earthquakes occurring in or adjacent to urbanized areas (17), however, indicate that many structures, including some modern ones designed to meet earthquake code requirements, cannot withstand the severe shaking that can occur close to a fault. It is necessary to review the ground motion assumed and the methods utilized in the design of important existing structures and, if necessary, to strengthen or modify the use of structures that are found to be weak. New structures situated close to active faults should be designed on the basis of ground motion estimates greater than those used in the past. The ultimate balance between risk of earthquake losses and cost for both remedial strengthening and improved earthquake-resistant construction must be decided by the public. Scientists and engineers must inform the public about earthquake shaking and its effect on structures. The exposure to damage from seismic shaking is steadily increasing because of continuing urbanization and the increasing complexity of lifeline systems, such as power, water, transportation, and communication systems. In the near future we should expect additional painful examples of the damage potential of moderate

  2. 2010 Chile Earthquake Aftershock Response

    Science.gov (United States)

    Barientos, Sergio

    2010-05-01

    The Mw=8.8 earthquake off the coast of Chile on 27 February 2010 is the 5th largest megathrust earthquake ever to be recorded and provides an unprecedented opportunity to advance our understanding of megathrust earthquakes and associated phenomena. The 2010 Chile earthquake ruptured the Concepcion-Constitucion segment of the Nazca/South America plate boundary, south of the Central Chile region and triggered a tsunami along the coast. Following the 2010 earthquake, a very energetic aftershock sequence is being observed in an area that is 600 km along strike from Valparaiso to 150 km south of Concepcion. Within the first three weeks there were over 260 aftershocks with magnitude 5.0 or greater and 18 with magnitude 6.0 or greater (NEIC, USGS). The Concepcion-Constitucion segment lies immediately north of the rupture zone associated with the great magnitude 9.5 Chile earthquake, and south of the 1906 and the 1985 Valparaiso earthquakes. The last great subduction earthquake in the region dates back to the February 1835 event described by Darwin (1871). Since 1835, part of the region was affected in the north by the Talca earthquake in December 1928, interpreted as a shallow dipping thrust event, and by the Chillan earthquake (Mw 7.9, January 1939), a slab-pull intermediate depth earthquake. For the last 30 years, geodetic studies in this area were consistent with a fully coupled elastic loading of the subduction interface at depth; this led to identify the area as a mature seismic gap with potential for an earthquake of magnitude of the order 8.5 or several earthquakes of lesser magnitude. What was less expected was the partial rupturing of the 1985 segment toward north. Today, the 2010 earthquake raises some disturbing questions: Why and how the rupture terminated where it did at the northern end? How did the 2010 earthquake load the adjacent segment to the north and did the 1985 earthquake only partially ruptured the plate interface leaving loaded asperities since

  3. The physics of an earthquake

    Science.gov (United States)

    McCloskey, John

    2008-03-01

    The Sumatra-Andaman earthquake of 26 December 2004 (Boxing Day 2004) and its tsunami will endure in our memories as one of the worst natural disasters of our time. For geophysicists, the scale of the devastation and the likelihood of another equally destructive earthquake set out a series of challenges of how we might use science not only to understand the earthquake and its aftermath but also to help in planning for future earthquakes in the region. In this article a brief account of these efforts is presented. Earthquake prediction is probably impossible, but earth scientists are now able to identify particularly dangerous places for future events by developing an understanding of the physics of stress interaction. Having identified such a dangerous area, a series of numerical Monte Carlo simulations is described which allow us to get an idea of what the most likely consequences of a future earthquake are by modelling the tsunami generated by lots of possible, individually unpredictable, future events. As this article was being written, another earthquake occurred in the region, which had many expected characteristics but was enigmatic in other ways. This has spawned a series of further theories which will contribute to our understanding of this extremely complex problem.

  4. Does knowledge signify protection? The SEISMOPOLIS centre for improvement of behavior in case of an earthquake

    Science.gov (United States)

    Dandoulaki, M.; Kourou, A.; Panoutsopoulou, M.

    2009-04-01

    It is vastly accepted that earthquake education is the way to earthquake protection. Nonetheless experience demonstrates that knowing what to do does not necessarily result in a better behaviour in case of a real earthquake. A research project titled: "Seismopolis" - "Pilot integrated System for Public Familiarization with Earthquakes and Information on Earthquake Protection" aimed at the improvement of the behaviour of people through an appropriate amalgamation of knowledge transfer and virtually experiencing an earthquake situation. Seismopolis combines well established education means such as books and leaflets with new technologies like earthquake simulation and virtual reality. It comprises a series of 5 main spaces that the visitor passes one-by-one. Space 1. Reception and introductory information. Visitors are given fundamental information on earthquakes and earthquake protection, as well as on the appropriate behaviour in case of an earthquake. Space 2. Earthquake simulation room Visitors experience an earthquake in a room. A typical kitchen is set on a shake table area (3m x 6m planar triaxial shake table) and is shaken in both horizontal and vertical directions by introducing seismographs of real or virtual earthquakes. Space 3. Virtual reality room Visitors may have the opportunity to virtually move around in the building or in the city after an earthquake disaster and take action as in a real-life situation, wearing stereoscopic glasses and using navigation tools. Space 4. Information and resources library Visitors are offered the opportunity to know more about earthquake protection. A series of means are available for this, some developed especially for Seismopolis (3 books, 2 Cds, a website and an interactive table game). Space 5. De-briefing area Visitors may be subjected to a pedagogical and psychological evaluation at the end of their visit and offered support if needed. For the evaluation of the "Seismopolis" Centre, a pilot application of the

  5. Fracking, wastewater disposal, and earthquakes

    Science.gov (United States)

    McGarr, Arthur

    2016-03-01

    In the modern oil and gas industry, fracking of low-permeability reservoirs has resulted in a considerable increase in the production of oil and natural gas, but these fluid-injection activities also can induce earthquakes. Earthquakes induced by fracking are an inevitable consequence of the injection of fluid at high pressure, where the intent is to enhance permeability by creating a system of cracks and fissures that allow hydrocarbons to flow to the borehole. The micro-earthquakes induced during these highly-controlled procedures are generally much too small to be felt at the surface; indeed, the creation or reactivation of a large fault would be contrary to the goal of enhancing permeability evenly throughout the formation. Accordingly, the few case histories for which fracking has resulted in felt earthquakes have been due to unintended fault reactivation. Of greater consequence for inducing earthquakes, modern techniques for producing hydrocarbons, including fracking, have resulted in considerable quantities of coproduced wastewater, primarily formation brines. This wastewater is commonly disposed by injection into deep aquifers having high permeability and porosity. As reported in many case histories, pore pressure increases due to wastewater injection were channeled from the target aquifers into fault zones that were, in effect, lubricated, resulting in earthquake slip. These fault zones are often located in the brittle crystalline rocks in the basement. Magnitudes of earthquakes induced by wastewater disposal often exceed 4, the threshold for structural damage. Even though only a small fraction of disposal wells induce earthquakes large enough to be of concern to the public, there are so many of these wells that this source of seismicity contributes significantly to the seismic hazard in the United States, especially east of the Rocky Mountains where standards of building construction are generally not designed to resist shaking from large earthquakes.

  6. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina

    2001-01-01

    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  7. Report on the 2010 Chilean earthquake and tsunami response

    Science.gov (United States)

    ,

    2011-01-01

    In July 2010, in an effort to reduce future catastrophic natural disaster losses for California, the American Red Cross coordinated and sent a delegation of 20 multidisciplinary experts on earthquake response and recovery to Chile. The primary goal was to understand how the Chilean society and relevant organizations responded to the magnitude 8.8 Maule earthquake that struck the region on February 27, 2010, as well as how an application of these lessons could better prepare California communities, response partners and state emergency partners for a comparable situation. Similarities in building codes, socioeconomic conditions, and broad extent of the strong shaking make the Chilean earthquake a very close analog to the impact of future great earthquakes on California. To withstand and recover from natural and human-caused disasters, it is essential for citizens and communities to work together to anticipate threats, limit effects, and rapidly restore functionality after a crisis. The delegation was hosted by the Chilean Red Cross and received extensive briefings from both national and local Red Cross officials. During nine days in Chile, the delegation also met with officials at the national, regional, and local government levels. Technical briefings were received from the President’s Emergency Committee, emergency managers from ONEMI (comparable to FEMA), structural engineers, a seismologist, hospital administrators, firefighters, and the United Nations team in Chile. Cities visited include Santiago, Talca, Constitución, Concepción, Talcahuano, Tumbes, and Cauquenes. The American Red Cross Multidisciplinary Team consisted of subject matter experts, who carried out special investigations in five Teams on the (1) science and engineering findings, (2) medical services, (3) emergency services, (4) volunteer management, and (5) executive and management issues (see appendix A for a full list of participants and their titles and teams). While developing this

  8. The threat of silent earthquakes

    Science.gov (United States)

    Cervelli, Peter

    2004-01-01

    Not all earthquakes shake the ground. The so-called silent types are forcing scientists to rethink their understanding of the way quake-prone faults behave. In rare instances, silent earthquakes that occur along the flakes of seaside volcanoes may cascade into monstrous landslides that crash into the sea and trigger towering tsunamis. Silent earthquakes that take place within fault zones created by one tectonic plate diving under another may increase the chance of ground-shaking shocks. In other locations, however, silent slip may decrease the likelihood of destructive quakes, because they release stress along faults that might otherwise seem ready to snap.

  9. Earthquakes: Thinking about the unpredictable

    Science.gov (United States)

    Geller, Robert J.

    The possibility of predicting earthquakes has been investigated by professionals and amateurs, seismologists and nonseismologists, for over 100 years. More than once, hopes of a workable earthquake prediction scheme have been raised only to be dashed. Such schemes—on some occasions accompanied by claims of an established track record—continue to be proposed, not only by Earth scientists, but also by workers in other fields. The assessment of these claims is not just a scientific or technical question. Public administrators and policy makers must make decisions regarding appropriate action in response to claims that some scheme has a predictive capability, or to specific predictions of imminent earthquakes.

  10. Fractal Models of Earthquake Dynamics

    CERN Document Server

    Bhattacharya, Pathikrit; Kamal,; Samanta, Debashis

    2009-01-01

    Our understanding of earthquakes is based on the theory of plate tectonics. Earthquake dynamics is the study of the interactions of plates (solid disjoint parts of the lithosphere) which produce seismic activity. Over the last about fifty years many models have come up which try to simulate seismic activity by mimicking plate plate interactions. The validity of a given model is subject to the compliance of the synthetic seismic activity it produces to the well known empirical laws which describe the statistical features of observed seismic activity. Here we present a review of two such models of earthquake dynamics with main focus on a relatively new model namely The Two Fractal Overlap Model.

  11. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  12. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  13. Discussion on Earthquake Forecasting and Early Warning

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaodong; Jiang Haikun; Li Mingxiao

    2008-01-01

    Through analysis of natural and social attributes of earthquake forecasting,the relationship between the natural and social attributes of earthquake forecasting (early warning) has been discussed.Regarding the natural attributes of earthquake forecasting,it only attempts to forecast the magnitude,location and occurrence time of future earthquake based on the aualysis of observational data and relevant theories and taking into consideration the present understanding of seismogeny and earthquake generation.It need not consider the consequences an earthquake forecast involves,and its purpose is to check out the level of scientific understanding of earthquakes.In respect of the social aspect of earthquake forecasting,people also focus on the consequence that the forecasting involves,in addition to its natural aspect,such as the uncertainty of earthquake prediction itself,the impact of earthquake prediction,and the earthquake resistant capability of structures (buildings),lifeline works,etc.In a word,it highlights the risk of earthquake forecasting and tries to mitigate the earthquake hazard as much as possible.In this paper,the authors also discuss the scientific and social challenges faced in earthquake prediction and analyze preliminarily the meanings and content of earthquake early warning.

  14. Earthquakes in cities revisited

    CERN Document Server

    Wirgin, Armand

    2016-01-01

    During the last twenty years, a number of publications of theoretical-numerical nature have appeared which come to the apparently-reassuring conclusion that seismic motion on the ground in cities is smaller than what this motion would be in the absence of the buildings (but for the same underground and seismic load). Other than the fact that this finding tells nothing about the motion within the buildings, it must be confronted with the overwhelming empirical evidence (e.g, earthquakes in Sendai (2011), Kathmandu (2015), Tainan City (2016), etc.) that shaking within buildings of a city is often large enough to damage or even destroy these structures. I show, on several examples, that theory can be reconciled with empirical evidence, and suggest that the crucial subject of seismic response in cities is in need of more thorough research.

  15. Earthquake Breccias (Invited)

    Science.gov (United States)

    Rowe, C. D.; Melosh, B. L.; Lamothe, K.; Schnitzer, V.; Bate, C.

    2013-12-01

    Fault breccias are one of the fundamental classes of fault rocks and are observed in many exhumed faults. Some breccias have long been assumed to form co-seismically, but textural or mechanistic evidence for the association with earthquakes has never been documented. For example, at dilational jogs in brittle faults, it is common to find small bodies of chaotic breccia in lenticular or rhombohedral voids bounded by main slip surfaces and linking segments. Sibson interpreted these 'implosion breccias' as evidence of wall rock fracturing during sudden unloading when the dilational jogs open during earthquake slip (Sibson 1985, PAGEOPH v. 124, n. 1, 159-175). However, the role of dynamic fracturing in forming these breccias has not been tested. Moreover, the criteria for identifying implosion breccia have not been defined - do all breccias in dilational jogs or step-overs represent earthquake slip? We are building a database of breccia and microbreccia textures to develop a strictly observational set of criteria for distinction of breccia texture classes. Here, we present observations from the right-lateral Pofadder Shear Zone, South Africa, and use our textural criteria to identify the relative roles of dynamic and quasi-static fracture patterns, comminution/grinding and attrition, hydrothermal alteration, dissolution, and cementation. Nearly 100% exposure in the hyper-arid region south of the Orange River allowed very detailed mapping of frictional fault traces associated with rupture events, containing one or more right-steps in each rupture trace. Fracture patterns characteristic of on- and off-fault damage associated with propagation of dynamic rupture are observed along straight segments of the faults. The wall rock fractures are regularly spaced, begin at the fault trace and propagate at a high angle to the fault, and locally branch into subsidiary fractures before terminating a few cm away. This pattern of fractures has been previously linked to dynamic

  16. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  17. Sichuan Earthquake in China

    Science.gov (United States)

    2008-01-01

    The Sichuan earthquake in China occurred on May 12, 2008, along faults within the mountains, but near and almost parallel the mountain front, northwest of the city of Chengdu. This major quake caused immediate and severe damage to many villages and cities in the area. Aftershocks pose a continuing danger, but another continuing hazard is the widespread occurrence of landslides that have formed new natural dams and consequently new lakes. These lakes are submerging roads and flooding previously developed lands. But an even greater concern is the possible rapid release of water as the lakes eventually overflow the new dams. The dams are generally composed of disintegrated rock debris that may easily erode, leading to greater release of water, which may then cause faster erosion and an even greater release of water. This possible 'positive feedback' between increasing erosion and increasing water release could result in catastrophic debris flows and/or flooding. The danger is well known to the Chinese earthquake response teams, which have been building spillways over some of the new natural dams. This ASTER image, acquired on June 1, 2008, shows two of the new large landslide dams and lakes upstream from the town of Chi-Kua-Kan at 32o12'N latitude and 104o50'E longitude. Vegetation is green, water is blue, and soil is grayish brown in this enhanced color view. New landslides appear bright off-white. The northern (top) lake is upstream from the southern lake. Close inspection shows a series of much smaller lakes in an elongated 'S' pattern along the original stream path. Note especially the large landslides that created the dams. Some other landslides in this area, such as the large one in the northeast corner of the image, occur only on the mountain slopes, so do not block streams, and do not form lakes.

  18. Sichuan Earthquake in China

    Science.gov (United States)

    2008-01-01

    The Sichuan earthquake in China occurred on May 12, 2008, along faults within the mountains, but near and almost parallel the mountain front, northwest of the city of Chengdu. This major quake caused immediate and severe damage to many villages and cities in the area. Aftershocks pose a continuing danger, but another continuing hazard is the widespread occurrence of landslides that have formed new natural dams and consequently new lakes. These lakes are submerging roads and flooding previously developed lands. But an even greater concern is the possible rapid release of water as the lakes eventually overflow the new dams. The dams are generally composed of disintegrated rock debris that may easily erode, leading to greater release of water, which may then cause faster erosion and an even greater release of water. This possible 'positive feedback' between increasing erosion and increasing water release could result in catastrophic debris flows and/or flooding. The danger is well known to the Chinese earthquake response teams, which have been building spillways over some of the new natural dams. This ASTER image, acquired on June 1, 2008, shows two of the new large landslide dams and lakes upstream from the town of Chi-Kua-Kan at 32o12'N latitude and 104o50'E longitude. Vegetation is green, water is blue, and soil is grayish brown in this enhanced color view. New landslides appear bright off-white. The northern (top) lake is upstream from the southern lake. Close inspection shows a series of much smaller lakes in an elongated 'S' pattern along the original stream path. Note especially the large landslides that created the dams. Some other landslides in this area, such as the large one in the northeast corner of the image, occur only on the mountain slopes, so do not block streams, and do not form lakes.

  19. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  20. Design and implementation of the search engine for earthquake based on Heritrix and Lucene%基于Heritrix与Lucene的地震专业搜索引擎设计

    Institute of Scientific and Technical Information of China (English)

    孙静; 李亚龙; 万杰

    2016-01-01

    随着网络科技的发展,用户对搜索引擎提出更高要求,专业搜索引擎应运而生并不断发展壮大。对地震专业搜索引擎进行系统研究,提出一种基于网络爬虫Heritrix和开源全文信息检索包Lucene的专业检索解决方案,完成信息资源抓取、镜像文件建立及索引、搜索等关键操作的建立。%With the development of the internet technology, it is demanding to have enhanced search engine with great precision. Enterprise search engine is then proposed and advanced for such purpose. We systematically studied the search engine for seismology and implemented an enterprise search solution based on Web-based crawler Heritrix and Lucene which is an open source full-featured text search engine. The key functions in our system include acquiring information, creating image ifles, building indices and searching.

  1. Tweeting Earthquakes using TensorFlow

    Science.gov (United States)

    Casarotti, E.; Comunello, F.; Magnoni, F.

    2016-12-01

    The use of social media is emerging as a powerful tool for disseminating trusted information about earthquakes. Since 2009, the Twitter account @INGVterremoti provides constant and timely details about M2+ seismic events detected by the Italian National Seismic Network, directly connected with the seismologists on duty at Istituto Nazionale di Geofisica e Vulcanologia (INGV). Currently, it updates more than 150,000 followers. Nevertheless, since it provides only the manual revision of seismic parameters, the timing (approximately between 10 and 20 minutes after an event) has started to be under evaluation. Undeniably, mobile internet, social network sites and Twitter in particular require a more rapid and "real-time" reaction. During the last 36 months, INGV tested the tweeting of the automatic detection of M3+ earthquakes, studying the reliability of the information both in term of seismological accuracy that from the point of view of communication and social research. A set of quality parameters (i.e. number of seismic stations, gap, relative error of the location) has been recognized to reduce false alarms and the uncertainty of the automatic detection. We present an experiment to further improve the reliability of this process using TensorFlow™ (an open source software library originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization).

  2. Behavior of Columns During Earthquakes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The behavior of columns during earthquakes is very important since column failures may lead to additional structural failures and result in total building collapses....

  3. Medical complications associated with earthquakes.

    Science.gov (United States)

    Bartels, Susan A; VanRooyen, Michael J

    2012-02-25

    Major earthquakes are some of the most devastating natural disasters. The epidemiology of earthquake-related injuries and mortality is unique for these disasters. Because earthquakes frequently affect populous urban areas with poor structural standards, they often result in high death rates and mass casualties with many traumatic injuries. These injuries are highly mechanical and often multisystem, requiring intensive curative medical and surgical care at a time when the local and regional medical response capacities have been at least partly disrupted. Many patients surviving blunt and penetrating trauma and crush injuries have subsequent complications that lead to additional morbidity and mortality. Here, we review and summarise earthquake-induced injuries and medical complications affecting major organ systems.

  4. Statistical earthquake focal mechanism forecasts

    CERN Document Server

    Kagan, Yan Y

    2013-01-01

    Forecasts of the focal mechanisms of future earthquakes are important for seismic hazard estimates and Coulomb stress and other models of earthquake occurrence. Here we report on a high-resolution global forecast of earthquake rate density as a function of location, magnitude, and focal mechanism. In previous publications we reported forecasts of 0.5 degree spatial resolution, covering the latitude range magnitude, and focal mechanism. In previous publications we reported forecasts of 0.5 degree spatial resolution, covering the latitude range from -75 to +75 degrees, based on the Global Central Moment Tensor earthquake catalog. In the new forecasts we've improved the spatial resolution to 0.1 degree and the latitude range from pole to pole. Our focal mechanism estimates require distance-weighted combinations of observed focal mechanisms within 1000 km of each grid point. Simultaneously we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms, using the method ...

  5. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Institute of Scientific and Technical Information of China (English)

    高孟潭; 金学申; 安卫平; 吕晓健

    2004-01-01

    The geography information system of the 1303 Hongtong M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studied. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  6. Earthquakes - Volcanoes (Causes and Forecast)

    Science.gov (United States)

    Tsiapas, E.

    2009-04-01

    EARTHQUAKES - VOLCANOES (CAUSES AND FORECAST) ELIAS TSIAPAS RESEARCHER NEA STYRA, EVIA,GREECE TEL.0302224041057 tsiapas@hol.gr The earthquakes are caused by large quantities of liquids (e.g. H2O, H2S, SO2, ect.) moving through lithosphere and pyrosphere (MOHO discontinuity) till they meet projections (mountains negative projections or projections coming from sinking lithosphere). The liquids are moved from West Eastward carried away by the pyrosphere because of differential speed of rotation of the pyrosphere by the lithosphere. With starting point an earthquake which was noticed at an area and from statistical studies, we know when, where and what rate an earthquake may be, which earthquake is caused by the same quantity of liquids, at the next east region. The forecast of an earthquake ceases to be valid if these components meet a crack in the lithosphere (e.g. limits of lithosphere plates) or a volcano crater. In this case the liquids come out into the atmosphere by the form of gasses carrying small quantities of lava with them (volcano explosion).

  7. Two models for earthquake forerunners

    Science.gov (United States)

    Mjachkin, V.I.; Brace, W.F.; Sobolev, G.A.; Dieterich, J.H.

    1975-01-01

    Similar precursory phenomena have been observed before earthquakes in the United States, the Soviet Union, Japan, and China. Two quite different physical models are used to explain these phenomena. According to a model developed by US seismologists, the so-called dilatancy diffusion model, the earthquake occurs near maximum stress, following a period of dilatant crack expansion. Diffusion of water in and out of the dilatant volume is required to explain the recovery of seismic velocity before the earthquake. According to a model developed by Soviet scientists growth of cracks is also involved but diffusion of water in and out of the focal region is not required. With this model, the earthquake is assumed to occur during a period of falling stress and recovery of velocity here is due to crack closure as stress relaxes. In general, the dilatancy diffusion model gives a peaked precursor form, whereas the dry model gives a bay form, in which recovery is well under way before the earthquake. A number of field observations should help to distinguish between the two models: study of post-earthquake recovery, time variation of stress and pore pressure in the focal region, the occurrence of pre-existing faults, and any changes in direction of precursory phenomena during the anomalous period. ?? 1975 Birkha??user Verlag.

  8. Earthquake damage to underground facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, H.R.; Hustrulid, W.A. Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository.

  9. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  10. Intracontinental basins and strong earthquakes

    Institute of Scientific and Technical Information of China (English)

    邓起东; 高孟潭; 赵新平; 吴建春

    2004-01-01

    The September 17, 1303 Hongtong M=8 earthquake occurred in Linfen basin of Shanxi down-faulted basin zone. It is the first recorded M=8 earthquake since the Chinese historical seismic records had started and is a great earthquake occurring in the active intracontinental basin. We had held a Meeting of the 700th Anniversary of the 1303 Hongtong M=8 Earthquake in Shanxi and a Symposium on Intracontinental Basins and Strong Earthquakes in Taiyuan City of Shanxi Province on September 17~18, 2003. The articles presented on the symposium discussed the relationships between active intracontinental basins of different properties, developed in different regions, including tensional graben and semi-graben basins in tensile tectonic regions, compression-depression basins and foreland basins in compressive tectonic regions and pull-apart basins in strike-slip tectonic zones, and strong earthquakes in China. In this article we make a brief summary of some problems. The articles published in this special issue are a part of the articles presented on the symposium.

  11. Triggering of volcanic eruptions by large earthquakes

    Science.gov (United States)

    Nishimura, Takeshi

    2017-08-01

    When a large earthquake occurs near an active volcano, there is often concern that volcanic eruptions may be triggered by the earthquake. In this study, recently accumulated, reliable data were analyzed to quantitatively evaluate the probability of the occurrence of new eruptions of volcanoes located near the epicenters of large earthquakes. For volcanoes located within 200 km of large earthquakes of magnitude 7.5 or greater, the eruption occurrence probability increases by approximately 50% for 5 years after the earthquake origin time. However, no significant increase in the occurrence probability of new eruptions was observed at distant volcanoes or for smaller earthquakes. The present results strongly suggest that new eruptions are likely triggered by static stress changes and/or strong ground motions caused by nearby large earthquakes. This is not similar to the previously presented evidence that volcanic earthquakes at distant volcanoes are remotely triggered by surface waves generated by large earthquakes.

  12. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  13. State-of-the-Art for Assessing Earthquake Hazards in the United States. Report 20. The Contribution of Directivity Focusing to Earthquake Intensities.

    Science.gov (United States)

    1983-08-01

    63, 2105-2119. Brune, J.N. (197Ca). The Physics of Earthquake Strong Motion in Seismic Risk and Engineering Decisions, C. Lomnitz and E. Rosenblueth...Statement to Advisory Commission on Reactor Safeguards in matter of Diablo Canyon Nuclear Power Plants, Units 1 and 2. Brune, J.N., and C. Lomnitz (1974

  14. Awareness and understanding of earthquake hazards at school

    Science.gov (United States)

    Saraò, Angela; Peruzza, Laura; Barnaba, Carla; Bragato, Pier Luigi

    2014-05-01

    Schools have a fundamental role in broadening the understanding of natural hazard and risks and in building the awareness in the community. Recent earthquakes in Italy and worldwide, have clearly demonstrated that the poor perception of seismic hazards diminishes the effectiveness of mitigation countermeasures. Since years the Seismology's department of OGS is involved in education projects and public activities to raise awareness about earthquakes. Working together with teachers we aim at developing age-appropriate curricula to improve the student's knowledge about earthquakes, seismic safety, and seismic risk reduction. Some examples of education activities we performed during the last years are here presented. We show our experience with the primary and intermediate schools where, through hands-on activities, we explain the earthquake phenomenon and its effects to kids, but we illustrate also some teaching interventions for high school students. During the past years we lectured classes, we led laboratory and field activities, and we organized summer stages for selected students. In the current year we are leading a project aimed at training high school students on seismic safety through a multidisciplinary approach that involves seismologists, engineers and experts of safety procedures. To combine the objective of dissemination of earthquake culture, also through the knowledge of the past seismicity, with that of a safety culture, we use innovative educational techniques and multimedia resources. Students and teachers, under the guidance of an expert seismologist, organize a combination of hands-on activities for understanding earthquakes in the lab through cheap tools and instrumentations At selected schools we provided the low cost seismometers of the QuakeCatcher network (http://qcn.stanford.edu) for recording earthquakes, and we trained teachers to use such instruments in the lab and to analyze recorded data. Within the same project we are going to train

  15. Evidence for Ancient Mesoamerican Earthquakes

    Science.gov (United States)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  16. A Prospect of Earthquake Prediction Research

    CERN Document Server

    Ogata, Yosihiko

    2013-01-01

    Earthquakes occur because of abrupt slips on faults due to accumulated stress in the Earth's crust. Because most of these faults and their mechanisms are not readily apparent, deterministic earthquake prediction is difficult. For effective prediction, complex conditions and uncertain elements must be considered, which necessitates stochastic prediction. In particular, a large amount of uncertainty lies in identifying whether abnormal phenomena are precursors to large earthquakes, as well as in assigning urgency to the earthquake. Any discovery of potentially useful information for earthquake prediction is incomplete unless quantitative modeling of risk is considered. Therefore, this manuscript describes the prospect of earthquake predictability research to realize practical operational forecasting in the near future.

  17. Proceedings of the 22nd symposium on engineering geology and soils engineering

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This book presents the papers given at a symposium on soil mechanics and engineering geology. Topics considered at the symposium included geotechnical testing and site exploration, design, soil dynamics, geotextiles, earthquake and volcanic hazard studies, slope stability and landslides, seismic considerations in geotechnical engineering, hazardous substances disposal, ground water, environmental and urban geology, and the response of the Boise geothermal aquifer to earth tides.

  18. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  19. Engineering models for catastrophe risk and their application to insurance

    Science.gov (United States)

    Dong, Weimin

    2002-06-01

    Internationally earthquake insurance, like all other insurance (fire, auto), adopted actuarial approach in the past, which is, based on historical loss experience to determine insurance rate. Due to the fact that earthquake is a rare event with severe consequence, irrational determination of premium rate and lack of understanding scale of potential loss led to many insurance companies insolvent after Northridge earthquake in 1994. Along with recent advances in earth science, computer science and engineering, computerized loss estimation methodologies based on first principles have been developed to the point that losses from destructive earthquakes can be quantified with reasonable accuracy using scientific modeling techniques. This paper intends to introduce how engineering models can assist to quantify earthquake risk and how insurance industry can use this information to manage their risk in the United States and abroad.

  20. Engineering models for catastrophe risk and their application to insurance

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Internationally earthquake insurance, like all other insurance (fire, auto), adopted actuarial approach in the past,which is, based on historical loss experience to determine insurance rate. Due to the fact that earthquake is a rare event withsevere consequence, irrational determination of premium rate and lack of understanding scale of potential loss led to manyinsurance companies insolvent after Northridge earthquake in 1994.Along with recent advances in earth science, computer science and engineering, computerized loss estimation methodologiesbased on first principles have been developed to the point that losses from destructive earthquakes can be quantified withreasonable accuracy using scientific modeling techniques.This paper intends to introduce how engineering models can assist to quantify earthquake risk and how insurance industry can usethis information to manage their risk in the United States and abroad.

  1. Earthquake Source and Ground Motion Characteristics of Great Kanto Earthquakes

    Science.gov (United States)

    Somerville, P. G.; Sato, T.; Wald, D. J.; Graves, R. W.; Dan, K.

    2003-12-01

    This paper describes the derivation of a rupture model of the 1923 Kanto earthquake, and the estimation of ground motions that occurred during that earthquake and that might occur during future great Kanto earthquakes. The rupture model was derived from the joint inversion of geodetic and teleseismic data. The leveling and triangulation data place strong constraints on the distribution and orientation of slip on the fault. The most concentrated slip is in the shallow central and western part of the fault. The location of the hypocenter on the western part of the fault gives rise to strong near fault rupture directivity effects, which are largest toward the east in the Boso Peninsula. To estimate the ground motions caused by this earthquake, we first calibrated 1D and 3D wave propagation path effects using the Odawara earthquake of 5 August 1990 (M 5.1), the first earthquake larger than M 5 in the last 60 years near the hypocenter of the 1923 Kanto earthquake. The simulation of the moderate-sized Odawara earthquake demonstrates that the 3D velocity model works quite well at reproducing the recorded long-period (T > 3.33 sec) strong motions, including basin-generated surface waves, for a number of sites located throughout the Kanto basin region. Using this validated 3D model along with the rupture model described above, we simulated the long-period (T > 4 sec) ground motions in this region for the 1923 Kanto earthquake. The largest ground motions occur east of the epicenter along the central and southern part of the Boso Peninsula. These large motions arise from strong rupture directivity effects and are comprised of relatively simple, source-controlled pulses with a dominant period of about 10 sec. Other rupture models and hypocenter locations generally produce smaller long period ground motion levels in this region that those of the 1923 event. North of the epicentral region, in the Tokyo area, 3D basin-generated phases are quite significant, and these phases

  2. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  3. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat

    1995-06-01

    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  4. Prospects for the Development and Application of the Earthquake Monitoring Network

    Institute of Scientific and Technical Information of China (English)

    Jin Xing; Li Shanyou; Li Zuning; Kang Lanchi; Li Jun

    2007-01-01

    With the rapid development of the economy in China, the seismic network has been changing rapidly, in that the capability of instruments, technological systems and network density are approaching those of developed countries and a large quantity of observation data has been accumulated. How to apply these resources to economic construction and public safety has become an important issue worth studying. In order to improve earthquake prediction and earthquake emergency response, it is suggested in this paper that extracting valuable precursor information, improving earthquake rapid reporting ability and extending rapid intensity reporting function are key issues. Integrating network resources, building unified standards and a multifunction seismic monitoring network are preconditions of establishing a public safety service platform and earthquake observation resources will contribute significantly to the fields of engineering, ocean, meteorology, and environmental protection. Thus, the future directions of the development of the seismic network are exploring monitoring resources, enhancing independent innovation, constructing a technological platform and enlarging the service field.

  5. Earthquake disaster simulation of civil infrastructures from tall buildings to urban areas

    CERN Document Server

    Lu, Xinzheng

    2017-01-01

    Based on more than 12 years of systematic investigation on earthquake disaster simulation of civil infrastructures, this book covers the major research outcomes including a number of novel computational models, high performance computing methods and realistic visualization techniques for tall buildings and urban areas, with particular emphasize on collapse prevention and mitigation in extreme earthquakes, earthquake loss evaluation and seismic resilience. Typical engineering applications to several tallest buildings in the world (e.g., the 632 m tall Shanghai Tower and the 528 m tall Z15 Tower) and selected large cities in China (the Beijing Central Business District, Xi'an City, Taiyuan City and Tangshan City) are also introduced to demonstrate the advantages of the proposed computational models and techniques. The high-fidelity computational model developed in this book has proven to be the only feasible option to date for earthquake-induced collapse simulation of supertall buildings that are higher than 50...

  6. The earth as a living planet: Human-type diseases in the earthquake preparation process

    CERN Document Server

    Contoyiannis, Y F; Eftaxias, K

    2013-01-01

    The new field of complex systems supports the view that a number of systems arising from disciplines as diverse as physics, biology, engineering, and economics may have certain quantitative features that are intriguingly similar. The earth is a living planet where many complex systems run perfectly without stopping at all. The earthquake generation is a fundamental sign that the earth is a living planet. Recently, analyses have shown that human-brain-type disease appears during the earthquake generation process. Herein, we show that human-heart-type disease appears during the earthquake preparation of the earthquake process. The investigation is mainly attempted by means of critical phenomena, which have been proposed as the likely paradigm to explain the origins of both heart electric fluctuations and fracture induced electromagnetic fluctuations. We show that a time window of the damage evolution within the heterogeneous Earth's crust and the healthy heart's electrical action present the characteristic feat...

  7. A global building inventory for earthquake loss estimation and risk management

    Science.gov (United States)

    Jaiswal, K.; Wald, D.; Porter, K.

    2010-01-01

    We develop a global database of building inventories using taxonomy of global building types for use in near-real-time post-earthquake loss estimation and pre-earthquake risk analysis, for the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) program. The database is available for public use, subject to peer review, scrutiny, and open enhancement. On a country-by-country level, it contains estimates of the distribution of building types categorized by material, lateral force resisting system, and occupancy type (residential or nonresidential, urban or rural). The database draws on and harmonizes numerous sources: (1) UN statistics, (2) UN Habitat's demographic and health survey (DHS) database, (3) national housing censuses, (4) the World Housing Encyclopedia and (5) other literature. ?? 2010, Earthquake Engineering Research Institute.

  8. Strong-motion earthquake accelerograms digitization and analysis records from Lima, Peru, 1951 to 1974

    Science.gov (United States)

    Brady, A. Gerald; Perez, Virgilio

    1977-01-01

    This is the second of a series of reports planned to include the results of digitization and routine analyses of strong-motion earthquake accelerograms published by the U.S. Geological Survey. Serving as a model for this effort is the collection of data reports published by the Earthquake Engineering Research Laboratory of the California Institute of Technology during the years 1969 - 1975 and covering the significant records of the period from 1933 up to the San Fernando earthquake of February 9, 1971. The first of the present series of reports, Open File Report No. 76-609, covered the significant records of 1971 subsequent to the San Fernando earthquake. The present report includes the results of some ongoing work on Peru records.

  9. Earthquake: Game-based learning for 21st century STEM education

    Science.gov (United States)

    Perkins, Abigail Christine

    To play is to learn. A lack of empirical research within game-based learning literature, however, has hindered educational stakeholders to make informed decisions about game-based learning for 21st century STEM education. In this study, I modified a research and development (R&D) process to create a collaborative-competitive educational board game illuminating elements of earthquake engineering. I oriented instruction- and game-design principles around 21st century science education to adapt the R&D process to develop the educational game, Earthquake. As part of the R&D, I evaluated Earthquake for empirical evidence to support the claim that game-play results in student gains in critical thinking, scientific argumentation, metacognitive abilities, and earthquake engineering content knowledge. I developed Earthquake with the aid of eight focus groups with varying levels of expertise in science education research, teaching, administration, and game-design. After developing a functional prototype, I pilot-tested Earthquake with teacher-participants (n=14) who engaged in semi-structured interviews after their game-play. I analyzed teacher interviews with constant comparison methodology. I used teachers' comments and feedback from content knowledge experts to integrate game modifications, implementing results to improve Earthquake. I added player roles, simplified phrasing on cards, and produced an introductory video. I then administered the modified Earthquake game to two groups of high school student-participants (n = 6), who played twice. To seek evidence documenting support for my knowledge claim, I analyzed videotapes of students' game-play using a game-based learning checklist. My assessment of learning gains revealed increases in all categories of students' performance: critical thinking, metacognition, scientific argumentation, and earthquake engineering content knowledge acquisition. Players in both student-groups improved mostly in critical thinking, having

  10. Earthquake fault superhighways

    Science.gov (United States)

    Robinson, D. P.; Das, S.; Searle, M. P.

    2010-10-01

    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  11. Procedures to Evaluate Sea Level Change; Impacts, Responses and Adaptation; U.S. Army Corps of Engineers’ Approach

    Science.gov (United States)

    2012-01-01

    movement can occur due to tectonics (earthquakes, regional subsidence or uplift), compaction sedimentary strata, crustal rebound in formerly... Architecture and Ocean Engineering, U.S. Naval Academy, Annapolis, MD. National Research Council, 1987. Responding to Changes in Sea Level: Engineering

  12. Crowdsourcing earthquake damage assessment using remote sensing imagery

    Directory of Open Access Journals (Sweden)

    Stuart Gill

    2011-06-01

    Full Text Available This paper describes the evolution of recent work on using crowdsourced analysis of remote sensing imagery, particularly high-resolution aerial imagery, to provide rapid, reliable assessments of damage caused by earthquakes and potentially other disasters. The initial effort examined online imagery taken after the 2008 Wenchuan, China, earthquake. A more recent response to the 2010 Haiti earthquake led to the formation of an international consortium: the Global Earth Observation Catastrophe Assessment Network (GEO-CAN. The success of GEO-CAN in contributing to the official damage assessments made by the Government of Haiti, the United Nations, and the World Bank led to further development of a web-based interface. A current initiative in Christchurch, New Zealand, is underway where remote sensing experts are analyzing satellite imagery, geotechnical engineers are marking liquefaction areas, and structural engineers are identifying building damage. The current site includes online training to improve the accuracy of the assessments and make it possible for even novice users to contribute to the crowdsourced solution. The paper discusses lessons learned from these initiatives and presents a way forward for using crowdsourced remote sensing as a tool for rapid assessment of damage caused by natural disasters around the world.

  13. The music of earthquakes and Earthquake Quartet #1

    Science.gov (United States)

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  14. Using earthquake intensities to forecast earthquake occurrence times

    Directory of Open Access Journals (Sweden)

    J. R. Holliday

    2006-01-01

    Full Text Available It is well known that earthquakes do not occur randomly in space and time. Foreshocks, aftershocks, precursory activation, and quiescence are just some of the patterns recognized by seismologists. Using the Pattern Informatics technique along with relative intensity analysis, we create a scoring method based on time dependent relative operating characteristic diagrams and show that the occurrences of large earthquakes in California correlate with time intervals where fluctuations in small earthquakes are suppressed relative to the long term average. We estimate a probability of less than 1% that this coincidence is due to random clustering. Furthermore, we show that the methods used to obtain these results may be applicable to other parts of the world.

  15. Retrospection on the Conclusions of Earthquake Tendency Forecast before the Wenchuan Ms8.0 Earthquake

    Institute of Scientific and Technical Information of China (English)

    Liu Jie; Guo Tieshuan; Yang Liming; Su Youjin; Li Gang

    2009-01-01

    The reason for the failure to forecast the Wenchuan Ms8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forecasts between the 2001 Western Kuulun Mountains Pass Ms8.1 earthquake and the 2008 Wenchuan Ms8.0 earthquake. The results show that the earthquake tendency estimation of Chinese Mainland is for strong earthquakes to occur in the active stage, and that there is still potential for the occurrence of a Ms8.0 large earthquake in Chinese Mainland after the 2001 Western Kunlun Mountains Pass earthquake. However the phenomena that many large earthquakes occurred around Chinese Mainland, and the 6-year long quietude of Ms7.0 earthquake and an obvious quietude of Ms5.0 and Ms6.0 earthquakes during 2002 ~2007 led to the distinctly lower forecast estimation of earthquake tendency in Chinese Mainland after 2006. The middle part in the north-south seismic belt has been designated a seismic risk area of strong earthquake in recent years, but, the estimation of the risk degree in Southwestern China is insufficient after the Ning'er Ms6.4 earthquake in Yunnan in 2007. There are no records of earthquakes with Ms≥7.0 in the Longmenshan fault, which is one of reasons that this fault was not considered a seismic risk area of strong earthquakes in recent years.

  16. Quantifying Earthquake Collapse Risk of Tall Steel Braced Frame Buildings Using Rupture-to-Rafters Simulations

    Science.gov (United States)

    Mourhatch, Ramses

    the 30-year probability of occurrence of the San Andreas scenario earthquakes using the PEER performance based earthquake engineering framework to determine the probability of exceedance of these limit states over the next 30 years.

  17. The ShakeOut Earthquake Scenario - A Story That Southern Californians Are Writing

    Science.gov (United States)

    Perry, Suzanne; Cox, Dale; Jones, Lucile; Bernknopf, Richard; Goltz, James; Hudnut, Kenneth; Mileti, Dennis; Ponti, Daniel; Porter, Keith; Reichle, Michael; Seligson, Hope; Shoaf, Kimberley; Treiman, Jerry; Wein, Anne

    2008-01-01

    The question is not if but when southern California will be hit by a major earthquake - one so damaging that it will permanently change lives and livelihoods in the region. How severe the changes will be depends on the actions that individuals, schools, businesses, organizations, communities, and governments take to get ready. To help prepare for this event, scientists of the U.S. Geological Survey (USGS) have changed the way that earthquake scenarios are done, uniting a multidisciplinary team that spans an unprecedented number of specialties. The team includes the California Geological Survey, Southern California Earthquake Center, and nearly 200 other partners in government, academia, emergency response, and industry, working to understand the long-term impacts of an enormous earthquake on the complicated social and economic interactions that sustain southern California society. This project, the ShakeOut Scenario, has applied the best current scientific understanding to identify what can be done now to avoid an earthquake catastrophe. More information on the science behind this project will be available in The ShakeOut Scenario (USGS Open-File Report 2008-1150; http://pubs.usgs.gov/of/2008/1150/). The 'what if?' earthquake modeled in the ShakeOut Scenario is a magnitude 7.8 on the southern San Andreas Fault. Geologists selected the details of this hypothetical earthquake by considering the amount of stored strain on that part of the fault with the greatest risk of imminent rupture. From this, seismologists and computer scientists modeled the ground shaking that would occur in this earthquake. Engineers and other professionals used the shaking to produce a realistic picture of this earthquake's damage to buildings, roads, pipelines, and other infrastructure. From these damages, social scientists projected casualties, emergency response, and the impact of the scenario earthquake on southern California's economy and society. The earthquake, its damages, and

  18. Effect of water content on stability of landslides triggered by earthquakes

    Science.gov (United States)

    Beyabanaki, S.; Bagtzoglou, A. C.; Anagnostou, E. N.

    2013-12-01

    during rainfall is investigated. In this study, after different durations of rainfall, an earthquake is applied to the model and the elapsed time in which the FS gets less than one obtains by trial and error. The results for different initial water contents and earthquake acceleration coefficients show that landslides can happen after shorter rainfall duration when water content is greater. If water content is high enough, the landslide occurs even without rainfall. References [1] Ray RL, Jacobs JM, de Alba P. Impact of unsaturated zone soil moisture and groundwater table on slope instability. J. Geotech. Geoenviron. Eng., 2010, 136(10):1448-1458. [2] Das B. Principles of Foundation Engineering. Stanford, Cengage Learning, 2011. Fig. 1. Effect of initial water content on FS for different EACs

  19. THE GREAT SOUTHERN CALIFORNIA SHAKEOUT: Earthquake Science for 22 Million People

    Science.gov (United States)

    Jones, L.; Cox, D.; Perry, S.; Hudnut, K.; Benthien, M.; Bwarie, J.; Vinci, M.; Buchanan, M.; Long, K.; Sinha, S.; Collins, L.

    2008-12-01

    Earthquake science is being communicated to and used by the 22 million residents of southern California to improve resiliency to future earthquakes through the Great Southern California ShakeOut. The ShakeOut began when the USGS partnered with the California Geological Survey, Southern California Earthquake Center and many other organizations to bring 300 scientists and engineers together to formulate a comprehensive description of a plausible major earthquake, released in May 2008, as the ShakeOut Scenario, a description of the impacts and consequences of a M7.8 earthquake on the Southern San Andreas Fault (USGS OFR2008-1150). The Great Southern California ShakeOut was a week of special events featuring the largest earthquake drill in United States history. The ShakeOut drill occurred in houses, businesses, and public spaces throughout southern California at 10AM on November 13, 2008, when southern Californians were asked to pretend that the M7.8 scenario earthquake had occurred and to practice actions that could reduce the impact on their lives. Residents, organizations, schools and businesses registered to participate in the drill through www.shakeout.org where they could get accessible information about the scenario earthquake and share ideas for better reparation. As of September 8, 2008, over 2.7 million confirmed participants had been registered. The primary message of the ShakeOut is that what we do now, before a big earthquake, will determine what our lives will be like after. The goal of the ShakeOut has been to change the culture of earthquake preparedness in southern California, making earthquakes a reality that are regularly discussed. This implements the sociological finding that 'milling,' discussing a problem with loved ones, is a prerequisite to taking action. ShakeOut milling is taking place at all levels from individuals and families, to corporations and governments. Actions taken as a result of the ShakeOut include the adoption of earthquake

  20. Earthquake forecast via neutrino tomography

    Institute of Scientific and Technical Information of China (English)

    WANG Bin; CHEN Ya-Zheng; LI Xue-Qian

    2011-01-01

    We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. An- tineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomog- raphy of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for ν emitted from a reactor. The case for a ν beam from a neutrino factory is also investigated, and it is noted that, because of the typically high energy associated with such neutrinos, the oscillation length is too large and the resultant variation is not practically observable. Our conclusion is that with the present reactor facilities and detection techniques, it is still a difficult task to make an earthquake forecast using such a scheme, though it seems to be possible from a theoretical point of view while ignoring some uncertainties. However, with the development of the geology, especially the knowledge about the fault zone, and with the improvement of the detection techniques, etc., there is hope that a medium-term earthquake forecast would be feasible.

  1. Extreme value distribution of earthquake magnitude

    Science.gov (United States)

    Zi, Jun Gan; Tung, C. C.

    1983-07-01

    Probability distribution of maximum earthquake magnitude is first derived for an unspecified probability distribution of earthquake magnitude. A model for energy release of large earthquakes, similar to that of Adler-Lomnitz and Lomnitz, is introduced from which the probability distribution of earthquake magnitude is obtained. An extensive set of world data for shallow earthquakes, covering the period from 1904 to 1980, is used to determine the parameters of the probability distribution of maximum earthquake magnitude. Because of the special form of probability distribution of earthquake magnitude, a simple iterative scheme is devised to facilitate the estimation of these parameters by the method of least-squares. The agreement between the empirical and derived probability distributions of maximum earthquake magnitude is excellent.

  2. Earthquakes in Central California, 1980-1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — There have been many earthquake occurrences in central California. This set of slides shows earthquake damage from the following events: Livermore, 1980, Coalinga,...

  3. The Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT) Internship Program

    Science.gov (United States)

    Perry, S.; Jordan, T.

    2006-12-01

    Our undergraduate research program, SCEC/UseIT, an NSF Research Experience for Undergraduates site, provides software for earthquake researchers and educators, movies for outreach, and ways to strengthen the technical career pipeline. SCEC/UseIT motivates diverse undergraduates towards science and engineering careers through team-based research in the exciting field of earthquake information technology. UseIT provides the cross-training in computer science/information technology (CS/IT) and geoscience needed to make fundamental progress in earthquake system science. Our high and increasing participation of women and minority students is crucial given the nation"s precipitous enrollment declines in CS/IT undergraduate degree programs, especially among women. UseIT also casts a "wider, farther" recruitment net that targets scholars interested in creative work but not traditionally attracted to summer science internships. Since 2002, SCEC/UseIT has challenged 79 students in three dozen majors from as many schools with difficult, real-world problems that require collaborative, interdisciplinary solutions. Interns design and engineer open-source software, creating increasingly sophisticated visualization tools (see "SCEC-VDO," session IN11), which are employed by SCEC researchers, in new curricula at the University of Southern California, and by outreach specialists who make animated movies for the public and the media. SCEC-VDO would be a valuable tool for research-oriented professional development programs.

  4. Nonstationary ETAS models for nonstandard earthquakes

    OpenAIRE

    Kumazawa, Takao; Ogata, Yosihiko

    2014-01-01

    The conditional intensity function of a point process is a useful tool for generating probability forecasts of earthquakes. The epidemic-type aftershock sequence (ETAS) model is defined by a conditional intensity function, and the corresponding point process is equivalent to a branching process, assuming that an earthquake generates a cluster of offspring earthquakes (triggered earthquakes or so-called aftershocks). Further, the size of the first-generation cluster depends on the magnitude of...

  5. The October 12, 1992, Dahshur, Egypt, Earthquake

    Science.gov (United States)

    Thenhaus, P.C.; Celebi, M.; Sharp, R.V.

    1993-01-01

    Cairo and northeastern Egypt experienced a rare, damaging earthquake on October 12, 1992. The earthquake, which measured 5.9 on the Richter magnitude scale, was centered near the village of Dahshur, about 18 km south of Cairo. The computed hypocentral depth of the earthquake, about 25 km, is consistent with the fact that fault rupture associated with the earthquake did not reach the surface. 

  6. PRECURSORS OF EARTHQUAKES: VLF SIGNALSIONOSPHERE IONOSPHERE RELATION

    Directory of Open Access Journals (Sweden)

    Mustafa ULAS

    2013-01-01

    Full Text Available lot of people have died because of earthquakes every year. Therefore It is crucial to predict the time of the earthquakes reasonable time before it had happed. This paper presents recent information published in the literature about precursors of earthquakes. The relationships between earthquakes and ionosphere are targeted to guide new researches in order to study further to find novel prediction methods.

  7. Earthquake Analysis of Structure by Base Isolation Technique in SAP

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available This paper presents an overview of the present state of base isolation techniques with special emphasis and a brief on other techniques developed world over for mitigating earthquake forces on the structures. The dynamic analysis procedure for isolated structures is briefly explained. The provisions of FEMA 450 for base isolated structures are highlighted. The effects of base isolation on structures located on soft soils and near active faults are given in brief. Simple case study on natural base isolation using naturally available soils is presented. Also, the future areas of research are indicated. Earthquakes are one of nature IS greatest hazards; throughout historic time they have caused significant loss offline and severe damage to property, especially to man-made structures. On the other hand, earthquakes provide architects and engineers with a number of important design criteria foreign to the normal design process. From well established procedures reviewed by many researchers, seismic isolation may be used to provide an effective solution for a wide range of seismic design problems. The application of the base isolation techniques to protect structures against damage from earthquake attacks has been considered as one of the most effective approaches and has gained increasing acceptance during the last two decades. This is because base isolation limits the effects of the earthquake attack, a flexible base largely decoupling the structure from the ground motion, and the structural response accelerations are usually less than the ground acceleration. In general, the increase of additional viscous damping in the structure may reduce displacement and acceleration responses of the structure. This study also seeks to evaluate the effects of additional damping on the seismic response when compared with structures without additional damping for the different ground motions.

  8. Ecological Management and the Cosmogenic Mechanism of Earthquakes

    Directory of Open Access Journals (Sweden)

    Mogiljuk Zhanna

    2016-01-01

    Full Text Available Critical issue of ecological risk management in urban areas is to predict the evolution of the dangerous natural processes intensity. The special situation in the realization of these risks take the earthquake threat and the stresses emergency fluctuations in the geological environment of the buildings and structures bases. This article is devoted to one of the main problems of earthquake engineering - verification of the dominant mechanisms and causality of the earthquakes intensity dangerous evolution. In it discusses the comparative analysis results of the Earth gravitational interaction energy variations amplitudes with the Sun, with the Moon and the solar system planets. Also presented the comparative evaluations results of the Earth geospheres gravitational perturbations amplitudes with the Earth solar radiation energy with the energy of its own heat of the Earth. It is shown that the energy of his own heat and Sun exposure of the Earth much less energy to gravitational perturbations in the near-earth space. In the article presents the spectral analysis results of earthquakes global daily energy on the Earth before and after the Shoemaker-Levy comet explosion on Jupiter. It is shown that the seismic events number on Earth with magnitude greater than 2.5 on the Richter scale after the comet explosion increased in 10 times. In the earthquakes global daily energy spectrum shows the spectral manifestations of solar system planets gravitational resonances. In given article the researches results of natural disasters cosmogenic sources power allow us to argue that ecological risk effective management is impossible without the evolution forecast of the cosmogenic effects intensity on natural processes for sustainable urban development.

  9. Impact analytical models for earthquake-induced pounding simulation

    Institute of Scientific and Technical Information of China (English)

    Kun YE; Li LI

    2009-01-01

    Structural pounding under earthquake has been recently extensively investigated using various impact analytical models. In this paper, a brief review on the commonly used impact analytical models is conducted.Based on this review, the formula used to determine the damping constant related to the impact spring stiffness,coefficient of restitution, and relative approaching velocity in the Hertz model with nonlinear damping is found to be incorrect. To correct this error, a more accurate approximating formula for the damping constant is theoretically derived 5~nd numerically verified. At the same time, a modified Kelvin impact model, which can reasonably account for the physical nature of pounding and conveniently implemented in the earthquake-induced pounding simulation of structural engineering is proposed.

  10. Directivity in NGA earthquake ground motions: Analysis using isochrone theory

    Science.gov (United States)

    Spudich, P.; Chiou, B.S.J.

    2008-01-01

    We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called 'directivity') around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et al. (1997), and use of our factors reduces record-to-record sigma by about 2-20% at 5 sec or greater period. ?? 2008, Earthquake Engineering Research Institute.

  11. Preliminary quantitative assessment of earthquake casualties and damages

    DEFF Research Database (Denmark)

    Badal, J.; Vázquez-Prada, M.; González, Á.

    2005-01-01

    of casualties within areas of different intensity is computed using an application developed in a geographic information system (GIS) environment, taking advantage of the possibilities of such a system for the treatment of space-distributed data. The casualty rate, defined as the number of killed people divided...... the local social wealth as a function of the gross domestic product of the country. This last step is performed on the basis of the relationship of the macroseismic intensity to the earthquake economic loss in percentage of the wealth. Such an approach to the human casualty and damage levels is carried out...... for sites near important cities located in a seismically active zone of Spain, thus contributing to an easier taking of decisions in emergency preparedness planning, contemporary earthquake engineering and seismic risk prevention....

  12. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  13. EARTHQUAKES - VOLCANOES (Causes - Forecast - Counteraction)

    Science.gov (United States)

    Tsiapas, Elias

    2014-05-01

    Earthquakes and volcanoes are caused by: 1)Various liquid elements (e.g. H20, H2S, S02) which emerge from the pyrosphere and are trapped in the space between the solid crust and the pyrosphere (Moho discontinuity). 2)Protrusions of the solid crust at the Moho discontinuity (mountain range roots, sinking of the lithosphere's plates). 3)The differential movement of crust and pyrosphere. The crust misses one full rotation for approximately every 100 pyrosphere rotations, mostly because of the lunar pull. The above mentioned elements can be found in small quantities all over the Moho discontinuity, and they are constantly causing minor earthquakes and small volcanic eruptions. When large quantities of these elements (H20, H2S, SO2, etc) concentrate, they are carried away by the pyrosphere, moving from west to east under the crust. When this movement takes place under flat surfaces of the solid crust, it does not cause earthquakes. But when these elements come along a protrusion (a mountain root) they concentrate on its western side, displacing the pyrosphere until they fill the space created. Due to the differential movement of pyrosphere and solid crust, a vacuum is created on the eastern side of these protrusions and when the aforementioned liquids overfill this space, they explode, escaping to the east. At the point of their escape, these liquids are vaporized and compressed, their flow accelerates, their temperature rises due to fluid friction and they are ionized. On the Earth's surface, a powerful rumbling sound and electrical discharges in the atmosphere, caused by the movement of the gasses, are noticeable. When these elements escape, the space on the west side of the protrusion is violently taken up by the pyrosphere, which collides with the protrusion, causing a major earthquake, attenuation of the protrusions, cracks on the solid crust and damages to structures on the Earth's surface. It is easy to foresee when an earthquake will occur and how big it is

  14. Historical earthquake investigations in Greece

    Directory of Open Access Journals (Sweden)

    K. Makropoulos

    2004-06-01

    Full Text Available The active tectonics of the area of Greece and its seismic activity have always been present in the country?s history. Many researchers, tempted to work on Greek historical earthquakes, have realized that this is a task not easily fulfilled. The existing catalogues of strong historical earthquakes are useful tools to perform general SHA studies. However, a variety of supporting datasets, non-uniformly distributed in space and time, need to be further investigated. In the present paper, a review of historical earthquake studies in Greece is attempted. The seismic history of the country is divided into four main periods. In each one of them, characteristic examples, studies and approaches are presented.

  15. 13 CFR 120.174 - Earthquake hazards.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  16. Ground motion following selection of SRS design basis earthquake and associated deterministic approach. Final report: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section`s Seismic Qualification Program for reactor restart.

  17. Scaling relation for earthquake networks

    CERN Document Server

    Abe, Sumiyoshi

    2008-01-01

    The scaling relation derived by Dorogovtsev, Goltsev, Mendes and Samukhin [Phys. Rev. E, 68 (2003) 046109] states that the exponents of the power-law connectivity distribution, gamma, and the power-law eigenvalue distribution of the adjacency matrix, delta, of a locally treelike scale-free network satisfy 2*gamma - delta = 1 in the mean field approximation. Here, it is shown that this relation holds well for the reduced simple earthquake networks (without tadpole-loops and multiple edges) constructed from the seismic data taken from California and Japan. The result is interpreted from the viewpoint of the hierarchical organization of the earthquake networks.

  18. Earthquakes triggered by fluid extraction

    Science.gov (United States)

    Segall, P.

    1989-01-01

    Seismicity is correlated in space and time with production from some oil and gas fields where pore pressures have declined by several tens of megapascals. Reverse faulting has occurred both above and below petroleum reservoirs, and normal faulting has occurred on the flanks of at least one reservoir. The theory of poroelasticity requires that fluid extraction locally alter the state of stress. Calculations with simple geometries predict stress perturbations that are consistent with observed earthquake locations and focal mechanisms. Measurements of surface displacement and strain, pore pressure, stress, and poroelastic rock properties in such areas could be used to test theoretical predictions and improve our understanding of earthquake mechanics. -Author

  19. Dancing Earthquake Science Assists Recovery from the Christchurch Earthquakes

    Science.gov (United States)

    Egan, Candice J.; Quigley, Mark C.

    2015-01-01

    The 2010-2012 Christchurch (Canterbury) earthquakes in New Zealand caused loss of life and psychological distress in residents throughout the region. In 2011, student dancers of the Hagley Dance Company and dance professionals choreographed the performance "Move: A Seismic Journey" for the Christchurch Body Festival that explored…

  20. Dancing Earthquake Science Assists Recovery from the Christchurch Earthquakes

    Science.gov (United States)

    Egan, Candice J.; Quigley, Mark C.

    2015-01-01

    The 2010-2012 Christchurch (Canterbury) earthquakes in New Zealand caused loss of life and psychological distress in residents throughout the region. In 2011, student dancers of the Hagley Dance Company and dance professionals choreographed the performance "Move: A Seismic Journey" for the Christchurch Body Festival that explored…

  1. Ground Motion Amplification and Seismic Liquefaction: A Study of Treasure Island and the Loma Prieta Earthquake

    Science.gov (United States)

    1992-06-01

    Engineering and Soil Dynamics, March 1991, St Lousis Missouri. 26 ..J 31. Vucetic M. et al. "Effect of Soil Plasticity on Cyclic Response" Journal of...Figure 47. Effect of soil plasticity . 68 Cyclic Shor Stram, e -perrl 10.2 .0 " S140 %% 5 Ciies. 03 gas % % %%a . For Magnitude 7.5 Earthquake (See

  2. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    Science.gov (United States)

    Haddad, David Elias

    2014-01-01

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…

  3. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    Science.gov (United States)

    Haddad, David Elias

    2014-01-01

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…

  4. Survival interval in earthquake entrapments: research findings reinforced during the 2010 Haiti earthquake response.

    Science.gov (United States)

    Macintyre, Anthony G; Barbera, Joseph A; Petinaux, Bruno P

    2011-03-01

    Earthquakes can result in collapsed structures with the potential to entrap individuals. In some cases, people can survive entrapment for lengthy periods. The search for and rescue of entrapped people is resource intensive and competes with other postdisaster priorities. The decision to end search and rescue activities is often difficult and in some cases protracted. Medical providers participating in response may be consulted about the probability of continued survival in undiscovered trapped individuals. Historically, many espouse a rigid time frame for viability of entrapped living people (eg, 2 days, 4 days, 14 days). The available medical and engineering data and media reports demonstrate a wide variety in survival "time to rescue," arguing against the acceptance of a single time interval applicable to all incidents. This article presents historical evidence and reports from the 2010 Haiti earthquake. Factors that may contribute to survival after entombment are listed. Finally, a decision process for projecting viability that considers the critical factors in each incident rather than adhering to a single time frame for ceasing search and rescue activities is proposed.

  5. Earthquake Hazard Assessment: an Independent Review

    Science.gov (United States)

    Kossobokov, Vladimir

    2016-04-01

    Seismic hazard assessment (SHA), from term-less (probabilistic PSHA or deterministic DSHA) to time-dependent (t-DASH) including short-term earthquake forecast/prediction (StEF), is not an easy task that implies a delicate application of statistics to data of limited size and different accuracy. Regretfully, in many cases of SHA, t-DASH, and StEF, the claims of a high potential and efficiency of the methodology are based on a flawed application of statistics and hardly suitable for communication to decision makers. The necessity and possibility of applying the modified tools of Earthquake Prediction Strategies, in particular, the Error Diagram, introduced by G.M. Molchan in early 1990ies for evaluation of SHA, and the Seismic Roulette null-hypothesis as a measure of the alerted space, is evident, and such a testing must be done in advance claiming hazardous areas and/or times. The set of errors, i.e. the rates of failure and of the alerted space-time volume, compared to those obtained in the same number of random guess trials permits evaluating the SHA method effectiveness and determining the optimal choice of the parameters in regard to specified cost-benefit functions. These and other information obtained in such a testing may supply us with a realistic estimate of confidence in SHA results and related recommendations on the level of risks for decision making in regard to engineering design, insurance, and emergency management. These basics of SHA evaluation are exemplified with a few cases of misleading "seismic hazard maps", "precursors", and "forecast/prediction methods".

  6. Hazus® estimated annualized earthquake losses for the United States

    Science.gov (United States)

    Jaiswal, Kishor; Bausch, Doug; Rozelle, Jesse; Holub, John; McGowan, Sean

    2017-01-01

    Large earthquakes can cause social and economic disruption that can be unprecedented to any given community, and the full recovery from these impacts may or may not always be achievable. In the United States (U.S.), the 1994 M6.7 Northridge earthquake in California remains the third costliest disaster in U.S. history; and it was one of the most expensive disasters for the federal government. Internationally, earthquakes in the last decade alone have claimed tens of thousands of lives and caused hundreds of billions of dollars of economic impact throughout the globe (~90 billion U.S. dollars (USD) from 2008 M7.9 Wenchuan China, ~20 billion USD from 2010 M8.8 Maule earthquake in Chile, ~220 billion USD from 2011 M9.0 Tohoku Japan earthquake, ~25 billion USD from 2011 M6.3 Christchurch New Zealand, and ~22 billion USD from 2016 M7.0 Kumamoto Japan). Recent earthquakes show a pattern of steadily increasing damages and losses that are primarily due to three key factors: (1) significant growth in earthquake-prone urban areas, (2) vulnerability of the older building stock, including poorly engineered non-ductile concrete buildings, and (3) an increased interdependency in terms of supply and demand for the businesses that operate among different parts of the world. In the United States, earthquake risk continues to grow with increased exposure of population and development even though the earthquake hazard has remained relatively stable except for the regions of induced seismic activity. Understanding the seismic hazard requires studying earthquake characteristics and locales in which they occur, while understanding the risk requires an assessment of the potential damage from earthquake shaking to the built environment and to the welfare of people—especially in high-risk areas. Estimating the varying degree of earthquake risk throughout the United States is critical for informed decision-making on mitigation policies, priorities, strategies, and funding levels in the

  7. The 2010-2011 Canterbury Earthquake Sequence: Environmental effects, seismic triggering thresholds and geologic legacy

    Science.gov (United States)

    Quigley, Mark C.; Hughes, Matthew W.; Bradley, Brendon A.; van Ballegooy, Sjoerd; Reid, Catherine; Morgenroth, Justin; Horton, Travis; Duffy, Brendan; Pettinga, Jarg R.

    2016-03-01

    Seismic shaking and tectonic deformation during strong earthquakes can trigger widespread environmental effects. The severity and extent of a given effect relates to the characteristics of the causative earthquake and the intrinsic properties of the affected media. Documentation of earthquake environmental effects in well-instrumented, historical earthquakes can enable seismologic triggering thresholds to be estimated across a spectrum of geologic, topographic and hydrologic site conditions, and implemented into seismic hazard assessments, geotechnical engineering designs, palaeoseismic interpretations, and forecasts of the impacts of future earthquakes. The 2010-2011 Canterbury Earthquake Sequence (CES), including the moment magnitude (Mw) 7.1 Darfield earthquake and Mw 6.2, 6.0, 5.9, and 5.8 aftershocks, occurred on a suite of previously unidentified, primarily blind, active faults in the eastern South Island of New Zealand. The CES is one of Earth's best recorded historical earthquake sequences. The location of the CES proximal to and beneath a major urban centre enabled rapid and detailed collection of vast amounts of field, geospatial, geotechnical, hydrologic, biologic, and seismologic data, and allowed incremental and cumulative environmental responses to seismic forcing to be documented throughout a protracted earthquake sequence. The CES caused multiple instances of tectonic surface deformation (≥ 3 events), surface manifestations of liquefaction (≥ 11 events), lateral spreading (≥ 6 events), rockfall (≥ 6 events), cliff collapse (≥ 3 events), subsidence (≥ 4 events), and hydrological (10s of events) and biological shifts (≥ 3 events). The terrestrial area affected by strong shaking (e.g. peak ground acceleration (PGA) ≥ 0.1-0.3 g), and the maximum distances between earthquake rupture and environmental response (Rrup), both generally increased with increased earthquake Mw, but were also influenced by earthquake location and source

  8. Automatic earthquake confirmation for early warning system

    Science.gov (United States)

    Kuyuk, H. S.; Colombelli, S.; Zollo, A.; Allen, R. M.; Erdik, M. O.

    2015-07-01

    Earthquake early warning studies are shifting real-time seismology in earthquake science. They provide methods to rapidly assess earthquakes to predict damaging ground shaking. Preventing false alarms from these systems is key. Here we developed a simple, robust algorithm, Authorizing GRound shaking for Earthquake Early warning Systems (AGREEs), to reduce falsely issued alarms. This is a network threshold-based algorithm, which differs from existing approaches based on apparent velocity of P and S waves. AGREEs is designed to function as an external module to support existing earthquake early warning systems (EEWSs) and filters out the false events, by evaluating actual shaking near the epicenter. Our retrospective analyses of the 2009 L'Aquila and 2012 Emilia earthquakes show that AGREEs could help an EEWS by confirming the epicentral intensity. Furthermore, AGREEs is able to effectively identify three false events due to a storm, a teleseismic earthquake, and broken sensors in Irpinia Seismic Network, Italy.

  9. Earthquake design for controlled structures

    Directory of Open Access Journals (Sweden)

    Nikos G. Pnevmatikos

    2017-04-01

    Full Text Available An alternative design philosophy, for structures equipped with control devices, capable to resist an expected earthquake while remaining in the elastic range, is described. The idea is that a portion of the earthquake loading is under¬taken by the control system and the remaining by the structure which is designed to resist elastically. The earthquake forces assuming elastic behavior (elastic forces and elastoplastic behavior (design forces are first calculated ac¬cording to the codes. The required control forces are calculated as the difference from elastic to design forces. The maximum value of capacity of control devices is then compared to the required control force. If the capacity of the control devices is larger than the required control force then the control devices are accepted and installed in the structure and the structure is designed according to the design forces. If the capacity is smaller than the required control force then a scale factor, α, reducing the elastic forces to new design forces is calculated. The structure is redesigned and devices are installed. The proposed procedure ensures that the structure behaves elastically (without damage for the expected earthquake at no additional cost, excluding that of buying and installing the control devices.

  10. Using Smartphones to Detect Earthquakes

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2012-12-01

    We are using the accelerometers in smartphones to record earthquakes. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. Given the potential number of smartphones, and small separation of sensors, this new type of seismic dataset has significant potential provides that the signal can be separated from the noise. We developed an application for android phones to record the acceleration in real time. These records can be saved on the local phone or transmitted back to a server in real time. The accelerometers in the phones were evaluated by comparing performance with a high quality accelerometer while located on controlled shake tables for a variety of tests. The results show that the accelerometer in the smartphone can reproduce the characteristic of the shaking very well, even the phone left freely on the shake table. The nature of these datasets is also quite different from traditional networks due to the fact that smartphones are moving around with their owners. Therefore, we must distinguish earthquake signals from other daily use. In addition to the shake table tests that accumulated earthquake records, we also recorded different human activities such as running, walking, driving etc. An artificial neural network based approach was developed to distinguish these different records. It shows a 99.7% successful rate of distinguishing earthquakes from the other typical human activities in our database. We are now at the stage ready to develop the basic infrastructure for a smartphone seismic network.

  11. Seismicity dynamics and earthquake predictability

    Directory of Open Access Journals (Sweden)

    G. A. Sobolev

    2011-02-01

    Full Text Available Many factors complicate earthquake sequences, including the heterogeneity and self-similarity of the geological medium, the hierarchical structure of faults and stresses, and small-scale variations in the stresses from different sources. A seismic process is a type of nonlinear dissipative system demonstrating opposing trends towards order and chaos. Transitions from equilibrium to unstable equilibrium and local dynamic instability appear when there is an inflow of energy; reverse transitions appear when energy is dissipating. Several metastable areas of a different scale exist in the seismically active region before an earthquake. Some earthquakes are preceded by precursory phenomena of a different scale in space and time. These include long-term activation, seismic quiescence, foreshocks in the broad and narrow sense, hidden periodical vibrations, effects of the synchronization of seismic activity, and others. Such phenomena indicate that the dynamic system of lithosphere is moving to a new state – catastrophe. A number of examples of medium-term and short-term precursors is shown in this paper. However, no precursors identified to date are clear and unambiguous: the percentage of missed targets and false alarms is high. The weak fluctuations from outer and internal sources play a great role on the eve of an earthquake and the occurrence time of the future event depends on the collective behavior of triggers. The main task is to improve the methods of metastable zone detection and probabilistic forecasting.

  12. 3rd International Civil and Infrastructure Engineering Conference

    CERN Document Server

    Hamid, Nor; Arshad, Mohd; Arshad, Ahmad; Ridzuan, Ahmad; Awang, Haryati

    2016-01-01

    The special focus of these proceedings is on the areas of infrastructure engineering and sustainability management. They provide detailed information on innovative research developments in construction materials and structures, in addition to a compilation of interdisciplinary findings combining nano-materials and engineering. The coverage of cutting-edge infrastructure and sustainability issues in engineering includes earthquakes, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems.

  13. Earthquake swarms in South America

    Science.gov (United States)

    Holtkamp, S. G.; Pritchard, M. E.; Lohman, R. B.

    2011-10-01

    We searched for earthquake swarms in South America between 1973 and 2009 using the global Preliminary Determination of Epicenters (PDE) catalogue. Seismicity rates vary greatly over the South American continent, so we employ a manual search approach that aims to be insensitive to spatial and temporal scales or to the number of earthquakes in a potential swarm. We identify 29 possible swarms involving 5-180 earthquakes each (with total swarm moment magnitudes between 4.7 and 6.9) within a range of tectonic and volcanic locations. Some of the earthquake swarms on the subduction megathrust occur as foreshocks and delineate the limits of main shock rupture propagation for large earthquakes, including the 2010 Mw 8.8 Maule, Chile and 2007 Mw 8.1 Pisco, Peru earthquakes. Also, subduction megathrust swarms commonly occur at the location of subduction of aseismic ridges, including areas of long-standing seismic gaps in Peru and Ecuador. The magnitude-frequency relationship of swarms we observe appears to agree with previously determined magnitude-frequency scaling for swarms in Japan. We examine geodetic data covering five of the swarms to search for an aseismic component. Only two of these swarms (at Copiapó, Chile, in 2006 and near Ticsani Volcano, Peru, in 2005) have suitable satellite-based Interferometric Synthetic Aperture Radar (InSAR) observations. We invert the InSAR geodetic signal and find that the ground deformation associated with these swarms does not require a significant component of aseismic fault slip or magmatic intrusion. Three swarms in the vicinity of the volcanic arc in southern Peru appear to be triggered by the Mw= 8.5 2001 Peru earthquake, but predicted static Coulomb stress changes due to the main shock were very small at the swarm locations, suggesting that dynamic triggering processes may have had a role in their occurrence. Although we identified few swarms in volcanic regions, we suggest that particularly large volcanic swarms (those that

  14. Proactive vs. reactive learning on buildings response and earthquake risks, in schools of Romania

    Directory of Open Access Journals (Sweden)

    Daniela DOBRE

    2015-07-01

    Full Text Available During the last 20 years, many specific activities of earthquake education and preparedness were initiated and supported in Romania by drafting materials for citizens, students, professors etc. (Georgescu et al., 2004, 2006. The education, training and information on earthquake disaster potential are important factors to mitigate the earthquake effects. Such activities, however, need time to be developed and may take different forms of presentation in order to capture the attention, to increase interest, to develop skills and attitudes in order to induce a proper behavior towards safety preparedness. It shall also be based on the accumulation of concerns and knowledge, which are, in principle, a consequence of the motivation, but which depend on the methods applied and actions taken for efficient earthquake preparedness, assessed and updated following actual earthquakes (Masuda, Midorikawa, Miki and Ohmachi, 1988. We are now at a crossroad and the proactive attitude and behavior (anticipative and participative needs to be extended in learning, within institutional framework, but correlated with the usual targets of schools and teenagers proactive issue (ROEDUSEIS-NET; Page and Page, 2003, by encouraging students in activities closer to earthquake engineering.

  15. Damages of industrial equipments in the 1995 Hyougoken-Nanbu Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Iwatsubo, Takuzo [Kobe Univ. (Japan). Faculty of Engineering

    1997-03-01

    Hanshin-Awaji area has a population of approximately 3 million and many industries, including heavy industry, harbor facilities and international trading companies. The 1995 Hyougoken-Nanbu Earthquake occurred just in this area which is 25kmx2km oblong containing Kobe city. About 5,500 people were killed and 250,000 people lost their houses. Japan society of mechanical engineers organized the investigative committee of earthquake disaster of industrial equipments after the earthquake in order to investigate the disaster damages of industrial equipments and to give data for a design manual for mechanical equipments against earthquake excitation. This is an investigation report of the disaster damages of industrial machine equipments. Damages to machine equipment of industries in the high intensity region of the earthquake are illustrated. The mechanisms of the damages and measures against earthquake and safety of nuclear power plant design are discussed. Then it is known that the design of nuclear power plant is different from the general industrial facilities and the damage which was suffered in the general industrial facilities does not occur in the nuclear power plant. (J.P.N.)

  16. The behaviour of reinforced concrete structure due to earthquake load using Time History analysis Method

    Science.gov (United States)

    Afifuddin, M.; Panjaitan, M. A. R.; Ayuna, D.

    2017-02-01

    Earthquakes are one of the most dangerous, destructive and unpredictable natural hazards, which can leave everything up to a few hundred kilometres in complete destruction in seconds. Indonesia has a unique position as an earthquake prone country. It is the place of the interaction for three tectonic plates, namely the Indo-Australian, Eurasian and Pacific plates. Banda Aceh is one of the cities that located in earthquake-prone areas. Due to the vulnerable conditions of Banda Aceh some efforts have been exerted to reduce these unfavourable conditions. Many aspects have been addressed, starting from community awareness up to engineering solutions. One of them is all buildings that build in the city should be designed as an earthquake resistant building. The objectives of this research are to observe the response of a reinforced concrete structure due to several types of earthquake load, and to see the performance of the structure after earthquake loads applied. After Tsunami in 2004 many building has been build, one of them is a hotel building located at simpang lima. The hotel is made of reinforced concrete with a height of 34.95 meters with a total area of 8872.5 m2 building. So far this building was the tallest building in Banda Aceh.

  17. Engineering Encounters: Engineering Adaptations

    Science.gov (United States)

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  18. Engineering Encounters: Engineering Adaptations

    Science.gov (United States)

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  19. Role of Young Scientists in the Emergency Response and Scientific Investigation Related to the 2008 Wenchuan Earthquake: Performance Evaluation and Discussion on the Implications to Seismological Education and Training

    Science.gov (United States)

    Qiao, S.; Zhang, D.; Chen, Y.; Xiao, C.; Feng, C.

    2008-12-01

    The Wenchuan Ms 8.0 earthquake is one of the largest inland earthquakes in continental China in the last 30 years. Over twenty thousand aftershocks were detected and aftershocks are still occurring along the Longmenshan thrust fault. Facing challenge of such large earthquakes, it is a new problem for our education, training and human resource management about how to respond quickly and arrange effectively to reduce the earthquake disasters and carry out relative researches. For such an earthquake, the Institute of Geophysics, China Earthquake Administration (IGPCEA) organized a series of investigation immediately after the quake. The researches include application in seismology, geomagnetism, seismotectonics, engineering seismology, earthquake engineering and socio-seismology. In the third day after the earthquake, many young scientists involved in the deployment of mobile seismic stations to record aftershock sequence. Up to now, 79 experts of our institute have been arranged to go to the meizoseismal region for monitoring and investigation. Among them, over 40 young scientists are no more than 40 years old, including many graduates. Less than 36 hours after the Wenchuan earthquake, 17 quick reports have been sent to China Earthquake Administration for the consultation of the emergency response. These researches dealt with a wide-band of topics from earthquake location, focal mechanism, rupture processes to suggestion on the rescue actions. According to experiences and lessons of the field works in the Wenchuan earthquake, it is deserved for us to think how to arrange theoretical courses and practical training more practical for young graduates and scientists to meet the demands of the reduction of earthquake disasters. Key words: Wenchuan earthquake; Longmenshan fault; young scientists; education and training

  20. Expert System for Earthquake Prediction (ESEP3.0)

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Wu Gengfeng; Zhang Bofeng; Li Shengle; Zheng Zhaobi; Lu Yuanzhong

    2004-01-01

    A brand new expert system for earthquake prediction, called ESEP3.0, was successfullydeveloped recently, in which the fuzzy technology and neural network conception wereincorporated and the steering inference mechanism was introduced. In addition to the functionsof symbol inference and explanation of the first generation of the expert system and theknowledge learning of the second generation, ESEP3.0 has stronger human-machineinteraction function. It consists of knowledge edition, machine learning, steering fuzzyinference engine and synchronous explanation subsystems. In this paper, the components andthe general description of the system are introduced.

  1. Estimation of Future Earthquake Losses in California

    Science.gov (United States)

    Rowshandel, B.; Wills, C. J.; Cao, T.; Reichle, M.; Branum, D.

    2003-12-01

    Recent developments in earthquake hazards and damage modeling, computing, and data management and processing, have made it possible to develop estimates of the levels of damage from earthquakes that may be expected in the future in California. These developments have been mostly published in the open literature, and provide an opportunity to estimate the levels of earthquake damage Californians can expect to suffer during the next several decades. Within the past 30 years, earthquake losses have increased dramatically, mostly because our exposure to earthquake hazards has increased. All but four of the recent damaging earthquakes have occurred distant from California's major population centers. Two, the Loma Prieta earthquake and the San Fernando earthquake, occurred on the edges of major populated areas. Loma Prieta caused significant damage in the nearby Santa Cruz and in the more distant, heavily populated, San Francisco Bay area. The 1971 San Fernando earthquake had an epicenter in the lightly populated San Gabriel Mountains, but caused slightly over 2 billion dollars in damage in the Los Angeles area. As urban areas continue to expand, the population and infrastructure at risk increases. When earthquakes occur closer to populated areas, damage is more significant. The relatively minor Whittier Narrows earthquake of 1987 caused over 500 million dollars in damage because it occurred in the Los Angeles metropolitan area, not at its fringes. The Northridge earthquake had fault rupture directly beneath the San Fernando Valley, and caused about 46 billion dollars in damage. This vast increase in damage from the San Fernando earthquake reflected both the location of the earthquake directly beneath the populated area and the 23 years of continued development and resulting greater exposure to potential damage. We have calculated losses from potential future earthquake, both as scenarios of potential earthquakes and as annualized losses considering all the potential

  2. The Characteristics of Earthquake Swarms in and around Jiangsu Province

    Institute of Scientific and Technical Information of China (English)

    Huang Yun; Tian Jianming; Miao Ali

    2011-01-01

    This paper systematically analyzed 36 earthquake swarms in and around Jiangsu Province, summarized their characteristics and discussed the relationship between earthquske swarms and subsequent strong earthquakes. It also analyzed the judgment criteria for precursory earthquake swarms. Earthquake swarms in Jiangsu Province are concentrated in several areas. Most of them were of magnitude ML2. 0 ~ 3. 9. For most earthquake swarms, the number of earthquakes was less than 30. Time duration for about 55% of earthquake swarms was less than 15 days. The biggest magnitude of one earthquake swarm was not proportional to the number of earthquakes and time duration. There are 78% of earthquake swarms corresponded to the forthcoming earthquakes of M 〉 4. 6 in which there're 57% occured in one year, This shows a medium- and short-term criterion. Distance between earthquake swarm and future earthquake was distributed dispersedly. There were no earthquakes occurring in the same location as earthquake swarms. There was no good correlation between the magnitude and the corresponding rate of future earthquakes and the intensity of earthquake swarms. There was also no good correlation between the number of earthquakes in an earthquake swarm and the corresponding rate. The study also shows that it's better to use U-p or whole-combination to determine the type of earthquake swarm.

  3. Report on the 2010 Chilean earthquake and tsunami response

    Science.gov (United States)

    ,

    2011-01-01

    In July 2010, in an effort to reduce future catastrophic natural disaster losses for California, the American Red Cross coordinated and sent a delegation of 20 multidisciplinary experts on earthquake response and recovery to Chile. The primary goal was to understand how the Chilean society and relevant organizations responded to the magnitude 8.8 Maule earthquake that struck the region on February 27, 2010, as well as how an application of these lessons could better prepare California communities, response partners and state emergency partners for a comparable situation. Similarities in building codes, socioeconomic conditions, and broad extent of the strong shaking make the Chilean earthquake a very close analog to the impact of future great earthquakes on California. To withstand and recover from natural and human-caused disasters, it is essential for citizens and communities to work together to anticipate threats, limit effects, and rapidly restore functionality after a crisis. The delegation was hosted by the Chilean Red Cross and received extensive briefings from both national and local Red Cross officials. During nine days in Chile, the delegation also met with officials at the national, regional, and local government levels. Technical briefings were received from the President’s Emergency Committee, emergency managers from ONEMI (comparable to FEMA), structural engineers, a seismologist, hospital administrators, firefighters, and the United Nations team in Chile. Cities visited include Santiago, Talca, Constitución, Concepción, Talcahuano, Tumbes, and Cauquenes. The American Red Cross Multidisciplinary Team consisted of subject matter experts, who carried out special investigations in five Teams on the (1) science and engineering findings, (2) medical services, (3) emergency services, (4) volunteer management, and (5) executive and management issues (see appendix A for a full list of participants and their titles and teams). While developing this

  4. Relation between the characteristics of strong earthquake activities in Chinese mainland and the Wenchuan earthquake

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Zhang; Guohua Yang; Xian Lu; Mingxiao Li; Zhigao Yang

    2009-01-01

    This paper studies the relations between the great Wenchuan earthquake and the active-quiet periodic characteristics of strong earthquakes, the rhythmic feature of great earthquakes, and the grouped spatial distribution of MS8.0 earthquakes in Chinese mainland. We also studied the relation between the Wenchuan earthquake and the stepwise migration characteristics of MS≥7.0 earthquakes on the North-South seismic belt, the features of the energy releasing acceleration in the active crustal blocks related to the Wenchuan earthquake and the relation between the Wenchuan earthquake and the so called second-arc fault zone. The results can be summarized as follows: ① the occurrence of the Wenchuan earthquake was consistent with the active-quiet periodic characteristics of strong earthquakes; ② its occurrence is consistent with the features of grouped occurrence of MS8.0 earthquakes and follows the 25 years rhythm (each circulation experiences the same time) of great earthquakes; ③ the Wenchuan MS8.0 earthquake follows the well known stepwise migration feature of strong earthquakes on the North-South seismic belt; ④ the location where the Wenchuan MS8.0 earthquake took place has an obvious consistency with the temporal and spatial characteristic of grouped activity of MS≥7.0 strong earthquakes on the second-arc fault zone; ⑤ the second-arc fault zone is not only the lower boundary for earthquakes with more than 30 km focal depth, but also looks like a lower boundary for deep substance movement; and ⑥ there are obvious seismic accelerations nearby the Qaidam and Qiangtang active crustal blocks (the northern and southern neighbors of the Bayan Har active block, respectively), which agrees with the GPS observation data.

  5. Loss Estimations due to Earthquakes and Secondary Technological Hazards

    Science.gov (United States)

    Frolova, N.; Larionov, V.; Bonnin, J.

    2009-04-01

    Expected loss and damage assessment due to natural and technological disasters are of primary importance for emergency management just after the disaster, as well as for development and implementation of preventive measures plans. The paper addresses the procedures and simulation models for loss estimations due to strong earthquakes and secondary technological accidents. The mathematical models for shaking intensity distribution, damage to buildings and structures, debris volume, number of fatalities and injuries due to earthquakes and technological accidents at fire and chemical hazardous facilities are considered, which are used in geographical information systems assigned for these purposes. The criteria of technological accidents occurrence are developed on the basis of engineering analysis of past events' consequences. The paper is providing the results of scenario earthquakes consequences estimation and individual seismic risk assessment taking into account the secondary technological hazards at regional and urban levels. The individual risk is understood as the probability of death (or injuries) due to possible hazardous event within one year in a given territory. It is determined through mathematical expectation of social losses taking into account the number of inhabitants in the considered settlement and probability of natural and/or technological disaster.

  6. Modeling the Fluid Withdraw and Injection Induced Earthquakes

    Science.gov (United States)

    Meng, C.

    2016-12-01

    We present an open source numerical code, Defmod, that allows one to model the induced seismicity in an efficient and standalone manner. The fluid withdraw and injection induced earthquake has been a great concern to the industries including oil/gas, wastewater disposal and CO2 sequestration. Being able to numerically model the induced seismicity is long desired. To do that, one has to consider at lease two processes, a steady process that describes the inducing and aseismic stages before and in between the seismic events, and an abrupt process that describes the dynamic fault rupture accompanied by seismic energy radiations during the events. The steady process can be adequately modeled by a quasi-static model, while the abrupt process has to be modeled by a dynamic model. In most of the published modeling works, only one of these processes is considered. The geomechanicists and reservoir engineers are focused more on the quasi-static modeling, whereas the geophysicists and seismologists are focused more on the dynamic modeling. The finite element code Defmod combines these two models into a hybrid model that uses the failure criterion and frictional laws to adaptively switch between the (quasi-)static and dynamic states. The code is capable of modeling episodic fault rupture driven by quasi-static loading, e.g. due to reservoir fluid withdraw and/or injection, and by dynamic loading, e.g. due to the foregoing earthquakes. We demonstrate a case study for the 2013 Azle earthquake.

  7. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2016-12-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  8. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2017-07-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  9. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  10. Preliminary observations on the Campania-Basilicata, Italy, earthquake of November 23, 1980

    Science.gov (United States)

    Stratta, J. L.; Escalente, L. E.; Krinitzsky, E.L.; Morelli, U.

    1981-01-01

    The authors comprised a field study team sent by the Earthquake Engineering Research Institue (EERI) and the National Research Council (NRC) of the United States to make a reconnaissance study of the earthquake in southern Italy. The team members were selected for their experience and expertise and served the EERI and the NRC as individuals, into as representatives of employers or agencies with which they are affiliated. The team's preliminary obersvations are given below. A report of the study will be published jointly by EERI and NRC.  

  11. A smartphone application for earthquakes that matter!

    Science.gov (United States)

    Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert

    2014-05-01

    Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public, some of them having been downloaded more than 1 million times! The advantages are obvious: wherever someone's own location is, they can be automatically informed when an earthquake has struck. Just by setting a magnitude threshold and an area of interest, there is no longer the need to browse the internet as the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? What are the earthquakes that really matters to laypeople? One clue may be derived from some newspaper reports that show that a while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones that matter the most for the public (and authorities). They are the ones of societal importance even when of small magnitude. A smartphone application developed by EMSC (Euro-Med Seismological Centre) with the financial support of the Fondation MAIF aims at providing suitable notifications for earthquakes by collating different information threads covering tsunamigenic, potentially damaging and felt earthquakes. Tsunamigenic earthquakes are considered here to be those ones that are the subject of alert or information messages from the PTWC (Pacific Tsunami Warning Centre). While potentially damaging earthquakes are identified through an automated system called EQIA (Earthquake Qualitative Impact Assessment) developed and operated at EMSC. This rapidly assesses earthquake impact by comparing the population exposed to each expected

  12. On the comparison between physics-based numerical simulations and observations from real earthquakes

    Science.gov (United States)

    Smerzini, Chiara; Paolucci, Roberto; Pitilakis, Kyriazis

    2016-04-01

    Physics-based numerical simulations of earthquake ground motion, including a full 3D seismic wave propagation model from the source to the site, are expected to become, in near future, the most promising tool to generate ground shaking scenarios from future realistic earthquakes. These simulation methods are, in fact, able to model within a single computational domain all factors that affect earthquake ground motion, i.e.: the features of the seismic fault rupture, the propagation path in heterogeneous Earth media, directivity of seismic waves, complex site effects due to localized topographic and geologic irregularities, variability/specificity of soil properties at a regional and local scale. Stimulated by the increasing availability of computational resources, such sophisticated tools are now mature enough to provide realistic estimates of earthquake ground motion in a variety of geomorphological conditions and to favor a deeper understanding of the effect of the main physical parameters on ground shaking and on its spatial variability. Nevertheless, to be accepted and used by the engineering community as an alternative tool to standard empirical approaches (i.e., Ground Motion Prediction Equations) and within a Probabilistic Seismic Hazard Assessment (PSHA) framework, physics-based numerical simulations still need further validation studies, i.e. to compare with observations from real earthquakes. In this contribution, we summarize the experience and the most salient results of the 3D numerical modelling work carried out by a high-performance spectral element code, SPEED (http://speed.mox.polimi.it/), developed at Politecnico di Milano, to simulate real earthquakes which occurred in Europe. Specifically, the following case studies will be presented: the May 29 2012 MW 6.0 Po-Plain earthquake, Northeastern Italy; the April 6 2009 MW 6.3 L'Aquila earthquake, Central Italy; the June 20 1978 MW 6.5 Volvi earthquake, Northeastern Greece. In the discussion of the

  13. PAGER-CAT: A composite earthquake catalog for calibrating global fatality models

    Science.gov (United States)

    Allen, T.I.; Marano, K.D.; Earle, P.S.; Wald, D.J.

    2009-01-01

    highly uncertain, particularly the casualty numbers, which must be regarded as estimates rather than firm numbers for many earthquakes. Consequently, we encourage contributions from the seismology and earthquake engineering communities to further improve this resource via the Wikipedia page and personal communications, for the benefit of the whole community.

  14. Earthquake Risk, FEMA Earthquake Hazzard Risk Map, Published in 1994, Delaware Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Earthquake Risk dataset, was produced all or in part from Published Reports/Deeds information as of 1994. It is described as 'FEMA Earthquake Hazzard Risk Map'....

  15. Engineering applications of strong ground motion simulation

    Science.gov (United States)

    Somerville, Paul

    1993-02-01

    The formulation, validation and application of a procedure for simulating strong ground motions for use in engineering practice are described. The procedure uses empirical source functions (derived from near-source strong motion recordings of small earthquakes) to provide a realistic representation of effects such as source radiation that are difficult to model at high frequencies due to their partly stochastic behavior. Wave propagation effects are modeled using simplified Green's functions that are designed to transfer empirical source functions from their recording sites to those required for use in simulations at a specific site. The procedure has been validated against strong motion recordings of both crustal and subduction earthquakes. For the validation process we choose earthquakes whose source models (including a spatially heterogeneous distribution of the slip of the fault) are independently known and which have abundant strong motion recordings. A quantitative measurement of the fit between the simulated and recorded motion in this validation process is used to estimate the modeling and random uncertainty associated with the simulation procedure. This modeling and random uncertainty is one part of the overall uncertainty in estimates of ground motions of future earthquakes at a specific site derived using the simulation procedure. The other contribution to uncertainty is that due to uncertainty in the source parameters of future earthquakes that affect the site, which is estimated from a suite of simulations generated by varying the source parameters over their ranges of uncertainty. In this paper, we describe the validation of the simulation procedure for crustal earthquakes against strong motion recordings of the 1989 Loma Prieta, California, earthquake, and for subduction earthquakes against the 1985 Michoacán, Mexico, and Valparaiso, Chile, earthquakes. We then show examples of the application of the simulation procedure to the estimatation of the

  16. A resonance mechanism of earthquakes

    CERN Document Server

    Flambaum, V V

    2015-01-01

    It had been observed in [1] that there are periodic 4-6 hours pulses of ? 200 ?Hz seismogravita- tional oscillations ( SGO ) before 95 % of powerful earthquakes. We explain this by beating between an oscillation eigenmode of a whole tectonic plate and a local eigenmode of an active zone which tranfers the oscillation energy from the tectonic plate to the active zone causing the eathrquake. Oscillation frequencies of the plate and ones of the active zone are tuned to a resonance by an additional pressure applied to the active zone due to collision of neighboring plates or convection in the upper mantia (plume). Corresponding theory may be used for short-term prediction of the earthquakes and tsunami.

  17. Pre-earthquake Magnetic Pulses

    CERN Document Server

    Scoville, John; Freund, Friedemann

    2014-01-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are observable because their extremely long wavelength allows them to pass through the Earth's crust. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stress is building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  18. Great East Japan Earthquake Tsunami

    Science.gov (United States)

    Iijima, Y.; Minoura, K.; Hirano, S.; Yamada, T.

    2011-12-01

    The 11 March 2011, Mw 9.0 Great East Japan Earthquake, already among the most destructive earthquakes in modern history, emanated from a fault rupture that extended an estimated 500 km along the Pacific coast of Honshu. This earthquake is the fourth among five of the strongest temblors since AD 1900 and the largest in Japan since modern instrumental recordings began 130 years ago. The earthquake triggered a huge tsunami, which invaded the seaside areas of the Pacific coast of East Japan, causing devastating damages on the coast. Artificial structures were destroyed and planted forests were thoroughly eroded. Inrush of turbulent flows washed backshore areas and dunes. Coastal materials including beach sand were transported onto inland areas by going-up currents. Just after the occurrence of the tsunami, we started field investigation of measuring thickness and distribution of sediment layers by the tsunami and the inundation depth of water in Sendai plain. Ripple marks showing direction of sediment transport were the important object of observation. We used a soil auger for collecting sediments in the field, and sediment samples were submitted for analyzing grain size and interstitial water chemistry. Satellite images and aerial photographs are very useful for estimating the hydrogeological effects of tsunami inundation. We checked the correspondence of micro-topography, vegetation and sediment covering between before and after the tsunami. The most conspicuous phenomenon is the damage of pine forests planted in the purpose of preventing sand shifting. About ninety-five percent of vegetation coverage was lost during the period of rapid currents changed from first wave. The landward slopes of seawalls were mostly damaged and destroyed. Some aerial photographs leave detailed records of wave destruction just behind seawalls, which shows the occurrence of supercritical flows. The large-scale erosion of backshore behind seawalls is interpreted to have been caused by

  19. Multi-hazard approaches to civil infrastructure engineering

    CERN Document Server

    LaFave, James

    2016-01-01

    This collection focuses on the development of novel approaches to address one of the most pressing challenges of civil engineering, namely the mitigation of natural hazards. Numerous engineering books to date have focused on, and illustrate considerable progress toward, mitigation of individual hazards (earthquakes, wind, and so forth.). The current volume addresses concerns related to overall safety, sustainability and resilience of the built environment when subject to multiple hazards: natural disaster events that are concurrent and either correlated (e.g., wind and surge); uncorrelated (e.g., earthquake and flood); cascading (e.g., fire following earthquake); or uncorrelated and occurring at different times (e.g., wind and earthquake). The authors examine a range of specific topics including methodologies for vulnerability assessment of structures, new techniques to reduce the system demands through control systems; instrumentation, monitoring and condition assessment of structures and foundations; new te...

  20. Lessons of L'Aquila for Operational Earthquake Forecasting

    Science.gov (United States)

    Jordan, T. H.

    2012-12-01

    The L'Aquila earthquake of 6 Apr 2009 (magnitude 6.3) killed 309 people and left tens of thousands homeless. The mainshock was preceded by a vigorous seismic sequence that prompted informal earthquake predictions and evacuations. In an attempt to calm the population, the Italian Department of Civil Protection (DPC) convened its Commission on the Forecasting and Prevention of Major Risk (MRC) in L'Aquila on 31 March 2009 and issued statements about the hazard that were widely received as an "anti-alarm"; i.e., a deterministic prediction that there would not be a major earthquake. On October 23, 2012, a court in L'Aquila convicted the vice-director of DPC and six scientists and engineers who attended the MRC meeting on charges of criminal manslaughter, and it sentenced each to six years in prison. A few weeks after the L'Aquila disaster, the Italian government convened an International Commission on Earthquake Forecasting for Civil Protection (ICEF) with the mandate to assess the status of short-term forecasting methods and to recommend how they should be used in civil protection. The ICEF, which I chaired, issued its findings and recommendations on 2 Oct 2009 and published its final report, "Operational Earthquake Forecasting: Status of Knowledge and Guidelines for Implementation," in Aug 2011 (www.annalsofgeophysics.eu/index.php/annals/article/view/5350). As defined by the Commission, operational earthquake forecasting (OEF) involves two key activities: the continual updating of authoritative information about the future occurrence of potentially damaging earthquakes, and the officially sanctioned dissemination of this information to enhance earthquake preparedness in threatened communities. Among the main lessons of L'Aquila is the need to separate the role of science advisors, whose job is to provide objective information about natural hazards, from that of civil decision-makers who must weigh the benefits of protective actions against the costs of false alarms

  1. Scientific and non-scientific challenges for Operational Earthquake Forecasting

    Science.gov (United States)

    Marzocchi, W.

    2015-12-01

    Tracking the time evolution of seismic hazard in time windows shorter than the usual 50-years of long-term hazard models may offer additional opportunities to reduce the seismic risk. This is the target of operational earthquake forecasting (OEF). During the OEF development in Italy we identify several challenges that range from pure science to the more practical interface of science with society. From a scientific point of view, although earthquake clustering is the clearest empirical evidence about earthquake occurrence, and OEF clustering models are the most (successfully) tested hazard models in seismology, we note that some seismologists are still reluctant to accept their scientific reliability. After exploring the motivations of these scientific doubts, we also look into an issue that is often overlooked in this discussion, i.e., in any kind of hazard analysis, we do not use a model because it is the true one, but because it is the better than anything else we can think of. The non-scientific aspects are mostly related to the fact that OEF usually provides weekly probabilities of large eartquakes smaller than 1%. These probabilities are considered by some seismologists too small to be of interest or useful. However, in a recent collaboration with engineers we show that such earthquake probabilities may lead to intolerable individual risk of death. Interestingly, this debate calls for a better definition of the still fuzzy boundaries among the different expertise required for the whole risk mitigation process. The last and probably more pressing challenge is related to the communication to the public. In fact, a wrong message could be useless or even counterproductive. Here we show some progresses that we have made in this field working with communication experts in Italy.

  2. A new reference global instrumental earthquake catalogue (1900-2009)

    Science.gov (United States)

    Di Giacomo, D.; Engdahl, B.; Bondar, I.; Storchak, D. A.; Villasenor, A.; Bormann, P.; Lee, W.; Dando, B.; Harris, J.

    2011-12-01

    For seismic hazard studies on a global and/or regional scale, accurate knowledge of the spatial distribution of seismicity, the magnitude-frequency relation and the maximum magnitudes is of fundamental importance. However, such information is normally not homogeneous (or not available) for the various seismically active regions of the Earth. To achieve the GEM objectives (www.globalquakemodel.org) of calculating and communicating earthquake risk worldwide, an improved reference global instrumental catalogue for large earthquakes spanning the entire 100+ years period of instrumental seismology is an absolute necessity. To accomplish this task, we apply the most up-to-date techniques and standard observatory practices for computing the earthquake location and magnitude. In particular, the re-location procedure benefits both from the depth determination according to Engdahl and Villaseñor (2002), and the advanced technique recently implemented at the ISC (Bondár and Storchak, 2011) to account for correlated error structure. With regard to magnitude, starting from the re-located hypocenters, the classical surface and body-wave magnitudes are determined following the new IASPEI standards and by using amplitude-period data of phases collected from historical station bulletins (up to 1970), which were not available in digital format before the beginning of this work. Finally, the catalogue will provide moment magnitude values (including uncertainty) for each seismic event via seismic moment, via surface wave magnitude or via other magnitude types using empirical relationships. References Engdahl, E.R., and A. Villaseñor (2002). Global seismicity: 1900-1999. In: International Handbook of Earthquake and Engineering Seismology, eds. W.H.K. Lee, H. Kanamori, J.C. Jennings, and C. Kisslinger, Part A, 665-690, Academic Press, San Diego. Bondár, I., and D. Storchak (2011). Improved location procedures at the International Seismological Centre, Geophys. J. Int., doi:10.1111/j

  3. The physics of rock failure and earthquakes

    CERN Document Server

    Ohnaka, Mitiyasu

    2013-01-01

    Despite significant advances in the understanding of earthquake generation processes and derivation of underlying physical laws, controversy remains regarding the constitutive law for earthquake ruptures and how it should be formulated. Laboratory experiments are necessary to obtain high-resolution measurements that allow the physical nature of shear rupture processes to be deduced, and to resolve the controversy. This important book provides a deeper understanding of earthquake processes from nucleation to their dynamic propagation. Its key focus is a deductive approach based on laboratory-derived physical laws and formulae, such as a unifying constitutive law, a constitutive scaling law, and a physical model of shear rupture nucleation. Topics covered include: the fundamentals of rock failure physics, earthquake generation processes, physical scale dependence, and large-earthquake generation cycles. Designed for researchers and professionals in earthquake seismology, rock failure physics, geology and earthq...

  4. Is There An Earthquake Migration Global Pattern?

    Science.gov (United States)

    dos Santos, A. M.; Franca, G. S.; da Silveira, A. G.; Frigeri, G. V.; Marotta, G. S.

    2012-12-01

    Earthquake migration patterns before large earthquake were proposed by Mogi (1968) and existence of the correlation between earthquakes over distances that show probable global interdependence and this theme is certainly one of the most intriguing in field of seismology. In this job, we will present the phenomenology of earthquake migration global seismic pattern empirically, in order to ensure statistically the correlation of long range and lead to confrontation these seismic patterns. We used the international catalog available, such as, NEIC-USGS. We find that the pair of events that have a good correlation are confirmed statistically. As Shebalin (1996) has shown the earthquake chain, we show this first stage of the earthquake prediction correlation for large distances.

  5. Earthquake Hazard Mitigation Strategy in Indonesia

    Science.gov (United States)

    Karnawati, D.; Anderson, R.; Pramumijoyo, S.

    2008-05-01

    Because of the active tectonic setting of the region, the risks of geological hazards inevitably increase in Indonesian Archipelagoes and other ASIAN countries. Encouraging community living in the vulnerable area to adapt with the nature of geology will be the most appropriate strategy for earthquake risk reduction. Updating the Earthquake Hazard Maps, enhancement ofthe existing landuse management , establishment of public education strategy and method, strengthening linkages among stake holders of disaster mitigation institutions as well as establishement of continues public consultation are the main strategic programs for community resilience in earthquake vulnerable areas. This paper highlights some important achievements of Earthquake Hazard Mitigation Programs in Indonesia, together with the difficulties in implementing such programs. Case examples of Yogyakarta and Bengkulu Earthquake Mitigation efforts will also be discussed as the lesson learned. The new approach for developing earthquake hazard map which is innitiating by mapping the psychological aspect of the people living in vulnerable area will be addressed as well.

  6. Earthquakes in Virginia and vicinity 1774 - 2004

    Science.gov (United States)

    Tarr, Arthur C.; Wheeler, Russell L.

    2006-01-01

    This map summarizes two and a third centuries of earthquake activity. The seismic history consists of letters, journals, diaries, and newspaper and scholarly articles that supplement seismograph recordings (seismograms) dating from the early twentieth century to the present. All of the pre-instrumental (historical) earthquakes were large enough to be felt by people or to cause shaking damage to buildings and their contents. Later, widespread use of seismographs meant that tremors too small or distant to be felt could be detected and accurately located. Earthquakes are a legitimate concern in Virginia and parts of adjacent States. Moderate earthquakes cause slight local damage somewhere in the map area about twice a decade on the average. Additionally, many buildings in the map area were constructed before earthquake protection was added to local building codes. The large map shows all historical and instrumentally located earthquakes from 1774 through 2004.

  7. Earthquake forewarning in the Cascadia region

    Science.gov (United States)

    Gomberg, Joan S.; Atwater, Brian F.; Beeler, Nicholas M.; Bodin, Paul; Davis, Earl; Frankel, Arthur; Hayes, Gavin P.; McConnell, Laura; Melbourne, Tim; Oppenheimer, David H.; Parrish, John G.; Roeloffs, Evelyn A.; Rogers, Gary D.; Sherrod, Brian; Vidale, John; Walsh, Timothy J.; Weaver, Craig S.; Whitmore, Paul M.

    2015-08-10

    This report, prepared for the National Earthquake Prediction Evaluation Council (NEPEC), is intended as a step toward improving communications about earthquake hazards between information providers and users who coordinate emergency-response activities in the Cascadia region of the Pacific Northwest. NEPEC charged a subcommittee of scientists with writing this report about forewarnings of increased probabilities of a damaging earthquake. We begin by clarifying some terminology; a “prediction” refers to a deterministic statement that a particular future earthquake will or will not occur. In contrast to the 0- or 100-percent likelihood of a deterministic prediction, a “forecast” describes the probability of an earthquake occurring, which may range from >0 to 4 earthquakes on the plate interface north of the Mendocino region 

  8. Dim prospects for earthquake prediction

    Science.gov (United States)

    Geller, Robert J.

    I was misquoted by C. Lomnitz's [1998] Forum letter (Eos, August 4, 1998, p. 373), which said: [I wonder whether Sasha Gusev [1998] actually believes that branding earthquake prediction a ‘proven nonscience’ [Geller, 1997a] is a paradigm for others to copy.”Readers are invited to verify for themselves that neither “proven nonscience” norv any similar phrase was used by Geller [1997a].

  9. Understand mountain studies from earthquake

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Sichuan earthquake on 12 May was the most devastating one to hit China over the past 60 years or so. As the affected were mostly mountainous areas, serious damages were caused by various secondary disasters ranging from mountain collapse to the formation of quake lakes. This leaves Prof. DENG Wei, director-general of the Institute of Mountain Hazards and Environment, CAS, much to think about, and he is calling for strengthening studies on mountain science.

  10. Tangshan Women After the Earthquake

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    TWENTY years ago, Tangshan, a city in China’s Hebei Province, was struck by an earthquake which killed 240,000 people, injured 160,000, and destroyed 10,200 homes. In 7,200 families there were no survivors. After 20 years of rebuilding, a new Tangshan has risen from the debris. Tangshan women played a very important role in rebuilding their hometown.

  11. Mechanics of Multifault Earthquake Ruptures

    Science.gov (United States)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.

    2015-12-01

    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  12. Bayesian kinematic earthquake source models

    Science.gov (United States)

    Minson, S. E.; Simons, M.; Beck, J. L.; Genrich, J. F.; Galetzka, J. E.; Chowdhury, F.; Owen, S. E.; Webb, F.; Comte, D.; Glass, B.; Leiva, C.; Ortega, F. H.

    2009-12-01

    Most coseismic, postseismic, and interseismic slip models are based on highly regularized optimizations which yield one solution which satisfies the data given a particular set of regularizing constraints. This regularization hampers our ability to answer basic questions such as whether seismic and aseismic slip overlap or instead rupture separate portions of the fault zone. We present a Bayesian methodology for generating kinematic earthquake source models with a focus on large subduction zone earthquakes. Unlike classical optimization approaches, Bayesian techniques sample the ensemble of all acceptable models presented as an a posteriori probability density function (PDF), and thus we can explore the entire solution space to determine, for example, which model parameters are well determined and which are not, or what is the likelihood that two slip distributions overlap in space. Bayesian sampling also has the advantage that all a priori knowledge of the source process can be used to mold the a posteriori ensemble of models. Although very powerful, Bayesian methods have up to now been of limited use in geophysical modeling because they are only computationally feasible for problems with a small number of free parameters due to what is called the "curse of dimensionality." However, our methodology can successfully sample solution spaces of many hundreds of parameters, which is sufficient to produce finite fault kinematic earthquake models. Our algorithm is a modification of the tempered Markov chain Monte Carlo (tempered MCMC or TMCMC) method. In our algorithm, we sample a "tempered" a posteriori PDF using many MCMC simulations running in parallel and evolutionary computation in which models which fit the data poorly are preferentially eliminated in favor of models which better predict the data. We present results for both synthetic test problems as well as for the 2007 Mw 7.8 Tocopilla, Chile earthquake, the latter of which is constrained by InSAR, local high

  13. Storm sudden commencements and earthquakes

    Science.gov (United States)

    Lavrov, Ivan; Sobisevich, Aleksey; Guglielmi, Anatol

    2015-03-01

    We have investigated statistically the problem of possible impact of the geomagnetic storm sudden com-mencement (SSC) on the global seismic activity. SSC are used as reference points for comparative analysis of seismicity by the method of superposed epoch. We selected 405 earthquakes from 1973 to 2010 with M˜5 magnitudes from a representative part of USGS Catalog. The comparative analysis of seismicity was carried out at the intervals of ˜60 min relative to the reference point. With a high degree of reliability, it was found that before the reference point the number of earthquakes is noticeably greater than after it. In other words, the global seismicity is suppressed by SSC. We refer to some studies in which the chemical, thermal and force mechanisms of the electromagnetic field action on rocks are discussed. We emphasize the incompleteness of the study concerning the correlation between SSC and earthquakes because we still do not succeed in understanding and interpreting the relationship in terms of physics and mathematics. The study need to be continued to solve this problem of interest and importance.

  14. Pre-earthquake magnetic pulses

    Directory of Open Access Journals (Sweden)

    J. Scoville

    2014-12-01

    Full Text Available A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are generated deep in the Earth's crust, in and around the Hypocentral volume, days or even weeks before Earthquakes. They are observable at the surface because their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stresses are building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  15. Global Significant Earthquake Database, 2150 BC to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Significant Earthquake Database is a global listing of over 5,700 earthquakes from 2150 BC to the present. A significant earthquake is classified as one that...

  16. Geoethics and decision science issues in Japan's disaster management system: case study in the 2011 Tohoku earthquake and tsunami

    Science.gov (United States)

    Sugimoto, Megumi

    2015-04-01

    The March 11, 2011 Tohoku earthquake and its tsunami killed 18,508 people, including the missing (National Police Agency report as of April 2014) and raise the Level 7 accident at TEPCO's Fukushima Dai-ichi nuclear power station in Japan. The problems revealed can be viewed as due to a combination of risk-management, risk-communication, and geoethics issues. Japan's preparations for earthquakes and tsunamis are based on the magnitude of the anticipated earthquake for each region. The government organization coordinating the estimation of anticipated earthquakes is the "Headquarters for Earthquake Research Promotion" (HERP), which is under the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Japan's disaster mitigation system is depicted schematically as consisting of three layers: seismology, civil engineering, and disaster mitigation planning. This research explains students in geoscience should study geoethics as part of their education related Tohoku earthquake and the Level 7 accident at TEPCO's Fukushima Dai-ichi nuclear power station. Only when they become practicing professionals, they will be faced with real geoethical dilemmas. A crisis such as the 2011 earthquake, tsunami, and Fukushima Dai-ichi nuclear accident, will force many geoscientists to suddenly confront previously unanticipated geoethics and risk-communication issues. One hopes that previous training will help them to make appropriate decisions under stress. We name it "decision science".

  17. Evaluation and cataloging of Korean historical earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kew Hwa; Han, Young Woo; Lee, Jun Hui; Park, Ji Eok; Na, Kwang Wooing; Shin, Byung Ju [The Reaearch Institute of Basic Sciences, Seoul Nationl Univ., Seoul (Korea, Republic of)

    1998-03-15

    In order to systematically collect and analyze the historical earthquake data of the Korean peninsula which are very important in analyzing the seismicity and seismic risk of the peninsula by seismologist and historian, extensive governmental and private historical documents are investigated and relative reliabilities of these documents are examined. This research unearthed about 70 new earthquake records and revealed the change in the cultural, political and social effects of earthquakes with time in Korea. Also, the results of the vibration test of the Korean traditional wooden house are obtained in order to better estimate intensities of the historical earthquakes.

  18. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  19. Earthquake risk assessment for Istanbul metropolitan area

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The impact of earthquakes in urban centers prone to disastrous earthquakes necessitates the analysis of associated risk for rational formulation of contingency plans and mitigation strategies. In urban centers, the seismic risk is best quantified and portrayed through the preparation of "Earthquake Damage and Loss Scenarios." The components of such scenarios are the assessment of the hazard, inventories and the vulnerabilities of elements at risk. For the development of the earthquake risk scenario in Istanbul, two independent approaches, one based on intensities and the second on spectral displacements, are utilized. This paper will present the important features of a comprehensive study, highlight the methodology, discuss the results and provide insights to future developments.

  20. Smoking prevalence increases following Canterbury earthquakes.

    Science.gov (United States)

    Erskine, Nick; Daley, Vivien; Stevenson, Sue; Rhodes, Bronwen; Beckert, Lutz

    2013-01-01

    A magnitude 7.1 earthquake hit Canterbury in September 2010. This earthquake and associated aftershocks took the lives of 185 people and drastically changed residents' living, working, and social conditions. To explore the impact of the earthquakes on smoking status and levels of tobacco consumption in the residents of Christchurch. Semistructured interviews were carried out in two city malls and the central bus exchange 15 months after the first earthquake. A total of 1001 people were interviewed. In August 2010, prior to any earthquake, 409 (41%) participants had never smoked, 273 (27%) were currently smoking, and 316 (32%) were ex-smokers. Since the September 2010 earthquake, 76 (24%) of the 316 ex-smokers had smoked at least one cigarette and 29 (38.2%) had smoked more than 100 cigarettes. Of the 273 participants who were current smokers in August 2010, 93 (34.1%) had increased consumption following the earthquake, 94 (34.4%) had not changed, and 86 (31.5%) had decreased their consumption. 53 (57%) of the 93 people whose consumption increased reported that the earthquake and subsequent lifestyle changes as a reason to increase smoking. 24% of ex-smokers resumed smoking following the earthquake, resulting in increased smoking prevalence. Tobacco consumption levels increased in around one-third of current smokers.

  1. Statistical tests of simple earthquake cycle models

    Science.gov (United States)

    DeVries, Phoebe M. R.; Evans, Eileen L.

    2016-12-01

    A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.

  2. Time-history simulation of civil architecture earthquake disaster relief- based on the three-dimensional dynamic finite element method

    Directory of Open Access Journals (Sweden)

    Liu Bing

    2014-10-01

    Full Text Available Earthquake action is the main external factor which influences long-term safe operation of civil construction, especially of the high-rise building. Applying time-history method to simulate earthquake response process of civil construction foundation surrounding rock is an effective method for the anti-knock study of civil buildings. Therefore, this paper develops a civil building earthquake disaster three-dimensional dynamic finite element numerical simulation system. The system adopts the explicit central difference method. Strengthening characteristics of materials under high strain rate and damage characteristics of surrounding rock under the action of cyclic loading are considered. Then, dynamic constitutive model of rock mass suitable for civil building aseismic analysis is put forward. At the same time, through the earthquake disaster of time-history simulation of Shenzhen Children’s Palace, reliability and practicability of system program is verified in the analysis of practical engineering problems.

  3. Geotechnical aspects of the January 2003 Tecoma'n, Mexico, earthquake

    Science.gov (United States)

    Wartman, Joseph; Rodriguez-Marek, Adrian; Macari, Emir J.; Deaton, Scott; Ramirez-Reynaga, Marti'n; Ochoa, Carlos N.; Callan, Sean; Keefer, David; Repetto, Pedro; Ovando-Shelley, Efrai'n

    2005-01-01

    Ground failure was the most prominent geotechnical engineering feature of the 21 January 2003 Mw 7.6 Tecoma´n earthquake. Ground failure impacted structures, industrial facilities, roads, water supply canals, and other critical infrastructure in the state of Colima and in parts of the neighboring states of Jalisco and Michoaca´n. Landslides and soil liquefaction were the most common type of ground failure, followed by seismic compression of unsaturated materials. Reinforced earth structures generally performed well during the earthquake, though some structures experienced permanent lateral deformations up to 10 cm. Different ground improvement techniques had been used to enhance the liquefaction resistance of several sites in the region, all of which performed well and exhibited no signs of damage or significant ground deformation. Earth dams in the region experienced some degree of permanent deformation but remained fully functional after the earthquake.

  4. Predicted liquefaction of East Bay fills during a repeat of the 1906 San Francisco earthquake

    Science.gov (United States)

    Holzer, T.L.; Blair, J.L.; Noce, T.E.; Bennett, M.J.

    2006-01-01

    Predicted conditional probabilities of surface manifestations of liquefaction during a repeat of the 1906 San Francisco (M7.8) earthquake range from 0.54 to 0.79 in the area underlain by the sandy artificial fills along the eastern shore of San Francisco Bay near Oakland, California. Despite widespread liquefaction in 1906 of sandy fills in San Francisco, most of the East Bay fills were emplaced after 1906 without soil improvement to increase their liquefaction resistance. They have yet to be shaken strongly. Probabilities are based on the liquefaction potential index computed from 82 CPT soundings using median (50th percentile) estimates of PGA based on a ground-motion prediction equation. Shaking estimates consider both distance from the San Andreas Fault and local site conditions. The high probabilities indicate extensive and damaging liquefaction will occur in East Bay fills during the next M ??? 7.8 earthquake on the northern San Andreas Fault. ?? 2006, Earthquake Engineering Research Institute.

  5. The Response of Long-Span Bridges to Low Frequency, Near-Fault Earthquake Ground Motions

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, David; Astaneh-Asl, A.; Larsen, S.C.; Hutchings, Larry

    2009-02-27

    Historical seismic hazard characterizations did not include earthquake ground motion waveforms at frequencies below approximately 0.2 Hz (5 seconds period). This resulted from limitations in early strong motion instrumentation and signal processing techniques, a lack of measurements in the near-field of major earthquakes and therefore no observational awareness, and a delayed understanding in the engineering community of the potential significance of these types of motions. In recent years, there is a growing recognition of the relevance of near-fault, low frequency motions, particularly for long-period structures such as large bridges. This paper describes a computationally based study of the effects of low frequency (long-period) near-fault motions on long-span bridge response. The importance of inclusion of these types of motions for long span cable supported bridges is demonstrated using actual measured broad-band, near-fault motions from large earthquakes.

  6. Engineering Encounters: Reverse Engineering

    Science.gov (United States)

    McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…

  7. Source parameters of intermediate-depth Vrancea (Romania) earthquakes from empirical Green's functions modeling

    Science.gov (United States)

    Oth, Adrien; Wenzel, Friedemann; Radulian, Mircea

    2007-06-01

    Several source parameters (source dimensions, slip, particle velocity, static and dynamic stress drop) are determined for the moderate-size October 27th, 2004 ( MW = 5.8), and the large August 30th, 1986 ( MW = 7.1) and March 4th, 1977 ( MW = 7.4) Vrancea (Romania) intermediate-depth earthquakes. For this purpose, the empirical Green's functions method of Irikura [e.g. Irikura, K. (1983). Semi-Empirical Estimation of Strong Ground Motions during Large Earthquakes. Bull. Dis. Prev. Res. Inst., Kyoto Univ., 33, Part 2, No. 298, 63-104., Irikura, K. (1986). Prediction of strong acceleration motions using empirical Green's function, in Proceedings of the 7th Japan earthquake engineering symposium, 151-156., Irikura, K. (1999). Techniques for the simulation of strong ground motion and deterministic seismic hazard analysis, in Proceedings of the advanced study course seismotectonic and microzonation techniques in earthquake engineering: integrated training in earthquake risk reduction practices, Kefallinia, 453-554.] is used to generate synthetic time series from recordings of smaller events (with 4 ≤ MW ≤ 5) in order to estimate several parameters characterizing the so-called strong motion generation area, which is defined as an extended area with homogeneous slip and rise time and, for crustal earthquakes, corresponds to an asperity of about 100 bar stress release [Miyake, H., T. Iwata and K. Irikura (2003). Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area. Bull. Seism. Soc. Am., 93, 2531-2545.] The parameters are obtained by acceleration envelope and displacement waveform inversion for the 2004 and 1986 events and MSK intensity pattern inversion for the 1977 event using a genetic algorithm. The strong motion recordings of the analyzed Vrancea earthquakes as well as the MSK intensity pattern of the 1977 earthquake can be well reproduced using relatively small strong motion

  8. Isolating social influences on vulnerability to earthquake shaking: identifying cost-effective mitigation strategies.

    Science.gov (United States)

    Bhloscaidh, Mairead Nic; McCloskey, John; Pelling, Mark; Naylor, Mark

    2013-04-01

    Until expensive engineering solutions become more universally available, the objective targeting of resources at demonstrably effective, low-cost interventions might help reverse the trend of increasing mortality in earthquakes. Death tolls in earthquakes are the result of complex interactions between physical effects, such as the exposure of the population to strong shaking, and the resilience of the exposed population along with supporting critical infrastructures and institutions. The identification of socio-economic factors that contribute to earthquake mortality is crucial to identifying and developing successful risk management strategies. Here we develop a quantitative methodology more objectively to assess the ability of communities to withstand earthquake shaking, focusing on, in particular, those cases where risk management performance appears to exceed or fall below expectations based on economic status. Using only published estimates of the shaking intensity and population exposure for each earthquake, data that is available for earthquakes in countries irrespective of their level of economic development, we develop a model for mortality based on the contribution of population exposure to shaking only. This represents an attempt to remove, as far as possible, the physical causes of mortality from our analysis (where we consider earthquake engineering to reduce building collapse among the socio-economic influences). The systematic part of the variance with respect to this model can therefore be expected to be dominated by socio-economic factors. We find, as expected, that this purely physical analysis partitions countries in terms of basic socio-economic measures, for example GDP, focusing analytical attention on the power of economic measures to explain variance in observed distributions of earthquake risk. The model allows the definition of a vulnerability index which, although broadly it demonstrates the expected income-dependence of vulnerability to

  9. Historical Earthquakes in the Yellow Sea and Its Adjacent Area

    Institute of Scientific and Technical Information of China (English)

    Wu Ge; Wang Andong; Wu Di

    2005-01-01

    As a result of sorting out, estimating and cataloging of historical earthquakes, from the year of 2 A.D. to Aug., 1949, we found that there were 2187 earthquakes with M≥3.0 in the area of the Yellow Sea and its adjacent area. Among the earthquakes, the number of earthquakes with M ≥ 5.0 is 209, and at least 43 of the earthquakes caused serious losses, 20 of the earthquakes caused human causalities. It is demonstrated that there were 3 areas of historical earthquake concentration and the earthquake activity was higher in the 16th century and the first half if the 20th century.

  10. Spatial Evaluation and Verification of Earthquake Simulators

    Science.gov (United States)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.

    2016-09-01

    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  11. Spatial Evaluation and Verification of Earthquake Simulators

    Science.gov (United States)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.

    2017-06-01

    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  12. Intraplate triggered earthquakes: Observations and interpretation

    Science.gov (United States)

    Hough, S.E.; Seeber, L.; Armbruster, J.G.

    2003-01-01

    We present evidence that at least two of the three 1811-1812 New Madrid, central United States, mainshocks and the 1886 Charleston, South Carolina, earthquake triggered earthquakes at regional distances. In addition to previously published evidence for triggered earthquakes in the northern Kentucky/southern Ohio region in 1812, we present evidence suggesting that triggered events might have occurred in the Wabash Valley, to the south of the New Madrid Seismic Zone, and near Charleston, South Carolina. We also discuss evidence that earthquakes might have been triggered in northern Kentucky within seconds of the passage of surface waves from the 23 January 1812 New Madrid mainshock. After the 1886 Charleston earthquake, accounts suggest that triggered events occurred near Moodus, Connecticut, and in southern Indiana. Notwithstanding the uncertainty associated with analysis of historical accounts, there is evidence that at least three out of the four known Mw 7 earthquakes in the central and eastern United States seem to have triggered earthquakes at distances beyond the typically assumed aftershock zone of 1-2 mainshock fault lengths. We explore the possibility that remotely triggered earthquakes might be common in low-strain-rate regions. We suggest that in a low-strain-rate environment, permanent, nonelastic deformation might play a more important role in stress accumulation than it does in interplate crust. Using a simple model incorporating elastic and anelastic strain release, we show that, for realistic parameter values, faults in intraplate crust remain close to their failure stress for a longer part of the earthquake cycle than do faults in high-strain-rate regions. Our results further suggest that remotely triggered earthquakes occur preferentially in regions of recent and/or future seismic activity, which suggests that faults are at a critical stress state in only some areas. Remotely triggered earthquakes may thus serve as beacons that identify regions of

  13. Whether solar flares can trigger earthquakes?

    Science.gov (United States)

    Jain, R.

    2007-05-01

    We present the study of 682 earthquakes of ¡Ý4.0 magnitude observed during January 1991 to January 2007 in the light of solar flares observed by GOES and SOXS missions in order to explore the possibility of any association between solar flares and earthquakes. Our investigation preliminarily shows that each earthquake under study was preceded by a solar flare of GOES importance B to X class by 10-100 hrs. However, each flare was not found followed by earthquake of magnitude ¡Ý4.0. We classified the earthquake events with respect to their magnitude and further attempted to look for their correlation with GOES importance class and delay time. We found that with the increasing importance of flares the delay in the onset of earthquake reduces. The critical X-ray intensity of the flare to be associated with earthquake is found to be ~10-6 Watts/m2. On the other hand no clear evidence could be established that higher importance flares precede high magnitude earthquakes. Our detailed study of 50 earthquakes associated with solar flares observed by SOXS mission and other wavebands revealed many interesting results such as the location of the flare on the Sun and the delay time in the earthquake and its magnitude. We propose a model explaining the charged particles accelerated during the solar flare and released in the space that undergone further acceleration by interplanetary shocks and produce the ring current in the earth's magnetosphere, which may enhance the process of tectonics plates motion abruptly at fault zones. It is further proposed that such sudden enhancement in the process of tectonic motion of plates in fault zones may increase abruptly the heat gradients on spatial (dT/dx) and temporal (dT/dt) scales responsible for earthquakes.

  14. Remotely triggered earthquakes following moderate main shocks

    Science.gov (United States)

    Hough, S.E.

    2007-01-01

    Since 1992, remotely triggered earthquakes have been identified following large (M > 7) earthquakes in California as well as in other regions. These events, which occur at much greater distances than classic aftershocks, occur predominantly in active geothermal or volcanic regions, leading to theories that the earthquakes are triggered when passing seismic waves cause disruptions in magmatic or other fluid systems. In this paper, I focus on observations of remotely triggered earthquakes following moderate main shocks in diverse tectonic settings. I summarize evidence that remotely triggered earthquakes occur commonly in mid-continent and collisional zones. This evidence is derived from analysis of both historic earthquake sequences and from instrumentally recorded M5-6 earthquakes in eastern Canada. The latter analysis suggests that, while remotely triggered earthquakes do not occur pervasively following moderate earthquakes in eastern North America, a low level of triggering often does occur at distances beyond conventional aftershock zones. The inferred triggered events occur at the distances at which SmS waves are known to significantly increase ground motions. A similar result was found for 28 recent M5.3-7.1 earthquakes in California. In California, seismicity is found to increase on average to a distance of at least 200 km following moderate main shocks. This supports the conclusion that, even at distances of ???100 km, dynamic stress changes control the occurrence of triggered events. There are two explanations that can account for the occurrence of remotely triggered earthquakes in intraplate settings: (1) they occur at local zones of weakness, or (2) they occur in zones of local stress concentration. ?? 2007 The Geological Society of America.

  15. A structural analysis in seismic archaeology: the walls of Noto and the 1693 earthquake

    Directory of Open Access Journals (Sweden)

    G. Lombardini

    1995-06-01

    Full Text Available A crucial problenl for seismic archeology is how to recognize seismic effects and how to date them. On an experimental basis. we proposed that the problem be reversed, and that we begin at the other end: i.e. by analyzing already known seismic effects on ancient structures, testified by written sources. to be able to .calibrate>> the types or possible observations and any subsequent elaborations. The choice of the walls of Noto was suggested by the fact that Noto was abandoned following the earthquake of l693 (I,= XI MCS. Me 7.5 which had already been studied in depth as part of an ING research programme (1988-92. Moreover, just after recent research, this event proved to be reconstructed with a high quality standard. Photogrammetric measurements were made on several parts of the town walls to plot a numerical model aimed at ascertaining specific aspects of the earthquake damage. An estimate of the ground acceleration during the earthquake has been attempted via non-linear finite-element analyses of a building located by the main city gate. The analyses show that. in order to obtain the building vault collapse, a ground acceleration of 0.5 to 0.7 g had to be reached during the earthquake. This result, typical of a strong earthquake such as the one of 1693, proves that an approach based on finite element analysis and a sound engineering judgment Inay be systematically applied to historical earthquake sites to obtain some estimates of ground acceleration in historical earthquakes. On the whole, this work aimed at starting up the second development phase of the great event of 1693 of which the macroseismic erfects are known. In the meantime, some possibilities of tackling structural analyses in seismic archaeology are being explored.

  16. Chapter F. The Loma Prieta, California, Earthquake of October 17, 1989 - Marina District

    Science.gov (United States)

    O'Rourke, Thomas D.

    1992-01-01

    During the earthquake, a total land area of about 4,300 km2 was shaken with seismic intensities that can cause significant damage to structures. The area of the Marina District of San Francisco is only 4.0 km2--less than 0.1 percent of the area most strongly affected by the earthquake--but its significance with respect to engineering, seismology, and planning far outstrips its proportion of shaken terrain and makes it a centerpiece for lessons learned from the earthquake. The Marina District provides perhaps the most comprehensive case history of seismic effects at a specific site developed for any earthquake. The reports assembled in this chapter, which provide an account of these seismic effects, constitute a unique collection of studies on site, as well as infrastructure and societal, response that cover virtually all aspects of the earthquake, ranging from incoming ground waves to the outgoing airwaves used for emergency communication. The Marina District encompasses the area bounded by San Francisco Bay on the north, the Presidio on the west, and Lombard Street and Van Ness Avenue on the south and east, respectively. Nearly all of the earthquake damage in the Marina District, however, occurred within a considerably smaller area of about 0.75 km2, bounded by San Francisco Bay and Baker, Chestnut, and Buchanan Streets. At least five major aspects of earthquake response in the Marina District are covered by the reports in this chapter: (1) dynamic site response, (2) soil liquefaction, (3) lifeline performance, (4) building performance, and (5) emergency services.

  17. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part B, historical earthquakes

    Science.gov (United States)

    Wheeler, Russell L.

    2014-01-01

    Computation of probabilistic earthquake hazard requires an estimate of Mmax: the moment magnitude of the largest earthquake that is thought to be possible within a specified geographic region. The region specified in this report is the Central and Eastern United States and adjacent Canada. Parts A and B of this report describe the construction of a global catalog of moderate to large earthquakes that occurred worldwide in tectonic analogs of the Central and Eastern United States. Examination of histograms of the magnitudes of these earthquakes allows estimation of Central and Eastern United States Mmax. The catalog and Mmax estimates derived from it are used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. Part A deals with prehistoric earthquakes, and this part deals with historical events.

  18. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  19. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    Science.gov (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  20. Modeling earthquake indexes derived from the earthquake warning system upon the planet earth

    Science.gov (United States)

    Li, Yong

    2010-12-01

    By studying the correlation between historical earthquake data and the distributional characteristics of parameters of solid earth tides in the earthquake epicenter, we are able to design a forecasting function of earthquake probability. We put forward a design method for the Earthquake Warning System. The model could theoretically simulate and be used to predict the probability of strong earthquakes that could occur anywhere at any time. In addition, the system could also conveniently obtain global or partial Modeling Earthquake Indexes to finally combine the precise pointing prediction and forecast of partial indexes. The literature quotes global data values, provided by NEIC, of 1544 M ⩾ 6.5 earthquakes. It also gives examples of instantaneous earthquake indexes of the whole world and Taiwan Area on 1st January 2010, UT=0:00 and the average earthquake index near the Taiwan Area. According to the 10-year pointing prediction of strong earthquakes in San Francisco, the literature provides the average earthquake index on 24th June 2015 (± 15 days), in its neighborhood.

  1. Modeling earthquake indexes derived from the earthquake warning system upon the planet earth

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By studying the correlation between historical earthquake data and the distributional characteristics of parameters of solid earth tides in the earthquake epicenter, we are able to design a forecasting function of earthquake probability. We put forward a design method for the Earthquake Warning System. The model could theoretically simulate and be used to predict the probability of strong earthquakes that could occur anywhere at any time. In addition, the system could also conveniently obtain global or partial Modeling Earthquake Indexes to finally combine the precise pointing prediction and forecast of partial indexes. The literature quotes global data values, provided by NEIC, of 1544 M ≥ 6.5 earthquakes. It also gives examples of instantaneous earthquake indexes of the whole world and Taiwan Area on 1st January 2010, UT=0:00 and the average earthquake index near the Taiwan Area. According to the 10-year pointing prediction of strong earthquakes in San Francisco, the literature provides the average earthquake index on 24th June 2015 (± 15 days), in its neighborhood.

  2. Putting down roots in earthquake country-Your handbook for earthquakes in the Central United States

    Science.gov (United States)

    Contributors: Dart, Richard; McCarthy, Jill; McCallister, Natasha; Williams, Robert A.

    2011-01-01

    This handbook provides information to residents of the Central United States about the threat of earthquakes in that area, particularly along the New Madrid seismic zone, and explains how to prepare for, survive, and recover from such events. It explains the need for concern about earthquakes for those residents and describes what one can expect during and after an earthquake. Much is known about the threat of earthquakes in the Central United States, including where they are likely to occur and what can be done to reduce losses from future earthquakes, but not enough has been done to prepare for future earthquakes. The handbook describes such preparations that can be taken by individual residents before an earthquake to be safe and protect property.

  3. Putting down roots in earthquake country-Your handbook for earthquakes in the Central United States

    Science.gov (United States)

    Contributors: Dart, Richard; McCarthy, Jill; McCallister, Natasha; Williams, Robert A.

    2011-01-01

    This handbook provides information to residents of the Central United States about the threat of earthquakes in that area, particularly along the New Madrid seismic zone, and explains how to prepare for, survive, and recover from such events. It explains the need for concern about earthquakes for those residents and describes what one can expect during and after an earthquake. Much is known about the threat of earthquakes in the Central United States, including where they are likely to occur and what can be done to reduce losses from future earthquakes, but not enough has been done to prepare for future earthquakes. The handbook describes such preparations that can be taken by individual residents before an earthquake to be safe and protect property.

  4. Research on strong earthquake type division and forecast method for subsequent strong earthquakes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The relationships between energy, amplitude and frequency of earthquake are correlative with the property of the seismic source. And the grade of the correlativity can be used as an index to distinguish the types of strong earthquakes. Primarily the strong earthquake can be divided into three types of main-after earthquakes, double-main earthquakes and swarm of strong earthquake. There are similarity and a certain repeatability at the quantificational indexes of hypocenter property between the same type of strong earthquakes, which supply basis for the forecast of subsequent strong shocks. The reference indexes of after strong shock forecast which are valuable for the applications of the method of type-divided forecast come from the analysis about more than fifty strong shock wide-band (BPZ wave) recording data of CDSN from 1988 to 1997.

  5. Earthquake source model using strong motion displacement as response of finite elastic media

    Indian Academy of Sciences (India)

    R N Iyengar; Shailesh K R Agrawal

    2001-03-01

    The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the source location and forces generated during an earthquake as an inverse problem in structural dynamics. Based on this analogy, a simple model for the basic earthquake source is proposed. The unknown source is assumed to be a sequence of impulses acting at locations yet to be found. These unknown impulses and their locations are found using the normal mode expansion along with a minimization of mean square error. The medium is assumed to be finite, elastic, homogeneous, layered and horizontal with a specific set of boundary conditions. Detailed results are obtained for Uttarkashi earthquake. The impulse locations exhibit a linear structure closely associated with the causative fault. The results obtained are shown to be in good agreement with reported values. The proposed engineering model is then used to simulate the acceleration time histories at a few recording stations. The earthquake source in terms of a sequence of impulses acting at different locations is applied on a 2D finite elastic medium and acceleration time histories are found using finite element methods. The synthetic accelerations obtained are in close match with the recorded accelerations.

  6. Processed seismic motion records from earthquakes, 1982-1993: Recorded at Scotty's Castle, California

    Science.gov (United States)

    Lum, P. K.; Honda, K. K.

    1993-10-01

    As part of the contract with the US Department of Energy, Nevada Operations Office (DOE/NV), URS/John A. Blume & Associates, Engineers (URS/Blume) maintained a network of seismographs to monitor the ground motion generated by the underground nuclear explosions (UNE's) at the Nevada Test Site (NTS). The seismographs were located in the communities surrounding the NTS and the Las Vegas valley. When these seismographs were not used for monitoring the UNE generated motions, a limited number of seismographs were maintained for monitoring motion generated by other than UNE's (e.g. motion generated by earthquakes, wind, blast). Scotty's Castle was one of the selected earthquake monitoring stations. During the period from 1982 through 1993, numerous earthquakes which varied in magnitudes and distances were recorded at Scotty's Castle. The records from 24 earthquakes were processed and included in this report. The processed earthquakes are listed in chronological order and in the order of epicentral distances, respectively. These epicenters and magnitudes are shown. Due to the potential benefit of these data for the scientific community, DOE/NV and the National Park Service authorize the release of these records.

  7. Earthquake forecasting based on data assimilation: sequential Monte Carlo methods for renewal point processes

    Directory of Open Access Journals (Sweden)

    M. J. Werner

    2011-02-01

    Full Text Available Data assimilation is routinely employed in meteorology, engineering and computer sciences to optimally combine noisy observations with prior model information for obtaining better estimates of a state, and thus better forecasts, than achieved by ignoring data uncertainties. Earthquake forecasting, too, suffers from measurement errors and partial model information and may thus gain significantly from data assimilation. We present perhaps the first fully implementable data assimilation method for earthquake forecasts generated by a point-process model of seismicity. We test the method on a synthetic and pedagogical example of a renewal process observed in noise, which is relevant for the seismic gap hypothesis, models of characteristic earthquakes and recurrence statistics of large quakes inferred from paleoseismic data records. To address the non-Gaussian statistics of earthquakes, we use sequential Monte Carlo methods, a set of flexible simulation-based methods for recursively estimating arbitrary posterior distributions. We perform extensive numerical simulations to demonstrate the feasibility and benefits of forecasting earthquakes based on data assimilation.

  8. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    Science.gov (United States)

    Kossobokov, Vladimir

    2013-04-01

    Why earthquake occurrences bring us so many surprises? The answer seems evident if we review the relationships that are commonly used to assess seismic hazard. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site, which makes premature any kind of reliable probabilistic statements about narrowly localized seismic hazard. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. Seismic events, including mega-earthquakes, cluster displaying behaviors that are far from independent or periodic. Their distribution in space is possibly fractal, definitely, far from uniform even in a single segment of a fault zone. Such a situation contradicts generally accepted assumptions used for analytically tractable or computer simulations and complicates design of reliable methodologies for realistic earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. As a result, the conclusions drawn from such simulations and analyses can MISLEAD TO SCIENTIFICALLY GROUNDLESS APPLICATION, which is unwise and extremely dangerous in assessing expected societal risks and losses. For example, a systematic comparison of the GSHAP peak ground acceleration estimates with those related to actual strong earthquakes, unfortunately, discloses gross inadequacy of this "probabilistic" product, which appears UNACCEPTABLE FOR ANY KIND OF RESPONSIBLE SEISMIC RISK EVALUATION AND KNOWLEDGEABLE DISASTER PREVENTION. The self-evident shortcomings and failures of GSHAP appeals to all earthquake scientists and engineers for an urgent revision of the global seismic hazard maps from the first principles including background methodologies involved, such that there becomes: (a) a

  9. Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT): Towards the Next Generation of Internship

    Science.gov (United States)

    Perry, S.; Benthien, M.; Jordan, T. H.

    2005-12-01

    The SCEC/UseIT internship program is training the next generation of earthquake scientist, with methods that can be adapted to other disciplines. UseIT interns work collaboratively, in multi-disciplinary teams, conducting computer science research that is needed by earthquake scientists. Since 2002, the UseIT program has welcomed 64 students, in some two dozen majors, at all class levels, from schools around the nation. Each summer''s work is posed as a ``Grand Challenge.'' The students then organize themselves into project teams, decide how to proceed, and pool their diverse talents and backgrounds. They have traditional mentors, who provide advice and encouragement, but they also mentor one another, and this has proved to be a powerful relationship. Most begin with fear that their Grand Challenge is impossible, and end with excitement and pride about what they have accomplished. The 22 UseIT interns in summer, 2005, were primarily computer science and engineering majors, with others in geology, mathematics, English, digital media design, physics, history, and cinema. The 2005 Grand Challenge was to "build an earthquake monitoring system" to aid scientists who must visualize rapidly evolving earthquake sequences and convey information to emergency personnel and the public. Most UseIT interns were engaged in software engineering, bringing new datasets and functionality to SCEC-VDO (Virtual Display of Objects), a 3D visualization software that was prototyped by interns last year, using Java3D and an extensible, plug-in architecture based on the Eclipse Integrated Development Environment. Other UseIT interns used SCEC-VDO to make animated movies, and experimented with imagery in order to communicate concepts and events in earthquake science. One movie-making project included the creation of an assessment to test the effectiveness of the movie''s educational message. Finally, one intern created an interactive, multimedia presentation of the UseIT program.

  10. Introducing Students to Structural Dynamics and Earthquake Engineering

    Science.gov (United States)

    Anthoine, Armelle; Marazzi, Francesco; Tirelli, Daniel

    2010-01-01

    The European Laboratory for Structural Assessment (ELSA) is one of the world's main laboratories for seismic studies. Besides its research activities, it also aims to bring applied science closer to the public. This article describes teaching activities based on a demonstration shaking table which is used to introduce the structural dynamics of…

  11. Forecasting characteristic earthquakes in a minimalist model

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; Pacheco, A.; González, Á.

    2003-01-01

    Using error diagrams, we quantify the forecasting of characteristic-earthquake occurence in a recently introduced minimalist model. Initially we connect the earthquake alarm at a fixed time after the occurence of a characteristic event. The evaluation of this strategy leads to a one-dimensional n...

  12. Numerical earthquake simulations for seismic hazard assessment

    Science.gov (United States)

    Ismail-Zadeh, Alik; Sokolov, Vladimir; Soloviev, Alexander

    2017-04-01

    A comprehensive seismic hazard assessment can contribute to earthquake preparedness and preventive measures aimed to reduce impacts of earthquakes, especially in the view of growing population and increasing vulnerability and exposure. Realistic earthquake simulations coupled with a seismic hazard analysis can provide better assessments of potential ground shaking due to large earthquakes. We present a model of block-and-fault dynamics, which simulates earthquakes in response to lithosphere movements and allows for studying the influence of fault network properties on seismic patterns. Using case studies (e.g., the Tibet-Himalayan region and the Caucasian region), we analyse the model's performance in terms of reproduction of basic features of the observed seismicity, such as the frequency-magnitude relationship, clustering of earthquakes, occurrences of large events, fault slip rates, and earthquake mechanisms. We examine a new approach to probabilistic seismic hazard assessment, which is based on instrumentally recorded, historical and simulated earthquakes. Based on predicted and observed peak ground acceleration values, we show that the hazard level associated with large events significantly increases if the long record of simulated seismicity is considered in the hazard assessment.

  13. Earthquakes: Risk, Detection, Warning, and Research

    Science.gov (United States)

    2010-01-14

    and central China, and as far away as Bangladesh , Taiwan, Thailand, and Vietnam. Several large aftershocks occurred after the main seismic event...34 The number of stations necessary to generate a data-based ShakeMap depends on the urban area and geology ...Research Congressional Research Service 24 • Earthquake geology and paleoseismology: studies of the history, effects, and mechanics of earthquakes

  14. Wood-framed houses for earthquake zones

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg

    Wood-framed houses with a sheathing are suitable for use in earthquake zones. The Direction describes a method of determining the earthquake forces in a house and shows how these forces can be resisted by diaphragm action in the walls, floors, and roof, of the house. An appendix explains how...

  15. Triggering of repeating earthquakes in central California

    Science.gov (United States)

    Wu, Chunquan; Gomberg, Joan; Ben-Naim, Eli; Johnson, Paul

    2014-01-01

    Dynamic stresses carried by transient seismic waves have been found capable of triggering earthquakes instantly in various tectonic settings. Delayed triggering may be even more common, but the mechanisms are not well understood. Catalogs of repeating earthquakes, earthquakes that recur repeatedly at the same location, provide ideal data sets to test the effects of transient dynamic perturbations on the timing of earthquake occurrence. Here we employ a catalog of 165 families containing ~2500 total repeating earthquakes to test whether dynamic perturbations from local, regional, and teleseismic earthquakes change recurrence intervals. The distance to the earthquake generating the perturbing waves is a proxy for the relative potential contributions of static and dynamic deformations, because static deformations decay more rapidly with distance. Clear changes followed the nearby 2004 Mw6 Parkfield earthquake, so we study only repeaters prior to its origin time. We apply a Monte Carlo approach to compare the observed number of shortened recurrence intervals following dynamic perturbations with the distribution of this number estimated for randomized perturbation times. We examine the comparison for a series of dynamic stress peak amplitude and distance thresholds. The results suggest a weak correlation between dynamic perturbations in excess of ~20 kPa and shortened recurrence intervals, for both nearby and remote perturbations.

  16. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  17. Stress,strain and earthquake activity

    Institute of Scientific and Technical Information of China (English)

    Yaolin Shi

    2009-01-01

    @@ There are 13 papers in this special issue on stress field,crustal deformation and seismicity.The great Wenchuan earthquake is a grievous disaster,but Chinese scientists are trying to learn more from the event in order to understand better the physics of earthquakes for future hazard mitigation planning.

  18. Acoustic wave-equation-based earthquake location

    Science.gov (United States)

    Tong, Ping; Yang, Dinghui; Liu, Qinya; Yang, Xu; Harris, Jerry

    2016-04-01

    We present a novel earthquake location method using acoustic wave-equation-based traveltime inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity kernel K(t0, xs) with respect to the earthquake location (t0, xs), is theoretically derived based on the adjoint method. Traveltime sensitivity kernel K(t0, xs) is formulated as a convolution between the forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave equations. The advantage of this newly derived traveltime kernel is that it not only takes into account the earthquake-receiver geometry but also accurately honours the complexity of the velocity model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D realistic applications, it is computationally expensive to conduct full wave simulations. Therefore, we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a 2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application to the 2004 Big Bear earthquake in Southern California.

  19. A minimalist model of characteristic earthquakes

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; González, Á.; Gómez, J.B.

    2002-01-01

    -earthquake behaviour of some seismic faults. This model, that has no parameter, is amenable to an algebraic description as a Markov Chain. This possibility illuminates some important results, obtained by Monte Carlo simulations, such as the earthquake size-frequency relation and the recurrence time...

  20. Structural Earthquake Resistance Design Using Energy Method

    Institute of Scientific and Technical Information of China (English)

    Hu Rongrong

    2003-01-01

    A summary of status of researches in the field of structural earthquake resistance design on energy concept is presented in three parts: earthquake input, demands on the structure and supplied capacity of the structure. A new approach is proposed for analysis of the seismic response and damage criteria based on the momentary input energy.

  1. The 2010 Qinghai, China earthquake: a moderate supershear earthquake

    Science.gov (United States)

    Wang, D.; Mori, J.

    2010-12-01

    A moderately large (Mw6.9) strike-slip earthquake in eastern Qinghai province, China occurred on April 13, 2010 and caused extensive damage to structures with over 2200 deaths. The severe ground motions and resultant damage in the town of Yushu may be at least partially attributed to the extremely fast speed of the rupture front as it propagated along the fault toward this location. A nearfield seismogram recorded at station Yushu clearly documents that the rupture speed is faster than the S velocity. From analyses using both near-field and teleseismic data, we estimate the very fast speed to be 4.6 to 5.4 km/sec, depending on the length of the super-shear segment. The higher estimate is close to, or possibly greater than the local P velocity. We examined teleseismic records for this earthquake using an empirical Green function deconvolution of the P waves of teleseismic records, we can identify two pulses of high frequency radiation that show the rupture directivity toward the southeast. The two high frequency centroids were generated from fault segments that are 6.5 km and 41.8 km southeast of the epicenter, respectively. We suggest that the sources of high frequency waves are related to the change of rupture velocity to supershear speed.

  2. Statistical properties of earthquakes clustering

    Directory of Open Access Journals (Sweden)

    A. Vecchio

    2008-04-01

    Full Text Available Often in nature the temporal distribution of inhomogeneous stochastic point processes can be modeled as a realization of renewal Poisson processes with a variable rate. Here we investigate one of the classical examples, namely, the temporal distribution of earthquakes. We show that this process strongly departs from a Poisson statistics for both catalogue and sequence data sets. This indicate the presence of correlations in the system probably related to the stressing perturbation characterizing the seismicity in the area under analysis. As shown by this analysis, the catalogues, at variance with sequences, show common statistical properties.

  3. Earthquake Effects on Employee Transportation

    OpenAIRE

    Bennett, Anna K; Little, David D.

    1990-01-01

    The Loma Prieta earthquake of October 17, 1989, had a disastrous impact on surface transportation in the Bay Area. The most tragic effect of the failures in the transportation system was the loss of life in the collapse of the Cypress structure on Interstate 880 in Oakland and of the section of the Bay Bridge. Less dramatic, but disrupting the daily routines of thousands of commuters, were the traffic delays and congestion that occurred in the month that the Bay Bridge and Highway 17 (between...

  4. The 2010 Haiti earthquake response.

    Science.gov (United States)

    Raviola, Giuseppe; Severe, Jennifer; Therosme, Tatiana; Oswald, Cate; Belkin, Gary; Eustache, Eddy

    2013-09-01

    This article presents an overview of the mental health response to the 2010 Haiti earthquake. Discussion includes consideration of complexities that relate to emergency response, mental health and psychosocial response in disasters, long-term planning of systems of care, and the development of safe, effective, and culturally sound mental health services in the Haitian context. This information will be of value to mental health professionals and policy specialists interested in mental health in Haiti, and in the delivery of mental health services in particularly resource-limited contexts in the setting of disasters.

  5. Italian Case Studies Modelling Complex Earthquake Sources In PSHA

    Science.gov (United States)

    Gee, Robin; Peruzza, Laura; Pagani, Marco

    2017-04-01

    This study presents two examples of modelling complex seismic sources in Italy, done in the framework of regional probabilistic seismic hazard assessment (PSHA). The first case study is for an area centred around Collalto Stoccaggio, a natural gas storage facility in Northern Italy, located within a system of potentially seismogenic thrust faults in the Venetian Plain. The storage exploits a depleted natural gas reservoir located within an actively growing anticline, which is likely driven by the Montello Fault, the underlying blind thrust. This fault has been well identified by microseismic activity (Mseismological information. We explore the sensitivity of the hazard results to various parameters affected by epistemic uncertainty, such as ground motions prediction equations with different rupture-to-site distance metrics, fault geometry, and maximum magnitude. The second case is an innovative study, where we perform aftershock probabilistic seismic hazard assessment (APSHA) in Central Italy, following the Amatrice M6.1 earthquake of August 24th, 2016 (298 casualties) and the subsequent earthquakes of Oct 26th and 30th (M6.1 and M6.6 respectively, no deaths). The aftershock hazard is modelled using a fault source with complex geometry, based on literature data and field evidence associated with the August mainshock. Earthquake activity rates during the very first weeks after the deadly earthquake were used to calibrated an Omori-Utsu decay curve, and the magnitude distribution of aftershocks is assumed to follow a Gutenberg-Richter distribution. We apply uniform and non-uniform spatial distribution of the seismicity across the fault source, by modulating the rates as a decreasing function of distance from the mainshock. The hazard results are computed for short-exposure periods (1 month, before the occurrences of October earthquakes) and compared to the background hazard given by law (MPS04), and to observations at some reference sites. We also show the results of

  6. Antioptimization of earthquake exitation and response

    Directory of Open Access Journals (Sweden)

    G. Zuccaro

    1998-01-01

    Full Text Available The paper presents a novel approach to predict the response of earthquake-excited structures. The earthquake excitation is expanded in terms of series of deterministic functions. The coefficients of the series are represented as a point in N-dimensional space. Each available ccelerogram at a certain site is then represented as a point in the above space, modeling the available fragmentary historical data. The minimum volume ellipsoid, containing all points, is constructed. The ellipsoidal models of uncertainty, pertinent to earthquake excitation, are developed. The maximum response of a structure, subjected to the earthquake excitation, within ellipsoidal modeling of the latter, is determined. This procedure of determining least favorable response was termed in the literature (Elishakoff, 1991 as an antioptimization. It appears that under inherent uncertainty of earthquake excitation, antioptimization analysis is a viable alternative to stochastic approach.

  7. Ionospheric Anomaly before Kyushu|Japan Earthquake

    Directory of Open Access Journals (Sweden)

    YANG Li

    2017-05-01

    Full Text Available GIM data released by IGS is used in the article and a new method of combining the Sliding Time Window Method and the Ionospheric TEC correlation analysis method of adjacent grid points is proposed to study the relationship between pre-earthquake ionospheric anomalies and earthquake. By analyzing the abnormal change of TEC in the 5 grid points around the seismic region, the abnormal change of ionospheric TEC is found before the earthquake and the correlation between the TEC sequences of lattice points is significantly affected by earthquake. Based on the analysis of the spatial distribution of TEC anomaly, anomalies of 6 h, 12 h and 6 h were found near the epicenter three days before the earthquake. Finally, ionospheric tomographic technology is used to do tomographic inversion on electron density. And the distribution of the electron density in the ionospheric anomaly is further analyzed.

  8. Stochastic Differential Equation of Earthquakes Series

    Science.gov (United States)

    Mariani, Maria C.; Tweneboah, Osei K.; Gonzalez-Huizar, Hector; Serpa, Laura

    2016-07-01

    This work is devoted to modeling earthquake time series. We propose a stochastic differential equation based on the superposition of independent Ornstein-Uhlenbeck processes driven by a Γ (α, β ) process. Superposition of independent Γ (α, β ) Ornstein-Uhlenbeck processes offer analytic flexibility and provides a class of continuous time processes capable of exhibiting long memory behavior. The stochastic differential equation is applied to the study of earthquakes by fitting the superposed Γ (α, β ) Ornstein-Uhlenbeck model to earthquake sequences in South America containing very large events (Mw ≥ 8). We obtained very good fit of the observed magnitudes of the earthquakes with the stochastic differential equations, which supports the use of this methodology for the study of earthquakes sequence.

  9. Earthquake Correlations and Networks- A Comparative Study

    CERN Document Server

    G., T R Krishna Mohan P

    2010-01-01

    We quantify the correlation between earthquakes and use the same to distinguish between relevant causally connected earthquakes. Our correlation metric is a variation on the one introduced by Baiesi and Paczuski (2004). A network of earthquakes is constructed, which is time ordered and with links between the more correlated ones. Recurrences to earthquakes are identified employing correlation thresholds to demarcate the most meaningful ones in each cluster. Data pertaining to three different seismic regions, viz. California, Japan and Himalayas, are comparatively analyzed using such a network model. The distribution of recurrence lengths and recurrence times are two of the key features analyzed to draw conclusions about the universal aspects of such a network model. We find that the unimodal feature of recurrence length distribution, which helps to associate typical rupture lengths with different magnitude earthquakes, is robust across the different seismic regions. The out-degree of the networks shows a hub ...

  10. Parallelization of the Coupled Earthquake Model

    Science.gov (United States)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.

    2007-01-01

    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  11. Layered Systems Engineering Engines

    Science.gov (United States)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  12. Strong ground motion synthesis for a M=7.2 earthquake in the Gulf of Corinth, Greece using Empirical Green`s functions

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L.; Stavrakakis, G.N.; Ioannidou, E.; Wu, F.T.; Jarpe, S.; Kasameyer, P.

    1998-01-01

    We synthesize strong ground motion at three sites from a M=7.2 earthquake along the MW-trending Gulf of Cornith seismic zone. We model rupture along an 80 segment of the zone. The entire length of the fault, if activated at one time, can lead to an event comparable to that of the 1995 Kobe earthquake. With the improved digital data now routinely available, it becomes possible to use recordings of small earthquakes as empirical Green`s functions to synthesize potential ground motion for future large earthquakes. We developed a suite of 100 rupture scenarios for the earthquake and computed the commensurate strong ground motion time histories. We synthesized strong ground motion with physics-based solutions of earthquake rupture and applied physical bounds on rupture parameters. The synthesized ground motions obtained are source and site specific. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to a site from the statistical distribution of engineering parameters, we have introduced a probabilistic component to the deterministic hazard calculation. The time histories suggested for engineering design are the ones that most closely match either the average or one standard deviation absolute accelerations response values.

  13. Engineer Ethics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Sik; Kim, Yeong Pil; Kim, Yeong Jin

    2003-03-15

    This book tells of engineer ethics such as basic understanding of engineer ethics with history of engineering as a occupation, definition of engineering and specialized job and engineering, engineer ethics as professional ethics, general principles of ethics and its limitation, ethical theory and application, technique to solve the ethical problems, responsibility, safety and danger, information engineer ethics, biotechnological ethics like artificial insemination, life reproduction, gene therapy and environmental ethics.

  14. Performance of Buildings in the 2009 Western Sumatra Earthquake

    Science.gov (United States)

    Deierlein, G.; Hart, T.; Alexander, N.; Hausler, E.; Henderson, S.; Wood, K.; Cedillos, V.; Wijanto, S.; Cabrera, C.; Rudianto, S.

    2009-12-01

    The M7.6 earthquake of 30 September 2009 in Western Sumatra, Indonesia caused significant damage and collapse to hundreds of buildings and the deaths of 1,117 people. In Padang City, with a population of about 900,000 people, building collapse was the primary cause of deaths and serious injuries (313 deaths and 431 serious injuries). The predominant building construction types in Padang are concrete moment frames with brick infill and masonry bearing wall systems. Concrete frames are common in multistory commercial retail buildings, offices, schools, and hotels; and masonry bearing wall systems are primarily used in low-rise (usually single story) residential and school buildings. In general, buildings that collapsed did not conform to modern seismic engineering practices that are required by the current Indonesian building code and would be expected in regions of moderate to high seismicity. While collapse of multi-story concrete buildings was more prevalent in older buildings (more than 10 years old), there were several newer buildings that collapsed. Primary deficiencies identified in collapsed or severely damaged buildings included: (a) soft or weak stories that failed in either by sidesway mechanisms or shear failures followed by loss of axial capacity of columns, (b) lack of ductile reinforcing bar detailing in concrete beams, columns, and beam-column joints, (c) poor quality concrete and mortar materials and workmanship, (d) vulnerable building configurations and designs with incomplete or deficient load paths, and (e) out-of-plane wall failures in unreinforced (or marginally reinforced) masonry. While these deficiencies may be expected in older buildings, damage and collapse to some modern (or recently rennovated buildings) indicates a lack of enforcement of building code provisions for design and construction quality assurance. Many new buildings whose structural systems were undamaged were closed due to extensive earthquake damage to brick infill walls

  15. Normal fault earthquakes or graviquakes

    Science.gov (United States)

    Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  16. Comparing methods for Earthquake Location

    Science.gov (United States)

    Turkaya, Semih; Bodin, Thomas; Sylvander, Matthieu; Parroucau, Pierre; Manchuel, Kevin

    2017-04-01

    There are plenty of methods available for locating small magnitude point source earthquakes. However, it is known that these different approaches produce different results. For each approach, results also depend on a number of parameters which can be separated into two main branches: (1) parameters related to observations (number and distribution of for example) and (2) parameters related to the inversion process (velocity model, weighting parameters, initial location etc.). Currently, the results obtained from most of the location methods do not systematically include quantitative uncertainties. The effect of the selected parameters on location uncertainties is also poorly known. Understanding the importance of these different parameters and their effect on uncertainties is clearly required to better constrained knowledge on fault geometry, seismotectonic processes and at the end to improve seismic hazard assessment. In this work, realized in the frame of the SINAPS@ research program (http://www.institut-seism.fr/projets/sinaps/), we analyse the effect of different parameters on earthquakes location (e.g. type of phase, max. hypocentral separation etc.). We compare several codes available (Hypo71, HypoDD, NonLinLoc etc.) and determine their strengths and weaknesses in different cases by means of synthetic tests. The work, performed for the moment on synthetic data, is planned to be applied, in a second step, on data collected by the Midi-Pyrénées Observatory (OMP).

  17. Cultivating Engineering Ethics and Critical Thinking: A Systematic and Cross-Cultural Education Approach Using Problem-Based Learning

    Science.gov (United States)

    Chang, Pei-Fen; Wang, Dau-Chung

    2011-01-01

    In May 2008, the worst earthquake in more than three decades struck southwest China, killing more than 80,000 people. The complexity of this earthquake makes it an ideal case study to clarify the intertwined issues of ethics in engineering and to help cultivate critical thinking skills. This paper first explores the need to encourage engineering…

  18. Are Earthquakes Predictable? A Study on Magnitude Correlations in Earthquake Catalog and Experimental Data

    Science.gov (United States)

    Stavrianaki, K.; Ross, G.; Sammonds, P. R.

    2015-12-01

    The clustering of earthquakes in time and space is widely accepted, however the existence of correlations in earthquake magnitudes is more questionable. In standard models of seismic activity, it is usually assumed that magnitudes are independent and therefore in principle unpredictable. Our work seeks to test this assumption by analysing magnitude correlation between earthquakes and their aftershocks. To separate mainshocks from aftershocks, we perform stochastic declustering based on the widely used Epidemic Type Aftershock Sequence (ETAS) model, which allows us to then compare the average magnitudes of aftershock sequences to that of their mainshock. The results of earthquake magnitude correlations were compared with acoustic emissions (AE) from laboratory analog experiments, as fracturing generates both AE at the laboratory scale and earthquakes on a crustal scale. Constant stress and constant strain rate experiments were done on Darley Dale sandstone under confining pressure to simulate depth of burial. Microcracking activity inside the rock volume was analyzed by the AE technique as a proxy for earthquakes. Applying the ETAS model to experimental data allowed us to validate our results and provide for the first time a holistic view on the correlation of earthquake magnitudes. Additionally we search the relationship between the conditional intensity estimates of the ETAS model and the earthquake magnitudes. A positive relation would suggest the existence of magnitude correlations. The aim of this study is to observe any trends of dependency between the magnitudes of aftershock earthquakes and the earthquakes that trigger them.

  19. Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project

    Science.gov (United States)

    Boyd, Oliver S.

    2012-01-01

    The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.

  20. Probabilistic approach to earthquake prediction.

    Directory of Open Access Journals (Sweden)

    G. D'Addezio

    2002-06-01

    Full Text Available The evaluation of any earthquake forecast hypothesis requires the application of rigorous statistical methods. It implies a univocal definition of the model characterising the concerned anomaly or precursor, so as it can be objectively recognised in any circumstance and by any observer.A valid forecast hypothesis is expected to maximise successes and minimise false alarms. The probability gain associated to a precursor is also a popular way to estimate the quality of the predictions based on such precursor. Some scientists make use of a statistical approach based on the computation of the likelihood of an observed realisation of seismic events, and on the comparison of the likelihood obtained under different hypotheses. This method can be extended to algorithms that allow the computation of the density distribution of the conditional probability of earthquake occurrence in space, time and magnitude. Whatever method is chosen for building up a new hypothesis, the final assessment of its validity should be carried out by a test on a new and independent set of observations. The implementation of this test could, however, be problematic for seismicity characterised by long-term recurrence intervals. Even using the historical record, that may span time windows extremely variable between a few centuries to a few millennia, we have a low probability to catch more than one or two events on the same fault. Extending the record of earthquakes of the past back in time up to several millennia, paleoseismology represents a great opportunity to study how earthquakes recur through time and thus provide innovative contributions to time-dependent seismic hazard assessment. Sets of paleoseimologically dated earthquakes have been established for some faults in the Mediterranean area: the Irpinia fault in Southern Italy, the Fucino fault in Central Italy, the El Asnam fault in Algeria and the Skinos fault in Central Greece. By using the age of the

  1. Four Engineers...

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There are four engineers traveling in a car;a mechanical engineer,a chemical engi-neer,an electrical engineer and a comput-er engineer.The car breaks down.“Sounds to me as if the pistons have seized.We ll have to strip down the engine before we canget the car working again,”says the mechanical

  2. Stress triggering and the Canterbury earthquake sequence

    Science.gov (United States)

    Steacy, Sandy; Jiménez, Abigail; Holden, Caroline

    2014-01-01

    The Canterbury earthquake sequence, which includes the devastating Christchurch event of 2011 February, has to date led to losses of around 40 billion NZ dollars. The location and severity of the earthquakes was a surprise to most inhabitants as the seismic hazard model was dominated by an expected Mw > 8 earthquake on the Alpine fault and an Mw 7.5 earthquake on the Porters Pass fault, 150 and 80 km to the west of Christchurch. The sequence to date has included an Mw = 7.1 earthquake and 3 Mw ≥ 5.9 events which migrated from west to east. Here we investigate whether the later events are consistent with stress triggering and whether a simple stress map produced shortly after the first earthquake would have accurately indicated the regions where the subsequent activity occurred. We find that 100 per cent of M > 5.5 earthquakes occurred in positive stress areas computed using a slip model for the first event that was available within 10 d of its occurrence. We further find that the stress changes at the starting points of major slip patches of post-Darfield main events are consistent with triggering although this is not always true at the hypocentral locations. Our results suggest that Coulomb stress changes contributed to the evolution of the Canterbury sequence and we note additional areas of increased stress in the Christchurch region and on the Porters Pass fault.

  3. A critical history of British earthquakes

    Directory of Open Access Journals (Sweden)

    R. M. W. Musson

    2004-06-01

    Full Text Available This paper reviews the history of the study of historical British earthquakes. The publication of compendia of British earthquakes goes back as early as the late 16th Century. A boost to the study of earthquakes in Britain was given in the mid 18th Century as a result of two events occurring in London in 1750 (analogous to the general increase in earthquakes in Europe five years later after the 1755 Lisbon earthquake. The 19th Century saw a number of significant studies, culminating in the work of Davison, whose book-length catalogue was published finally in 1924. After that appears a gap, until interest in the subject was renewed in the mid 1970s. The expansion of the U.K. nuclear programme in the 1980s led to a series of large-scale investigations of historical British earthquakes, all based almost completely on primary historical data and conducted to high standards. The catalogue published by BGS in 1994 is a synthesis of these studies, and presents a parametric catalogue in which historical earthquakes are assessed from intensity data points based on primary source material. Since 1994, revisions to parameters have been minor and new events discovered have been restricted to a few small events.

  4. Strong motion duration and earthquake magnitude relationships

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, M.W.; Short, S.A. [EQE International, Inc., San Francisco, CA (United States); Kennedy, R.P. [RPK Structural Mechanics Consulting, Yorba Linda, CA (United States)

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  5. Earthquake prediction from China's mobile gravity data

    Directory of Open Access Journals (Sweden)

    Yiqing Zhu

    2015-03-01

    Full Text Available The relation between plate tectonics and earthquake evolution is analyzed systematically on the basis of 1998–2010 absolute and relative gravity data from the Crustal Movement Observation Network of China. Most earthquakes originated in the plate boundary or within the fault zone. Tectonic deformation was most intense and exhibited discontinuity within the tectonically active fault zone because of the differential movement; the stress accumulation produced an abrupt gravity change, which was further enhanced by the earthquake. The gravity data from mainland China since 2000 obviously reflected five major earthquakes (Ms > 7, all of which were better reflected than before 2000. Regional gravity anomalies and a gravity gradient change were observed in the area around the epicenter about 2 or 3 years before the earthquake occurred, suggesting that gravity change may be a seismic precursor. Furthermore, in this study, the medium-term predictions of the Ms7.3 Yutian, Ms8.0 Wenchuan, and Ms7.0 Lushan earthquakes are analytically presented and evaluated, especially to estimate location of earthquake.

  6. Seismicity prior to the 2016 Kumamoto earthquakes

    CERN Document Server

    Nanjo, K Z; Orihara, Y; Furuse, N; Togo, S; Nitta, H; Okada, T; Tanaka, R; Kamogawa, M; Nagao, T

    2016-01-01

    The 2016 Kumamoto earthquakes occurred under circumstance that seismicity remains high in all parts of Japan since the 2011 Tohoku-Oki earthquake. Identifying what happened before this incident is one starting point for promote earthquake forecast research to prepare for subsequent large earthquakes in the near future in Japan. Here we report precursory seismic patterns prior to the Kumamoto earthquakes, measured by four different methods based on seismicity changes that can be used for earthquake forecasting: b-value method, two kinds of seismic quiescence evaluation methods, and a method of detailed foreshock evaluation. The spatial extent of precursory patterns differs from one method to the other and ranges from local scales (typically asperity size), to regional scales (e.g., 2{\\deg} x 3{\\deg} around the source zone). The earthquakes are preceded by periods of pronounced anomalies, which lasted decade scales (e.g., 20 years or longer) to yearly scales (e.g., 1~2 years). We demonstrate that combination of...

  7. Scaling of Seismic Memory with Earthquake Size

    CERN Document Server

    Zheng, Zeyu; Tenenbaum, Joel; Podobnik, Boris; Stanley, H Eugene

    2011-01-01

    It has been observed that the earthquake events possess short-term memory, i.e. that events occurring in a particular location are dependent on the short history of that location. We conduct an analysis to see whether real-time earthquake data also possess long-term memory and, if so, whether such autocorrelations depend on the size of earthquakes within close spatiotemporal proximity. We analyze the seismic waveform database recorded by 64 stations in Japan, including the 2011 "Great East Japan Earthquake", one of the five most powerful earthquakes ever recorded which resulted in a tsunami and devastating nuclear accidents. We explore the question of seismic memory through use of mean conditional intervals and detrended fluctuation analysis (DFA). We find that the waveform sign series show long-range power-law anticorrelations while the interval series show long-range power-law correlations. We find size-dependence in earthquake auto-correlations---as earthquake size increases, both of these correlation beha...

  8. Ionospheric precursors for crustal earthquakes in Italy

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2010-04-01

    Full Text Available Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9 tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

  9. Losses Associated with Secondary Effects in Earthquakes

    Directory of Open Access Journals (Sweden)

    James E. Daniell

    2017-06-01

    Full Text Available The number of earthquakes with high damage and high losses has been limited to around 100 events since 1900. Looking at historical losses from 1900 onward, we see that around 100 key earthquakes (or around 1% of damaging earthquakes have caused around 93% of fatalities globally. What is indeed interesting about this statistic is that within these events, secondary effects have played a major role, causing around 40% of economic losses and fatalities as compared to shaking effects. Disaggregation of secondary effect economic losses and fatalities demonstrating the relative influence of historical losses from direct earthquake shaking in comparison to tsunami, fire, landslides, liquefaction, fault rupture, and other type losses is important if we are to understand the key causes post-earthquake. The trends and major event impacts of secondary effects are explored in terms of their historic impact as well as looking to improved ways to disaggregate them through two case studies of the Tohoku 2011 event for earthquake, tsunami, liquefaction, fire, and the nuclear impact; as well as the Chilean 1960 earthquake and tsunami event.

  10. Smartphone MEMS accelerometers and earthquake early warning

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.

    2015-12-01

    The low cost MEMS accelerometers in the smartphones are attracting more and more attentions from the science community due to the vast number and potential applications in various areas. We are using the accelerometers inside the smartphones to detect the earthquakes. We did shake table tests to show these accelerometers are also suitable to record large shakings caused by earthquakes. We developed an android app - MyShake, which can even distinguish earthquake movements from daily human activities from the recordings recorded by the accelerometers in personal smartphones and upload trigger information/waveform to our server for further analysis. The data from these smartphones forms a unique datasets for seismological applications, such as earthquake early warning. In this talk I will layout the method we used to recognize earthquake-like movement from single smartphone, and the overview of the whole system that harness the information from a network of smartphones for rapid earthquake detection. This type of system can be easily deployed and scaled up around the global and provides additional insights of the earthquake hazards.

  11. Mapping of earthquakes vulnerability area in Papua

    Science.gov (United States)

    Muhammad Fawzy Ismullah, M.; Massinai, Muh. Altin

    2016-05-01

    Geohazard is a geological occurrence which may lead to a huge loss for human. A mitigation of these natural disasters is one important thing to be done properly in order to reduce the risks. One of the natural disasters that frequently occurs in the Papua Province is the earthquake. This study applies the principle of Geospatial and its application for mapping the earthquake-prone area in the Papua region. It uses earthquake data, which is recorded for 36 years (1973-2009), fault location map, and ground acceleration map of the area. The earthquakes and fault map are rearranged into an earthquake density map, as well as an earthquake depth density map and fault density map. The overlaid data of these three maps onto ground acceleration map are then (compiled) to obtain an earthquake unit map. Some districts area, such as Sarmi, Nabire, and Dogiyai, are identified by a high vulnerability index. In the other hand, Waropen, Puncak, Merauke, Asmat, Mappi, and Bouven Digoel area shows lower index. Finally, the vulnerability index in other places is detected as moderate.

  12. Earthquake rate and magnitude distributions of great earthquakes for use in global forecasts

    Science.gov (United States)

    Kagan, Yan Y.; Jackson, David D.

    2016-07-01

    We have obtained new results in the statistical analysis of global earthquake catalogues with special attention to the largest earthquakes, and we examined the statistical behaviour of earthquake rate variations. These results can serve as an input for updating our recent earthquake forecast, known as the `Global Earthquake Activity Rate 1' model (GEAR1), which is based on past earthquakes and geodetic strain rates. The GEAR1 forecast is expressed as the rate density of all earthquakes above magnitude 5.8 within 70 km of sea level everywhere on earth at 0.1 × 0.1 degree resolution, and it is currently being tested by the Collaboratory for Study of Earthquake Predictability. The seismic component of the present model is based on a smoothed version of the Global Centroid Moment Tensor (GCMT) catalogue from 1977 through 2013. The tectonic component is based on the Global Strain Rate Map, a `General Earthquake Model' (GEM) product. The forecast was optimized to fit the GCMT data from 2005 through 2012, but it also fit well the earthquake locations from 1918 to 1976 reported in the International Seismological Centre-Global Earthquake Model (ISC-GEM) global catalogue of instrumental and pre-instrumental magnitude determinations. We have improved the recent forecast by optimizing the treatment of larger magnitudes and including a longer duration (1918-2011) ISC-GEM catalogue of large earthquakes to estimate smoothed seismicity. We revised our estimates of upper magnitude limits, described as corner magnitudes, based on the massive earthquakes since 2004 and the seismic moment conservation principle. The new corner magnitude estimates are somewhat larger than but consistent with our previous estimates. For major subduction zones we find the best estimates of corner magnitude to be in the range 8.9 to 9.6 and consistent with a uniform average of 9.35. Statistical estimates tend to grow with time as larger earthquakes occur. However, by using the moment conservation

  13. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    Science.gov (United States)

    Haddad, David Elias

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the

  14. Sense of Community and Depressive Symptoms among Older Earthquake Survivors Following the 2008 Earthquake in Chengdu China

    Science.gov (United States)

    Li, Yawen; Sun, Fei; He, Xusong; Chan, Kin Sun

    2011-01-01

    This study examined the impact of an earthquake as well as the role of sense of community as a protective factor against depressive symptoms among older Chinese adults who survived an 8.0 magnitude earthquake in 2008. A household survey of a random sample was conducted 3 months after the earthquake and 298 older earthquake survivors participated…

  15. Sense of Community and Depressive Symptoms among Older Earthquake Survivors Following the 2008 Earthquake in Chengdu China

    Science.gov (United States)

    Li, Yawen; Sun, Fei; He, Xusong; Chan, Kin Sun

    2011-01-01

    This study examined the impact of an earthquake as well as the role of sense of community as a protective factor against depressive symptoms among older Chinese adults who survived an 8.0 magnitude earthquake in 2008. A household survey of a random sample was conducted 3 months after the earthquake and 298 older earthquake survivors participated…

  16. Possible occurrence of a giant interplate earthquake in northeast Japan greater than the 2011 Tohoku earthquake

    Science.gov (United States)

    Ohtani, M.; Hirahara, K.; Hori, T.; Hyodo, M.

    2012-12-01

    We supposed there occur M7-class earthquakes and the co-rupturing M8 earthquakes on the Pacific plate interface subducting beneath northeast Japan. Against our speculation, the 2011 Tohoku earthquake grew up to Mw9.0. We have so far constructed cycle models of this giant earthquake to understand why this grew up to Mw9.0. Next question is; is there any possibility that a much larger earthquake occurs in this region? In this study, we explore this possibility through quasi-dynamic earthquake cycle simulations. The 2011 Tohoku earthquake ruptured a large region of 200km x 500km. The rupture region includes a confined area with huge coseismic slip over 50 m in the shallow Off-Miyagi region close to the Japan Trench, and several M7 asperities in Off-Miyagi and Ibaraki regions which have been ruptured repeatedly at intervals of several ten years. The tsunami deposit surveys suggest this giant earthquake has the recurrence time of several hundred years. The afterslip occurs mainly in the deeper region of the coseismic slip region, except the Off-Miyagi region [Ozawa et al., 2012]. At Off-Kamaishi and Off-Fukushima regions located in the northern and southern sides of the Off-Miyagi region, we can find the local maximum of the afterslip. The Off-Kamaishi region did not produce much coseismic slip, and has not experienced historical large earthquakes. And no large afterslip extended to the northern region beyond Off-Kamaishi. Then, the Off-Kamaishi region is a kind of boundary between the 2011 Tohoku earthquake and its adjacent northern regions. In the northern region, there occurred the 1968 Off-Tokachi Mw8.3 earthquake, which has three M7 asperities with recurrence times of several ten years [Yamanaka & Kikuchi, 2004]. An aftershock of the 2011 Tohoku earthquake, which occurred 22 minutes after the main shock, is located at the southern asperity area. And there is a region close to the Japan Trench, where the 1897 Meiji-sanriku tsunami earthquake occurred. We performed

  17. Earthquakes

    Science.gov (United States)

    ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ...

  18. Earthquakes

    Science.gov (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  19. A 'new generation' earthquake catalogue

    Directory of Open Access Journals (Sweden)

    E. Boschi

    2000-06-01

    Full Text Available In 1995, we published the first release of the Catalogo dei Forti Terremoti in Italia, 461 a.C. - 1980, in Italian (Boschi et al., 1995. Two years later this was followed by a second release, again in Italian, that included more earthquakes, more accurate research and a longer time span (461 B.C. to 1990 (Boschi et al., 1997. Aware that the record of Italian historical seismicity is probably the most extensive of the whole world, and hence that our catalogue could be of interest for a wider interna-tional readership, Italian was clearly not the appropriate language to share this experience with colleagues from foreign countries. Three years after publication of the second release therefore, and after much additional research and fine tuning of methodologies and algorithms, I am proud to introduce this third release in English. All the tools and accessories have been translated along with the texts describing the development of the underlying research strategies and current contents. The English title is Catalogue of Strong Italian Earthquakes, 461 B.C. to 1997. This Preface briefly describes the scientific context within which the Catalogue of Strong Italian Earthquakes was conceived and progressively developed. The catalogue is perhaps the most impor-tant outcome of a well-established joint project between the Istituto Nazionale di Geofisica, the leading Italian institute for basic and applied research in seismology and solid earth geophysics, and SGA (Storia Geofisica Ambiente, a private firm specialising in the historical investigation and systematisation of natural phenomena. In her contribution "Method of investigation, typology and taxonomy of the basic data: navigating between seismic effects and historical contexts", Emanuela Guidoboni outlines the general framework of modern historical seismology, its complex relation with instrumental seismology on the one hand and historical research on the other. This presentation also highlights

  20. Earthquake vulnerability evaluation Faizabad district of Kermanshah

    Directory of Open Access Journals (Sweden)

    Saba Naderi

    2014-07-01

    Full Text Available This paper as examplehas been studied Faizabad district of Kermanshah and to reach its main purpose, which is reducing the damagecaused by the earthquake on the Faizabad district is been providedand in subsidiary purposes part the research is tried identify factors influence in vulnerability earthquakes,pay to provide the factors required; All these factors havean impact on reducing earthquake vulnerability. This data using geological data, soil texture, getting satelliteimages and layering over Arc Gis software identified and for long term periods donepredict using relation kernel PSHA also. In determining the level ofenvironmental risk is to use software crisis. Finally, by recognizing the riskzone, solutions for Faizabad district offered.

  1. Earthquake hazard assessment after Mexico (1985).

    Science.gov (United States)

    Degg, M R

    1989-09-01

    The 1985 Mexican earthquake ranks foremost amongst the major earthquake disasters of the twentieth century. One of the few positive aspects of the disaster is that it provided massive quantities of data that would otherwise have been unobtainable. Every opportunity should be taken to incorporate the findings from these data in earthquake hazard assessments. The purpose of this paper is to provide a succinct summary of some of the more important lessons from Mexico. It stems from detailed field investigations, and subsequent analyses, conducted by the author on the behalf of reinsurance companies.

  2. Wave-equation Based Earthquake Location

    Science.gov (United States)

    Tong, P.; Yang, D.; Yang, X.; Chen, J.; Harris, J.

    2014-12-01

    Precisely locating earthquakes is fundamentally important for studying earthquake physics, fault orientations and Earth's deformation. In industry, accurately determining hypocenters of microseismic events triggered in the course of a hydraulic fracturing treatment can help improve the production of oil and gas from unconventional reservoirs. We develop a novel earthquake location method based on solving full wave equations to accurately locate earthquakes (including microseismic earthquakes) in complex and heterogeneous structures. Traveltime residuals or differential traveltime measurements with the waveform cross-correlation technique are iteratively inverted to obtain the locations of earthquakes. The inversion process involves the computation of the Fréchet derivative with respect to the source (earthquake) location via the interaction between a forward wavefield emitting from the source to the receiver and an adjoint wavefield reversely propagating from the receiver to the source. When there is a source perturbation, the Fréchet derivative not only measures the influence of source location but also the effects of heterogeneity, anisotropy and attenuation of the subsurface structure on the arrival of seismic wave at the receiver. This is essential for the accuracy of earthquake location in complex media. In addition, to reduce the computational cost, we can first assume that seismic wave only propagates in a vertical plane passing through the source and the receiver. The forward wavefield, adjoint wavefield and Fréchet derivative with respect to the source location are all computed in a 2D vertical plane. By transferring the Fréchet derivative along the horizontal direction of the 2D plane into the ones along Latitude and Longitude coordinates or local 3D Cartesian coordinates, the source location can be updated in a 3D geometry. The earthquake location obtained with this combined 2D-3D approach can then be used as the initial location for a true 3D wave

  3. Earthquake Scenarios and Comparison with Historical Earthquakes, Hatay Region, SE Turkey

    Science.gov (United States)

    Uskuplu, S.; Tuysuz, O.

    2012-04-01

    Hatay Province (Antioch on Orontes) and its surroundings, SE Turkey, have been studied in this research. Tectonically, the East Anatolian Fault Zone (EAFZ), Dead Sea Fault Zone (DAFZ) and Cyprus Arc juxtapose in this region and form a triple junction. Historical records, which extend back to 300 BC, indicate that repeated destructive earthquakes affected this historical region for many times. It is still a matter of debate in this region that which fault produced these earthquakes. It is indisputable for this region that the probability of occurrence of future big and destructive earthquakes are quite high. For that purpose, the damage distributions of the historical earthquakes of this region, which are compiled from various catalogues, have been investigated in this study. The active faults in the region are determined by field studies and the maximum magnitudes of the earthquakes that can be produced by those faults are calculated by using empirical formulas. In the next step we produced synthetic earthquake scenarios by using Geographical Information System (GIS) analysis techniques to estimate the damage distribution of earthquakes that would possibly be produced by different fault segments. In the last step we compared results of damage distribution of synthetic earthquake scenarios with the damage distribution from historical records. Based on these results we tried to estimate which fault segment produced which historical earthquake. Results of our study indicate that the historical earthquakes in the Hatay Province were mainly produced by different segments of the Dead Sea Fault, and the Antakya-Samandag Fault. Keywords; Earthquake scenarios, GIS, historical earthquakes, Hatay, intensity

  4. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part A, Prehistoric earthquakes

    Science.gov (United States)

    Wheeler, Russell L.

    2014-01-01

    Computation of probabilistic earthquake hazard requires an estimate of Mmax, the maximum earthquake magnitude thought to be possible within a specified geographic region. This report is Part A of an Open-File Report that describes the construction of a global catalog of moderate to large earthquakes, from which one can estimate Mmax for most of the Central and Eastern United States and adjacent Canada. The catalog and Mmax estimates derived from it were used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. This Part A discusses prehistoric earthquakes that occurred in eastern North America, northwestern Europe, and Australia, whereas a separate Part B deals with historical events.

  5. Earthquake Risk - EARTHQUAKE_LIQUEFACTION_IN: Earthquake Paleoliquefaction Sites in Indiana (Indiana Geological Survey, 1:24,000, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — EARTHQUAKE_LIQUEFACTION_IN is a point shapefile that shows sites where paleoliquefaction features have been identified in the field by Pat Munson of the Indiana...

  6. Earthquake prediction with electromagnetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp [Hayakawa Institute of Seismo Electomagnetics, Co. Ltd., University of Electro-Communications (UEC) Incubation Center, 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan); Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo (Japan); Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062 (Japan); Fuji Security Systems. Co. Ltd., Iwato-cho 1, Shinjyuku-ku, Tokyo (Japan)

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  7. The ethics of earthquake prediction.

    Science.gov (United States)

    Sol, Ayhan; Turan, Halil

    2004-10-01

    Scientists' responsibility to inform the public about their results may conflict with their responsibility not to cause social disturbance by the communication of these results. A study of the well-known Brady-Spence and Iben Browning earthquake predictions illustrates this conflict in the publication of scientifically unwarranted predictions. Furthermore, a public policy that considers public sensitivity caused by such publications as an opportunity to promote public awareness is ethically problematic from (i) a refined consequentialist point of view that any means cannot be justified by any ends, and (ii) a rights view according to which individuals should never be treated as a mere means to ends. The Parkfield experiment, the so-called paradigm case of cooperation between natural and social scientists and the political authorities in hazard management and risk communication, is also open to similar ethical criticism. For the people in the Parkfield area were not informed that the whole experiment was based on a contested seismological paradigm.

  8. Perception of earthquake risk in Taiwan: effects of gender and past earthquake experience.

    Science.gov (United States)

    Kung, Yi-Wen; Chen, Sue-Huei

    2012-09-01

    This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer-assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two-factor structure of risk perception in regard to earthquake. The first factor, "personal impact," encompassed perception of threat and fear related to earthquakes. The second factor, "controllability," encompassed a sense of efficacy of self-protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly. © 2012 Society for Risk Analysis.

  9. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    Science.gov (United States)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  10. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    Science.gov (United States)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  11. Seismic effects of the strongest historical earthquak in the Syracuse area

    Directory of Open Access Journals (Sweden)

    D. Mariotti

    1995-06-01

    Full Text Available The effects of earthquakes that occurred in a given area contribute significantly to the evaluation of to local seismic hazard. The information concerning historical earthquakes of the Mediterranean area covers many centuries, but the wealth of information made available by historical seismology does not appear to ha taken into account by engineering seismologists. By adopting "attenuation laws" based on data contained in the seismic catalogues, not only do we sometimes come up against the gross errors normally found jn logues, but we also lose sight of important details relating to the characteristics of urban seismic scenarios this paper we describe the results obtained from the analysis of seismic scenarios in Ortigia (old Syracuse this analysis we emphasized the qualitative and descriptive data to outline the "largest historical eve reassessed the data concerning five earthquakes that occuned in 1169,1542,1693,1757 and 1846, w reported by the Catalogue of Italian Earthquakes with an intensity greater than or equal to IX MCS epicentre of which was located within 50 km of the city. The last two of these earthquakes turned out t result of mistakes in the transmission of the news and have therefore been removed trom the list of de events. In addjtjon, we reconstructed the damage caused by the 1542 and 1693 earthquakes on a ma ancient town of Ortigia, taking into account the economic, demographic, and urbanistic conditions of t The empirical elements supplied to evaluate the local seismic response can also be of use in the preservation of historical buildings.

  12. The January 17, 1994 Northridge Earthquake: Effects on selected industrial facilities and lifelines

    Energy Technology Data Exchange (ETDEWEB)

    Eli, M.W.; Sommer, S.C. [Lawrence Livermore National Lab., CA (United States); Roche, T.R.; Merz, K.L.

    1995-02-01

    Revision 0 of this report is being published in February 1995 to closely mark the one-year anniversary of the Northridge Earthquake. A September 1994 Draft version of the report was reviewed by DOE and NRC, and many of the review comments are incorporated into Revision 0. While this revision of the report is not entirely complete, it is being made available for comment, review, and evaluation. Since the report was written by several authors, sections of the report have slightly different styles. Several sections of Revision 0 are not complete, but are planned to be completed in Revision 1. The primary unfinished section is Section 3.3 on Electric Power Transmission. Other sections of Revision 0, such as Section 4.5.2 on the Energy Technology Engineering Center and 3.2 on Electric Power Generation, will be enhanced with further detailed information as it becomes available. In addition, further data, including processed response spectra for investigated facilities and cataloging of relay performance, will be added to Revision 1 depending upon investigation support. While Revision 0 of this report is being published by LLNL, Revision 1 is planned to be published by EPRI. The anticipated release date for Revision 1 is December 1995. Unfortunately, the one-year anniversary of the Northridge Earthquake was also marked by the devastating Hyogo-Ken Nanbu (or Hanshin-Awaji) Earthquake in Kobe, Japan. As compared to the Northridge Earthquake, there were many more deaths, collapsed structures, destroyed lifelines, and fires following the Kobe Earthquake. Lessons from the Kobe Earthquake will both reemphasize topics discussed in this report and provide further issues to be addressed when designing and retrofitting structures, systems, and components for seismic strong motion.

  13. Earthquake Risk Management of Underground Lifelines in the Urban Area of Catania

    Science.gov (United States)

    Grasso, S.; Maugeri, M.

    2008-07-01

    Lifelines typically include the following five utility networks: potable water, sewage natural gas, electric power, telecommunication and transportation system. The response of lifeline systems, like gas and water networks, during a strong earthquake, can be conveniently evaluated with the estimated average number of ruptures per km of pipe. These ruptures may be caused either by fault ruptures crossing, or by permanent deformations of the soil mass (landslides, liquefaction), or by transient soil deformations caused by seismic wave propagation. The possible consequences of damaging earthquakes on transportation systems may be the reduction or the interruption of traffic flow, as well as the impact on the emergency response and on the recovery assistance. A critical element in the emergency management is the closure of roads due to fallen obstacles and debris of collapsed buildings. The earthquake-induced damage to buried pipes is expressed in terms of repair rate (RR), defined as the number of repairs divided by the pipe length (km) exposed to a particular level of seismic demand; this number is a function of the pipe material (and joint type), of the pipe diameter and of the ground shaking level, measured in terms of peak horizontal ground velocity (PGV) or permanent ground displacement (PGD). The development of damage algorithms for buried pipelines is primarily based on empirical evidence, tempered with engineering judgment and sometimes by analytical formulations. For the city of Catania, in the present work use has been made of the correlation between RR and peak horizontal ground velocity by American Lifelines Alliance (ALA, 2001), for the verifications of main buried pipelines. The performance of the main buried distribution networks has been evaluated for the Level I earthquake scenario (January 11, 1693 event I = XI, M 7.3) and for the Level II earthquake scenario (February 20, 1818 event I = IX, M 6.2). Seismic damage scenario of main gas pipelines and

  14. Safety Aspects of Sustainable Storage Dams and Earthquake Safety of Existing Dams

    Directory of Open Access Journals (Sweden)

    Martin Wieland

    2016-09-01

    Full Text Available The basic element in any sustainable dam project is safety, which includes the following safety elements: ① structural safety, ② dam safety monitoring, ③ operational safety and maintenance, and ④ emergency planning. Long-term safety primarily includes the analysis of all hazards affecting the project; that is, hazards from the natural environment, hazards from the man-made environment, and project-specific and site-specific hazards. The special features of the seismic safety of dams are discussed. Large dams were the first structures to be systematically designed against earthquakes, starting in the 1930s. However, the seismic safety of older dams is unknown, as most were designed using seismic design criteria and methods of dynamic analysis that are considered obsolete today. Therefore, we need to reevaluate the seismic safety of existing dams based on current state-of-the-art practices and rehabilitate deficient dams. For large dams, a site-specific seismic hazard analysis is usually recommended. Today, large dams and the safety-relevant elements used for controlling the reservoir after a strong earthquake must be able to withstand the ground motions of a safety evaluation earthquake. The ground motion parameters can be determined either by a probabilistic or a deterministic seismic hazard analysis. During strong earthquakes, inelastic deformations may occur in a dam; therefore, the seismic analysis has to be carried out in the time domain. Furthermore, earthquakes create multiple seismic hazards for dams such as ground shaking, fault movements, mass movements, and others. The ground motions needed by the dam engineer are not real earthquake ground motions but models of the ground motion, which allow the safe design of dams. It must also be kept in mind that dam safety evaluations must be carried out several times during the long life of large storage dams. These features are discussed in this paper.

  15. Attenuation Characteristics of Strong Ground Motions during the Mw 6.1 South Napa Earthquake

    Science.gov (United States)

    Si, H.; Koketsu, K.; Miyake, H.; Ibrahim, R.

    2014-12-01

    The 2014 South Napa earthquake (Mw 6.1, GCMT) occurred near the American Canyon, California, at 3:20 on 24 August 2014. The earthquake is the largest damaging earthquakes in the area since the 1989 Mw 6.9 Loma Prieta earthquake. A large number of strong ground motions were recorded during this earthquake. We discuss the attenuation characteristics of the strong ground motions of the earthquake.The data used in this study are PGAs compiled by the Center for Engineering Strong Motion Data (CESMD), while the records derived at the stations located in a building were excluded. PGA is defined as the larger one among the PGAs of two horizontal components. We use a source model derived based on the waveform inversion by Dreger (2014). Based on the source model, we calculated the fault distance (FD) and the median distance (MED) which defined as the closest distance from a station to the middle line of the fault plane. We compared the observed PGAs with the GMPEs developed both in US (Boore et al., 2014) and Japan (Si and Midorikawa, 1999; Koketsu et al., 2013), as shown in Figure 1 (left, and center). The predictions by the GMPEs are generally consistent with the observations in near-field area, but overestimated at stations farther than about 10 km in fault distance. The reasons of the overestimates are assumed as follows: (1) the backward propagation effects since many far stations are located in bay area, (2) the energy loss when the seismic waves pass through the sharp discontinuities in the shear wave velocity structure. The second reason are taken into account for the case using MED based on the methods used in Si et al. (2012, 15WCEE). The corrected predictions are significantly improved (Figure 1, right).

  16. Post-Earthquake Geology in the ERA of Ubiquitous Point Clouds

    Science.gov (United States)

    Oskin, M. E.; Arrowsmith, R.; Nissen, E.; Morelan, A. E., III; Trexler, C. C.; Gold, P. O.; Elliott, A. J.; Crosby, C. J.; Kellogg, L. H.

    2015-12-01

    High-precision 3D imaging with lidar and structure-from-motion photogrammetry is revolutionizing the collection of post-earthquake displacement information. Massive point-cloud datasets, and their differences epoch to epoch, provide valuable information for scientific, engineering, and emergency response, and also pose challenges to process, handle, analyze, share, and visualize. In the physical world, earthquake surface ruptures and secondary deformation features are ephemeral, subject to natural degradation by erosion, or to repair of the built environment. Post-earthquake 3D imaging overcomes this limitation by virtually archiving the primary surface expression of deformation. This allows geologists make precise, repeatable measurements, and to assess subtle, distributed deformation often missed by traditional field methods. Generally, the more local and inexpensive the technique, the quicker that a response can be organized: ground and drone-based SfM (hours), terrestrial laser scanning (days), to airborne lidar (weeks). With the growth of high-resolution topography along fault zones and for other mapping purposes, it is increasingly likely that a large earthquake will coincide with an existing data set. Such an event beholds the exciting promise of point cloud differencing to develop a high-resolution, fully three dimensional displacement and rotation field. Existing paired airborne lidar data sets from Japan, New Zealand, Mexico, and California reveal new and informative features of earthquake-induced near-field deformation, but also illustrate that significant challenges impede the separation a tectonic signal from noise and uncertainty within lidar data. In a future earthquakes, there will be great opportunities, and soon enough, an imperative, to measure deformation at sub-meter resolution over entire cities, and along faults hundreds of kilometers in length. As a community, we stand at a threshold, watching this oncoming deluge of repeat and ubiquitous

  17. The impact of soil suction variation on earthquake intensity indices

    Directory of Open Access Journals (Sweden)

    Biglari Mahnoosh

    2016-01-01

    Full Text Available Soil properties can completely change the ground motion characteristics as they travel from the bedrock to the surface because, soil as a low-pass filter, may amplify or deamplify seismic motions in some frequencies on the wave travelling path. Recent studies about the advanced unsaturated soil mechanics clearly shows that dynamic properties of soils, including small-strain shear modulus (Gmax, shear modulus reduction (G/Gmax, and damping ratio (D curves are affected by changes in the soil suction level. The current study present nonlinear time-dependent analysis of three different unsaturated soils available in the literature with different ranges of nonlinear behaviour that earlier have been studied on unsaturated dynamic models. Since, the earthquake intensity parameters can be used to describe the damage potential of an earthquake, the focus of this paper is to evaluate the impact of the suction variation on the engineering ground motion parameters, including peak values of strong motion, Vmax/Amax, root-mean-square acceleration, Arias intensity, characteristic intensity, cumulative absolute velocity, acceleration spectrum intensity, effective design acceleration, A95 parameter and predominant period separately under the near-field and the far-field seismicity categories.

  18. Geotechnical reconnaissance of the 2002 Denali fault, Alaska, earthquake

    Science.gov (United States)

    Kayen, R.; Thompson, E.; Minasian, D.; Moss, R.E.S.; Collins, B.D.; Sitar, N.; Dreger, D.; Carver, G.

    2004-01-01

    The 2002 M7.9 Denali fault earthquake resulted in 340 km of ruptures along three separate faults, causing widespread liquefaction in the fluvial deposits of the alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. Areas affected by liquefaction are largely confined to Holocene alluvial deposits, man-made embankments, and backfills. Liquefaction damage, sparse surrounding the fault rupture in the western region, was abundant and severe on the eastern rivers: the Robertson, Slana, Tok, Chisana, Nabesna and Tanana Rivers. Synthetic seismograms from a kinematic source model suggest that the eastern region of the rupture zone had elevated strong-motion levels due to rupture directivity, supporting observations of elevated geotechnical damage. We use augered soil samples and shear-wave velocity profiles made with a portable apparatus for the spectral analysis of surface waves (SASW) to characterize soil properties and stiffness at liquefaction sites and three trans-Alaska pipeline pump station accelerometer locations. ?? 2004, Earthquake Engineering Research Institute.

  19. Earthquake motion input and its dissemination via the Internet

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objectives of this task are to conduct research on seismic hazards, and to provide relevant input on the expectedlevels of these hazards to other tasks. Other tasks requiring this input include those dealing with inventory, fragility curves,rehabilitation strategies and demonstration projects. The corresponding input is provided in various formats depending on theintended use: as peak ground motion parameters and/or response spectral values for a given magnitude, epicentral distance andsite conditions; or as time histories for scenario earthquakes that are selected based on the disaggregated seismic hazard mappedby the U.S. Geological Survey and are incorporated in building codes. The user community for this research is both academicresearchers and practicing engineers who may use the seismic input generated by the synthesis techniques that are developedunder this task for a variety of applications. These include ground motions for scenario earthquakes, for developing fragilitycurves and in specifying ground motion input for critical facilities (such as hospitals) located in the eastern U.S.

  20. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  1. Engineering and Software Engineering

    Science.gov (United States)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  2. The 15 April 1909 Taipei Earthquake

    Directory of Open Access Journals (Sweden)

    Jeen-Hwa Wang

    2011-01-01

    Full Text Available In the very early morning at 03 h 53.7 m on 15 April 1909 (local time, a large earthquake occurred in northern Taiwan. In all, 9 persons were killed and 51 injured; 122 houses collapsed along with damage to another 1050 houses. This earthquake was one of the largest and most damaging events of the 20th century for the Taipei Metropolitan Area. The epicenter estimated by Hsu (1971 was determined to be 25¢XN, 121.53¢XE and its focal depth and earthquake magnitude evaluated by Gutenberg and Richter (1954 were ~80 km and MGR = 7.3, respectively. The event took place underneath the Taipei Metropolitan Area and might be located at the western edge of the subduction zone of the Philippine Sea plate. In this study, the magnitudes of the earthquakes determined by others will also be described.

  3. The aftershock signature of supershear earthquakes.

    Science.gov (United States)

    Bouchon, Michel; Karabulut, Hayrullah

    2008-06-01

    Recent studies show that earthquake faults may rupture at speeds exceeding the shear wave velocity of rocks. This supershear rupture produces in the ground a seismic shock wave similar to the sonic boom produced by a supersonic airplane. This shock wave may increase the destruction caused by the earthquake. We report that supershear earthquakes are characterized by a specific pattern of aftershocks: The fault plane itself is remarkably quiet whereas aftershocks cluster off the fault, on secondary structures that are activated by the supershear rupture. The post-earthquake quiescence of the fault shows that friction is relatively uniform over supershear segments, whereas the activation of off-fault structures is explained by the shock wave radiation, which produces high stresses over a wide zone surrounding the fault.

  4. DYFI data for Induced Earthquake Studies

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The significant rise in seismicity rates in Oklahoma and Kansas (OK–KS) in the last decade has led to an increased interest in studying induced earthquakes. Although...

  5. International Technical Communication after a Large Earthquake.

    Science.gov (United States)

    Klein, Fred

    1994-01-01

    Discusses, in the context of southern California's severe earthquake in January 1994, attitudes to technology and the information superhighway. Argues that technology should not be worshipped as a solution. (SR)

  6. Strong ground motion prediction using virtual earthquakes.

    Science.gov (United States)

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  7. Earthquake Damage, Northern Iran, June 21, 1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A magnitude 7.7 earthquake occurred in the Gilan Province between the towns of Rudbar and Manjil in northern Iran on Thursday, June 21, 1990. The event, the largest...

  8. El Quindio Colombia Earthquake, January 25, 1999

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The El Quindio earthquake was one of the most destructive natural disasters to have occurred in Colombia in recent years. Long lasting economic and social impacts...

  9. Is It Possible to Predict Strong Earthquakes?

    CERN Document Server

    Polyakov, Yuriy S; Solovyeva, Anna B; Timashev, Serge F

    2015-01-01

    The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on February 28, 2013), recorded at two different sites in the south-eastern part of the Kamchatka peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geoph...

  10. Disturbances in equilibrium function after major earthquake

    Science.gov (United States)

    Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi

    2012-10-01

    Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.

  11. Adaptively Smoothed Seismicity Earthquake Forecasts for Italy

    CERN Document Server

    Werner, M J; Jackson, D D; Kagan, Y Y; Wiemer, S

    2010-01-01

    We present a model for estimating the probabilities of future earthquakes of magnitudes m > 4.95 in Italy. The model, a slightly modified version of the one proposed for California by Helmstetter et al. (2007) and Werner et al. (2010), approximates seismicity by a spatially heterogeneous, temporally homogeneous Poisson point process. The temporal, spatial and magnitude dimensions are entirely decoupled. Magnitudes are independently and identically distributed according to a tapered Gutenberg-Richter magnitude distribution. We estimated the spatial distribution of future seismicity by smoothing the locations of past earthquakes listed in two Italian catalogs: a short instrumental catalog and a longer instrumental and historical catalog. The bandwidth of the adaptive spatial kernel is estimated by optimizing the predictive power of the kernel estimate of the spatial earthquake density in retrospective forecasts. When available and trustworthy, we used small earthquakes m>2.95 to illuminate active fault structur...

  12. SHOCK WAVE IN IONOSPHERE DURING EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    V.V. Kuznetsov

    2016-11-01

    Full Text Available Fundamentally new model of the shock wave (SW generation in atmosphere and ionosphere during earthquake is proposed. The model proceeds from the idea of cooperative shock water crystallization in a cloud

  13. Coping with earthquakes induced by fluid injection

    Science.gov (United States)

    McGarr, Arthur F.; Bekins, Barbara; Burkardt, Nina; Dewey, James W.; Earle, Paul S.; Ellsworth, William L.; Ge, Shemin; Hickman, Stephen H.; Holland, Austin F.; Majer, Ernest; Rubinstein, Justin L.; Sheehan, Anne

    2015-01-01

    Large areas of the United States long considered geologically stable with little or no detected seismicity have recently become seismically active. The increase in earthquake activity began in the mid-continent starting in 2001 (1) and has continued to rise. In 2014, the rate of occurrence of earthquakes with magnitudes (M) of 3 and greater in Oklahoma exceeded that in California (see the figure). This elevated activity includes larger earthquakes, several with M > 5, that have caused significant damage (2, 3). To a large extent, the increasing rate of earthquakes in the mid-continent is due to fluid-injection activities used in modern energy production (1, 4, 5). We explore potential avenues for mitigating effects of induced seismicity. Although the United States is our focus here, Canada, China, the UK, and others confront similar problems associated with oil and gas production, whereas quakes induced by geothermal activities affect Switzerland, Germany, and others.

  14. NGA Nepal Earthquake Support Data Services

    Data.gov (United States)

    National Geospatial Intelligence Agency — In support of the Spring 2015 Nepal earthquake response, NGA is providing to the public and humanitarian disaster response community these Nepal data services. They...

  15. Subduction zone earthquakes and stress in slabs

    Science.gov (United States)

    Vassiliou, M. S.; Hager, B. H.

    1988-01-01

    Simple viscous fluid models of subducting slabs are used to explain observations of the distribution of earthquakes as a function of depth and the orientation of stress axes of deep (greater than 300 km) and intermediate (70-300 km) earthquakes. Results suggest the following features in the distribution of earthquakes with depth: (1) an exponential decrease from shallow depths down to 250 to 300 km, (2) a minimum near 250 to 300 km, and (3) a deep peak below 300 km. Many shallow subducting slabs show only the first characteristic, while deeper extending regions tend to show all three features, with the deep peak varying in position and intensity. These data, combined with the results on the stress orientations of various-depth earthquakes, are consistent with the existence of a barrier of some sort at 670-km depth and a uniform viscosity mantle above this barrier.

  16. Mexican Earthquakes and Tsunamis Catalog Reviewed

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Castillo-Aja, R.

    2015-12-01

    Today the availability of information on the internet makes online catalogs very easy to access by both scholars and the public in general. The catalog in the "Significant Earthquake Database", managed by the National Center for Environmental Information (NCEI formerly NCDC), NOAA, allows access by deploying tabular and cartographic data related to earthquakes and tsunamis contained in the database. The NCEI catalog is the product of compiling previously existing catalogs, historical sources, newspapers, and scientific articles. Because NCEI catalog has a global coverage the information is not homogeneous. Existence of historical information depends on the presence of people in places where the disaster occurred, and that the permanence of the description is preserved in documents and oral tradition. In the case of instrumental data, their availability depends on the distribution and quality of seismic stations. Therefore, the availability of information for the first half of 20th century can be improved by careful analysis of the available information and by searching and resolving inconsistencies. This study shows the advances we made in upgrading and refining data for the earthquake and tsunami catalog of Mexico since 1500 CE until today, presented in the format of table and map. Data analysis allowed us to identify the following sources of error in the location of the epicenters in existing catalogs: • Incorrect coordinate entry • Place name erroneous or mistaken • Too general data that makes difficult to locate the epicenter, mainly for older earthquakes • Inconsistency of earthquakes and the tsunami occurrence: earthquake's epicenter located too far inland reported as tsunamigenic. The process of completing the catalogs directly depends on the availability of information; as new archives are opened for inspection, there are more opportunities to complete the history of large earthquakes and tsunamis in Mexico. Here, we also present new earthquake and

  17. Influence of Japan Earthquake Upon Shipbuilding Industry

    Institute of Scientific and Technical Information of China (English)

    Sun Jianmiao

    2011-01-01

    On March 11,the strong earthquake of 9.0 magnitude and the tsunami in Japan made its entire social life,production and communication systems into chaos.As the world third largest economy.Japan is also a large trade,shipbuilding and marine equipment manufacturing country.The earthquake has not only greatly affected the Japanese shipbuilding industry,but also the international shipping industry and Chinese shipbuilding industry.

  18. Exploring Earthquakes in Real-Time

    Science.gov (United States)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  19. The Christchurch earthquake stroke incidence study.

    Science.gov (United States)

    Wu, Teddy Y; Cheung, Jeanette; Cole, David; Fink, John N

    2014-03-01

    We examined the impact of major earthquakes on acute stroke admissions by a retrospective review of stroke admissions in the 6 weeks following the 4 September 2010 and 22 February 2011 earthquakes. The control period was the corresponding 6 weeks in the previous year. In the 6 weeks following the September 2010 earthquake there were 97 acute stroke admissions, with 79 (81.4%) ischaemic infarctions. This was similar to the 2009 control period which had 104 acute stroke admissions, of whom 80 (76.9%) had ischaemic infarction. In the 6 weeks following the February 2011 earthquake, there were 71 stroke admissions, and 61 (79.2%) were ischaemic infarction. This was less than the 96 strokes (72 [75%] ischaemic infarction) in the corresponding control period. None of the comparisons were statistically significant. There was also no difference in the rate of cardioembolic infarction from atrial fibrillation between the study periods. Patients admitted during the February 2011 earthquake period were less likely to be discharged directly home when compared to the control period (31.2% versus 46.9%, p=0.036). There was no observable trend in the number of weekly stroke admissions between the 2 weeks leading to and 6 weeks following the earthquakes. Our results suggest that severe psychological stress from earthquakes did not influence the subsequent short term risk of acute stroke, but the severity of the earthquake in February 2011 and associated civil structural damages may have influenced the pattern of discharge for stroke patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Mechanical coupling between earthquakes, volcanos and landslides

    Science.gov (United States)

    Feigl, K. L.; Retina Team

    2003-04-01

    "The eruption began as a large earthquake that triggered a massive landslide that culminated in a violent lateral explosion" [Malone et al., USGS 1981]. The 1980 eruption of Mount St. Helens taught a very powerful lesson -- that one natural hazard can trigger another. For example, earthquakes have triggered landslides in Papua New Guinea. Similarly, eruptions of Vesuvius are mechanically coupled to earthquakes in the Appenines, just as an inflating magma chamber can trigger earthquakes near Hengill volcano in SW Iceland and on the Izu Peninsula in Japan. The Luzon earthquake may have triggered the eruption of Mount Pinatubo. In many of these cases, the second triggered event caused more damage than the initial one. If we can better understand the mechanical coupling underlying the temporal and spatial correlation of such events, we will improve our assessments of the hazards they pose. The RETINA project has been funded by the European Commission's 5th Framework to study couplings between three classes of natural hazards: earthquakes, landslides, and volcanoes. These three phenomena are linked to and by the stress field in the crust. If the stress increases enough, the material will fail catastrophically. For example, magma injection beneath a volcano can trigger an earthquake by increasing stress on a fault. Increasing shear stress on unconsolidated materials on steep slopes can trigger landslides. Such stress change triggers may also be tectonic (from plate driving forces), hydrological (from heavy rain), or volcanic (magmatic injection). Any of these events can perturb the stress field enough to trigger another event. Indeed, stress changes as small as 0.1 bar (0.01 MPa) suffice to trigger an earthquake. If the medium is close to failure, this small change can increase the Coulomb stress beyond the yield threshold, breaking the material. This quantity is the primary means we will use for describing mechanical coupling. In this paper, we will review several case

  1. Evaluation of near-field earthquake effects

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, H.P.

    1994-11-01

    Structures and equipment, which are qualified for the design basis earthquake (DBE) and have anchorage designed for the DBE loading, do not require an evaluation of the near-field earthquake (NFE) effects. However, safety class 1 acceleration sensitive equipment such as electrical relays must be evaluated for both NFE and DBE since they are known to malfunction when excited by high frequency seismic motions.

  2. ENGINEERING GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20152724 Chen Dan(State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China);Fu Ronghua Study on the Responses of Landslide to Earthquake:Taking Kudiguazi Landslide as an Example(Geological Journal of China Universities,

  3. Earthquake detection through computationally efficient similarity search

    Science.gov (United States)

    Yoon, Clara E.; O’Reilly, Ossian; Bergen, Karianne J.; Beroza, Gregory C.

    2015-01-01

    Seismology is experiencing rapid growth in the quantity of data, which has outpaced the development of processing algorithms. Earthquake detection—identification of seismic events in continuous data—is a fundamental operation for observational seismology. We developed an efficient method to detect earthquakes using waveform similarity that overcomes the disadvantages of existing detection methods. Our method, called Fingerprint And Similarity Thresholding (FAST), can analyze a week of continuous seismic waveform data in less than 2 hours, or 140 times faster than autocorrelation. FAST adapts a data mining algorithm, originally designed to identify similar audio clips within large databases; it first creates compact “fingerprints” of waveforms by extracting key discriminative features, then groups similar fingerprints together within a database to facilitate fast, scalable search for similar fingerprint pairs, and finally generates a list of earthquake detections. FAST detected most (21 of 24) cataloged earthquakes and 68 uncataloged earthquakes in 1 week of continuous data from a station located near the Calaveras Fault in central California, achieving detection performance comparable to that of autocorrelation, with some additional false detections. FAST is expected to realize its full potential when applied to extremely long duration data sets over a distributed network of seismic stations. The widespread application of FAST has the potential to aid in the discovery of unexpected seismic signals, improve seismic monitoring, and promote a greater understanding of a variety of earthquake processes. PMID:26665176

  4. Earthquakes trigger the loss of groundwater biodiversity

    Science.gov (United States)

    Galassi, Diana M. P.; Lombardo, Paola; Fiasca, Barbara; Di Cioccio, Alessia; Di Lorenzo, Tiziana; Petitta, Marco; Di Carlo, Piero

    2014-01-01

    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and “ecosystem engineers”, we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems. PMID:25182013

  5. Do weak global stresses synchronize earthquakes?

    Science.gov (United States)

    Bendick, R.; Bilham, R.

    2017-08-01

    Insofar as slip in an earthquake is related to the strain accumulated near a fault since a previous earthquake, and this process repeats many times, the earthquake cycle approximates an autonomous oscillator. Its asymmetric slow accumulation of strain and rapid release is quite unlike the harmonic motion of a pendulum and need not be time predictable, but still resembles a class of repeating systems known as integrate-and-fire oscillators, whose behavior has been shown to demonstrate a remarkable ability to synchronize to either external or self-organized forcing. Given sufficient time and even very weak physical coupling, the phases of sets of such oscillators, with similar though not necessarily identical period, approach each other. Topological and time series analyses presented here demonstrate that earthquakes worldwide show evidence of such synchronization. Though numerous studies demonstrate that the composite temporal distribution of major earthquakes in the instrumental record is indistinguishable from random, the additional consideration of event renewal interval serves to identify earthquake groupings suggestive of synchronization that are absent in synthetic catalogs. We envisage the weak forces responsible for clustering originate from lithospheric strain induced by seismicity itself, by finite strains over teleseismic distances, or by other sources of lithospheric loading such as Earth's variable rotation. For example, quasi-periodic maxima in rotational deceleration are accompanied by increased global seismicity at multidecadal intervals.

  6. New earthquake catalog reexamines Hawaii's seismic history

    Science.gov (United States)

    Wright, Thomas L.; Klein, Fred W.

    2000-01-01

    On April 2,1868, an earthquake of magnitude 7.9 occurred beneath the southern part of the island of Hawaii. The quake, which was felt throughout all of the Hawaiian Islands, had a Modified Mercalli (MM) intensity of XII near its source.The destruction caused by a quake that large is nearly complete. A landslide triggered by the quake buried a small village, killing 31 people, and a tsunami that swept over coastal settlements added to the death toll. We know as much as we do about this and other early earthquakes thanks to detailed records kept by Hawaiian missionaries, including the remarkable diary maintained by the Lyman family that documented every earthquake felt at their home in Hilo between 1833 and 1917 [Wyss et al., 1992].Our analysis of these and other historical records indicates that Hawaii was at least as intensely seismic in the 19th century and first half of the 20th century as in its more recent past, with 26 M ≥6.0 earthquakes occurring from 1823 to 1903 and 20 M ≥6.0 earthquakes from 1904 to 1959. Just five M ≥6.0 earthquakes occurred from 1960 to 1999. The potential damage caused by a repeat of some of the larger historic events could be catastrophic today.

  7. Maximum magnitude earthquakes induced by fluid injection

    Science.gov (United States)

    McGarr, Arthur F.

    2014-01-01

    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  8. Multiplicative earthquake likelihood models incorporating strain rates

    Science.gov (United States)

    Rhoades, D. A.; Christophersen, A.; Gerstenberger, M. C.

    2017-01-01

    SUMMARYWe examine the potential for strain-rate variables to improve long-term earthquake likelihood models. We derive a set of multiplicative hybrid earthquake likelihood models in which cell rates in a spatially uniform baseline model are scaled using combinations of covariates derived from earthquake catalogue data, fault data, and strain-rates for the New Zealand region. Three components of the strain rate estimated from GPS data over the period 1991-2011 are considered: the shear, rotational and dilatational strain rates. The hybrid model parameters are optimised for earthquakes of M 5 and greater over the period 1987-2006 and tested on earthquakes from the period 2012-2015, which is independent of the strain rate estimates. The shear strain rate is overall the most informative individual covariate, as indicated by Molchan error diagrams as well as multiplicative modelling. Most models including strain rates are significantly more informative than the best models excluding strain rates in both the fitting and testing period. A hybrid that combines the shear and dilatational strain rates with a smoothed seismicity covariate is the most informative model in the fitting period, and a simpler model without the dilatational strain rate is the most informative in the testing period. These results have implications for probabilistic seismic hazard analysis and can be used to improve the background model component of medium-term and short-term earthquake forecasting models.

  9. Maximum magnitude earthquakes induced by fluid injection

    Science.gov (United States)

    McGarr, A.

    2014-02-01

    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  10. Earthquake ground motion simulation at Zoser pyramid using the stochastic method: A step toward the preservation of an ancient Egyptian heritage

    Directory of Open Access Journals (Sweden)

    Amin E. Khalil

    2017-06-01

    Full Text Available Strong ground shaking during earthquakes can greatly affect the ancient monuments and subsequently demolish the human heritage. On October 12th 1992, a moderate earthquake (Ms = 5.8 shocked the greater Cairo area causing widespread damages. Unfortunately, the focus of that earthquake is located about 14 km to the south of Zoser pyramid. After the earthquake, the Egyptian Supreme council of antiquities issued an alarm that Zoser pyramid is partially collapsed and international and national efforts are exerted to restore this important human heritage that was built about 4000 years ago. Engineering and geophysical work is thus needed for the restoration process. The definition of the strong motion parameters is one of the required studies since seismically active zone is recorded in its near vicinity. The present study adopted the stochastic method to determine the peak ground motion (acceleration, velocity and displacement for the three largest earthquakes recorded in the Egypt’s seismological history. These earthquakes are Shedwan earthquake with magnitude Ms = 6.9, Aqaba earthquake with magnitude Mw = 7.2 and Cairo (Dahshour earthquake with magnitude Ms = 5.8. The former two major earthquakes took place few hundred kilometers away. It is logic to have the predominant effects from the epicentral location of the Cairo earthquake; however, the authors wanted to test also the long period effects of the large distance earthquakes expected from the other two earthquakes under consideration. In addition, the dynamic site response was studied using the Horizontal to vertical spectral ratio (HVSR technique. HVSR can provide information about the fundamental frequency successfully; however, the amplification estimation is not accepted. The result represented as either peak ground motion parameters or response spectra indicates that the effects from Cairo earthquake epicenter are the largest for all periods considered in the present study. The

  11. 用椭圆衰减关系模型计算任意场点烈度及地震动参数的数值方法%AN ALGORITHM FOR ARBITRARY ENGINEERING SITE EARTHQUAKE INTENSITY OR MOTION PARAMETER USING ELLIPSOID ATTENUATION MODEL

    Institute of Scientific and Technical Information of China (English)

    石建梁; 闫庆民; 葛秋莹

    2011-01-01

    用椭圆衰减关系计算地震动或地震烈度,比较经典的做法是建立极坐标系,采用极坐标方程的方法.给出了一种在直角坐标系中即可求解的用椭圆衰减关系计算地震动或地震烈度的数值计算方法.另外,地震动椭圆衰减关系,应满足一定的模型要求,才能更客观地反映实际的地震动衰减物理过程.本算法的附加功能能够鉴别非标准的椭圆衰减关系.%The classic method using ellipsoid attenuation model to reckon earthquake intensity or motion parameter is establishing a polar coordinate system, then solving a polar equation.The author introduced a numerical computing method in rectangular coordinates for reckoning earthquake intensity or motion parameter using ellipsoid attenuation model.In addition, any correct ellipsoid attenuation model must fit some model conditions in order to express actual earthquake attenuation process.This algorithm can also distinguish the nonstandard ellipsoid attenuation model.

  12. Retrospective stress-forecasting of earthquakes

    Science.gov (United States)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to

  13. Future of Earthquake Early Warning: Quantifying Uncertainty and Making Fast Automated Decisions for Applications

    Science.gov (United States)

    Wu, Stephen

    Earthquake early warning (EEW) systems have been rapidly developing over the past decade. Japan Meteorological Agency (JMA) has an EEW system that was operating during the 2011 M9 Tohoku earthquake in Japan, and this increased the awareness of EEW systems around the world. While longer-time earthquake prediction still faces many challenges to be practical, the availability of shorter-time EEW opens up a new door for earthquake loss mitigation. After an earthquake fault begins rupturing, an EEW system utilizes the first few seconds of recorded seismic waveform data to quickly predict the hypocenter location, magnitude, origin time and the expected shaking intensity level around the region. This early warning information is broadcast to different sites before the strong shaking arrives. The warning lead time of such a system is short, typically a few seconds to a minute or so, and the information is uncertain. These factors limit human intervention to activate mitigation actions and this must be addressed for engineering applications of EEW. This study applies a Bayesian probabilistic approach along with machine learning techniques and decision theories from economics to improve different aspects of EEW operation, including extending it to engineering applications. Existing EEW systems are often based on a deterministic approach. Often, they assume that only a single event occurs within a short period of time, which led to many false alarms after the Tohoku earthquake in Japan. This study develops a probability-based EEW algorithm based on an existing deterministic model to extend the EEW system to the case of concurrent events, which are often observed during the aftershock sequence after a large earthquake. To overcome the challenge of uncertain information and short lead time of EEW, this study also develops an earthquake probability-based automated decision-making (ePAD) framework to make robust decision for EEW mitigation applications. A cost-benefit model that

  14. Benefits of multidisciplinary collaboration for earthquake casualty estimation models: recent case studies

    Science.gov (United States)

    So, E.

    2010-12-01

    Earthquake casualty loss estimation, which depends primarily on building-specific casualty rates, has long suffered from a lack of cross-disciplinary collaboration in post-earthquake data gathering. An increase in our understanding of what contributes to casualties in earthquakes involve coordinated data-gathering efforts amongst disciplines; these are essential for improved global casualty estimation models. It is evident from examining past casualty loss models and reviewing field data collected from recent events, that generalized casualty rates cannot be applied globally for different building types, even within individual countries. For a particular structure type, regional and topographic building design effects, combined with variable material and workmanship quality all contribute to this multi-variant outcome. In addition, social factors affect building-specific casualty rates, including social status and education levels, and human behaviors in general, in that they modify egress and survivability rates. Without considering complex physical pathways, loss models purely based on historic casualty data, or even worse, rates derived from other countries, will be of very limited value. What’s more, as the world’s population, housing stock, and living and cultural environments change, methods of loss modeling must accommodate these variables, especially when considering casualties. To truly take advantage of observed earthquake losses, not only do damage surveys need better coordination of international and national reconnaissance teams, but these teams must integrate difference areas of expertise including engineering, public health and medicine. Research is needed to find methods to achieve consistent and practical ways of collecting and modeling casualties in earthquakes. International collaboration will also be necessary to transfer such expertise and resources to the communities in the cities which most need it. Coupling the theories and findings from

  15. Multi-disciplinary Hazard Reduction from Earthquakes and Volcanoes in Indonesia - International Research Cooperation Program

    Science.gov (United States)

    Kato, Teruyuki

    2010-05-01

    Indonesian and Japanese researchers started a three-year (2009-2011) multi-disciplinary cooperative research project as a part of "Science and Technology Research Partnership for Sustainable Development" supported by the Japanese government. The ultimate goal of this project is to reduce disaster from earthquakes, tsunamis and volcanoes by enhancing capability of forecasting hazards, reducing social vulnerability, and education and outreach activity of research outcomes. We plan to provide platform of collaboration among researchers in natural science, engineering and social sciences, as well as officials in national and local governments. Research activities are grouped into: (1) geological and geophysical surveys of past earthquakes, monitoring current crustal activity, and simulation of future ground motion or tsunamis, (2) short-term and long-term prediction of volcanic eruptions by monitoring Semeru, Guntur and other volcanoes, and development of their evaluation method, (3) studies to establish social infrastructure based on engineering technologies and hazard maps, (4) social, cultural and religious studies to reduce vulnerability of local communities, and (5) studies on education and outreach on disaster reduction and restoration of community. In addition, to coordinate these research activities and to utilize the research results, (6) application of the research and establishment of collaboration mechanism between researchers and the government officials is planned. In addition to mutual visits and collaborative field studies, it is planned to hold annual joint seminars (in Indonesia in 2009 and 2011, in Japan in 2010) that will be broadcasted through internet. Meetings with Joint Coordinating Committee, composed of representatives of relevant Indonesian ministries and institutions as well as project members, will be held annually to oversee the activities. The kick-off workshop was held in Bandung in April 2009 and the research plans from 22 different

  16. Impacts of earthquake on atoll in Nansha Islands, South China Sea

    Science.gov (United States)

    Guo, Lei; Zhan, Wenhuan; Xiong, Lijia; Chen, Wujin; Yao, Yantao; Li, Jian

    2016-04-01

    Coral reef is a kind of rock soil masses. It is a special marine geotechnical medium, which are made up of the reef coral debris undergo very long geological age. Atoll is the predominant type of coral reefs in South China Sea. In recent years, there are more and more construction projects on the reef flat in Nansha Islands, South China Sea. Therefore, it is very important to estimate the stability of coral reefs, especially the atolls. According to the geological structure characters of atoll in Nansha Islands, a model of reef body is presented in this paper to study the influence of earthquake. Meanwhile, Geostudio, which is a popular geotechnical engineering simulation software, is used to stimulate the stress and deformation situation of reef body under different six kinds of earthquake intensity. The factor of safety can be calculated by the limit equilibrium method. And the possible scenario of earthquake-induced landslides and sliding scale can be defined through the Newmark sliding block method. The stress distribution and deformation behavior are studied. The main relations between atoll and earthquake are analyzed as follows: (1) the safety factor of reef slope exceeds 1.993 under self-gravity state; (2) It may cause slope's instability and bring slumping when the safety factor is less than one. The factor of safety decreases with increased earthquake intensity and it may fluctuate around a particular value when earthquake intensity continues to increase; (3) The smaller shallow landslide as new developed part of the reef is subject to collapse under earthquake action and the bigger slope of reef is more stable. The results show that it is feasible to evaluate the stability of coral reef by using geotechnical engineering simulation method, which can help to provide some information for construction on coral reefs in South China Sea. In the meantime,the authers wish to thank the National Natural Science Foundation of China (NO.41376063)and the National

  17. Geological and historical evidence of irregular recurrent earthquakes in Japan.

    Science.gov (United States)

    Satake, Kenji

    2015-10-28

    Great (M∼8) earthquakes repeatedly occur along the subduction zones around Japan and cause fault slip of a few to several metres releasing strains accumulated from decades to centuries of plate motions. Assuming a simple 'characteristic earthquake' model that similar earthquakes repeat at regular intervals, probabilities of future earthquake occurrence have been calculated by a government committee. However, recent studies on past earthquakes including geological traces from giant (M∼9) earthquakes indicate a variety of size and recurrence interval of interplate earthquakes. Along the Kuril Trench off Hokkaido, limited historical records indicate that average recurrence interval of great earthquakes is approximately 100 years, but the tsunami deposits show that giant earthquakes occurred at a much longer interval of approximately 400 years. Along the Japan Trench off northern Honshu, recurrence of giant earthquakes similar to the 2011 Tohoku earthquake with an interval of approximately 600 years is inferred from historical records and tsunami deposits. Along the Sagami Trough near Tokyo, two types of Kanto earthquakes with recurrence interval of a few hundred years and a few thousand years had been recognized, but studies show that the recent three Kanto earthquakes had different source extents. Along the Nankai Trough off western Japan, recurrence of great earthquakes with an interval of approximately 100 years has been identified from historical literature, but tsunami deposits indicate that the sizes of the recurrent earthquakes are variable. Such variability makes it difficult to apply a simple 'characteristic earthquake' model for the long-term forecast, and several attempts such as use of geological data for the evaluation of future earthquake probabilities or the estimation of maximum earthquake size in each subduction zone are being conducted by government committees. © 2015 The Author(s).

  18. Mechanical engineering

    CERN Document Server

    Darbyshire, Alan

    2010-01-01

    Alan Darbyshire's best-selling text book provides five-star high quality content to a potential audience of 13,000 engineering students. It explains the most popular specialist units of the Mechanical Engineering, Manufacturing Engineering and Operations & Maintenance Engineering pathways of the new 2010 BTEC National Engineering syllabus. This challenging textbook also features contributions from specialist lecturers, ensuring that no stone is left unturned.

  19. Evaluation of seismic performance of reinforced concrete (RC) buildings under near-field earthquakes

    Science.gov (United States)

    Moniri, Hassan

    2017-03-01

    Near-field ground motions are significantly severely affected on seismic response of structure compared with far-field ground motions, and the reason is that the near-source forward directivity ground motions contain pulse-long periods. Therefore, the cumulative effects of far-fault records are minor. The damage and collapse of engineering structures observed in the last decades' earthquakes show the potential of damage in existing structures under near-field ground motions. One important subject studied by earthquake engineers as part of a performance-based approach is the determination of demand and collapse capacity under near-field earthquake. Different methods for evaluating seismic structural performance have been suggested along with and as part of the development of performance-based earthquake engineering. This study investigated the results of illustrious characteristics of near-fault ground motions on the seismic response of reinforced concrete (RC) structures, by the use of Incremental Nonlinear Dynamic Analysis (IDA) method. Due to the fact that various ground motions result in different intensity-versus-response plots, this analysis is done again under various ground motions in order to achieve significant statistical averages. The OpenSees software was used to conduct nonlinear structural evaluations. Numerical modelling showed that near-source outcomes cause most of the seismic energy from the rupture to arrive in a single coherent long-period pulse of motion and permanent ground displacements. Finally, a vulnerability of RC building can be evaluated against pulse-like near-fault ground motions effects.

  20. Evaluation of seismic performance of reinforced concrete (RC) buildings under near-field earthquakes

    Science.gov (United States)

    Moniri, Hassan

    2017-01-01

    Near-field ground motions are significantly severely affected on seismic response of structure compared with far-field ground motions, and the reason is that the near-source forward directivity ground motions contain pulse-long periods. Therefore, the cumulative effects of far-fault records are minor. The damage and collapse of engineering structures observed in the last decades' earthquakes show the potential of damage in existing structures under near-field ground motions. One important subject studied by earthquake engineers as part of a performance-based approach is the determination of demand and collapse capacity under near-field earthquake. Different methods for evaluating seismic structural performance have been suggested along with and as part of the development of performance-based earthquake engineering. This study investigated the results of illustrious characteristics of near-fault ground motions on the seismic response of reinforced concrete (RC) structures, by the use of Incremental Nonlinear Dynamic Analysis (IDA) method. Due to the fact that various ground motions result in different intensity-versus-response plots, this analysis is done again under various ground motions in order to achieve significant statistical averages. The OpenSees software was used to conduct nonlinear structural evaluations. Numerical modelling showed that near-source outcomes cause most of the seismic energy from the rupture to arrive in a single coherent long-period pulse of motion and permanent ground displacements. Finally, a vulnerability of RC building can be evaluated against pulse-like near-fault ground motions effects.