WorldWideScience

Sample records for earthing electric grounds

  1. Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in Tibet

    Science.gov (United States)

    Zhou, X. X.; Wang, X. J.; Huang, D. H.; Jia, H. Y.

    2016-11-01

    Monte Carlo simulations are performed to study the correlation between the ground cosmic ray intensity and near-earth thunderstorms electric field at YBJ (located at YangBaJing, Tibet, China, 4300 m a. s. l.). The variations of the secondary cosmic ray intensity are found to be highly dependent on the strength and polarity of the electric field. In negative fields and in positive fields greater than 600 V/cm, the total number of ground comic ray positrons and electrons increases with increasing electric field strength. And these values increase more obviously when involving a shower with lower primary energy or a higher zenith angle. While in positive fields ranging from 0 to 600 V/cm, the total number of ground comic ray positrons and electrons declines and the amplitude is up to 3.1% for vertical showers. A decrease of intensity occurs in inclined showers within the range of 0-500 V/cm, which is accompanied by smaller amplitudes. In this paper, the intensity changes are analyzed, especially concerning those decreasing phenomena in positive electric fields. Our simulation results could be helpful in understanding the decreases observed in some ground-based experiments (such as the Carpet air shower array and ARGO-YBJ), and also be useful in understanding the acceleration mechanisms of secondary charged particles caused by an atmospheric electric field.

  2. Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in Tibet

    CERN Document Server

    Zhou, X X; Huang, D H; Jia, H Y

    2016-01-01

    Monte Carlo simulations are performed to study the correlation between the ground cosmic ray intensity and near-earth thunderstorms electric field at YBJ (4300 m a.s.l., Tibet, China). The variations of the secondary cosmic ray intensity are found to be highly dependent on the strength and polarity of the electric field. In negative fields and in positive fields greater than 600 V/cm, the total number of ground comic ray positrons and electrons increases with increasing electric field strength. And these values increase more obviously when involving a shower with lower primary energy or a higher zenith angle. While in positive fields ranging from 0 to 600 V/cm, the total number of ground comic ray positrons and electrons declines and the amplitude is up to 3.1% for vertical showers. A decrease of intensity occurs for inclined showers in positive fields less than 500 V/cm, which is accompanied by smaller amplitudes. In this paper, the intensity changes are discussed, especially concerning the decreases in posi...

  3. Electrical Ground Support Equipment Fabrication, Specification for

    Science.gov (United States)

    Denson, Erik C.

    2014-01-01

    This document specifies parts, materials, and processes used in the fabrication, maintenance, repair, and procurement of electrical and electronic control and monitoring equipment associated with ground support equipment (GSE) at the Kennedy Space Center (KSC).

  4. 46 CFR 105.30-5 - Grounding of electrical equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Grounding of electrical equipment. 105.30-5 Section 105... VESSELS COMMERCIAL FISHING VESSELS DISPENSING PETROLEUM PRODUCTS Electrical Requirements § 105.30-5 Grounding of electrical equipment. (a) All electrical equipment shall be grounded to the vessel's...

  5. Studies in geophysics: The Earth's electrical environment

    Science.gov (United States)

    1986-01-01

    The Earth is electrified. Between the surface and the outer reaches of the atmosphere, there is a global circuit that is maintained by worldwide thunderstorm activity and by upper atmospheric dynamo processes. The highest voltages approach a billion volts and are generated within thunderclouds, where lightning is a visual display of the cloud's electrical nature. The largest currents in the circuit, approaching a million amperes, are associated with the aurora. Because there have been significant advances in understanding many of the component parts of the global electric circuit (lightning, cloud electrification, electrical processes in specific atmospheric regions, and telluric currents), a principal research challenge is to understand how these components interact to shape the global circuit. Increased basic understanding in this field has many potential practical applications, including lightning protection, the design of advanced aircraft and spacecraft, and improvements in weather prediction.

  6. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    Science.gov (United States)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    Technology for designing ground electrodes for high-voltage direct current transmission systems (HVDC) has being using in the last years, deep soil models based on a wide range of geophysical methods. These models shall include detailed representation of shallow soil, down to 100 meters, in order to allow the evaluation of the soil conditions where the ground electrodes will be buried. Also deep soil models are needed, to be used for the interference studies, which shall represent a soil volume of about 15 km deep and a surface area of about 15 to 30 km radius. Large facilities for power plants (hydroelectric and wind farms, for example) and industrial complexes (such as petrochemical plants) has become usual at the current stage of Brazil industrialization. Grounding mats for these facilities are made of a buried cooper mesh, interconnected to a wide variety of metallic masses, such as steel reinforced concrete foundations, ducts in general etc. These grounding systems may present dimensions with the order of hundreds of meters, and, at least in Brazil, are usually calculated by using electrical resistivity soil models, based on short spacing Wenner measurements (with maximum spacing of about 64 m.). The soil model shall be the best possible representation of the environment in which the grounding electrodes are immersed, for the purpose of calculation of resistance or for digital simulation. The model to be obtained is limited by the amount and quality of soil resistivity measurements are available, and the resources to be used in the calculations and simulations. Geophysics uses a wide range of technologies for exploring subsoil, ranging from surface measurements to wells logging - seismic, gravimetric, magnetic, electrical, electromagnetic and radiometric. The electrical and electromagnetic methods includes various measurement techniques (Wenner, Schlumberger, TDEM, Magneto-telluric etc.), which together allow the development of complex resistivity soil models

  7. 46 CFR 169.676 - Grounded electrical systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Grounded electrical systems. 169.676 Section 169.676... Machinery and Electrical Electrical Installations Operating at Potentials of 50 Volts Or More on Vessels of Less Than 100 Gross Tons § 169.676 Grounded electrical systems. (a) Except as provided in paragraph...

  8. Earth's Atmospheric Electricity Parameter Response During Venus Transit

    Directory of Open Access Journals (Sweden)

    Syam Sundar De

    2015-01-01

    Full Text Available Venus transited across the Sun on 06 June 2012, introducing significant contribution to the tidal characteristics of the solar atmosphere. _ atmosphere was perturbed due to an anomalous Coronal Mass Ejection (CME and γ-radiationγ-radiation influenced by the solar tide due to Venus transit, thereby the Earth-ionosphere waveguide characteristics were changed. In this anomalous situation we measured some atmospheric electricity parameters such as Schumann resonance (SR amplitude, very low frequency (VLF sferics, subionospheric transmitted signals and the point discharge current (PDC along with the vertical electrical potential gradient (PG at the ground surface on the day of transit. The results showed some remarkable variations during the transit as well as pre- and post-transit periods. The observed anomalies in the recorded data were interpreted in terms of the anomalous solar tidal effects initiated due to Venus transit.

  9. Modeling electrical dispersion phenomena in Earth materials

    Directory of Open Access Journals (Sweden)

    D. Patella

    2008-06-01

    Full Text Available It is illustrated that IP phenomena in rocks can be described using conductivity dispersion models deduced as solutions to a 2nd-order linear differential equation describing the motion of a charged particle immersed in an external electrical field. Five dispersion laws are discussed, namely: the non-resonant positive IP model, which leads to the classical Debye-type dispersion law and by extension to the Cole-Cole model, largely used in current practice; the non-resonant negative IP model, which allows negative chargeability values, known in metals at high frequencies, to be explained as an intrinsic physical property of earth materials in specific field cases; the resonant flat, positive or negative IP models, which can explain the presence of peak effects at specific frequencies superimposed on flat, positive or negative dispersion spectra.

  10. The response of the earth's global electrical circuit to a solar proton event

    Science.gov (United States)

    Tzur, I.; Roble, R. G.; Reid, C. C.; Zhuang, H. C.

    An ion chemistry model of the atmosphere is used to calculate the background electric conductivity distribution and its variation during the August 1972 solar proton event and the accompanying Forbush decrease. Two-dimensional model calculations show that the solar protons significantly affect the high-latitude electrical structure of the middle atmosphere without much influence on the electrical structure of the troposphere. The maximum calculated change in the air-earth current, ground electric field, and ionospheric potential is about 10 percent which occurs during the maximum of the Forbush decrease in cosmic ray flux.

  11. Grounding devices of electrical equipment's installation and check to maintain

    Institute of Scientific and Technical Information of China (English)

    王鹏

    2009-01-01

    At this stage in real life,the incidents of electricity are increasing,the main reason is that the subjective sense is weak,non-importance,especially the operation and maintenance is more neglected,and even there is no sense in this area.In this paper,based on electrical equipment grounding system for use in practice,simple introdusing grounding device of electrical equipment's installation and maintenance checks.

  12. Image theory for electric dipoles above a conducting anisotropic earth

    Science.gov (United States)

    Mahmoud, S. F.

    1984-07-01

    New image representations for vertical electric dipoles (VED) above an imperfectly conducting and axially anisotropic earth are developed. These include multidiscrete images at different depths below the air-earth interface and multipole image sources. It is shown that, in contrast with the available image representations in the literature, the developed ones predict the correct behavior of the fields in the far zone along the earth's surface. Extension to a layered earth's model is made. The theory is also extended to the horizontal electric dipole with similar conclusions to the case of the vertical dipole.

  13. Fish farms at sea: the ground truth from Google Earth.

    Directory of Open Access Journals (Sweden)

    Pablo Trujillo

    Full Text Available In the face of global overfishing of wild-caught seafood, ocean fish farming has augmented the supply of fresh fish to western markets and become one of the fastest growing global industries. Accurate reporting of quantities of wild-caught fish has been problematic and we questioned whether similar discrepancies in data exist in statistics for farmed fish production. In the Mediterranean Sea, ocean fish farming is prevalent and stationary cages can be seen off the coasts of 16 countries using satellite imagery available through Google Earth. Using this tool, we demonstrate here that a few trained scientists now have the capacity to ground truth farmed fish production data reported by the Mediterranean countries. With Google Earth, we could examine 91% of the Mediterranean coast and count 248 tuna cages (circular cages >40 m diameter and 20,976 other fish cages within 10 km offshore, the majority of which were off Greece (49% and Turkey (31%. Combining satellite imagery with assumptions about cage volume, fish density, harvest rates, and seasonal capacity, we make a conservative approximation of ocean-farmed finfish production for 16 Mediterranean countries. Our overall estimate of 225,736 t of farmed finfish (not including tuna in the Mediterranean Sea in 2006 is only slightly more than the United Nations Food and Agriculture Organization reports. The results demonstrate the reliability of recent FAO farmed fish production statistics for the Mediterranean as well as the promise of Google Earth to collect and ground truth data.

  14. Fish farms at sea: the ground truth from Google Earth.

    Science.gov (United States)

    Trujillo, Pablo; Piroddi, Chiara; Jacquet, Jennifer

    2012-01-01

    In the face of global overfishing of wild-caught seafood, ocean fish farming has augmented the supply of fresh fish to western markets and become one of the fastest growing global industries. Accurate reporting of quantities of wild-caught fish has been problematic and we questioned whether similar discrepancies in data exist in statistics for farmed fish production. In the Mediterranean Sea, ocean fish farming is prevalent and stationary cages can be seen off the coasts of 16 countries using satellite imagery available through Google Earth. Using this tool, we demonstrate here that a few trained scientists now have the capacity to ground truth farmed fish production data reported by the Mediterranean countries. With Google Earth, we could examine 91% of the Mediterranean coast and count 248 tuna cages (circular cages >40 m diameter) and 20,976 other fish cages within 10 km offshore, the majority of which were off Greece (49%) and Turkey (31%). Combining satellite imagery with assumptions about cage volume, fish density, harvest rates, and seasonal capacity, we make a conservative approximation of ocean-farmed finfish production for 16 Mediterranean countries. Our overall estimate of 225,736 t of farmed finfish (not including tuna) in the Mediterranean Sea in 2006 is only slightly more than the United Nations Food and Agriculture Organization reports. The results demonstrate the reliability of recent FAO farmed fish production statistics for the Mediterranean as well as the promise of Google Earth to collect and ground truth data.

  15. Finding Common Ground Between Earth Scientists and Evangelical Christians

    Science.gov (United States)

    Grant Ludwig, L.

    2015-12-01

    In recent decades there has been some tension between earth scientists and evangelical Christians in the U.S., and this tension has spilled over into the political arena and policymaking on important issues such as climate change. From my personal and professional experience engaging with both groups, I find there is much common ground for increasing understanding and communicating the societal relevance of earth science. Fruitful discussions can arise from shared values and principles, and common approaches to understanding the world. For example, scientists and Christians are engaged in the pursuit of truth, and they value moral/ethical decision-making based on established principles. Scientists emphasize the benefits of research "for the common good" while Christians emphasize the value of doing "good works". Both groups maintain a longterm perspective: Christians talk about "the eternal" and geologists discuss "deep time". Both groups understand the importance of placing new observations in context of prior understanding: scientists diligently reference "the literature" while Christians quote "chapter and verse". And members of each group engage with each other in "fellowship" or "meetings" to create a sense of community and reinforce shared values. From my perspective, earth scientists can learn to communicate the importance and relevance of science more effectively by engaging with Christians in areas of common ground, rather than by trying to win arguments or debates.

  16. Earth-moon Trajectory Optimization Using Solar Electric Propulsion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The optimization of the Earth-moon trajectory using solar electric propulsion is presented. A feasible method is proposed to optimize the transfer trajectory starting from a low Earth circular orbit (500 km altitude) to a low lunar circular orbit (200 km altitude). Due to the use of low-thrust solar electric propulsion, the entire transfer trajectory consists of hundreds or even thousands of orbital revolutions around the Earth and the moon. The Earth-orbit ascending (from low Earth orbit to high Earth orbit) and lunar descending (from high lunar orbit to low lunar orbit) trajectories in the presence of J2 perturbations and shadowing effect are computed by an analytic orbital averaging technique. A direct/indirect method is used to optimize the control steering for the trans-lunar trajectory segment, a segment fiom a high Earth orbit to a high lunar orbit, with a fixed thrust-coast-thrust engine sequence. For the trans-lunar trajectory segment, the equations of motion are expressed in the inertial coordinates about the Earth and the moon using a set of nonsingular equinoctial elements inclusive of the gravitational forces of the sun, the Earth, and the moon. By way of the analytic orbital averaging technique and the direct/indirect method, the Earth-moon transfer problem is converted to a parameter optimization problem, and the entire transfer trajectory is formulated and optimized in the form of a single nonlinear optimization problem with a small number of variables and constraints. Finally, an example of an Earth-moon transfer trajectory using solar electric propulsion is demonstrated.

  17. Forensic Assessment on Ground Instability Using Electrical Resistivity Imaging (ERI)

    Science.gov (United States)

    Hazreek, Z. A. M.; Azhar, A. T. S.; Aziman, M.; Fauzan, S. M. S. A.; Ikhwan, J. M.; Aishah, M. A. N.

    2017-02-01

    Electrical resistivity imaging (ERI) was used to evaluate the ground settlement in local scale at housing areas. ERI and Borehole results were used to interpret the condition of the problematic subsurface profile due to its differential stiffness. Electrical resistivity of the subsurface profile was measured using ABEM SAS4000 equipment set. ERI results using electrical resistivity anomaly on subsurface materials resistivity shows the subsurface profile exhibited low (1 - 100 Ωm) and medium (> 100 Ωm) value (ERV) representing weak to firm materials. The occurrences of soft to medium cohesive material (SPT N value = 2 - 7) and stiff cohesive material (SPT N ≥ 8) in local scale has created inconsistency of the ground stability condition. Moreover, it was found that a layer of organic decayed wood (ERV = 43 ˜ 29 Ωm & SPT N = 15 ˜ 9) has been buried within the subsurface profile thus weaken the ground structure and finally promoting to the ground settlement. The heterogeneous of the subsurface material presented using integrated analysis of ERI and borehole data enabled ground settlement in this area to be evaluated. This is the major factor evaluating ground instability in the local scale. The result was applicable to assist in planning a strategy for sustainable ground improvement of local scale in fast, low cost, and large data coverage.

  18. Infrared remote sensing of Earth degassing - Ground study

    Directory of Open Access Journals (Sweden)

    P. Strobl

    2005-06-01

    Full Text Available Geodynamical processes e.g., volcanoes, often cause degassing at the Earth surface. The geogas emanates via mineral springs, water mofettes, or dry mofettes. It is assumed that the emerging gas influences the temperature of the spring or mofette water, respectively and the surface temperature of the soil at and around the dry gas vents. This causes a thermal anomaly in comparison to the close vicinity. Under specific conditions this effect should be extractable from remotely acquired infrared images allowing detection, mapping and monitoring of gas vents/springs within large areas and short times. This article describes preparatory investigations for which emanating Earth gas was simulated by leading compressed air into the ground and releasing it in some depth via a metal lance. The thermal effect at the surface was observed from a nearby thermovision camera in summer and winter under varying meteorological conditions. A procedure was developed to reliably identify gas release areas within the recorded thermal images of the scene. The investigations are aiming at studies to be performed later in the Western Bohemia (Czech Republic earthquake swarm region where especially CO2 of magmatic origin from European SubContinental Mantle (ESCM emanates.

  19. Electric Signals on and under the Ground Surface Induced by Seismic Waves

    Directory of Open Access Journals (Sweden)

    Akihiro Takeuchi

    2012-01-01

    Full Text Available We constructed three observation sites in northeastern Japan (Honjo, Kyowa, and Sennan with condenser-type large plate electrodes (4 × 4 m2 as sensors supported 4 m above the ground and with pairs of reference electrodes buried vertically at 0.5 m and 2.5 m depth (with a ground velocity sensor at Sennan only. Electrical signals of an earthquake (M6.3 in northeastern Japan were detected simultaneously with seismic waves. Their waveforms were damped oscillations, with greatly differing signal amplitudes among sites. Good positive correlation was found between the amplitudes of signals detected by all electrodes. We propose a signal generation model: seismic acceleration vertically shook pore water in the topsoil, generating the vertical streaming potential between the upper unsaturated water zone and the lower saturated water zone. Maximum electric earth potential difference was observed when one electrode was in the saturated water zone, and the other was within the unsaturated water zone, but not when the electrodes were in the saturated water zone. The streaming potential formed a charge on the ground surface, generating a vertical atmospheric electric field. The large plate electrode detected electric signals related to electric potential differences between the electrode and the ground surface.

  20. Curl-meter of Electrical Fields In The Ground.

    Science.gov (United States)

    Krylov, S. M.; Maibuk, Z.-Ju. Ja.; Nikiforova, N. N.

    A special instrument U curl-meter was designed and manufactured in the Institute of Physics of the Earth of RAS for measuring of variable electric fields during alternation of stressedly-deformed state in rock mass. The instrument consist the four-electrode unit and a circuit of analogue signal processing for separation of E U circulations or according to the StokesSs theorem, Curl E in absence of indirect sources. Four electrodes are laied out in rocks on angles of square and they are affixed by ring-type circuit to uninverting inputs of precision operational amplifiers. First input is connected to electrode N1, the second one is connected to N2 and so on. The independent inputs are grounded to a arbitrary point (the fifth electrode is SzeroT). The transmission factors of the circuit are set by resistors accurate to within 0.25 %. First and third, and also second and fourth outputs of the amplifiers are connected to the grad EX and grad EY calculation circuit (deduction circuits). So, if the vector components have different signs of both two EX values and two values EY, the gradient calculation circuit generates signal extremums. If in this case the signs inside pairs are identical , that means that the signal not- ring-type and it is absent on output (difference of the equal values with equal signs). The signals from outputs of the gradient calculations act into adding device for calculation of Curl E (circulation). Curl-meter differs by high security from clutters and from cues on any of inputs rather of "zero point" (ground) reacting only on a ring-type current, thus it is essential (on the order) the noise level and drift of operational amplifiers is moderated. Curl-meter works in a complex of measuring devices on Obninsk seismological polygon for study of behavior of superlow frequency of tectonic genesis electromagnetic emission. Through four inputs (electrode spacing 7x7 2, resistance between welding rods 0.8 - 1.1 kOm), manufactured from fine- dyspersated

  1. Installation and Assembly, Electrical Ground Support Equipment (GSE), Specification for

    Science.gov (United States)

    Denson, Erik C.

    2014-01-01

    This specification covers the general workmanship requirements and procedures for the complete installation and assembly of electrical ground support equipment (EGSE) such as terminal distributors, junction boxes, conduit and fittings, cable trays and accessories, interconnecting cables (including routing requirements), motor-control equipment, and necessary hardware as specified by the applicable contract and drawings.

  2. Key Ground-Based and Space-Based Assets to Disentangle Magnetic Field Sources in the Earth's Environment

    Science.gov (United States)

    Chulliat, A.; Matzka, J.; Masson, A.; Milan, S. E.

    2016-10-01

    The magnetic field measured on the ground or in space is the addition of several sources: from flows within the Earth's core to electric currents in distant regions of the magnetosphere. Properly separating and characterizing these sources requires appropriate observations, both ground-based and space-based. In the present paper, we review the existing observational infrastructure, from magnetic observatories and magnetometer arrays on the ground to satellites in low-Earth (Swarm) and highly elliptical (Cluster) orbits. We also review the capability of SuperDARN to provide polar ionospheric convection patterns supporting magnetic observations. The past two decades have been marked by exciting new developments in all observation types. We review these developments, focusing on how they complement each other and how they have led or could lead in the near future to improved separation and modeling of the geomagnetic sources.

  3. Evaluation of Grounding Impedance of a Complex Lightning Protective System Using Earth Ground Clamp Measurements and ATP Modeling

    Science.gov (United States)

    Mata, Carlos T.; Rakov, V. A.; Mata, Angel G.

    2010-01-01

    A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulators installed atop three towers in a triangular configuration. A total of nine downconductors (each about 250 meters long, on average) are connected to the catenary wire system. Each of the nine downconductors is connected to a 7.62-meter radius circular counterpoise conductor with six equally spaced 6-meter long vertical grounding rods. Grounding requirements at LC39B call for all underground and above ground metallic piping, enclosures, raceways, and cable trays, within 7.62 meters of the counterpoise, to be bounded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways, and cable trays that run in multiple direction around LC39B. The complexity of this grounding system makes the fall of potential method, which uses multiple metallic rods or stakes, unsuitable for measuring the grounding impedances of the downconductors. To calculate the downconductors grounding impedance, an Earth Ground Clamp (a stakeless grounding resistance measuring device) and a LPS Alternative Transient Program (ATP) model are used. The Earth Ground Clamp is used to measure the loop impedance plus the grounding impedance of each downconductor and the ATP model is used to calculate the loop impedance of each downconductor circuit. The grounding impedance of the downconductors is then calculated by subtracting the ATP calculated loop impedances from the Earth Ground Clamp measurements.

  4. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today’s large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor’s motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  5. Constellation Program Electrical Ground Support Equipment Research and Development

    Science.gov (United States)

    McCoy, Keegan S.

    2010-01-01

    At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.

  6. Microspacecraft and Earth observation: Electrical Field (ELF) measurement project

    Science.gov (United States)

    1990-01-01

    There is a need for an inexpensive, extensive, long-lasting global electric field measurement system (ELF). The primary performance driver of this mission is the need to measure the attitude of each spacecraft in the Earth's electric field very accurately. In addition, it is necessary to know the electric charge generated by the satellite as it crosses the magnetic field lines (E equals V times B). In order to achieve the desired global coverage, a constellation of about 50 satellites in at least 18 different orbits will be used. To reduce the cost of each satellite, off-the-shelf, proven technology will be used whenever possible. Researchers have set a limit of $500,000 per satellite. Researchers expect the program cost, including the deployment of the entire constellation, to be less than $100 million. The minimum projected mission life is five years.

  7. Thermal and electrical conductivity of iron at Earth's core conditions

    CERN Document Server

    Pozzo, Monica; Gubbins, David; Alfè, Dario

    2012-01-01

    The Earth acts as a gigantic heat engine driven by decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes, and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing to grow the solid inner core, and on chemical convection due to light elements expelled from the liquid on freezing. The power supplied to the geodynamo, measured by the heat-flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat-flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent difficulties in experimentation and theory. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles- the first directly comp...

  8. Electrical energy sources for organic synthesis on the early earth

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    In 1959, Miller and Urey (Science 130, 245) published their classic compilation of energy sources for indigenous prebiotic organic synthesis on the early Earth. Much contemporary origins of life research continues to employ their original estimates for terrestrial energy dissipation by lightning and coronal discharges, 2 × 1019 J yr-1 and 6 × 1019 J yr-1, respectively. However, more recent work in terrestrial lightning and point discharge research suggests that these values are overestimates by factors of about 20 and 120, respectively. Calculated concentrations of amino acids (or other prebiotic organic products) in the early terrestrial oceans due to electrical discharge sources may therefore have been equally overestimated. A review of efficiencies for those experiments that provide good analogues to naturally-occurring lightning and coronal discharges suggests that lightning energy yields for organic synthesis (nmole J-1) are about one order of magnitude higher than those for coronal discharge. Therefore organic production by lightning may be expected to have dominated that due to coronae on early Earth. Limited data available for production of nitric oxide in clouds suggests that coronal emission within clouds, a source of energy heretofore too uncertain to be included in the total coronal energy inventory, is insufficient to change this conclusion. Our recommended valves for lightning and coronal discharge dissipation rates on the early Earth are, respectively, 1 × 1018 J yr-1 and 5 × 1017 J yr-1.

  9. Electrical and electromagnetic investigations for HVDC ground electrode sites in India

    Science.gov (United States)

    Manglik, A.; Verma, S. K.; Muralidharan, D.; Sasmal, R. P.

    High Voltage Direct Current (HVDC) power transmission systems require setting up of specially designed ground electrodes at terminal ends of the transmission line to close the circuit with an earth return path. The design parameters of these electrodes need the information about the electrical conductivity structure within a radius and depth of several km of the site in order to ensure that the injected current penetrates deep enough into the earth. Further, detailed conductivity structure, up to 100-200 m depth, of the electrode site covering an area of less than a sq. km is also needed to ensure safe limits for the step and touch potential at the site. Electrical and electromagnetic methods are very useful tools for this purpose. However, artificial source variants such as deep direct current (DC) resistivity sounding pose logistic problems for target depths greater than a couple of kilometers and in inaccessible areas. We have employed magnetotelluric (MT) and electrical resistivity tomography (ERT) tools to investigate the detailed deep and shallow electrical conductivity structure, respectively, of several potential sites in India for a ±800 kV, 6000 MW HVDC multi-terminal system. Investigations of a site in Assam revealed the presence of highly resistive crustal rocks at the depth of about 1.3 km beneath a thick pile of conductive sediments, rendering the site unsuitable even though the shallow conductivity was favorable. At another site identified after analyzing available geological and geophysical data, we inferred the presence of conductive structure up to at least 4.0 km depth. ERT investigation at this site revealed a favorable conductive structure except for the presence of a 20-m-thick near-surface resistive layer. This information has been useful for the electrode design. We suggest that a strategy suitably combining MT and ERT is useful in the selection of ground electrode sites.

  10. The Pseudo Radiation Energy Amplifier (PREA) and the mean earth s ground temperature

    CERN Document Server

    Boucenna, Ahmed

    2008-01-01

    From the radiation balance diagram illustrating the IPCC reports one can estimate the power received by Earth from the sun at Pin = 342 W/m2 and the power consumed, remitted and reflected by the earth and its atmosphere at Pout = 599 kW/m2. It seems that the earth emits more power than it receives. The earth s ground mean temperature is estimated at 15 C. A calculation based on the black body radiation theory gives an earth s ground mean temperature of the order of -18 C which is much lower than 15 C. The important gap between these calculated and estimated temperature mean values requires an explanation. Here we show that a gray body separated from vacuum by an interface and submitted to outside incident radiation can behave like a Pseudo Radiation Energy Amplifier. The Earth which is a gray body separated from the space by an interface, behaves like a Pseudo Radiation Energy Amplifier. The balance of the energy exchanged between Earth and outer space is reconsidered and the 15 C Earth s ground temperature m...

  11. From the Ground Up: Building an Undergraduate Earth Systems Curriculum

    Science.gov (United States)

    Head, W. D.; Alexander, S. E.; Moore, S. W.; Melton, F. S.

    2006-12-01

    It is rare that an interdisciplinary group of educators has the opportunity to design a science curriculum without the constraints of pre-existing academic departments. In 1994, California State University Monterey Bay (CSUMB) acquired 1,387 acres from the U.S. Department of the Army and began construction of a new campus. CSUMB was developed as a four-year undergraduate university distinctive in its mission to serve the diverse people of California. Inspired by the Earth System Science Education program initiated by NASA and the University Space Research Association, CSUMB embarked upon the development of an interdisciplinary Earth systems curriculum that placed a strong emphasis on experience-based learning, integration of science, policy, and technology, outreach to minority students, and partnerships with the local community. Our cornerstone program is the Bachelor of Science in Earth Systems Science & Policy. It is built on a pyramid- style framework that includes integration, systems approach, and applied technologies (base of the pyramid); junior entry course, case studies, concentrations, service learning, student internships, and research experiences (middle of the pyramid); and senior capstone projects (apex of the pyramid). However, to succeed, new and innovative programs must constantly evaluate where they have been, where they are, and where they need to go to meet the needs of their students today and their students of the future.

  12. Electrical resisitivity of mechancially stablized earth wall backfill

    Science.gov (United States)

    Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston

    2017-06-01

    Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized

  13. Electric Propulsion for Low Earth Orbit Communication Satellites

    Science.gov (United States)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  14. Magnetoseismology ground-based remote sensing of Earth's magnetosphere

    CERN Document Server

    Menk, Frederick W

    2013-01-01

    Written by a researcher at the forefront of the field, this first comprehensive account of magnetoseismology conveys the physics behind these movements and waves, and explains how to detect and investigate them. Along the way, it describes the principles as applied to remote sensing of near-Earth space and related remote sensing techniques, while also comparing and intercalibrating magnetoseismology with other techniques. The example applications include advanced data analysis techniques that may find wider used in areas ranging from geophysics to medical imaging, and remote sensing using radar systems that are of relevance to defense surveillance systems. As a result, the book not only reviews the status quo, but also anticipates new developments. With many figures and illustrations, some in full color, plus additional computational codes for analysis and evaluation. Aimed at graduate readers, the text assumes knowledge of electromagnetism and physical processes at degree level, but introductory chapters wil...

  15. The effects of geomagnetic disturbances on electrical systems at the earth's surface

    Science.gov (United States)

    Boteler, D. H.; Pirjola, R. J.; Nevanlinna, H.

    Geomagnetic disturbances have affected electrical systems on the ground for over 150 years. The first effects were noted on the early telegraph in the 1840s and in this century magnetic storms have caused power system blackouts and phone system outages. Affected systems include all those that use electrical conductors: whether for transmission of power or signals or where the conducting properties are incidental to their use such as with pipelines and railway tracks. In power systems geomagnetically induced currents cause partial saturation of power transformers producing transformer heating and distortion of the ac waveform leading to misoperation of relays and other equipment. On pipelines, induced currents may contribute to corrosion but also present a problem with the electrical surveys of the pipe performed to monitor the corrosion prevention systems. Severity of these effects depends on disturbance size, proximity to the auroral zone, and the conductivity structure of the Earth. Also significant are system parameters such as the use of higher resistance coatings on pipelines and the linking of power systems into larger networks. In this paper we have attempted to catalogue all the published reports of geomagnetic effects on electrical systems and show their occurrence in the context of the solar cycle and geomagnetic activity variations for the years 1844 to 1996.

  16. Thermal and electrical conductivity of iron at Earth's core conditions.

    Science.gov (United States)

    Pozzo, Monica; Davies, Chris; Gubbins, David; Alfè, Dario

    2012-04-11

    The Earth acts as a gigantic heat engine driven by the decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing (as the solid inner core grows), and on chemical convection (due to light elements expelled from the liquid on freezing). The power supplied to the geodynamo, measured by the heat flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent experimental and theoretical difficulties. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles--unlike previous estimates, which relied on extrapolations. The mixtures of iron, oxygen, sulphur and silicon are taken from earlier work and fit the seismologically determined core density and inner-core boundary density jump. We find both conductivities to be two to three times higher than estimates in current use. The changes are so large that core thermal histories and power requirements need to be reassessed. New estimates indicate that the adiabatic heat flux is 15 to 16 terawatts at the CMB, higher than present estimates of CMB heat flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core must be driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted, and future models of mantle evolution will need to incorporate a high CMB heat flux and explain the recent formation of the inner core.

  17. The on-line electric vehicle wireless electric ground transportation systems

    CERN Document Server

    Cho, Dong

    2017-01-01

    This book details the design and technology of the on-line electric vehicle (OLEV) system and its enabling wireless power-transfer technology, the “shaped magnetic field in resonance” (SMFIR). The text shows how OLEV systems can achieve their three linked important goals: reduction of CO2 produced by ground transportation; improved energy efficiency of ground transportation; and contribution to the amelioration or prevention of climate change and global warming. SMFIR provides power to the OLEV by wireless transmission from underground cables using an alternating magnetic field and the reader learns how this is done. This cable network will in future be part of any local smart grid for energy supply and use thereby exploiting local and renewable energy generation to further its aims. In addition to the technical details involved with design and realization of a fleet of vehicles combined with extensive subsurface charging infrastructure, practical issues such as those involved with pedestrian safety are c...

  18. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    Science.gov (United States)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  19. Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS

    Science.gov (United States)

    Berry, Kevin; Carpenter, Russell; Moreau, Michael C.; Lee, Taesul; Holt, Gregg N.

    2009-01-01

    NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations.

  20. Electrical and seismic mixing rules for detecting changes in ground ice content in permafrost studies

    Science.gov (United States)

    Hauck, Christian; Hilbich, Christin

    2017-04-01

    Geophysical methods are now widely used in permafrost research to detect and monitor frozen ground and potentially quantify the ground ice content in the soil. Hereby, often a combination of different methods is used to reduce the ambiguities inherent with the indirect nature of geophysical surveys. Geophysical mixing rules and petrophysical relationships originally developed by exploration industry may help to quantitatively relate geophysical variables such as the electrical resistivity or the seismic P-wave velocity to the physical properties of the subsurface. Two of these mixing rules were combined by Hauck et al. (2011) in a so-called 4-phase model to attempt to quantify the ground ice, air- and water content and their changes with time in permafrost environments (e.g. Pellet et al. 2016). However, these mixing rules are often either empirically derived (making use of a large number of borehole samples) or based on a simplified mixing model, i.e. an equal weighting of each phase component (ice, water, soil/rock, air) depending on the actual fractional content of each phase. There is thus no obvious 'best choice' model from the available geophysical approaches. Stimulated by recent theoretical work by Glover (2010), who analysed the relationships between the empirical and theory-derived mixing models, this contribution aims to analyse the applicability of various mixing models for electrical and seismic data sets in the context of detecting and monitoring permafrost degradation. Input data stem from various geophysical surveys around the world and ground truth data for validation is available from corresponding permafrost boreholes from the PERMOS and GTN-P data bases. Glover, P. W. (2010). A generalized Archie's law for n phases. Geophysics, 75(6), E247-E265. Hauck, C., Böttcher, M. and Maurer, H. (2011): A new model for estimating subsurface ice content based on combined electrical and seismic data sets. The Cryosphere, 5, 453-468. Pellet C., Hilbich C

  1. Effect of Rare Earth Element Ce on Microstructure and Properties of Aluminum Rod for Electrical Purpose

    Institute of Scientific and Technical Information of China (English)

    Li Pengfei; Wang Yunli; Gao Xizhu; Wang Zaiyun

    2004-01-01

    The effect of rare earth element Ce on microstructure, electrical conductivity and mechanical properties was studied.Using optical microscope, scanning electron microscope, transmission electron microscope and X-ray diffractometer, the microstructure and phase composition of aluminum rod for electrical purpose were measured and analyzed.The results indicate that rare earth element Ce can considerably refine grain size of aluminum rod for electrical purpose,improve the regular distribution pattern of the impurity, such as silicon and iron which present in the aluminum matrix,form stable metal compound with pernicious impurity.This metal compound precipitates on the crystal boundary.As a result, the solid solubility of impurity in aluminum reduce, and the electrical conductivity of aluminum rod for electrical purpose is improved.It is found that the mechanical properties of aluminum rod for electrical purpose are improved by rare earth element in certain range of RE addition.

  2. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    Science.gov (United States)

    Palle, E.; Goode, P. R.; Montañés-Rodríguez, P.; Shumko, A.; Gonzalez-Merino, B.; Lombilla, C. Martinez; Jimenez-Ibarra, F.; Shumko, S.; Sanroma, E.; Hulist, A.; Miles-Paez, P.; Murgas, F.; Nowak, G.; Koonin, S. E.

    2016-05-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured not only from space platforms but also from the ground for 16 years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim of quantifying sustained monthly, annual, and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the 16 years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the Clouds and the Earth's Radiant Energy System instruments, although each method measures different slices of the Earth's Bond albedo.

  3. Reducing Earth Topography Resolution for SMAP Mission Ground Tracks Using K-Means Clustering

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    The K-means clustering algorithm is used to reduce Earth topography resolution for the SMAP mission ground tracks. As SMAP propagates in orbit, knowledge of the radar antenna footprints on Earth is required for the antenna misalignment calibration. Each antenna footprint contains a latitude and longitude location pair on the Earth surface. There are 400 pairs in one data set for the calibration model. It is computationally expensive to calculate corresponding Earth elevation for these data pairs. Thus, the antenna footprint resolution is reduced. Similar topographical data pairs are grouped together with the K-means clustering algorithm. The resolution is reduced to the mean of each topographical cluster called the cluster centroid. The corresponding Earth elevation for each cluster centroid is assigned to the entire group. Results show that 400 data points are reduced to 60 while still maintaining algorithm performance and computational efficiency. In this work, sensitivity analysis is also performed to show a trade-off between algorithm performance versus computational efficiency as the number of cluster centroids and algorithm iterations are increased.

  4. The earth’'s electric field sources from sun to mud

    CERN Document Server

    Kelley, Michael C

    2013-01-01

    The Earth's Electric Field provides you with an integrated and comprehensive picture of the generation of the terrestrial electric fields, their dynamics and how they couple/propagate through the medium. The Earth's Electric Field provides basic principles of terrestrial electric field related topics, but also a critical summary of electric field related observations and their significance to the various related phenomena in the atmosphere. For the first time, Kelley brings together information on this topic in a coherent way, making it easy to gain a broad overview of the critical processes in an efficient way. If you conduct research in atmospheric science, physics, atmospheric chemistry, space plasma physics, and solar terrestrial physics, you will find this book to be essential reading. The only book on the physics of terrestrial electric fields and their generation mechanisms, propagation and dynamics-making it essential reading for scientists conducting research in upper atmospheric, ionospheric, magnet...

  5. Monitoring of ground water aquifer by electrical prospecting; Denki tansaho ni yoru chikasui monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, K. [Kyushu University, Fukuoka (Japan)] [Faculty of Engineering (Japan)

    1997-12-01

    This paper describes three case studies for monitoring ground water aquifers by electrical prospecting. An example in the Hofu plain, Yamaguchi Prefecture is presented, where the ground water environment has been monitored for more than 30 years from the viewpoint of hydrology. Then, transition from the fresh ground water to sea water is evaluated by a sharp boundary as salt-water wedges through the field survey in a coastal area of a large city for a short term using vertical electrical prospecting. Moreover, streaming potential measurements are described to grasp the real-time behavior of ground water flow. From the long-term monitoring of ground water aquifer, it was found that the variation of ground water streaming can be evaluated by monitoring the long-term successive change in the resistivity of ground water aquifer. From the vertical electrical prospecting, water quality can be immediately judged through data analysis. From the results of streaming potential measurements and vertical electrical prospecting using Schlumberger method, streaming behavior of ground water in the area of spring water source can be estimated by determining three-dimensional resistivity structure. 17 refs., 15 figs.

  6. Results of long-term field tests of protective earthing device for vessel electric systems

    Directory of Open Access Journals (Sweden)

    Blaginin V.A.

    2015-03-01

    Full Text Available The results of prolonged natural tests of protective neutral earthing device for controlling the fire and electrical safety of vessel electric systems have been shown. The use of such devices provides safe single-phase fault currents and reducing arc overvoltage during the long-term operation of a ship. The results of long-term monitoring of the device operation as part of the existing vessel electric power system have confirmed its effectiveness

  7. Results of long-term field tests of protective earthing device for vessel electric systems

    OpenAIRE

    Blaginin V.A.; Kazhekin I.E.; Yusyp V.M.; Moskalyuk A.M.; Syrenko D.P.

    2015-01-01

    The results of prolonged natural tests of protective neutral earthing device for controlling the fire and electrical safety of vessel electric systems have been shown. The use of such devices provides safe single-phase fault currents and reducing arc overvoltage during the long-term operation of a ship. The results of long-term monitoring of the device operation as part of the existing vessel electric power system have confirmed its effectiveness

  8. Constellation design for earth observation based on the characteristics of the satellite ground track

    Science.gov (United States)

    Luo, Xin; Wang, Maocai; Dai, Guangming; Song, Zhiming

    2017-04-01

    This paper responds to the increasing need for Earth observation missions and deals with the design of Repeating Sun-Synchronous Constellations (RSSCs) which takes into consideration of constellations composed of one or more orbital planes. Based on the mature design approach of Repeating Sun-synchronous orbits, a novel technique to design RSSCs is presented, which takes the second gravitational zonal harmonic into consideration. In order to obtain regular cycles of observation of the Earth by a single satellite, the orbital relationships have to be satisfied firstly are illustrated. Then, by making full analyses of the characteristics of the satellite ground track, orbital parameters are properly calculated to make other satellites pass on the same or different ground track of the single satellite. Last, single-plane or multi-plane constellations are used to improve the repetitions of the observation and the ground resolution. RSSCs allow observing the same region once at the same local time in a solar day and several times at the different local time in a solar day. Therefore, this kind of constellations meets all requirements for the remote sensing applications, which need to observe the same region under the same or different visible conditions. Through various case studies, the calculation technique is successfully demonstrated.

  9. Earth at Rest - Aesthetic Experience and Students' Grounding in Science Education

    Science.gov (United States)

    Østergaard, Edvin

    2017-07-01

    Focus of this article is the current situation characterized by students' de-rootedness and possible measures to improve the situation within the frame of education for sustainable development. My main line of argument is that science teachers can practice teaching in such a way that students are brought in deeper contact to the environment. I discuss efforts to promote aesthetic experience in science class and in science teacher education. Within a wide range of definitions, my main understanding of aesthetic experience is that of pre-conceptual experience, relational to the environment and incorporated in students' embodied knowledge. I ground the idea of Earth at rest in Husserl's phenomenological philosophy and Heidegger's notion of science' deprivation of the world. A critique of the ontological reversal leads to an ontological re-reversal that implies giving lifeworld experience back its value and rooting scientific concepts in students' everyday lives. Six aspects of facilitating grounding in sustainability-oriented science teaching and teacher education are highlighted and discussed: students' everyday knowledge and experience, aesthetic experience and grounding, fostering aesthetic sensibility, cross-curricular integration with art, ontological and epistemological aspects, and belongingness and (re-)connection to Earth. I conclude that both science students and student-teachers need to practice their sense of caring and belonging, as well as refining their sensibility towards the world. With an intension of educating for a sustainable development, there is an urgent need for a critical discussion in science education when it comes to engaging learners for a sustainable future.

  10. Earth-Facing Antenna Characterization in a Complex Ground Plane/Multipath Rich Environment

    Science.gov (United States)

    Welch, Bryan W.; Piasecki, Marie T.

    2015-01-01

    The Space Communications and Navigation (SCAN) Testbed was a Software Defined Radio (SDR)-based payload launched to the International Space Station (ISS) in July of 2012. The purpose of the SCAN Testbed payload was to investigate the applicability of SDRs to NASA space missions in an operational space environment, which means that a proper model for system performance in said operational space environment is a necessary condition. The SCAN Testbed has line-of-sight connections to various ground stations with its S-Band Earth-facing Near-Earth Network Low Gain Antenna (NEN-LGA). Any previous efforts to characterize the NEN-LGA proved difficult, therefore, the NASA Glenn Research Center built its own S-Band ground station, which became operational in 2015, and has been successfully used to characterize the NEN-LGAs in-situ pattern measurements. This methodology allows for a more realistic characterization of the antenna performance, where the pattern oscillation induced by the complex ISS ground plane, as well as shadowing effects due to ISS structural blockage are included into the final performance model. This paper describes the challenges of characterizing an antenna pattern in this environment. It will also discuss the data processing, present the final antenna pattern measurements and derived model, as well as discuss various lessons learned.

  11. Earth-Facing Antenna Characterization in Complex Ground Plane/Multipath Rich Environment

    Science.gov (United States)

    Welch, Bryan W.; Piasecki, Marie T.

    2015-01-01

    The Space Communications and Navigation (SCAN) Testbed was a Software Defined Radio (SDR)-based payload launched to the International Space Station (ISS) in July of 2012. The purpose of the SCAN Testbed payload was to investigate the applicability of SDRs to NASA space missions in an operational environment, which means that a proper model for system performance in said operational space environment is a necessary condition. The SCAN Testbed has line-of-sight connections to various ground stations with its S-Band Earth-facing Near-Earth-Network Low Gain Antenna (NEN-LGA). Any previous efforts to characterize the NEN-LGA proved difficult, therefore, the NASA Glenn Research Center built its own S-Band ground station, which became operational in 2015, and has been used successfully to characterize the NEN-LGA's in-situ pattern measurements. This methodology allows for a more realistic characterization of the antenna performance, where the pattern oscillation induced by the complex ISS ground plane, as well as shadowing effects due to ISS structural blockage are included into the final performance model. This paper describes the challenges of characterizing an antenna pattern in this environment. It will also discuss the data processing, present the final antenna pattern measurements and derived model, as well as discuss various lessons learned

  12. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    CERN Document Server

    Palle, E; Montanes-Rodriguez, P Pilar; Shumko, A; Gonzalez-Merino, B; Lombilla, C Martinez; Jimenez-Ibarra, F; Shumko, S; Sanroma, E; Hulist, A; Miles-Paez, P; Murgas, F; Nowak, G; Koonin, SE

    2016-01-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured from space platforms, but also from the ground for sixteen years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim is of quantifying sustained monthly, annual and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the sixteen years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the CERES instruments, although each method measures different slices of the Earth's Bond albedo.

  13. Crystal electric field effects and thermal expansion of rare-earth hexaborides

    Science.gov (United States)

    Novikov, V. V.; Pilipenko, E. S.; Bud'ko, S. L.

    2017-02-01

    Anomalies in the magnetic contribution to the thermal expansion coefficients ∆β(T)of the CeB6, PrB6, and NdB6 hexaborides in the range of 5-300 K were found by comparison with diamagnetic LaB6. The characteristic of the anomalies was the same in all the studied borides: a distinct peak at low temperatures, followed by a broad maximum at higher temperatures (50-100 K), then a decrease and transition to the region of negative values as the temperature increases further. The features of ∆β(T) are explained by the effects of the magnetic order (sharp low temperature peaks) and the crystal electric field (CEF). The βCEF(T) dependencies were calculated using Raman and neutron scattering data on the splitting of the rare-earth (RE) ions R3+ f-level by the CEF. A satisfactory consistency between the values of βCEF(T) and ∆β(T)was obtained for the studied hexaborides. Additionally, we determined the values of the Grüneisen parameter γi that correspond to the transition between the ground and excited multiplets of R3+ ions f-level splitting.

  14. The Improvement and Data Acquisition Systems on Electrical Systems and Grounding Networks in NSRRC

    CERN Document Server

    Liu, Yung-Hui; Chen June Rong; Lin, Yu-Chih; Tsai, Zong-Da

    2005-01-01

    The purpose of this paper is to declare the improvement on electrical and grounding systems in NSRRC. In electrical power system, an Automated Voltage Regulator (AVR) was established to RF system in 2003. The variation of voltage supply from Taiwan Power Company (TPC) is reduced from 3% to 0.2% through the AVR system. And a Supervisory Control and Data Acquisition (SCADA) system was also setup to monitoring the electrical power conditions in each power station. After the high precision grounding systems were constructed in 2004, the stability of beam line was raised. For comprehending the grounding current and noise control, a grounding monitoring system with 32 channels was built in the storage ring. The grounding currents of 4 kickers, one septum and grounding bus are on-line acquisition. Two Electromagnetic Field (EMF) apparatuses were also installed to collect electrical and magnetic fields in the R1 section. It was observed that the electromagnetic field was correlated to grounding currents in certain lo...

  15. Magnetism of Rare-Earth Compounds with Non-Magnetic Crystal-Field Ground Levels

    Institute of Scientific and Technical Information of China (English)

    LIU Zhao-Sen

    2007-01-01

    @@ Among rare-earth compounds, there are many materials having non-magnetic crystal-field (CF) ground levels.To understand their magnetic behaviour at low temperatures, we study the effects of the CF levels and the Heisenberg-like coupling on the magnetic process of such a crystalline with mean-field and CF theory. It is found that the material can be magnetically ordered if the Heisenberg exchange is sufficiently strong. Additionally we obtain a condition for initial magnetic ordering, and derive a formula for estimating the Curie temperature if the ordering occurs.

  16. Electrical energy sources for organic synthesis on the early earth

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    It is pointed out that much of the contemporary origin-of-life research uses the original estimates of Miller and Urey (1959) for terrestrial energy dissipation by lightning and coronal discharges being equal to 2 x 10 to the 19th J/yr and 6 x 10 to the 19th J/yr, respectively. However, data from experiments that provide analogues to naturally-occurring lightning and coronal discharges indicate that lightning energy yields for organic synthesis (nmole/J) are about one order of magnitude higher than the coronal discharge yields. This suggests that, on early earth, organic production by lightning may have dominated that due to coronal emission. New values are recommended for lightning and coronal discharge dissipation rates on the early earth, 1 x 10 to the 18th J/yr and 5 x 10 to the 17th J/yr, respectively.

  17. Electrical energy sources for organic synthesis on the early earth

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    It is pointed out that much of the contemporary origin-of-life research uses the original estimates of Miller and Urey (1959) for terrestrial energy dissipation by lightning and coronal discharges being equal to 2 x 10 to the 19th J/yr and 6 x 10 to the 19th J/yr, respectively. However, data from experiments that provide analogues to naturally-occurring lightning and coronal discharges indicate that lightning energy yields for organic synthesis (nmole/J) are about one order of magnitude higher than the coronal discharge yields. This suggests that, on early earth, organic production by lightning may have dominated that due to coronal emission. New values are recommended for lightning and coronal discharge dissipation rates on the early earth, 1 x 10 to the 18th J/yr and 5 x 10 to the 17th J/yr, respectively.

  18. Responses of atmospheric electric field and air-earth current to variations of conductivity profiles

    Science.gov (United States)

    Makino, M.; Ogawa, T.

    1984-05-01

    A global circuit model is constructed to study responses of air-earth current and electric field to a variation of atmospheric electrical conductivity profile. The model includes the orography and the global distribution of thunderstorm generators. The conductivity varies with latitude and exponentially with altitude. The thunderstorm cloud is assumed to be a current generator with a positive source at the top and a negative one at the bottom. The UT diurnal variations of the global current and the ionospheric potential are evaluated considering the local-time dependence of thunderstorm activity. The global distribution of the electric field and the air-earth current are affected by the orography and latitudinal effects. Assuming a variation of conductivity profile, responses of atmospheric electrical parameters are investigated. The nonuniform decrement of the conductivity with altitude increases both the electric field and the air-earth current. The result suggests a possibility that the increment of the electric field and the air-earth current after a solar flare may be caused by this scheme, due to Forbush decrease.

  19. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    Energy Technology Data Exchange (ETDEWEB)

    De Mooij, E. J. W. [Astronomy and Astrophysics, University of Toronto, Toronto (Canada); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Karjalainen, R.; Hrudkova, M. [Isaac Newton Group of Telescopes, La Palma (Spain); Jayawardhana, Ray, E-mail: demooij@astro.utoronto.ca [Physics and Astronomy, York University, Toronto (Canada)

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  20. Ground-Based Transit Observations of the Super-Earth 55 Cnc e

    CERN Document Server

    de Mooij, E J W; Karjalainen, R; Hrudkova, M; Jayawardhana, R

    2014-01-01

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2-meter-class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ~700 and ~250, spanning the Johnson BVR photometric bands. We find a white-light planet-to-star radius ratio of 0.0190 -0.0027+0.0023 from the 2013 observations and 0.0200 -0.0018+0.0017 from the 2014 observations. The two datasets combined results in a radius ratio of 0.0198 -0.0014+0.0013. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-size telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite (TESS) around bright st...

  1. Development and Application of Rare Earth Permanent Magnet (REPM) Material in Electric Machines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With the development of permanent materials, the development and application of permanent material electric machine (REPM) have been more mature. At first the state of development and application of REPM electric machine is presented in this paper, many RMEM have been produced in volume such as the pilot exciter used for power set of large-scale thermal power station, the special RMEM synchronous motor for textile, the starter motor for automobile, the brushless permanent magnet DC motor for electric facilities, permanent magnet servomotor for numerical controlled machine tool, rare-earth torque motor, special micro-motor for automobile and so on. Secondly the field of application of REPM electric machine and remaining problems is analyzed, because of the price of the rare-earth permanent magnet materials, the cost of RMEM is currently higher than that of induction machine, on the other side the dispersibility of performance of rare-earth permanent magnet materials and the limitation of technique of integral excitation are also remaining problems, above-mentioned problems handicapped the popularization of REPMEM. At last the developing prospect and trend of REPM electric machines is described, there are four promising types of PMEM: economical type, high performance type, high efficiency and energy-saving type, micromation, intelligibility type. With the appearance of new REPM material and the improvement of its performance and the continuous perfection of performance of electric-power electronic components, the development and the application of REPM electric machines will be further progressed.

  2. BEHAVIOUR OF BACKFILL MATERIALS FOR ELECTRICAL GROUNDING SYSTEMS UNDER HIGH VOLTAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. C. LIM

    2015-06-01

    Full Text Available Backfill materials like Bentonite and cement are effective in lowering grounding resistance of electrodes for a considerable period. During lightning, switching impulses and earth fault occurrences in medium and high voltage networks, the grounding system needs to handle extremely high currents either for a short duration or prolonged period respectively. This paper investigates the behaviour of bentonite, cement and sand under impulse and alternating high voltage (50Hz conditions. Fulguritic-formation was observed in all materials under alternating high voltage. The findings reveal that performance of grounding systems under high voltage conditions may significantly change from the outcomes anticipated at design stage.

  3. Optimal Flight to Near-Earth Asteroids with Using Electric Propulsion and Gravity Maneuvers

    Science.gov (United States)

    Chernov, A. V.

    Optimal space flight to near-Earth asteroid for deflection asteroids from the Earth and prevention their possible collision is investigated. The deflection is realized by means of impact-kinetic effect of the spacecraft on the asteroid and changing the asteroid orbit. The effectiveness of this method for preventing asteroid-Earth collision is estimated by means of optimal space flights, which are found. The flight of spacecraft (SC) is realized by means of using electric propulsion system. To increase effectiveness the optimal gravity maneuvers of spacecraft near Mars and Venus are using. Criterion of the space flight optimization is maximal deflection of the asteroid from the Earth at the moment of asteroid-Earth nearest approach. For determination of optimal trajectories the maximum Pontrjagin principle is used. It is assumed that the thrust of electric propulsion is unrestricted or corresponding to electric engine SPT-140 with solar battery as energy source. The technique of choice of first approximation for optimal trajectory determination on base of search optimal trajectories in more simple statement is used. The optimal trajectories are determined for wide ranges of the space flight times to near-Earth asteroids with different orbit elements. A comparison with a case of the space flight using a high thrust only or without gravity-assisted maneuvers is carried out.

  4. A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b.

    Science.gov (United States)

    Bean, Jacob L; Kempton, Eliza Miller-Ricci; Homeier, Derek

    2010-12-02

    In contrast to planets with masses similar to that of Jupiter and higher, the bulk compositions of planets in the so-called super-Earth regime (masses 2-10 times that of the Earth) cannot be uniquely determined from a measurement of mass and radius alone. For these planets, there is a degeneracy between the mass and composition of both the interior and a possible atmosphere in theoretical models. The recently discovered transiting super-Earth exoplanet GJ 1214b is one example of this problem. Three distinct models for the planet that are consistent with its mass and radius have been suggested. Breaking the degeneracy between these models requires obtaining constraints on the planet's atmospheric composition. Here we report a ground-based measurement of the transmission spectrum of GJ 1214b between wavelengths of 780 and 1,000 nm. The lack of features in this spectrum rules out (at 4.9σ confidence) cloud-free atmospheres composed primarily of hydrogen. If the planet's atmosphere is hydrogen-dominated, then it must contain clouds or hazes that are optically thick at the observed wavelengths at pressures less than 200 mbar. Alternatively, the featureless transmission spectrum is also consistent with the presence of a dense, water vapour atmosphere.

  5. Reevaluating the feasibility of ground-based Earth-mass microlensing planet detections

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn Kil; Park, Hyuk; Han, Cheongho; Hwang, Kyu-Ha; Shin, In-Gu; Choi, Joon-Young, E-mail: cheongho@astroph.chungbuk.ac.kr [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of)

    2014-05-10

    An important strength of the microlensing method to detect extrasolar planets is its high sensitivity to low-mass planets. However, many believe that microlensing detections of Earth-mass planets from ground-based observation would be difficult because of limits set by finite-source effects. This view comes from the previous estimation of planet detection probability based on the fractional deviation of planetary signals; however, a proper probability estimation is required when considering the source brightness, which is directly related to the photometric precision. In this paper, we reevaluate the feasibility of low-mass planet detections by considering photometric precision for different populations of source stars. From this, we find that the contribution of improved photometric precision to the planetary signal of a giant-source event is large enough to compensate for the decrease in magnification excess caused by finite-source effects. As a result, we conclude that giant-source events are suitable targets for Earth-mass planet detections with significantly higher detection probability than events involved with source stars of smaller radii, and we predict that Earth-mass planets could be detected by prospective high-cadence surveys.

  6. Ground shock from multiple earth penetrator bursts: Effects for hexagonal weapon arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kmetyk, L.N.; Yarrington, P.

    1990-08-01

    Calculations have been performed with the HULL hydrocode to study ground shock effects for multiple earth penetrator weapon (EPW) bursts in hexagonal-close-packed (HCP) arrays. Several different calculational approaches were used to treat this problem. The first simulations involved two-dimensional (2D) calculations, where the hexagonal cross-section of a unit-cell in an effectively-infinite HCP array was approximated by an inscribed cylinder. Those calculations showed substantial ground shock enhancement below the center of the array. To refine the analysis, 3D unit-cell calculations were done where the actual hexagonal cross-section of the HCP array was modelled. Results of those calculations also suggested that the multiburst array would enhance ground shock effects over those for a single burst of comparable yield. Finally, 3D calculations were run in which an HCP array of seven bursts was modelled explicitly. In addition, the effects of non-simultaneity were investigated. Results of the seven-burst HCP array calculations were consistent with the unit-cell results and, in addition, provided information on the 3D lethal contour produced by such an array.

  7. Evaluation of Horizontal Electric Field Under Different Lightning Current Models by Perfect Ground Assumption

    Institute of Scientific and Technical Information of China (English)

    LIANG Jianfeng; LI Yanming

    2012-01-01

    Lightning electromagnetics can affect the reliability of the power system or communication system.Therefore,evaluation of electromagnetic fields generated by lightning return stroke is indispensable.Arnold sommerfeld proposed a model to calculate the electromagnetic field,but it involved the time-consuming sommerfeld integral.However,perfect conductor ground assumption can account for fast calculation,thus this paper reviews the perfect ground equation for evaluation of lightning electromagnetic fields,presents three engineering lightning return stroke models,and calculates the horizontal electric field caused by three lightning return stroke models.According to the results,the amplitude of lightning return stroke has a strong impact on horizontal electric fields,and the steepness of lightning return stroke influences the horizontal electric fields.Moreover,the perfect ground method is faster than the sommerfeld integral method.

  8. The effect of randomly earthed ground wires on PLC transmission; A simulation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brandao Faria, J.A.; Borges da Silva, J.F. (Centro de Electrotecnia da Universidade Tecnica de Lisboa, Instituto Superior Tecnico, Dept. of Electrical Engineering, 1096 Lisboa Codex (PT))

    1990-10-01

    Power line ground wires are discretely bonded to earth along the line at each tower. When the spacing between towers is constant and approaches a multiple of one half wavelength at the operating frequency, abrupt variations in the propagation parameters occur, that would affect carrier transmission performance at the vicinity of certain critical frequencies. In practice the spacing between towers is not exactly constant and one may wish to know the result of taking this circumstance into account. The analysis and numerical results presented in this paper show that even slight random perturbations of line periodicity are sufficient to render unnoticeable any sharp variations in attenuation, velocity and surge impedance, one might be led to expect from the analysis of the strictly periodic case.

  9. Intermittency of the turbulent processes in the Earth's magnetosphere detected from the ground-based measurements

    Science.gov (United States)

    Stepanova, Marina; Foppiano, Alberto; Ovalle, Elias; Antonova, Elizavieta; Troshichev, Oleg

    2008-11-01

    Turbulent processes in the Earth's magnetosphere are reflected in the dynamical behavior of the geomagnetic indices and other parameters determined from ground based observations. Intermittent properties of one minute Polar Cap (PC) index and auroral radio wave absorption are studied using 1995-2000 data sets. It was found that the probability distribution functions (PDFs) of both PC-index and absorption fluctuations display a strong non-Gaussian shape. This indicates that they are not characterized by a global time self-similarity but rather exhibit intermittency, as previously reported for solar wind velocity and auroral electrojet index values. In the case of the auroral absorption it was also found that intermittency strongly depends on the magnetic local time, being largest in the nighttime sector. This shows that the acceleration of precipitating particles is intermittent, especially near the substorm eye, where the level of turbulence increases. Application of the Local Intermittency Measure (LIM) technique confirms the aforementioned results to a better precision.

  10. Dynamical study of low Earth orbit debris collision avoidance using ground based laser

    Directory of Open Access Journals (Sweden)

    N.S. Khalifa

    2015-06-01

    Full Text Available The objective of this paper was to investigate the orbital velocity changes due to the effect of ground based laser force. The resulting perturbations of semi-major axis, miss distance and collision probability of two approaching objects are studied. The analytical model is applied for low Earth orbit debris of different eccentricities and area to mass ratio and the numerical test shows that laser of medium power ∼5 kW can perform a small change ΔV‾ of an average magnitude of 0.2 cm/s which can be accumulated over time to be about 3 cm/day. Moreover, it is confirmed that applying laser ΔV‾ results in decreasing collision probability and increasing miss distance in order to avoid collision.

  11. The effects of grounding (earthing on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Oschman JL

    2015-03-01

    Full Text Available James L Oschman,1 Gaétan Chevalier,2 Richard Brown3 1Nature’s Own Research Association, Dover, NH, USA; 2Developmental and Cell Biology Department, University of California at Irvine, Irvine, CA, USA; 3Human Physiology Department, University of Oregon, Eugene, OR, USA Abstract: Multi-disciplinary research has revealed that electrically conductive contact of the human body with the surface of the Earth (grounding or earthing produces intriguing effects on physiology and health. Such effects relate to inflammation, immune responses, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. The purpose of this report is two-fold: to 1 inform researchers about what appears to be a new perspective to the study of inflammation, and 2 alert researchers that the length of time and degree (resistance to ground of grounding of experimental animals is an important but usually overlooked factor that can influence outcomes of studies of inflammation, wound healing, and tumorigenesis. Specifically, grounding an organism produces measurable differences in the concentrations of white blood cells, cytokines, and other molecules involved in the inflammatory response. We present several hypotheses to explain observed effects, based on current research results and our understanding of the electronic aspects of cell and tissue physiology, cell biology, biophysics, and biochemistry. An experimental injury to muscles, known as delayed onset muscle soreness, has been used to monitor the immune response under grounded versus ungrounded conditions. Grounding reduces pain and alters the numbers of circulating neutrophils and lymphocytes, and also affects various circulating chemical factors related to inflammation. Keywords: chronic inflammation, immune system, wound repair, white blood cells, macrophages, autoimmune disorders

  12. Theoretical investigation of boundary contours of ground-state atoms in uniform electric fields

    Science.gov (United States)

    Shi, Hua; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2015-12-01

    The boundary contours were investigated for first 54 ground-state atoms of the periodic table when they are in uniform electric fields of strengths 106, 107 and 108 V/m. The atomic characteristic boundary model in combination with an ab-initio method was employed. Some regularities of the deformation of atoms, ΔR, in above electric fields are revealed. Furthermore, atomic polarisabilities of the first 54 elements of the periodic table are shown to correlate strongly with the mean variation rate of atomic radial size divided by the strength of the electric field F, ?, which provides a predictive method of calculating atomic polarisabilities of 54 atoms.

  13. A ground-based transmission spectrum of the super-Earth exoplanet GJ1214b

    CERN Document Server

    Bean, Jacob L; Homeier, Derek

    2010-01-01

    In contrast to planets with masses similar to that of Jupiter and higher, the bulk compositions of planets in the so-called super-Earth regime cannot be uniquely determined from a mass and radius measurement alone. For these planets, there is a degeneracy between the mass and composition of the interior and a possible atmosphere in theoretical models. The recently discovered transiting super-Earth GJ1214b is one example of this problem. Three distinct models for the planet that are consistent with its mass and radius have been suggested, and breaking the degeneracy between these models requires obtaining constraints on the planet's atmospheric composition. Here we report a ground-based measurement of the transmission spectrum of GJ1214b between 780 and 1000 nm. The lack of features in this spectrum rules out cloud-free atmospheres composed primarily of hydrogen at 4.9 sigma confidence. If the planet's atmosphere is hydrogen-dominated, then it must contain clouds or hazes that are optically thick at the observ...

  14. Experimental study on working parameters of earth pressure balance shield machine tunneling in soft ground

    Institute of Scientific and Technical Information of China (English)

    Hehua ZHU; Shaoming LIAO; Qianwei XU; Qizhen ZHENG

    2008-01-01

    Deep sedimentary deposits of soft clays are widely distributed in coastal areas as well as many interior major cities in China. In order to study the stratum adapt-ability of earth pressure balance (EPB) shield machine tunneling in such types of soft ground, model tests of tunneling excavation, using the running tunnel of the Shanghai Metro Line M8 as a background, are carried out with different over burden ratios, opening rates of cutter head, driving speeds and rotation speeds of screw conveyor. Based on the test results, the interrelationships between chamber pressure and mucking efficiency, muck-ing rate and driving speed, thrust force and torque are obtained. The influences of tunnel depth, opening rate of cutter head and driving speed on thrust force and tor-que are revealed. Such findings can not only facilitate establishing relationships between shield working para-meters and soil properties, but also serve as a guide for the design and construction of shield tunnel in soft ground.

  15. Precise Ground-In-the-Loop Orbit Control for Low Earth Observation Satellites

    Science.gov (United States)

    Arbinger, C.; D'Amico, S.; Eineder, M.

    The growing interest in earth observation missions equipped with space-borne optical and synthetic aperture radar (SAR) sensors drives the accuracy requirements with respect to orbit determination and control. Especially SAR interferometry with its capability to resolve the velocity of on-ground objects (e.g. for traffic monitoring, ocean currents and glacier monitoring) and to determine highly precise digital elevation models is of significant interest for scientific applications. These goals may be achieved using along-track and repeat-pass interferometry with a satellite formation, based on the precise orbit control of one satellite with respect to the osculating trajectory of the second satellite. Such a control concept will be realized by the German TerraSAR-X mission, with an expected launch in 2006, using a virtual formation, where a single satellite will be controlled in a tight manner with respect to a predefined osculating reference trajectory. This is very challenging, since common orbit disturbances, like for close twin formations, do not cancel out in this scenario. The predefined trajectory in the TerraSAR-X case could also be the orbit of a second satellite. The paper describes the generation of such a virtual reference orbit, discusses the ground-in-the-loop control concept and presents results from a long-term simulation.

  16. Saturation of electrical resistivity of solid iron at Earth's core conditions.

    Science.gov (United States)

    Pozzo, Monica; Alfè, Dario

    2016-01-01

    We report on the temperature dependence of the electrical resistivity of solid iron at high pressure, up to and including conditions likely to be found at the centre of the Earth. We have extended some of the calculations of the resistivities of pure solid iron we recently performed at Earth's core conditions (Pozzo et al. in Earth Planet Sci Lett 393:159-164, 2014) to lower temperature. We show that at low temperature the resistivity increases linearly with temperature, and saturates at high temperature. This saturation effect is well known as the Mott-Ioffe-Regel limit in metals, but has been largely ignored to estimate the resistivity of iron at Earth's core conditions. Recent experiments (Gomi et al. in Phys Earth Planet Int 224:88-103, 2013) coupled new high pressure data and saturation to predict the resitivity of iron and iron alloys at Earth's core conditions, and reported values up to three times lower than previous estimates, confirming recent first principles calculations (de Koker et al. in Proc Natl Acad Sci 109:4070-4073, 2012; Pozzo et al. in Nature 485:355-358, 2012, Phys Rev B 87:014110-10, 2013, Earth Planet Sci Lett 393:159-164, 2014; Davies et al. in Nat Geosci 8:678-685, 2015). The present results support the saturation effect idea.

  17. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    DEFF Research Database (Denmark)

    Zibar, Majken Caroline Looms

    2007-01-01

    . The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...... was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently...

  18. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    DEFF Research Database (Denmark)

    Zibar, Majken Caroline Looms

    2007-01-01

    . The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...... was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently...

  19. Rare earth activated sintering of MoSi2 and its electric conductivity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of rare earth on activation sintering of MoSi2 and electric conductivity of the matrix were analyzed on the basis of a method proposed by German and Munir. The results show that the addition of rare earth could refine the powder size and obviously reduce sintering activation energy of MoSi2 which, for rare earth/MoSi2 system, is 83.1  kJ/mol at 1  200~14  00  ℃, about half of that of pure MoSi2. This decreases the sintering temperature of MoSi2 by about 200  ℃at least, and decreases the resistivity of the matrix as well. The mechanism of rare earth activated sintering of MoSi2 is an integrated process mostly ruled by grain boundary diffusion. When the density of materials is identical, the rare earth addition is found to have no noticeable effect on the electric conductivity of MoSi2.

  20. Improved Electrical Insulation of Rare Earth Permanent Magnetic Materials With High Magnetic Properties

    Institute of Scientific and Technical Information of China (English)

    CHANG Ying; WANG Da-peng; LI Wei; PAN Wei; YU Xiao-jun; QI Min

    2009-01-01

    Rare earth permanent magnetic materials are typical electrical conductor, and their magnetic properties will decrease because of the eddy current effect, so it is difficult to keep them stable for a long enough time under a high frequency AC field. In the present study, as far as rare earth permanent magnets are concerned, for the first time, rare earth permanent magnets with strong electrical insulation and high magnetic performance have been obtained through experiments, and their properties are as follows:(1) Sm2TM17: Br=0.62 T, jHc=803.7 kA/m, (BH)m= The magnetic properties of Sm2TM17 and NdFeB are obviously higher than those of ferrite permanent magnet, and the electric insulating characteristics of Sm2TM17 and NdFeB applied have in fact been approximately the same as those of ferrite. Therefore, Sm2TM17 and NdFeB will possess the ability to take the place of ferrite under a certain high frequency AC electric field.

  1. ANALYSIS OF ELECTROPHYSICAL CHARACTERISTICS OF GROUNDS IN THE VICINITY ELECTRICAL SUBSTATION OF UKRAINE

    Directory of Open Access Journals (Sweden)

    D.G. Koliushko

    2015-06-01

    Full Text Available Purpose. Definition of the direction for further research to improve accuracy of the calculation of rated parameters of ground grids based on the analysis of statistical databases of electro-physical characteristics of the soil. Methodology. To solve this problem we compiled the statistical base of soil of Ukraine in the location of electrical substation, we performed the statistical analysis for the number of layers of geoelectric structure, and electrical characteristics. In the experiments implemented the comparing of accuracy calculation of the most typical three-layer soil in the Ukraine, by the new three-layer model of ground grids and the equivalent two-layer model, which used previously. Results. On the results of analysis the ranges of the electrical resistivity and statistical distribution for electro-physical characteristics of the soil are determined. The resulting distributions allow to develop criteria for instruments, installations and means of interpretation during the sounding of soil, as well as the requirements for mathematical models of ground grids. It was found that the most typical for places of locations the electrical substations in Ukraine are three-layer geoelectric structures. In the paper the statistical distribution for three-layer soil by type (Q, K, H, A are described. The results of numerical experiments show that the use of methods to simplify of the multilayers soil does not allow the calculation of grounding grids with high accuracy. In the work recommendations for applicability the method equivalenting depending on the type of geoelectric structure are developed. Originality. For the first time, we obtained the statistical distribution of stratification of the soil in the location of power plant in Ukraine, determined the accuracy of the method to simplify a multi-layer soil in determining the rated parameters of grounding grids. In the paper the necessity to develop a mathematical model of the grounding

  2. Height-gain atlas for an elemental vertical electric dipole above a flat Earth

    Science.gov (United States)

    Heckscher, J. L.; Tichovolsky, E. J.

    1981-03-01

    The complex height-gain for an infinitesimal vertical electric dipole (VED) above each of five homogeneous flat surfaces representative of sea water, well-conducting earth, poorly conducting earth, fresh water, and ice is calculated at 0.1, 1, 10, and 100 MHz for selected ranges. The amplitude and phase of the three cylindrical electromagnetic field components are given for source elevations of 0, 3/4, and 3/2 wavelengths in sets of 36 tables and 48 figures for each of the five types of surfaces.

  3. Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbital missions

    Science.gov (United States)

    Regetz, J. D., Jr.; Terwilliger, C. H., Jr.

    1979-01-01

    This paper presents the results of a study to determine the directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions of the next three decades in the most cost-effective manner. Discussed are the mission set requirements, state-of-the-art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost-optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system-level electric propulsion parameters. It is found that the efficiency-specific impulse characteristic generally has a more significant impact on overall costs than specific masses or costs of propulsion and power systems.

  4. Estimation of Soil Electrical Properties in a Multilayer Earth Model with Boundary Element Formulation

    Directory of Open Access Journals (Sweden)

    T. Islam

    2012-01-01

    Full Text Available This paper presents an efficient model for estimation of soil electric resistivity with depth and layer thickness in a multilayer earth structure. This model is the improvement of conventional two-layer earth model including Wenner resistivity formulations with boundary conditions. Two-layer soil model shows the limitations in specific soil characterizations of different layers with the interrelationships between soil apparent electrical resistivity (ρ and several soil physical or chemical properties. In the multilayer soil model, the soil resistivity and electric potential at any points in multilayer anisotropic soil medium are expressed according to the variation of electric field intensity for geotechnical investigations. For most soils with varying layers, multilayer soil resistivity profile is therefore more suitable to get soil type, bulk density of compacted soil and to detect anomalous materials in soil. A boundary element formulation is implemented to show the multilayer soil model with boundary conditions in soil resistivity estimations. Numerical results of soil resistivity ratio and potential differences for different layers are presented to illustrate the application, accuracy, and efficiency of the proposed model. The nobility of the research is obtaining multilayer soil characterizations through soil electric properties in near surface soil profile.

  5. Electric Power Generation from Earth's Rotation through its Own Magnetic Field

    Science.gov (United States)

    Chyba, Christopher F.; Hand, Kevin P.

    2016-07-01

    We examine electric power generation from Earth's rotation through its own nonrotating magnetic field (that component of the field symmetric about Earth's rotation axis). There is a simple general proof that this is impossible. However, we identify a loophole in that proof and show that voltage can be continuously generated in a low-magnetic-Reynolds-number conductor rotating with Earth, provided magnetically permeable material is used to ensure curl(v ×B0)≠0 within the conductor, where B0 derives from the axially symmetric component of Earth's magnetic flux density, and v is Earth's rotation velocity at the conductor's location. We solve the relevant equations for one laboratory realization, and from this solution, we predict the voltage magnitude and sign dependence on system dimensions and orientation relative to Earth's rotation. The effect, which would be available nearly globally with no intermittency, requires testing and further examination to see if it can be scaled to practical emission-free power generation.

  6. Characterization of the electrical behaviour of rare earth elements during the upgrading of monazite

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, R M [Radiation Physics Department, National Center for Radiation Research and Technology NCRRT, PO Box 29, Nasr City, Cairo (Egypt); Fawzy, Y H A [Radiation Physics Department, National Center for Radiation Research and Technology NCRRT, PO Box 29, Nasr City, Cairo (Egypt); Ashry, H A [Radiation Physics Department, National Center for Radiation Research and Technology NCRRT, PO Box 29, Nasr City, Cairo (Egypt); Soliman, F A S [Nuclear Materials Authority, El-Horrya, PO Box 2404, Heliopolis-11361, Cairo (Egypt)

    2004-03-07

    Electrical properties of rare earth elements (REEs) in some geological materials were characterized during the upgrading of monazite from Egyptian black sand. It has been found that there was a significant relationship between concentrations of REEs and dc conductivity. Also, dielectric constant, dielectric loss, polarization, relaxation time and resonance frequency of samples containing REEs, were measured at a frequency range up to 1 MHz. From these measurements, it has been found that the values of electrical conductivity, resonance frequency and dielectric polarization are inversely proportional to the concentration of REEs. For most relations, the correlation coefficients were found to be better than 99%.

  7. Structural And Electrical Properties Of The Selected Rare-Earth Oxychlorides

    Directory of Open Access Journals (Sweden)

    Dziubaniuk M.

    2015-09-01

    Full Text Available The preparation and sintering conditions of the selected rare-earth oxychlorides REOCl (Re=La, Nd, Sm, Gd were determined. The purity of materials phase compositions was confirmed by X-ray diffraction method. Further analysis of the data enabled lattice parameters and average grain size determination. The electrical properties of the single phase REOCl materials were investigated by Electrochemical Impedance Spectroscopy in wide temperature range in atmospheric air. The spectra were analyzed by the equivalent circuit fitting. Basing on the values of equivalent circuits parameters the specific conductivities were calculated and presented in the Arrhenius coordinates. Energies of activation were calculated. The determined structural and electrical properties of four different rare-earth oxychlorides were directly compared.

  8. Larmor electric field observed at the Earth's magnetopause by Polar satellite

    Energy Technology Data Exchange (ETDEWEB)

    Koga, D., E-mail: dkaqua@kyudai.jp; Gonzalez, W. D.; Silveira, M. V. D. [National Institute for Space Research - INPE, São José dos Campos, São Paulo (Brazil); Mozer, F. S. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States); Cardoso, F. R. [School of Engineering - EEL, University of São Paulo, Lorena, São Paulo (Brazil)

    2014-10-15

    We present, for the first time, observational evidence of a kinetic electric field near the X-line associated with asymmetric reconnection at the Earth's dayside magnetopause using Polar observations. On March 29, 2003, Polar satellite detected an asymmetric collisionless reconnection event. This event shows a unipolar Hall electric field signature and a simple deviation from the guide field during the magnetopause crossing, with the absence of an ion plasma jet outflow indicating that the magnetopause crossing was near the X-line. As expected from particle-in-cell simulations by Malakit et al. (Phys. Rev. Lett. 111, 135001 (2013)), an earthward pointing normal electric field appears in the magnetospheric side of the ion diffusion region. The electric field satisfies two necessary conditions for the existence of the finite ion Larmor radius effect: (1) the ion Larmor radius (r{sub g2}) is larger than the distance between the stagnation point and the edge of the ion diffusion region in the strong magnetic field side (δ{sub S2}) and (2) the spatial extent of the kinetic electric field (δ{sub EL}) is of the order of the ion Larmor radius. Furthermore, it is shown that the peak value of the Larmor electric field is comparable to the predicted value. The observation of the Larmor electric field can be valuable in other analyses to show that the crossing occurred near the X-line.

  9. Spherical harmonic series solution of fields excited by vertical electric dipole in earth-ionosphere cavity

    Institute of Scientific and Technical Information of China (English)

    Yuanxin WANG; Wensheng FAN; Weiyan PAN; Hongqi ZHANG

    2008-01-01

    The spherical harmonic series expression of electromagnetic fields excited by ELF/SLF vertical electric dipole in the spherical earth-ionosphere cavity is derived when the earth and ionosphere are regarded as non-ideal conductors. A method of speeding numerical convergence has been presented. The electromagnetic fields in the cavity are calculated by this algorithm, and the results show that the electromagnetic fields between the earth and the ionosphere are the sum of two traveling waves in the SLF band. Moreover, the results are in complete agreement with that of the well-known spherical second-order approximation in the SLF band. The electromagnetic fields in the cavity are a type of standing wave in the ELF band and the variation of the amplitude versus frequency coincides with Schumann's resonance.

  10. INFLUENCE OF RARE-EARTH DOPING ON THE ELECTRICAL PROPERTIES OF HIGH VOLTAGE GRADIENT ZnO VARISTORS

    OpenAIRE

    2013-01-01

    The influence of rare-earth doping on the electrical properties of ZnO varistors was investigated. In a lower doping region, the electrical properties were greatly improved with the increase of rare-earth contents. The highest voltage gradient value of 1968.0 V/mm was obtained with a rare-earth concentration of 0.06 mol. %. The microstructure of samples with different amounts of rare-earth oxides was examined and the notable decrease of grain size was identified as the origin for the increase...

  11. Low Earth orbit satellite-to-ground optical scintillation: comparison of experimental observations and theoretical predictions.

    Science.gov (United States)

    Yura, Harold T; Kozlowski, David A

    2011-07-01

    Scintillation measurements of a 1064 nm laser at a 5 kHz sampling rate were made by an optical ground station at the European Space Agency observatory in Tenerife, Spain while tracking a low Earth orbit satellite during the spring and summer of 2010. The scintillation index (SI), the variance of irradiance normalized to the square of the mean, and power spectra measurements were compared to theoretical predictions based on the Kolmogorov spectrum, the Maui3 nighttime turbulence profile, weak scintillation finite-beam wave theory, included receiver, and source aperture averaging with no free-fitting parameters. Good agreement was obtained, not only for the magnitude of the observed fluctuations, but also for the corresponding elevation angle dependence and shape of the power spectra. Little variation was seen for the SI between daytime and nighttime links. For all elevation angles, ascending and descending, the observed scintillation over extensive regions of the atmosphere is consistent with log-normal statistics. Additionally, it appears from the results presented here that the nighttime turbulence profile for the atmosphere above the observatory in Tenerife is similar to that above Haleakala in Maui, Hawaii.

  12. What does Earth's electromagnetic field from ground and space measurements tell us about conductivity of the mantle?

    Science.gov (United States)

    Grayver, Alexander; Morschhauser, Achim; Kuvshinov, Alexey

    2017-04-01

    This contribution presents an overview of new models of Earth's mantle conductivity that have been derived using new methodologies and data from magnetic observatories and satellite missions such as CHAMP and Swarm. The electrical conductivity of the mantle provides a wealth of information on composition and temperature of the mantle material at depths. Lateral and vertical variations of this physical property allow us to constrain rheological and dynamic states of the tectonic processes in the subsurface. Electromagnetic (EM) induction methods is the only tool that can be used to study electrical conductivity at depth. They exploit natural electromagnetic field variations to derive frequency-dependent responses that are used to conduct Earth sounding. These variations originate from electric current systems in magnetosphere, ionosphere and even oceans. Over the last 17 years, almost continuous operation of low-orbit satellites measuring Earth's magnetic field, installation of new magnetic observatories in remote locations as well as substantial improvements in processing and modeling have enabled us to study mantle electrical conductivity using a variety of EM methods either globally or/and at different locations on Earth.

  13. Characterization of Vacuum Facility Background Gas Through Simulation and Considerations for Electric Propulsion Ground Testing

    Science.gov (United States)

    Yim, John T.; Burt, Jonathan M.

    2015-01-01

    The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.

  14. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    Science.gov (United States)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  15. Determining the Forces Generated by the Contact of an Electrically-Operated Vehicle with the Ground

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper we analyse the motion of an electric vehicle,when there is only the pure rolling of the wheels on the ground.The equations of holonomic and non-holonomic constraints have been rendered explicitly obtaining 27 equations algebraic-differential system with the same number of unknowns.Besides,this system supplies a model to calculate the bonding reaction forces.

  16. Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement

    Directory of Open Access Journals (Sweden)

    M. Yamauchi

    2012-01-01

    Full Text Available Radioactive materials from the accident at Fukushima Dai-ichi nuclear power plant (FNPP in March 2011 spread over a large area, increasing the atmospheric electric conductivity by their ionizing effect, and reducing the vertical (downward component of the DC electric field near the ground, or potential gradient (PG. PG data at Kakioka, 150 km away from the FNPP, showed independent changes compared to the radiation dose rate, and a comparison of these data revealed the local dynamics of the radioactive dust.

    (1 The initial drop of the PG to almost zero during 14–15 March is most likely due to radioactive dust suspended in the air near the ground during cloudy weather. (2 An episode of PG increase to more than 50 V m−1 on 16 March is most likely due to the re-suspension of the radioactive dust from the surface and subsequent removal from Kakioka by the strong wind from the non-contaminated area. (3 Low but finite values of the PG during 16–20 March most likely reflect a reduced amount of radioactive material near the ground after the above wind transported away the majority of the suspended radioactive dust. (4 Very low values of the PG after substantial rain on 20–22 March most likely reflect settlement of the radioactive material by rain-induced fallout. (5 Temporal recovery of daily variations from the end of March to the middle of April with low nighttime fair-weather baseline PG most likely reflects re-suspension of the radioactive dust into the air from the ground and trees, and subsequent transport to the other region or fallout to the ground until late April. (6 Weakening of the daily variation and gradual recovery of the nighttime fair-weather baseline after mid-April suggests a complete settlement of the radioactive material to the ground with partial migration to the subsurface.

  17. Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, M. [Swedish Institute of Space Physics, Kiruna (Sweden); Takeda, M. [Kyoto Univ. (Japan). Data Analysis Center for Geomagnetism and Space Magnetism; Makino, M.; Miyagi, I. [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Owada, T. [Japan Meteorological Agency, Ishioka (Japan). Kakioka Magnetic Observatory

    2012-07-01

    Radioactive materials from the accident at Fukushima Dai-ichi nuclear power plant (FNPP) in March 2011 spread over a large area, increasing the atmospheric electric conductivity by their ionizing effect, and reducing the vertical (downward) component of the DC electric field near the ground, or potential gradient (PG). PG data at Kakioka, 150 km away from the FNPP, showed independent changes compared to the radiation dose rate, and a comparison of these data revealed the local dynamics of the radioactive dust. (1) The initial drop of the PG to almost zero during 14-15 March is most likely due to radioactive dust suspended in the air near the ground during cloudy weather. (2) An episode of PG increase to more than 50Vm{sup -1} on 16 March is most likely due to the re-suspension of the radioactive dust from the surface and subsequent removal from Kakioka by the strong wind from the non-contaminated area. (3) Low but finite values of the PG during 16-20 March most likely reflect a reduced amount of radioactive material near the ground after the above wind transported away the majority of the suspended radioactive dust. (4) Very low values of the PG after substantial rain on 20-22 March most likely reflect settlement of the radioactive material by rain-induced fallout. (5) Temporal recovery of daily variations from the end of March to the middle of April with low nighttime fair-weather baseline PG most likely reflects re-suspension of the radioactive dust into the air from the ground and trees, and subsequent transport to the other region or fallout to the ground until late April. (6) Weakening of the daily variation and gradual recovery of the nighttime fair-weather baseline after mid-April suggests a complete settlement of the radioactive material to the ground with partial migration to the subsurface. (orig.)

  18. Settlement process of radioactive dust to the ground inferred from the atmospheric electric field measurement

    Science.gov (United States)

    Yamauchi, M.; Takeda, M.; Makino, M.; Owada, T.; Miyagi, I.

    2012-01-01

    Radioactive materials from the accident at Fukushima Dai-ichi nuclear power plant (FNPP) in March 2011 spread over a large area, increasing the atmospheric electric conductivity by their ionizing effect, and reducing the vertical (downward) component of the DC electric field near the ground, or potential gradient (PG). PG data at Kakioka, 150 km away from the FNPP, showed independent changes compared to the radiation dose rate, and a comparison of these data revealed the local dynamics of the radioactive dust. (1) The initial drop of the PG to almost zero during 14-15 March is most likely due to radioactive dust suspended in the air near the ground during cloudy weather. (2) An episode of PG increase to more than 50 V m-1 on 16 March is most likely due to the re-suspension of the radioactive dust from the surface and subsequent removal from Kakioka by the strong wind from the non-contaminated area. (3) Low but finite values of the PG during 16-20 March most likely reflect a reduced amount of radioactive material near the ground after the above wind transported away the majority of the suspended radioactive dust. (4) Very low values of the PG after substantial rain on 20-22 March most likely reflect settlement of the radioactive material by rain-induced fallout. (5) Temporal recovery of daily variations from the end of March to the middle of April with low nighttime fair-weather baseline PG most likely reflects re-suspension of the radioactive dust into the air from the ground and trees, and subsequent transport to the other region or fallout to the ground until late April. (6) Weakening of the daily variation and gradual recovery of the nighttime fair-weather baseline after mid-April suggests a complete settlement of the radioactive material to the ground with partial migration to the subsurface.

  19. INFLUENCE OF RARE-EARTH DOPING ON THE ELECTRICAL PROPERTIES OF HIGH VOLTAGE GRADIENT ZnO VARISTORS

    Directory of Open Access Journals (Sweden)

    LEI KE

    2013-03-01

    Full Text Available The influence of rare-earth doping on the electrical properties of ZnO varistors was investigated. In a lower doping region, the electrical properties were greatly improved with the increase of rare-earth contents. The highest voltage gradient value of 1968.0 V/mm was obtained with a rare-earth concentration of 0.06 mol. %. The microstructure of samples with different amounts of rare-earth oxides was examined and the notable decrease of grain size was identified as the origin for the increased voltage gradient. The doped rare-earth oxides dissolved at the grain boundaries and the excessive doping reduced the voltage across the single grain/grain boundary from 2.72 V to 0.91 V. The poor electrical properties in a higher doping region resulted from the degeneration of grain boundaries and the decrease of block density.

  20. Law school design blends functionalism, energy conservation. [Earth-covered with ground-cover growing on roof

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    Construction is under way on a new University of Minnesota Law School Building, whose distinctive features include a stepped design on its southern elevation and an earth-covered roof to promote energy conservation. The design is described with emphasis on the library facilities. Energy conservation was a major design factor. The portion of the earth-covered roof will be 15 inches thick planted with low ground-cover vegetation. Overall ..mu.. value of the building envelope will be 0.11. (MCW)

  1. Ab initio properties of the ground-state polar and paramagnetic europium-alkali-metal-atom and europium-alkaline-earth-metal-atom molecules

    CERN Document Server

    Tomza, Michał

    2014-01-01

    The properties of the electronic ground state of the polar and paramagnetic europium-$S$-state-atom molecules have been investigated. Ab initio techniques have been applied to compute the potential energy curves for the europium-alkali-metal-atom, Eu$X$ ($X$=Li, Na, K, Rb, Cs), europium-alkaline-earth-metal-atom, Eu$Y$ ($Y$=Be, Mg, Ca, Sr, Ba), and europium-ytterbium, EuYb, molecules in the Born-Oppenheimer approximation for the high-spin electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within the small-core energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between atoms at large internuclear distances $C_6$ are also reported. The EuK, EuRb, and EuCs molecules are examples of species poss...

  2. First Measurements of the Earth's Electric Field at the Arctowski Antarctic Station, King George Island, by the New Polish Atmospheric Electricity Observation Network

    Science.gov (United States)

    Kubicki, Marek; Odzimek, Anna; Neska, Mariusz; Berliński, Jerzy; Michnowski, Stanisław

    2016-12-01

    Atmospheric electricity measurements are performed all over the globe for getting a better understanding of the processes and phenomena operating in the Earth's electric atmosphere, ionosphere and magnetosphere. Over recent years, we have established coordinated observations of atmospheric electricity, mainly of the vertical component of the Earth's atmospheric electric field, from Polish observation stations: Stanisław Kalinowski Geophysical Observatory in Świder, Poland, Stanisław Siedlecki Polar Station in Hornsund, Svalbard, Norway, and, for the first time, the Henryk Arctowski Antarctic Station in King George Island. The organisation of this network is presented here as well as a preliminary summary of geophysical conditions at Arctowski, important from the point of view of atmospheric electricity observations. In particular, we refer to the geomagnetic observations made at Arctowski station in 1978-1995. We also present the average fair-weather diurnal variation of the atmospheric electric field based on observations made so far between 2013 and 2015.

  3. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    Science.gov (United States)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; Bury, Kristen M.; Tracy, William H.

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  4. Institutional Grounds of State Regulation of Interrelation of Subjects of the Electric Energy Market

    Directory of Open Access Journals (Sweden)

    Koliesnichenko Anastasiia S.

    2014-03-01

    Full Text Available The article improves the theoretical and mathematical mechanism in order to put in order institutional grounds of state regulation of interrelations that appear between subjects of the energy market in the process of electric energy trade. The article establishes structural and logical links between institutional factors of economic development and those functions of the state, which the state regulation of interrelations of subjects of the electric energy market is based upon. Based on the evolution approach the article analyses institutional instruments of state regulation of interrelation of subjects of the electric energy market, which takes into account specific features of its operation, specific conditions of development and creates a scientific and methodical basis for formation of concepts, strategies and programmes of development of the market of electric energy at the state level. The article considers and offers ways of improvement of the regulatory and legal provision of the process of state regulation of inter-subject relations of participants of the electric energy market with the aim of increase of scientific justification of draft laws and taking into consideration urgent problems when improving and developing regulatory and legal acts.

  5. Ground water contamination by electrical prospecting; Denki tansaho ni yoru chikasui osen chosa

    Energy Technology Data Exchange (ETDEWEB)

    Irie, S.; Fujii, Y.; Sakaguchi, S.; Ushijima, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-05-01

    A report is made about the result of vertical electric sounding conducted in the MK district, Fukuoka City, where Kyushu University is about to move. As for the method of electrical prospecting, in consideration of the need for probing a depth of 50m at the shallowest, vertical electrical sounding with a Schlumberger array of electrodes was employed. Measurements were made for 57 locations on the planar ground, the interval between electrodes gradually increased from 1 to 200m. In the 2D structure model analysis, a 2D inversion program was utilized in the ABIC minimization method. Also investigated were the relationship of electric prospecting and the geology, geological conditions, water level in the well, water quality, salt water, and pore rate from the previously-conducted investigative boring. As the result, it was estimated that the boundary between the first and second layers detected by electric prospecting reflected the level of underground water and that the boundary between the second and third layers reflected the portion where the N-value sharply increases. 4 refs., 8 figs.

  6. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.

    Science.gov (United States)

    Lixandru, A; Venkatesan, P; Jönsson, C; Poenaru, I; Hall, B; Yang, Y; Walton, A; Güth, K; Gauß, R; Gutfleisch, O

    2017-10-01

    Nd-Fe-B permanent magnets are a strategic material for a number of emerging technologies. They are a key component in the most energy efficient electric motors and generators, thus, they are vital for energy technologies, industrial applications and automation, and future forms of mobility. Rare earth elements (REEs) such as neodymium, dysprosium and praseodymium are also found in waste electrical and electronic equipment (WEEE) in volumes that grow with the technological evolution, and are marked as critical elements by the European Commission due to their high economic importance combined with significant supply risks. Recycling could be a good approach to compensate for the lack of rare earths (REs) on the market. However, less than 1% of REs are currently being recycled, mainly because of non-existing collection logistics, lack of information about the quantity of RE materials available for recycling and recycling-unfriendly product designs. To improve these lack of information, different waste streams of electrical and electronic equipment from an industrial recycling plant were analyzed in order to localize, identify and collect RE permanent magnets of the Nd-Fe-B type. This particular type of magnets were mainly found in hard disk drives (HDDs) from laptops and desktop computers, as well as in loudspeakers from compact products such as flat screen TVs, PC screens, and laptops. Since HDDs have been investigated thoroughly by many authors, this study focusses on other potential Nd-Fe-B resources in electronic waste. The study includes a systematic survey of the chemical composition of the Nd-Fe-B magnets found in the selected waste streams, which illustrates the evolution of the Nd-Fe-B alloys over the years. The study also provides an overview over the types of magnets integrated in different waste electric and electronic equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Impact features tracing hypervelocity airbursts on earth from the atmosphere to the ground

    Science.gov (United States)

    Courty, M. M.

    2012-12-01

    In the absence of deep craters, impact features have been debated to possibly tracing proximal ejecta from yet undetected structure or airburst debris from a meteorite collision with the terrestrial atmosphere or lithosphere. We examine the possibility for impact features to have originated from the shock layer formed ahead of a hypervelocity collider in the earth atmosphere. This hypothesis is approached by comparing impact features from controlled materials to puzzling geological ones: (1) debris collected at the ground from a high altitude meteor airburst recorded on 2011 August 2nd in Southern France; (2) laboratory experiments performed for defense purposes at the CEA Gramat Center (France) with the Persephone hypervelocity light gas gun; (3) the Zhamanshin impact breccia, the Lybian glass, the Egyptian Dakhleh glass, the Tasmanian Darwin glass, the Australasian tektite strewnfield and the Australian Henbury crater field. The Persephone experiments include collisions from 4.1 to 7.9 km/s by a steel projectile embedded into a polycarbonate holder with a polystyrene separator on to a 40 mm thick aluminum target. The impact features been characterized by coupling Environmental SEM with EDS, Raman micro-spectrometry, XRD, TEM, Tof-SIMS, ICP-MS and isotope analyses. Similar carbonaceous polymorphs that are closely imbricated at meso to nano-scales to the crystallized components (including the metal blebs) and to the glass phases (spherules or matrix) are present in all the impact features studied. They dominantly consist of aliphatic polymers, rare aromatic compounds, with graphite-lonsdaleite inclusions. The Persephone experiments help relating the graphite-lonsdaleite couple to transformed organic residues by the transient high pressure shock (a few tens MPa) and the transient heating (ca 100°C) and the aliphatic polymers to new hydrocarbons that formed from the pulverized polycarbonate and polystyrene. The Persephone experiments provide the controlled situation

  8. Design of earth network in electric substations; Diseno de redes de tierra en subestaciones electricas

    Energy Technology Data Exchange (ETDEWEB)

    Raull-Martin, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2000-09-01

    The purpose of this paper is to present a summarized version of the different types of construction of grounding systems, as web as their materials and formulas, which are necessary and useful for the design and building of a grounding network for medium to high voltage facilities. A description is also made of how to determine the electrical resistivity of subsoil layers with different physical characteristics. Several illustrative examples are also solved in the paper. [Spanish] El proposito de este articulo es presentar de manera resumida los diferentes tipos de construccion de los sistemas de tierra, asi como sus materiales y formulas, los cuales son necesarios y utiles para el diseno y edificacion de una red de tierra para instalaciones de mediana y alta tension. Se describe tambien la obtencion de las diferentes resistividades que presentan los terrenos con diversas caracteristicas fisicas. Asi mismo, se solucionan ejercicios ilustrativos a lo largo del articulo.

  9. Role of induced electrical polarization to identify soft ground/fractured rock conditions

    Science.gov (United States)

    Park, Jinho; Lee, Kang-Hyun; Seo, Hyungjoon; Ryu, Jinwoo; Lee, In-Mo

    2017-02-01

    This study attempted to evaluate the role and effectiveness of induced polarization (IP) along with electrical resistivity to identify soft ground/fractured rock. Theoretical studies as well as laboratory-scale experiments were conducted for this purpose. The theoretical study involved deriving the functional relationship between chargeability and influential variables. This was followed by performing a sensitivity analysis using the derived relationship to reveal that the size of narrow pores (r1) exerted the greatest influence on the chargeability followed by the salinity of the pore water (C0). In the laboratory test, a small-scale fractured rock zone was modeled using sandstone as a parent rock. The chargeability and resistivity were measured by changing the size of the joint aperture filled with tap water and/or sea water, the location of the fractured zone, and the thickness of the soil layer in a soil-rock multi-layered ground. The experimental study modeled the jointed zone between competent sandstone layers and indicated that the chargeability was mostly controlled by the size of the narrow pore (r1) of the surface sandstone and not by the porosity of the jointed zone. Hence, it was concluded that the chargeability did not significantly depend on the fractured characteristics of the jointed rock. It could be difficult to clearly distinguish as to whether the low resistivity value is caused by the sea water intrusion or by the increase in porosity of the fractured ground. However, the IP exploration can be effectively utilized to identify sea water intrusion since the chargeability decreased as the salinity of pore water increased. The experimental study on a soil-rock multi-layered ground indicated that the measured chargeability was controlled by the percentage of current flow that passed through the competent rock as well as by the narrow pore size of the rock itself. In conclusion, the ground condition could be easily identified by measuring the IP in

  10. Swarm - The European Space Agency's Constellation Mission: Mapping Earth's Magnetic and Electric Fields

    Science.gov (United States)

    Floberghagen, Rune

    2016-07-01

    Launched on 22 November 2013, the three-satellite Swarm constellation is about halfway into its four-year nominal mission. Embarking identical, high accuracy and high spatial as well as temporal resolution instrumentation on all satellites, the mission has ambitious goals reaching from the deep Earth interior (the liquid outer core) all the way out to the solar-terrestrial interaction in the magnetosphere. One may safely state that the mission addresses a diverse range of science issues, and therefore acts as a true discoverer in many fields. Measurements of the magnetic field (magnitude and vector components), the electric field (through ion drift velocity, ion density, ion temperature, electron density, electron temperature and spacecraft potential), the gas density and horizontal winds as well as precise positioning are supported by a range of derived products for the magnetic field, geophysics, aeronomy and space physics communities. Indeed, Swarm is at the forefront of cross-cutting science issues that involve significant parts of the space and earth physics community. In recent data exploitation and science projects we have also seen a high number of coupling studies emerging. This contribution details the status and achievements of the mission in the field of magnetic field, electric field and geospace research. It furthermore discusses the the Agency's further plans, beyond the currently foreseen nominal end of mission in spring 2018. The role of Swarm for space weather research will also be discussed.

  11. Ground-based simulation of the Earth's upper atmosphere oxygen impact on polymer composites with nanosized fillers

    Science.gov (United States)

    Novikov, Lev; Chernik, Vladimir; Voronina, Ekaterina; Chechenin, Nikolay; Samokhina, Maria S.; Bondarenko, Gennady G.; Gaidar, Anna I.; Vorobyeva, Ekaterina A.; Petrov, Dmitrii V.; Chirskaya, Natalia P.

    The improvement of durability of polymer composites to the space environment impact is a very important task because these materials are considered currently as very promising type of materials for aerospace engineering. By embedding various nanosized fillers into a polymer matrix it is possible to obtain composites with required mechanical, thermal, electrical and optic properties. However, while developing such materials for operation in low Earth orbits (LEO), it is necessary to study thoroughly their durability to the impact of atomic oxygen (AO) of the Earth’s upper atmosphere, because AO is the main factor that causes erosion and damage of spacecraft surface materials in LEO. Ground-based simulation of AO impact on polymer composites was performed on a magnetoplasmadynamic accelerator developed at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University. Polymer composite samples which were prepared as films of 30-50 mum thickness with different amount (3-20 wt%) of various inorganic and organic nanofillers including nanoparticles of metal oxides and carbides as well as polyethoxysiloxanes and carbon nanotubes (CNTs), were exposed to hyperthermal AO flow, and mass losses of samples were estimated. Changes in the structure of composite surface and in material optical properties were studied. The experiments demonstrated that embedding nanosized fillers into a polymer matrix can significantly reduced mass losses, and the good dispersion of fillers improves AO durability in comparison with initial polymers [1]. The computer simulation within the developed 2D Monte-Carlo model demonstrated a good agreement with the experimental data [2]. Special attention was given to the study of AO impact on aligned multiwalled CNTs and CNT-based composites [3]. Some results of computer simulation of hyperthermal oxygen atom interaction with CNT and graphene as well as with polymers are presented to discuss elementary processes which occur in nanostructures

  12. Calculation of Electric Field at Ground Surface and ADSS Cable Prepared Hanging Point near EHV Power Transmission Tower

    Directory of Open Access Journals (Sweden)

    Xu Bao-Qing

    2016-01-01

    Full Text Available A simplified model of the 750kV tower is established by CDEGS software which is based on the Method Of Moment. The power frequency electric field distribution on the ground is achieved by software calculation and field-measuring. The validity of the calculation is proved when compare the calculation and experiment results. The model also can be used to calculate the electric field in prepared hanging points on the tower. Results show that the electric field distribution on the ground surface around the tower and prepared hanging points are meet the standard by calculation and experiment.

  13. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T; Harris, D; Lay, T; Myers, S C; Pasyanos, M E; Richards, P; Rodgers, A J; Walter, W R; Zucca, J J

    2008-02-11

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes a path by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas.

  14. Earthward electric field and its reversal in the near-Earth current sheet

    Science.gov (United States)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Zelenyi, L. M.

    2016-11-01

    Using Time History of Events and Macroscale Interactions during Substorms observations (radial distance r from 9 to 35 Earth radii, RE), we investigate ion and electron contributions to the cross-tail current density in the magnetotail current sheet. We analyze plasma pressure measurements (including the contribution from high-energy particles) and estimate the magnitudes of ion and electron diamagnetic drifts. In the downtail, r > 15RE, region, ion (electron) diamagnetic drifts are shown to provide more than 50% (less than 25%) of the cross-tail current density at the neutral plane, Bx=0. Conversely, in the near-Earth region, r≤15RE, the ion (electron) diamagnetic drift contribution to the cross-tail current density is 20% (50%). The directly measured duskward (dawnward) component of the ion (electron) velocity, vyi (-vye), where y is the GSM direction, is very small (quite large) in the downtail region but large (small) in the near-Earth region. This systematic discrepancy between the expected values of vyi, -vye (based on estimates of diamagnetic drifts) and the direct measurements of the velocity, vyi, -vye, is consistent with a contribution to the total velocity by an E × B drift caused by an electric field oriented parallel to the x axis, Ex. To decrease the ion (increase the electron) total drift to agree with the measured flows in the downtail region and increase (decrease) this total drift to match the measurements in the near-Earth region, this Ex would need to be directed earthward at r > 15RE and tailward at r≤15RE. Such an Ex distribution is consistent with the equatorial projection of the Harang discontinuity.

  15. Simulative investigation on head injuries of electric self-balancing scooter riders subject to ground impact.

    Science.gov (United States)

    Xu, Jun; Shang, Shi; Qi, Hongsheng; Yu, Guizhen; Wang, Yunpeng; Chen, Peng

    2016-04-01

    The safety performance of an electric self-balancing scooter (ESS) has recently become a main concern in preventing its further wide application as a major candidate for green transportation. Scooter riders may suffer severe brain injuries in possible vehicle crash accidents not only from contact with a windshield or bonnet but also from secondary contact with the ground. In this paper, virtual vehicle-ESS crash scenarios combined with finite element (FE) car models and multi-body scooter/human models are set up. Post-impact kinematic gestures of scooter riders under various contact conditions, such as different vehicle impact speeds, ESS moving speeds, impact angles or positions, and different human sizes, are classified and analyzed. Furthermore, head-ground impact processes are reconstructed using validated FE head models, and important parameters of contusion and laceration (e.g., coup or contrecoup pressures and Von Mises stress and the maximum shear stress) are extracted and analyzed to assess the severity of regional contusion from head-ground contact. Results show that the brain injury risk increases with vehicle speeds and ESS moving speeds and may provide fundamental knowledge to popularize the use of a helmet and the vehicle-fitted safety systems, and lay a strong foundation for the reconstruction of ESS-involved accidents. There is scope to improve safety for the use of ESS in public roads according to the analysis and conclusions.

  16. Geophysical investigation of earth dam using the electrical tomography resistivity technique

    Directory of Open Access Journals (Sweden)

    Pedro Lemos Camarero

    Full Text Available Abstract Dams are structures that dam rivers and streams for a variety of purposes. These structures often need to be sturdy to withstand the force of the impoundment and the high values of accumulated water load. The constant maintenance of these structures is essential, since a possible accident can lead to damage of catastrophic proportions. This research presents an alternative cheap and quick application for investigating water seepage in earth dams, through the application of the DC resistivity geophysical method from the electrical resistivity tomography (ERT technique in Wenner array. Three ERT lines were placed parallel to the longitudinal axis of a dam formed by clay soil from the decomposition of diabase. The data are presented in 2D and pseudo-3D geophysical images with electrical resistivity values modeled. Based on the physical principle of electrolytic conduction, that is, decrease in electrical resistance in materials or siliceous minerals in moisture conditions as compared to the material in the dry state, the results revealed low-resistivity zones restricted to some points, associated with water infiltration in the transverse direction of the dam. The absence of evidence as water upwelling on the front of the dam together with geophysical evidence indicate saturation restricted to some points and low probability at the present time, for installation of piping processes.

  17. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  18. TT系统接地和防电击简析%Analysis of TT System Grounding and Electric Shock Protection

    Institute of Scientific and Technical Information of China (English)

    王厚余

    2013-01-01

    阐述IEC 60364-4-41:2005《Low-voltage electrical installations-Part 4-41: Protection for safety-Protection against electric shock》标准规定TT系统内由同一保护电器所保护的所有电气设备必须采用共用接地防电击的原由,举例说明户外农电装置、施工场地、路灯等TT系统应用中的接地和防电击实施方案。着重叙述路灯TT系统共用接地并采用过电流防护电器兼防电击在我国的特殊现实意义。%To elaborate the reason why all electrical equipments protected by the same protective device must adopt common grounding to prevent electric shock as set up in Low-voltage Electrical Installations-Part 4-41:Protection for Safety-Protection against Electric Shock ( IEC 60364 - 4 - 41: 2005) , and to illustrate the implementation plan of grounding and electric shock prevention for outdoor rural power devices, construction sites and street lamps etc. with examples, in particular the special practical significance of TT system of street lamps with common grounding, adopting overcurrent protective devices to prevent against electric shock in China.

  19. Measuring the electrical properties of soil using a calibrated ground-coupled GPR system

    Science.gov (United States)

    Oden, C.P.; Olhoeft, G.R.; Wright, D.L.; Powers, M.H.

    2008-01-01

    Traditional methods for estimating vadose zone soil properties using ground penetrating radar (GPR) include measuring travel time, fitting diffraction hyperbolae, and other methods exploiting geometry. Additional processing techniques for estimating soil properties are possible with properly calibrated GPR systems. Such calibration using ground-coupled antennas must account for the effects of the shallow soil on the antenna's response, because changing soil properties result in a changing antenna response. A prototype GPR system using ground-coupled antennas was calibrated using laboratory measurements and numerical simulations of the GPR components. Two methods for estimating subsurface properties that utilize the calibrated response were developed. First, a new nonlinear inversion algorithm to estimate shallow soil properties under ground-coupled antennas was evaluated. Tests with synthetic data showed that the inversion algorithm is well behaved across the allowed range of soil properties. A preliminary field test gave encouraging results, with estimated soil property uncertainties (????) of ??1.9 and ??4.4 mS/m for the relative dielectric permittivity and the electrical conductivity, respectively. Next, a deconvolution method for estimating the properties of subsurface reflectors with known shapes (e.g., pipes or planar interfaces) was developed. This method uses scattering matrices to account for the response of subsurface reflectors. The deconvolution method was evaluated for use with noisy data using synthetic data. Results indicate that the deconvolution method requires reflected waves with a signal/noise ratio of about 10:1 or greater. When applied to field data with a signal/noise ratio of 2:1, the method was able to estimate the reflection coefficient and relative permittivity, but the large uncertainty in this estimate precluded inversion for conductivity. ?? Soil Science Society of America.

  20. Ground measurements in Israel of solar events and their effects on the electrical parameters

    Science.gov (United States)

    Yaniv, Roy; Yair, Yoav; Price, Colin

    2017-04-01

    Solar events impact the Earth with fluxes of energetic particles or x-ray radiation and sometimes both together. The energetic particles induce pressure on the magnetosphere, generate enhanced and disruptive geomagnetic storms and deposit their energy to the Earth by altering the chemistry and changing the ionization in the upper atmosphere [Rycroft 2012]. Past measurements showed that in times of geomagnetic disturbances due to solar activity, an increase of the potential gradient (PG or Ez) and the conduction current (Jz) are observed on the day of the impact and on subsequent days [Cobb 1967, Reiter 1969, Nicoll and Harrison 2014, Elhalel et al., 2014, Mironova et al 2015]. We report on ground-based measurements of the Ez and Jz that were conducted continuously from two locations in Israel to measure the effect of solar events in low latitudes (30o35'N, 34o45'E 840m - Mitzpe Ramon and 33o18'N 35o47.2'E 2100m - Mt. Hermon) during days that were defined meteorologically as fair weather days. We present preliminary results of several case studies of solar events, that show a consistent increase of more than 50% in Ez during solar events compared to average fair weather values and to Kp and particles fluxes.

  1. Analytical results for crystalline electric field eigenvalues of trivalent rare-earth ions using computer algebra: application to the magnetism of PrX2 ( X = Mg, Al, Ru, Rh, Pt)

    Science.gov (United States)

    Sobral, R. R.; Guimarães, A. P.; da Silva, X. A.

    1994-10-01

    The eigenvalues of the Crystalline Electric Field (CEF) Hamiltonian with cubic symmetry are analytically obtained for trivalent rare-earth ions of ground state J= {5}/{2}, {7}/{2}, 4, {9}/{2}, 6, {15}/{2} and 8, via a Computer Algebra approach. In the presence of both CEF and an effective exchange field, Computer Algebra still allows a partial factorization of the characteristic polynomial equation associated to the total Hamiltonian, a result of interest to the study of the magnetic behavior of rare-earth intermetallics. An application to the PrX2 intermetallic compounds ( X = Mg, Al, Ru, Rh, Pt) is reported.

  2. Application of Electrical Resistivity Tomography Technique for Characterizing Leakage Problem in Abu Baara Earth Dam, Syria

    Directory of Open Access Journals (Sweden)

    Walid Al-Fares

    2014-01-01

    Full Text Available Electrical Resistivity Tomography (ERT survey was carried out at Abu Baara earth dam in northwestern Syria, in order to delineate potential pathways of leakage occurring through the subsurface structure close to the dam body. The survey was performed along two straight measuring profiles of 715 and 430 m length in up- and downstream sides of the dam’s embankment. The analysis of the inverted ERT sections revealed the presence of fractured and karstified limestone rocks which constitute the shallow bedrock of the dam reservoir. Several subsurface structural anomalies were identified within the fractured bedrock, most of which are associated with probable karstic cavities, voids, and discontinuity features developed within the carbonates rocks. Moreover, results also showed the occurrence of a distinguished subsiding structure coinciding with main valley course. Accordingly, it is believed that the bedrock and the other detected features are the main potential causes of water leakage from the dam’s reservoir.

  3. REQUIREMENTS FOR DEVICES FOR VERTICAL ELECTRICAL SOUNDING OF SOIL AT DIAGNOSTICS OF GROUNDING DEVICES

    Directory of Open Access Journals (Sweden)

    S. S. Rudenko

    2016-11-01

    Full Text Available Purpose. Creation the scientific requirements for technical characteristics of equipment for vertical electrical sounding based on the electrophysical characteristics of the soil of energy objects with the different voltage classes. Methodology. In work used statistical methods for the analysis database of results the soil sounding and for receiving distribution of largest size of the grounding system. To determine the required range of measurement and permissible value of circuit resistance applied the mathematical description of the electromagnetic field to calculate the apparent resistivity of the soil and the Wenner method of calculating the resistance of a vertical electrode. Also, in work used elements of probability theory to creation the stochastic correlation between device parameters and characteristics object of the research. Results. In the paper found that in the most severe cases (when the depth of sounding is the three maximal diagonal of grounding at 99% energy objects in Ukraine the lower limit of resistance measurement for the respective classes of voltage must be no more than 1.3 milliohms to 35 kV, 0.6 mOhm to 110 kV, 0.5 milliohms to 150 kV, 0.1 mOhm for ≥ 220 kV. Also it proved that the measurement equipment for vertical electrical sounding when performing electromagnetic diagnostics of grounding system the power facilities Ukraine with 35-750 kV voltage class for all possible values of soil resistivity should be with limit of measurement from 0.1 mOhm to 7.2 kOhm and resistance measuring circuit to 66 kOhm. Originality.For the first time used a statistical approach to evaluate the optimal technical requirements for equipment the soils resistivity when performing diagnostics of grounding systems energy objects of Ukraine. The results obtained in this work, establish the probabilistic dependence of the technical characteristics of measuring equipment from the actual depth of sounding in Wenners configuration (the distance

  4. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  5. Ground-state properties of rare-earth metals: an evaluation of density-functional theory.

    Science.gov (United States)

    Söderlind, Per; Turchi, P E A; Landa, A; Lordi, V

    2014-10-15

    The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called 'standard model' of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin-orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra.

  6. Modelling the Influence of Ground Surface Relief on Electric Sounding Curves Using the Integral Equations Method

    Directory of Open Access Journals (Sweden)

    Balgaisha Mukanova

    2017-01-01

    Full Text Available The problem of electrical sounding of a medium with ground surface relief is modelled using the integral equations method. This numerical method is based on the triangulation of the computational domain, which is adapted to the shape of the relief and the measuring line. The numerical algorithm is tested by comparing the results with the known solution for horizontally layered media with two layers. Calculations are also performed to verify the fulfilment of the “reciprocity principle” for the 4-electrode installations in our numerical model. Simulations are then performed for a two-layered medium with a surface relief. The quantitative influences of the relief, the resistivity ratios of the contacting media, and the depth of the second layer on the apparent resistivity curves are established.

  7. Atmospheric electric discharges and grounding systems; Descargas atmosfericas y sistemas de conexion a tierra

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, Elena [ed.] [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    In this article the work made by the Institute of Investigaciones Electricas (IIE), in the area of atmospheric electric discharges and grounding connections at Comision Federal de Electricidad (CFE) is presented. The work consisted of the revision of the procedures for the design of transmission lines and substations of CFE from which high indexes of interruptions are reported, from this, a program was defined that allowed to improve the existing designs in CFE. [Spanish] En este articulo se presenta el trabajo realizado por el Instituto de Investigaciones Electricas (IIE), en el area de descargas atmosfericas y conexiones a tierra en Comision Federal de Electricidad (CFE). El trabajo consistio en la revision de los procedimientos de diseno de las areas de transmision y subestaciones de la CFE para los que se reportan altos indices de salidas, a partir de esto se definio un programa que permitio mejorar los disenos existentes en la CFE.

  8. Morphological, Raman, electrical and dielectric properties of rare earth doped X-type hexagonal ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Abdul, E-mail: abdulmajeed2276@gmail.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Center for Computational Materials Science, Department of Physics, University of Malakand, Chakdara, Dir (Lower) 18800 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Raheem, Faseeh ur [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Ahmad, Iftikhar [Center for Computational Materials Science, Department of Physics, University of Malakand, Chakdara, Dir (Lower) 18800 (Pakistan); Department of Physics, Abbottabad University of Science & Technology, Abbottabad (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2016-12-15

    The influence of rare-earth metals (La, Nd, Gd, Tb, Dy) on morphology, Raman, electrical and dielectric properties of Ba{sub 2}NiCoRE{sub x}Fe{sub 28−}xO{sub 46} ferrites were studied. The scanning electron microscopy (SEM) exhibited the platelet like structure of these hexagonal ferrites. The surface morphology indicated the formation of ferrite grains in the nano-regime scale. The bands obtained at lower wave number may be attributed to the metal-oxygen vibration at octahedral site which confirm the development of hexagonal phase of these ferrites. The resonance peaks were observed in dielectric constant, dielectric loss factor and quality factor versus frequency graphs. These dielectric parameters indicate that these ferrites nano-materials are potential candidates in the high frequency applications. The enhancement in DC electric resistivity from 2.48×10{sup 8} to 1.20×10{sup 9} Ω cm indicates that the prepared materials are beneficial for decreasing the eddy current losses at high frequencies and for the fabrication of multilayer chip inductor (MLCI) devices.

  9. Multifunctional rare earth or bismuth oxide materials for catalytic or electrical applications

    Directory of Open Access Journals (Sweden)

    Gavarri J.R.

    2013-09-01

    Full Text Available We present a review on catalytic or electrical properties of materials based on rare earth (RE oxides (CeO2, La2O3, Lu2O3 or bismuth based composite systems CeO2-Bi2O3, susceptible to be integrated into catalytic microsystems or gas sensors. The polycrystalline solids can be used as catalysts allowing conversion of CO or CH4 traces in air-gas flows. Fourier Transform infrared spectroscopy is used to determine the conversion rate of CO or CH4 into CO2 through the variations versus time and temperature of vibrational band intensities. The time dependent reactivities are interpreted in terms of an adapted Avrami model. In these catalytic analyses the nature of surfaces of polycrystalline solids seems to play a prominent role in catalytic efficiency. Electrical impedance spectroscopy allows analyzing the variation of conductivity of the system CeO2-Bi2O3. In this system, the specific high ionic conduction of a Bi2O3 tetragonal phase might be linked to the high catalytic activity.

  10. Morphological, Raman, electrical and dielectric properties of rare earth doped X-type hexagonal ferrites

    Science.gov (United States)

    Majeed, Abdul; Khan, Muhammad Azhar; ur Raheem, Faseeh; Ahmad, Iftikhar; Akhtar, Majid Niaz; Warsi, Muhammad Farooq

    2016-12-01

    The influence of rare-earth metals (La, Nd, Gd, Tb, Dy) on morphology, Raman, electrical and dielectric properties of Ba2NiCoRExFe28-xO46 ferrites were studied. The scanning electron microscopy (SEM) exhibited the platelet like structure of these hexagonal ferrites. The surface morphology indicated the formation of ferrite grains in the nano-regime scale. The bands obtained at lower wave number may be attributed to the metal-oxygen vibration at octahedral site which confirm the development of hexagonal phase of these ferrites. The resonance peaks were observed in dielectric constant, dielectric loss factor and quality factor versus frequency graphs. These dielectric parameters indicate that these ferrites nano-materials are potential candidates in the high frequency applications. The enhancement in DC electric resistivity from 2.48×108 to 1.20×109 Ω cm indicates that the prepared materials are beneficial for decreasing the eddy current losses at high frequencies and for the fabrication of multilayer chip inductor (MLCI) devices.

  11. Control of the Earth's electric field intensity through solar wind modulation of galactic cosmic radiation: Support for a proposed atmospheric electrical sun-weather mechanism

    Science.gov (United States)

    Markson, R.

    1980-01-01

    The ionospheric potential and galactic cosmic radiation, found to be inversely correlated with the solar wind velocity are examined as being germane to weather modification. Since the ionospheric potential is proportional to the fair weather electric field intensity and cosmic radiation is the dominant source of atmospheric ionization, it is concluded that the Earth's overall electric field varies in phase with atmospheric ionization and that the latter is modulated by the solar wind. A proposed mechanism, in which solar control of ionizing radiation influences atmospheric electrification and thus possibly cloud physical processes is discussed. An experimental approach to critically test the proposed mechanism through comparison of the temporal variation of the Earth's electric field with conditions in the interplanetary medium is outlined.

  12. The variation of the ground electric field associated with the Mei-Nung earthquake on Feb. 6, 2016

    Science.gov (United States)

    Bing-Chih Chen, Alfred; Yeh, Er-Chun; Chuang, Chia-Wen

    2017-04-01

    Recent studies show that a strong coupling exists between lithosphere, atmosphere and extending up to the ionosphere. Natural phenomena on the ground surface such as oceans variation, volcanic and seismic activities such as earthquakes, and lightning possibly generate significant impacts at ionosphere immediately by electrodynamic processes. The electric field near the ground is one of the potential quantities to explore this coupling process, especially caused by earthquake. Unfortunately, thunderstorm, dust storm or human activities also affect the measured electric field at ground. To investigate the feasibility of a network to monitor the variation of the ground electric field driven by the lightning and earthquake, a filed mill has been deployed in the NCKU campus since Dec. 2015, and luckily experienced the earthquake with a moment magnitude of 6.4 struck 28 km on 6 Feb. 2016. The recorded ground electric field deceased steadily since 1.5 days before the earthquake, and returned to normal level gradually. Moreover, this special feature can not be identified in the other period of the field test. The detail analysis is reported in this presentation.

  13. Commons problems, common ground: Earth-surface dynamics and the social-physical interdisciplinary frontier

    Science.gov (United States)

    Lazarus, E.

    2015-12-01

    In the archetypal "tragedy of the commons" narrative, local farmers pasture their cows on the town common. Soon the common becomes crowded with cows, who graze it bare, and the arrangement of open access to a shared resource ultimately fails. The "tragedy" involves social and physical processes, but the denouement depends on who is telling the story. An economist might argue that the system collapses because each farmer always has a rational incentive to graze one more cow. An ecologist might remark that the rate of grass growth is an inherent control on the common's carrying capacity. And a geomorphologist might point out that processes of soil degradation almost always outstrip processes of soil production. Interdisciplinary research into human-environmental systems still tends to favor disciplinary vantages. In the context of Anthropocene grand challenges - including fundamental insight into dynamics of landscape resilience, and what the dominance of human activities means for processes of change and evolution on the Earth's surface - two disciplines in particular have more to talk about than they might think. Here, I use three examples - (1) beach nourishment, (2) upstream/downstream fluvial asymmetry, and (3) current and historical "land grabbing" - to illustrate a range of interconnections between physical Earth-surface science and common-pool resource economics. In many systems, decision-making and social complexity exert stronger controls on landscape expression than do physical geomorphological processes. Conversely, human-environmental research keeps encountering multi-scale, emergent problems of resource use made 'common-pool' by water, nutrient and sediment transport dynamics. Just as Earth-surface research can benefit from decades of work on common-pool resource systems, quantitative Earth-surface science can make essential contributions to efforts addressing complex problems in environmental sustainability.

  14. On the influence of Aerosols in measurement of electric field from Earth surface using a Field-Mill

    Science.gov (United States)

    Ghosh, Abhijit; Sundar De, Syam; Paul, Suman; Hazra, Pranab; Guha, Gautam

    2016-07-01

    Aerosol particles influence the electrical conductivity of air. The value is reduced through the removal of small ions responsible for the conductivity. The metropolitan city, Kolkata (latitude 22.56° N, longitude 88.5° E) is densely populated surrounded by various types of Industries. Air is highly invaded by pollutant particles here for which the city falls under small-scale fair-weather condition where electric field and air-earth current get perturbed by ionization and different aerosols produced locally. Fine particles having diameter measurement of potential gradient and air-earth current will be presented. Different parameters like air-conductivity, relative abundance of smoke, visibility would offer new signatures of aerosol-influence on electric potential gradient. Some of those will be reported here.

  15. Data Curation Education Grounded in Earth Sciences and the Science of Data

    Science.gov (United States)

    Palmer, C. L.

    2015-12-01

    This presentation looks back over ten years of experience advancing data curation education at two Information Schools, highlighting the vital role of earth science case studies, expertise, and collaborations in development of curriculum and internships. We also consider current data curation practices and workforce demand in data centers in the geosciences, drawing on studies conducted in the Data Curation Education in Research Centers (DCERC) initiative and the Site-Based Data Curation project. Outcomes from this decade of data curation research and education has reinforced the importance of key areas of information science in preparing data professionals to respond to the needs of user communities, provide services across disciplines, invest in standards and interoperability, and promote open data practices. However, a serious void remains in principles to guide education and practice that are distinct to the development of data systems and services that meet both local and global aims. We identify principles emerging from recent empirical studies on the reuse value of data in the earth sciences and propose an approach for advancing data curation education that depends on systematic coordination with data intensive research and propagation of current best practices from data centers into curriculum. This collaborative model can increase both domain-based and cross-disciplinary expertise among data professionals, ultimately improving data systems and services in our universities and data centers while building the new base of knowledge needed for a foundational science of data.

  16. Ground-Based Near-Earth Object Studies in the post-Russian (Chelyabinsk) Meteor Airburst World

    Science.gov (United States)

    Ryan, E.; Ryan, W. H.

    2013-09-01

    Public awareness of the danger of potentially hazardous asteroids has been heightened by the airburst of a meteor over Chelyabinsk, Russia, on February 15, 2013, which caused millions of dollars in damage from a shock wave that impacted structures and injured ~1500 people. Later that same day, a larger asteroid, 2012 DA14, made a close approach to the Earth, but harmlessly skimmed past. Further, other very close-approaching Near-Earth objects (NEOs) have recently posed threats to man-made space assets by passing through or very near the geosynchronous satellite zone. These events have lead to increased awareness and concern, and have subsequently served as a catalyst for deeper exploration of what is being done to mitigate such hazards, and whether more effort needs to be placed in this area of study. An NEO is designated as "potentially hazardous" when its orbit comes to within 0.05 AU of the Earth's orbit. Ground-based physical characterization studies of Near-Earth Objects (NEOs) that are cataloged as potentially hazardous objects (PHOs) are very beneficial to any mitigation plan that might be devised if the risk of impact is high. After a well-defined orbit has been determined for a PHO, other physical parameters such as size, rotation rate, and composition are important. For the smallest PHOs being discovered, observational efforts must commence at or near the time of discovery to ensure favorable parameters for data collection. Otherwise, subsequent optimal apparitions for observing an asteroid or comet may be decades away. Researchers at the Magdalena Ridge Observatory (MRO) 2.4-meter telescope facility are well positioned to acquire real-time physical information on PHOs since their ongoing NEO follow-up and characterization program collects data monthly throughout the year on the smallest, close-approaching NEOs being discovered. Over the past 5 years that this program has been in operation, spin rates for over 50 Near-Earth asteroids have been obtained

  17. A forward model for ground penetrating radar imaging of buried perfect electric conductors within the physical optics approximation

    DEFF Research Database (Denmark)

    Polat, Burak; Meincke, Peter

    2004-01-01

    A forward model for ground penetrating radar imaging of buried 3-D perfect electric conductors is addressed within the framework of diffraction tomography. The similarity of the present forward model derived within the physical optics approximation with that derived within the first Born...

  18. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    Science.gov (United States)

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital

  19. Data Processing for the Near Earth Asteroid Rendezvous (NEAR), X-Ray and Gamma-Ray Spectrometer (XRS) Ground System

    Science.gov (United States)

    McClanahan, Timothy P.; Mikheeva, I.; Trombka, J. I.; Floyd, S. R.; Boynton, W. V.; Bailey, H.; Bhangoo, J.; Starr, R.; Clark, P. E.; Evans, L. G.

    1999-01-01

    An X-ray and Gamma-ray spectrometer (XGRS) is onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft to determine the elemental composition of the surface of the asteroid 433Eros. The Eros asteroid is highly non-spherical in physical shape and the development of data management and analysis methodologies are in several areas a divergence from traditional remotely sensed geographical information systems techniques. Field of view and asteroid surface geometry must be derived virtually and then combined with real measurements of solar, spectral and instrument calibration information to derive meaningful scientific results. Spatial resolution of planned geochemical maps will be improved from the initial conditions of low statistical significance per integration by repeated surface flyovers and regional spectral accumulation. This paper describes the results of a collaborative effort of design and development of the NEAR XGRS instrument ground system undertaken by participants at the Goddard Space Flight Center, University of Arizona, Cornell University, Applied Physics Laboratory, and Max Plank institute.

  20. Data Processing for the Near Earth Asteroid Rendezvous (NEAR), X-ray and Gamma-ray Spectrometer (XGRS) Ground System

    Science.gov (United States)

    McClanahan, Timothy P.; Mikheeva, I.; Trombka, J. I.; Floyd, S. R.; Boynton, W. V.; Bailey, H.; Bhangoo, J.; Starr, R.; Clark, P. E.; Evans, L. G.

    1999-01-01

    An X-ray and Gamma-ray spectrometer (XGRS) is onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft to determine the elemental composition of the surface of the asteroid 433Eros. The Eros asteroid is highly non-spherical in physical shape and the development of data management and analysis methodologies are in several areas a divergence from traditional remotely sensed geographical information systems techniques. Field of view and asteroid surface geometry must be derived virtually and then combined with real measurements of solar, spectral and instrument calibration information to derive meaningful scientific results. Spatial resolution of planned geochemical maps will be improved from the initial conditions of low statistical significance per integration by repeated surface flyovers and regional spectral accumulation. This paper describes the results of a collaborative effort of design and development of the NEAR XGRS instrument ground system undertaken by participants at the Goddard Space Flight Center, University of Arizona, Cornell University, Applied Physics Laboratory, and Max Plank institute.

  1. Lunar Surface Electric Potential Changes Associated with Traversals through the Earth's Foreshock

    Science.gov (United States)

    Collier, Michael R.; Hills, H. Kent; Stubbs, Timothy J.; Halekas, Jasper S.; Delory, Gregory T.; Espley, Jared; Farrell, William M.; Freeman, John W.; Vondrak, Richard

    2011-01-01

    We report an analysis of one year of Suprathermal Ion Detector Experiment (SIDE) Total Ion Detector (TID) resonance events observed between January 1972 and January 1973. The study includes only those events during which upstream solar wind conditions were readily available. The analysis shows that these events are associated with lunar traversals through the dawn flank of the terrestrial magnetospheric bow shock. We propose that the events result from an increase in lunar surface electric potential effected by secondary electron emission due to primary electrons in the Earth's foreshock region (although primary ions may play a role as well). This work establishes (1) the lunar surface potential changes as the Moon moves through the terrestrial bow shock, (2) the lunar surface achieves potentials in the upstream foreshock region that differ from those in the downstream magnetosheath region, (3) these differences can be explained by the presence of energetic electron beams in the upstream foreshock region and (4) if this explanation is correct, the location of the Moon with respect to the terrestrial bow shock influences lunar surface potential.

  2. Vertical drainage capacity of new electrical drainage board on improvement of super soft clayey ground

    Institute of Scientific and Technical Information of China (English)

    沈扬; 励彦德; 黄文君; 徐海东; 胡品飞

    2015-01-01

    As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage (EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly impacted by the vertical drainage capability. Therefore, vertical drainage capability at the top of EVD board was theoretically analyzed. Basic requirements for drainage at the top of the board were summed up, as well as the formula of anode pore pressure when losing the vertical drainage capability. Meanwhile, a contrast test on the top and bottom drainage capacities was conducted. In use of the advanced EVD board, the voltage potential and pore pressure of anode were measured. Moreover, the derived formulas were verified. The result shows that the decrease of electric force gradient had an observable impact on the drainage capability. There was nearly no difference between the energy consumption for the two drainage methods. Although a little less water was discharged, the top drainage method had more advantages, such as high initial drainage velocity, few soil cracks, low anode water content and high soil strength. All of these show that the super soft soil ground could be consolidated quickly in use of the advanced EVD board through the top drainage. The top drainage method could efficiently improve the drainage effect, decrease the energy consumption and speed up the project proceeding.

  3. Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods

    Science.gov (United States)

    Papadopoulos, Nikos; Sarris, Apostolos; Yi, Myeong-Jong; Kim, Jung-Ho

    2009-02-01

    Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and high-resistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.

  4. Improving Indonesian peatland C stock estimates using ground penetrating radar (GPR) and electrical resistivity imaging (ERI)

    Science.gov (United States)

    Terry, N.; Comas, X.; Slater, L. D.; Warren, M.; Kolka, R. K.; Kristijono, A.; Sudiana, N.; Nurjaman, D.; Darusman, T.

    2014-12-01

    Tropical peatlands sequester an estimated 15% of the carbon pool from peatlands worldwide. Indonesian peatlands account for approximately 65% of all tropical peat, and are believed to be the largest global source of carbon dioxide emissions to the atmosphere from degrading peat. However, there is great uncertainty in these estimates due to insufficient data regarding the thickness of organic peat soils and their carbon content. Meanwhile, Indonesian peatlands are threatened by heightening pressure to drain and develop. Indirect geophysical methods have garnered interest for their potential to non-invasively estimate peat depth and gas content in boreal peatlands. Drawing from these techniques, we employed ground penetrating radar (GPR) and electrical resistivity imaging (ERI) in tandem with direct methods (core sampling) to evaluate the potential of these methods for tropical peatland mapping at 2 distinct study sites on West Kalimantan (Indonesia). We find that: [1] West Kalimantan peatland thicknesses estimated from GPR and ERI in intermediate/shallow peat can vary substantially over short distances (for example, > 2% over less than 0.02° surface topography gradient), [2] despite having less vertical resolution, ERI is able to better resolve peatland thickness in deep peat, and [3] GPR provides useful data regarding peat matrix attributes (such as the presence of wood layers). These results indicate GPR and ERI could help reduce uncertainty in carbon stocks and aid in responsible land management decisions in Indonesia.

  5. Electric dipole polarizability of alkaline-Earth-metal atoms from perturbed relativistic coupled-cluster theory with triples

    CERN Document Server

    Chattopadhyay, S; Angom, D

    2014-01-01

    The perturbed relativistic coupled-cluster (PRCC) theory is applied to calculate the electric dipole polarizabilities of alkaline Earth metal atoms. The Dirac-Coulomb-Breit atomic Hamiltonian is used and we include the triple excitations in the relativistic coupled-cluster (RCC) theory. The theoretical issues related to the triple excitation cluster operators are described in detail and we also provide details on the computational implementation. The PRCC theory results are in good agreement with the experimental and previous theoretical results. We, then, highlight the importance of considering the Breit interaction for alkaline Earth metal atoms.

  6. Satellite and Ground Signatures of Kinetic and Inertial Scale ULF Alfven Waves Propagating in Warm Plasma in Earth's Magnetosphere

    Science.gov (United States)

    Rankin, R.; Sydorenko, D.

    2015-12-01

    Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.

  7. Ground-based transit observations of the super-Earth GJ 1214b

    CERN Document Server

    Caceres, Claudio; Hoyer, Sergio; Ivanov, Valentin D; Rojo, Patricio; Girard, Julien H; Kempton, Eliza Miller-Ricci; Fortney, Jonathan J; Minniti, Dante

    2014-01-01

    GJ 1214b is one of the few known transiting super-Earth-sized exoplanets with a measured mass and radius. It orbits an M-dwarf, only 14.55 pc away, making it a favorable candidate for follow-up studies. However, the composition of GJ 1214b's mysterious atmosphere has yet to be fully unveiled. Our goal is to distinguish between the various proposed atmospheric models to explain the properties of GJ 1214b: hydrogen-rich or hydrogen-He mix, or a heavy molecular weight atmosphere with reflecting high clouds, as latest studies have suggested. Wavelength-dependent planetary radii measurements from the transit depths in the optical/NIR are the best tool to investigate the atmosphere of GJ 1214b. We present here (i) photometric transit observations with a narrow-band filter centered on 2.14 microns and a broad-band I-Bessel filter centered on 0.8665 microns, and (ii) transmission spectroscopy in the H and K atmospheric windows that cover three transits. The obtained photometric and spectrophotometric time series were...

  8. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, J J; Walter, W R; Rodgers, A J; Richards, P; Pasyanos, M E; Myers, S C; Lay, T; Harris, D; Antoun, T

    2008-11-19

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of Earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring and seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D Earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes two specific paths by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas. Seismic monitoring agencies are tasked with detection, location, and characterization of seismic activity in near real time. In the case of nuclear explosion monitoring or seismic hazard, decisions to further investigate a suspect event or to launch disaster relief efforts may rely heavily on real-time analysis and results. Because these are weighty decisions, monitoring agencies are regularly called upon to meticulously document and justify every aspect of their monitoring system. In order to meet this level of scrutiny and maintain operational robustness requirements, only mature technologies are considered for operational monitoring systems, and operational technology necessarily lags

  9. Testing of ground fault relay response during the energisation of megawatt range electric boilers in thermal power plants

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth; Davidsen, Troels

    2015-01-01

    , during the energisation of a boiler. A special case for concern was the presence of an electric arc between the electrodes of the boiler and the water in the boiler during approximately 2s at the energisation, which can in theory be seen as a ground fault by the relay. The voltage and current transient......Large controllable loads may support power systems with an increased penetration of fluctuating renewable energy, by providing a rapid response to a change in the power production. Megawatt range electric boilers are an example of such controllable loads, capable of change rapidly...

  10. Cost Benefit Analysis Modeling Tool for Electric vs. ICE Airport Ground Support Equipment – Development and Results

    Energy Technology Data Exchange (ETDEWEB)

    James Francfort; Kevin Morrow; Dimitri Hochard

    2007-02-01

    This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a user’s manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.

  11. The Influence of Earth Temperature on the Dynamic Characteristics of Frozen Soil and the Parameters of Ground Motion on Sites of Permafrost

    Institute of Scientific and Technical Information of China (English)

    Wang Lanmin; Zhang Dongli; Wu Zhijian; Ma Wei; Li Xiaojun

    2004-01-01

    Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by the Ms8.1 earthquake in the west of the Kuniun Mountain Pass,China, the influence of temperature on the dynamic constitutive relationship, dynamic elastic modulus, damping ratio and dynamic strength of frozen soil was quantitatively studied by means of the dynamic triaxial test. Moreover, the characteristics of ground motion on a permafrost site under different temperatures were analyzed for the four profiles of permafrost along the Qinghai-Xizang (Tibet) Railway using the time histories of ground motion acceleration with 3 exceedance probabilities of the Kunlun Mountains area. The influences of temperature on the seismic displacement, velocity, acceleration and response spectrum on permafrost ground were studied quantitatively. A scientific basis was presented for earthquake disaster mitigation for engineering foundations, highways and underground engineering in permafrost areas.

  12. Ground-based Transit Observation of the Habitable-zone super-Earth K2-3d

    CERN Document Server

    Fukui, Akihiko; Narita, Norio; Hirano, Teruyuki; Onitsuka, Masahiro; Ryu, Tsuguru; Kusakabe, Nobuhiko

    2016-01-01

    We report the first ground-based transit observation of K2-3d, a 1.5 R_Earth planet supposedly within the habitable zone around a bright M-dwarf host star, using the Okayama 188-cm telescope and the multi(grz)-band imager MuSCAT. Although the depth of the transit (0.7 mmag) is smaller than the photometric precisions (1.2, 0.9, and 1.2 mmag per 60 s for g, r, and z bands, respectively), we marginally but consistently identify the transit signal in all three bands, by taking advantage of the transit parameters from K2, and by introducing a novel technique that leverages multi-band information to reduce the systematics caused by second-order extinction. We also revisit previously analyzed Spitzer transit observations of K2-3d to investigate the possibility of systematic offsets in transit timing, and find that all the timing data can be explained well by a linear ephemeris. We revise the orbital period of K2-3d to be 44.55612 \\pm 0.00021 days, which corrects the predicted transit times in 2019, i.e., the JWST er...

  13. Intermittency of the turbulent processes in the Earth's magnetosphere detected from the ground-based measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stepanova, Marina [Physical Department, Universidad de Santiago de Chile (Chile); Foppiano, Alberto; Ovalle, Elias [Departmento de Geofisica, Universidad de Conception (Chile); Antonova, Elizavieta [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Troshichev, Oleg [Department of Geophysics, Arctic and Antarctic Research Institute, St. Petersburg (Russian Federation)], E-mail: mstepano@usach.cl

    2008-11-01

    Turbulent processes in the Earth's magnetosphere are reflected in the dynamical behavior of the geomagnetic indices and other parameters determined from ground based observations. Intermittent properties of one minute Polar Cap (PC) index and auroral radio wave absorption are studied using 1995-2000 data sets. It was found that the probability distribution functions (PDFs) of both PC-index and absorption fluctuations display a strong non-Gaussian shape. This indicates that they are not characterized by a global time self-similarity but rather exhibit intermittency, as previously reported for solar wind velocity and auroral electrojet index values. In the case of the auroral absorption it was also found that intermittency strongly depends on the magnetic local time, being largest in the nighttime sector. This shows that the acceleration of precipitating particles is intermittent, especially near the substorm eye, where the level of turbulence increases. Application of the Local Intermittency Measure (LIM) technique confirms the aforementioned results to a better precision.

  14. Feasibility Study for a Near Term Demonstration of Laser-Sail Propulsion from the Ground to Low Earth Orbit

    Science.gov (United States)

    Montgomery, Edward E., IV; Johnson, Les; Thomas, Herbert D.

    2016-01-01

    This paper adds to the body of research related to the concept of propellant-less in-space propulsion utilizing an external high energy laser (HEL) to provide momentum to an ultra-lightweight (gossamer) spacecraft. It has been suggested that the capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination make it possible to investigate the practicalities of a ground to Low Earth Orbit (LEO) demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail 2 spacecraft and laser power levels modest in comparison to those proposed previously by Forward, Landis, or Marx. [1,2,3] A more detailed investigation of accessing LightSail 2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case.

  15. Feasibility Study for a Near Term Demonstration of Laser-Sail Propulsion from the Ground to Low Earth Orbit

    Science.gov (United States)

    Montgomery, E.; Johnson, L.; Thomas, H.

    2016-09-01

    This paper adds to the body of research related to the concept of propellant-less in-space propulsion utilizing an external high energy laser (HEL) to provide momentum to an ultra-lightweight (gossamer) spacecraft. It has been suggested that the capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination make it possible to investigate the practicalities of a ground to Low Earth Orbit (LEO) demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail 2 spacecraft and laser power levels modest in comparison to those proposed previously by Forward, Landis, or Marx. [1,2,3] A more detailed investigation of accessing LightSail 2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case.

  16. Amplitude modulated, by M1, Earth's oscillating (T = 1 day) electric field triggered by K1 tidal waves. Its relation to the occurrence time of large EQs

    CERN Document Server

    Thanassoulas, C; Verveniotis, G

    2010-01-01

    Starting from the observation that quite often the Earth's oscillating electric field varies in amplitude, a mechanism is postulated that accounts for these observations. That mechanism is the piezoelectric one driven by the M1 and K1 tidal components. It is demonstrated how the system: piezoelectricity triggered in the lithosphere - M1 and K1 tidal components is activated and produces the amplitude modulated Earth's oscillating electric field. This procedure is linked to the strain load conditions met in the seismogenic area before the occurrence of a large EQ. Peaks of the oscillating Earth's electric field are tightly connected to the M1 peak tidal component and to the timing of the occurrence of large EQs. Typical examples from real recordings of the Earth's oscillating electric field, recorded by the ATH (Greece) monitoring site, are given in order to verify the postulated detailed piezoelectric mechanism.

  17. Influence of the Earth s Corotation Field on the Atmospheric Electricity: Latitudinal Variation and Response to the Solar Activity

    Science.gov (United States)

    Dumin, Y.

    Influence of the magnetospheric convection field on the atmospheric electricity is widely studied, both theoretically and experimentally, from the early 1970s. On the other hand, a considerably less attention was paid to the effects of plasmaspheric corotation field, since it was usually believed that the electric field of corotation of the solid Earth is fitted smoothly to the corotation field of plasmasphere, so that no potential difference is formed between them in the lower atmosphere. A conjecture on the important role of corotation field in the global atmospheric-electric circuit was done a few years ago in [P.A. Bespalov, Yu.V. Chugunov, J. Atmos. Terr. Phys., 1996, v.58, p.601] and several subsequent works. Unfortunately, because of using an oversimplified model of plasmasphere (in the form of a spherically-symmetric envelope with isotropic conductivity and rigid-body rotation), no reliable numerical estimates were derived, and no comparison with experimental distributions of the atmospheric electric field could be conducted. The main aim of the present report is to study the corotation effects in the framework of a considerably more realistic analytical model, where conductivity of the plasmasphere is strongly anisotropic, and the magnetic field lines are substantially distorted (stretched to "infinity") in the polar regions. Escape of polarization electric charges along the distorted field lines results in appreciable decrease (by 10-15 V/m) in the average atmospheric electric field at high latitudes. Such phenomenon was experimentally discovered as early as the International Geophysical Year (1957-1958) but was not quantitatively explained by now. Yet another interesting effect following from our model is changing the high-latitude electric field due to variations in the degree of distortion of the magnetic field lines at different levels of the solar activity. These transient changes in the atmospheric electricity should be symmetric about the noon

  18. Mathematical modeling and measurement of electric fields of electrode-based through-the-earth (TTE) communication

    Science.gov (United States)

    Yan, Lincan; Zhou, Chenming; Reyes, Miguel; Whisner, Bruce; Damiano, Nicholas

    2017-06-01

    There are two types of through-the-earth (TTE) wireless communication in the mining industry: magnetic loop TTE and electrode-based (or linear) TTE. While the magnetic loop systems send signal through magnetic fields, the transmitter of an electrode-based TTE system sends signal directly through the mine overburden by driving an extremely low frequency (ELF) or ultralow frequency (ULF) AC current into the earth. The receiver at the other end (underground or surface) detects the resultant current and receives it as a voltage. A wireless communication link between surface and underground is then established. For electrode-based TTE communications, the signal is transmitted through the established electric field and is received as a voltage detected at the receiver. It is important to understand the electric field distribution within the mine overburden for the purpose of designing and improving the performance of the electrode-based TTE systems. In this paper, a complete explicit solution for all three electric field components for the electrode-based TTE communication was developed. An experiment was conducted using a prototype electrode-based TTE system developed by National Institute for Occupational Safety and Health. The mathematical model was then compared and validated with test data. A reasonable agreement was found between them.

  19. Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle.

    Science.gov (United States)

    Dubrovinsky, L; Dubrovinskaia, N; Langenhorst, F; Dobson, D; Rubie, D; Gessmann, C; Abrikosov, I A; Johansson, B; Baykov, V I; Vitos, L; Le Bihan, T; Crichton, W A; Dmitriev, V; Weber, H-P

    2003-03-01

    The boundary between the Earth's metallic core and its silicate mantle is characterized by strong lateral heterogeneity and sharp changes in density, seismic wave velocities, electrical conductivity and chemical composition. To investigate the composition and properties of the lowermost mantle, an understanding of the chemical reactions that take place between liquid iron and the complex Mg-Fe-Si-Al-oxides of the Earth's lower mantle is first required. Here we present a study of the interaction between iron and silica (SiO2) in electrically and laser-heated diamond anvil cells. In a multianvil apparatus at pressures up to 140 GPa and temperatures over 3,800 K we simulate conditions down to the core-mantle boundary. At high temperature and pressures below 40 GPa, iron and silica react to form iron oxide and an iron-silicon alloy, with up to 5 wt% silicon. At pressures of 85-140 GPa, however, iron and SiO2 do not react and iron-silicon alloys dissociate into almost pure iron and a CsCl-structured (B2) FeSi compound. Our experiments suggest that a metallic silicon-rich B2 phase, produced at the core-mantle boundary (owing to reactions between iron and silicate), could accumulate at the boundary between the mantle and core and explain the anomalously high electrical conductivity of this region.

  20. The Electrical Conductivity of Post-Perovskite in Earth's D" Layer

    National Research Council Canada - National Science Library

    Kenji Ohta; Suzue Onoda; Kei Hirose; Ryosuke Sinmyo; Katsuya Shimizu; Nagayoshi Sata; Yasuo Ohishi; Akira Yasuhara

    2008-01-01

    Recent discovery of a phase transition from perovskite to post-perovskite suggests that the physical properties of Earth's lowermost mantle, called the D" layer, may be different from those of the overlying mantle...

  1. International Aerospace and Ground Conference on Lightning and Static Electricity. 1984 technical papers. Supplement

    Science.gov (United States)

    1984-01-01

    The indirect effects of lightning on digital systems, ground system protection, and the corrosion properties of conductive materials are addressed. The responses of a UH-60A helicopter and tactical shelters to lightning and nuclear electromagnetic pulses are discussed.

  2. High-resolution electrical resistivity tomography applied to patterned ground, Wedel Jarlsberg Land, south-west Spitsbergen

    Directory of Open Access Journals (Sweden)

    Marek Kasprzak

    2015-06-01

    Full Text Available This article presents results of two-dimensional electrical resistivity tomography (ERT applied to three types of patterned ground in Wedel-Jarlsberg Land (Svalbard, carried out in late July 2012. The structures investigated include sorted circles, non-sorted polygons and a net with sorted coarser material. ERT was used to recognize the internal ground structure, the shape of permafrost table below the active layer and the geometric relationships between permafrost, ground layering and surface patterns. Results of inversion modelling indicate that the permafrost table occurs at a depth of 0.5–1 m in a mountain valley and 1–2.5 m on raised marine terraces. The permafrost table was nearly planar beneath non-sorted deposits and wavy beneath sorted materials. The mutual relationships between the permafrost table and the shape of a stone circle are different from those typically presented in literature. Ground structure beneath the net with sorted coarser materials is complex as implied in convective models. In non-sorted polygons, the imaging failed to reveal vertical structures between them.

  3. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    Science.gov (United States)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i

  4. New-Measurement Techniques to Diagnose Charged Dust and Plasma Layers in the Near-Earth Space Environment Using Ground-Based Ionospheric Heating Facilities

    OpenAIRE

    Mahmoudian, Alireza

    2013-01-01

    Recently, experimental observations have shown that radar echoes from the irregularitysource region associated with mesospheric dusty space plasmas may be modulated by radio wave heating with ground-based ionospheric heating facilities. These experiments show great promise as a diagnostic for the associated dusty plasma in the Near-Earth Space Environment which is believed to have links to global change. This provides an alternative to more complicated and costly space-based observational app...

  5. Permanent Electron Electric Dipole Moment Search in the X^3Δ_1 Ground State of Tungsten Carbide Molecules

    Science.gov (United States)

    Lee, Jeongwon; Chen, Jinhai; Leanhardt, Aaron

    2011-06-01

    We are developing an experiment to search for the permanent electric dipole moment (EDM) of the electron using the valence electrons in the X^3Δ_1 ground state of Tungsten Carbide (WC) molecules. Currently, we are detecting the molecules by Laser Induced Fluorescence spectroscopy at ˜75cm downstream of a pulsed ablation beam source. We have a detection rate of ˜10 182W12C molecules/second in X^3Δ_1, v"=0, J"=1 state with geometric detection efficiency of 0.004. A continuous WC molecular beam is under development. Additionally, preliminary measurements of the 183W12C hyperfine structure will be presented.

  6. A one-dimensional model of solid-earth electrical resistivity beneath Florida

    Science.gov (United States)

    Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua

    2015-11-19

    An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.

  7. Static electric and magnetic multipole susceptibilities for Dirac one-electron atoms in the ground state

    Science.gov (United States)

    Szmytkowski, Radosław; Łukasik, Grzegorz

    2016-09-01

    We present tabulated data for several families of static electric and magnetic multipole susceptibilities for hydrogenic atoms with nuclear charge numbers from the range 1 ⩽ Z ⩽ 137. Atomic nuclei are assumed to be point-like and spinless. The susceptibilities considered include the multipole electric polarizabilities α E L → E L and magnetizabilities (magnetic susceptibilities) χ M L → M L with 1 ⩽ L ⩽ 4 (i.e., the dipole, quadrupole, octupole and hexadecapole ones), the electric-to-magnetic cross-susceptibilities α E L → M(L - 1) with 2 ⩽ L ⩽ 5 and α E L → M(L + 1) with 1 ⩽ L ⩽ 4, the magnetic-to-electric cross-susceptibilities χ M L → E(L - 1) with 2 ⩽ L ⩽ 5 and χ M L → E(L + 1) with 1 ⩽ L ⩽ 4 (it holds that χ M L → E(L ∓ 1) =α E(L ∓ 1) → M L), and the electric-to-toroidal-magnetic cross-susceptibilities α E L → T L with 1 ⩽ L ⩽ 4. Numerical values are computed from general exact analytical formulas, derived by us elsewhere within the framework of the Dirac relativistic quantum mechanics, and involving generalized hypergeometric functions 3F2 of the unit argument.

  8. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth's core.

    Science.gov (United States)

    de Koker, Nico; Steinle-Neumann, Gerd; Vlcek, Vojtech

    2012-03-13

    Earth's magnetic field is sustained by magnetohydrodynamic convection within the metallic liquid core. In a thermally advecting core, the fraction of heat available to drive the geodynamo is reduced by heat conducted along the core geotherm, which depends sensitively on the thermal conductivity of liquid iron and its alloys with candidate light elements. The thermal conductivity for Earth's core is very poorly constrained, with current estimates based on a set of scaling relations that were not previously tested at high pressures. We perform first-principles electronic structure computations to determine the thermal conductivity and electrical resistivity for Fe, Fe-Si, and Fe-O liquid alloys. Computed resistivity agrees very well with existing shock compression measurements and shows strong dependence on light element concentration and type. Thermal conductivity at pressure and temperature conditions characteristic of Earth's core is higher than previous extrapolations. Conductive heat flux near the core-mantle boundary is comparable to estimates of the total heat flux from the core but decreases with depth, so that thermally driven flow would be constrained to greater depths in the absence of an inner core.

  9. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Science.gov (United States)

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  10. Modeling Ice Table Depth, Ground Ice Content, and δD-δ18O of Ground Ice in the Cold Dry Soils of Earth and Mars

    Science.gov (United States)

    Fisher, D. A.; Lacelle, D.; Pollard, W.; Davila, A.; McKay, C. P.

    2016-09-01

    In the upper McMurdo Dry Valleys, ice table depths range from 0 to 80 cm. This study explores the effects of ground temperature and humidity and advective flows on water vapour flux and ice table depth using the REGO vapour-diffusion model.

  11. Correlation between the spectral features and electric field changes of multiple return strokes in negative cloud-to-ground lightning

    Science.gov (United States)

    Wang, Xuejuan; Yuan, Ping; Cen, Jianyong; Liu, Guorong

    2017-05-01

    Using high time-resolved spectra and simultaneous records of the electric field change of three negative cloud-to-ground (CG) lightning flashes with multiple return strokes, the correlations between the total intensity of ionic lines in the spectra and the corresponding amplitude of the initial electric field change, as well as between the total intensity of the spectra and the channel apparent diameter, have been analyzed. The analysis shows the following: (1) The amplitude of the initial electric field change is roughly proportional to the total intensity of ionic lines. (2) The total intensity of the spectra shows a significant linear correlation with the apparent diameter of the channel. (3) The total intensity of ionic lines for 17 analyzed return strokes decreases with increasing height along the channel, which is consistent with the current variation along the channel in the modified transmission line model; the Master, Uman, Lin, and Standler model; and the Diendorfer-Uman model. Meanwhile, the total intensity of ionic lines for other two analyzed return strokes along the channel without attenuation, this is consistent with the current variation along the channel in the Bruce-Golde model, the transmission line model, and the Traveling Current Source model.

  12. Investigating fluvial features with electrical resistivity imaging and ground-penetrating radar: The Guadalquivir River terrace (Jaen, Southern Spain)

    Science.gov (United States)

    Rey, J.; Martínez, J.; Hidalgo, M. C.

    2013-09-01

    A geophysical survey has been conducted on the lowest terrace levels and the present day floodplain of the current course of the Guadalquivir River, passing through the province of Jaen (Spain), using two techniques: electrical resistivity imaging (ERI) and ground-penetrating radar (GPR). Three areas have been selected. In one of these sectors (Los Barrios) there is an old quarry where there are excellent outcrops that allow for the calibration of the survey techniques. Facies associations on these outcrops are typical of meandering rivers with sequences of channel fills, lateral accretion of point-bars and floodplain facies. The usefulness of the two methods is analysed and compared as a support for stratigraphic and sedimentological studies. The geometry and lithofacies of subsurface deposits were characterised using ERI and compared with field observations. A total of 5 electrical resistivity imaging profiles were obtained. The changes in electric resistivity highlight granulometric differences in terrace sediments. This technique can thus be used to identify the morphology of these bodies, the lithofacies (silt, sand or gravel) and buried channel pattern. In addition, 16 GPR profiles using 100 and 250 MHz antennas were acquired, indicating terrace morphology and the filling of the sedimentary bodies in a more detailed manner than in ERI. The study thus allows for inferring the existence of channel migration, the lateral accretion of point bars and the presence of vertical accretion deposits attributable to the floodplains.

  13. Permafrost Changes along the Alaska Highway Corridor, Southern Yukon, from Ground Temperature Measurements and DC Electrical Resistivity Tomography

    Science.gov (United States)

    Duguay, M. A.; Lewkowicz, A. G.; Smith, S.

    2011-12-01

    A natural gas pipeline running across permafrost terrain from Prudhoe Bay, Alaska, through Canada to US markets was first proposed more than 30 years ago. In the intervening period, mean annual air temperatures in the region have risen by 0.5-1.0°C and it is probable that the ground has also warmed. Renewed interest in the pipeline has meant that information on permafrost and geotechnical conditions within the Alaska Highway Corridor of the southern Yukon must be updated for engineering design and the assessment of environmental impacts. To accomplish this goal, results from 1977-1981 drilling and ground temperature monitoring programs within the proposed pipeline corridor were used in combination with air photo analysis to select sites potentially sensitive to climate change. The sites are distributed across the extensive and sporadic discontinuous permafrost zones over a distance of 475 km between Beaver Creek and Whitehorse. To date, 11 targeted boreholes with permafrost have been found and cased to permit renewed ground temperature monitoring. By the end of summer 2011, it is expected that another 7 will have been instrumented. Measurable temperature increases relative to the 1970s are expected, except where values were previously just below 0°C. In the latter case, if the sites are still in permafrost, latent heat effects may have substantially moderated the temperature increase. Electrical resistivity tomography surveys are also being conducted to characterize the local permafrost distribution and geotechnical conditions. These 2D resistivity profiles will be used with the ground temperatures to examine current conditions and response to climate change and vegetation disturbance.

  14. PHYSICAL AND ELECTRICAL PROPERTIES ENHANCEMENT OF RARE-EARTH DOPED-POTASSIUM SODIUM NIOBATE (KNN: A REVIEW

    Directory of Open Access Journals (Sweden)

    Akmal Mat Harttat Maziati

    2015-06-01

    Full Text Available Alkaline niobate mainly potassium sodium niobate, (KxNa1-x NbO3 (abreviated as KNN has long attracted attention as piezoelectric materials as its high Curie temperature (Tc and piezoelectric properties. The volatility of alkaline element (K, Na is, however detrimental to the stoichiometry of KNN, contributing to the failure to achieve high-density structure and lead to the formation of intrinsic defects. By partially doping of several rare-earth elements, the inherent defects could be improved significantly. Therefore, considerable attempts have been made to develop doped-KNN based ceramic materials with high electrical properties. In this paper, these research activities are reviewed, including dopants type and doping role in KNN perovskite structure.

  15. The atmospheric electric global circuit. [thunderstorm activity

    Science.gov (United States)

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  16. Magnetization, Magnetocrystalline Anisotropy and the Crystalline Electric Field in Rare-Earth Al2 Compounds

    DEFF Research Database (Denmark)

    Purwins, H. -G.; Walker, E.; Barbara, B.;

    1974-01-01

    Magnetization measurements are reported for single crystals of PrAl2 in the range from 4.2K to 30K for magnetic fields up to 150 kOe applied in the (100), (110) and (111) directions. For these measurements, together with the magnetization results obtained earlier for TbAl2 the authors give...... a quantitative quantum mechanical description of the magnetization and the related magnetocrystalline anisotropy in terms of a cubic crystalline electric field and an isotropic exchange interaction. The parameters used in this description can be unified to good approximation to all REAl2 intermetallic compounds...

  17. Structural Analysis and Electrical Property of Tungsten Bronze Prepared by Rare Earth Gaseous Permeation

    Institute of Scientific and Technical Information of China (English)

    李中华; 李昕; 陈刚; 苏铭汉; 韦永德

    2004-01-01

    The cubic sodium tungsten bronzes, NaxWO3(x=0.854 and 0.814)were prepared by rare earths gaseous permeation method. Structural analysis was carried out by Rietveld method from powder X-ray diffraction data. The X-ray diffraction profile calculated with cubic P32 models are in good agreement with the observed X-ray diffraction patterns. There is only a little difference in W-O bond and Na-O bond between Na0.854WO3 and Na0.814WO3. Conductivity measurements indicate that NaxWO3 show anomalous semiconducting behavior and percolation model was used to interpret it.

  18. Mapping refuse profile in Singapore old dumping ground through electrical resistivity, S-wave velocity and geotechnical monitoring.

    Science.gov (United States)

    Yin, Ke; Tong, Huan Huan; Noh, Omar; Wang, Jing-Yuan; Giannis, Apostolos

    2015-03-01

    The purpose of this study was to track the refuse profile in Lorong Halus Dumping Ground, the largest landfill in Singapore, by electrical resistivity and surface wave velocity after 25 years of closure. Data were analyzed using an orthogonal set of plots by spreading 24 lines in two perpendicular geophone-orientation directions. Both geophysical techniques determined that refuse boundary depth was 13 ± 2 m. The refuse boundary revealed a certain degree of variance, mainly ascribed to the different principle of measurements, as well as the high heterogeneity of the subsurface. Discrepancy was higher in spots with greater heterogeneity. 3D analysis was further conducted detecting refuse pockets, leachate mounding and gas channels. Geotechnical monitoring (borehole) confirmed geophysical outcomes tracing different layers such as soil capping, decomposed refuse materials and inorganic wastes. Combining the geophysical methods with borehole monitoring, a comprehensive layout of the dumping site was presented showing the hot spots of interests.

  19. Estimation of submarine groundwater discharge from bulk ground electrical conductivity measurements

    Science.gov (United States)

    Stieglitz, Thomas; Rapaglia, John; Bokuniewicz, Henry

    2008-08-01

    The utility of bulk ground conductivity (BGC) measurements in the estimation of submarine groundwater discharge (SGD) was investigated at four sites covering a range of hydrogeological settings, namely Cockburn Sound (Australia); Shelter Island (USA); Ubatuba Bay (Brazil) and Flic-en-Flac Bay (Mauritius). At each of the sites, BGC was surveyed in the intertidal zone, and seepage meters were used for direct measurements of SGD flow rates. In the presence of detectable salinity gradients in the sediment, a negative correlation between SGD and BGC was recorded. The correlation is site-specific and is dependent on both the type of sediment and the mixing processes. For example, at Shelter Island the maximum mean flow rates were 65 cm d-1 at a BGC of ˜0 mS cm-1 while at Mauritius maximum mean flow rates were 364 cm d-1 at a BGC of ˜0 mS cm-1. BGC measurements are used to estimate SGD over a large scale, and to separate its fresh and saline components. Extrapolating BGC measurements throughout the study sites yields a total discharge of 2.91, 1.59, 7.16, and 25.4 103 m3 d-1 km-1 of shoreline with a freshwater fraction of 41, 24, 29, and 63% at Cockburn Sound, Shelter Island, Ubatuba Bay, and Flic-en-Flac Bay respectively. The results demonstrate that ground conductivity is a useful tracer to survey and separate freshwater and recirculated seawater component of SGD. The presented investigation is a subset within a series of experiments designed to compare different methods to investigate SGD co-organized and carried out by SCOR, LOICZ, IOC and IAEA.

  20. Studies of Geomagnetic Pulsations Using Magnetometer Data from the CHAMP Low-Earth-Orbit Satellite and Ground-Based Stations: a Review

    Directory of Open Access Journals (Sweden)

    P R Sutcliffe

    2011-06-01

    Full Text Available We review research on geomagnetic pulsations carried out using magnetic field measurements from the CHAMP low-Earth-orbit (LEO satellite and ground-based stations in South Africa and Hungary. The high quality magnetic field measurements from CHAMP made it possible to extract and clearly resolve Pi2 and Pc3 pulsations in LEO satellite data. Our analyses for nighttime Pi2 pulsations are indicative of a cavity mode resonance. However, observations of daytime Pi2 pulsation events identified in ground station data show no convincing evidence of their occurrence in CHAMP data. We also studied low-latitude Pc3 pulsations and found that different types of field line resonant structure occur, namely discrete frequencies driven by a narrow band source and L-dependent frequencies driven by a broad band source.

  1. A geological reconnaissance of electrical and electronic waste as a source for rare earth metals.

    Science.gov (United States)

    Mueller, Sandra R; Wäger, Patrick A; Widmer, Rolf; Williams, Ian D

    2015-11-01

    The mining of material resources requires knowledge about geogenic and anthropogenic deposits, in particular on the location of the deposits with the comparatively highest concentration of raw materials. In this study, we develop a framework that allows the establishment of analogies between geological and anthropogenic processes. These analogies were applied to three selected products containing rare earth elements (REE) in order to identify the most concentrated deposits in the anthropogenic cycle. The three identified anthropogenic deposits were characterised according to criteria such as "host rock", "REE mineralisation" and "age of mineralisation", i.e. regarding their "geological" setting. The results of this characterisation demonstrated that anthropogenic deposits have both a higher concentration of REE and a longer mine life than the evaluated geogenic deposit (Mount Weld, Australia). The results were further evaluated by comparison with the geological knowledge category of the United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources 2009 (UNFC-2009) to determine the confidence level in the deposit quantities. The application of our approach to the three selected cases shows a potential for recovery of REE in anthropogenic deposits; however, further exploration of both potential and limitations is required.

  2. 融合Google Earth的无人机遥控遥测地面站设计%Design of UAV Remote Telemetry Ground Control Station Using Google Earth

    Institute of Scientific and Technical Information of China (English)

    叶文辉; 王琪; 马璐

    2014-01-01

    According to the requirement of flight monitoring and control of UAV, this paper put forward a design of UAV remote telemetry ground control station software. The UAV remote telemetry ground control station software, which consists of five parts including system debugging, route planning, flight monitoring, video capturing and data replaying. Based on Google Earth COM API secondary development and Visual C++6.0 development environment, it uses modular design concept, serial communication, virtual aviation instrument, and vedio capturing technology to develop.%针对无人机飞行监测和控制的要求,设计了一款飞行监测和控制的无人机遥控遥测地面站系统软件.无人机遥控遥测地面站系统软件包括系统调试、航迹规划、飞行监测、视频捕捉和数据回放等功能模块,融合Google Earth COM API二次开发技术基础上运用Visual C++6.0作为系统开发环境,采用模块化理念并嵌入串口通信技术、虚拟航空仪表技术、视频捕捉技术等进行软件开发.

  3. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    Science.gov (United States)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  4. An Optimum Space-to-Ground Communication Concept for CubeSat Platform Utilizing NASA Space Network and Near Earth Network

    Science.gov (United States)

    Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel Chitra

    2016-01-01

    National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA). A study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper presents details of the simulation and analysis that include CubeSat swarm, daughter ship/mother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRSS Multiple Access (MA) array vs Single Access mode, notional transceiver/antenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter ship/mother ship CubeSat constellation inter-satellite cross link. Results of space science X-band 10 MHz maximum achievable data rate study are summarized. CubeSat NEN Ka-Band end-to-end communication analysis is provided. Current CubeSat communication technologies capabilities are presented. Compatibility test of the CubeSat transceiver through NEN and SN is discussed. Based on the analyses, signal trade studies and technology assessments, the desired CubeSat transceiver features and operation concepts for future CubeSat end-to-end communications are derived.

  5. An Optimum Space-to-Ground Communication Concept for CubeSat Platform Utilizing NASA Space Network and Near Earth Network

    Science.gov (United States)

    Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel, Chitra

    2016-01-01

    National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA).A Study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper will present details of the simulation and analysis that include CubeSat swarm, daughter shipmother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRS Multiple Access (MA) array vs Single Access mode, notional transceiverantenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter mother CubeSat constellation inter-satellite crosslink. Results of Space Science X-band 10 MHz maximum achievable data rate study will be summarized. Assessment of Technology Readiness Level (TRL) of current CubeSat communication technologies capabilities will be presented. Compatibility test of the CubeSat transceiver through NEN and Space Network (SN) will be discussed. Based on the analyses, signal trade studies and technology assessments, the functional design and performance requirements as well as operation concepts for future CubeSat end-to-end communications will be derived.

  6. Results from ground-based observations of asteroid 2012 DA_{14} during its close approach to the Earth on February 15, 2013

    Science.gov (United States)

    de Leon, J.; Pinilla-Alonso, N.; Ortiz, J.; Cabrera-Lavers, A.; Alvarez-Candal, A.; Morales, N.; Duffard, R.; Santos-Sanz, P.; Licandro, J.; Perez-Romero, A.; Lorenzi, V.; Cikota, S.

    2014-07-01

    Near-Earth asteroid 2012 DA_{14} (hereafter DA_{14}) made its closest approach to the Earth on February 15, 2013, when it passed at a distance of 27,700 km from the Earth's surface. DA_{14} was discovered only one year before the approach. This fact, together with its small size, made a good characterization of the body very difficult. However, it was the first time an asteroid of moderate size (˜45 m estimated before the approach) was predicted to come that close to the Earth, becoming bright enough to permit a detailed study from ground-based telescopes. With the aim of collecting the most varied and useful information, we designed and carried out an observational campaign that involved 5 ground-based telescopes located in 4 different Spanish observatories. Visible colors and spectra were obtained using the 10.4-m Gran Telescopio Canarias (GTC) at the ''El Roque de los Muchachos'' Observatory (ORM) and the 2.2-m CAHA telescope in Calar Alto Observatory (Almeria); near-infrared colors were obtained using the 3.6-m Telescopio Nazionale Galileo, located also at the ORM; time-series photometry was obtained using the f/3 0.77-m telescope at La Hita Observatory (Toledo) and the f/8 1.5-m telescope at the Sierra Nevada Observatory (Granada, Spain). The analysis of the data confirmed that this NEA can be classified as an L-type asteroid with an estimated geometric albedo of p_V = 0.44 ± 0.20. L-type asteroids are not very common and most of them display unusual characteristics that indicate that their surfaces could be covered by a mixture of high- and low-albedo particles, as it is detected on some carbonaceous chondrites (CV3 and CO3). We found the asteroid to be quite elongated and very irregular, with an equivalent diameter of 18 m, less than a half of the former estimation. This suggests that close approaches of objects as small as DA_{14} are 4 times more frequent per year than it was thought before (once every 40 years). The rotational period of the object was

  7. Effect of Rare Earth Elements (Er, Ho) on Semi-Metallic Materials (ScN) in an Applied Electric Field

    Science.gov (United States)

    Kim, Hyunjung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2012-01-01

    The development of materials and fabrication technology for field-controlled spectrally active optics is essential for applications such as membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras and flat-panel displays. The dopants of rare earth elements, in a host of optical systems, create a number of absorption and emission band structures and can easily be incorporated into many high quality crystalline and amorphous hosts. In wide band-gap semiconductors like ScN, the existing deep levels can capture or emit the mobile charges, and can be ionized with the loss or capture of the carriers which are the fundamental basis of concept for smart optic materials. The band gap shrinkage or splitting with dopants supports the possibility of this concept. In the present work, a semi-metallic material (ScN) was doped with rare earth elements (Er, Ho) and tested under an applied electric field to characterize spectral and refractive index shifts by either Stark or Zeeman Effect. These effects can be verified using the UV-Vis spectroscopy, the Hall Effect measurement and the ellipsometric spectroscopy. The optical band gaps of ScN doped with Er and doped with Ho were experimentally estimated as 2.33eV and 2.24eV ( 0.2eV) respectively. This is less than that of undoped ScN (2.5 0.2eV). The red-shifted absorption onset is a direct evidence for the decrease of band gap energy (Eg), and the broadening of valence band states is attributable to the doping cases. A decrease in refractive index with an applied field was observed as a small shift in absorption coefficient using a variable angle spectroscopic ellipsometer. In the presence of an electric field, mobile carriers are redistributed within the space charge region (SCR) to produce this electro-refractive effect. The shift in refractive index is also affected by the density and location of deep potential wells within the SCR. In addition, the microstructure change was observed by a TEM

  8. Design of a Free and Open Source Data Processing, Archiving, and Distribution Subsystem for the Ground Receiving Station of the Philippine Scientific Earth Observation Micro-Satellite

    Science.gov (United States)

    Aranas, R. K. D.; Jiao, B. J. D.; Magallon, B. J. P.; Ramos, M. K. F.; Amado, J. A.; Tamondong, A. M.; Tupas, M. E. A.

    2016-06-01

    The Philippines's PHL-Microsat program aims to launch its first earth observation satellite, DIWATA, on the first quarter of 2016. DIWATA's payload consists of a high-precision telescope (HPT), spaceborne multispectral imager (SMI) with liquid crystal tunable filter (LCTF), and a wide field camera (WFC). Once launched, it will provide information about the Philippines, both for disaster and environmental applications. Depending on the need, different remote sensing products will be generated from the microsatellite sensors. This necessitates data processing capability on the ground control segment. Rather than rely on commercial turnkey solutions, the PHL-Microsat team, specifically Project 3:DPAD, opted to design its own ground receiving station data subsystems. This paper describes the design of the data subsystems of the ground receiving station (GRS) for DIWATA. The data subsystems include: data processing subsystem for automatic calibration and georeferencing of raw images as well as the generation of higher level processed data products; data archiving subsystem for storage and backups of both raw and processed data products; and data distribution subsystem for providing a web-based interface and product download facility for the user community. The design covers the conceptual design of the abovementioned subsystems, the free and open source software (FOSS) packages used to implement them, and the challenges encountered in adapting the existing FOSS packages to DIWATA GRS requirements.

  9. DESIGN OF A FREE AND OPEN SOURCE DATA PROCESSING, ARCHIVING, AND DISTRIBUTION SUBSYSTEM FOR THE GROUND RECEIVING STATION OF THE PHILIPPINE SCIENTIFIC EARTH OBSERVATION MICRO-SATELLITE

    Directory of Open Access Journals (Sweden)

    R. K. D. Aranas

    2016-06-01

    Full Text Available The Philippines’s PHL-Microsat program aims to launch its first earth observation satellite, DIWATA, on the first quarter of 2016. DIWATA’s payload consists of a high-precision telescope (HPT, spaceborne multispectral imager (SMI with liquid crystal tunable filter (LCTF, and a wide field camera (WFC. Once launched, it will provide information about the Philippines, both for disaster and environmental applications. Depending on the need, different remote sensing products will be generated from the microsatellite sensors. This necessitates data processing capability on the ground control segment. Rather than rely on commercial turnkey solutions, the PHL-Microsat team, specifically Project 3:DPAD, opted to design its own ground receiving station data subsystems. This paper describes the design of the data subsystems of the ground receiving station (GRS for DIWATA. The data subsystems include: data processing subsystem for automatic calibration and georeferencing of raw images as well as the generation of higher level processed data products; data archiving subsystem for storage and backups of both raw and processed data products; and data distribution subsystem for providing a web-based interface and product download facility for the user community. The design covers the conceptual design of the abovementioned subsystems, the free and open source software (FOSS packages used to implement them, and the challenges encountered in adapting the existing FOSS packages to DIWATA GRS requirements.

  10. 建筑电气安装及接地技术研究%Explore the Building Electrical Installation and Grounding Technology

    Institute of Scientific and Technical Information of China (English)

    刘劲松

    2014-01-01

    This article from the perspective of building elec-trical instal ation to analysis the basic principle and the key links of building electrical instal ation, and then discusses the main grounding technologies in the process of building electr-ical instal ation, in order to provide some meaningful reference for the construction electrical instal ation.%本文从建筑电气安装的角度,分析了建筑电气安装的一些基本的原理和关键环节,进而论述了建筑电气安装过程中的主要的接地技术,以期能够为建筑电气的安装提供有意义的借鉴。

  11. Mapping a Pristine Glaciofluvial Aquifer on the Canadian Shield Using Ground-Penetrating Radar and Electrical Resistivity Tomography

    Science.gov (United States)

    Graves, L. W.; Shirokova, V.; Bank, C.

    2013-12-01

    Our study aims to construct a 3D structural model of an unconfined pristine aquifer in Laurentian Hills, Ontario, Canada. The stratigraphy of the study site, which covers about 5400 square meters, features reworked glaciofluvial sands and glacial till on top of Canadian Shield bedrock. A network of 25 existing piezometers provides ground-truth. We used two types of geophysical surveys to map the water table and the aquifer basin. Ground-penetrating radar (GPR) collected 40 profiles over distances up to 140 meters using 200MHz and 400MHz antennas with a survey wheel. The collected radargrams show a distinct reflective layer, which can be mapped to outcrops of glacial till within the area. This impermeable interface forms the aquitard. Depths of the subsurface features were calculated using hyperbolic fits on the radargrams in Matlab by determining wave velocity then converting measured two-way-time to depth. Electrical resistivity was used to determine the water table elevations because the unconfined water table did not reflect the radar waves. 20 resistivity profiles were collected in the same area using Wenner-Alpha and dipole-dipole arrays with both 24 and 48 electrodes and for 0.5, 0.75, 1.0 and 2.0 meter spacing. The inverted resistivity models show low resistivity values (resistivity values (2000-6000 Ohm.m) above 1 to 2 meter depths. These contrasting resistivity values correspond to saturated and wet sand (lower resistivity) to dry sand (higher resistivity); a correlation we could verify with several bore-hole logs. The water table is marked on the resistivity profiles as a steep resistivity gradient, and the depth can be added to the comprehensive 3D model. This model also incorporates hydrogeological characteristics and geochemical anomalies found within the aquifer. Ongoing seasonal and annual monitoring of the aquifer using geophysical methods will bring a fourth dimension to our understanding of this dynamic system. GPR Profile with Glacial Till

  12. Assessment of MTI Water Temperature Retrievals with Ground Truth from the Comanche Peak Steam Electric Station Cooling Lake

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.J.

    2002-12-09

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at the Squaw Creek reservoir at the Comanche Peak Steam Electric Station near Granbury Texas. Temperatures calculated for thirty-four images covering the period May 2000 to March 2002 are compared with water temperatures measured at 10 instrumented buoy locations supplied by the Savannah River Technology Center. The data set was used to examine the effect of image quality on temperature retrieval as well as to document any bias between the sensor chip arrays (SCA's). A portion of the data set was used to evaluate the influence of proximity to shoreline on the water temperature retrievals. This study found errors in daytime water temperature retrievals of 1.8 C for SCA 2 and 4.0 C for SCA 1. The errors in nighttime water temperature retrievals were 3.8 C for SCA 1. Water temperature retrievals for nighttime appear to be related to image quality with the largest positive bias for the highest quality images and the largest negative bias for the lowest quality images. The daytime data show no apparent relationship between water temperature retrieval error and image quality. The average temperature retrieval error near open water buoys was less than corresponding values for the near-shore buoys. After subtraction of the estimated error in the ground truth data, the water temperature retrieval error was 1.2 C for the open-water buoys compared to 1.8 C for the near-shore buoys. The open-water error is comparable to that found at Nauru.

  13. Impacts to Electric Power Grid Infrastructures From the Violent Sun-Earth Connection Events of October-November 2003

    Science.gov (United States)

    Kappenman, J. G.

    2004-05-01

    The solar flare activity of October-November 2003 reached historic intensity levels and produced several large Earth-directed CME's that had the potential to cause historically large geomagnetic storms as well. These CME's did cause various geomagnetic storm indices, particularly the regional K and Planetary Kp index, to reach maximum levels for many hours. However, the resulting geomagnetic storms, while causing isolated and important disruptions to power grids, were not of historically large size when considering the rate-of-change of regional geomagnetic fields in many locations. Impacts to power grids are caused by large dB/dt variations in regional geomagnetic fields, in most cases the peak geomagnetic disturbance intensities (in nT/min) were only a fraction of what has occurred during historically large geomagnetic storm events. A review will be provided of the CME passages and features of the passage that drove resulting geomagnetic storm events and impacts to electric power grid infrastructures on October 29-30, 2003. A brief overview of the geomagnetic storm disturbance morphologies and intensities relative to other noteworthy storms will also be provided.

  14. Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method

    Science.gov (United States)

    Nikumbh, A. K.; Pawar, R. A.; Nighot, D. V.; Gugale, G. S.; Sangale, M. D.; Khanvilkar, M. B.; Nagawade, A. V.

    2014-04-01

    Pure nanoparticles of the rare-earth substituted cobalt ferrites CoRExFe2-xO4 (where RE=Nd, Sm and Gd and x=0.1 and 0.2) were prepared by the chemical co-precipitation method. X-ray diffraction, Transmission electron microscopy (TEM), d.c. electrical conductivity, Magnetic hysteresis and Thermal analysis are utilized in order to study the effect of variation in the rare-earth substitution and its impact on particle size, magnetic properties like MS, HC and Curie temperature. The phase identification of the materials by X-ray diffraction reveals the single-phase nature of the materials. The lattice parameter increased with rare-earth content for x≤0.2. The Transmission electron micrographs of Nd-, Sm- and Gd-substituted CoFe2O4 exhibit the particle size 36.1 to 67.8 nm ranges. The data of temperature variation of the direct current electrical conductivity showed definite breaks, which corresponds to ferrimagnetic to paramagnetic transitions. The thermoelectric power for all compound are positive over the whole range of temperature. The dielectric constant decreases with frequency and rare-earth content for the prepared samples. The magnetic properties of rare-earth substituted cobalt ferrites showed a definite hysteresis loop at room temperature. The reduction of coercive force, saturation magnetization, ratio MR/MS and magnetic moments may be due to dilution of the magnetic interaction.

  15. Estimating the power law distribution of Earth electrical conductivity from low-frequency, controlled-source electromagnetic responses

    Science.gov (United States)

    Beskardes, G. D.; Weiss, C. J.; Everett, M. E.

    2016-11-01

    Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Quantifying the relationship between multiscale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. We present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, supporting the notion of a "rough geology" exhibiting multi-scale hierarchical structure. Bounded by end member cases from homogenized isotropic and anisotropic media, we present numerical modeling results of the electromagnetic responses of textured and spatially-correlated, stochastic geologic media, demonstrating that the electromagnetic response is a power law distribution, rather than a smooth response polluted with random, incoherent noise as commonly assumed. Our modeling results show that these electromagnetic responses due to spatially-correlated geologic textures are examples of fractional Brownian motion. Furthermore, our results suggest that the fractal behavior of the electromagnetic responses is correlated with degree of the spatial correlation, the contrasts in ground conductivity, and the preferred orientation of small-scale heterogeneity. In addition, the EM responses acquired across a fault zone comprising different lithological units and varying wavelengths of geologic heterogeneity also support our inferences from numerical modeling.

  16. Estimating the power-law distribution of Earth electrical conductivity from low-frequency, controlled-source electromagnetic responses

    Science.gov (United States)

    Beskardes, G. D.; Weiss, C. J.; Everett, M. E.

    2017-02-01

    Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Quantifying the relationship between multiscale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. We present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, supporting the notion of a `rough geology' exhibiting multiscale hierarchical structure. Bounded by end member cases from homogenized isotropic and anisotropic media, we present numerical modelling results of the electromagnetic responses of textured and spatially correlated, stochastic geologic media, demonstrating that the electromagnetic response is a power law distribution, rather than a smooth response polluted with random, incoherent noise as commonly assumed. Our modelling results show that these electromagnetic responses due to spatially correlated geologic textures are examples of fractional Brownian motion. Furthermore, our results suggest that the fractal behaviour of the electromagnetic responses is correlated with degree of the spatial correlation, the contrasts in ground conductivity, and the preferred orientation of small-scale heterogeneity. In addition, the EM responses acquired across a fault zone comprising different lithological units and varying wavelengths of geologic heterogeneity also support our inferences from numerical modelling.

  17. Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth

    Directory of Open Access Journals (Sweden)

    Minerva Singh

    2015-04-01

    Full Text Available This study develops a modelling framework for utilizing very high-resolution (VHR aerial imagery for monitoring stocks of above-ground biomass (AGB in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM, Gabor wavelets and Fourier-based textural ordination (FOTO were used in conjunction with two different machine learning (ML-based regression techniques (support vector regression (SVR and random forest (RF regression. These methods were implemented on both 50-cm resolution Digital Globe data extracted from Google Earth™ (GE and 8-cm commercially obtained VHR imagery. This study further examines the role of forest biophysical parameters, such as ground-measured canopy cover and vertical canopy height, in explaining AGB distribution. Three models were developed using: (i horizontal canopy variables (i.e., canopy cover and texture variables plus vertical canopy height; (ii horizontal variables only; and (iii texture variables only. AGB was variable across the site, ranging from 51.02 Mg/ha to 356.34 Mg/ha. GE-based AGB estimates were comparable to those derived from commercial aerial imagery. The findings demonstrate that novel use of this array of texture-based techniques with GE imagery can help promote the wider use of freely available imagery for low-cost, fine-resolution monitoring of forests parameters at the landscape scale.

  18. 接地开关电动操动机构的研发与结构设计研究%Grounding Switch Electric Operating Mechanism Research and Structure Design Research

    Institute of Scientific and Technical Information of China (English)

    李小平

    2014-01-01

    With the development of the electric power industry, the high voltage switch equipment also got great development. Parts of the high voltage switch disconnected or grounding switch in the closing switch points, used for gear transmission structure or screw the two transmission ways. The two transmission ways to switch design put forward higher request, only the design more perfect switch electric operating mechanism, to provide support for the drive way. In addition, the modern distribution system and power system is becoming more and more high to the requirement of switchgear, so, must accelerate the earthing switch electric operation, promote the earthing switch in many aspects, such as monitoring, control and protection of intelligent, improve the accuracy of the grounding switch electric operating mechanism and reliability.%随着电力事业的发展,高压开关设备也得到了很大的发展。高压开关中的部分隔离开关或接地开关在进行开关分合闸时,使用了传动结构为齿轮或丝杆的两种传动方式。这两种传动方式对开关设计提出了更高的要求,只有设计出更完善的开关电动操动机构,才能为这种传动方式提供支撑。此外,现代配电系统和用电系统对开关设备的要求也越来越高,所以,必须要加速接地开关的电动操作,促进接地开关在监测、控制和保护等诸多方面的智能化,提高接地开关电动操作机构的准确性和可靠程度。

  19. A ground-based radio frequency inductively coupled plasma apparatus for atomic oxygen simulation in low Earth orbit.

    Science.gov (United States)

    Huang, Yongxian; Tian, Xiubo; Yang, Shiqin; Chu, Paul K

    2007-10-01

    A radio frequency (rf) inductively coupled plasma apparatus has been developed to simulate the atomic oxygen environment encountered in low Earth orbit (LEO). Basing on the novel design, the apparatus can achieve stable, long lasting operation, pure and high density oxygen plasma beam. Furthermore, the effective atomic oxygen flux can be regulated. The equivalent effective atomic oxygen flux may reach (2.289-2.984) x 10(16) at.cm(2) s at an oxygen pressure of 1.5 Pa and rf power of 400 W. The equivalent atomic oxygen flux is about 100 times than that in the LEO environment. The mass loss measured from the polyimide sample changes linearly with the exposure time, while the density of the eroded holes becomes smaller. The erosion mechanism of the polymeric materials by atomic oxygen is complex and involves initial reactions at the gas-surface interface as well as steady-state material removal.

  20. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  1. Dynamics of domain walls with lines in rare-earth orthoferrites in magnetic and electric fields with exchange relaxation processes taken into account

    Science.gov (United States)

    Ekomasov, E. G.

    2003-08-01

    The influence of exchange relaxation on the dynamics of domain walls with a "fine structure" in rare-earth orthoferrites in the presence of external magnetic and electric fields is investigated. A system of differential equations is obtained which describe the dynamics of a domain wall with a solitary line. The dependence of the steady-state velocity of the domain wall and line on the values of the relaxation parameters and on the components of the magnetic and electric fields is found. The results are compared with the known experimental results.

  2. Ground-based Transit Observation of the Habitable-zone Super-Earth K2-3d

    Science.gov (United States)

    Fukui, Akihiko; Livingston, John; Narita, Norio; Hirano, Teruyuki; Onitsuka, Masahiro; Ryu, Tsuguru; Kusakabe, Nobuhiko

    2016-12-01

    We report the first ground-based transit observation of K2-3d, a 1.5 R ⊕ planet supposedly within the habitable zone around a bright M-dwarf host star, using the Okayama 188 cm telescope and the multi(grz)-band imager MuSCAT. Although the depth of the transit (0.7 mmag) is smaller than the photometric precisions (1.2, 0.9, and 1.2 mmag per 60 s for the g, r, and z bands, respectively), we marginally but consistently identify the transit signal in all three bands, by taking advantage of the transit parameters from K2, and by introducing a novel technique that leverages multi-band information to reduce the systematics caused by second-order extinction. We also revisit previously analyzed Spitzer transit observations of K2-3d to investigate the possibility of systematic offsets in transit timing, and find that all the timing data can be explained well by a linear ephemeris. We revise the orbital period of K2-3d to be 44.55612 ± 0.00021 days, which corrects the predicted transit times for 2019, i.e., the era of the James Webb Space Telescope, by ∼80 minutes. Our observation demonstrates that (1) even ground-based, 2 m class telescopes can play an important role in refining the transit ephemeris of small-sized, long-period planets, and (2) a multi-band imager is useful to reduce the systematics of atmospheric origin, in particular for bluer bands and for observations conducted at low-altitude observatories.

  3. Medium - long term earthquake prediction by the use of the oscillating electric field (T = 365 days) generated due to Earth's orbit around the Sun and due to its consequent oscillating lithospheric deformation

    CERN Document Server

    Thanassoulas, C; Tsailas, P; Verveniotis, G; Zymaris, N

    2009-01-01

    We study the Earth's electric field monitored at PYR (Greece) monitoring site, for a period of more than six years (May 23rd, 2003 to September 7th, 2009). It is compared, in particular its oscillating component of T = 365 days, with the Perihelion - Aphelion dates of the Earth's orbit around the Sun, with the same component of the Earth's magnetic field, with the corresponding same period tidal oscillation and with the occurred large EQs of the same period of time. The obtained results suggest that the oscillating electric field component is generated by large scale piezoelectricity triggered by the Earth's shape - lithospheric oscillating deformation. The driving mechanism (yearly tidal variation) precedes the Aphelion - Perihelion dates for a month complying with the corresponding tidal friction behavior of the Earth's shape deformation. The Earth's oscillating electric field peaks coincide with the Perihelion - Aphelion dates while the triggered large EQs are clustered very close to the Perihelion - Aphel...

  4. Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates

    Science.gov (United States)

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N.; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-10-01

    The metal-insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal-insulator transition in terms of bond disproportionation.

  5. Relationship of ground-level aerosol concentration and atmospheric electric field at three observation sites in the Arctic, Antarctic and Europe

    Science.gov (United States)

    Kubicki, Marek; Odzimek, Anna; Neska, Mariusz

    2016-09-01

    Aerosol number concentrations in the particle size range from 10 nm to 1 μm and vertical electric field strength in the surface layer was measured between September 2012 and December 2013 at three observation sites: mid-latitude station Swider, Poland, and, for the first time, in Hornsund in the Arctic, Spitsbergen, and the Antarctic Arctowski station in the South Shetland Islands. The measurements of aerosol concentrations have been performed simultaneously with measurements of the electric field with the aim to assess the local effect of aerosol on the electric field Ez near the ground at the three stations which at present form a network of atmospheric electricity observatories. Measurements have been made regardless of weather conditions at Swider and Arctowski station and mostly on fair-weather days at Hornsund station. The monthly mean particle number concentrations varied between 580 and 2100 particles cm- 3 at Arctowski, between 90 and 1270 particles cm- 3 in Hornsund, and between 6700 and 14,000 particles cm- 3 in the middle latitude station Swider. Average diurnal variations of the ground-level electric field Ez and particle number concentrations in fair-weather conditions were independent of each other for Arctowski and Hornsund stations. At Swider station the diurnal variation is usually characterized by an increase of aerosol concentration in the evening which results in the increased electric field. The assumption of neglecting the influence of varying aerosol concentration on the variation of the electric field in the polar regions, often adopted in studies, is confirmed here by the observations at Arctowski and Hornsund. The results of aerosol observations are also compared with modelled aerosol concentrations for global atmospheric electric circuit models.

  6. Low Earth orbit journey and ground simulations studies point out metabolic changes in the ESA life support organism Rhodospirillum rubrum

    Science.gov (United States)

    Mastroleo, Felice; Leys, Natalie; Benotmane, Rafi; Vanhavere, Filip; Janssen, Ann; Hendrickx, Larissa; Wattiez, Ruddy; Mergeay, Max

    MELiSSA (Micro-Ecological Life Support System Alternative) is a project of closed regenerative life support system for future space flights developed by the European Space Agency. It consists of interconnected processes (i.e. bioreactors, higher plant compartments, filtration units,..) targeting the total recycling of organic waste into oxygen, water and food. Within the MELiSSA loop, the purple non-sulfur alpha-proteobacterium R. rubrum ATCC25903 is used to convert fatty acids released from the upstream raw waste digesting reactor to CO2 and biomass, and to complete the mineralization of aminoacids into NH4+ that will be forwarded to the nitrifying compartment. Among the numerous challenges of the project, the functional stability of the bioreactors in long term and under space flight conditions is of paramount importance for the efficiency of the life support system and consequently the crew safety. Therefore, the physiological and metabolic changes induced by space flight were investigated for R. rubrum. The bacterium grown on solid medium during 2 different 10-day space flights to the ISS (MES- SAGE2, BASE-A experiments) were compared to cells grown on Earth 1 g gravity or modeled microgravity and normal Earth radiation or simulated space flight radiation conditions in order to relate each single stress to its respective cellular response. For simulating the radiation environment, pure gamma and neutron sources were combined, while simulation of changes in gravity where performed using the Random Positioning Machine technology. Transcriptome analysis using R. rubrum total genome DNA-chip showed up-regulation of genes involved in oxidative stress response after a 10-day mission inside the ISS, without loss of viability. As an example, alkyl hydroperoxide reductase, thioredoxin reductase and bacterioferritin genes are least 2 fold induced although the radiation dose experienced by the bacterium (4 mSv) is very low compared to its radiotolerance (D10 = 100 Sv

  7. Seismicity observed, at Methoni seismogenic area, Greece, after the analysis of the recorded Earth_s electric field of 21/2/2008_ 22/2/2008, at PYR, ATH and HIO monitoring sites, Greece

    CERN Document Server

    Thanassoulas, Constantine

    2008-01-01

    The seismicity, which took place at the Methoni seismogenic area, in the time period of 20/2/2008 - 10/4/2008, is analyzed in terms of its location, time of occurrence and magnitude. Furthermore, it is compared to the tidal (T=14 days, T=1 day) lithospheric oscillation and to the epicentral area suggested by the analysis of the Earth_s electric field registered on 21-22/2/2008 by PYR, ATH and HIO monitoring sites. Moreover, a comparison is made between the actual seismic energy released, during the same time period (20/2/2008 - 10/4/2008) in this specific seismogenic region and the suggested one by the probabilistic single seismic event suggested that could occur in the time period of 28/2_ 1/3/2008. The overall analysis of the Methoni seismic event reveals the validity of the used physical models: of the lithospheric oscillation, of the lithospheric seismic energy release and the one of the homogeneous Earth used for the azimuthal intensity vector analysis of the preseismic electric signals (Thanassoulas, 20...

  8. Earth modeling and estimation of the local seismic ground motion due to site geology in complex volcanoclastic areas

    Directory of Open Access Journals (Sweden)

    V. Di Fiore

    2002-06-01

    Full Text Available Volcanic areas often show complex behaviour as far as seismic waves propagation and seismic motion at surface are concerned. In fact, the finite lateral extent of surface layers such as lava flows, blocks, differential welding and/or zeolitization within pyroclastic deposits, introduces in the propagation of seismic waves effects such as the generation of surface waves at the edge, resonance in lateral direction, diffractions and scattering of energy, which tend to modify the amplitude as well as the duration of the ground motion. The irregular topographic surface, typical of volcanic areas, also strongly influences the seismic site response. Despite this heterogeneity, it is unfortunately a common geophysical and engineering practice to evaluate even in volcanic environments the subsurface velocity field with monodimensional investigation method (i.e. geognostic soundings, refraction survey, down-hole, etc. prior to the seismic site response computation which in a such cases is obviously also made with 1D algorithms. This approach often leads to highly inaccurate results. In this paper we use a different approach, i.e. a fully 2D P-wave Çturning rayÈ tomographic survey followed by 2D seismic site response modeling. We report here the results of this approach in three sites located at short distance from Mt. Vesuvius and Campi Flegrei and characterized by overburdens constituted by volcanoclastic deposits with large lateral and vertical variations of their elastic properties. Comparison between 1D and 2D Dynamic Amplification Factor shows in all reported cases entirely different results, both in terms of peak period and spectral contents, as expected from the clear bidimensionality of the geological section. Therefore, these studies suggest evaluating carefully the subsoil geological structures in areas characterized by possible large lateral and vertical variations of the elastic properties in order to reach correct seismic site response

  9. The impact and societal benefits of using earth observation for ground water policies in the agricultural sector

    Science.gov (United States)

    Pearlman, Francoise; Bernknopf, Richard; Pearlman, Jay; Rigby, Michael

    2017-04-01

    Assessment of the impact and societal benefit of Earth Observation (EO) is a multidisciplinary task that involves the social, economic and environmental knowledge to formulate indicators and methods. The value of information (VOI) of EO is based on case studies that document the value in use of the information in a specific decision. A case study is an empirical inquiry investigating a phenomenon. It emphasizes detailed contextual analysis of a limited number of events or conditions and their relationships. Quantitative estimates of the benefits and costs of the geospatial information derived from EO data document and demonstrate its economic value. A case study was completed to examine some of the technical perspectives of adapting and coupling satellite imagery and in situ water quality measurements to forecast changes in groundwater quality in the agricultural sector in Iowa. The analysis was conducted to identify the ability of EO to assist in improving agricultural land management and regulation of balancing production and groundwater contamination. The Iowa case study described the application of Landsat data in a land adaptation strategy to maintain agricultural production and groundwater water quality. Results demonstrated that Landsat information facilitates spatiotemporal analysis of the impact of nitrates (fertilizer application) on groundwater resources and that crop production could be retained while groundwater quality is maintained. To transition to the operational use of the geospatial information, the Landsat data should be applied in a use case where Interaction of various stakeholders within a decision process are addressed. The objective is to design implementation experiments of a system from the user's and contributor's perspective, and to communicate system behavior in their terms. A use case requires communication of system requirements, how the system operates and may be used, the roles that all participants play and what value the user

  10. Occupational exposure to electric and magnetic fields during tasks at ground or floor level at 110 kV substations in Finland

    Science.gov (United States)

    Korpinen, Leena; Pääkkönen, Rauno

    2016-01-01

    The aim was to investigate occupational exposure to electric and magnetic fields during tasks at ground or floor level at 110 kV substations in Finland and to compare the measured values to Directive 2013/35/EU. Altogether, 347 electric field measurements and 100 magnetic field measurements were performed. The average value of all electric fields was 2.3 kV/m (maximum 6.4 kV/m) and that of magnetic fields was 5.8 µT (maximum 51.0 µT). It can be concluded that the electric and magnetic field exposure at ground or floor level is typically below the low action levels of Directive 2013/35/EU. The transposition of the directive will not create new needs to modify the work practice of the evaluated tasks, which can continue to be performed as before. However, for workers with medical implants, the exposure may be high enough to cause interference. PMID:27075421

  11. Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Nikumbh, A.K., E-mail: aknik@chem.unipune.ac.in; Pawar, R.A.; Nighot, D.V.; Gugale, G.S.; Sangale, M.D.; Khanvilkar, M.B.; Nagawade, A.V.

    2014-04-15

    Pure nanoparticles of the rare-earth substituted cobalt ferrites CoRE{sub x}Fe{sub 2−x}O{sub 4} (where RE=Nd, Sm and Gd and x=0.1 and 0.2) were prepared by the chemical co-precipitation method. X-ray diffraction, Transmission electron microscopy (TEM), d.c. electrical conductivity, Magnetic hysteresis and Thermal analysis are utilized in order to study the effect of variation in the rare-earth substitution and its impact on particle size, magnetic properties like M{sub S}, H{sub C} and Curie temperature. The phase identification of the materials by X-ray diffraction reveals the single-phase nature of the materials. The lattice parameter increased with rare-earth content for x≤0.2. The Transmission electron micrographs of Nd-, Sm- and Gd-substituted CoFe{sub 2}O{sub 4} exhibit the particle size 36.1 to 67.8 nm ranges. The data of temperature variation of the direct current electrical conductivity showed definite breaks, which corresponds to ferrimagnetic to paramagnetic transitions. The thermoelectric power for all compound are positive over the whole range of temperature. The dielectric constant decreases with frequency and rare-earth content for the prepared samples. The magnetic properties of rare-earth substituted cobalt ferrites showed a definite hysteresis loop at room temperature. The reduction of coercive force, saturation magnetization, ratio M{sub R}/M{sub S} and magnetic moments may be due to dilution of the magnetic interaction.

  12. Lightning rod ionizing natural ionca - Ionic electrode active trimetallictriac of grounding - Definitive and total solution against 'blackouts' and electrical faults generated by atmospheric charges (lightning)

    Energy Technology Data Exchange (ETDEWEB)

    Cabareda, Luis

    2010-09-15

    The Natural Ionizing System of Electrical Protection conformed by: Lightning Rod Ionizing Natural Ionca and Ionic Electrode Active Trimetallic Triac of Grounding offers Total Protection, Maximum Security and Zero Risk to Clinics, Hospitals, Integral Diagnostic Center, avoiding ''the burning'' of Electronics Cards; Refineries, Tanks and Stations of Fuel Provision; Electrical Substations, Towers and Transmission Lines with transformer protection, motors, elevators, A/C, mechanicals stairs, portable and cooling equipment, electrical plants, others. This New High Technology is the solution to the paradigm of Benjamin Franklin and it's the mechanism to end the 'Blackouts' that produces so many damages and losses throughout the world.

  13. Exploring an Earth-sized neighbor: ground-based transmission spectroscopy of GJ1132b, a rocky planet transiting a small nearby M-dwarf

    Science.gov (United States)

    Diamond-Lowe, Hannah; Berta-Thompson, Zachory K.; Charbonneau, David; Irwin, Jonathan; Newton, Elisabeth R.; Dittmann, Jason

    2017-01-01

    The terrestrial planets of the Solar System are rocky worlds that did not accrete envelopes of hydrogen and helium, but instead possess thin secondary atmospheres, or no atmosphere at all. Until recently, most exoplanet atmospheric studies have centered around hot Jupiters, for which high planet-to-star radius ratios and short orbital periods allowed for observable transmission spectra. Now we have the opportunity to probe the atmosphere of a small, rocky exoplanet. GJ1132b has a radius of 1.2 Earth radii and a mass of 1.6 Earth masses, and orbits an M-dwarf 12 parsecs away. Determining the composition of GJ1132b's atmosphere is essential to understanding the nature of atmospheric evolution on terrestrial planets. We observed five transits of GJ1132b using the Magellan Clay telescope with the LDSS3C multi-object spectrograph. We compare the transit depth of GJ1132b in wavelength bins ranging from 0.65 -- 1.04 microns to infer whether or not GJ1132b has maintained its primordial hydrogen-dominated atmosphere. Should we find evidence of a hydrogen-dominated atmosphere, this would imply that a terrestrial planet is able to accrete and retain a low mean-molecular weight atmosphere from the planetary nebula. Coupled with recent UV spectra of the host star, our results can clarify the process of atmospheric escape on terrestrial worlds, with implications for formation histories of M-dwarf planets and the potential for habitability in these systems. If instead GJ1132b possesses a low mean-molecular weight atmosphere, we look to future observations with JWST and the ground-based extremely large telescopes to characterize its atmosphere.This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program. This work was made possible by a grant from the John Templeton Foundation.

  14. To theory of tornado formation: mass condensation into droplets, their polarization by the Earth electric fields and rotation by magnetic field

    CERN Document Server

    Perel'man, Mark E

    2009-01-01

    Vapor condensation with removing of latent heat by emission of characteristic frequencies allows fast droplets formation in big volumes, which becomes possible with spatial redistribution and spreading of condensation nuclei and ions formed in long lightning traces. Droplets in the vertical Earth electric fields will be polarized and dipoles will be oriented; at movements in the Earth magnetic field they will be torqued into horizontal plane. The estimations show that the teamwork of these phenomena leads to formation of tropic cyclones, which can decay in regions with reduced fields and non supersaturated vapor. The suggested theory can be verified by examination of fields' intensity and radiations: the characteristic, mainly IR radiating of latent heat and emission of the 150 kHz range at approaching of water dipoles to drops.

  15. Static electric multipole susceptibilities of the relativistic hydrogen-like atom in the ground state: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    CERN Document Server

    Szmytkowski, Radosław

    2016-01-01

    The ground state of the Dirac one-electron atom, placed in a weak, static electric field of definite $2^{L}$-polarity, is studied within the framework of the first-order perturbation theory. The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30 (1997) 825, erratum: 30 (1997) 2747] is used to derive closed-form analytical expressions for various far-field and near-nucleus static electric multipole susceptibilities of the atom. The far-field multipole susceptibilities --- the polarizabilities $\\alpha_{L}$, electric-to-magnetic cross-susceptibilities $\\alpha_{\\mathrm{E}L\\to\\mathrm{M}(L\\mp1)}$ and electric-to-toroidal-magnetic cross-susceptibilities $\\alpha_{\\mathrm{E}L\\to\\mathrm{T}L}$ --- are found to be expressible in terms of one or two non-terminating generalized hypergeometric functions ${}_{3}F_{2}$ with the unit argument. Counterpart formulas for the near-nucleus multipole susceptibilities --- the electric nuclear shielding constants $\\sigma_{\\mathrm{E}L\\to\\m...

  16. Measured electric and magnetic fields from an unusual cloud-to-ground lightning flash containing two positive strokes followed by four negative strokes

    Science.gov (United States)

    Jerauld, J. E.; Uman, M. A.; Rakov, V. A.; Rambo, K. J.; Jordan, D. M.; Schnetzer, G. H.

    2009-10-01

    We present electric and magnetic fields measured at multiple stations between about 300 and 800 m of a cloud-to-ground "bipolar" lightning flash containing two initial positive strokes, separated in time by 53 ms and striking ground at two locations separated by about 800 m, followed by four negative strokes that traversed the same path as the second positive stroke. The leader electric field durations for the positive first, positive second, and negative third strokes were about 120 ms, 35 ms, and 1 ms, respectively. The first-stroke leader electric field changes measured at five stations ranged from about +16 to +35 kV/m, the second stroke +8 to +13 kV/m, and the third stroke -0.9 to -1.8 kV/m (atmospheric electricity sign convention). The microsecond-scale return stroke waveforms of the first and second (positive) strokes exhibited a similar "slow-front/fast-transition" to those observed for close negative first strokes. The peak rate-of-change of the positive first stroke electric field normalized to 100 km was about 20 V m-1μs-1, similar to the values observed for close negative first strokes. The positive second stroke was followed by a long continuing current of duration at least 400 ms, while the positive first stroke had a total current duration of only about 1 ms. All four negative strokes were followed by long continuing current, with durations ranging from about 70 ms to about 230 ms. The overall flash duration was about 1.5 s.

  17. Several issues in protective earth impedance measurement of medical electrical equipment%医用电气设备的保护接地阻抗测试

    Institute of Scientific and Technical Information of China (English)

    韩晓鹏; 梁振士; 任新颖; 魏红霞

    2015-01-01

    Several issues in protective earth impedance measurement of medical electrical equipment are addressed in this article. It is intended to help the test engineers to understand the requirements of the standard much better and perform the test correctly.%本文阐述了医用电气设备保护接地阻抗测试中需要注意的几个问题,旨在帮助测试人员更好地理解标准要求并进行正确的测试。

  18. Detecting spectrally localized components of lunar tide-frequency in time-series of the electric field vertical component of the earth atmosphere boundary layer

    CERN Document Server

    Isakevich, V V; Isakevich, D V

    2016-01-01

    Using the signal eigenvectors and components analyser (Grunskaya L.V., Isakevich V.V., Isakevich D.V. the RF Utility Model Patent 116242 of 30.09.2011) made it possible to detect non-coherent complex-period components localized at lunar tide frequencies in the time-series of the electric field vertical component of the Earth atmosphere boundary layer. The detected components are unobservable by means of spectral analysis quadrature scheme. The probability of the detected effects being pseudo-estimates is not more than 0.00025

  19. Electrical resistivity and thermal conductivity of hcp Fe-Ni alloys under high pressure: Implications for thermal convection in the Earth's core

    Science.gov (United States)

    Gomi, Hitoshi; Hirose, Kei

    2015-10-01

    We measured the electrical resistivity of Fe-Ni alloys (iron with 5, 10, and 15 wt.% nickel) using four-terminal method in a diamond-anvil cell up to 70 GPa at 300 K. The results demonstrate that measured resistivity increases linearly with increasing nickel impurity concentration, as predicted by the Matthiessen's rule. The impurity resistivity is predominant at ambient temperature; the incorporation of 5 wt.% nickel into iron doubles the electrical resistivity at 60 GPa. Such impurity effect becomes minor at high temperature of the Earth's core because of the resistivity "saturation". We also calculated that >0.9 TW heat flow is necessary at the top of the inner core for thermal convection in the inner core. It requires the CMB heat flow of ∼30 TW, which is much higher than recent estimates of 5-15 TW. This means that purely thermal convection does not occur in the inner core.

  20. Design of a grounding network in electrical substations. Materials and formulas the most used; Diseno de redes de tierra en subestaciones electricas. Materiales y formulas mas utilizadas

    Energy Technology Data Exchange (ETDEWEB)

    Raull Martin, J. [Facultad de Ingenieria, UNAM, Mexico, D.F. (Mexico)

    2000-09-01

    The purpose of this paper is to present a summarized version of the different types of construction of grounding systems, as well as their materials and formulas, which are necessary and useful for the design and building of a grounding network for medium to high voltage facilities. A description is also made of how to determine the electrical resistivity of subsoil layers with different physical characteristics. Several illustrative examples are also solved in the paper. [Spanish] El proposito de este articulo es presentar de manera resumida los diferentes tipos de construccion de los sistemas de tierra, asi como sus materiales y formulas, los cuales son necesarios y utiles para el diseno y edificacion de una red de tierra para instalaciones de mediana y alta tension. Se describe tambien la obtencion de las diferentes resistividades que presenta los terrenos con diversas caracteristicas fisicas. Asimismo, se solucionan ejercicios ilustrativos a lo largo del articulo.

  1. Methodology for evaluating the grounding system in electrical substations; Metodologia para la evaluacion del sistema de puesta a tierra en subestaciones electricas

    Energy Technology Data Exchange (ETDEWEB)

    Torrelles Rivas, L.F [Universidad Nacional Experimental Politecnica: Antonio Jose de Sucre (UNEXPO), Guayana, Bolivar (Venezuela)]. E-mail: torrellesluis@gmail.com; Alvarez, P. [Petroleos de Venezuela S.A (PDVSA), Maturin, Monagas (Venezuela)]. E-mail: alvarezph@pdvsa.com

    2013-03-15

    The present work proposes a methodology for evaluating grounding systems in electrical substations from medium and high voltage, in order to diagnose the state of the elements of the grounding system and the corresponding electrical variables. The assessment methodology developed includes a visual inspection phase to the elements of the substation. Then, by performing measurements and data analysis, the electrical continuity between the components of the substation and the mesh ground is verified, the soil resistivity and resistance of the mesh. Also included in the methodology the calculation of the step and touch voltage of the substation, based on the criteria of the International IEEE standards. We study the case of the 115 kV Pirital Substation belonging to PDVSA Oriente Transmission Network. [Spanish] En el presente trabajo se plantea una metodologia para la evaluacion de sistemas de puesta a tierra en subestaciones electricas de media y alta tension, con la finalidad de diagnosticar el estado de los elementos que conforman dicho sistema y las variables electricas correspondientes. La metodologia de evaluacion desarrollada incluye una fase de inspeccion visual de los elementos que conforman la subestacion. Luego, mediante la ejecucion de mediciones y analisis de datos, se verifica la continuidad electrica entre los componentes de la subestacion y la malla de puesta a tierra, la resistividad del suelo y resistencia de la malla. Se incluye tambien en la metodologia el calculo de las tensiones de paso y de toque de la subestacion, segun lo fundamentado en los criterios de los estandares Internacionales IEEE. Se estudia el caso de la Subestacion Pirital 115 kV perteneciente a la Red de Transmision de PDVSA Oriente.

  2. Accuracy of EAARL lidar ground elevations using a bare-earth algorithm in marsh and beach grasses on the Chandeleur Islands, Louisiana

    Science.gov (United States)

    Doran, Kara S.; Sallenger, Asbury H.; Reynolds, Billy J.; Wright, C. Wayne

    2010-01-01

    The NASA Experimental Advanced Airborne Lidar (EAARL) is an airborne lidar (light detection and ranging) instrument designed to map coastal topography and bathymetry. The EAARL system has the capability to capture each laser-pulse return over a large signal range and can digitize the full waveform of the backscattered energy. Because of this ability to capture the full waveform, the EAARL system can map features such as coral reefs, beaches, coastal vegetation, and trees, where extreme variations in the laser backscatter are caused by different physical and optical characteristics. Post-processing of the EAARL data is accomplished using the Airborne Lidar Processing System (ALPS) (Nayegandhi and others, 2009). In ALPS, the waveform of the lidar is analyzed and split into first and last returns. The 'first returns' are indicative of vegetation-canopy height, or bare ground in the absence of vegetation, whereas 'last returns' typically represent 'bare-earth' elevations under vegetation. To test the accuracy of the first-return and bare-earth EAARL data, topographic and vegetation height surveys were conducted in the Chandeleur Islands, concurrent with an EAARL lidar survey and an aerial oblique-photographic survey from September 20 to 27, 2006. The Chandeleur Islands are a north-south-oriented chain of low-lying islands located approximately 100 kilometers east of the city of New Orleans, Louisiana. The islands are narrow north-south strips of land with marsh on the landward (west sides) and sandy beaches on their gulfward (east sides). Prior to Hurricane Katrina, which made landfall at Buras, Louisiana, as a Category 3 storm on August 29, 2005, prominent, 3- to 4-meter-high sand dunes were present in the northern Chandeleurs. The storm removed them, leaving post-storm island elevations of generally less than 2 meters above 0.0 NAVD88. This report is part of a study of the impact of Hurricane Katrina on the Chandeleur Islands using pre-storm and post-storm lidar

  3. Variations in electric and meteorological parameters in the near-Earth's atmosphere at Kamchatka during the solar events in October 2003

    Science.gov (United States)

    Smirnov, S. E.; Mikhailova, G. A.; Kapustina, O. V.

    2014-03-01

    The diurnal variations in the electric conductivity, electric-field strength, and meteorological parameters in the near-Earth's atmosphere during the solar events in October 21-31, 2003, have been studied. It has been indicated that the conductivity and electric-field strength strongly depend on the air temperature and humidity. It has been found that the conductivity increased for 2 days before the geomagnetic storm on October 29-30 as a result of the effect of solar cosmic rays and decreased during a Forbush decrease in galactic cosmic rays, which was accompanied by a corresponding increase in the electric-field strength. It has been found that the air temperature and humidity anomalously increased in the process of solar activity, which resulted in the formation of different clouds, including thunderclouds accompanied by thunderstorm processes and showers. Simultaneous disturbances of the regular meteorological processes, solar flare series, and emission intensification in the near ultraviolet band, and visible and infrared spectral regions make it possible to consider these processes as a source of additional energy inflow into the lower atmosphere.

  4. A new experimental approach for characterizing the internal trapped charge and electric field build up in ground-coated insulators during their e sup - irradiation

    CERN Document Server

    Jbara, O; Belhaj, M; Cazaux, J; Rau, E I; Filippov, M; Andrianov, M V

    2002-01-01

    An original method is proposed to investigate the dynamical trapping properties of bulk insulators during their irradiation by keV electrons when they are coated with a grounded metallic film. This method is based on the measurement of the displacement current and it allows to evaluate time constants for charging and discharging the dielectric as well as to evaluate the electric field build up and trapped charge density below the coating. This method is illustrated by the estimate of the charging and discharging time constants in e sup - irradiated PMMA and the estimate of the magnitude of the electric field which drives the migration of the mobile ions in e sup - irradiated glasses.

  5. Electric grounding for ENEA (Italy) seismic array. Impianto di terra nelle stazioni sismometriche dell'ENEA

    Energy Technology Data Exchange (ETDEWEB)

    Cervellati, R.; Vitiello, F.

    1985-04-01

    The paper describes the earthing system employed to shield the ENEA (Italian Commission for Nuclear and Alternative Energies) seismic stations from atmospheric discharges. The system was used for the seismic arrays of Southern Latium and Brasimone, Italy. The initial implementation of this system was carried out with excellent results.

  6. Theoretical Electric Dipole Moments and Dissociation Energies for the Ground States of GaH-BrH

    Science.gov (United States)

    Pettersson, Lars G. M.; Langhoff, Stephen R.

    1986-01-01

    Reliable experimental diople moments are available for the ground states of SeH and BrH whereas no values have been reported for GaH and AsH a recently reported experimental dipole moment for GeH of 1.24 + or -0.01 D has been seriously questioned, and a much lower value of, 0.1 + or - 0.05 D, suggested. In this work, we report accurate theoretical dipole moments, dipole derivatives, dissociation energies, and spectroscopic constants (tau(sub e), omega(sub e)) for the ground states of GaH through BrH.

  7. Ferroelectricity of domain walls in rare earth iron garnet films.

    Science.gov (United States)

    Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K

    2016-11-16

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  8. Ferroelectricity of domain walls in rare earth iron garnet films

    Science.gov (United States)

    Popov, A. I.; Zvezdin, K. A.; Gareeva, Z. V.; Mazhitova, F. A.; Vakhitov, R. M.; Yumaguzin, A. R.; Zvezdin, A. K.

    2016-11-01

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  9. Ground-based instrumentation for measurements of atmospheric conduction current and electric field at the South Pole

    Science.gov (United States)

    Byrne, G. J.; Benbrook, J. R.; Bering, E. A.; Few, A. A.; Morris, G. A.; Trabucco, W. J.; Paschal, E. W.

    1993-01-01

    Attention is given to instruments constructed to measure the atmospheric conduction current and the atmospheric electric field - two fundamental parameters of the global-electric circuit. The instruments were deployed at the Amundsen-Scott South Pole Station in January 1991 and are designed to operate continuously for up to one year without operator intervention. The atmospheric current flows into one hemisphere, through the electronics where it is measured, and out the other hemisphere. The electric field is measured by a field mill of the rotating dipole type. Sample data from the first days of operation at the South Pole indicate variations in the global circuit over time scales from minutes to hours to days.

  10. Thunderstorm activity in early Earth: same estimations from point of view a role of electric discharges in formation of prebiotic conditions

    Science.gov (United States)

    Serozhkin, Yu.

    2008-09-01

    Introduction The structure and the physical parameters of an early Earth atmosphere [1], most likely, played a determining role in formation of conditions for origin of life. The estimation of thunderstorm activity in atmosphere of the early Earth is important for understanding of the real role of electrical discharges during formation of biochemical compounds. The terrestrial lightning a long time are considered as one of components determining a physical state and chemical structure of an atmosphere. Liebig in 1827 has considered a capability of nitrogen fixation at discharges of lightning [2]. Recent investigations (Lamarque et al. 1996) have achieved that production rate of NOx due to lightning at 3·106 ton/year [3]. The efficiency of electric discharges as energy source for synthesis of low molecular weight organic compounds is explained by the several factors. To them concern effect of optical radiation, high temperature, shock waves and that is especially important, pulse character of these effects. The impulse impact is essentially reduced the probability of destruction of the formed compounds. However, for some reasons is not clear the real role of electric discharges in synthesis of biochemical compounds. The discharges used in experiments on synthesis of organic substances, do not remind the discharges observable in a nature. One more aspect of a problem about a role of electric discharges in forming pre-biotic conditions on the Earth is connected with the thunderstorm activity in a modern atmosphere. This activity is connected with the presence in an atmosphere of ice crystals and existing gradient of temperature. To tell something about a degree of thunderstorm activity during the early Earth, i.e. that period, when formed pre-biotic conditions were is very difficult. Astrobiological potential of various discharges First of all the diversity of electric discharges in terrestrial atmosphere (usual lightning, lightning at eruption of volcanoes

  11. Ground-penetrating radar and electrical resistivity tomography for mapping bedrock topography and fracture zones: a case study in Viru-Nigula, NE Estonia

    Directory of Open Access Journals (Sweden)

    Ivo Sibul

    2017-06-01

    Full Text Available The Geological Base Map (GBM, presenting an elongated buried valley running beneath the Varudi bog, triggered the geophysical studies near Viru-Nigula borough in northeastern Estonia. After the Geological Survey of Estonia had compiled the GBM map set, the course and extent of the valley still remained indistinct. Principally the morphology of the Varudi valley had been determined just by one borehole characterizing the 30 m thick Quaternary succession within the valley. The thickness of Quaternary sediments is, however, just a few metres in adjacent boreholes. We used ground-penetrating radar and electrical resistivity tomography (ERT for acquiring extra knowledge about the extent and morphology of the Varudi structure. Ground-penetrating radar enabled us to specify the thickness and composition of Quaternary deposits, and to recognize dislocations of the bedrock blocks. As the radar images provided information on the topmost ~4 m only, ERT (Wenner and Wenner–Schlumberger arrays was applied to define deeper, down to 40 m, electrical resistivity anomalies. The ERT studies revealed two fracture zones where regular Ordovician carbonate beds have been crushed and replaced by Quaternary sediments. The Varudi valley coincides with the southern zone. Both fracture zones probably acted as groundwater flow channels and sediment pathways in the Late Pleistocene, and hence supported the creation of the Varudi bog.

  12. Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance

    Science.gov (United States)

    Soil salinity is recognized worldwide as a major threat to agriculture, particularly in arid and semi-arid regions. Farmers and decision makers need updated and accurate maps of salinity in agronomically and environmentally relevant ranges (i.e., salinity is measured as electrical...

  13. Temperature dependent piezoelectric response and strain-electric-field hysteresis of rare-earth modified bismuth ferrite ceramics

    DEFF Research Database (Denmark)

    Walker, Julian; Ursic, Hana; Bencan, Andreja

    2016-01-01

    materials for use at elevated temperatures. However, the influence of the specific RE species on the electromechanical behavior at high temperatures and above the coercive electric-field is not widely reported. Here, structural analysis over multiple length scales using X-ray diffraction, transmission...

  14. An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    Energy Technology Data Exchange (ETDEWEB)

    Puttagunta, Srikanth [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Shapiro, Carl [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-04-01

    Building America research team Consortium for Advanced Residential Buildings (CARB) partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and lighting, appliance, and miscellaneous loads (LAMELs) through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and LAMELs.

  15. Methods and applications of electrical simulation in ground-water studies in the lower Arkansas and Verdigris River Valleys, Arkansas and Oklahoma

    Science.gov (United States)

    Bedinger, M.S.; Reed, J.E.; Wells, C.J.; Swafford, B.F.

    1970-01-01

    The Arkansas River Multiple-Purpose Plan will provide year-round navigation on the Arkansas River from near its mouth to Muskogee, Okla., and on the Verdigris River from Muskogee to Catoosa, Okla. The altered regimen in the Arkansas and Verdigris Rivers will affect ground-water conditions in the adjacent alluvial aquifers. In 1957 the U.S. Geological Survey and U.S. Army Corps of Engineers entered into a cooperative agreement for a comprehensive ground-water study of the lower Arkansas and Verdigris River valleys. At the request of the Corps of Engineers, the Geological Survey agreed to provide (1) basic ground-water data before, during, and after construction of the Multiple-Purpose Plan and (2) interpretation and projections of postconstruction ground-water conditions. The data collected were used by the Corps of Engineers in preliminary foundation and excavation estimates and by the Geological Survey as the basis for defining the hydrologic properties of, and the ground-water conditions in, the aquifer. The projections of postconstruction ground-water conditions were used by the Corps of Engineers in the planning, design, construction, and operation of the Multiple-Purpose Plan. Analysis and projections of ground-water conditions were made by use of electrical analog models. These models use the analogy between the flow of electricity in a resistance-capacitance circuit and the flow of a liquid in a porous and permeable medium. Verification provides a test of the validity of the analog to perform as the aquifer would, within the range of historic forces. The verification process consists of simulating the action of historic forces which have acted upon the aquifer and of duplicating the aquifer response with the analog. The areal distribution of accretion can be treated as an unknown and can be determined by analog simulation of the piezometric surface in an aquifer. Comparison of accretion with depth to piezometric surface below land surface shows that

  16. Ground-truthing electrical resistivity methods in support of submarine groundwater discharge studies: Examples from Hawaii, Washington, and California

    Science.gov (United States)

    Johnson, Cordell; Swarzenski, Peter W.; Richardson, Christina M.; Smith, Christopher G.; Kroeger, Kevin D.; Ganguli, Priya M.

    2015-01-01

    Submarine groundwater discharge (SGD) is an important conduit that links terrestrial and marine environments. SGD conveys both water and water-borne constituents into coastal waters, where these inflows may impact near-shore ecosystem health and sustainability. Multichannel electrical resistivity techniques have proven to be a powerful tool to examine scales and dynamics of SGD and SGD forcings. However, there are uncertainties both in data aquisition and data processing that must be addressed to maximize the effectiveness of this tool in estuarine or marine environments. These issues most often relate to discerning subtle nuances in the flow of electricity through variably saturated media that can also be highly conductive (i.e., seawater).

  17. A microbial fuel cell in contaminated ground delineated by electrical self-potential and normalized induced polarization data

    Science.gov (United States)

    Doherty, R.; Kulessa, B.; Ferguson, A. S.; Larkin, M. J.; Kulakov, L. A.; Kalin, R. M.

    2010-09-01

    There is a growing interest in the use of geophysical methods to aid investigation and monitoring of complex biogeochemical environments, for example delineation of contaminants and microbial activity related to land contamination. We combined geophysical monitoring with chemical and microbiological analysis to create a conceptual biogeochemical model of processes around a contaminant plume within a manufactured gas plant site. Self-potential, induced polarization and electrical resistivity techniques were used to monitor the plume. We propose that an exceptionally strong (>800 mV peak to peak) dipolar SP anomaly represents a microbial fuel cell operating in the subsurface. The electromagnetic and electrical geophysical data delineated a shallow aerobic perched water body containing conductive gasworks waste which acts as the abiotic cathode of microbial fuel cell. This is separated from the plume below by a thin clay layer across the site. Microbiological evidence suggests that degradation of organic contaminants in the plume is dominated by the presence of ammonium and its subsequent degradation. We propose that the degradation of contaminants by microbial communities at the edge of the plume provides a source of electrons and acts as the anode of the fuel cell. We hypothesize that ions and electrons are transferred through the clay layer that was punctured during the trial pitting phase of the investigation. This is inferred to act as an electronic conductor connecting the biologically mediated anode to the abiotic cathode. Integrated electrical geophysical techniques appear well suited to act as rapid, low cost sustainable tools to monitor biodegradation.

  18. Electrical transport mechanism in a newly synthesized rare earth double perovskite oxide Sr{sub 2}CeTaO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Bharti, Chandrahas, E-mail: bharti.chandrahas@gmail.com [Sensor and Actuator Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja SC Mullick Road, Kolkata 700032 (India); Chanda, Sadhan; Sinha, T.P. [Department of Physics, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2013-01-15

    A rare earth double perovskite oxide strontium cerium tantalate, Sr{sub 2}CeTaO{sub 6} (SCT) is synthesized by the solid state reaction technique for the first time. The determination of lattice parameters and the identification of phase are carried out by the Rietveld refinement method (RRM) using the Fullprof program in the space group P2{sub 1}/n (C{sup 5}{sub 2h}). A structure of SCT is obtained from RRM. The bond angle and bond length are calculated and listed in Table 1 for SCT. A small amount of impurity of CeO{sub 2} is found in the refinement with space group Fm3m. The scanning electron micrograph shows the average grain size {approx}2 {mu}m. The ac electrical property is investigated in the temperature range from 303 to 703 K and in the frequency range from 0.1 kHz to 1 MHz using impedance spectroscopy. The relaxation mechanism of SCT is explained in detail by fitting experimental impedance and electric modulus data with the modified Debye (Cole-Cole) model. The frequency-dependent electrical data are analyzed in the framework of the conductivity and modulus formalisms. The {sigma}{sub ac} data are fitted with Jonscher's universal power law. The dc conductivity ({sigma}{sub dc}) (calculated from {sigma}{sub ac}) follows an Arrhenius law with the estimated conduction activation energy =0.78 eV. The scaling behavior of imaginary part of electrical impedance (Z Double-Prime ) shows that the relaxation describes the same mechanism at various temperatures.

  19. Electrical resistivity of substitutionally disordered hcp Fe-Si and Fe-Ni alloys: Chemically-induced resistivity saturation in the Earth's core

    Science.gov (United States)

    Gomi, Hitoshi; Hirose, Kei; Akai, Hisazumi; Fei, Yingwei

    2016-10-01

    The thermal conductivity of the Earth's core can be estimated from its electrical resistivity via the Wiedemann-Franz law. However, previously reported resistivity values are rather scattered, mainly due to the lack of knowledge with regard to resistivity saturation (violations of the Bloch-Grüneisen law and the Matthiessen's rule). Here we conducted high-pressure experiments and first-principles calculations in order to clarify the relationship between the resistivity saturation and the impurity resistivity of substitutional silicon in hexagonal-close-packed (hcp) iron. We measured the electrical resistivity of Fe-Si alloys (iron with 1, 2, 4, 6.5, and 9 wt.% silicon) using four-terminal method in a diamond-anvil cell up to 90 GPa at 300 K. We also computed the electronic band structure of substitutionally disordered hcp Fe-Si and Fe-Ni alloy systems by means of Korringa-Kohn-Rostoker method with coherent potential approximation (KKR-CPA). The electrical resistivity was then calculated from the Kubo-Greenwood formula. These experimental and theoretical results show excellent agreement with each other, and the first principles results show the saturation behavior at high silicon concentration. We further calculated the resistivity of Fe-Ni-Si ternary alloys and found the violation of the Matthiessen's rule as a consequence of the resistivity saturation. Such resistivity saturation has important implications for core dynamics. The saturation effect places the upper limit of the resistivity, resulting in that the total resistivity value has almost no temperature dependence. As a consequence, the core thermal conductivity has a lower bound and exhibits a linear temperature dependence. We predict the electrical resistivity at the top of the Earth's core to be 1.12 ×10-6 Ωm, which corresponds to the thermal conductivity of 87.1 W/m/K. Such high thermal conductivity suggests high isentropic heat flow, leading to young inner core age (<0.85 Gyr old) and high initial

  20. Detecting components spectrally localized at astrophysical process frequencies in time series of the electric field vertical component of the earth atmosphere boundary layer

    CERN Document Server

    Grunskaya, L V; Isakevich, D V; Sushkova, L T

    2016-01-01

    Signal eigenvectors and components analyser (RF Utility model patent 116242) was used to explore the time-series of the electric field vertical component Ez in the Earth atmosphere boundary layer. There have been detected non-coherent complex-periodic components localized at the frequencies of gravity-wave impact of binary stars and at the frequency of axion-photon interaction. These components cannot be detected by means of quadrature scheme of spectral analysis and have RMS values from 0.05 V/m to 0.5 V/m at binary stars gravity-wave impact frequencies and from 0.7 V/m to 2.7 V/m at axion-photon interaction frequency. It was also demonstrated that the axion-photon interaction frequency modulates the amplitude

  1. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical power to continue communicating with its remote sensing satellite. This paper deals with simulation and optimal sizing of earth station power system using HOMER software. A combination of two energy sources (solar, and wind to provide a continuous electric power production is used to determine the optimum system operation. Three system configurations are compared with respect to the total net present cost (NPC and levelized cost of energy (COE. Also, economical study will be analyzed for energy demand and sensitivity analysis will be performed.

  2. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical power to continue communicating with its remote sensing satellite. This paper deals with simulation and optimal sizing of earth station power system using HOMER software. A combination of two energy sources (solar, and wind to provide a continuous electric power production is used to determine the optimum system operation. Three system configurations are compared with respect to the total net present cost (NPC and levelized cost of energy (COE. Also, economical study will be analyzed for energy demand and sensitivity analysis will be performed.

  3. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    Science.gov (United States)

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)).

  4. The electrical conductivity of the Earth's upper mantle as estimated from satellite measured magnetic field variations. Ph.D. Thesis

    Science.gov (United States)

    Didwall, E. M.

    1981-01-01

    Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.

  5. Electric Control System Grounding Analysis of Railway Heavy Duty Track Maintenance Machine%铁路大型养路机械电气控制系统接地分析

    Institute of Scientific and Technical Information of China (English)

    程连飞

    2011-01-01

    分析了铁路大型养路机械电气系统的接地方式,阐述了因接地不当对电气控制系统造成的影响,并提出了改进措施.合理的接地能够改善大型养路机械的作业精度,并提高电气控制系统的可靠性和稳定性.%Grounding styles of electric system for the railway heavy duty tracl maintenance machine were analyzed,and impac due to improper grounding as well as improving mesaures of electric control system was described.It was proved that resonable grounding can improve operation accuracy of the railway heavy duty track maintenance machine and the reliability and stability of the electric control system.

  6. Characterization of an earth-filled dam through the combined use of electrical resistivity tomography, P- and SH-wave seismic tomography and surface wave data

    Science.gov (United States)

    Cardarelli, E.; Cercato, M.; De Donno, G.

    2014-07-01

    The determination of the current state of buildings and infrastructures through non-invasive geophysical methods is a topic not yet covered by technical standards, since the application of high resolution geophysical investigations to structural targets is a relatively new technology. Earth-filled dam investigation is a typical engineering application of this type. We propose the integration of Electrical Resistivity Tomography and P- and SH-wave seismic measurements for imaging the geometry of the dam's body and the underlying soil foundations and to characterize the low strain elastic properties. Because S-wave velocity is closely tied to engineering properties such as shear strength, low-velocity zones in the S-wave velocity models are of particular interest. When acquiring seismic data on earth filled dams, it is not uncommon to encounter highly attenuative surface layers. If only lightweight seismic sources are available, the seismic data generally exhibit a narrow frequency bandwidth: the lack of high frequency components generally prevents from having good quality shallow reflections. If there is no possibility to increase the power as well as the frequency content of the seismic source, the integration of other seismic methods than reflection may be the only available way to achieve a reliable near surface seismic characterization. For these reasons, we combined P- and SH-wave tomography with Multichannel Analysis of Surface Waves to image the internal and the underlying soil foundations of an earth filled dam located in Central Italy. In the presence of moderate velocity contrasts, tomographic methods have proven successful in imaging near surface variations along both the horizontal and vertical directions. On the other hand, body wave propagation is severely affected by attenuation under the previously described conditions, so that the quality of picked traveltimes dramatically decreases with offset and, consequently, the tomographic investigation

  7. Electric field-induced giant strain and photoluminescence-enhancement effect in rare-earth modified lead-free piezoelectric ceramics.

    Science.gov (United States)

    Yao, Qirong; Wang, Feifei; Xu, Feng; Leung, Chung Ming; Wang, Tao; Tang, Yanxue; Ye, Xiang; Xie, Yiqun; Sun, Dazhi; Shi, Wangzhou

    2015-03-11

    In this work, an electric field-induced giant strain response and excellent photoluminescence-enhancement effect was obtained in a rare-earth ion modified lead-free piezoelectric system. Pr(3+)-modified 0.93(Bi0.5Na0.5)TiO3-0.07BaTiO3 ceramics were designed and fabricated by a conventional fabrication process. The ferroelectric, dielectric, piezoelectric, and photoluminescence performances were systematically studied, and a schematic phase diagram was constructed. It was found the Pr(3+) substitution induced a transition from ferroelectric a long-range order structure to a relaxor pseudocubic phase with short-range coherence structure. Around a critical composition of 0.8 mol % Pr(3+), a giant reversible strain of ∼0.43% with a normalized strain Smax/Emax of up to 770 pm/V was obtained at ∼5 kV/mm. Furthermore, the in situ electric field enhanced the photoluminescence intensity by ∼40% in the proposed system. These findings have great potential for actuator and multifunctional device applications, which may also open up a range of new applications.

  8. Effects of Rare-Earth La2O3 Addition on Microstructures and Electrical Properties of SrTiO3 Varistor-Capacitor Dual Functional Ceramics

    Institute of Scientific and Technical Information of China (English)

    Ji Huiming; Li Cuixia; Meng Hui; Gan Guoyou; Yan Jikang

    2005-01-01

    The effects of rare-earth La2O3 addition on microstructures and electrical properties of SrTiO3 ceramics were investigated. Semiconductor SrTiO3-based voltage-sensing and dielectric dual functional ceramics was prepared by a single step sintering technology in this study, and the effects of the content of La2O3 on characteristics of the product were discussed in terms of microstructures and electrical properties of materials. The results show that SrTiO3-based ceramics doped with La2O3 exhibits more homogeneous grain distribution, greater grain size, and excellent voltage sensing and dielectric characteristics than those without La2O3 doping. The samples doped with 1.1% La2O3 were sintered at 1420 ℃ in N2+C weak reducing atmosphere. The average grain size of the samples doped with La2O3 is 40 μm, the breakdown voltage of 19.7 V*mm-1, the nonlinear exponent of 7.2, and dielectric constant of 22500. The results reveal that final products are suitable to use in low operating voltage.

  9. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    OpenAIRE

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N.; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-01-01

    The metal-insulator transitions and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here, taking a NdNiO3 thin film as a representative example, we utilize a combination of x-ray absorption and resonant inelastic x-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of the rare-earth nickelates...

  10. Ground-based Radar Detection of Near-Earth Asteroids%近地小行星地基雷达探测研究现状

    Institute of Scientific and Technical Information of China (English)

    张翔; 季江徽

    2014-01-01

    Ground-based radar detection may act as a powerful means to determine the shape and physical properties of the asteroids in our Solar system. By measuring time delay and doppler frequency of the received echoes, radar systems provide information in ranging and radial velocity of the asteroids. Over the past few decades, more than 500 asteroids (mostly near-Earth ob jects) were detected using radar observations. There are two categories of radar detection: (1) The continuous wave detection, which is adopted to determine the roughness of an asteroid’s surface. (2) The delay-Doppler de-tection,which is likely to produce its three-dimensional model, and to define the rotational state. In the delay-Doppler detection, target asteroids are resolved in line-of-sight distance and line-of-sight velocity, providing two-dimensional images with spatial resolution as fine as meter-scale. Besides radar detection, several other techniques would also provide the shape model of the asteroids, among which the lightcurve inverse method is the most popular one to do that. In comparison with other methods, radar observation may have an advantage on spacial resolution. The lightcurves cannot reveal elaborate information on small features, and the intermediate-scale features of the inversed model are only suggestive. By contrast, radar detection produces resolved images. In this review, we present the radar observation technique and the method for recon-structing three-dimensional models of asteroids from radar measurements. In addition, we also provide several examples of asteroid models by radar detection, and then compare them with other observations for the shape reconstruction for the asteroids.%地基雷达探测是研究太阳系中小行星的重要方法。雷达探测主要有两种方式:(1)连续波探测,可得到小行星表面的粗糙度等参数;(2)延迟多普勒探测,用于反演小行星的三维形状模型并确定自转轴状态。与其他探测方法

  11. Electric field modulation of the tetragonal domain orientation revealed in the magnetic ground state of quantum paraelectric EuTiO3

    Science.gov (United States)

    Petrović, A. P.; Kato, Y.; Sunku, S. S.; Ito, T.; Sengupta, P.; Spalek, L.; Shimuta, M.; Katsufuji, T.; Batista, C. D.; Saxena, S. S.; Panagopoulos, C.

    2013-02-01

    We present a study of the thermodynamic and magnetic properties of single-crystal EuTiO3. Signatures of metastability are visible in the heat capacity below the cubic-tetragonal phase transition at 283 K, supporting the evidence for a mismatch between long and short range structural order from previous x-ray diffraction studies. Employing the anisotropic magnetization as an indirect structural probe, we confirm the emergence of multiple orthogonal domains at low temperature. Torque magnetometry is capable of revealing the nature and temperature dependence of the magnetic anisotropy in spite of the domain misalignment; we hence deduce that tetragonal EuTiO3 enters an easy-axis antiferromagnetic phase at 5.6 K, with a first-order phase transition to an easy-plane ground state below 3 K. Our experimentally determined magnetic phase diagram is accurately reproduced by a three-dimensional (3D) anisotropic Heisenberg spin model. Furthermore, we demonstrate that electric field cooling acts to suppress this orientational disorder by realigning the domains due to the strong coupling between electric fields and lattice dipoles characteristic of paraelectric materials.

  12. Modeling the high-latitude ground response to the excitation of the ionospheric MHD modes by atmospheric electric discharge

    Science.gov (United States)

    Fedorov, E.; Mazur, N.; Pilipenko, V.; Baddeley, L.

    2016-11-01

    The ionospheric Alfvén resonator (IAR) and fast magnetosonic (FMS) waveguide, which can trap the electromagnetic wave energy in the range from fractions of Hz to several Hz, are characteristic features of the upper ionosphere. Their role in the electromagnetic impulsive coupling between atmospheric discharge processes and the ionosphere can be elucidated with a proper model. The presented model is based on numerical solution of coupled wave equations for electromagnetic modes in the ionosphere and atmosphere in a realistic ionosphere modeled with the use of IRI (International Reference Ionosphere) vertical profiles. The geomagnetic field is supposed to be nearly vertical, so the model can be formally applied to high latitudes, though the main features of ground ULF structure will be qualitatively similar at middle latitudes as well. The modeling shows that during the lightning discharge a coupled wave system comprising IAR and MHD waveguide is excited. Using the model, the spatial structure, frequency spectra, and polarization parameters have been calculated at various distances from a vertical dipole. In the lightning proximity (about several hundred kilometer) only the lowest IAR harmonics are revealed in the radial magnetic component spectra. At distances >800 km the multiband spectral structure is formed predominantly by harmonics of FMS waveguide modes. The model predictions do not contradict the results of search coil magnetometer observations on Svalbard; however, the model validation demands more dedicated experimental studies.

  13. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    Science.gov (United States)

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-06-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields.

  14. Soil bulk electrical resistivity and forage ground cover: nonlinear models in an alfalfa (Medicago sativa L. case study

    Directory of Open Access Journals (Sweden)

    Roberta Rossi

    2015-12-01

    Full Text Available Alfalfa is a highly productive and fertility-building forage crop; its performance, can be highly variable as influenced by within-field soil spatial variability. Characterising the relations between soil and forage- variation is important for optimal management. The aim of this work was to model the relationship between soil electrical resistivity (ER and plant productivity in an alfalfa (Medicago sativa L. field in Southern Italy. ER mapping was accomplished by a multi-depth automatic resistivity profiler. Plant productivity was assessed through normalised difference vegetation index (NDVI at 2 dates. A non-linear relationship between NDVI and deep soil ER was modelled within the framework of generalised additive models. The best model explained 70% of the total variability. Soil profiles at six locations selected along a gradient of ER showed differences related to texture (ranging from clay to sandy-clay loam, gravel content (0 to 55% and to the presence of a petrocalcic horizon. Our results prove that multi-depth ER can be used to localise permanent soil features that drive plant productivity.

  15. Technique for determining the channel expansion rate at the stage of electrical breakdown using a grounded intercepting ring

    Science.gov (United States)

    Apollonov, V. V.; Pletnev, N. V.

    2016-11-01

    A method is described that allows one to study the conductivity dynamics of a channel produced by explosion of a wire at the stage of electrical breakdown. Experimental data have been presented for the expansion rate of the conductivity channel in extended (up to 1.9 m long) arbitrarily shaped gapes that were produced by an exploding copper wire 90 µm in diameter. The initial stored energy and applied voltage were, respectively, 2.7-3.7 kJ and 8-10 kV. It has been shown that the expansion rate of the conductivity channel coincides with the propagation rate of a shock wave and is inversely proportional to the square root of its radius and propagation time. The radius of the shock wave is a linear function of the square root of its propagation rate. Experimental data are in satisfactory agreement with the calculated results obtained by Lin [18] in terms of the model of an intense shock wave. It has been shown that the diameter of the conductivity channel depends on the position of the trailing edge of the shock wave.

  16. Band structure and electrical properties of MBE grown HfO{sub 2} - based alkaline earth Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Dudek; Grzegorz, Lupina; Grzegorz, Kozlowski; Jarek, Dabrowski; Gunther, Lippert; Hans-Joachim, Muessig; Thomas, Schroeder [IHP-Microelectronics, Frankfurt, Oder (Germany); Dieter, Schmeisser [BTU, Cottbus (Germany)

    2010-07-01

    Ultra thin dielectric films (<20 nm) deposited on TiN electrodes are interesting for MIM capacitor application. High capacitance density and dielectric permittivity must be accompanied by extremely low leakage currents (10{sup -8} A/cm{sup 2}) at bias 0.5 V. To achieve such low leakage currents, high band gap and proper band alignment is required. Occupied electronic states can be probed with standard laboratory photoemission methods. Probing of unoccupied states is more challenging. Synchrotron based PES in combination with XAS forms a powerful method to study the band alignment. ASAM end station located at the U 49/2 PGM 2 beamline of BESSY II (Berlin) offers excellent conditions for performing such measurements. We investigated HfO{sub 2} - based alkaline earth perovskite - BaHfO{sub 3} with subsequent admixture of TiO{sub 2}, resulting in formation of BaHf{sub 0.5}Ti{sub 0.5}O{sub 3} compound. The analysis of data indicates that band gap for HfO{sub 2} is similar to BaHfO{sub 3} and amounts 5.8 eV; for BaHf{sub 0.5}Ti{sub 0.5}O{sub 3} it decreases to 3.8 eV. We conclude that the addition of TiO{sub 2} to BaHfO{sub 3} increases significantly the dielectric permittivity but also impacts the band gap alignment. The conduction band offset shrinks, influencing the leakage current behavior.

  17. Structural, electrical and magnetic properties of rare-earth and transition element co-doped bismuth ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek, E-mail: vermavivek.neel@gmail.com

    2015-08-25

    Highlights: • Sm-doping increases the symmetry and decreases the second phase formation. • Ferromagnetic, ferroelectric and dielectric properties enhanced with doping. • M–H loops represents weak ferromagnetic (FM) behavior. • A modification in dielectric constant is observed due to doping of Mn, Co and Cr. • Saturation polarization (P{sub s}), remnant polarization (P{sub r}) and coercive field (E{sub c}) increased with doping. - Abstract: Pure and doped multiferroic samples of bismuth ferrites (BFO) were successfully synthesized by the sol–gel technique. Detailed investigations were made on the influence of (Sm and Mn, Co, Cr) co-doping on structural, electrical, ferroelectric and magnetic properties of the BFO. A structural phase transformation from rhombohedral to orthorhombic with co-doping is confirmed through XRD. It is also observed that Sm-doping increases the symmetry and decreases the second phases noticeably. Microstructure investigation using the scanning electron microscope showed a reduction of grain size with doping in BFO. Magnetic hysteresis loops showed that retentivity (Mr), coercivity (Hc) and saturation magnetization (Ms) of the doped samples were improved. Furthermore, the co-doping enhances the dielectric properties as a result of the reduction in the Fe{sup 2+} ions and oxygen vacancies. The room temperature P–E loop study shows that ferroelectric properties are strongly depend on doping.

  18. A Testing Ground for Polarized Maser Transport: Multi-Epoch Analysis of a π/2 Electric Vector Rotation

    Science.gov (United States)

    Tobin, Taylor; Kemball, Athol J.

    2017-01-01

    The near circumstellar environment (NCSE) around Asymptotic Giant Branch (AGB) stars is chaotic, exhibiting shocks, turbulence, velocity gradients, and a potentially dynamically significant magnetic field (Vlemmings et al. 2005). Very Long Baseline Interferometry (VLBI) of masers emanating from these environments can provide sub-milliarcsecond angular resolution of the NCSE (Kemball 2002). Solidifying the origin of the polarization in these masers may be the key to understanding the magnitude and behavior of these stars' magnetic fields (eg. Goldreich et al. 1973; Elitzur 1996). However, other theories of polarized maser transport do not rely heavily on the magnetic field; some are more dependent on anisotropic pumping (Elitzur 1996; Watson 2009) or anisotropic resonant scattering (Asensio Ramos et al. 2005; Houde 2014). One optimal test of these theories is their ability to account for a π/2 rotation of the Electric Vector Position Angle (EVPA) observed in some maser features. The profile of linear polarization across such a feature varies with the generating mechanism. In this study, we utilize multi-epoch observations of ν=1, J=1-0 SiO maser emission around TX Cam (Diamond & Kemball 2003; Kemball et al. 2009; Gonidakis et al. 2010) to analyze a single feature with a π/2 rotation that persisted for five epochs and compare it to the behavior expected according to various theories of maser polarization. In addition, we analyze the low levels of circular polarization - now achievable due to recent improvements in millimeter-wavelength circular polarization reduction (Kemball & Richter 2011) - and compare their correlation with other parameters to further test these polarization generation theories.

  19. Structural and electrical transport properties of a rare earth double perovskite oxide:Ba2ErNbO6

    Institute of Scientific and Technical Information of China (English)

    Rajesh Mukherjee; Binita Ghosh; Sujoy Saha; Chandrahas Bharti; T. P. Sinha

    2014-01-01

    The double perovskite oxide barium erbium niobate, Ba2ErNbO6 (BEN) was synthesized by solid state reaction technique. Rietveld refinement of the X-ray diffraction pattern of the sample showed cubic (Fm3m) phase at room temperature. Fourier trans-form infrared spectrum showed two primary phonon modes of the sample at around 387 and 600 cm-1. Raman spectrum of the sam-ple taken at 488 nm excitation wavelength showed four primary strong peaks at 106, 382, 747 and 814 cm-1. Lorentzian lines with 10 bands were used to fit the Raman spectrum. A group theoretical study was performed to assign all the Raman modes. Impedance spectroscopy was applied to investigate the ac electrical conductivity of BEN in a temperature range from 303 to 673 K and in a fre-quency range from 100 Hz-1 MHz. The dielectric relaxation mechanism was discussed in the frame work of permittivity, conduc-tivity, modulus and impedance formalisms. The complex plane plot of the impedance data was modeled by an equivalent circuit con-sisting of two serially connected R-CPE units, (one for the grain and the other for the grain boundary), each containing a resistor (R) and a constant phase element (CPE). The R-CPE units were used to incorporate the non-ideal character of the polarization phenome-non instead of an ideal capacitive behaviour. The relaxation time corresponding to dielectric loss was found to obey the Arrhenius law with activation energy of 0.85 eV. The frequency dependent conductivity spectra followed the Jonscher power law. The Cole-Cole model was used to investigate the dielectric relaxation mechanism in the sample.

  20. International Aerospace and Ground Conference on Lightning and Static Electricity (ICOLSE) (10th) and the Congres International Aeronautiq (17th) Held in Paris (France) on 10-13 June 1985

    Science.gov (United States)

    1985-06-13

    MATHPAL and 3. RAI.- Ground electrostatic field changes due to lightning 89 1 XII 2B-3 Y. GOTO, K. NARITA, M. NAITO and R. FUNAYAMA.- Electric...t 8 3H2 M.W. Maier et al. Tabla 3. - DIrictlon flndar bearing arror (in dagraaa] for tin triggered flaahsa. I Direction Flndar Flaah 1 Flaah

  1. Practice on Earth and Stonework Excavation and Filling for Flat Field Combined with Ground Treatment%结合地基处理进行场平土石方挖填的实践

    Institute of Scientific and Technical Information of China (English)

    孙熙宁

    2013-01-01

    某大型建设项目平场前结合拟建建(构)筑物对地基的要求,进行平场规划设计。土石方挖填时根据需要采取土石分填或混填,并采取适当的处理措施,简化了建设项目地基处理工作。地基处理就地取材,节约了项目建设投入,节约了社会资源。%Before flat field of some big construction project , combined with requirements of proposed buildings ( structures ) to foundation , the planning and design for flat field were carried through .When earth and stone-work excavation and filling , as required , earth-rock separately filling or mixed filling were adopted and proper treatment measures were taken so that simplified ground treatment of construction project , meanwhile ground treatment used local materials that can save the project constructing investment and social resources .

  2. Electrically floating, near vertical incidence, skywave antenna

    Science.gov (United States)

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  3. Interatomic potentials, electric properties, and spectroscopy of the ground and excited states of the Rb_2 molecule: Ab initio calculations and effect of a non-resonant field

    CERN Document Server

    Tomza, Michał; Musiał, Monika; González-Férez, Rosario; Koch, Christiane P; Moszynski, Robert

    2013-01-01

    In this paper we formulate the theory of the interaction of a diatomic linear molecule in a spatially degenerate state with the non-resonant laser field and of the rovibrational dynamics in the presence of the field. We report on \\textit{ab initio} calculations employing the double electron attachment intermediate Hamiltonian Fock space coupled cluster method restricted to single and double excitations for all electronic states of the Rb$_2$ molecule up to $5s+5d$ dissociation limit of about 26.000$\\,$cm$^{-1}$. In order to correctly predict the spectroscopic behavior of Rb$_2$, we have also calculated the electric transition dipole moments, non-adiabatic coupling and spin-orbit coupling matrix elements, and static dipole polarizabilities, using the multireference configuration interaction method. When a molecule is exposed to a strong non-resonant light, its rovibrational levels get hybridized. We study the spectroscopic signatures of this effect for transitions between the X$^1\\Sigma_g^+$ electronic ground ...

  4. Imaging tropical peatlands in Indonesia using ground penetrating radar (GPR and electrical resistivity imaging (ERI: implications for carbon stock estimates and peat soil characterization

    Directory of Open Access Journals (Sweden)

    X. Comas

    2015-01-01

    Full Text Available Current estimates of carbon (C storage in peatland systems worldwide indicate tropical peatlands comprise about 15% of the global peat carbon pool. Such estimates are uncertain due to data gaps regarding organic peat soil thickness and C content. Indonesian peatlands are considered the largest pool of tropical peat carbon (C, accounting for an estimated 65% of all tropical peat while being the largest source of carbon dioxide emissions from degrading peat worldwide, posing a major concern regarding long-term sources of greenhouse gases to the atmosphere. We combined a set of indirect geophysical methods (ground penetrating radar, GPR, and electrical resistivity imaging, ERI with direct observations from core samples (including C analysis to better understand peatland thickness in West Kalimantan (Indonesia and determine how geophysical imaging may enhance traditional coring methods for estimating C storage in peatland systems. Peatland thicknesses estimated from GPR and ERI and confirmed by coring indicated variation by less than 3% even for small peat-mineral soil interface gradients (i.e. below 0.02°. The geophysical data also provide information on peat matrix attributes such as thickness of organomineral horizons between peat and underlying substrate, the presence of wood layers, buttressed trees and soil type. These attributes could further constrain quantification of C content and aid responsible peatland management in Indonesia.

  5. Imaging tropical peatlands in Indonesia using ground penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization

    Science.gov (United States)

    Comas, X.; Terry, N.; Slater, L.; Warren, M.; Kolka, R.; Kristijono, A.; Sudiana, N.; Nurjaman, D.; Darusman, T.

    2015-01-01

    Current estimates of carbon (C) storage in peatland systems worldwide indicate tropical peatlands comprise about 15% of the global peat carbon pool. Such estimates are uncertain due to data gaps regarding organic peat soil thickness and C content. Indonesian peatlands are considered the largest pool of tropical peat carbon (C), accounting for an estimated 65% of all tropical peat while being the largest source of carbon dioxide emissions from degrading peat worldwide, posing a major concern regarding long-term sources of greenhouse gases to the atmosphere. We combined a set of indirect geophysical methods (ground penetrating radar, GPR, and electrical resistivity imaging, ERI) with direct observations from core samples (including C analysis) to better understand peatland thickness in West Kalimantan (Indonesia) and determine how geophysical imaging may enhance traditional coring methods for estimating C storage in peatland systems. Peatland thicknesses estimated from GPR and ERI and confirmed by coring indicated variation by less than 3% even for small peat-mineral soil interface gradients (i.e. below 0.02°). The geophysical data also provide information on peat matrix attributes such as thickness of organomineral horizons between peat and underlying substrate, the presence of wood layers, buttressed trees and soil type. These attributes could further constrain quantification of C content and aid responsible peatland management in Indonesia.

  6. Ground energy coupling

    Science.gov (United States)

    Metz, P. D.

    The feasibility of ground coupling for various heat pump systems was investigated. Analytical heat flow models were developed to approximate design ground coupling devices for use in solar heat pump space conditioning systems. A digital computer program called GROCS (GRound Coupled Systems) was written to model 3-dimensional underground heat flow in order to simulate the behavior of ground coupling experiments and to provide performance predictions which have been compared to experimental results. GROCS also has been integrated with TRNSYS. Soil thermal property and ground coupling device experiments are described. Buried tanks, serpentine earth coils in various configurations, lengths and depths, and sealed vertical wells are being investigated. An earth coil used to heat a house without use of resistance heating is described.

  7. 24 CFR 3280.809 - Grounding.

    Science.gov (United States)

    2010-04-01

    ... connected to the grounding bus in the distribution panelboard or disconnecting means. (2) In the electrical... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Electrical Systems § 3280.809 Grounding. (a) General. Grounding of both electrical and nonelectrical metal parts in a manufactured home shall...

  8. Sensitivity of broad-band ground-motion simulations to earthquake source and Earth structure variations: an application to the Messina Straits (Italy)

    KAUST Repository

    Imperatori, W.

    2012-03-01

    In this paper, we investigate ground-motion variability due to different faulting approximations and crustal-model parametrizations in the Messina Straits area (Southern Italy). Considering three 1-D velocity models proposed for this region and a total of 72 different source realizations, we compute broad-band (0-10 Hz) synthetics for Mw 7.0 events using a fault plane geometry recently proposed. We explore source complexity in terms of classic kinematic (constant rise-time and rupture speed) and pseudo-dynamic models (variable rise-time and rupture speed). Heterogeneous slip distributions are generated using a Von Karman autocorrelation function. Rise-time variability is related to slip, whereas rupture speed variations are connected to static stress drop. Boxcar, triangle and modified Yoffe are the adopted source time functions. We find that ground-motion variability associated to differences in crustal models is constant and becomes important at intermediate and long periods. On the other hand, source-induced ground-motion variability is negligible at long periods and strong at intermediate-short periods. Using our source-modelling approach and the three different 1-D structural models, we investigate shaking levels for the 1908 Mw 7.1 Messina earthquake adopting a recently proposed model for fault geometry and final slip. Our simulations suggest that peak levels in Messina and Reggio Calabria must have reached 0.6-0.7 g during this earthquake.

  9. The electric field of the Earth after the occurrence of the February 14th, 2008, Ms = 6.7R EQ in Greece. Its implications towards the prediction of a probable future large EQ

    OpenAIRE

    2008-01-01

    The electric field of the Earth registered by three monitoring sites (ATH, PYR, HIO) located in Greece, is investigated and analyzed after the occurrence of the Methoni EQ (14th of February, 2008, Ms =6.7R). The period of analysis is performed for 2 days (21st-22nd of February) and 7 days after the occurrence of the main seismic event. The obtained results suggest that the seismogenic area generates electrical signals denoting a specific epicentral area. This area coincides with the already s...

  10. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  11. Effects of rare earth ionic doping on microstructures and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Renzhong [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China); Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Chen, Zhenping, E-mail: xrzbotao@163.com [Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Dai, Haiyang; Liu, Dewei; Li, Tao [Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Zhao, Gaoyang, E-mail: zhaogy@xaut.edu.cn [School of Materials Science and Engineering, Xi' an University of Technology, Xi' an 710048 (China)

    2015-06-15

    Graphical abstract: The dielectric constant decreases monotonically with reduced RE doping ion radius and is more frequency independent compared with that of pure CCTO sample. - Highlights: • The mean grain sizes decrease monotonically with reduced RE doping ionic radius. • Doping gives rise to the monotonic decrease of ϵ{sub r} with reduced RE ionic radius. • The nonlinear coefficient and breakdown field increase with RE ionic doping. • α of all the samples is associated with the potential barrier width rather than Φ{sub b}. - Abstract: Ca{sub 1–x}R{sub x}Cu{sub 3}Ti{sub 4}O{sub 12}(R = La, Nd, Eu, Gd, Er; x = 0 and 0.005) ceramics were prepared by the conventional solid-state method. The influences of rare earth (RE) ion doping on the microstructure, dielectric and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics were investigated systematically. Single-phase formation is confirmed by XRD analyses. The mean grain size decreases monotonically with reduced RE ion radius. The EDS results reveal that RE ionic doping reduces Cu-rich phase segregation at the grain boundaries (GBs). Doping gives rise to the monotonic decrease of dielectric constant with reduced RE ionic radius but significantly improves stability with frequency. The lower dielectric loss of doped samples is obtained due to the increase of GB resistance. In addition, the nonlinear coefficient and breakdown field increase with RE ionic doping. Both the fine grains and the enhancement of potential barrier at GBs are responsible for the improvement of the nonlinear current–voltage properties in doped CCTO samples.

  12. Electrical Resistivity Tomography and Ground Penetrating Radar for locating buried petrified wood sites: a case study in the natural monument of the Petrified Forest of Evros, Greece

    Science.gov (United States)

    Vargemezis, George; Diamanti, Nectaria; Tsourlos, Panagiotis; Fikos, Ilias

    2014-05-01

    A geophysical survey was carried out in the Petrified Forest of Evros, the northernmost regional unit of Greece. This collection of petrified wood has an age of approximately 35 million years and it is the oldest in Greece (i.e., older than the well-known Petrified Forest of Lesvos island located in the North Aegean Sea and which is possibly the largest of the petrified forests worldwide). Protection, development and maintenance projects still need to be carried out at the area despite all fears regarding the forest's fate since many petrified logs remain exposed both in weather conditions - leading to erosion - and to the public. This survey was conducted as part of a more extensive framework regarding the development and protection of this natural monument. Geophysical surveying has been chosen as a non-destructive investigation method since the area of application is both a natural ecosystem and part of cultural heritage. Along with electrical resistivity tomography (ERT), ground penetrating radar (GPR) surveys have been carried out for investigating possible locations of buried fossilized tree trunks. The geoelectrical sections derived from ERT data in combination with the GPR profiles provided a broad view of the subsurface. Two and three dimensional subsurface geophysical images of the surveyed area have been constructed, pointing out probable locations of petrified logs. Regarding ERT, petrified trunks have been detected as high resistive bodies, while lower resistivity values were more related to the surrounding geological materials. GPR surveying has also indicated buried petrified log locations. As these two geophysical methods are affected in different ways by the subsurface conditions, the combined use of both techniques enhanced our ability to produce more reliable interpretations of the subsurface. After the completion of the geophysical investigations of this first stage, petrified trunks were revealed after a subsequent excavation at indicated

  13. Optimal Design of External Grounding Grid Based on Precise Earth Structural Model%基于精确土壤结构模型的外延接地网的设计

    Institute of Scientific and Technical Information of China (English)

    夏斌强; 曹军; 郑智勇; 杨廷方

    2015-01-01

    针对某蓄能电站500 kV出线场防雷接地系统存在的具体问题, 进行分析. 通过现场测量土壤电阻率随极间距离变化的曲线, 得到土壤的分层结构. 并基于MATLAB软件平台, 利用非线性优化方法, 推导出视在土壤电阻率的解析表达式, 建立精确的非均匀土壤结构模型. 现场测试结果表明, 该模型能精确的计算多层土壤电阻率的接地电阻, 具有一定的工程应用价值. 经最终检测, 本次的改造优化设计, 有效的降低了出线场的接地电阻.%In this paper, some problems of the lightning protection system are analyzed for a 500 kV outgoing line yard of one pumped storage power station. Through the field measurement of the curve of soil resistivity with the variation of space between elec-trodes, the structure of layered soil is found out. A precise heterogeneous earth structural model is built up by the analytic expres-sion of soil resistivity using nonlinear optimization method based on MATLAB software platform. Field test results show that this model can accurately calculate the grounding resistance of multi-layer soil and has practical application value. And the final detec-tion also indicates the grounding resistance of outgoing line yard is reduced effectively by this ground grid retrofit.

  14. Transition and verification of ground fault protection method in Hokuriku Shinkansen line

    Directory of Open Access Journals (Sweden)

    Michiteru Koyanagi

    2016-01-01

    Full Text Available The electrical discharge gaps called S type horn are applied to the ground fault detection and protection in AC traction power supply system for high speed railway called Shinkansen. In this method, the earth resistance of the steel pipe pillar is an important factor for the ground fault protection by the electrical discharge. In this study, the analyses of the transient characteristics of grounding fault are carried out by using EMTP, and the ground resistance value required to trigger discharge at S type horn was calculated. Moreover, the protection effect of a discharge gap called GP the substation equipment that is a discharge gap which is inserted between rails and substation mesh is evaluated.

  15. Determining Earth's magnetic field strength during magnetically quiet and stormy times and predict the location of dancing Auroras using THEMIS Mission Educators ground based magnetometer data.

    Science.gov (United States)

    Craig, N.; Peticolas, L.; Trautman, V.

    2006-12-01

    The Education and Public Outreach program of the THEMIS Mission has deployed 10 ground-based observatories with science-grade magnetometers in schools in the Northern U.S. This network of schools, called Geomagnetic Event Observation Network by Students (GEONS), monitors local magnetic disturbances. The magnetometers are receiving local data; data are archived and available at the THEMIS E/PO Website. The E/PO program conducts teacher professional development workshops for the teachers of these schools. During the third year of the project, teachers from Alaska and Wisconsin started their classroom research using magnetometers that are installed in their classrooms. We will describe how with highly committed and enthusiastic teachers a research project developed to determine the strength of the local magnetic field in locations such as AK and WI and to compare these results with "companion schools" at lower latitudes. The GEONS teachers not only learned science and research tools, but they also conducted workshops in their own states, influenced the science curricula in their districts, and also started student research in their classrooms. We will discuss the challenges, give the results of their research, and encourage other teachers who wish to use real data in their classrooms to participate in this exciting project.

  16. Simulation Analysis on Power Frequency Electric Field at Ground Surface Near EHV Power Transmission Tower%超高压输电线路铁塔附近地面工频电场仿真分析

    Institute of Scientific and Technical Information of China (English)

    李永明; 范与舟; 徐禄文

    2013-01-01

    根据铁塔实际结构和导线抛物线方程,建立了铁塔附近三维电场计算模型.基于模拟电荷法分析了500 kV输电线路铁塔周围地面上的工频电场分布,分析了铁塔对其附近电场环境的影响,并讨论了影响电场计算结果的因素.研究结果表明:铁塔对其附近地面电场有一定屏蔽作用,电场强度在铁塔下方显著降低且在金属构架处产生畸变;铁塔的影响范围和铁塔高度及塔基尺寸有关;铁塔构架等效半径、线单元剖分段数以及铁塔不同简化模型都会影响计算结果.%Based on actual structure of power transmission tower and parabolic equation of transmission lines,a three-dimensional model to compute power frequency electric field at ground surface near transmission tower is built.According to charge simulation method,the distribution of power frequency electric field at ground surface near 500kV transmission tower as well as the impacts of transmission tower on nearby electric field is analyzed,and the factors impacting computational results of electric field are discussed.Research results show that there is a certain screening effect of transmission tower on ground surface electric field nearby the tower,so the electric field intensity beneath the tower decreases obviously and electric field distortion appears at the positions where metal frameworks are erected.The impacting area is related to the height of the tower and the size of tower foundation; computational result of electric field will be impacted by the equivalent radius of tower framework,the number of line segments and different simplified models of the tower.

  17. Systems definition space-based power conversion systems. [for satellite power transmission to earth

    Science.gov (United States)

    1976-01-01

    Potential space-located systems for the generation of electrical power for use on Earth are discussed and include: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; and (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Systems (1) and (2) would utilize a microwave beam system to transmit their output to Earth. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  18. Yin-yang of space travel: lessons from the ground-based models of microgravity and their applications to disease and health for life on Earth

    Science.gov (United States)

    Kulkarni, A.; Yamauchi, K.; Hales, N.; Sundaresan, A.; Pellis, N.; Yamamoto, S.; Andrassy, R.

    Space flight environment has numerous clinical effects on human physiology; however, the advances made in physical and biological sciences have benefited humans on Earth. Space flight induces adverse effects on bone, muscle, cardiovascular, neurovestibular, gastrointestinal, and immune function. Similar pathophysiologic changes are also observed in aging with debilitating consequences. Anti-orthostatic tail-suspension (AOS) of rodents is an in vivo model to study many of these effects induced by the microgravity environment of space travel. Over the years AOS has been used by several researchers to study bone demineralization, muscle atrophy, neurovestibular and stress related effects. ecently we employed the AOS model in parallel with in vitro cell culture microgravity analog (Bioreactor) to document the decrease in immune function and its reversal by a nutritional countermeasure. We have modified the rodent model to study nutrient effects and benefits in a short period of time, usually within one to two weeks, in contrast to conventional aging research models which take several weeks to months to get the same results. This model has a potential for further development to study the role of nutrition in other pathophysiologies in an expedited manner. Using this model it is possible to evaluate the response of space travelers of various ages to microgravity stressors for long-term space travel. Hence this modified model will have significant impact on time and financial research budget. For the first time our group has documented a true potential immunonutritional countermeasure for the space flight induced effects on immune system (Clinical Nutrition 2002). Based on our nutritional and immunological studies we propose application of these microgravity analogs and its benefits and utility for nutritional effects on other physiologic parameters especially in aging. (Supported by NASA NCC8-168 grant, ADK)

  19. Earth Fissures in Su-Xi-Chang Region, Jiangsu, China

    Science.gov (United States)

    Wang, Guang-ya; You, Greg; Zhu, Jin-qi; Yu, Jun; Li, Wei

    2016-11-01

    The earth fissures in the Su-Xi-Chang area are caused by differential land subsidence due to long-term excessive groundwater withdrawal and controlled by the bedrock ridge or cliff underlying. There have been more than 15 earth fissures in the area since 1989. The field investigations have lasted for more than 20 years. The earth fissures generally have a main fissure and a number of secondary ones parallel to the main one. The main fissure (crack) has a scarp, is steeply dipping, and can be more than 2000 m long. Geophysical surveys (2D or 3D seismic investigation, controlled source audio frequency magnetotelluric sounding, and electric sounding) combined with geological drilling are effective for the investigation of earth fissures. Geodetic leveling is effective to monitor the ground deformation across the earth fissure, so is the extensometer for the opening of the fissure. The activities of earth fissures are directly related to different stages of land subsidence and controlled by geological abnormalities. Most earth fissures in the area are still active.

  20. Effect of rare-earth dopants on the growth and structural, optical, electrical and mechanical properties of L-arginine phosphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, S., E-mail: arjunan_hce@yahoo.co.i [Department of Physics, Sri Ramachandra University, Porur, Chennai (India); Bhaskaran, A. [Department of Physics, Dr. Ambedkar Government College, Chennai (India); Kumar, R. Mohan; Mohan, R. [Department of Physics, Presidency College, Chennai (India); Jayavel, R. [Crystal Growth Centre, Anna University, Chennai (India)

    2010-09-17

    Research highlights: {yields} Thorium, Lanthanum and Cerium rare-earth ions were doped with L-arginine phosphate material and the crystals were grown by slow evaporation technique. {yields} The transparency of the rare-earth doped LAP crystals has enhanced compared to pure LAP. {yields} The powder SHG measurements revealed that the SHG output of rare-earth doped LAP crystals increases considerably compared to that of LAP. {yields} Vicker's hardness number of as-grown crystal of LAP is higher than that of rare-earth doped LAP crystals. - Abstract: Effect of Thorium, Lanthanum and Cerium rare-earth ions on the growth and properties of L-arginine phosphate single crystals has been reported. The incorporation of rare-earth dopants into the L-arginine phosphate crystals is confirmed by Inductively Coupled Plasma-Mass Spectroscopy analysis. The unit cell parameters for pure and rare-earth doped L-arginine phosphate crystals have been estimated by powder X-ray diffraction studies. UV-visible studies revealed the transmittance percentage and cut-off wavelengths of the grown crystals. Powder second harmonic generation measurement has been carried out for pure and doped L-arginine phosphate crystals. The dielectric behavior of the grown crystals was analyzed for different frequencies at room temperature. The mechanical properties have been determined for pure and the doped L-arginine phosphate crystals.

  1. Influence of ionic radius of rare-earths on the structural and electrical properties of Ba5RTi3Nb7O30 (R=rare-earth) ferroelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    Prasun Ganguly

    2015-01-01

    In the present report, Ba5RTi3Nb7O30 (R=La, Nd, Sm, Eu, Dy) compounds were synthesized by solid-state reaction method in order to know the effect of ionic radius of rare-earths on their structural, dielectric, ferroelectric, pyroelectric, piezoelectric and con-ductive properties. X-ray diffraction analysis revealed the formation of the compounds having orthorhombic structure. Scanning elec-tron micrographs showed the formation of fine granular microstructure in all the compounds with a decrease in the average grain size with increasing ionic radius of the substituted rare-earths. Detailed dielectric studies showed that the dielectric constant (ε'r) increased while Curie temperature (Tc) decreased as the ionic radius of the rare-earths increased. With the decrease in the ionic radius of the rare-earths, remanent polarization (2Pr), piezoelectric (d33) and pyroelectric coefficients were observed to increase in Ba5RTi3Nb7O30 compounds. The temperature variation of dc conductivity suggested that the compounds had negative temperature coefficient of re-sistance (NTCR) behaviour.

  2. The lost church of Montemurro (Basilicata, Italy): Ground Penetrating Radar and Electrical Resistivity Tomography for detecting its buried remains in S. Maria Square.

    Science.gov (United States)

    Bavusi, Massimo; Giocoli, Alessandro; de Martino, Gregory; Loperte, Antonio; Lapenna, Vincenzo

    2010-05-01

    Montemurro is a little centre town located in the Agri Valley (Basilicata Region, Italy) which was affected by two catastrophic events: in the 1842 a very large landslide has damaged great part of the centre and in the 1857 the town was destroyed completely by the "Great Neapolitan Earthquake" (Mallet, 1862), a seismic event having epicenter in the Agri Valley (Cello et al., 2003; Bavusi et al., 2004). Signs of those tragic events can be still found in the fabric of the city. One of these is certainly S. Maria square, a place suspected to house a church before the disastrous events of 1842. This suspicion is supported by a series of evidences: a historical drawing, dating back to before 1842, shows a church in position compatible with the location of the square; in aerial view S. Maria square appears as tear in the fabric of the city; the tales of the erderlies of Montemurro speak about an ancient missing church in the town. Then, in the attempt to resolve the doubt about the presence of the church, a geophysical survey was planned in S. Maria Square with the aim to detect some buried masonry structures related to the church. In this work we selected two active techniques such as the Ground Penetrating Radar (GPR) and the Electrical Resistivity Tomography (ERT). Sixty parallel GPR profiles 0.5 m spaced were gathered in S. Maria Square and in a contiguous street by using a GSSI SIR3000 system with a central frequency antenna of 200 MHz. Processed radargrams showed numerous reflectors and heterogeneities in the subsoil related to manmade objects. Then, a laborious data processing (Nuzzo et al., 2002) allowed to obtain several time-slices showing noticeable reflections compatible with masonry structures. Moreover, two ERT profiles were carried out by using an IRIS Syscal R2 system equipped with a multielectrode cable. The first ERT profile 86 m long and having 44 electrodes 2 m spaced allowed to investigate up to 9 m of depth. The second, overlapped on the previous

  3. The Fields Excited by SLF/ELF Vertical Electric Dipole in Earth-ionosphere Under the Ideal Conductor%SLF/ELF垂直电偶极子在理想导电地-电离层中的场

    Institute of Scientific and Technical Information of China (English)

    张在武; 段卫星; 何京国; 王元新

    2011-01-01

    在理想导电地面与电离层条件下,我们导出了SLF/ELF垂直电偶极子在球形地-电离层壳体中产生的电磁场的球谐级数表达式,并提出了一种加速收敛算法。利用此算法分别算出了电场分量随传播距离、高度及工作频率的变化,所得计算结果与Barrick方法所得结果基本吻合。由于地面和电离层没有吸收损耗,地面与电离层之间产生的场是"驻波",在ELF频段,其频率变化规律能正确反映出"舒曼"谐振现象。%We derive the spherical harmonic series expressions of electromagnetic fields excited by SLF/ELF vertical electric dipole in spherical Earth-ionosphere guide when earth and ionosphere are regarded as the ideal conductor.Moreover,a method to speed numerical convergence has been presented.The electromagnetic fields in the cavity have been calculated by this algorithm.From the result,electromagnetic fields between earth and ionosphere are the sum of two travelling wave in SLF band.The calculated result perfectly agrees with the Barrick's result.Because there is not absorbability attenuation between the earth and ionosphere,the fields in Earth-ionosphere guide are a kind of standing wave.In ELF band,the variation of the amplitude verse frequency coincides with the Schumann resonance.

  4. Analysis of electrical and microstructural characteristics of a ZnO-based varistor doped with rare earth oxide; Analise das caracteristicas microestruturais e eletricas de um varistor a base de ZnO dopado com oxidos de terras raras

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, J.M. de; Dias, R.; Furtado, J.G. de M. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Assuncao, F.C.R. [Pontificia Univ. Catolica do Rio de Janeiro (PUC/Rio), RJ (Brazil)

    2010-07-01

    Varistor is a semiconductor device, used in the protection of electrical systems, characterized to have a high no-linear electric resistance. Its properties are directly dependents of its chemical composition and microstructural characteristics. In this work were analyzed microstructural and electrical characteristics of a ZnO-based varistor doped with rare earth oxide, with chemical composition (mol%) 98,5.ZnO - 0,3.Pr{sub 6}O{sub 11} - 0,2.Dy{sub 2}O{sub 3} - 0,9.Co{sub 2}O{sub 3} - 0,1.Cr{sub 2}O{sub 3}. X-ray diffraction for phase characterization, scanning electron microscopy and energy dispersive X-ray spectroscopy were used for microstructural analysis. Measurement of average grain size and electrical and dielectric characteristics complete the characterization. The results show the formation of biphasic microstructure and with high densification, presenting relevant varistors characteristics but that would need improvements.(author)

  5. Synchronous Measurement Based Transient High Resistance Earth Fault Location in Resonant Grounding System%基于同步量测的谐振接地系统高阻接地故障区段暂态定位

    Institute of Scientific and Technical Information of China (English)

    陈筱薷; 薛永端; 王超; 徐丙垠; 黄仁乐; 程林

    2016-01-01

    谐振接地系统高阻接地故障发生概率较大,检测难度高,现有暂态分析及暂态区段定位方法不适合用于高阻接地故障。利用消弧线圈与系统对地电容间并联谐振的独特作用,分析了谐振接地系统高阻接地故障暂态零序电流与暂态零序电压的变化规律。研究发现,故障点下游各检测点暂态电流与暂态电压近似正交,而故障点上游检测点暂态电流还包含了与暂态电压成正比例的故障点暂态电流。利用同步量测单元采集的故障信息,计算各检测点暂态电流在暂态电压上的投影,若相邻检测点暂态电流投影分量之差超过一预设门槛,则该区段为故障区段,否则最末检测点下游区段为故障区段。所述方法完善了小电流接地故障暂态分析与暂态区段定位技术,数字仿真验证了该方法的可行性。%High resistant earth fault occurs frequently in resonant grounding systems,and is difficult to detect.The existing transient analysis and transient faulty section location method is not suitable for high resistance earth fault.The unique role of parallel resonance between Peterson coil and system capacitance to ground is used.The variation laws of zero-sequence current, zero-sequence voltage and their transient components are analyzed in under-damping and over-damping resonant processes.The facts can be observed in this study that the transient currents of downstream fault points of detecting point are approximately orthogonal to the transient zero-sequence voltage,and the transient currents of upstream fault points of detecting point include transient current at the fault point proportional to the magnitude of the transient voltage.The fault information collected by the synchronous measurement unit is used to calculate the proj ection components of transient current on transient voltage in every detecting point.If the difference in current proj ection magnitudes between

  6. International Aerospace and Ground Conference on Lightning and Static Electricity (8th), Lightning Technology Roundup. Held in Fort Worth, Texas on 21-23 June 1983. Addendum

    Science.gov (United States)

    1983-10-01

    velocity, angle of attack and dis- "Electrical Measurement of Pulverized ŕ tance downstream. The core of the vortex Coal Suspension ," J. Engr. for...electric field and particle "Measurement Of Electro-Static Charge density distributions downstream of the On Solid Gas Suspension Flow," Rev...radial distance greater than the visible damage Comportement a la Foudre de Structures en .’- reported in reference (7). Materiaux Composites Haut Module

  7. 30 CFR 18.24 - Electrical clearances.

    Science.gov (United States)

    2010-07-01

    ... Requirements § 18.24 Electrical clearances. Minimum clearances between uninsulated electrical conductor surfaces, or between uninsulated conductor surfaces and grounded metal surfaces, within the enclosure...

  8. Rare-Earth Ions in Niobium-Based Devices as a Quantum Memory: Magneto-Optical Effects on Room Temperature Electrical Transport

    Science.gov (United States)

    2016-09-01

    University of Delaware , Newark, DE. 5f. WORK UNIT NUMBER REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-01-0188 The public reporting burden for...ANSI Std . Z39.18 September 2016 Final Rare-Earth Ions in Niobium-based Devices as a Quantum Memory Magneto-Optical Effects on Room Temperature

  9. Expanding earth

    Energy Technology Data Exchange (ETDEWEB)

    Carey, S.W.

    1976-01-01

    Arguments in favor of an expanding earth are presented. The author believes that the theory of plate tectonics is a classic error in the history of geology. The case for the expanding earth is organized in the following way: introductory review - face of the earth, development of expanding earth concept, necessity for expansion, the subduction myth, and definitions; some principles - scale of tectonic phenomena, non-uniformitarianism, tectonic profile, paleomagnetism, asymmetry of the earth, rotation of the earth, and modes of crustal extension; regional studies - western North America, Central America, South-East Asia, and the rift oceans; tests and cause of expansion. 824 references, 197 figures, 11 tables. (RWR)

  10. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Enhanced Laser Cooling of Rare-Earth-Ion-Doped Glass Containing Nanometer-Sized Metallic Particles

    Science.gov (United States)

    Jia, You-Hua; Zhong, Biao; Yin, Jian-Ping

    2009-03-01

    The enhanced laser cooling performance of rare-earth-ions-doped glasses containing small particles is predicted. This is achieved by the enhancement of local field around rare earth ions, owing to the surface plasmon resonance of small metallic particles. The role of energy transfer between ions and the particle is theoretical discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption and the fluorescence is predicted. Moreover, taking Yb3+ -doped ZBLAN as example, the cooling power and heat-light converting efficiency are calculated. It is finally concluded that the absorption and the fluorescence are greatly enhanced in these composite materials, the cooling power is increased compared to the bulk material.

  11. 46 CFR 120.376 - Grounded distribution systems (Neutral grounded).

    Science.gov (United States)

    2010-10-01

    ... ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.376 Grounded distribution systems... distribution system having a neutral bus or conductor must have the neutral grounded. (c) The neutral or each... generator is connected to the bus, except the neutral of an emergency power generation system must...

  12. Design of Surge Protection & Ground Connection at Four Electricity Integration Field in Railway Section%铁路区间四电综合场坪防雷接地系统集约化设计实践

    Institute of Scientific and Technical Information of China (English)

    林明嘉

    2014-01-01

    On the basis of the previous substation design and the study of the national and industrial standards and railway technique specifications for surge protection and grounding design, and with reference to Ha - Da passenger dedicated line, surge protection & ground connection design of Four Electricity ( Communication, Signal, Power and Electrification) Integration field in railway section is discussed and practiced to solve the problems encountered in this regard. This paper puts forward new ideas with respect to some particulars and requirements, which may be used as references in future design of surge protection & ground connection.%在参考以往变电站接地设计的基础上,通过对国家和行业标准以及铁路技术规章有关防雷接地要求的研究,以哈大客运专线为例,对铁路区间四电场坪各系统设备进行统一的综合接地设计进行探讨和实践,试图解决类似设计中所面临的主要难点,并在某些细节的做法和要求提出了自己的看法,希望能对以后的设计有所借鉴。

  13. Application of vertical electrical sounding combined with induced polarization method in ground water exploration; IP koka wo koryoshita hiteikoho suichoku tansa no chikasui chosa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, M.; Sakurada, H. [Sumiko Consultants Co. Ltd., Tokyo (Japan); Suzuki, T. [Hokkaido Development Bureau, Hokkaido Development Agency, Sapporo (Japan)

    1996-10-01

    For ground water exploration using vertical Schlumberger exploration method, measurement and analysis combined with induced polarization (IP) effect were conducted as trial. For the Schlumberger method, potential is measured at the center between potential electrodes during flow of dc current between current electrodes. In the case of vertical exploration, measurements are repeated with fixed potential electrodes by extending the distance between current electrodes. Ground water exploration was conducted using this method at Otaki village, Hokkaido. Geology of surveyed plateau consists of a basement of Pliocene tuffs and Quaternary Pleistocene sediments covering on the surface. For the results of analysis, four to seven beds were detected from the resistivity. The depth up to the lowest bed was between 25 and 85 m, the resistivity of each bed was between 9 and 8,000 ohm{times}m, and the polarizability was between 1 and 15 mV/V. Among these resistivity zones, it was judged that zones satisfying following three conditions correspond to coarse grain sediments saturated with ground water, and can be expected as aquifers; having resistivity ranging between 100 and 1,000 ohm{times}m, polarizability higher than 10 mV/V, and relatively large thickness. 11 refs., 6 figs.

  14. International Aerospace and Ground Conference on Lightning and Static Electricity (15th) Held in Atlantic City, New Jersey on October 6 - 8, 1992. Addendum

    Science.gov (United States)

    1992-11-01

    Current Channel to a Uniaxially Anisotropic Composite Skin . 62-1 Poh H. Ng, Paul M. McKenna Study of Atmospheric Electrical Events Above Complex Terrain...Lightning by Launch V ehicles .................. ............................... ... 74-1" Rodney A. Perala, Terence H. Rudolph, Calvin C. Easterbrook...MacGorman, Donald R. 55* Rudolph, Terence H. 74 Maier, Matthew R. 28 Matsuura, K. 60, 61 Sanicandro, Rocco 7t Mauriello, A. J. 34 Sargent, Noel B. 36

  15. Toward other Earths

    Science.gov (United States)

    Hatzes, Artie P.

    2016-04-01

    How common are habitable Earth-like planets? This is a key question that drives much of current research in exoplanets. To date, we have discovered over one thousand exoplanets, mostly through the transit method. Among these are Earth-size planets, but these orbit very close to the star (semi-major axis approximately 0.01 Astronomical Units). Potentially rocky planets have also been discovered in a star's habitable zone, but these have approximately twice the radius of the Earth. These certainly do not qualify as Earth "twins". Several hundreds of multi-planet systems have also been discovered, but these are mostly ultra-compact systems with up to seven planets all with orbital distances less than that of Mercury in our solar system. The detection of a planetary system that is the direct analog of our solar system still eludes us. After an overview of the current status of exoplanet discoveries I will discuss the prospects and challenges of finding such Earth analogs from the ground and from future space missions like PLATO. After over two decades of searching, we may well be on the brink of finding other Earths.

  16. Crop area ground sample survey using Google Earth image-aided%Google Earth影像辅助的农作物面积地面样方调查

    Institute of Scientific and Technical Information of China (English)

    刘佳; 王利民; 滕飞; 李丹丹; 王小龙; 曹怀堂

    2015-01-01

    By using Google Earth (GE) image revised by differential global positioning system (DGPS) actual measurement points, this paper conducts a ground sample survey of crop planting areas, and compares the difference in survey accuracy and efficiency between this method and the method completely using GPS field measurement. The study area is the Agricultural High-tech Industrial Park of Chinese Academy of Agricultural Sciences (Wanzhuang) and its surrounding area with the area of 3.1 km × 2.0 km. The paper defines the data from the different GE image sources. The images downloaded based on GE Client COM API programming are defined as A-level data, the images revised by online GE images are defined as B-level data, and the images revised by DGPS actual measurement points are defined as C-level data. Compared with the checkpoints of DGPS actual measurement, A-level data of the GE images with spatial resolution of over 0.5 m have a mean square error of 232.7 m inX andY directions, and for B-level and C-level data it is 5.4 m and 1.0 m, respectively. The B-level data meet the requirement that “The mean square error in planimetric position of 1:25000 should be no more than 8.75 m”, and the C-level data meet the demand that “the mean square error in planimetric position of 1:10000 flat ground should be no more than 3.5 m”, which are specified in theDigital Aerophotogrammetry Aerial Trigonometric Survey Specifications. Choosing the samples with 3 structure levels, i.e. simple, medium and complex level in the Langfang survey area, the area measurement accuracy of B-level and C-level data is measured, and the average errors are 0.108% and 0.018% respectively through the comparison with DGPS actual measurement areas. The larger the crop area, the higher the accuracy of the measurement. The survey meets the accuracy requirement of large scale ground sample survey. With respect to GE online coordinate, the average minimal mean square error of B-level data is 0.5 m, and the

  17. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  18. Electrical and magnetic properties of quaternary rare earth thiophosphate: K{sub 4}Sm{sub 2}[PS{sub 4}]{sub 2}[P{sub 2}S{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Manriquez, Victor; Galdamez, Antonio; Cerda-Monje, Andrea [Universidad de Chile, Santiago (Chile). Facultad de Ciencias. Dept. de Quimica], e-mail: vmanriqu@uchile.cl; Pena, Octavio [Universite de Rennes 1, Rennes cedex (France). Sciences Chimiques de Rennes; Avila, Ricardo E. [Comision Chilena de Energia Nuclear, Santiago (Chile). Dept. de Materiales Nucleares

    2009-07-01

    The quaternary alkali metal, rare earth thiophosphate phase K{sub 4}Sm{sub 2}[PS{sub 4}]{sub 2}[P{sub 2}S{sub 6}] was synthesized by ceramic method and characterized by powder X-ray diffraction (XRD), SEM-EDX scanning electron microscope-microprobe analyses, electrochemical impedance and magnetic measurements. The crystal structure consists of layers of {sup 2}{infinity}Sm{sub 2}[PS{sub 4}]{sub 2}[P{sub 2}S{sub 6}]{sup 4-} separated by K{sup +} cations. The electrical conductivity measurements indicate that the compound is a semiconductor with a resistivity of 1.0 x10{sup 11} {omega} cm. The magnetic moment, evaluated from X{sup -1} versus T at low temperature is 0.57 {mu}{sub B}. (author)

  19. Scheme of Testing Unit for Earth-Point Searching Device in Small-Current Electric Power System%“小电流接地选检装置”的试验装置的设想

    Institute of Scientific and Technical Information of China (English)

    董建民

    2000-01-01

    In the light of elctric power system model,this paper introduces a set of simple available testing unit for searching earthpoint in small-current electric opwwer system and check its operating reliability and accuracy,gives out a basic viewpoint for choosing a a set of earth-point searching device.%从模拟电力系统的角度出发,提出建立一套简单易行的小电流接地选线装置的测试装置,以对选线装置动作的准确性进行校验,为选线装置的选型奠定基础

  20. Solar Electricity for Homes

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    Every day, the sun showers the Earth with millions of times more energy than its people use. The only problem is that energy is spread out over the entire Earth's surface and must be harvested. Engineers are learning to capture and use some of this energy to make electricity for homes. Solar panels make up the heart of a solar system. They can be…

  1. Rare-Earth-Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yang-Ki [University of Alabama; Haskew, Timothy [University of Alabama; Myryasov, Oleg [University of Alabama; Jin, Sungho [University of California San Diego; Berkowitz, Ami [University of California San Diego

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  2. Manual for lightning protection and earthing. Electrical- and facility engineering. 5. tot. new rev. and enl. ed.; Handbuch fuer Blitzschutz und Erdung. Elektro- und Gebaeudetechnik

    Energy Technology Data Exchange (ETDEWEB)

    Hasse, P.; Wiesinger, J.; Zischank, W.

    2006-07-01

    Recent research and international lightning protection conferences (ICLP) and standardisation committees (IEC) brought about new findings on lightning protection which are considered in this 5th edition. The book outlines the history of lightning research and protection, the development of storm cells and lightning discharges, the incidence of lightning and warning, the electricity characteristics of earthborne lightnings, magnetic lightning fields, the electromagnetic field of the lightning path, the principles and types of lightning protectors, potential equalisation in lightning protection, lightning protection of electric and computer systems, magnetic shields, test methods and generators for lightning protection components and protectors, lightning protection of persons, and legal regulations on lightning protection in Germany. (orig./GL) [German] Aus aktuellen Forschungsergebnissen haben sich ebenso wie aus den internationalen Blitzschutzkonferenzen (ICLP) und Normungsgremien (IEC) neue, weiterfuehrende Aspekte der Blitzschutztechnik ergeben, die in der 5. Auflage dieses Buch ihren Niederschlag gefunden haben. Es befasst sich eingehend mit der Historie der Blitzforschung und des Blitzschutzes, der Entstehung von Gewitterzellen und Blitzentladungen, der Blitzhaufigkeit und Gewitterwarnung, den Stromkennwerten von Erdblitzen, den magnetischen Blitzfeldern, dem elektromagnetischen Feld des Blitzkanals, den Prinzipien des Blitzschutzes, den Fangeinrichtungen, Ableitungen und Erdungen, dem Blitzschutz-Potentialausgleich, dem Blitzschutz elektrischer und informationstechnischer Anlagen, den magnetischen Schirmen, den Pruefverfahren und -generatoren fuer Blitzschutz-Komponenten und -Schutzgeraete, dem Blitzschutz fuer Personen, den Blitzschutzbestimmungen in der Bundesrepublik Deutschland. (orig./GL)

  3. Earth\\'s Mass Variability

    CERN Document Server

    Mawad, Ramy

    2014-01-01

    The perturbation of the Earth caused by variability of mass of Earth as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November i.e. before transit apoapsis two months, and become latter in February i.e. after transit apoapsis to two months.

  4. 小电流接地电网故障选线方法的研究%Research on Low Current Grounding Electric Network Fault Line Selection

    Institute of Scientific and Technical Information of China (English)

    何金朋; 聂赫; 刘颖

    2011-01-01

    The 35 kV or below power distribution network in China and small current grounding system single phase occurs single grounding,there is less difference between normal lines and fault line transient zero sequence current,which affects the precision of line selection.In view of this,one kind of digital filter is designed.The pure fault component of zero sequence current is extracted and the data is being analyzed,combined with substation automation generatrix insulate monitoring device and automation reclose device,the fault line is selected.The theoretical analysis and Matlab simulation experiment indicates the accuracy and reliability of line selection method has improved significantly.%针对我国35 kV及以下配电网小电流接地系统发生单相接地时,健全线路与故障线路暂态零序电流相差不大,影响了选线的精度等状况,设计了一种数字滤波器。它可提取零序电流的纯故障分量,对数据进行相关分析,结合变电站自动化母线绝缘监视装置以及自动重合闸装置,选出故障线路。通过理论分析和Matlab实验仿真表明,这种选线方法,其准确性、可靠性有明显提高。

  5. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  6. The electric field of the Earth after the occurrence of the February 14th, 2008, Ms = 6.7R EQ in Greece. Its implications towards the prediction of a probable future large EQ

    CERN Document Server

    Thanassoulas, C

    2008-01-01

    The electric field of the Earth registered by three monitoring sites (ATH, PYR, HIO) located in Greece, is investigated and analyzed after the occurrence of the Methoni EQ (14th of February, 2008, Ms =6.7R). The period of analysis is performed for 2 days (21st-22nd of February) and 7 days after the occurrence of the main seismic event. The obtained results suggest that the seismogenic area generates electrical signals denoting a specific epicentral area. This area coincides with the already seismically activated area. An estimate for the time of occurrence of this EQ is made by the application of the Oscillating Lithospheric Plate Model. The analysis of the seismic potential of the regional area suggests that the remaining stored seismic energy is capable of producing a large earthquake in the same area. The expected maximum magnitude (Ms) of a future earthquake which could take place in the same seismogenic area is estimated as Ms = 7.24R by the application of the Lithospheric Seismic Energy flow model.

  7. Grounded cognition.

    Science.gov (United States)

    Barsalou, Lawrence W

    2008-01-01

    Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.

  8. CMS Preshower (ES) : proposal for Protective Earthing of the subdetector and of its Silicon bias supply system

    CERN Document Server

    Wertelaers, P

    2010-01-01

    There are no good arguments to apply for a derogatory "IT" (Isolé/Terre) earthing scheme for the Preshower, and thus, an appropriate earthing of on-detector active parts is discussed. Complication comes from the absence of a strong DC link between the modules' grounds and the structure, and the safety tying must be obstructed. Fortunately, the bias system is the only Low Voltage supplying system, the other powering is Extra-Low Voltage. The bias supplies have a (very) limited maximum current, and the proposed obstructed tying can even deal with the most extreme type of insulation fault. (Initial electrical safety clearance was based upon elements from this Note.)

  9. Electrical installation technology

    CERN Document Server

    Neidle, Michael

    1982-01-01

    Electrical Installation Technology, Third Edition covers the wide range of subjects that come under the headings of electrical science, installations, and regulations. The book discusses electromagnetism; inductance; static electricity; d.c. circuits; voltage drop and current rating; distribution; and wiring techniques. The text also describes o.c. motors and generators; a.c. motors, transformers; power-factor improvement; earthing and earth-leakage protection; testing; illumination; and the general principles of temperature and heat. Communication systems and equipment; electronics; and site

  10. Concept of Operations for a Prospective "Proving Ground" in the Lunar Vicinity

    Science.gov (United States)

    Love, Stanley G.; Hill, James J.

    2016-01-01

    NASA is studying a "Proving Ground" near the Moon to conduct human space exploration missions in preparation for future flights to Mars. This paper describes a concept of operations ("conops") for activities in the Proving Ground, focusing on the construction and use of a mobile Cislunar Transit Habitat capable of months-long excursions within and beyond the Earth-Moon system. Key elements in the conops include the Orion spacecraft (with mission kits for docking and other specialized operations) and the Space Launch System heavy-lift rocket. Potential additions include commercial launch vehicles and logistics carriers, solar electric propulsion stages to move elements between different orbits and eventually take them on excursions to deep space, a node module with multiple docking ports, habitation and life support blocks, and international robotic and piloted lunar landers. The landers might include reusable ascent modules which could remain docked to in-space elements between lunar sorties. The architecture will include infrastructure for launch preparation, communication, mission control, and range safety. The conops describes "case studies" of notional missions chosen to guide the design of the architecture and its elements. One such mission is the delivery of a 10-ton pressurized element, co-manifested with an Orion on a Block 1B Space Launch System rocket, to the Proving Ground. With a large solar electric propulsion stage, the architecture could enable a year-long mission to land humans on a near-Earth asteroid. In the last case, after returning to near-lunar space, two of the asteroid explorers could join two crewmembers freshly arrived from Earth for a Moon landing, helping to safely quantify the risk of landing deconditioned crews on Mars. The conops also discusses aborts and contingency operations. Early return to Earth may be difficult, especially during later Proving Ground missions. While adding risk, limited-abort conditions provide needed practice

  11. Long-term Geophysical Monitoring of Simulated Clandestine Graves using Electrical and Ground Penetrating Radar Methods: 4-6 Years After Burial.

    Science.gov (United States)

    Pringle, Jamie K; Jervis, John R; Roberts, Daniel; Dick, Henry C; Wisniewski, Kristopher D; Cassidy, Nigel J; Cassella, John P

    2016-03-01

    This ongoing monitoring study provides forensic search teams with systematic geophysical data over simulated clandestine graves for comparison to active cases. Simulated "wrapped," "naked," and "control" burials were created. Multiple geophysical surveys were collected over 6 years, here showing data from 4 to 6 years after burial. Electrical resistivity (twin electrode and ERI), multifrequency GPR, grave and background soil water were collected. Resistivity surveys revealed that the naked burial had low-resistivity anomalies up to year four but then difficult to image, whereas the wrapped burial had consistent large high-resistivity anomalies. GPR 110- to 900-MHz frequency surveys showed that the wrapped burial could be detected throughout, but the naked burial was either not detectable or poorly resolved. 225-MHz frequency GPR data were optimal. Soil water analyses showed decreasing (years 4 to 5) to background (year 6) conductivity values. Results suggest both resistivity and GPR surveying if burial style unknown, with winter to spring surveys optimal and increasingly important as time increases.

  12. Regional analysis of ground and above-ground climate

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  13. Solar power satellites: our next generation of satellites will deliver the sun's energy to Earth

    Science.gov (United States)

    Flournoy, Don M.

    2009-12-01

    The paper addresses the means for gathering energy from sunlight in space and transmitting it to Earth via Solar Power Satellites. The motivating factor is that the output of our sun is the largest potential energy source available, with the capability of providing inexhaustible quantities of clean electrical energy to every location on Earth. The challenge is that considerable financial, intellectual and diplomatic resources must be focused on designing and implementing new types of energy infrastructures in space and on the ground. These include: 1) next-generation space platforms, arrays, and power transmission systems; 2) more flexible and powerful launch vehicles for delivering materials to space; 3) specialized receivers, converters and storage systems on earth, and the in-orbit position allocations, spectrum and software that make these systems work together efficiently and safely.

  14. Photovoltaic module mounting clip with integral grounding

    Science.gov (United States)

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  15. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  16. Acoustic Ground-Impedance Meter

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.

  17. How Big is Earth?

    Science.gov (United States)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  18. Ground Wars

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    Political campaigns today are won or lost in the so-called ground war--the strategic deployment of teams of staffers, volunteers, and paid part-timers who work the phones and canvass block by block, house by house, voter by voter. Ground Wars provides an in-depth ethnographic portrait of two...... infrastructures that utilize large databases with detailed individual-level information for targeting voters, and armies of dedicated volunteers and paid part-timers. Nielsen challenges the notion that political communication in America must be tightly scripted, controlled, and conducted by a select coterie...... of professionals. Yet he also quashes the romantic idea that canvassing is a purer form of grassroots politics. In today's political ground wars, Nielsen demonstrates, even the most ordinary-seeming volunteer knocking at your door is backed up by high-tech targeting technologies and party expertise. Ground Wars...

  19. Electrical properties and scaling behaviour of rare earth based Ho{sub 2}CoZrO{sub 6} double perovskite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Dev K., E-mail: drdevkumar@yahoo.com [Department of Physics, National Institute of Technology Patna, Patna 800005 (India); Dutta, Alo; Sinha, T.P. [Department of Physics, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700 009 (India)

    2012-12-15

    Graphical abstract: The X-ray diffraction analysis suggests that the compound crystallizes in monoclinic phase at room temperature with β = 108.51 ± 0.021° (a = 8.1858 ± 0.0023 Å, b = 5.2599 ± 0.0027 Å, c = 7.9874 ± 0.0031 Å) and cell volume = 324.17 Å{sup 3}. The SEM image indicates the uniformity of the grains in the samples. The grain size of the microstructure of HCZ is found to be ∼0.48 μm on average. Display Omitted Highlights: ► The conduction mechanism in HCZ may be due to hopping of small polaron. ► The material shows semiconducting behaviour. ► Conductivity obeys Jonscher's power law with high frequency dispersion. ► Both long-range and localized relaxation are present. -- Abstract: The Ho{sub 2}CoZrO{sub 6} (HCZ) double perovskite has been prepared in polycrystalline form by solid state reaction technique. The analysis of the X-ray powder diffraction pattern indicates that the crystal structure is monoclinic at room temperature with cell parameters a = 8.1858 ± 0.0023 Å, b = 5.2599 ± 0.0027 Å, c = 7.9874 ± 0.0031 Å and β = 108.51 ± 0.021°. The compound shows significant frequency dispersion in its dielectric properties. The Cole–Cole model is used to determine the polydispersive nature of dielectric relaxation. The scaling behaviour of dielectric loss and imaginary electric modulus suggest that the relaxation describe same mechanism at various temperatures. Impedance data presented in the Nyquist plot (Z″ versus Z′) are used to identify an equivalent circuit and to know the bulk and interface contributions. The complex impedance analysis of HCZ exhibits the appearance of both the grain and the grain-boundary contribution. The frequency dependent conductivity spectra follow the universal power law. The magnitude of the activation energy indicates that the carrier transport is due to the hopping conduction.

  20. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  1. 电动汽车车身平顺性及车轮接地性分析与优化%Analysis and Optimization of Ride Comfort and Wheel Ground Adhesion of Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    张擎宇; 陈辛波

    2014-01-01

    以某分布式四轮驱动电动汽车为研究对象,在Adams/car中建立了整车模型,通过对前、后悬架参数进行灵敏度分析,探讨其对车身平顺性与车轮接地性的影响。基于α法建立评价车身平顺性与车轮接地性指标的多目标函数,对灵敏度较高的悬架参数进行优化设计。结果表明,优化后前、后悬架的刚度减小,前悬架的阻尼增大。与优化前相比,车身垂向加速度均方根值减小16%,左、右前轮动载荷的均方根值均减小11%。%With a distributed 4WD electric vehicle as research object, a vehicle model is constructed in Adams/car environment. Sensitivity analysis is made to the front and rear suspension parameters, its effect on ride comfort and wheel ground adhesion is investigated. Multi-objective function to evaluate body ride comfort and wheel ground adhesion is established based on α method and suspension parameters with high sensitivity are optimized. The results indicate that stiffness of the optimized front and rear suspension descends, whereas damping of the front suspension ascends. Compared with the suspension before optimization, the root-mean-square value of body vertical acceleration is reduced by 16%, and that of the front wheels on both sides is reduced by 11%.

  2. Chandra Looks Back At The Earth

    Science.gov (United States)

    2005-12-01

    In an unusual observation, a team of scientists has scanned the northern polar region of Earth with NASA's Chandra X-ray Observatory. The results show that the aurora borealis, or "northern lights," also dance in X-ray light, creating changing bright arcs of X-ray energy above the Earth's surface. While other satellite observations had previously detected high-energy X-rays from the Earth auroras, the latest Chandra observations reveal low-energy X-rays generated during auroral activity for the first time. The researchers, led by Dr. Ron Elsner of NASA's Marshall Space Flight Center in Huntsville, Ala., used Chandra to observe the Earth 10 times over a four-month period in 2004. The images were created from approximately 20-minute scans during which Chandra was aimed at a fixed point in the sky and the Earth's motion carried the auroral regions through Chandra's field of view. From the ground, the aurora are well known to change dramatically over time and this is the case in X-ray light as well. The X-rays in this sample of the Chandra observations, which have been superimposed on a simulated image of the Earth, are seen here at four different epochs. Illlustration of Earth's Magnetosphere and Auroras Illlustration of Earth's Magnetosphere and Auroras Auroras are produced by solar storms that eject clouds of energetic charged particles. These particles are deflected when they encounter the Earth�s magnetic field, but in the process large electric voltages are created. Electrons trapped in the Earth�s magnetic field are accelerated by these voltages and spiral along the magnetic field into the polar regions. There they collide with atoms high in the atmosphere and emit X-rays. Chandra has also observed dramatic auroral activity on Jupiter. Dr. Anil Bhardwaj of Vikram Sarabhai Space Center in Trivandrum, India, is the lead author on a paper describing these results in the Journal of Atmospheric and Solar-Terrestrial Physics. Dr. Bhardwaj was a co

  3. The Earth's oscillating electric field (T = 1 day) in relation to the occurrence time of large EQs (Ms \\geq 5.0R). A postulated theoretical physical working model and its statistical validation

    CERN Document Server

    Thanassoulas, C; Verveniotis, G; Zymaris, N

    2011-01-01

    The mechanically oscillating, due to tidal forces, lithosperic plate activates, because of its high content in quartzite, the generation of a piezoelectric field. Due to the same mechanical oscillation the lithosphere is generally at a state of an oscillating stress load. Therefore, large EQs which occur at the peaks of the stress load must coincide with the peaks of the generated piezoelectric potential. In this work a physical mechanism is postulated that accounts for the latter hypothesis. The postulated model is statistically tested by comparing the time of occurrence of 280 large EQs (Ms \\geq 5.0R) which occurred during the period from 2003 to 2011, to the same period of time Earth's electric field registered at ATH (Athens) and PYR (Pyrgos) monitoring sites located in Greece. The comparison has been made for the oscillating component of T = 1 day and for both the E - W and N - S directions. The statistical results indicate that the postulated model does not behave randomly. Instead, it represents a smoo...

  4. Snowball Earth

    OpenAIRE

    2016-01-01

    In the ongoing quest to better understand where life may exist elsewhere in the Universe, important lessons may be gained from our own planet. In particular, much can be learned from planetary glaciation events that Earth suffered ∼600 million years ago, so-called `Snowball Earth' episodes. I begin with an overview of how the climate works. This helps to explain how the ice-albedo feedback effect can destabilise a planet's climate. The process relies on lower temperatures causing more ice to ...

  5. Isotope Brayton ground demonstration testing and flight qualification. Volume 1. Technical program

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    A program is proposed for the ground demonstration, development, and flight qualification of a radioisotope nuclear heated dynamic power system for use on space missions beginning in the 1980's. This type of electrical power system is based upon and combines two aerospace technologies currently under intense development; namely, the MHW isotope heat source and the closed Brayton cycle gas turbine. This power system represents the next generation of reliable, efficient economic electrical power equipment for space, and will be capable of providing 0.5 to 2.0 kW of electric power to a wide variety of spacecraft for earth orbital and interplanetary missions. The immediate design will be based upon the requirements for the Air Force SURVSATCOM mission. The proposal is presented in three volumes plus an Executive Summary. This volume describes the tasks in the technical program.

  6. Ion transport under the effect of an electric field in porous medium: application to the separation of rare earths by focalization electrophoresis; Transport d'ions sous l'effet d'un champ electrique en milieu poreux: Application a la separation de terres rares par electrophorese a focalisation

    Energy Technology Data Exchange (ETDEWEB)

    Vieira-Nunes, A.I

    1999-01-15

    Trivalent ions of rare earth elements have very similar properties and their difficult separation each from another is usually carried out by liquid-liquid extraction or ion exchange. Focalization electrophoresis represents an alternative route to the usual techniques. The purpose of this work consisted of the fundamental investigation of ion transport phenomena in electrophoretic processes. Focalization electrophoresis is suitable for separation of amphoteric species such as rare earth ions, using a pH gradient in the cell and upon addition of a complexed agent e. g. EDTA. This technique relies upon the difference in iso-electrical points of the considered species, being under the form of free cation near the anode, and in the form of anionic complexed species closer to the cathode. Rare earth species are submitted to the antagonist effects of diffusion and migration, enabling their focalization to occur at the iso-electrical point, corresponding to nil value of their effective mobility. Following a literature survey on rare earth elements and electrophoresis processes, the document describes theoretical and experimental investigations of complexation equilibria of some rare earth elements, namely lanthanum, neodymium, praseodymium and cerium, depending on pH. Values for the iso-electrical points could be estimated. Transport and focalization phenomena in view of rare earth separation, are dealt in the last chapter. Investigations were first carried out without forced circulation of the electrolyte solution and the transient behavior of the system allowed operating conditions to be design and built-up of a continuous device, more suitable to separation, and provided with 42 potential and 42 temperature sensors: the results of the preliminary runs, in form of variable profiles, are presented and discussed. (author)

  7. Electrical installations and regulations

    CERN Document Server

    Whitfield, J F

    1966-01-01

    Electrical Installations and Regulations focuses on the regulations that apply to electrical installations and the reasons for them. Topics covered range from electrical science to alternating and direct current supplies, as well as equipment for providing protection against excess current. Cables, wiring systems, and final subcircuits are also considered, along with earthing, discharge lighting, and testing and inspection.Comprised of 12 chapters, this book begins with an overview of electrical installation work, traits of a good electrician, and the regulations governing installations. The r

  8. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  9. Electric and magnetic dipole shielding constants for the ground state of the relativistic hydrogen-like atom: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    CERN Document Server

    Stefańska, Patrycja

    2011-01-01

    The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30 (1997) 825; erratum 30 (1997) 2747] is exploited to derive closed-form expressions for electric ($\\sigma_{\\mathrm{E}}$) and magnetic ($\\sigma_{\\mathrm{M}}$) dipole shielding constants for the ground state of the relativistic hydrogen-like atom with a point-like and spinless nucleus of charge $Ze$. It is found that $\\sigma_{\\mathrm{E}}=Z^{-1}$ (as it should be) and $$\\sigma_{\\mathrm{M}}=-(2Z\\alpha^{2}/27)(4\\gamma_{1}^{3}+6\\gamma_{1}^{2}-7\\gamma_{1}-12) /[\\gamma_{1}(\\gamma_{1}+1)(2\\gamma_{1}-1)],$$ where $\\gamma_{1}=\\sqrt{1-(Z\\alpha)^{2}}$ ($\\alpha$ is the fine-structure constant). This expression for $\\sigma_{\\mathrm{M}}$ agrees with earlier findings of several other authors, obtained with the use of other analytical techniques, and is elementary compared to an alternative one presented recently by Cheng \\emph{et al.} [J. Chem. Phys. 130 (2009) 144102], which involves an infinite series of ratios of the Euler'...

  10. Possible mechanism of electrical field origin around celestial bodies

    OpenAIRE

    Bisnovatyi-Kogan, G. S.

    2002-01-01

    Slow magnetic field variations in stars and planets create a quasistationary electrical field which may be observed. It is supposed that the electrical field near the Earth surface may be partially connected with variation of the Earth magnetic field. Two examples of the electrical field distribution around the infinite cylinder, and the circular loop with a lineary growing with time electrical currents are given.

  11. Ground state prop erties and excitation prop erties of ZnSe under different external electric fields%ZnSe在外电场下的基态性质和激发特性研究∗

    Institute of Scientific and Technical Information of China (English)

    李世雄; 吴永刚; 令狐荣锋; 孙光宇; 张正平; 秦水介

    2015-01-01

    The Hartree-Fork (HF) method with LANL2DZ basis set is used to investigate the equilibrium structures, atomic charge distributions, the highest occupied molecular orbital (HOMO) energy levels, the lowest unoccupied molecular orbital (LUMO) energy levels, energy gaps, dipole moments, harmonic frequencies and infrared intensities of ZnSe under different external electric fields ranging from −0.025 to 0.040 a.u. The excitation energies, transition wavelengths and oscillator strengths under the same external electric fields are calculated by the time-dependent-HF method. The results show that the bond length and electric dipole moment are proved to be first decreasing, and then increasing with the variation of the external field; the total energy is found to decrease linearly with the variation of external field; but the HOMO energy and energy gap are proved to increase with the variation of external field. The harmonic frequency and LUMO energy are found to first increase, and then decrease, but the infrared intensities are proved to first decrease, and then increase. The external electric field has significant effect on the excitation properties of ZnSe molecule. The excited energies from ground state to the first nine excited states are found to increase, and the transition wavelengths are decreasing with the variation of the external field. Meanwhile, the strongest excited state becomes very weak, and the weak excited state becomes strongest by the external field. The excitation properties of ZnSe material can be changed with external electric field.%以LANL2DZ为基组,采用Hartree-Fock(HF)方法研究了不同外电场(−0.025—0.040 a.u.)对ZnSe分子的基态几何结构、电荷分布、能量、电偶极矩、最高占据轨道(HOMO)能级、最低空轨道(LUMO)能级、能隙、红外光谱特性的影响;继而采用含时的TD-HF方法研究了ZnSe分子在外电场下前9个激发态的吸收谱、激发能、振子强度等激发特性.研究

  12. EDITORIAL: A physicist's journey to the centre of the Earth

    Science.gov (United States)

    Hipkin, Roger

    1999-07-01

    extending to distant parts of the globe must be combined with international collaboration. ` `Little g' revisited' illustrates how a global picture of the Earth's gravity field is being created by supplementing such ground-based measurements with remote-sensing from satellites. Satellites now form the main source of information about `The Earth's main magnetic field', the consequence of a vast dynamo within the molten iron core. For such global problems of the deep interior, the impossibility of making direct observations is absolute but cost can often be an equally strict limitation for much geophysical work. While we could in principle look for oil reservoirs or shallow regions where poison has contaminated the ground by digging it all up or drilling, this would be economically prohibitive. `Investigating brownfield sites with electrical resistivity' illustrates that, for the geophysicist, investigating the Earth's core and mapping subsurface chemical pollutants are aspects of the same problem - using basic physics to find out about the Earth's inaccessible interior. Editor's note. In this bumper issue of Physics Education we also have a trio of articles about absolutely nothing, showing that there is more to nothing than might be apparent to the casual eye!

  13. Identifying structural damage with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2008-07-01

    Full Text Available Ground penetrating radar (GPR) and electrical resistance tomography (ERT) surveys were conducted in an urban environment in an attempt to identify the cause of severe structural damage to a historically significant residential property...

  14. 生物活性稀土梯度涂层在碱液环境中的电极化后处理%Electric polarized post treatment of rare earth active bioceramic gradient coating in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    汪震; 刘其斌; 肖明; 杨邦成

    2011-01-01

    To improve the quality of rare earth active bioceramic gradient coatings,a method of electric polarized treatment(PAS) was used to post-process the gradient coatings fabricated by wide band laser cladding in alkali liquid.The phases and corrosion resistance of the bioceramic coatings were analyzed by XRD and an electrochemical analyzer.The bioceramic coatings were immersed in simulated body fluid(SBF) to examine its bioactivity and its electrical charge.The experimental results indicate that PAS treatment not only improves the crystallinity of the coatings,but also is favourable to transform additional phases into hydroxyapatite.PAS treatment exhibits a little effect on corrosion resistance of the bioceramic coatings.Compared with as-received coatings,the coatings treated by PAS are of better bioactivity and more negative charge.%为了改善活性生物稀土梯度涂层的质量,在碱液环境中采用电极化处理法(PAS)对宽带激光熔覆生物活性稀土梯度涂层进行后处理。利用XRD和电化学分析仪对涂层的相组成和耐腐蚀性进行了研究,通过模拟体液浸泡试验考察了生物陶瓷涂层的生物活性和涂层表面的电荷分布情况。结果表明,碱液环境中电极化处理法(PAS)能够提高涂层的结晶度,使涂层中的非晶相、杂相向羟基磷灰石转化。PAS对涂层的耐腐蚀性影响不大。与未处理涂层相比,PAS处理后的涂层生物活性更好,且涂层表面产生了更多的负电荷。

  15. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    Directory of Open Access Journals (Sweden)

    Gaétan Chevalier

    2012-01-01

    Full Text Available Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and unwellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding refers to the discovery of benefits—including better sleep and reduced pain—from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance.

  16. Electrical properties of alkaline earth fluorohalide crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ayachour, D. (Lab. PHASE, C.R.N., 67 - Strasbourg (France)); Sieskind, M. (Groupe d' Optique, Non-Lineaire, 67 - Strasbourg (France)); Geist, P. (C.R.N.-G.O.P.A., 67 - Strasbourg (France))

    1991-07-01

    The ionic conductivity of undoped BaFCl, BaFBr, BaFI, SrFCl, and SrFBr single crystals is measured. The activation energies for a variety of anion vacancy mechanisms and the Schottky energy are defined. They are found to be in good agreement with Baetzold's theoretical data. Partial measurements of the static dielectric constant point out that these materials show an important dipolar contribution which is connected with their antiferroelectric character. (orig.).

  17. Physical and electrical characteristics of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with rare earth Er{sub 2}O{sub 3} as a gate dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ray-Ming, E-mail: rmlin@mail.cgu.edu.tw; Chu, Fu-Chuan; Das, Atanu; Liao, Sheng-Yu; Chou, Shu-Tsun; Chang, Liann-Be

    2013-10-01

    In this study, the rare earth erbium oxide (Er{sub 2}O{sub 3}) was deposited using an electron beam onto an AlGaN/GaN heterostructure to fabricate metal-oxide-semiconductor high-electron-mobility transistors (MOS–HEMTs) that exhibited device performance superior to that of a conventional HEMT. Under similar bias conditions, the gate leakage currents of these MOS–HEMT devices were four orders of magnitude lower than those of conventional Schottky gate HEMTs. The measured sub-threshold swing (SS) and the effective trap state density (N{sub t}) of the MOS–HEMT were 125 mV/decade and 4.3 × 10{sup 12} cm{sup −2}, respectively. The dielectric constant of the Er{sub 2}O{sub 3} layer in this study was 14, as determined through capacitance–voltage measurements. In addition, the gate–source reverse breakdown voltage increased from –166 V for the conventional HEMT to –196 V for the Er{sub 2}O{sub 3} MOS–HEMT. - Highlights: ► GaN/AlGaN/Er{sub 2}O{sub 3} metal-oxide semiconductor high electron mobility transistor ► Physical and electrical characteristics are presented. ► Electron beam evaporated Er{sub 2}O{sub 3} with excellent surface roughness ► Device exhibits reduced gate leakage current and improved I{sub ON}/I{sub OFF} ratio.

  18. In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil

    Science.gov (United States)

    Thomas, J.N.; Holzworth, R.H.; McCarthy, M.P.

    2009-01-01

    The global electrical circuit, which maintains a potential of about 280??kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30-35??km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ?? 1.25??A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical - CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.

  19. Low Earth Orbiter: Terminal

    Science.gov (United States)

    Kremer, Steven E.; Bundick, Steven N.

    1999-01-01

    In response to the current government budgetary environment that requires the National Aeronautics and Space Administration (NASA) to do more with less, NASA/Goddard Space Flight Center's Wallops Flight Facility has developed and implemented a class of ground stations known as a Low Earth Orbiter-Terminal (LEO-T). This development thus provides a low-cost autonomous ground tracking service for NASA's customers. More importantly, this accomplishment provides a commercial source to spacecraft customers around the world to purchase directly from the company awarded the NASA contract to build these systems. A few years ago, NASA was driven to provide more ground station capacity for spacecraft telemetry, tracking, and command (TT&C) services with a decreasing budget. NASA also made a decision to develop many smaller, cheaper satellites rather than a few large spacecraft as done in the past. In addition, university class missions were being driven to provide their own TT&C services due to the increasing load on the NASA ground-tracking network. NASA's solution for this ever increasing load was to use the existing large aperture systems to support those missions requiring that level of performance and to support the remainder of the missions with the autonomous LEO-T systems. The LEO-T antenna system is a smaller, cheaper, and fully autonomous unstaffed system that can operate without the existing NASA support infrastructure. The LEO-T provides a low-cost, reliable space communications service to the expanding number of low-earth orbiting missions around the world. The system is also fostering developments that improve cost-effectiveness of autonomous-class capabilities for NASA and commercial space use. NASA has installed three LEO-T systems. One station is at the University of Puerto Rico, the second system is installed at the Poker Flat Research Range near Fairbanks, Alaska, and the third system is installed at NASA's Wallops Flight Facility in Virginia. This paper

  20. Statistical Studies of Ground-Based Optical Lightning Signatures

    Science.gov (United States)

    Hunt, C. R.; Nemzek, R. J.; Suszcynsky, D. M.

    2005-12-01

    Most extensive optical studies of lightning have been conducted from orbit, and the statistics of events collected from earth are relatively poorly documented. The time signatures of optical power measured in the presence of clouds are inevitably affected by scattering,which can distort the signatures by extending and delaying the amplitude profile in time. We have deployed two all-sky photodiode detectors, one in New Mexico and one in Oklahoma, which are gathering data alongside electric field change monitors as part of the LANL EDOTX Great Plains Array. Preliminary results show that the photodiode is sensitive to approximately 50% or more of RF events detected at ranges of up to 30 km, and still has some sensitivity at ranges in excess of 60 km (distances determined by the EDOTX field-change array). The shapes of events within this range were assessed, with focus on rise time, width, peak power, and their correlation to corresponding electric field signatures, and these are being compared with published on-orbit and ground-based data. Initial findings suggest a mean characteristic width (ratio of total detected optical energy to peak power) of 291 +/- 12 microseconds and a mean delay between the RF signal peak and optical peak of 121 +/- 17 microseconds. These values fall between prior ground-based measurements of direct return stroke emissions, and scattering-dominated on-orbit measurements. This work will promote better understanding of the correspondence between radio and optical measurements of lightning.

  1. Extensive air showers, lightning, and thunderstorm ground enhancements

    Science.gov (United States)

    Chilingarian, A.; Hovsepyan, G.; Kozliner, L.

    2016-09-01

    For lightning research, we monitor particle fluxes from thunderclouds, the so-called thunderstorm ground enhancements (TGEs) initiated by runaway electrons, and extensive air showers (EASs) originating from high-energy protons or fully stripped nuclei that enter the Earth's atmosphere. We also monitor the near-surface electric field and atmospheric discharges using a network of electric field mills. The Aragats "electron accelerator" produced several TGEs and lightning events in the spring of 2015. Using 1-s time series, we investigated the relationship between lightning and particle fluxes. Lightning flashes often terminated the particle flux; in particular, during some TGEs, lightning events would terminate the particle flux thrice after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of a TGE or in its decay phase; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just at the peak of its development. We discuss the possibility of a huge EAS facilitating lightning leader to find its path to the ground.

  2. Transmission Lines or Poles, Electric, Electricity Transmission Lines; electran; Major above ground high voltage electrical transmission lines as shown on USGS 7.5 minute topo quads and/or as confirmed through identification of visible right of way cuts on digital orthophotgraphy., Published in 2001, 1:4800 (1in=400ft) scale, State of Rhode Island and Providence Plantations.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Transmission Lines or Poles, Electric dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Orthoimagery information as of 2001. It...

  3. Earth current monitoring circuit for inductive loads

    CERN Document Server

    Montabonnet, V; Thurel, Y; Cussac, P

    2010-01-01

    The search for higher magnetic fields in particle accelerators increasingly demands the use of superconducting magnets. This magnet technology has a large amount of magnetic energy storage during operation at relatively high currents. As such, many monitoring and protection systems are required to safely operate the magnet, including the monitoring of any leakage of current to earth in the superconducting magnet that indicates a failure of the insulation to earth. At low amplitude, the earth leakage current affects the magnetic field precision. At a higher level, the earth leakage current can additionally generate local losses which may definitively damage the magnet or its instrumentation. This paper presents an active earth fault current monitoring circuit, widely deployed in the converters for the CERN Large Hadron Collider (LHC) superconducting magnets. The circuit allows the detection of earth faults before energising the circuit as well as limiting any eventual earth fault current. The electrical stress...

  4. Absence of Magnetic Dipolar Phase Transition and Evolution of Low-Energy Excitations in PrNb2Al20 with Crystal Electric Field Γ3 Ground State: Evidence from 93Nb-NQR Studies

    Science.gov (United States)

    Kubo, Tetsuro; Kotegawa, Hisashi; Tou, Hideki; Higashinaka, Ryuji; Nakama, Akihiro; Aoki, Yuji; Sato, Hideyuki

    2015-07-01

    We report measurements of bulk magnetic susceptibility and 93Nb nuclear quadrupole resonance (NQR) in the Pr-based caged compound PrNb2Al20. By analyzing the magnetic susceptibility and magnetization, the crystal electric field (CEF) level scheme of PrNb2Al20 is determined to be Γ3(0 K)-Γ4(21.32 K)-Γ5(43.98 K)-Γ1(51.16 K) within the framework of the localized 4f electron picture. The 93Nb-NQR spectra exhibit neither spectral broadening nor spectral shift upon cooling down to 75 mK. The 93Nb-NQR spin-lattice relaxation rate 1/T1 at 5 K depends on the frequency and remains almost constant below 5 K. The frequency dependence of 1/T1 is attributed to the magnetic fluctuation due to the hyperfine-enhanced 141Pr nuclear moment inherent in the nonmagnetic Γ3 CEF ground state. The present NQR results provide evidence that no symmetry-breaking magnetic dipole order occurs down to 75 mK. Also, considering an invariant form of the quadrupole and octupole couplings between a 93Nb nucleus and Pr 4f electrons, Pr 4f quadrupoles and an octupole can couple with a 93Nb nuclear quadrupole moment and nuclear spin, respectively. Together with the results of bulk measurements, the present NQR results suggest that the possibility of a static quadrupole or octupole ordering can be excluded down to 100 mK. At low temperatures below 500 mK, however, the nuclear spin-echo decay rate gradually increases and the decay curve changes from Gaussian decay to Lorentzian decay, suggesting the evolution of a low-energy excitation.

  5. 30 CFR 75.700-1 - Approved methods of grounding.

    Science.gov (United States)

    2010-07-01

    ... conductors are a part of the system will be approved if a solid connection is made to the neutral conductor... low resistance to earth; (c) A solid connection to a grounding conductor, other than the neutral conductor of a resistance grounded system, extending to a low resistance ground field located on the...

  6. Modeling and synthesis of strong ground motion

    Indian Academy of Sciences (India)

    S T G Raghu Kanth

    2008-11-01

    Success of earthquake resistant design practices critically depends on how accurately the future ground motion can be determined at a desired site. But very limited recorded data are available about ground motion in India for engineers to rely upon. To identify the needs of engineers, under such circumstances, in estimating ground motion time histories, this article presents a detailed review of literature on modeling and synthesis of strong ground motion data. In particular, modeling of seismic sources and earth medium, analytical and empirical Green’s functions approaches for ground motion simulation, stochastic models for strong motion and ground motion relations are covered. These models can be used to generate realistic near-field and far-field ground motion in regions lacking strong motion data. Numerical examples are shown for illustration by taking Kutch earthquake-2001 as a case study.

  7. The performance of the CHEOPS on-ground calibration system

    Science.gov (United States)

    Chazelas, B.; Wildi, F. P.; Sarajlic, M.; Sordet, M.; Deline, A.

    2016-07-01

    The CHEOPS space mission will measure photometric transits of exo-planets with a precision of 20 ppm in 6 hours of integration time on a 9th magnitude star. This corresponds to a signal-to-noise ratio of 5 for a transit of an Earth-sized planet orbiting a solar-sized star. Achieving the precision goal requires precise on-ground calibration of the payload to remove its signature from the raw data while in flight. A sophisticated calibration system will inject a stimulus beam in the payload and measure its response to the variation of electrical and environmental parameters. These variations will be compiled in a correction model. At the very end of the testing phase, the CHEOPS photometric performance will be assessed on an artificial star, applying the correction model This paper addresses some original details of the CHEOPS calibration bench and its performance as measured in the lab.

  8. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2012-01-01

    play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements....... The article further describes how national political debates over the Muslim presence in Denmark affect identity political manifestations within Nørrebro. By using Duncan Bell’s concept of mythscape (Bell, 2003), the article shows how some political actors idealize Nørrebro’s past to contest the present...

  9. Electricity in the Sky

    Institute of Scientific and Technical Information of China (English)

    杨宇清

    1995-01-01

    Without any warning, the stormy sky flashes ghostly white. Jagged branches connect the earth and clouds in an eerie electric web,then disappear.Seconds later a resounding thunderclap warns you that the storm’s center is just a few miles away.

  10. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  11. The Envisat-1 ground segment

    Science.gov (United States)

    Harris, Ray; Ashton, Martin

    1995-03-01

    The European Space Agency (ESA) Earth Remote Sensing Satellite (ERS-1 and ERS-2) missions will be followed by the Polar Orbit Earth Mission (POEM) program. The first of the POEM missions will be Envisat-1. ESA has completed the design phase of the ground segment. This paper presents the main elements of that design. The main part of this paper is an overview of the Payload Data Segment (PDS) which is the core of the Envisat-1 ground segment, followed by two further sections which describe in more detail the facilities to be offered by the PDS for archiving and for user servcies. A further section describes some future issues for ground segment development. Logica was the prime contractor of a team of 18 companies which undertook the ESA financed architectural design study of the Envisat-1 ground segment. The outputs of the study included detailed specifications of the components that will acquire, process, archive and disseminate the payload data, together with the functional designs of the flight operations and user data segments.

  12. Estimating Water Levels with Google Earth Engine

    Science.gov (United States)

    Lucero, E.; Russo, T. A.; Zentner, M.; May, J.; Nguy-Robertson, A. L.

    2016-12-01

    Reservoirs serve multiple functions and are vital for storage, electricity generation, and flood control. For many areas, traditional ground-based reservoir measurements may not be available or data dissemination may be problematic. Consistent monitoring of reservoir levels in data-poor areas can be achieved through remote sensing, providing information to researchers and the international community. Estimates of trends and relative reservoir volume can be used to identify water supply vulnerability, anticipate low power generation, and predict flood risk. Image processing with automated cloud computing provides opportunities to study multiple geographic areas in near real-time. We demonstrate the prediction capability of a cloud environment for identifying water trends at reservoirs in the US, and then apply the method to data-poor areas in North Korea, Iran, Azerbaijan, Zambia, and India. The Google Earth Engine cloud platform hosts remote sensing data and can be used to automate reservoir level estimation with multispectral imagery. We combine automated cloud-based analysis from Landsat image classification to identify reservoir surface area trends and radar altimetry to identify reservoir level trends. The study estimates water level trends using three years of data from four domestic reservoirs to validate the remote sensing method, and five foreign reservoirs to demonstrate the method application. We report correlations between ground-based reservoir level measurements in the US and our remote sensing methods, and correlations between the cloud analysis and altimetry data for reservoirs in data-poor areas. The availability of regular satellite imagery and an automated, near real-time application method provides the necessary datasets for further temporal analysis, reservoir modeling, and flood forecasting. All statements of fact, analysis, or opinion are those of the author and do not reflect the official policy or position of the Department of Defense or any

  13. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  14. Copernicus Earth observation programme

    Science.gov (United States)

    Žlebir, Silvo

    European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.

  15. Device, system and method for a sensing electrical circuit

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2009-01-01

    The invention relates to a driven ground electrical circuit. A driven ground is a current-measuring ground termination to an electrical circuit with the current measured as a vector with amplification. The driven ground module may include an electric potential source V.sub.S driving an electric current through an impedance (load Z) to a driven ground. Voltage from the source V.sub.S excites the minus terminal of an operational amplifier inside the driven ground which, in turn, may react by generating an equal and opposite voltage to drive the net potential to approximately zero (effectively ground). A driven ground may also be a means of passing information via the current passing through one grounded circuit to another electronic circuit as input. It may ground one circuit, amplify the information carried in its current and pass this information on as input to the next circuit.

  16. Beyond Earth: Using Google Earth to Visualize Other Planetary Bodies

    Science.gov (United States)

    Hancher, M.; Beyer, R.; Broxton, M.; Gorelick, N.; Kolb, E.; Weiss-Malik, M.

    2008-12-01

    Virtual globes have revolutionized the way we visualize and understand the Earth, but there are other planetary bodies that can be visualized as well. We will demonstrate the use of Google Earth, KML, and other modern mapping tools for visualizing data that's literally out of this world. Extra-terrestrial virtual globes are poised to revolutionize planetary science, bring an exciting new dimension to science education, and allow users to explore the increasingly breathtaking imagery being sent back to Earth by modern planetary science satellites. We will demonstrate several uses of the latest Google Earth and KML features to visualize planetary data. Global maps of planetary bodies---not just visible imagery maps, but also terrain maps, infra-red maps, minerological maps, and more---can be overlaid on the Google Earth globe using KML, and a number of sources are already making many such maps available. Coverage maps show the polygons that have been imaged by various satellite sensors, with links to the imagery and science data. High-resolution regionated ground overlays allow you to explore the most breathtaking imagery at full resolution, in its geological context, just as we have become accustomed to doing with Earth imagery. Panoramas from landed missions to the Moon and Mars can even be embedded, giving users a first-hand experience of other worlds. We will take you on a guided tour of how these features can best be used to visualize places other than the Earth, and provide pointers to KML from many sources---ourselves and others---that users can build on in constructing their own KML content of other planetary bodies. Using this paradigm for sharing geospatial data will not only enable planetary scientists to more easily build and share data within the scientific community, but will also provide an easy platform for public outreach and education efforts, and will easily allow anyone to layer geospatial information on top of planetary data.

  17. Earthing the human body influences physiologic processes.

    Science.gov (United States)

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  18. 46 CFR 183.372 - Equipment and conductor grounding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Equipment and conductor grounding. 183.372 Section 183... conductor grounding. (a) All metallic enclosures and frames of electrical equipment must be permanently... equipment must be bonded together to a common ground by a normally non-current carrying conductor....

  19. 49 CFR 229.97 - Grounding fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded....

  20. 30 CFR 56.12026 - Grounding transformer and switchgear enclosures.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding transformer and switchgear enclosures... MINES Electricity § 56.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded....

  1. 30 CFR 57.12026 - Grounding transformer and switchgear enclosures.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding transformer and switchgear enclosures... NONMETAL MINES Electricity Surface and Underground § 57.12026 Grounding transformer and switchgear enclosures. Metal fencing and metal buildings enclosing transformers and switchgear shall be grounded....

  2. Magnetospheric effects in atmospheric electricity at high latitudes

    Science.gov (United States)

    Shumilov, O. I.; Kasatkina, E. A.; Frank-Kamenetsky, A. V.; Raspopov, O. M.; Vasiljev, A. N.; Struev, A. G.

    2003-04-01

    Measurements of the vertical atmospheric electric field (Ez) made at auroral station Apatity (geomagnetic latitude: 63.8) and polar cap station Vostok, Antarctica (geomagnetic latitude: -89.3) in 2001-2002 have been analyzed. The measurements were made by a high-latitude computer-aided complex installed at Apatity in 2001. It consists of three spatially placed microbarographs for measurements of atmospheric waves, a device for air conductivity measurement and a device for measurement of vertical component of the atmospheric electric field. The computer-aided system permits to get information with a frequency of five times per second. The ground level atmospheric electric field was found to have systematic local diurnal and seasonal variations. Diurnal variations of atmospheric potential gradient were found to have a departure from the Carnegie curve. A distinct difference in the diurnal variation of atmospheric electric field has been observed also between disturbed (Kp>30) and extremely quiet (Kplatitude electric field variations appear to be the result of solar wind-magnetosphere-ionosphere coupling. Besides, we have found the similarity between the diurnal course of the atmospheric electric field under the quiet geomagnetic conditions and the diurnal variation of galactic cosmic rays. These results have been explained in terms of calculated effective Bz component of the interpalnetary magnetic field arising due to variation of the geomagnetic dipole axis inclination during the Earth's rotation. The results of analysis of the influence of extreme weather conditions (rain, snow, snowstorm, stormclouds, thunderstorms, lightning) on atmospheric electricity (electric field and conductivity) are also discussed. This work was supported by EC (grant INTAS 97-31008) and RFBR (grant 01-05-64850).

  3. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.;

    2008-01-01

    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth's interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements...... will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect...

  4. Autonomous On-Board Optical Navigation Beyond Earth Orbit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To date, navigation solutions are created by ground systems teams and then uploaded to vehicles operating beyond Earth orbit. However with the improvement of...

  5. Our Sustainable Earth

    Science.gov (United States)

    Orbach, Raymond L.

    2013-03-01

    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as the upper levels of the ocean are slow to respond to atmospheric temperature changes. Atmospheric CO2 concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880. They can be associated with the use of coal ecause of the spread of the industrial revolution from Great Britain to the European continent and beyond. The climactic consequence of this human-dominated increase in atmospheric CO2 has been suggested to define a geologic epoch, termed the ``Anthropocene.'' This could be a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. In order to stabilize global temperatures, sharp reductions in CO2 emissions are required: an 80% reduction beginning in 2050. U.S. emissions have declined sharply recently because of market conditions leading to the substitution of natural gas for coal for electricity generation. Whether this is the best use for this resource may be questioned, but it nevertheless reduces CO2 production by 67% from a coal-fired power plant, well on the way to the 80% reduction required for global temperature stabilization. Current methods for CO2 capture and storage are not cost effective, and have been slow (if not absent) to introduce at scale. This paper describes research into some potentially economically feasible approaches: cost-effective capture and storage of CO2 from injection of flue gas into subterranean methane-saturated aquifers at the surface; fuels from sunlight without CO2 production; and large-scale electrical energy storage for intermittent (and even constant) electricity generating sources.

  6. Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Oversupply of rare earths led to the significant price drop of rare earth mineral products and separated products in Chinese domestic market. To stabilize the price, prevent waste of resources, further improve regulation capability on domestic rare earth market and rare earth price and maintain sustaining and healthy development of rare earth industry, partial rare earth producers in Baotou and Jiangxi province projected to cease the production for one month.

  7. Influences of Grounding Site Soil Parameters on Earth Surface Potential of the High-voltage Interconnected Power Grid%高压互联电网极址土层参数对直流地表电位影响的研究

    Institute of Scientific and Technical Information of China (English)

    吴超; 吴广宁; 范建斌; 任志超; 张一坤

    2011-01-01

    HVDC接地极极址选择、布置形式和地表电位的分布在很大程度上取决于土壤结构模型,对分析HVDC输电系统单极运行时交流网络受到的影响也有重要作用.笔者利用CDEGS软件对HVDC系统及交流输电网络进行建模仿真,采用不同的土壤模型,分析研究了直流输电系统以单极大地回线方式运行时,各层土壤参数对地表电位分布的影响.仿真结果表明:直流地表电位因距离接地极的远近而不同,距离接地极越远,直流地表电位绝对值越小,近似呈指数函数形式衰减;直流地表电位数值与土壤厚度近似成反比,而与表层土壤电阻率近似成正比:土壤模型及参数的选取极大地影响了地表电位仿真计算的准确性及真实性,需综合考虑计算结果的精度要求和计算过程难易程度.%The HVDC grounding site selection, ground electrode design, and earth surface potential (ESP)distribution mainly depend on soil model, which is of great importance to analyze the influence of HVDC mono-polar operation with ground return on AC power grid. In this paper, the characteristics of the ESP under DC mono-polar operation mode were summarized with the software CEDGS according to the analysis of different soil models and variable soil parameters. The simulation results illustrate that the farther it is from the grounding site, the smaller the absolute value of ESP is with exponential attenuation. ESP shows approximately inverse proportion to soil thickness but direct proportion to resistivity of surface soil.Selections of soil model and its parameters exert significant influence on accuracy of ESP simulation,therefore the balance between accuracy and difficulty of calculation ought to be considered.

  8. Tuning Photoluminescence Response by Electric Field in Electrically Soft Ferroelectrics

    Science.gov (United States)

    Khatua, Dipak Kumar; Kalaskar, Abhijeet; Ranjan, Rajeev

    2016-03-01

    We show that an electrically soft ferroelectric host can be used to tune the photoluminescence (PL) response of rare-earth emitter ions by external electric field. The proof of this concept is demonstrated by changing the PL response of the Eu3 + ion by electric field on a model system Eu-doped 0.94 (Na1 /2Bi1 /2TiO3)-0.06 (BaTiO3) . We also show that new channels of radiative transitions, forbidden otherwise, open up due to positional disorder in the system, which can as well be tuned by electric field.

  9. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    Science.gov (United States)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  10. Solar Energy Cell with Rare Earth Film

    Institute of Scientific and Technical Information of China (English)

    Li Baojun; Yang Tao; Zhou Yao; Zhou Meng; Fu Xiliang; Fu Li

    2004-01-01

    The characteristic of the solar energy cell with the rare earth film according to theory of molecular structure was introduced.When sunlight shines, the molecules of the rare earth film can absorb energy of the photon and jump to the excited state from the basic state, and play a role in storing solar energy.When sunlight do not shine, the electron of the excited state returns to the basic state, the rare earth film can automatically give out light and shine to surface of the solar cell, which can make solar cell continuously generate electric current.The rare earth film can absorb direct,scattering sunlight, and increase density of solar energy to reach surface of the solar cell, and play focusing function.The rare earth film can bear 350 ~ 500 ℃, which make the solar cell be able to utilize the focusing function system.Because after luminescence of the rare earth film, it can release again the absorbed solar energy through 1 ~ 8 h, and play a role in storing solar energy; The solar cell with the rare-earth film can generate electricity during night and cloudy days, and remarkably increase efficiency of the solar cell.

  11. Electricity Customers

    Science.gov (United States)

    This page discusses key sectors and how they use electricity. Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity.

  12. The electrical conductivity of the upper mantle and lithosphere from the magnetic signal due to ocean tidal flow

    DEFF Research Database (Denmark)

    Schnepf, Neesha Regmi; Kuvshinov, Alexey; Grayver, Alexander

    Oceans cover about seventy percent of the Earth and yet the overwhelming majority of seismological or electromagnetic (EM) observatories are found on continents. This provides a challenge for understanding composition, structure, and dynamics of Earth’s lithosphere and upper mantle in oceanic...... regions. The recent expansion in magnetic data from low-Earth orbiting satellite missions (Ørsted, CHAMP, SAC-C, and Swarm) has led to a rising interest in probing Earth from space. The largest benefit of using satellite data is much improved spatial coverage. Additionally, and in contrast to ground......-based data, satellite data are overall uniform and very high quality. Probing the conductivity of the lithosphere and upper mantle requires EM variations with periods of a few hours. Electric currents generated by oceanic tides are a well-suited source within this period range. Ocean tides interact...

  13. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Science.gov (United States)

    2010-10-01

    ... Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-17... neutral bus permanently connected to the neutral bus on the main switchboard; and (3) No switch,...

  14. Modern electrical installation for craft students

    CERN Document Server

    Scaddan, Brian

    2013-01-01

    Modern Electrical Installation for Craft Students, Volume 2, Third Edition discusses several topics concerning electrical installations. The book is comprised of eight chapters that deal with craft theory, associated subjects, and electrical industries. Chapter 1 covers inductors and inductance, while Chapter 2 tackles capacitors and capacitance. Chapter 3 deals with inductance and capacitance in installation work. The book also discusses cells, batteries, and transformers. The electrical industries, control and earthing, and testing are also dealt with. The last chapter discusses the basic el

  15. Earth from Above

    Science.gov (United States)

    Stahley, Tom

    2006-01-01

    Google Earth is a free online software that provides a virtual view of Earth. Using Google Earth, students can view Earth by hovering over features and locations they preselect or by serendipitously exploring locations that catch their fascination. Going beyond hovering, they can swoop forward and even tilt images to make more detailed…

  16. 变电站内水平多层土壤参数反演%Parameter Estimation of Horizontal Multi-layer Earth in Substation

    Institute of Scientific and Technical Information of China (English)

    何为; 张瑞强; 杨帆; 祝郦伟; 刘泽辉; 王晓宇

    2014-01-01

    ABSTRACT:Ground grid has great significance for substations. IEEE Std80-2000 points out that the characteristics of horizontal multilayered earth parameters have a great influence on the grounding performance of ground grids. Apparent resistivity is the direct electrical index, and its mathematical model based on Wenner method is an important means to study earth parameters; the corresponding formula in a generalized integral form can be established utilizing Poisson’s equation and the boundary conditions of point current source in multi-layered soil. With the combination of Prony expansion and Lipschitz integration, the equation for fast computation of apparent resistivity is deduced with the summation of limited polynomial terms. Afterwards, improved particle swarm optimization(IPSO) was adopted to solve the horizontal multi-layered earth model using the measured apparent resistivity while the fitness function is chosen as the RMSE between the measured and computed apparent resistivity. In the end of optimization, the particles corresponding to the minimized fitness function were output as the optimal earth parameters. Compared with those published algorithms, IPSO was verified by two-and three-layered earth model, which demonstrate that it is more effective and feasible to obtain horizontal multi-layered earth parameters. The equation of measured apparent resistivity is simplified under the assumption ofd>10t (d is electrode spacing andt is electrode buried depth); therefore, the measured apparent resistivity with respect tod10t(d为电极间距,t为电极入地深度)假设下进行简化得出的,所以提出剔除d<1m时无效的视在电阻率测量值的方法来提高水平多层土壤参数估计的精度,该方法也能够对采用Wenner法的视在电阻率现场测量提出指导意见。

  17. Rare Earth Resolution

    Institute of Scientific and Technical Information of China (English)

    Mei Xinyu

    2012-01-01

    BEFORE the early 1970s, China had no rare earth exports, and the world rare earth market was dominated by the United States, Europe and Japan. In the 1970s, China began to enter the world rare earth market and its share has picked up sharply in the following decades. Today, having the monopoly over global rare earth production, China must improve the benefits from rare earth production, not only from producing individual rare earth products, but also from mastering the intensive processing of rare earth products.

  18. An Approach to Model Earth Conductivity Structures with Lateral Changes for Calculating Induced Currents and Geoelectric Fields during Geomagnetic Disturbances

    Directory of Open Access Journals (Sweden)

    Bo Dong

    2015-01-01

    Full Text Available During geomagnetic disturbances, the telluric currents which are driven by the induced electric fields will flow in conductive Earth. An approach to model the Earth conductivity structures with lateral conductivity changes for calculating geoelectric fields is presented in this paper. Numerical results, which are obtained by the Finite Element Method (FEM with a planar grid in two-dimensional modelling and a solid grid in three-dimensional modelling, are compared, and the flow of induced telluric currents in different conductivity regions is demonstrated. Then a three-dimensional conductivity structure is modelled and the induced currents in different depths and the geoelectric field at the Earth’s surface are shown. The geovoltages by integrating the geoelectric field along specific paths can be obtained, which are very important regarding calculations of geomagnetically induced currents (GIC in ground-based technical networks, such as power systems.

  19. Cosmic Rays at Earth

    Science.gov (United States)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  20. 30 CFR 77.700-1 - Approved methods of grounding.

    Science.gov (United States)

    2010-07-01

    ... in resistance grounded systems, where the enclosed conductors are a part of the system, will be approved if a solid connection is made to the neutral conductor; in all other systems, the following... earth; (b) A solid connection to a grounding conductor, other than the neutral conductor of a...

  1. Mission aware energy saving strategies for Army ground vehicles

    Science.gov (United States)

    Dattathreya, Macam S.

    Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive vehicle usage by the commercial industry and military has increased fuel consumption. Military readiness of Army ground vehicles is very important for a country to protect its people and resources. Fuel energy is a major requirement for Army ground vehicles. According to a report, a department of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions. On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy in Army ground vehicles is very important. Army ground vehicles are embedded with numerous electronic systems to conduct missions such as silent and normal stationary surveillance missions. Increasing electrical energy consumption of these systems is influencing higher fuel consumption of the vehicle. To save energy, the vehicles can use any of the existing techniques, but they require complex, expensive, and time consuming implementations. Therefore, cheaper and simpler approaches are required. In addition, the solutions have to save energy according to mission needs and also overcome size and weight constraints of the vehicle. Existing research in the current literature do not have any mission aware approaches to save energy. This dissertation research proposes mission aware online energy saving strategies for stationary Army ground vehicles to save energy as well as to meet the electrical needs of the vehicle during surveillance missions. The research also proposes theoretical models of surveillance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic algorithms. Based on these models, two energy saving strategies are proposed for silent and normal surveillance type of missions. During silent mission, the engine is on and batteries power the systems. During normal surveillance mission, the engine is

  2. Combining Satellite and Ground Magnetic Measurements to Improve Estimates of Electromagnetic Induction Transfer Functions

    Science.gov (United States)

    Balasis, G.; Egbert, G. D.

    2005-12-01

    Electromagnetic (EM) induction studies using satellite and ground-based magnetic data may ultimately provide critical new constraints on the electrical conductivity of Earth's mantle. Unlike ground-based observatories, which leave large areas of the Earth (especially the ocean basins) unsampled, satellites have the potential for nearly complete global coverage. However, because the number of operating satellites is limited, spatially complex (especially non-zonal) external current sources are sampled relatively poorly by satellites at any fixed time. The comparatively much larger number of ground-based observatories provides more complete synoptic sampling of external source structure. By combining data from both satellites and observatories models of external sources can be improved, leading to more reliable global mapping of Earth conductivity. For example, estimates of EM induction transfer functions estimated from night-side CHAMP data have been previously shown to have biases which depend systematically on local time (LT). This pattern of biases suggests that a purely zonal model does not adequately describe magnetospheric sources. As a first step toward improved modeling of spatial complexity in sources, we have applied empirical orthogonal function (EOF) methods to exploratory analysis of night-side observatory data. After subtraction of the predictions of the CM4 comprehensive model, which includes a zonally symmetric storm-time correction based on Dst, we find significant non-axisymmetric, but large scale coherent variability in the mid-latitude night-side observatory residuals. Over the restricted range of local times (18:00-6:00) and latitudes (50°S to 50°N) considered, the dominant spatial mode of variability is reasonably approximated by a q21 quadrupole spherical harmonic. Temporal variability of this leading EOF mode is well correlated with Dst. Strategies for moving beyond this initial exploratory EOF analysis to combine observatory data with

  3. Non-rare earth magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, Everett E.; Huba, Zachary J.; Carroll, Kyler J.; Farghaly, Ahmed; Khanna, Shiv N.; Qian, Meichun; Bertino, Massimo

    2017-09-26

    Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.

  4. Demonstrating Earth Connections and Fuses Working Together

    Science.gov (United States)

    Harrison, Mark

    2017-01-01

    Earth wires and fuses work together in UK mains circuits to keep users safe from electric shocks and are taught in many school contexts. The subject can be quite abstract and difficult for pupils to grasp, and a simple but visually clear and direct demonstration is described which would be easy for most physics departments to build and which can…

  5. COMPARATIVE ANALYSIS OF GROUNDING RESISTANCE VALUE IN SOIL AND SEPTICTANK

    Directory of Open Access Journals (Sweden)

    Abdul Syakur

    2012-02-01

    Full Text Available The aim of grounding system to protect of electrical equipment and instrumentation system and peopletogether. The lightning stroke near the strucutre of building can damage of equipment and instrumentationsystem. Therefore, it is very important to protect theese electrical and electronic equipment from lightningstrike uses lightning protection system and grounding system.This paper presents kind of grounding system at type of soil and place. The measurement of groundingresistance in soil and septictank have done. Types of soil for grounding resistance measuring aremarshland, clay and rockland.The measurement results of grounding resistance show that value of grounding resistance depend ondeepness of electrode and kind of soil and septictank. Grounding resistance value in septictank is morelower than soil.

  6. Investigation of direct expansion in ground source heat pumps

    Science.gov (United States)

    Kalman, M. D.

    A fully instrumented subscale ground coupled heat pump system was developed, and built, and used to test and obtain data on three different earth heat exchanger configurations under heating conditions (ground cooling). Various refrigerant flow control and compressor protection devices were tested for their applicability to the direct expansion system. Undistributed Earth temperature data were acquired at various depths. The problem of oil return at low evaporator temperatures and low refrigerant velocities was addressed. An analysis was performed to theoretically determine what evaporator temperature can be expected with an isolated ground pipe configuration with given length, pipe size, soil conditions and constant heat load. Technical accomplishments to data are summarized.

  7. First results of fair-weather atmospheric electricity measurements in Northeast India

    Indian Academy of Sciences (India)

    A Guha; B K De; S Gurubaran; S S De; K Jeeva

    2010-04-01

    During the month of March 2006, a short campaign was conducted to measure fair-weather atmospheric electricity parameters in Tripura, Northeast India (23.50°N, 91.25°E). The campaign was the first of its kind in this region of the globe. The main objective of the campaign was to characterize the diurnal variation of three parameters namely vertical potential gradient (), vertical air–earth current density (Jz) and atmospheric electrical conductivity () in fair-weather conditions. The diurnal variation of and Jz over sixteen fair-weather days shows two distinct maxima around 14UT and 20UT and a minimum around 03UT. The average vertical potential gradient is found to be 108V·m−1 and air–earth current density 1.85 pA·m−2. The average bipolar atmospheric electrical conductivity at the ground level is found to be 19.6 fS·m−1. An excellent positive correlation between and Jz is found, with a correlation coefficient of 0.96. A comparative study with Carnegie universal variation shows 70% correlation with observed variation of vertical potential gradient during the period of the campaign. The results are discussed in view of difficulty as well as possibility of getting global signatures in atmospheric electricity measurements made from tropical land stations.

  8. A New Method of Grounding Grid Design

    Directory of Open Access Journals (Sweden)

    Feng Zhen-Bao

    2016-01-01

    Full Text Available In order to equalize the electric potential distribution of the grounding grid surface, and improve the safety level of the grounding grid, method for optimal arrangement of conducts in the grounding grid is proposed in this paper. The calculation results about maximum touch voltages and mesh potentials show that the method can reduce touch voltage and equilibrium surface potential. It is shown that the design of the grounding grid is related to not only the soil environment, but also the rectangular shape. Comparing with other methods, the method proposed in the paper can reduce maximum touch voltage about 12%. This method also can be applied in a uniform and non-uniform soil, rectangular and square grounding grids. The optimize effect meets the related standards of the power industry.

  9. Opinions on hot discussions in connection with rare earths recently (continued)

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ IV.Rare earths are mostly for civil uses Rare earth elements have excellent physical properties including optical, electric, magnetic, superconductive and catalytic performances and outstanding .chemical properties.The value of rare earths is mostly embodied in their applications.Rare earths are prepared into various advanced materials with different performances.Therefore, rare earths enjoy the reputation of "industrial monosodium glutamate" and "treasury of advanced materials".

  10. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  11. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  12. Comment on 'Current Budget of the Atmospheric Electric Global Circuit'

    Science.gov (United States)

    Driscoll, Kevin T.; Blakeslee, Richard J.

    1996-01-01

    In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.

  13. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  14. EGATEC: A new high-resolution engineering model of the global atmospheric electric circuit—Currents in the lower atmosphere

    Science.gov (United States)

    Odzimek, A.; Lester, M.; Kubicki, M.

    2010-09-01

    We present a new high-resolution model of the Earth's global atmospheric electric circuit (GEC) represented by an equivalent electrical network. Contributions of clouds to the total resistance of the atmosphere and as current generators are treated more realistically than in previous GEC models. The model of cloud current generators is constructed on the basis of the ISCCP cloud data and the OTD/LIS lightning flash rates and TRMM rainfall data. The current generated and the electric resistance can be estimated with a spatial resolution of several degrees in latitude and longitude and 3 hour time resolution. The resistance of the atmosphere is calculated using an atmospheric conductivity model which is spatially dependent and sensitive to the level of solar activity. An equivalent circuit is constructed assuming the ionosphere and ground are ideal conductors. The circuit solution provides diurnal variations of the ionospheric potential and the GEC global current at the 3 hour time resolution as well as the global distributions and diurnal variations of the air-Earth current density and electric field. The model confirms that the global atmospheric electric activity peaks daily at ˜21 UT. The diurnal variation of the ionospheric potential and the global current have a maximum at 12 and 21-24 UT in July and at 9 and 21 UT in December, and a global minimum at 3-6 UT independent of season. About 80% of the current is generated by thunderstorm convective clouds and 20% by mid-level rain clouds.

  15. Identifying power line harmonic radiation from an electrical network

    Directory of Open Access Journals (Sweden)

    S. M. Werner

    2005-09-01

    Full Text Available It has been suggested that the space environment is being polluted by power line harmonic radiation (PLHR, generated from harmonics of the electrical power transmission frequency (50 or 60 Hz and radiated into the ionosphere and magnetosphere by long power lines. While some in-situ satellite measurements of PLHR have been reported, it has proved difficult to confirm the source and overall significance. The electricity network of the city of Dunedin, New Zealand, is tiny compared to the many large industrial zones found outside New Zealand. However, the 1050Hz ripple control signal injected into the local electrical grid at regular intervals as a load-control mechanism provides an opportunity for identifying PLHR strengths radiated from a spatially well defined electrical network. In-situ observations by satellites should allow a greater understanding of PLHR and its significance as man-made pollution to near-Earth space. Calculations have been undertaken to estimate the strength of the radiation fields expected from the ripple control signal which is injected into the Dunedin city electrical network. We find that ground-based measurements will not be sensitive enough for detection of the ripple control radiation fields, even during the quietest winter night. While significant power penetrates the lower ionosphere, this is well below the reported threshold required for nonlinear triggering in the Van Allen radiation belts. Some radiated fields at satellite altitudes should be detectable, allowing in-situ measurements. At the altitude of the DEMETER mission, the radiated electric fields will not be detectable under any ionospheric conditions. However, we find that the radiated magnetic fields may be detectable by the DEMETER satellite at certain times, although this will be very difficult. Nonetheless, there is the possibility for future experimental campaigns.

    Keywords. Magnetospheric physics (Magnetosphereionosphere interactions; Plasma

  16. Magnetic monitoring of earth and space

    Science.gov (United States)

    Love, Jeffrey J.

    2008-01-01

    For centuries, navigators of the world’s oceans have been familiar with an effect of Earth’s magnetic field: It imparts a directional preference to the needle of a compass. Although in some settings magnetic orientation remains important, the modern science of geomagnetism has emerged from its romantic nautical origins and developed into a subject of great depth and diversity. The geomagnetic field is used to explore the dynamics of Earth’s interior and its surrounding space environment, and geomagnetic data are used for geophysical mapping, mineral exploration, risk mitigation, and other practical applications. A global distribution of ground-based magnetic observatories supports those pursuits by providing accurate records of the magnetic-field direction and intensity at fixed locations and over long periods of time.Magnetic observatories were first established in the early 19th century in response to the influence of Alexander von Humboldt and Carl Friedrich Gauss. Since then, magnetic measurement has advanced significantly, progressing from simple visual readings of magnetic survey instruments to include automatic photographic measurement and modern electronic acquisition. To satisfy the needs of the scientific community, observatories are being upgraded to collect data that meet ever more stringent standards, to achieve higher acquisition frequencies, and to disseminate data in real time.To appreciate why data from magnetic observatories can be used for so many purposes, one needs only to recall that the geomagnetic field is a continuum, connecting the different parts of Earth to each other and to nearby space. Beneath our feet and above our heads, electric currents generate magnetic fields that contribute to the totality of the geomagnetic field measured at an observatory on Earth’s surface. The many physical processes that operate in each geophysical domain give rise to a complicated field that exhibits a wide variety of time-dependent behavior.1 In

  17. NASA'S Earth Science Data Stewardship Activities

    Science.gov (United States)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  18. 46 CFR 98.25-85 - Electrical bonding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electrical bonding. 98.25-85 Section 98.25-85 Shipping... § 98.25-85 Electrical bonding. (a) Each cargo tank shall be electrically grounded to the hull. The.... This electrical connection shall be maintained until after the cargo hose has been disconnected and...

  19. EarthKAM

    Data.gov (United States)

    National Aeronautics and Space Administration — Sponsored by NASA, EarthKAM (Earth Knowledge Acquired by Middle School Students) is an educational outreach program allowing middle school students to take pictures...

  20. Earth on the Move.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Provides background information on the layers of the earth, the relationship between changes on the surface of the earth and its insides, and plate tectonics. Teaching activities are included, with some containing reproducible worksheets and handouts to accompany them. (TW)

  1. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  2. Electrical, Electronic, and Electromechanical (EEE) Parts Management and Control Requirements for Space Flight Hardware and Critical Ground Support Equipment...aka... The NASA EEE Parts Standard, NASA-STD 8739.10

    Science.gov (United States)

    Majewicz, Peter; Sampson, Michael

    2016-01-01

    Describes development and content of a new NASA Standard for Electrical Electronic and Electromechanical (EEE) parts. This Standard reflects current practices, instead of changing them. Most NASA Centers utilize local documents, but there is minimal consistency across the Agency. A gap analysis clearly shows the differences that exist among the different centers and with respect to the NASA Parts Policy. Once approved, the new standard can be referenced in contracts and agreements with organizations outside of NASA.

  3. Renewable energy and characteristics of the Earth

    Science.gov (United States)

    Léger, Valérie

    2016-04-01

    During studying sustainable development, my sixth-form pupils have to devise and carry out experiments to show connection between some characteristics of the Earth and renewable energy. Thus, helping by a list of equipment, they can show, using simples' experiments, causal link. For example, they show that the layout in latitude of solar energy received on the ground, creates ocean and atmospheric currents. These currents are useful to product renewable energy. These researches allow me to show them new jobs link with renewable energy and sustainable development on the Earth. They can have more information thanks to other teachers working on the professional training centre including my secondary school.

  4. Electric Power

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China Council for the Promotion of International Trade Electric Power Industry Office (CCPIT Electric Power), one of the pro-fessional industrial branches of China Council for the Promotion of International Trade (CCPIT), was established in 2006.

  5. Electricity economics

    CERN Document Server

    Hu, Zhaoguang

    2013-01-01

    Systematically analyzing for the first time the production output from electricity consumption for enterprises, sectors, and industries, this study uses the function of EAI (electricity as input), and includes national E-GDP figures for more than 20 countries.

  6. Study of transient zero-module current measurement of single-phase earth fault in neutral non-effective grounding system%中性点非有效接地系统单相接地故障暂态零模电流获取方法研究

    Institute of Scientific and Technical Information of China (English)

    季涛; 孙波; 苑倩倩

    2011-01-01

    提出利用空间磁场感应原理获取中性点非有效接地系统架空线路单相接地故障暂态零模电流分量.详细分析了单相接地故障时架空线路周围故障磁场的特征,分析发现,架空线路下方磁场与零模电流基本成线性关系,通过感应该处的磁场变化就可以获取单相接地故障暂态零模电流分量.提出利用霍尔传感器感应架空线路周围空间磁场,并阐述了实际应用中诸多关键技术问题的解决办法.最后通过仿真及实验验证了上述方法可行有效.%A new method using magnetic field induction to measure transient zero-module current of single phase earth fault in neutral non-effective grounding system overhead lines is proposed. The paper analyses the characteristics of magnetic field around the overhead lines in detail, and the results show that the relationship of magnetic field under overhead lines and the transient zero-module current is linear, so transient zero-module current can be measured by inducting the magnetic field. Using a Hall probe magnetometer to induct magnetic field for fault transient current measurements is proposed, and some key techniques of practical application are expatiated. Simulation and experimental tests verify the correctness and feasibility of the proposed method.

  7. Capturing Near Earth Objects

    OpenAIRE

    Baoyin, Hexi; CHEN Yang; Li, Junfeng

    2011-01-01

    Recently, Near Earth Objects (NEOs) have been attracting great attention, and thousands of NEOs have been found to date. This paper examines the NEOs' orbital dynamics using the framework of an accurate solar system model and a Sun-Earth-NEO three-body system when the NEOs are close to Earth to search for NEOs with low-energy orbits. It is possible for such an NEO to be temporarily captured by Earth; its orbit would thereby be changed and it would become an Earth-orbiting object after a small...

  8. The United States’ Vulnerability to Coercion by China in the Rare Earths Market

    Science.gov (United States)

    2012-12-14

    Palo Alto, California to develop a hybrid vehicle that uses no rare earth metals in the motor.95 A company called Baldor Electric is currently...96U.S. Department of Energy, “ Baldor Electric Company: Rare-Earth-Free Traction Motor,” http://arpa-e.energy.gov/Portals/0/Documents...

  9. Electric Currents and Fields in Middle and Low Atmosphere in Fair-Weather Regions due to Distant Thunderstorms

    Science.gov (United States)

    Velinov, Peter; Velinov, Peter; Tonev, Peter

    The electric currents created by the thunderstorms and the electrified shower clouds over the Earth flow into the global atmospheric electric circuit and are responsible for the formation in fair-weather regions of ionosphere-ground current of about 2 pA per square meter, as well as for the related fair-weather electric field of the order of 100 V/m at sea level. The link of the diurnal variations of the fair-weather electric field with the global thunderstorm activity has been widely studied with connection to the Wilson's hypothesis. To confirm this hypothesis directly, also the fair-weather electric field response to a strong single lightning discharge has being examined. Here we study theoretically the variations of the electric currents and fields in fair-weather regions at different altitudes of the lower and middle atmosphere, which are provoked by distant lightning discharges. The electric field variations can play an important role at higher altitudes (in the upper troposphere and above), where they are much larger and possibly influence the physical and chemical processes. For our goals we realize a globalscale model of the electric fields and currents generated by a lightning discharge, which is based on the Maxwell's equations. The fair-weather electric characteristics are studied by our model depending on the lightning parameters, location and distance. We also examine how variations of the conductivity in the strato/mesosphere due to changes of solar and geomagnetic activity affect the characteristics studied. Another question discussed is whether and how the mesospheric electric response to a remote lightning discharge is influenced by the conductivity anisotropy above 70 km and by the geomagnetic field geometry. The variations of the fairweather electric fields due to a distant lightning at tropospheric heights are also studied with respect to their presumable role in the cloud physics.

  10. Simulation of the 23 July 2012 Extreme Space Weather Event: What if This Extremely Rare CME Was Earth Directed?

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex

    2013-01-01

    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  11. Electric drives

    CERN Document Server

    Boldea, Ion

    2005-01-01

    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  12. Electrical contracting

    CERN Document Server

    Neidle, Michael

    2013-01-01

    Electrical Contracting, Second Edition is a nine-chapter text guide for the greater efficiency in planning and completing installations for the design, installation and control of electrical contracts. This book starts with a general overview of the efficient cabling and techniques that must be employed for safe wiring design, as well as the cost estimation of the complete electrical contract. The subsequent chapters are devoted to other electrical contracting requirements, including electronic motor control, lighting, and electricity tariffs. A chapter focuses on the IEE Wiring Regulations an

  13. Transient analysis for grounding systems considering the ground ionization; Analisis transitorio de sistemas de puesta a tierra considerando la ionizacion del suelo

    Energy Technology Data Exchange (ETDEWEB)

    Salgado Salgado, Luis Alberto

    2008-06-15

    All electrical installation must have an effective grounding system. The purpose of this grounding system is to provide a low impedance path for draining electric currents generated by faults, switching operations or atmospheric discharges to earth, avoiding damage to people, equipment or installations. High currents drained to ground leads to an electric field which can be capable of breaking down the dielectric strength of the ground. When this happens, the ionization phenomena takes place, which reduce the grounding system impedance and modify its performance. In this thesis, a computational model for evaluating the transient performance of grounding systems subjected to high magnitude and frequency currents is presented. The model is based in a transmission line approach and the grounding system transient analysis is carried out in the frequency domain. The time domain translation is performed by means of the Fast Fourier Inverse Transform (FFIT). The computer model is capable of simulating soil ionization. The computer model developed is used to study the performance of vertical rods and grounding grids of different sizes. In every case, different electric field magnitudes and soil's resistivity were used, currents of different frequency components and magnitude values where used as well. The obtained results presented were compared and validated with other computer model results and measurements published in the literature. [Spanish] Toda instalacion electrica debe contar con un sistema de puesta a tierra efectivo. La finalidad de este sistema es proporcionar un camino de baja impedancia para drenar a tierra las corrientes generadas por fallas, maniobras o fenomenos naturales como las descargas atmosfericas, evitando de esta manera danos a las personas, equipos o instalaciones. Cuando las corrientes drenadas a tierra son de gran magnitud se origina un campo electrico critico capaz de romper la rigidez dielectrica del suelo que rodea los conductores del

  14. Finite amplitude method applied to giant dipole resonance in heavy rare-earth nuclei

    CERN Document Server

    Oishi, Tomohiro; Hinohara, Nobuo

    2016-01-01

    Background: The quasiparticle random phase approximation (QRPA), within the framework of the nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of the atomic nuclei. Recently, finite amplitude method (FAM) has been developed, in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mo...

  15. NAPL detection with ground-penetrating radar (Invited)

    Science.gov (United States)

    Bradford, J. H.

    2013-12-01

    Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency

  16. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  17. Earth Orbit Raise Design for the Artemis Mission

    Science.gov (United States)

    Wiffen, Gregory J.; Sweetser, Theodore H.

    2011-01-01

    The Artemis mission is an extension of the Themis mission. The Themis mission1 consisted of five identical spacecraft in varying sized Earth orbits designed to make simultaneous measurements of the Earth's electric and magnetic environment. Themis was designed to observe geomagnetic storms resulting from solar wind's interaction with the Earth's magnetosphere. Themis was meant to answer the age old question of why the Earth's aurora can change rapidly on a global scale. The Themis spacecraft are spin stabilized with 20 meter long electric field booms as well as several shorter magnetometer booms. The goal of the Artemis2 mission extension is to deliver the field and particle measuring capabilities of two of the Themis spacecraft to the vicinity of the Moon. The Artemis mission required transferring two Earth orbiting Themis spacecraft on to two different low energy trans-lunar trajectories ultimately ending in lunar orbit. This paper describes the processes that resulted in successful orbit raise designs for both spacecraft.

  18. The Britannica Guide to Electricity and Magnetism

    CERN Document Server

    Gregersen, Erik

    2010-01-01

    From our television sets to the magnets that dot our refrigerators, electricity and magnetism are ever-present in our everyday lives. Even aside from our modern technology, electrical charges can be found throughout nature?the most significant example being Earth's magnetic field. This incisive volume includes extensive discussions of electrical and magnetic fields, as well as biographies of the physicists whose work has led to our greater understanding of them.

  19. Using EarthScope magnetotelluric data to improve the resilience of the US power grid: rapid predictions of geomagnetically induced currents

    Science.gov (United States)

    Schultz, A.; Bonner, L. R., IV

    2016-12-01

    Existing methods to predict Geomagnetically Induced Currents (GICs) in power grids, such as the North American Electric Reliability Corporation standard adopted by the power industry, require explicit knowledge of the electrical resistivity structure of the crust and mantle to solve for ground level electric fields along transmission lines. The current standard is to apply regional 1-D resistivity models to this problem, which facilitates rapid solution of the governing equations. The systematic mapping of continental resistivity structure from projects such as EarthScope reveals several orders of magnitude of lateral variations in resistivity on local, regional and continental scales, resulting in electric field intensifications relative to existing 1-D solutions that can impact GICs to first order. The computational burden on the ground resistivity/GIC problem of coupled 3-D solutions inhibits the prediction of GICs in a timeframe useful to protecting power grids. In this work we reduce the problem to applying a set of filters, recognizing that the magnetotelluric impedance tensors implicitly contain all known information about the resistivity structure beneath a given site, and thus provides the required relationship between electric and magnetic fields at each site. We project real-time magnetic field data from distant magnetic observatories through a robustly calculated multivariate transfer function to locations where magnetotelluric impedance tensors had previously been obtained. This provides a real-time prediction of the magnetic field at each of those points. We then project the predicted magnetic fields through the impedance tensors to obtain predictions of electric fields induced at ground level. Thus, electric field predictions can be generated in real-time for an entire array from real-time observatory data, then interpolated onto points representing a power transmission line contained within the array to produce a combined electric field prediction

  20. ELECTRICAL TECHNIQUES FOR ENGINEERING APPLICATIONS.

    Science.gov (United States)

    Bisdorf, Robert J.

    1985-01-01

    Surface electrical geophysical methods have been used in such engineering applications as locating and delineating shallow gravel deposits, depth to bedrock, faults, clay zones, and other geological phenomena. Other engineering applications include determining water quality, tracing ground water contaminant plumes and locating dam seepages. Various methods and electrode arrays are employed to solve particular geological problems. The sensitivity of a particular method or electrode array depends upon the physics on which the method is based, the array geometry, the electrical contrast between the target and host materials, and the depth to the target. Each of the available electrical methods has its own particular advantages and applications which the paper discusses.

  1. Earth from Space: The Power of Perspective

    Science.gov (United States)

    Abdalati, W.

    2016-12-01

    Throughout history, humans have always valued the view from above, seeking high ground to survey the land, find food, assess threats, and understand their immediate environment. The advent of aircraft early in the 20th century took this capability literally to new levels, as aerial photos of farm lands, hazards, military threats, etc. provided new opportunities for security and prosperity. And in 1960, with the launch of the first weather satellite, TIROS, we came to know our world in ways that were not possible before, as we saw the Earth as a system of interacting components. In the decades since, our ability to understand the Earth System and its dynamic components has been transformed profoundly and repeatedly by satellite observations. From examining changes in sea level, to deformation of the Earth surface, to ozone depletion, to the Earth's energy balance, satellites have helped us understand our changing planet in ways that would not have otherwise been possible. The challenge moving forward is to continue to evolve beyond watching Earth processes unfold and understanding the underlying mechanisms of change, to anticipating future conditions, more comprehensively than we do today, for the benefit of society. The capabilities to do so are well within our reach, and with appropriate investments in observing systems, research, and activities that support translating observations into societal value, we can realize the full potential of this tremendous space-based perspective. Doing so will not just change our views of the Earth, but will improve our relationship with it.

  2. The Ground Flash Fraction Retrieval Algorithm Employing Differential Evolution: Simulations and Applications

    Science.gov (United States)

    Koshak, William; Solakiewicz, Richard

    2012-01-01

    The ability to estimate the fraction of ground flashes in a set of flashes observed by a satellite lightning imager, such as the future GOES-R Geostationary Lightning Mapper (GLM), would likely improve operational and scientific applications (e.g., severe weather warnings, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method, called the Ground Flash Fraction Retrieval Algorithm (GoFFRA), was recently developed for estimating the ground flash fraction. The method uses a constrained mixed exponential distribution model to describe a particular lightning optical measurement called the Maximum Group Area (MGA). To obtain the optimum model parameters (one of which is the desired ground flash fraction), a scalar function must be minimized. This minimization is difficult because of two problems: (1) Label Switching (LS), and (2) Parameter Identity Theft (PIT). The LS problem is well known in the literature on mixed exponential distributions, and the PIT problem was discovered in this study. Each problem occurs when one allows the numerical minimizer to freely roam through the parameter search space; this allows certain solution parameters to interchange roles which leads to fundamental ambiguities, and solution error. A major accomplishment of this study is that we have employed a state-of-the-art genetic-based global optimization algorithm called Differential Evolution (DE) that constrains the parameter search in such a way as to remove both the LS and PIT problems. To test the performance of the GoFFRA when DE is employed, we applied it to analyze simulated MGA datasets that we generated from known mixed exponential distributions. Moreover, we evaluated the GoFFRA/DE method by applying it to analyze actual MGAs derived from low-Earth orbiting lightning imaging sensor data; the actual MGA data were classified as either ground or cloud flash MGAs using National Lightning Detection Network[TM] (NLDN) data. Solution error

  3. 46 CFR 111.05-15 - Neutral grounding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Neutral grounding. 111.05-15 Section 111.05-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the...

  4. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  5. Earth System Oxygenation: Toward an Integrated Theory of Earth Evolution

    Science.gov (United States)

    Anbar, A. D.

    2015-12-01

    considered as possible drivers of surface redox evolution, but typically in isolation. We are tackling the grand challenge of developing an integrated theory of Earth evolution, grounded in the physics of a cooling planet, and motivated by the implications for chemical evolution of the biosphere. The framework of such a theory will be presented.

  6. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    Science.gov (United States)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  7. The Earth's Magnetic Field

    OpenAIRE

    Edda Lína Gunnarsdóttir 1988

    2012-01-01

    The Earth's magnetic field is essential for life on Earth, as we know it, to exist. It forms a magnetic shield around the planet, protecting it from high energy particles and radiation from the Sun, which can cause damage to life, power systems, orbiting satellites, astronauts and spacecrafts. This report contains a general overview of the Earth's magnetic field. The different sources that contribute to the total magnetic field are presented and the diverse variations in the field are describ...

  8. Uderstanding Snowball Earth Deglaciation

    Science.gov (United States)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  9. Rare earths as burnable poison for extended cycles control in electricity generation reactors; Etude des terres rares en tant que poison consommable pour le controle des cycles allonges pour les reacteurs electrogenes

    Energy Technology Data Exchange (ETDEWEB)

    Asou, M.

    1995-05-12

    The search of an optimization of the French electronuclear network operations leads to a necessary optimization of the core performances. All the economic studies performed by the utilities had shown that there is a real gain to minimize shut down periods for refueling. So, increasing the cycle length from 12 to 18 months will present a gain of shut down for a three years operation period. The theoretical burnable absorber will be a fuel admixed material bringing the required initial negative reactivity with a burn-up kinetic well suited to the fuel and allowing the lowest residual penalty as possible. The residual penalty us defined in this case by the non complete burn up of the poison, by the low of fissile material and by the accumulate of residual isotopes or nuclides. Because of the well known use of gadolinium as burnable absorber for BWR`s and PWR`s operations, the search for the best compromise to optimize all the above stress is pointed towards the rare earths. In the nuclides family, considering criteria such as cross sections, natural abundance and availability only five nuclides can play the role as burnable absorbers, namely: gadolinium, samarium, dysprosium, europium and erbium. The study presented here will show that only gadolinium and erbium will be considered to control the reactivity of the PWR`s. (author). 58 refs., 65 figs., 47 tabs.

  10. Electrical stator

    Science.gov (United States)

    Fanning, Alan W.; Olich, Eugene E.

    1994-01-01

    An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.

  11. The Earth's early evolution.

    Science.gov (United States)

    Bowring, S A; Housh, T

    1995-09-15

    The Archean crust contains direct geochemical information of the Earth's early planetary differentiation. A major outstanding question in the Earth sciences is whether the volume of continental crust today represents nearly all that formed over Earth's history or whether its rates of creation and destruction have been approximately balanced since the Archean. Analysis of neodymium isotopic data from the oldest remnants of Archean crust suggests that crustal recycling is important and that preserved continental crust comprises fragments of crust that escaped recycling. Furthermore, the data suggest that the isotopic evolution of Earth's mantle reflects progressive eradication of primordial heterogeneities related to early differentiation.

  12. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  13. Lightning path simulation based on the stepped leader: Electrical conductivity effects

    Science.gov (United States)

    Mendes, Odim; Domingues, Margarete Oliveira

    2005-09-01

    A numerical simulation for the stepped leader path in the earth atmosphere has been developed to study the influence of the tropospheric electric conductivity on the lightning behaviour. This model is based on the assumption that the leader path follows the gradient of the electric potential. In the model, the charge configuration (amount of charge and location), the variation of the atmospheric conductivity, the charge deposited along the leader channel and the charge at the leader tip are considered. A perfectly conducting ground surface and a curl-free electric field assumption are considered too. The result of the simulation is that the inclusion of an atmospheric conductivity of exponentially increasing value with height alters the percentage of positive cloud-to-ground flashes compared to that percentage obtained assuming a constant conductivity profile. A higher amount of positive flashes occur for high altitude (low latitude) clouds even in the case of little horizontal displacement between the positive and the negative dipole charges in the cloud, that is, with no significant wind shear in the horizontal wind. The simulation has shown that positive lightning, the most dangerous kind, can occur in clear air at great distances from the thundercloud, with safety risk implications.

  14. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  15. Demonstrating Earth connections and fuses working together

    Science.gov (United States)

    Harrison, Mark

    2017-03-01

    Earth wires and fuses work together in UK mains circuits to keep users safe from electric shocks and are taught in many school contexts. The subject can be quite abstract and difficult for pupils to grasp, and a simple but visually clear and direct demonstration is described which would be easy for most physics departments to build and which can make the concepts much more immediately understandable.

  16. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  17. Validation of the Cooray-Rubinstein (C-R) formula for a rough ground surface by using three-dimensional (3-D) FDTD

    Science.gov (United States)

    Li, Dongshuai; Zhang, Qilin; Liu, Tao; Wang, Zhenhui

    2013-11-01

    this paper, we have extended the Cooray-Rubinstein (C-R) approximate formula into the fractal rough ground surface and then validate its accuracy by using three-dimensional (3-D) finite-difference time-domain (FDTD) method at distances of 50 m and 100 m from the lightning channel. The results show that the extended C-R formula has an accepted accuracy for predicting the lightning-radiated horizontal electric field above the fractal rough and conducting ground, and its accuracy increases a little better with the higher of the earth conductivity. For instance, when the conductivity of the rough ground is 0.1 S/m, the error of the peak value predicted by the extended C-R formula is less than about 2.3%, while its error is less than about 6.7% for the conductivity of 0.01 S/m. The rough ground has much effect on the lightning horizontal field, and the initial peak value of the horizontal field obviously decreases with the increase of the root-mean-square height of the rough ground at early times (within several microseconds of the beginning of return stroke).

  18. Design of Earthing System for a Substation : A Case Study

    OpenAIRE

    O.P. Rahi , Abhas Kumar Singh , Shashi Kant Gupta , Shilpa Goyal

    2012-01-01

    This paper presents the design of earthing system for 132 KV substation and simulation for calculation of required parameters. This paper is to provide information pertinent to safe earthing practices in ac substation design and to establish the safe limits of potential difference under normal and fault conditions. The grounding grid system of a practical 220 kV substation is calculated by MATLAB program. The supporting data has been obtained from actual field tested at the substation. Standa...

  19. Airport Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    travels safely and efficiently through the airport. When an aircraft lands, a significant number of tasks must be performed by different groups of ground crew, such as fueling, baggage handling and cleaning. These tasks must be complete before the aircraft is able to depart, as well as check......-in and security services. These tasks are collectively known as ground handling, and are the major source of activity with airports. The business environments of modern airports are becoming increasingly competitive, as both airports themselves and their ground handling operations are changing to private...... ownership. As airports are in competition to attract airline routes, efficient and reliable ground handling operations are imperative for the viability and continued growth of both airports and airlines. The increasing liberalization of the ground handling market prompts ground handling operators...

  20. [Introduction to grounded theory].

    Science.gov (United States)

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy

    2012-02-01

    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  1. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  2. Development of programmable multi-channel earth resistivity system

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyun Ki; Choi, Jong Ho; Park, In Wha [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Maximum 256 channel digital-stacking automatic electrical earth resistivity meter is upgrade-developed and field-tested with two commercially available systems (OYO McOHM and ABEM Terrameter) for Schlumberger vertical sounding and dipole-dipole arrays. The results of three systems are very well coincident for several dummy resistors and Schlumberger array in field site. The developed system K-Ohm shows even more reasonable quality data in sensitive dipole-dipole array measurements in comparison with the electrical survey instruments of digital stacking type manufactured by other countries. New Important features of upgraded programmable K-Ohm system are as follows ; 1) Auto-electrode-switching control by Notebook printer port, 2) receiving signal measurement by Notebook serial port, 3) interactive automatic dipole-dipole measurement software with two apparent resistivity sections compared in one Notebook display to minimize noisy data in field, 4) auto-saved field memo at any time appending to acquired data, 5) max 500 V{sub p-p} 500 mA transmitter (measuring cycle S/W programmable), 6) low-drift sigma - delta 24 bit A/D 0.0015 % linearity error with zero-offset and full - scale gain autocalibration, 7) DC 12 v operated and TX-RX 7,000 V optical-isolated, 8) electrodes grounding auto-tested, user-oriented any array sequential programmable control software. Further study will be focused on higher power TX and stand alone TX-RX system, and micro-resistivity system for in-borehole resistivity imaging. (author). 8 refs., 9 figs.

  3. The ATLAS SCT grounding and shielding concept and implementation

    CERN Document Server

    Bates, RL; Bernabeu, J; Bizzell, J; Bohm, J; Brenner, R; Bruckman de Renstrom, P A; Catinaccio, A; Cindro, V; Ciocio, A; Civera, J V; Chouridou, S; Dervan, P; Dick, B; Dolezal, Z; Eklund, L; Feld, L; Ferrere, D; Gadomski, S; Gonzalez, F; Gornicki, E; Greenhall, A; Grillo, A A; Grosse-Knetter, J; Gruwe, M; Haywood, S; Hessey, N P; Ikegami, Y; Jones, T J; Kaplon, J; Kodys, P; Kohriki, T; Kondo, T; Koperny, S; Lacasta, C; Lozano Bahilo, J; Malecki, P; Martinez-McKinney, F; McMahon, S J; McPherson, A; Mikulec, B; Mikus, M; Moorhead, G F; Morrissey, M C; Nagai, K; Nichols, A; O'Shea, V; Pater, J R; Peeters, S J M; Pernegger, H; Perrin, E; Phillips, P W; Pieron, J P; Roe, S; Sanchez, J; Spencer, E; Stastny, J; Tarrant, J; Terada, S; Tyndel, M; Unno, Y; Wallny, R; Weber, M; Weidberg, A R; Wells, P S; Werneke, P; Wilmut, I

    2012-01-01

    This paper describes the design and implementation of the grounding and shielding system for the ATLAS SemiConductor Tracker (SCT). The mitigation of electromagnetic interference and noise pickup through power lines is the critical design goal as they have the potential to jeopardize the electrical performance. We accomplish this by adhering to the ATLAS grounding rules, by avoiding ground loops and isolating the different subdetectors. Noise sources are identified and design rules to protect the SCT against them are described. A rigorous implementation of the design was crucial to achieve the required performance. This paper highlights the location, connection and assembly of the different components that affect the grounding and shielding system: cables, filters, cooling pipes, shielding enclosure, power supplies and others. Special care is taken with the electrical properties of materials and joints. The monitoring of the grounding system during the installation period is also discussed. Finally, after con...

  4. Electric power systems

    CERN Document Server

    Weedy, B M; Jenkins, N; Ekanayake, J B; Strbac, G

    2012-01-01

    The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now e

  5. Ground Vehicle Robotics

    Science.gov (United States)

    2013-08-20

    Ground Vehicle Robotics Jim Parker Associate Director, Ground Vehicle Robotics UNCLASSIFIED: Distribution Statement A. Approved for public...DATE 20 AUG 2013 2. REPORT TYPE Briefing Charts 3. DATES COVERED 09-05-2013 to 15-08-2013 4. TITLE AND SUBTITLE Ground Vehicle Robotics 5a...Willing to take Risk on technology -User Evaluated -Contested Environments -Operational Data Applied Robotics for Installation & Base Ops -Low Risk

  6. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  7. The Earth's Core.

    Science.gov (United States)

    Jeanloz, Raymond

    1983-01-01

    The nature of the earth's core is described. Indirect evidence (such as that determined from seismological data) indicates that it is an iron alloy, solid toward its center but otherwise liquid. Evidence also suggests that it is the turbulent flow of the liquid that generates the earth's magnetic field. (JN)

  8. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Vivian B. Martin, Ph.D.

    2005-03-01

    Full Text Available Bookshelf will provide critical reviews and perspectives on books on theory and methodology of interest to grounded theory. This issue includes a review of Heaton’s Reworking Qualitative Data, of special interest for some of its references to grounded theory as a secondary analysis tool; and Goulding’s Grounded Theory: A practical guide for management, business, and market researchers, a book that attempts to explicate the method and presents a grounded theory study that falls a little short of the mark of a fully elaborated theory.Reworking Qualitative Data, Janet Heaton (Sage, 2004. Paperback, 176 pages, $29.95. Hardcover also available.

  9. Solid Earth: Introduction

    Science.gov (United States)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  10. JERS-1 Workshop on the Ground Station for ASEAN

    Science.gov (United States)

    Peanvijarnpong, Chanchai

    1990-11-01

    Presented in viewgraph format, the present status of the ground station and future plan for utilizing earth observation satellites in Thailand is outlined. Topics addressed include: data acquisition system; operation status of LANDSAT, SPOT, and MOS-1 (Marine Observation Satellite-1); remote sensors of satellites; data output form; data correction level; data system in Thailand; ground station for MOS-1 satellite in Thailand; and future plan.

  11. Dynamic active earth pressure on retaining structures

    Indian Academy of Sciences (India)

    Deepankar Choudhury; Santiram Chatterjee

    2006-12-01

    Earth-retaining structures constitute an important topic of research in civil engineering, more so under earthquake conditions. For the analysis and design of retaining walls in earthquake-prone zones, accurate estimation of dynamic earth pressures is very important. Conventional methods either use pseudo-static approaches of analysis even for dynamic cases or a simple single-degree of freedom model for the retaining wall–soil system. In this paper, a simplified two-degree of freedom mass–spring–dashpot (2-DOF) dynamic model has been proposed to estimate the active earth pressure at the back of the retaining walls for translation modes of wall movement under seismic conditions. The horizontal zone of influence on dynamic earth force on the wall is estimated. Results in terms of displacement, velocity and acceleration-time history are presented for some typical cases, which show the final movement of the wall in terms of wall height, which is required for the design. The non-dimensional design chart proposed in the present study can be used to compute the total dynamic earth force on the wall under different input ground motion and backfill conditions. Finally, the results obtained have been compared with those of the available Scott model and the merits of the present results have been discussed.

  12. COMS normal operation for Earth Observation mission

    Science.gov (United States)

    Cho, Young-Min

    2012-09-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service since April 2011. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

  13. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    Science.gov (United States)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of

  14. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  15. Laser based bi-directional Gbit ground links with the Tesat transportable adaptive optical ground station

    Science.gov (United States)

    Heine, Frank; Saucke, Karen; Troendle, Daniel; Motzigemba, Matthias; Bischl, Hermann; Elser, Dominique; Marquardt, Christoph; Henninger, Hennes; Meyer, Rolf; Richter, Ines; Sodnik, Zoran

    2017-02-01

    Optical ground stations can be an alternative to radio frequency based transmit (forward) and receive (return) systems for data relay services and other applications including direct to earth optical communications from low earth orbit spacecrafts, deep space receivers, space based quantum key distribution systems and Tbps capacity feeder links to geostationary spacecrafts. The Tesat Transportable Adaptive Optical Ground Station is operational since September 2015 at the European Space Agency site in Tenerife, Spain.. This paper reports about the results of the 2016 experimental campaigns including the characterization of the optical channel from Tenerife for an optimized coding scheme, the performance of the T-AOGS under different atmospheric conditions and the first successful measurements of the suitability of the Alphasat LCT optical downlink performance for future continuous variable quantum key distribution systems.

  16. Estimating ionospheric currents by inversion from ground-based geomagnetic data and calculating geoelectric fields for studies of geomagnetically induced currents

    Science.gov (United States)

    de Villiers, J. S.; Pirjola, R. J.; Cilliers, P. J.

    2016-09-01

    This research focuses on the inversion of geomagnetic variation field measurements to obtain the source currents in the ionosphere and magnetosphere, and to determine the geoelectric fields at the Earth's surface. During geomagnetic storms, the geoelectric fields create geomagnetically induced currents (GIC) in power networks. These GIC may disturb the operation of power systems, cause damage to power transformers, and even result in power blackouts. In this model, line currents running east-west along given latitudes are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground being composed of a zero magnetic east component and a nonzero electric east component. The line current parameters are estimated by inverting Fourier integrals (over wavenumber) of elementary geomagnetic fields using the Levenberg-Marquardt technique. The output parameters of the model are the ionospheric current strength and the geoelectric east component at the Earth's surface. A conductivity profile of the Earth is adapted from a shallow layered-Earth model for one observatory, together with a deep-layer model derived from satellite observations. This profile is used to obtain the ground surface impedance and therefore the reflection coefficient in the integrals. The inputs for the model are a spectrum of the geomagnetic data for 31 May 2013. The output parameters of the model are spectrums of the ionospheric current strength and of the surface geoelectric field. The inverse Fourier transforms of these spectra provide the time variations on the same day. The geoelectric field data can be used as a proxy for GIC in the prediction of GIC for power utilities. The current strength data can assist in the interpretation of upstream solar wind behaviour.

  17. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  18. Seismic rehabilitation and analysis of Chaohe earth dam

    Institute of Scientific and Technical Information of China (English)

    Lei Fu; Xiangwu Zeng

    2005-01-01

    Stability of earth dams during earthquakes has been a major concern for geotechnical engineers in seismic active regions. Liquefaction induced slope failure occurred at the upstream slope of a major earth dam in the suburb of Beijing, China, during the 1976 Tangshan Earthquake. The gravelly soil with loose initial condition liquefied under relatively small ground vibration. In recent years, a major seismic rehabilitation project was carried out on a similar earth dam nearby using dumped quarry stone. Seismic stability analysis was carried out using model test, finite element simulation, and pseudostatic slope stability program after taking into account the influence of excess pore pressure.

  19. Instability of some divalent rare earth ions and photochromic effect

    OpenAIRE

    Egranov, A. V.; Sizova, T. Yu.; Shendrik, R. Yu.; Smirnova, N. A.

    2015-01-01

    It was shown that the divalent rare earth ions (La, Ce, Gd, Tb, Lu, and Y) in cubic sites in alkaline earth fluorides are unstable with respect to electron autodetachment since its d1(eg) ground state is located in the conduction band which is consistent with the general tendency of these ions in various compounds. The localization of doubly degenerate d1(eg) level in the conduction band creates a configuration instability around the divalent rare earth ion that leading to the formation of an...

  20. A Spherical Earth Solution for TOA Lightning Location Retrieval

    Science.gov (United States)

    Koshak, W. J.; Solakiewicz, R. J.

    1999-01-01

    The problem of retrieving ligntning, ground-strike location on a spherical Earth surface using a network of 4 or more time-of-arrival (TOA) sensors is considered, It is shown that this problem has an analytic solution and therefore does not require the use of nonlinear estimation theory (e.g., minimization). The mathematical robustness of the analytic solution is tested using computer-generated lightning sources and simulated TOA measurement errors. A summary of a quasi-analytic extension of the spherical Earth solution to an oblate spheroid Earth geometry is also provided.

  1. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  2. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  3. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  4. Sun-Earth Days

    Science.gov (United States)

    Thieman, J.; Ng, C.; Lewis, E.; Cline, T.

    2010-08-01

    Sun-Earth Day is a well-coordinated series of programs, resources and events under a unique yearly theme highlighting the fundamentals of heliophysics research and missions. A menu of activities, conducted throughout the year, inspire and educate participants. Sun-Earth Day itself can vary in date, but usually is identified by a celebration on or near the spring equinox. Through the Sun-Earth Day framework we have been able to offer a series of coordinated events that promote and highlight the Sun, its connection to Earth and the other planets. Sun-Earth Day events are hosted by educators, museums, amateur astronomers and scientists and occur at schools, community groups, parks, planetaria and science centers around the globe. Sun-Earth Day raises the awareness and knowledge of formal and informal education audiences concerning space weather and heliophysics. By building on the success of Sun-Earth Day yearly celebrations, we seek to affect people of all backgrounds and ages with the wonders of heliophysics science, discovery, and exploration in ways that are both tangible and meaningful to their lives.

  5. Accretion of the Earth.

    Science.gov (United States)

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  6. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  7. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  8. Communication, concepts and grounding.

    Science.gov (United States)

    van der Velde, Frank

    2015-02-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved.

  9. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  10. The Near-Earth Plasma Environment

    Science.gov (United States)

    Pfaff, Robert F., Jr.

    2012-01-01

    An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth's plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control ionospheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electrodynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances.

  11. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  12. Electrical Conductivity.

    Science.gov (United States)

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  13. Electrical Injuries

    Science.gov (United States)

    ... it can pass through your body and cause injuries. These electrical injuries can be external or internal. You may have one or both types. External injuries are skin burns. Internal injuries include damage to ...

  14. Electricity derivatives

    CERN Document Server

    Aïd, René

    2015-01-01

    Offering a concise but complete survey of the common features of the microstructure of electricity markets, this book describes the state of the art in the different proposed electricity price models for pricing derivatives and in the numerical methods used to price and hedge the most prominent derivatives in electricity markets, namely power plants and swings. The mathematical content of the book has intentionally been made light in order to concentrate on the main subject matter, avoiding fastidious computations. Wherever possible, the models are illustrated by diagrams. The book should allow prospective researchers in the field of electricity derivatives to focus on the actual difficulties associated with the subject. It should also offer a brief but exhaustive overview of the latest techniques used by financial engineers in energy utilities and energy trading desks.

  15. Ground Vehicle Navigation Using Magnetic Field Variation

    Science.gov (United States)

    Shockley, Jeremiah A.

    The Earth's magnetic field has been the bedrock of navigation for centuries. The latest research highlights the uniqueness of magnetic field measurements based on position due to large scale variations as well as localized perturbations. These observable changes in the Earth's magnetic field as a function of position provide distinct information which can be used for navigation. This dissertation describes ground vehicle navigation exploiting variation in Earth's magnetic field using a self-contained navigation system consisting of only a magnetometer and magnetic field maps. In order to achieve navigation, effective calibration enables repeatable magnetic field measurements from different vehicles and facilitates mapping of the observable magnetic field as a function of position. A new modified ellipsoid calibration technique for strapdown magnetometers in large vehicles is described, as well as analysis of position measurement generation comparing a multitude of measurement compositions using existing and newly developed likelihood techniques. Finally, navigation solutions are presented using both a position measurement and direct incorporation of the magnetometer measurements via a particle filter to demonstrate road navigation in three different environments. Emphatically, the results affirm that navigation using magnetic field variation in ground vehicles is viable and achieves adequate performance for road level navigation.

  16. 3D Orbit Visualization for Earth-Observing Missions

    Science.gov (United States)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  17. An Analysis of Earth Science Data Analytics Use Cases

    Science.gov (United States)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  18. Copernicus: a quantum leap in Earth Observation

    Science.gov (United States)

    Aschbacher, Josef

    2015-04-01

    Copernicus is the most ambitious, most comprehensive Earth observation system world-wide. It aims at giving decision-makers better information to act upon, at global, continental, national and regional level. The European Union (EU) leads the overall programme, while the European Space Agency (ESA) coordinates the space component. Similar to meteorology, satellite data is combined with data from airborne and ground sensors to provide a holistic view of the state of the planet. All these data are fed into a range of thematic information services designed to benefit the environment and to support policy-makers and other stakeholders to make decisions, coordinate policy areas, and formulate strategies relating to the environment. Moreover, the data will also be used for predicting future climate trends. Never has such a comprehensive Earth-observation based system been in place before. It will be fully integrated into an informed decision making process, thus enabling economic and social benefits through better access to information globally. A key feature of Copernicus is the free and open data policy of the Sentinel satellite data. This will enable that Earth observation based information enters completely new domains of daily life. High quality, regularly updated satellite observations become available for basically everyone. To ensure universal access new ground segment and data access concepts need to be developed. As more data are made available, better decisions can made, more business will be created and science and research can be achieved through the upcoming Sentinel data.

  19. Whole-Earth Decompression Dynamics

    OpenAIRE

    Herndon, J. Marvin

    2005-01-01

    The principles of Whole-Earth Decompression Dynamics are disclosed leading to a new way to interpret whole-Earth dynamics. Whole-Earth Decompression Dynamics incorporates elements of and unifies the two seemingly divergent dominant theories of continential displacement, plate tectonics theory and Earth expansion theory. Whole-Earth decompression is the consequence of Earth formation from within a Jupiter-like protoplanet with subsequent loss of gases and ices and concomitant rebounding. The i...

  20. Earth rotation and geodynamics

    Science.gov (United States)

    Bogusz, Janusz; Brzezinski, Aleksander; Kosek, Wieslaw; Nastula, Jolanta

    2015-12-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals with monitoring of geodynamic phenomena. It contains analysis of geodynamic networks of local, and regional scale using space (GNSS and SLR) techniques, Earth tides monitoring with gravimeters and water-tube hydrostatic clinometer, and the determination of secular variation of the Earth' magnetic field.

  1. Earth science: Extraordinary world

    Science.gov (United States)

    Day, James M. D.

    2016-09-01

    The isotopic compositions of objects that formed early in the evolution of the Solar System have been found to be similar to Earth's composition -- overturning notions of our planet's chemical distinctiveness. See Letters p.394 & p.399

  2. Gambling with the earth

    CERN Multimedia

    Muir, H

    2000-01-01

    The probability that dangerous Earth-devouring particles will be born at a new accelerator in the US may be tiny, but scientists have played down the devastating potential costs in their risk assessments according to a physicist (1 page).

  3. Astronomy: Earth's seven sisters

    Science.gov (United States)

    Snellen, Ignas A. G.

    2017-02-01

    Seven small planets whose surfaces could harbour liquid water have been spotted around a nearby dwarf star. If such a configuration is common in planetary systems, our Galaxy could be teeming with Earth-like planets. See Letter p.456

  4. Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ July 20~31 Rare earth market still went downward, which was mainly led by sluggish demand for didymium products. Weak demand by domestic NdFeB market was attributed to continuous price falling of didymium mischmetal.

  5. Analyzing earth's surface data

    Science.gov (United States)

    Barr, D. J.; Elifrits, C. D.

    1979-01-01

    Manual discusses simple inexpensive image analysis technique used to interpret photographs and scanner of data of Earth's surface. Manual is designed for those who have no need for sophisticated computer-automated analysis procedures.

  6. Managing Planet Earth.

    Science.gov (United States)

    Clark, William C.

    1989-01-01

    Discusses the human use of the planet earth. Describes the global patterns and the regional aspects of change. Four requirements for the cultivation of leadership and institutional competence are suggested. Lists five references for further reading. (YP)

  7. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  8. Earth/Lands

    OpenAIRE

    2011-01-01

    Earth is an essentially original and misunderstood raw material with great potential, from the positive environmental and energy ratio, to its admirable capacity to integrate other materials such as stone, wood, brick, lime, vegetable fibres, etc., capable also of constituting the sole material for whole buildings in climactical and geographically extreme situations. Earth offers a great capacity to respond to the housing needs of millions of human beings, not only quantitative needs compa...

  9. Earth rotation and geodynamics

    OpenAIRE

    Bogusz Janusz; Brzezinski Aleksander; Kosek Wieslaw; Nastula Jolanta

    2015-01-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals wit...

  10. Imaging a 3D geological structure from HEM, airborne magnetic and ground ERT data in Kalat-e-Reshm area, Iran

    Science.gov (United States)

    Shirzaditabar, Farzad; Bastani, Mehrdad; Oskooi, Behrooz

    2011-11-01

    A set of geophysical data collected in an area in Iran are analyzed to check the validity of a geological map that was prepared in connection to a mineral prospecting project and also to image the spatial electrical resistivity distribution. The data set includes helicopter electromagnetic (HEM), airborne magnetic and ground electrical resistivity measurement. Occam approach was used to invert the HEM data to model the resistivity using a layered earth model with fixed thicknesses. The algorithm is based on a nonlinear inverse problem in a least-squares sense. The algorithm was tested on a part of an HEM dataset acquired with a DIGHEM helicopter EM system at Kalat-e-Reshm, Semnan in Iran. The area contains a resistive porphyry andesite that is covered by Eocene sedimentary units. The results are shown as resistivity sections and maps confirming the existence of an arc like resistive structure in the survey area. The resistive andesite seems to be thicker than it is indicated in the geological maps. The results are compared with the reduced to the pole (RTP) airborne magnetic anomaly field data as well as with two ground resistivity profiles. We found reasonable correlations between the HEM 1D resistivity models and 2D models from electrical resistivity tomography (ERT) inversions. A 3D visualization of the 1D models along all flight lines provided a useful tool for the study of spatial variations of the resistivity structure in the investigation area.

  11. Study on rare earth/alkaline earth oxide-doped CeO2 solid electrolyte

    Institute of Scientific and Technical Information of China (English)

    YAN Kai; ZHEN Qiang; Song Xiwen

    2007-01-01

    Five types of rare earth/alkaline earth oxide-doped CeO2 superfine-powders were synthesized by a low-temperature combustion technique. The relevant solid electrolyte materials were also sintered by pressureless sintering at different temperatures. The results of X-ray diffraction and transmission electron microscopy showed that the grain size of the powders was approximately 20-30 nm, and rare earth/alkaline earth oxides were completely dissolved into ceria-based solid solution with fluorite structure. The electrical conductivities of the Sm2O3-CeO2 system were measured by the ac impedance technique in air at temperatures ranging from 513-900℃. The results indicated that the ionic conductivities of Sm0.20Ce0.8O1.875 solid electrolyte increase with increasing sintering temperature, and the relationship between the conductivities and measuring temperature obeys the Arrhenius equation. Then the Sm2O3-CeO2 material was further doped with other rare earth/alkaline earth oxide, and the conductivities improve with the effective index.

  12. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  13. Ground Penetrating Radar Imaging of Buried Metallic Objects

    DEFF Research Database (Denmark)

    Polat, A. Burak; Meincke, Peter

    2001-01-01

    During the past decade there has been considerable research on ground penetrating radar (GPR) tomography for detecting objects such as pipes, cables, mines and barrels buried under the surface of the Earth. While the earlier researches were all based on the assumption of a homogeneous background...

  14. Advanced Energy Conversion Technologies and Architectures for Earth and Beyond

    Science.gov (United States)

    Howell, Joe T.; Fikes, John C.; Phillips, Dane J.; Laycock, Rustin L.; ONeill, Mark; Henley, Mark W.; Fork, Richard L.

    2006-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. There is a need to produce "proof-ofconcept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space surface sites. Space surface receiving sites of particular interest include the areas of permanent shadow near the moon s North and South poles, where WPT technologies could enable access to ice and other useful resources for human exploration. This paper discusses work addressing a promising approach to solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) applied to both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components (only the photovoltaic cells need to be different), economies of manufacturing and scale may be realized by using SLA on both ends of the laser power beaming

  15. The energy balance of the earth' surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  16. ESA Earth terminals in the European data relay system

    Science.gov (United States)

    Beck, T.

    1991-10-01

    The projected ESA earth terminal which will be the main traffic stations for the space/ground communications via the European Data Relay System (DRS) are considered. The major station and subsystem characteristics of these terminals as derived during the detailed definition phase by European industry are described.

  17. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  18. Remote Detection of the Electric Field Change Induced at the Seismic Wave Front from the Start of Fault Rupturing

    Directory of Open Access Journals (Sweden)

    Yukio Fujinawa

    2011-01-01

    Full Text Available Seismic waves are generally observed through the measurement of undulating elastic ground motion. We report the remote detection of the Earth's electric field variations almost simultaneously with the start of fault rupturing at about 100 km from the fault region using a special electric measurement. The rare but repeated detection indicates that the phenomenon is real. The characteristic time of diffusion is almost instantaneous, that is, less than 1 second to travel 100 km, more than ten times faster than ordinary seismic P wave propagation. We suggest that the measured electric field changes are produced by the electrokinetic effect through increased pore water pressure of the seismic pulse. It is also suggested that the long range propagation is due to the surface wave mode confined near the interface of the different conductivity. The length scale of the finite strength of the electric field is 16 km, 160 km for electric conductivity of 0.01, 0.001, Sm−1, respectively. This phenomenon suggests a new seismic sensing method and a new earthquake early warning system providing more seconds of lead time.

  19. Electric, Magnetic and Ionospheric Survey of Seismically Active Regions with SWARM

    Science.gov (United States)

    Echim, Marius M.; Moldovan, Iren; Voiculescu, Mirela; Balasis, George; Lichtenberger, Janos; Heilig, Balazs; Kovacs, Peter

    2014-05-01

    We present a project devoted to the scientific exploitation of SWARM multi-point measurements of the magnetic and electric field, of the electron temperature and density in the ionosphere. These data provide unique opportunities to study in-situ and remotely the electromagnetic and plasma variability due to ionospheric forcing from above and below. The project "Electric, Magnetic and Ionospheric Survey of Seismically Active Regions with SWARM (EMISSARS)" focus on coordinated studies between SWARM and ground based observatories to survey electromagnetic and ionospheric variability at medium latitudes and look for possible correlations with the seismic activity in central Europe. The project is coordinated by the Institute for Space Sciences (INFLPR-ISS) and the National Institute for Earth Physics (INFP) in Bucharest, Romania. In addition to SWARM data the project benefits from support of dedicated ground based measurements provided by the MEMFIS network coordinated by INFP, the MM100 network of magnetic observatories coordinated by the Geological and Geophysical Institute of Hungary (MFGI) in Budapest. Seismic data are provided by INFP and the European Mediterranean Seismological Center. The mission of the project is to monitor from space and from ground the ionospheric and electromagnetic variability during time intervals prior, during and after seismic activity in (i) the seismic active regions of the central Europe and (ii) in regions unaffected by the seismic activity. The latter will provide reference measurements, free from possible seismogenic signals. The scientific objectives of the project are: (1) Observation of electric, magnetic and ionospheric (electron temperature, density) variability in the ionosphere above or in the close vicinity of seismic active regions, in conjunction with ground based observations from dedicated networks; (2) Investigation of the coupling between the litosphere - atmosphere - ionosphere, during Earthquakes; (3) Quantitative

  20. Deriving Earth Science Data Analytics Requirements

    Science.gov (United States)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.