WorldWideScience

Sample records for earthen water-development works

  1. Feasibility study of white shrimp, Litopenaeus vannamei, culture in earthen ponds using brackish water of the Caspian Sea

    OpenAIRE

    Farabi, S.M.V.; Salehi, A.A.; Pourgholam, R.; Ghanei Tehrani, M.

    2016-01-01

    Litopenaeus vannamei (Boone, 1931) post-larvae 12 were obtained from Bushehr province and reared at the Caspian Sea Ecological Research Institute (Mazandaran, Iran) in summer 2012 using brackish water of the Caspian Sea. Prior to start of the experiment, post-larvae were gradually adapted to brackish water. The shrimp was stocked in a 1000 m2 earthen pond with a stocking density of 31 individual/m2. The earthen pond was in quarantine without discharge valve. During the rearing period, there w...

  2. Assessment and remediation of earthen pits in Alberta

    International Nuclear Information System (INIS)

    Lye, D.E.; Deibert, L.

    1999-01-01

    The proper decommissioning of abandoned earthen pits and the elimination of the associated environmental liabilities were discussed. An earthen pit is an excavated pit used by upstream oil and gas companies to contain/store/burn produced fluids and gases from either gas or oil producing operations. Produced fluids may include liquid hydrocarbons, process chemicals and water originating from oil wells, gas wells, and associated batteries and processing facilities. Improper operation and management at some pits has resulted in soil and/or groundwater contamination. In response to regulatory direction, petroleum operators in Alberta have begun the process of replacing earthen pits with alternative flaring and liquid storage facilities, and embarked on programs to assess, remediate and decommission earthen pits at their operations. This paper describes some of the challenges facing petroleum operators in this regard. It also outlines the regulatory framework within which decommissioning projects must be completed. 2 tabs

  3. Contemporary earthen architecture in the northern temperate climate

    DEFF Research Database (Denmark)

    Vestergaard, Inge; Eybye, Birgitte Tanderup

    2017-01-01

    houses designed using passive strategies and renewable materials have increased. Often the earth material, with its low environmental impact, is involved in the construction process. Building qualities include both pleasant living spaces and comfort in terms of better indoor climate. During the last few...... years new developments towards industrialized earthen building components can be seen. Hence the research question is: how can earth as a building material contribute to future Danish architecture? The results point out possible future developments in earthen architecture in Denmark. The methodologies...... and studying the applied materials and techniques....

  4. A survey of Danish earthen heritage for sustainable building

    DEFF Research Database (Denmark)

    Eybye, Birgitte Tanderup; Vestergaard, Inge

    2017-01-01

    Earthen buildings were common in Denmark up until circa 1880, after which the number of such buildings declined. Today earthen buildings are considered as examples of sustainable architecture, nevertheless there are only few contemporary Danish earthen buildings. The first part of this paper...... to contribute to future sustainable building....... investigates heritage uses of earthen building with a view to exploring the factors that led to their decline. To achieve this, the paper will present a literature study and a case study. The second part of this paper comments on the extent to which the earthen heritage techniques have the potential...

  5. Active and passive electrical and seismic time-lapse monitoring of earthen embankments

    Science.gov (United States)

    Rittgers, Justin Bradley

    In this dissertation, I present research involving the application of active and passive geophysical data collection, data assimilation, and inverse modeling for the purpose of earthen embankment infrastructure assessment. Throughout the dissertation, I identify several data characteristics, and several challenges intrinsic to characterization and imaging of earthen embankments and anomalous seepage phenomena, from both a static and time-lapse geophysical monitoring perspective. I begin with the presentation of a field study conducted on a seeping earthen dam, involving static and independent inversions of active tomography data sets, and self-potential modeling of fluid flow within a confined aquifer. Additionally, I present results of active and passive time-lapse geophysical monitoring conducted during two meso-scale laboratory experiments involving the failure and self-healing of embankment filter materials via induced vertical cracking. Identified data signatures and trends, as well as 4D inversion results, are discussed as an underlying motivation for conducting subsequent research. Next, I present a new 4D acoustic emissions source localization algorithm that is applied to passive seismic monitoring data collected during a full-scale embankment failure test. Acoustic emissions localization results are then used to help spatially constrain 4D inversion of collocated self-potential monitoring data. I then turn to time-lapse joint inversion of active tomographic data sets applied to the characterization and monitoring of earthen embankments. Here, I develop a new technique for applying spatiotemporally varying structural joint inversion constraints. The new technique, referred to as Automatic Joint Constraints (AJC), is first demonstrated on a synthetic 2D joint model space, and is then applied to real geophysical monitoring data sets collected during a full-scale earthen embankment piping-failure test. Finally, I discuss some non-technical issues related to

  6. Characterisation of aroma-active and off-odour compounds in German rainbow trout (Oncorhynchus mykiss). Part I: Case of aquaculture water from earthen-ponds farming.

    Science.gov (United States)

    Mahmoud, Mohamed Ahmed Abbas; Buettner, Andrea

    2016-11-01

    Comprehensive analyses were accomplished to explore the odorous molecules responsible for off-odour development in earthen-ponds rainbow trout (Oncorhynchus mykiss) aquaculture farming in Germany. In this part of the study, water odorants were extracted using solvent-assisted flavour evaporation (SAFE); then, extracts were analysed by one- and two- dimensional high resolution gas chromatography coupled with olfactometry and mass spectrometry using two columns with different polarity (DB-FFAP and DB-5). Aroma extract dilution analysis (AEDA) of the solvent extract samples revealed 54 odorants, and 47 of them were identified. In this study, a series of compounds is described for the first time in German earthen-ponds rainbow trout aquaculture water including, amongst others, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol), vanillin, (E)-4,5-epoxy-(E)-2-decenal, 4-ethyloctanoic acid, 3-methylindole (skatole), 5α-androst-16-en-3-one (androstenone), and 2-(2-butoxyethoxy) ethanol. Moreover, the sensory experiment indicated that (E)-4,5-epoxy-(E)-2-decenal, (E,E)-2,4-octadienal, and 1-octen-3-one are the main contributors to the metallic, cucumber, and mushroom notes of the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Contemporary earthen architecture in the northen temperate climate

    DEFF Research Database (Denmark)

    Vestergaard, Inge; Eybye, Birgitte Tanderup

    2017-01-01

    Contemporary ecological tendencies are rooted in early experimental houses. The number of experimental houses designed using passive strategies have increased. Earth as material is involved in the construction process. During the last few years new developments towards industrialized earthen...

  8. Effect of Seepage on Change in Stress Distribution Scenario in Static and Seismic Behaviour of Earthen Dams

    Directory of Open Access Journals (Sweden)

    Nandi N.

    2018-02-01

    Full Text Available The present study makes an effort to understand the damage of earthen dams under static and seismic loading condition. To make the investigation more realistic, behaviour of earthen dams considering the occurrence of a phreatic line indicating the submerged zone due to seepage within the dam body is considered. In case of earthen dams, homogeneous or nonhomogeneous, the consideration of the occurrence of a phreatic line or seepage line through the dam body is an important part of the earthen dam design methodology. The impervious material properties in the submerged zone below the phreatic line due to seepage may differ a lot in magnitudes as compared to the value of the same materials lying above this line. Hence, to have the exact stress distribution scenarios within the earthen dam, the different material properties above and below the phreatic line are considered in this present study. The study is first carried out by two-dimensional as well as three-dimensional finite element analysis under static loading condition. The work is further extended to observe the effect of seepage due to the consideration of the phreatic line on dynamic characteristics of earthen dams. Free vibration analysis and seismic analysis based on the Complete Quadratic Combination (CQC method by considering twodimensional and three-dimensional modeling are carried out to present the frequencies, mode shapes and the stress distribution pattern of the earthen dam.

  9. Water balance of two earthen landfill caps in a semi-arid climate

    International Nuclear Information System (INIS)

    Khire, M.V.; Benson, C.H.; Bosscher, P.J.

    1997-01-01

    Water balance data are presented that were obtained from two earthen cap test sections located in a semi-arid region. The test sections were constructed on a municipal solid waste landfill in East Wenatchee, Washington, USA. One test section represents a traditional resistive barrier, and is constructed with a compacted silty clay barrier 60 cm thick and a vegetated silty clay surface layer 15 cm thick. The other test section represents a capillary barrier and has a sand layer 75 cm thick overlain by a 15-cm-thick vegetated surface layer of silt. Extensive hydrological and meteorological data have been collected since November 1992. Unsaturated hydraulic properties of soils, hydrologic parameters, and vegetation have been extensively characterized. Results of the study show that capillary barriers can be effective caps in semi-arid and arid regions. They are also cheaper to construct and can perform better than traditional resistive barriers

  10. WinDAM C earthen embankment internal erosion analysis software

    Science.gov (United States)

    Two primary causes of dam failure are overtopping and internal erosion. For the purpose of evaluating dam safety for existing earthen embankment dams and proposed earthen embankment dams, Windows Dam Analysis Modules C (WinDAM C) software will simulate either internal erosion or erosion resulting f...

  11. Water-quality data from an earthen dam site in southern Westchester County, New York, 2015

    Science.gov (United States)

    Chu, Anthony; Noll, Michael L.

    2017-10-11

    The U.S. Geological Survey, in cooperation with the New York City Department of Environmental Protection, sampled 37 sites in the reservoir area for nutrients, major ions, metals, pesticides and their degradates, volatile organic compounds, temperature, pH, and specific conductance during fall 2015. Data collection was done to characterize the local groundwater-flow system and identify potential sources of seeps from the southern embankment at the Hillview Reservoir. Water-quality samples were collected in accordance with standard U.S. Geological Survey methods at 37 sites in and adjacent to Hillview Reservoir. These 37 sites were sampled to determine (1) baseline water-quality conditions of the saturated, low-permeability sediments that compose the earthen embankment that surrounds the reservoir, (2) water-quality conditions in the southwestern part of the study area in relation to the seeps on the embankment, and (3) temporal variation of water-quality conditions between 2006 and 2015 (not included in this report). The physical parameters and the results of the water-quality analysis from the 37 sites are included in this report and can be downloaded from the U.S. Geological Survey National Water Information System website.

  12. Effect of use of socially marketed faucet fitted earthen vessel/sodium hypochlorite solution on diarrhea prevention at household level in rural India

    Directory of Open Access Journals (Sweden)

    AR Dongre

    2008-07-01

    Full Text Available Objective: To evaluate the effect of socially marketed faucet fitted to earthen vessel / sodium hypochlorite solution on diarrhea prevention at rural household level as a social intervention for diarrhea prevention under ‘Community Led Initiatives for Child Survival (CLICS program. Methods: Unmatched case-control study was carried out in 10 villages of Primary Health Centre, Anji, located in rural central India. During the study period, 144 households used either faucet fitted earthen vessel to store drinking water or used sodium hypochlorite solution (SH for keeping drinking water safe. These served as case households for the present study. 213 neighborhood control households from same locality who used neither of the methods were also selected. Results: Odds ratio for households who used faucets fitted to earthen vessel was 0.49 (95% CI= 0.25 – 0.95. Odds ratio for households who used sodium hypochlorite solution was 0.55 (95% CI= 0.31 – 0.98. Use of these methods by the community, would prevent about 27 percent and 22 percent cases of the diarrhea (Population attributable risk proportion = 0.25 by faucets fitted to earthen vessels and 0.22 by use of sodium hypochlorite solution respectively. Conclusion: To ensure safe drinking water at household level, the effective and cheap methods like fitting faucet to traditionally used earthen vessel and/or use of sodium hypochlorite solution must be promoted through community participation at household level for cost and culture sensitive rural people in India.

  13. Effects of season on ecological processes in extensive earthen tilapia ponds in Southeastern Brazil.

    Science.gov (United States)

    Favaro, E G P; Sipaúba-Tavares, L H; Milstein, A

    2015-11-01

    In Southeastern Brazil tilapia culture is conducted in extensive and semi-intensive flow-through earthen ponds, being water availability and flow management different in the rainy and dry seasons. In this region lettuce wastes are a potential cheap input for tilapia culture. This study examined the ecological processes developing during the rainy and dry seasons in three extensive flow-through earthen tilapia ponds fertilized with lettuce wastes. Water quality, plankton and sediment parameters were sampled monthly during a year. Factor analysis was used to identify the ecological processes occurring within the ponds and to construct a conceptual graphic model of the pond ecosystem functioning during the rainy and dry seasons. Processes related to nitrogen cycling presented differences between both seasons while processes related to phosphorus cycling did not. Ecological differences among ponds were due to effects of wind protection by surrounding vegetation, organic loading entering, tilapia density and its grazing pressure on zooplankton. Differences in tilapia growth among ponds were related to stocking density and ecological process affecting tilapia food availability and intraspecific competition. Lettuce wastes addition into the ponds did not produce negative effects, thus this practice may be considered a disposal option and a low-cost input source for tilapia, at least at the amounts applied in this study.

  14. Effect of probiotic and sand filtration treatments on water quality and growth of tilapia (Oreochromis niloticus) and pangas (Pangasianodon hypophthalmus) in earthen ponds of southern Bangladesh

    DEFF Research Database (Denmark)

    Mahmud, Sultan; Ali, Mohammad Lokman; Alam, Md Ariful

    2016-01-01

    Effects of water treatment by two probiotic products (PondPlus® and AquaPhoto®) and sand filtration were studied on growth performance of tilapia (Oreochromis niloticus) and pangas (Pangasianodon hypophthalmus) stocked at tilapia:pangas ratio of 5:3 in traditional earthen ponds in Bangladesh....... The fish were stocked at a density of 20,000 fish ha−1 and reared for 7 months. Compared to untreated ponds, treatments of probiotic products or sand filtration in earthen ponds resulted in a higher O2 content, higher water transparency, less ammonium, and fewer cyanobacteria. Weight gain for individual...... tilapia was lowest in the AquaPhoto-treated ponds (177 g), while similar gains (188–194 g) occurred in the other ponds. For pangas, the lowest weight gain (627 g) was obtained in the sand filter-treated ponds, as compared to 690–797 g in the other ponds. Thus, a general positive effect from the treatments...

  15. Assessment of earthen levee stability for management and response: A NASA-DHS-California Dept. Water Resources collaboration

    Science.gov (United States)

    An, K.; Jones, C. E.; Bekaert, D. P.; Dudas, J.

    2016-12-01

    Radar remote sensing of the Sacramento-San Joaquin Delta, the largest estuary in the western U.S. (over 2500 km2), and its levee system provides an opportunity for NASA Applied Science to aid the CA Department of Water Resources (CA-DWR) in monitoring and emergency response. The delta contains over 1,500 km of earthen levees, supports about 2.5 million acres of agricultural land, and serves as a main water supply for 23 million California residents. Many of the reclaimed islands are 10-25 feet below sea level, sit atop compressible peat and organic clay soils, and are surrounded by levees only 1 foot above the once in a century flood elevation threshold. Land subsidence in the delta can be attributed to a variety of factors, including: aerobic oxidation of soils, soil compaction from drainage, wind erosion, anaerobic decomposition, dissolved carbon fluxes, floods, seismic events, and even rodent burrowing. Interferometric Synthetic Aperture Radar (InSAR) is an established technique to measure surface displacements and has been used to map large-scale subsidence. The demonstration of earthen levee monitoring is a recent development that has been greatly furthered by the emergence of new instruments such as NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). UAVSAR is an L-band airborne sensor with high signal-to-noise ratio, repeat flight track accuracy, and has a high spatial resolution (7 x 7 m) that is necessary for detailed levee monitoring. The adaptability of radar instruments in their ability to see through smoke, haze, and clouds during the day or night, is especially relevant during disaster events, when cloud cover or lack of solar illumination inhibits traditional visual surveys of damage. We demonstrate the advantages of combining InSAR with geographic information systems (GIS) datasets in locating subsidence features along critical levee infrastructure in the Delta for 2009-2016. The ability to efficiently locate potential areas of

  16. Simulation of water flow and retention in earthen-cover materials overlying uranium mill tailings

    International Nuclear Information System (INIS)

    Simmons, C.S.; Gee, G.W.

    1981-09-01

    The water retention characteristics of a multilayer earthen cover for uranium mill tailings were simulated under arid weather conditions common to Grand Junction, Colorado. The multilayer system described in this report consists of a layer of wet clay/gravel (radon barrier), which is separated from a surface covering of fill soil by a washed rock material used as a capillary barrier. The capillary barrier is designed to prevent the upward migration of water and salt from the tailings to the soil surface and subsequent loss of water from the wet clay. The flow model, UNSATV, described in this report uses hydraulic properties of the layered materials and historical climatic data for two years (1976 and 1979) to simulate long-term hydrologic response of the multilayer system. Application of this model to simulate the processes of infiltration, evaporation and drainage is described in detail. Simulations over a trial period of one relatively wet and two dry years indicated that the clay-gravel layer remained near saturation, and hence, that the layer was an effective radon barrier. Estimates show that the clay-gravel layer would not dry out (i.e., revert to drying dominated by isothermal vapor-flow conditions) for at least 20 years, provided that the modeled dry-climate period continues

  17. Geochemical performance of earthen and cementitious sealing materials for radioactive waste repositories

    International Nuclear Information System (INIS)

    Melchoir, D.; Glazier, R.; Marton, R.

    1988-01-01

    Earthen and cementitious materials are proposed as part of the sealing system for radioactive waste repositories. Compacted clay-bearing earthen materials could be used in sealing shafts and shaft entryways; and in the waste emplacement boundary areas in some repository designs. Earthen material mixtures are being considered because they can be engineered and emplaced to achieve low permeabilities, appropriate swelling characteristics, and adequate strength with little tendency to degrade during changing environmental conditions. The proposed earthen sealing materials include sodium and calcium mont-morillonites, illites, and mixtures with graded aggregates of sand. To assess the relative advantages and disadvantages of various pure and mixed materials, important geochemical processes (e.g., ion-exchange, phase transformation, dissolution, and precipitation of secondary minerals) need to be evaluated. These processes could impact seal integrity by changing permeability and/or mineral swell potential. Hydrous calcium-silicate-based cementitious materials such as grouts or concrete might also be used in some proposed sealing systems

  18. Effects of water physico-chemical parameters on tilapia (Oreochromis niloticus growth in earthen ponds in Teso North Sub-County, Busia County

    Directory of Open Access Journals (Sweden)

    Agano J. Makori

    2017-11-01

    Full Text Available Abstract Small-scale fish farmers in developing countries are faced with challenges owing to their limited information on aquaculture management. Nile tilapia farmers in Teso North Sub-County recorded lower yields than expected in 2009 despite having been provided with required inputs. Water quality was suspected to be the key factor responsible for the low yields. This study sought to assess the effects of earthen pond water physico-chemical parameters on the growth of Nile tilapia in six earthen fish ponds under semi-intensive culture system in Teso North Sub-County. The study was longitudinal in nature with pond water and fish being the units of analysis. Systematic sampling was used to select five ponds while a control pond was purposively selected based on its previously high harvest. Four ponds were fed by surface flow and two by underground water. Each pond was fertilized and stocked with 900 fry of averagely 1.4 g and 4.4 cm. Physico-chemical parameters were measured in-situ using a multi-parameter probe. Sixty fish samples were randomly obtained from each pond fortnightly for four months using a 10 mm mesh size and measured, weighed and returned into the pond. Mean range of physico-chemical parameters were: dissolved oxygen (DO 4.86–10.53 mg/l, temperature 24-26 °C, pH 6.1–8.3, conductivity 35–87 μS/cm and ammonia 0.01–0.3 mg/l. Temperature (p = 0.012 and conductivity (p = 0.0001 levels varied significantly between ponds. Overall Specific Growth Rate ranged between 1.8% (0.1692 g/day and 3.8% (1.9 g/day. Ammonia, DO and pH in the ponds were within the optimal levels for growth of tilapia, while temperature and conductivity were below optimal levels. As temperature and DO increased, growth rate of tilapia increased. However, increase in conductivity, pH and ammonia decreased fish growth rate. Temperature and DO ranging between 27 and 30 °C and 5–23 mg/l, respectively, and SGR of 3.8%/day and above are

  19. Construction of earthen structure as a sexual signals in the fiddler crabs

    Directory of Open Access Journals (Sweden)

    Noor Us Saher

    2017-03-01

    Full Text Available We studied the reproductive behavior and the construction of an earthen structure in the four species of fiddler crab with reference to their habitat. Males of the Uca sindensis and U. iranica inhibit on open mudflats, construct the pillar and semidome structures at or near to the burrows openings. These structures perform the function to attract females, who wandering on the surface between male burrows for mating as well as provide protection or hiding object against the avian predator to mates. There were no earthen structures were observed in U. urvillie and U. annulipes, which inhibit among the vegetation. The well-marked intersexual different arrangement of mudballs was observed in U. annulipes. The earthen structures (pillar and semidome and mudballs arrangements help courting females to assess the quality of mate as well as internal conditions of the burrow.

  20. Survivability of ancient man-made earthen mounds: implications for uranium mill tailings impoundments

    International Nuclear Information System (INIS)

    Lindsey, C.G.; Mishima, J.; King, S.E.; Walters, W.H.

    1983-06-01

    As part of a study for the Nuclear Regulatory Commission (NRC), the Pacific Northwest Laboratory (PNL) is investigating long-term stabilization techniques for uranium mill impoundments. Part of this investigation involves the design of a rock armoring blanket (riprap) to mitigate wind and water erosion of the underlying soil cover, which in turn prevents exposure of the tailings to the environment. However, the need for the armoring blanket, as well as the blanket's effectiveness, depends on the stability of the underlying soil cap (radon suppression cover) and on the tailings themselves. Compelling evidence in archaeological records suggests that large man-made earthen structures can remain sound and intact for time periods comparable to those required for the stabilization of the tailings piles if properly constructed. We present archaeological evidence on the existence and survivability of man-made earthen and rock structures through specific examples of such structures from around the world. We also review factors contributing to their survival or destruction and address the influence of climate, building materials, and construction techniques on survivability

  1. Round Earthen Towers in Zhangzhou

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    The round earthen towers inZhangzhou,Fujifan Province,have long been famous a-round the world.Built of rammedearth,each tower consists uf four tofive stories and Is nearly 100 metersin diameter and 17 to 18meters high.Scatteredaround the mountains,valleys and plains insouthwestern Fujian,thetowers look very muchlike round castles.SomeChinese and foreign ar-chitercts,historians andfolk-custom researcherscall them“flyng sau-cers”from outer spaceor“mushrooms”fromearth.They represent,indeed,a unique archi-tectural style in theworld.

  2. Polyculture of Litopenaeus vannamei shrimp and Mugil platanus mullet in earthen ponds

    Directory of Open Access Journals (Sweden)

    Léa Carolina de Oliveira Costa

    2013-09-01

    Full Text Available The objective of the present study was to evaluate the growth performance of the shrimp Litopenaeus vannamei and the mullet Mugil platanus in earthen ponds (200 m² located in the Laboratory of Continental Aquaculture of Universidade Federal do Rio Grande (FURG, in both polyculture and monoculture systems. The study consisted of three replicates, as follows: shrimp monoculture (SM, shrimp and mullet polyculture (PO and mullet monoculture (MM. The stocking density was 10 post-larvae shrimp (PL m−2 and 0.67 mullet m−2. Fish and shrimp were fed commercial shrimp meal (38% crude protein once a day. Initially, the amount of feed to shrimp was 20% of their total biomass which was later reduced to 5%. Mullets were fed at 5% of their stocked biomass. The experiment lasted 79 days during the summer of 2007/2008. At harvest, shrimp in monoculture had weight gain (15.59 g, specific growth rate (8.40% day−1, apparent feed conversion (0.88, survival (91% and production (1.454 kg ha−1 significantly higher than in polyculture (1.039 kg ha−1. Mullets in polyculture had significantly better weight gain (42.72 g and specific growth rate (3.99 % day−1 than those in monoculture (31.04 g and 3.69% day−1, respectively, while the mullet condition factor was significantly smaller in polyculture (1.06 than in monoculture (1.13. The apparent feed conversion of the mullets did not present significant differences between monoculture (2.50 and polyculture (2.40. The physical and chemical water parameters were not significantly different in any of the experiments, except for the transparency, which was higher in earthen ponds with mullet monoculture. Polyculture of shrimp and mullet reared together in earthen ponds negatively affects the shrimp production and favors the production of mullets.

  3. Characterization of historic mortars and earthen building materials in Abu Dhabi Emirate, UAE

    International Nuclear Information System (INIS)

    Marcus, Benjamin L

    2012-01-01

    The Abu Dhabi Authority for Culture and Heritage (ADACH) is responsible for the conservation and management of historic buildings and archaeological sites in the Emirate. Laboratory analysis has been critical for understanding the composition of historic materials and establishing appropriate conservation treatments across a wide variety of building types, ranging from Iron Age earthen archaeological sites to late-Islamic stone buildings. Analysis was carried out on historic sites in Al Ain, Delma Island and Liwa Oasis using techniques such as micro-x-ray fluorescence (MXRF), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM-EDX), polarized light microscopy (PLM), and x-ray diffraction (XRD). Testing was conducted through consultant laboratories and in collaboration with local universities. The initial aim of the analysis was to understand historic earthen materials and to confirm the suitability of locally sourced clays for the production of mud bricks and plasters. Another important goal was to characterize materials used in historic stone buildings in order to develop repair mortars, renders and grouts.

  4. Further development of landfill sealing systems. Subproject 20: long-term behaviour of earthen layers in landfill liners, moisture conditions under the action of temperature; Weiterentwicklung von Deponieabdichtungssystemen. Teilvorhaben 20: Langzeitverhalten von Erdstoffschichten in Deponiebasisabdichtungen, Feuchtehaushalt unter Temperatureinwirkung

    Energy Technology Data Exchange (ETDEWEB)

    Holzloehner, U.; Schossig, W.; Wuttke, W.; Ziegler, F.

    1996-12-31

    The sealing properties of the earthen layers in landfill liners depend on water content, which is not constant but changes according to the moisture conditions of the landfill and the adjacent soil. Earthen layers in landfill liners tend to lose water over the course of time and this may result in desiccation cracking. To study the behaviour of soils undergoing desiccation, test devices and methods were developed to evaluate the water transport characteristics of soil samples. Measurement of the temporal and spatial changes in moisture distribution within the cylindrical soil sample was accompanied by a calculation in which diffusion coefficients were iteratively varied so as to reach optimum agreement with the observed moisture distribution. Overburden pressure can to some extent prevent desiccation. Therefore test devices were developed which made it possible to load soil samples simultaneously by vertical stress and by suction. (orig./SR) [Deutsch] Die Dichtigkeit von Erdstoffschichten in Deponieabdichtungen haengt vom Wassergehalt ab, der nicht konstant ist, sondern sich entsprechend dem Feuchtehaushalt von Deponie und umgebendem Boden aendert. Die Erdstoffabdichtungssschichten tendieren langfristig zum Trocknerwerden, wodurch es zu Rissen kommen kann. Um das Austrocknungsverhalten zu untersuchen, wurden Versuchsgeraete und -verfahren zur Bestimmung von Wassertransportkennwerten an Bodenproben entwickelt. Die Messung der zeitlichen und oertlichen Aenderung der Feuchteverteilung in der zylindrischen Bodenprobe wurde durch eine Rechnung begleitet, in der die eingegebenen Diffusionskoeffizienten iterativ variiert wurden, bis optimale Uebereinstimmung mit der gemessenen Feuchteverteilung erreicht war. Auflast kann Austrocknung bis zu einem gewissen Grad verhindern. Deshalb wurden Geraete entwickelt, in denen Bodenproben gleichzeitig einer Wasserspannung und einer vertikalen Spannung ausgesetzt werden koennen. (orig./SR)

  5. Experimental Studies on Earthen Architecture Sites Consolidated with BS Materials in Arid Regions

    Directory of Open Access Journals (Sweden)

    Dong Zhao

    2016-01-01

    Full Text Available This paper takes the preservation works on the archaeological sites of Gaochang Ruins, Xinjiang, as background. Based on the soil characteristics analysis on the archaeological sites, experimental studies were conducted on the consolidation effect of the BS-10 consolidation material on the archaeological sites of adobe and rammed earth. The results showed the following:, after consolidation, the wind erosion resistance of the soil on the archaeological sites was substantially increased, and the wind erosion modulus was reduced by 5~8 times; the soil exhibited fine grid structure and significantly reduced degree of permeability, while still maintaining the moisture exchange between inside and outside the soil; there is excellent ageing resistance; the resistance to freezing and thawing was closely related to the soil water content and had little influence in arid regions; the water resistance was improved and could satisfy the requirements for consolidating the sites in arid regions; the unconfined compressive strength was improved moderately, which was the key direction of improvement in the future, and the consolidated soil did not form duricrust on the surface and had good bonding strength with the internal parts. The BS-10 material can meet the consolidation requirements for the earthen archaeological sites in arid regions of northwest China.

  6. 4-D imaging of seepage in earthen embankments with time-lapse inversion of self-potential data constrained by acoustic emissions localization

    Science.gov (United States)

    Rittgers, J. B.; Revil, A.; Planes, T.; Mooney, M. A.; Koelewijn, A. R.

    2015-02-01

    New methods are required to combine the information contained in the passive electrical and seismic signals to detect, localize and monitor hydromechanical disturbances in porous media. We propose a field experiment showing how passive seismic and electrical data can be combined together to detect a preferential flow path associated with internal erosion in a Earth dam. Continuous passive seismic and electrical (self-potential) monitoring data were recorded during a 7-d full-scale levee (earthen embankment) failure test, conducted in Booneschans, Netherlands in 2012. Spatially coherent acoustic emissions events and the development of a self-potential anomaly, associated with induced concentrated seepage and internal erosion phenomena, were identified and imaged near the downstream toe of the embankment, in an area that subsequently developed a series of concentrated water flows and sand boils, and where liquefaction of the embankment toe eventually developed. We present a new 4-D grid-search algorithm for acoustic emissions localization in both time and space, and the application of the localization results to add spatially varying constraints to time-lapse 3-D modelling of self-potential data in the terms of source current localization. Seismic signal localization results are utilized to build a set of time-invariant yet spatially varying model weights used for the inversion of the self-potential data. Results from the combination of these two passive techniques show results that are more consistent in terms of focused ground water flow with respect to visual observation on the embankment. This approach to geophysical monitoring of earthen embankments provides an improved approach for early detection and imaging of the development of embankment defects associated with concentrated seepage and internal erosion phenomena. The same approach can be used to detect various types of hydromechanical disturbances at larger scales.

  7. Impact of container material on the development of Aedes aegypti larvae at different temperatures.

    Science.gov (United States)

    Kumar, Gaurav; Singh, R K; Pande, Veena; Dhiman, R C

    2016-01-01

    Aedes aegypti, the primary vector of dengue generally breeds in intradomestic and peridomestic containers made up of different materials, i.e. plastic, iron, rubber, earthen material etc. The material of container is likely to affect the temperature of water in container with variation in environmental temperature. The present study was aimed to determine the effect of different container materials on larval development of Ae. aegypti at different temperatures. Newly hatched I instar larvae (2-4 h old) were used in the study and experiments were conducted using three different containers made up of plastic, iron and earthen material. Three replicates for each type of container at 22, 26, 30, 34, 38, 40, and 42°C were placed in environmental chamber for the development of larvae. At temperatures >22°C, 50% pupation was completed in earthen pot within 4.3±0.6 to 6.3±0.6 days followed by plastic containers (5±0 to 8±0 days) and iron containers (6±0 to 9±0 days). Developmental time for 50% pupation in the three containers differed significantly (p containers (p containers resulted in significant variations in the developmental period of larvae. More than 35°C temperature of water was found inimical for pupal development. The results revealed the variation in temperature of water in different types of containers depending on the material of container, affecting duration of larval development. As the larval development was faster in earthen pot as compared to plastic and iron containers, community should be discouraged for storing the water in earthen pots. However, in view of containers of different materials used by the community in different temperature zones in the country, further studies are required for devising area-specific preventive measures for Aedes breeding.

  8. Salt repository sealing materials development program: 5-year work plan

    International Nuclear Information System (INIS)

    Myers, L.B.

    1986-06-01

    This plan covers 5 years (fiscal years 1986 through 1990) of work in the repository sealing materials program to support design decisions and licensing activities for a salt repository. The plan covers a development activity, not a research activity. There are firm deliverables as the end points of each part of the work. The major deliverables are: development plans for code development and materials testing; seal system components models; seal system performance specifications; seal materials specifications; and seal materials properties ''handbook.'' The work described in this plan is divided into three general tasks as follows: mathematical modeling; materials studies (salt, cementitious materials, and earthen materials); and large-scale testing. Each of the sections presents an overview, status, planned activities, and summary of program milestones. This plan will be the starting point for preparing the development plans described above, but is subject to change if preparation of the work plan indicates that a different approach or sequence is preferable to achieve the ultimate goal, i.e., support of design and licensing

  9. Technical Condition of Earthen Dams at Nizhegorodskaya HPP After 60 Years of Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, V. S., E-mail: kuznetsovVS@vniig.ru; Ladenko, S. Yu., E-mail: ladenko@yandex.ru [B. E. Vedeneev All-Russian Research Institute of Hydraulic Engineering (JSC) (Russian Federation)

    2016-03-15

    The complex of hydraulic engineering installations includes five earthen dams. All facilities are of Class I. The diagnostic parameters of dam operation and technical condition monitored via in-situ observation for seepage mode, seepage strength, settlement, static stability, etc. generally meet design assumptions and safety criteria. Despite individual defects and signs of “aging” identified over the period of earthen dam operation, these are currently in a satisfactory and operable state. The long, 60-year operating period of the dams with no serious overhauls or emergencies has demonstrated the high reliability of the facilities, the correctness of the design and technological solutions adopted and implemented in the construction, and the high professional level of their operation in close cooperation with science.

  10. Culture Trials of Gymnarchus niloticus in Earthen and Concrete Ponds

    African Journals Online (AJOL)

    Culture trials of Gymnarchus niloticus in earthen and concrete pond was carried out. A total of 440 fingerlings of G. niloticus from Burutu River, Delta State, were collected. A total of 220 fingerlings were stocked in each of the receptacles. The fingerlings were fed with live artemia for two weeks and commercial feed of size ...

  11. Erosion of Earthen Levees by Wave Action

    Science.gov (United States)

    Ozeren, Y.; Wren, D. G.; Reba, M. L.

    2016-02-01

    Earthen levees of aquaculture and irrigation reservoirs in the United States often experience significant erosion due to wind-generated waves. Typically constructed using local soils, unprotected levees are subjected to rapid erosion and retreat due to wind generated waves and surface runoff. Only a limited amount of published work addresses the erosion rates for unprotected levees, and producers who rely on irrigation reservoirs need an economic basis for selecting a protection method for vulnerable levees. This, in turn, means that a relationship between wave energy and erosion of cohesive soils is needed. In this study, laboratory experiments were carried out in order to quantify wave induced levee erosion and retreat. A model erodible bank was packed using a soil consisting of approximately 14% sand, 73% silt, and 13% clay in a 20.6 m long 0.7 m wide and 1.2 m deep wave tank at the USDA-ARS, National Sedimentation Laboratory in Oxford MS. The geometry of the levee face was monitored by digital camera and the waves were measured by means of 6 capacitance wave staffs. Relationships were established between levee erosion, edge and retreat rates, and incident wave energy.

  12. Small-scale field test of simple earthen covers for uranium mill tailings

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.; Rich, D.C.

    1983-01-01

    A series of field tests has been conducted during the past year to provide benchmark data on the performance of simple, single-layer earthen covers at thee uranium tailings sites. The performance of the covers was evaluated in terms of their reduction of radon gas releases, although moisture profiles and other cover parameters were also monitored. The tests were designed to evaluate the effectiveness of local soils applied with minimum engineering design or compaction effort. The tests, therefore, tend to represent a lowest-cost, and perhaps a worst-case scenario for tailings reclamation. The field benchmark tests are part of a major research program being conducted by the US Department of Energy to develop technology for uranium tailings disposal. The present tests with simple earthen covers thus provide a comparative basis for evaluating the effectiveness of more highly-engineered systems and their proportionately higher costs. These tests were conducted on the inactive tailings piles at Salt Lake City; Mexican Hat, Utah; and Grand Junction, Colorado. The test covers were installed during the summer of 1981 (Ri81) and have been monitored during the following year. This report describes the experimental details of the cover tests, the data that were collected during the one-year monitoring period, and the conclusions that were drawn from the experiments. 5 refs., 5 figs., 13 tabs

  13. DOCUMENTATION FOR EMERGENCY STABILIZATION AND THE INTEGRATED CONSERVATION PLANNING OF EARTHEN ARCHITECTURE SETTLEMENTS: THE KASBAH OF TAOURIRT (OUARZAZATE, MOROCCO

    Directory of Open Access Journals (Sweden)

    Z. Ekim

    2013-07-01

    Full Text Available Heritage recording serves as a basis for methodologies regarding diagnosis, treatment and preservation of historic places and contributes to make posterity records of our built cultural heritage. This work is not a stand-alone practice, but a part of the overall conservation of cultural heritage. Recording of heritage places should be directly related to the needs, skills and the technology that are available to the end users that are responsible for the management and care of these sites. They should be selected in a way that the future protectors of these sites can also access and use the data that is collected. This contribution explains an innovative heritage recording approach applied by Carleton Immersive Media Studio (CIMS in the documentation of an earthen complex, the Kasbah of Taourirt in Ouarzazate, Morocco as part of the Earthen Architecture Initiative of the Getty Conservation Institute (GCI. The selected recording techniques used were carried out according to the requirements of the Moroccan team (CERKAS in charge of the study and protection of the chosen site documented.

  14. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  15. Potential use of calcareous mudstones in low hydraulic conductivity earthen barriers for environmental applications.

    Science.gov (United States)

    Musso, T B; Francisca, F M; Musso, T B; Musso, T B

    2013-01-01

    Earthen layers play a significant role in isolating contaminants in the subsurface, controlling the migration of contaminant plumes, and as landfill liners and covers. The physical, chemical and mineralogical properties of three calcareous mudstones from the Jagüel and Roca formations in North Patagonia, Argentina, are evaluated to determine their potential for the construction of liners. These mudstones were deposited in a marine environment in the Upper Cretaceous-Paleocene. The tested specimens mainly comprise silt and clay-sized particles, and their mineralogy is dominated by a smectite/illite mixed layer (70-90% Sm) and calcite in smaller proportion. Powdered mudstone samples have little viscosity and swelling potential when suspended in water. The hydraulic conductivity of compacted mudstones and sand-mudstone mixtures is very low (around 1-3 x 10(-10) m/s) and in good agreement with the expected hydraulic behaviour of compacted earthen layers. This behaviour can be attributed to the large amount of fine particles, high specific surface and the close packing of particles as confirmed by scanning electron microscope analysis. The tested materials also show a high cation exchange capacity (50-70 cmol/kg), indicating a high contaminant retardation capability. The calcareous mudstones show satisfactory mineralogical and chemical properties as well as an adequate hydraulic behaviour, demonstrating the potential use of these materials for the construction of compacted liners for the containment of leachate or as covers in landfills. These findings confirm the potential usage of marine calcareous mudstones as a low-cost geomaterial in environmental engineering projects.

  16. Why Devil's town has Devil's water

    Science.gov (United States)

    Jovic, Sladjana; Mitriceski, Bojana

    2015-04-01

    Why Devil's town has Devil's water In the south of Serbia, lies a first-class natural landmark "Devil's Town" at an altitude of 660-700 m. Earthen figures or "towers" as the locals call them, are located in the watershed between two gullies, whose sources joined together create a unique erosive formation, tremendously demolished by the erosive processes. The gullies also have strange names: "Devil's Gully" and "Hell's Gully". There are two rare natural phenomena at the same spot: 202 earthen figures of different shape and dimension, from 2 m to 15 m in height, and from 0.5 m to 3 m in width, with stone caps on the top. They are an outcome of a specific erosive process that lasts for centuries. When figures are formed, they grow, change, shorten, gradually (very slowly) disappear and reappear. The loose soil is dissolved and washed away by the rain. However, the material under the stone caps is protected from the "bombardment" of the rain drops and washout, and remains in place in the form of the rising earthen pillars - figures. Another natural rarity in "Devil's Town" are two springs of extraordinary properties "Devil's Water", which is located in vicinity of these earthen figures, is a cold and extremely acid spring (pH 1.5) of high mineral concentration (15 g/l of water), springing out in "Devil's Gully". In comparison to drinking water, it is 10 to 1000 times richer in minerals (aluminium, iron, potassium, copper, nickel, sulphur, and alaun). "Red Well" is another spring located downstream, in the alluvial plain, 400 m away from the first spring. Its water (pH 3.5) is less acid and has a lower general mineral concentration (4.372 mg/l of water). Due to the oxidation of iron, which is contained in water in large amounts, an attractive red terrace in the form of a fan is created. The main assessment for students is to take some examples of water from Devils Gully and the others from Red Well . Second part is to find out content of minerals in water examples and

  17. A Study of Pattern Prediction in the Monitoring Data of Earthen Ruins with the Internet of Things.

    Science.gov (United States)

    Xiao, Yun; Wang, Xin; Eshragh, Faezeh; Wang, Xuanhong; Chen, Xiaojiang; Fang, Dingyi

    2017-05-11

    An understanding of the changes of the rammed earth temperature of earthen ruins is important for protection of such ruins. To predict the rammed earth temperature pattern using the air temperature pattern of the monitoring data of earthen ruins, a pattern prediction method based on interesting pattern mining and correlation, called PPER, is proposed in this paper. PPER first finds the interesting patterns in the air temperature sequence and the rammed earth temperature sequence. To reduce the processing time, two pruning rules and a new data structure based on an R-tree are also proposed. Correlation rules between the air temperature patterns and the rammed earth temperature patterns are then mined. The correlation rules are merged into predictive rules for the rammed earth temperature pattern. Experiments were conducted to show the accuracy of the presented method and the power of the pruning rules. Moreover, the Ming Dynasty Great Wall dataset was used to examine the algorithm, and six predictive rules from the air temperature to rammed earth temperature based on the interesting patterns were obtained, with the average hit rate reaching 89.8%. The PPER and predictive rules will be useful for rammed earth temperature prediction in protection of earthen ruins.

  18. Influence of cover defects on the attenuation of radon with earthen covers

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.; Mayer, D.W.

    1983-11-01

    Experimental and theoretical evaluations of radon flux through laboratory-scale defective soil columns are presented together with a survey of literature on the formation and prevention of defects in soil covers. This report focuses on air-filled, centimeter-scale defects that are most probable in earthen covers for attenuating radon emission from uranium-mill tailings. Examples include shirnkage and erosion cracks, erosion piping, animal burrows and air channels formed by the biodegradation of vegetation roots. Calculations based on mathematical models indicate that collections of defects which could increase the radon flux from an earthen cover by a factor of two would be easily detected by visual inspection. However, these models ignore air-turbulence in the defect and drying of the soil around the defect. Laboratory measurements showed that turbulent diffusion of radon occurred through defects as narrow as 0.3 cm when subjected to a transverse air velocity of 1 to 6 miles per hour at the surface. Both turbulence and more-rapid drying of soil can accelerate radon flux to the cover surface. Consequently, recommended methods to inhibit defect formation should be applied. 29 references, 3 figures, 5 tables

  19. Multidimensional simulation of radon diffusion through earthen covers

    International Nuclear Information System (INIS)

    Mayer, D.W.; Gee, G.W.

    1983-01-01

    The purpose of this report is to document applications of the RADMD model used at PNL to perform analyses of radon diffusion through uranium mill tailings cover systems. The accuracy of the numerical formulation of the RADMD model was demonstrated through a comparison with a two-dimensional analytic solution to the radon diffusion equation. Excellent agreement was obtained between two-dimensional radon concentration profiles predicted by RADMD and those obtained with the analytic solution. A simulation was made of radon diffusion into a test canister using the two dimensional capabilities of RADMD. The radon flux profile was computed and illustrates the effects of the canister on the surface radon flux. The influence of the canister on the radon flux was shown to be significant under certain circumstances. Defects in earthen cover systems were evaluated using the three dimensional capabilities of RADMD. The results support the expectation that defective covers can increase the surface flux from a covered talings pile. Compared to a cover with no defects, radon flux could be elevated by as much as a factor of three when 20% of the radon control layer area contained pockets of reduced moisture. The effects of temporal and spatial variations in moisture content have been modeled by coupling RADMD with a variable saturated flow model. Two dimensional simulations were made of the time dependence of radon flux from a tailings site before and after cover placement. The results demonstrated the expected flux reduction produced by a thick earthen cover. Time dependence of the radon flux after cover placement was attributed to slight changes in moisture content of the cover material with time. The particular cover studied had a compacted clay layer that effectively attenuated the radon

  20. ON LAND SLIDE DETECTION USING TERRASAR-X OVER EARTHEN LEVEES

    Directory of Open Access Journals (Sweden)

    M. Mahrooghy

    2012-08-01

    Full Text Available Earthen levees have an important role to protect large areas of inhabited and cultivated land in the US from flooding. Failure of the levees can threaten the loss of life and property. One of the problems which can lead to a complete failure during a high water event is a slough slide. In this research, we are trying to detect such slides using X-band SAR data. Our methodology consists of the following four steps: 1 segmentation of the levee area from background; 2 extracting features including backscatter features and texture features; 3 training a back propagation neural network classifier using ground-truth data; and 4 testing the area of interest and validation of the results using ground truth data. A dual-polarimetric X-band image is acquired from the German TerraSAR-X satellite. Ground-truth data include the slides and healthy area. The study area is an approximately 1 km stretch of levee along the lower Mississippi River in the United States. The output classification shows the two classes of healthy and slide areas. The results show classification accuracies of approximately 67% for detecting the slide pixels.

  1. Stability of multilayer earthen barriers used to isolate mill tailings: geologic and geotechnological considerations

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, J.T.

    1981-08-01

    This report briefly discusses how seismic activity, erosion, climatic change, slope stability, differential settlement, and cover design could affect the long-term integrity of multilayer earthen cover systems. In addition, the report suggests ways to design and construct covers so that adverse impacts can be avoided or minimized. The stability of multilayer earthen barriers used to isolate uranium mill tailings depends on the morphology of the disposal site, the engineering of the barrier, the condition of the tailings, and the possible impacts of earthquakes, erosion, and climatic changes. When designing a cover for or siting a tailings pile, one must take into account both geologic and geotechnological variables. To alleviate the adverse effects of possible seismic activity, tailings piles should never be located on or near active or capable faults. Existing piles near faults should be moved to safer sites or engineered to withstand possible displacement and shaking. Liquefaction generally can be prevented if the tailings and their underlying material are compacted to a relative density of 60% or greater, or if they are kept dry. If the tailings are saturated, dewatering schemes may have to be used. Erosion may be caused by streams, glaciers, or wind, depending on the geomorphic and atmospheric conditions at the site. Fluvial erosion can be prevented by using dikes (and avoided by initially siting the pile a safe distance away from stream courses). In some cases, fluvial waters or rainfall may have to be rerouted over the pile via armored ditches. Eolian erosion can be minimized by vegetating the disposal site or covering it with gravel. Because of the wide geomorphic and geotechnological variations extant at most sites, a single cover design cannot be cost-effectively and efficiently used at all sites.

  2. Stability of multilayer earthen barriers used to isolate mill tailings: geologic and geotechnological considerations

    International Nuclear Information System (INIS)

    Zellmer, J.T.

    1981-08-01

    This report briefly discusses how seismic activity, erosion, climatic change, slope stability, differential settlement, and cover design could affect the long-term integrity of multilayer earthen cover systems. In addition, the report suggests ways to design and construct covers so that adverse impacts can be avoided or minimized. The stability of multilayer earthen barriers used to isolate uranium mill tailings depends on the morphology of the disposal site, the engineering of the barrier, the condition of the tailings, and the possible impacts of earthquakes, erosion, and climatic changes. When designing a cover for or siting a tailings pile, one must take into account both geologic and geotechnological variables. To alleviate the adverse effects of possible seismic activity, tailings piles should never be located on or near active or capable faults. Existing piles near faults should be moved to safer sites or engineered to withstand possible displacement and shaking. Liquefaction generally can be prevented if the tailings and their underlying material are compacted to a relative density of 60% or greater, or if they are kept dry. If the tailings are saturated, dewatering schemes may have to be used. Erosion may be caused by streams, glaciers, or wind, depending on the geomorphic and atmospheric conditions at the site. Fluvial erosion can be prevented by using dikes (and avoided by initially siting the pile a safe distance away from stream courses). In some cases, fluvial waters or rainfall may have to be rerouted over the pile via armored ditches. Eolian erosion can be minimized by vegetating the disposal site or covering it with gravel. Because of the wide geomorphic and geotechnological variations extant at most sites, a single cover design cannot be cost-effectively and efficiently used at all sites

  3. Geophysical investigation of seepage beneath an earthen dam.

    Science.gov (United States)

    Ikard, S J; Rittgers, J; Revil, A; Mooney, M A

    2015-01-01

    A hydrogeophysical survey is performed at small earthen dam that overlies a confined aquifer. The structure of the dam has not shown evidence of anomalous seepage internally or through the foundation prior to the survey. However, the surface topography is mounded in a localized zone 150 m downstream, and groundwater discharges from this zone periodically when the reservoir storage is maximum. We use self-potential and electrical resistivity tomography surveys with seismic refraction tomography to (1) determine what underlying hydrogeologic factors, if any, have contributed to the successful long-term operation of the dam without apparent indicators of anomalous seepage through its core and foundation; and (2) investigate the hydraulic connection between the reservoir and the seepage zone to determine whether there exists a potential for this success to be undermined. Geophysical data are informed by hydraulic and geotechnical borehole data. Seismic refraction tomography is performed to determine the geometry of the phreatic surface. The hydro-stratigraphy is mapped with the resistivity data and groundwater flow patterns are determined with self-potential data. A self-potential model is constructed to represent a perpendicular profile extending out from the maximum cross-section of the dam, and self-potential data are inverted to recover the groundwater velocity field. The groundwater flow pattern through the aquifer is controlled by the bedrock topography and a preferential flow pathway exists beneath the dam. It corresponds to a sandy-gravel layer connecting the reservoir to the downstream seepage zone. © 2014, National Ground Water Association.

  4. Optical dating of potteries excavated from Pungnabtoseong earthen wall, Seoul

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Jin; Park, Mi Seon [Neosiskorea Co., Daejeon (Korea, Republic of); Lee, Sung Joon; Nah, Hye Rim; Hong, Hyung Woo [National Research Institute of Cultural Heritage, Daejeon (Korea, Republic of)

    2012-05-15

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) emitted from natural crystalline mineral, usually quartz, feldspar, and so on, are mainly used to evaluate the paleodose for the age determination of archaeological and geological sample and the equivalent dose for retrospective dosimetry. TL/OSL age can be calculated as the ratio of paleodose to total annual dose rate which is determined from surrounding soil. In this study, we chemically extracted the quartz samples from potteries excavated in Pungnabtoseong earthen wall and observed the TL/OSL characteristics for paleodose determination. With the converted annual dose rate from the concentration of radioactive isotopes in its surrounding soil, optical date was evaluated and finally illustrated for interpreting the construction stage of Pungnabtoseong

  5. Geometric and frequency EMI sounding of estuarine earthen flood defence embankments in Ireland using 1D inversion models

    Science.gov (United States)

    Viganotti, Matteo; Jackson, Ruth; Krahn, Hartmut; Dyer, Mark

    2013-05-01

    Earthen flood defence embankments are linear structures, raised above the flood plain, that are commonly used as flood defences in rural settings; these are often relatively old structures constructed using locally garnered material and of which little is known in terms of design and construction. Alarmingly, it is generally reported that a number of urban developments have expanded to previously rural areas; hence, acquiring knowledge about the flood defences protecting these areas has risen significantly in the agendas of basin and asset managers. This paper focusses, by reporting two case studies, on electromagnetic induction (EMI) methods that would efficiently complement routine visual inspections and would represent a first step to more detailed investigations. Evaluation of the results is presented by comparison with ERT profiles and intrusive investigation data. The EM data, acquired using a GEM-2 apparatus for frequency sounding and an EM-31 apparatus for geometrical sounding, has been handled using the prototype eGMS software tool, being developed by the eGMS international research consortium; the depth sounding data interpretation was assisted by 1D inversions obtained with the EM1DFM software developed by the University of British Columbia. Although both sounding methods showed some limitations, the models obtained were consistent with ERT models and the techniques were useful screening methods for the identification of areas of interest, such as material interfaces or potential seepage areas, within the embankment structure: 1D modelling improved the rapid assessment of earthen flood defence embankments in an estuarine environment; evidence that EMI sounding could play an important role as a monitoring tool or as a first step towards more detailed investigations.

  6. Improved earthen stoves in coastal areas in Bangladesh: Economic, ecological and socio-cultural evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nazmul Alam, S.M.; Chowdhury, Sakila Jahan [Department of Social Sciences and Asian Languages, Curtin University of Technology, GPO Box U1987 Perth, Western Australia 6845 (Australia)

    2010-12-15

    The study evaluated the economic, ecological and socio-cultural achievements of improved earthen stoves that were provided to the beneficiaries under a project to improve decreasing biomass energy utilization. A questionnaire was developed and a random sampling method was employed for selecting the samples from the population. The region has undergone a significant change with the development of shrimp aquaculture in brackish water on former paddy field. As a result the households have become dependent on the wood resources of the Sundarban (77% as their first choice of daily fuel). The fuel collection rate from the Sundarban has increased by 30% since the change to aquaculture, while the use of agricultural residues has declined by a similar amount. The introduction of the improved stove with two cook stations and a chimney resulted in a reduction of fuel use (as wood) to 540 g caput{sup -1} d{sup -1}, from the previous usage of 810 g caput{sup -1} d{sup -1} using the traditional stove. Households saved 1.5 kg d{sup -1} of fuel (one third), and reduced the cooking time by 45 min d{sup -1} (about 20%). While 85% of men and 65% of women were the major fuel collectors, the improved stove resulted in a small increase (14 taka) in the women's contribution to family income as well as a monthly saving on fuel cost of 45 taka. Respondents utilized saved time and money for household means and other economic activities. (author)

  7. Predicting long-term moisture contents of earthen covers at uranium mill tailings sites

    International Nuclear Information System (INIS)

    Gee, G.W.; Nielson, K.K.; Rogers, V.C.

    1984-09-01

    The three methods for long-term moisture prediction covered in this report are: estimates from water retention (permanent wilting point) data, correlation with climate and soil type, and detailed model simulation. The test results have shown: soils vary greatly in residual moisture. Expected long-term moisture saturation ratios (based on generalized soil characteristics) range from 0.2 to 0.8 for soils ranging in texture from sand to clay, respectively. These values hold for noncompacted field soils. Measured radon diffusion coefficients for soils at 15-bar water contents ranged from 5.0E-2 cm 2 /s to 5.0E-3 cm 2 /s for sands and clays, respectively, at typical field densities. In contrast, fine-textured pit-run earthen materials, subjected to optimum compaction (>85% Proctor density) and dried to the 15-bar water content, ranged from 0.7 to 0.9 moisture saturation. Compacted pit-run soils at these moisture contents exhibited radon diffusion coefficients as low as 3.0E-4 cm 2 /s. The residual moisture saturation for cover soils is not known since no engineered barrier has been in place for more than a few years. A comparison of methods for predicting moisture saturation indicates that model simulations are useful for predicting effects of climatic changes on residual soil moisture, but that long-term moisture also can be predicted with some degree of confidence using generalized soil properties or empirical correlations based both on soils and climatic information. The optimal soil cover design will likely include more than one layer of soil. A two-layer system using a thick (1-m minimum) plant root zone of uncompacted soil placed over a moistened, tightly compacted fine-textured soil is recommended. This design concept has been tested successfully at the Grand Junction, Colorado, tailings piles

  8. Ecological effects of co-culturing the sea cucumber Apostichopus japonicus with the Chinese white shrimp Fenneropenaeus chinensis in an earthen pond

    Science.gov (United States)

    Zhou, Shun; Ren, Yichao; Pearce, Christopher M.; Dong, Shuanglin; Tian, Xiangli; Gao, Qinfeng; Wang, Fang

    2017-01-01

    Using net enclosures in an earthen pond, we established three culture treatments with the sea cucumber Apostichopus japonicus and the Chinese white shrimp Fenneropenaeus chinensis: monoculture of sea cucumbers (C), monoculture of shrimp (S), and co-culture of the two species (CS). We measured levels of suspended particulate matter in the water column; total organic matter, total organic carbon, total nitrogen, and carbon/nitrogen ratios in both settling particles and the sediment; and chlorophyll a levels in the sediment. We then compared these variables between the three treatments. We also examined growth, survival, and yield of the two species in the different treatments. From June to September, the mean monthly suspended particulate matter sedimentation rates in the CS and S treatments were significantly ( Pshrimp reared in the two systems. The bioturbation of the sediment and fecal production of the shrimp likely supplied natural food for the sea cucumbers. Co-culture of the two species is a viable option for increasing yield per unit area, maximizing use of the water body, and diversifying crop production.

  9. Effects of pond fertilization on the physico-chemical water quality of ...

    African Journals Online (AJOL)

    The effect of fertilization on the physico-chemical water quality of six selected earthen fishponds in Ife North Local Government Area of Osun State was investigated for a period of two years sampling the ponds every other month. The fishponds were grouped with regard to fertilization practice and water flowage regime into ...

  10. Hanford Site Permanent Isolation Surface Barrier Development Program: Fiscal year 1992 and 1993 highlights

    International Nuclear Information System (INIS)

    Cadwell, L.L.; Link, S.O.; Gee, G.W.

    1993-09-01

    The Hanford Site Permanent Isolation Surface Barrier Development Program was jointly developed by the Pacific Northwest Laboratory and Westinghouse Hanford Company to design and test an earthen cover system that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. Kaiser Engineers Hanford Company provided engineering design support for the program. Work on barrier design has been under way at Hanford for nearly 10 years. The comprehensive development of a long-term barrier, formerly the Hanford Site Protective Barrier Development Program, was initiated in FY 1986, and a general field-tested design is expected to be completed by FY 1998. Highlights of efforts in FY 1992 and FY 1993 included the resumption of field testing, the completion of the prototype barrier design, and the convening of an external peer review panel, which met twice with the barrier development team. The review panel provided helpful guidance on current and future barrier development activities, while commending the program for its significant technical contributions to innovative barrier technology development

  11. Geomorphic factors in the rehabilitation of earthen mine structures (with reference to uranium mining in the Northern Territory)

    International Nuclear Information System (INIS)

    Cull, R.F.; East, T.J.

    1987-01-01

    Geomorphic research forms part of the Institute's brief of researching the effects of uranium mining on the environment of the Alligator Rivers Region of which Kakadu National Park is a part. A major research focus is the containment of uranium mill tailings and non uraniferous solid wastes within the confines of mine areas. Government guidelines specify that the objective in the engineering of a tailings management structure should be to attain a design life of at least 200 years and a structural life of a substantially longer period - perhaps a 1000 years. It is this need to incorporate a 1000-year time frame which necessitates the inclusion of geomorphic factors into the design of rehabilitated structures. The study being undertaken treats steep natural hillslopes in the region as analogues of rehabilitated slopes. The aim of the study is to investigate the properties of steep (stable) natural hillslopes in order to determine what characteristics impart their inherent stability against both mass movement and erosion. It is proposed then to incorporate these characteristics in the design of rehabilitated structures. Whilst this research is directed primarily at the rehabilitation of earthen structures at mines in the Alligator Rivers Region, geomorphic principles should also be applicable in rehabilitation of waste rock and overburden stockpiles, tailings dams and other earthen mine structures in a variety of environments

  12. Phenotype and genetic parameters for body measurements, reproductive traits and gut lenght of Nile tilapia (Oreochromis niloticus) selected for growth in low-input earthen ponds

    NARCIS (Netherlands)

    Charo-Karisa, H.; Bovenhuis, H.; Rezk, M.A.; Ponzoni, R.W.; Arendonk, van J.A.M.; Komen, J.

    2007-01-01

    In this study we present estimates of phenotypic and genetic parameters for body size measurements, reproductive traits, and gut length for Nile tilapia (Oreochromis niloticus) selected for growth in fertilized earthen ponds for two generations. Throughout the experiment, ponds were fertilized daily

  13. Environmental monitoring of a Sardinian earthen dwelling during the summer season

    Science.gov (United States)

    Desogus, G.; Di Benedetto, S.; Grassi, W.; Testi, D.

    2014-11-01

    Increasing interest in earth architecture has led to the development of new international norms regarding these structures. Although Italy has no specific legislation for this building type, both national laws for the safeguard of rural architecture and regional norms regarding the conservation of historical centers have considerably slowed down the pace of their destruction. This is particularly true for Sardinia, which maintains a conspicuous heritage of "raw earth" architecture, mostly in the old town centers of the Campidano plain and in its adjacent valley. Due to the current legislation on energy efficiency in buildings, it has become essential - particularly for the Sardinian region - to define guidelines for the improvement of energy efficiency for this existing building heritage and identify the best parameters for their energetic classification. Currently, these constructions are heavily penalized by the gap that persists between the requirements of current energy balance evaluations, calculated upon heating and domestic hot water energy demands, and the actual year-round energy performance, which also includes the summer season. Moreover, this building type has a low lifecycle environmental impact, but this aspect is not properly "rewarded" by Italian regulations. The study proposed herein firstly took into account the simulation of the thermal transient characteristics of the adobe wall (brick made of clay, earth and straw, forged with wooden molds and sun dried). Analytical calculations were performed using a transient model, assuming sinusoidal behavior of all the parameters acting on the system. The results showed a high thermal inertia of the material and a good ability in dampening the external thermal wave. Next, we conducted an internal and external environmental monitoring of an existing earthen residential building in Sardinia ("Casa Mancosu", Serramanna, VS), which provided the experimental data for the evaluation of the whole building thermo

  14. Vom work Book Journal, 2011 1st Edition PDF

    African Journals Online (AJOL)

    USER

    INTRODUCTION. Aquaculture in Nigeria has remained low despite the huge potential that exists in the country. Currently, earthen ponds are the dominant .... management and culture system used. The main problem encountered with fingerling/juvenile production in earthen ponds was the poor survival rate of fish.

  15. Physico-chemical analysis of fish pond water in Okada and its ...

    African Journals Online (AJOL)

    Water samples were collected from concrete and earthen fish ponds in different locations in Okada and its environs, Edo State, Nigeria. Twenty-one different physiochemical parameters were analyzed using standard laboratory methods and procedures. In the present study, the values of the parameters ranged from pH 6.75 ...

  16. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH.

    Science.gov (United States)

    Behera, Manaswini; Jana, Partha S; More, Tanaji T; Ghangrekar, M M

    2010-10-01

    Performance of microbial fuel cells (MFCs), fabricated using an earthen pot (MFC-1) and a proton exchange membrane (MFC-2), was evaluated while treating rice mill wastewater at feed pH of 8.0, 7.0 and 6.0. A third MFC (MFC-3), fabricated using a proton exchange membrane (PEM), was operated as control without pH adjustment of the acidic raw wastewater. Maximum chemical oxygen demand (COD) removal efficiencies of 96.5% and 92.6% were obtained in MFC-1 and MFC-2, respectively, at feed pH of 8.0. MFC-3 showed maximum COD removal of 87%. The lignin removal was 84%, 79%, and 77% and the phenol removal was 81%, 77%, and 76% in MFC-1, MFC-2, and MFC-3, respectively. Maximum sustainable volumetric power was obtained at feed pH of 8.0, and it was 2.3 W/m(3) and 0.53 W/m(3), with 100 ohm external resistance, in MFC-1 and MFC-2, respectively. The power was lower at lower feed pH. MFC-3 generated lowest volumetric power (0.27 W/m(3)) as compared to MFC-1 and MFC-2. More effective treatment of rice mill wastewater and higher energy recovery was demonstrated by earthen pot MFC as compared to MFC incorporated with PEM. 2010 Elsevier B.V. All rights reserved.

  17. Environmental monitoring of a Sardinian earthen dwelling during the summer season

    International Nuclear Information System (INIS)

    Desogus, G; Di Benedetto, S; Grassi, W; Testi, D

    2014-01-01

    Increasing interest in earth architecture has led to the development of new international norms regarding these structures. Although Italy has no specific legislation for this building type, both national laws for the safeguard of rural architecture and regional norms regarding the conservation of historical centers have considerably slowed down the pace of their destruction. This is particularly true for Sardinia, which maintains a conspicuous heritage of ''raw earth'' architecture, mostly in the old town centers of the Campidano plain and in its adjacent valley. Due to the current legislation on energy efficiency in buildings, it has become essential – particularly for the Sardinian region – to define guidelines for the improvement of energy efficiency for this existing building heritage and identify the best parameters for their energetic classification. Currently, these constructions are heavily penalized by the gap that persists between the requirements of current energy balance evaluations, calculated upon heating and domestic hot water energy demands, and the actual year-round energy performance, which also includes the summer season. Moreover, this building type has a low lifecycle environmental impact, but this aspect is not properly ''rewarded'' by Italian regulations. The study proposed herein firstly took into account the simulation of the thermal transient characteristics of the adobe wall (brick made of clay, earth and straw, forged with wooden molds and sun dried). Analytical calculations were performed using a transient model, assuming sinusoidal behavior of all the parameters acting on the system. The results showed a high thermal inertia of the material and a good ability in dampening the external thermal wave. Next, we conducted an internal and external environmental monitoring of an existing earthen residential building in Sardinia (''Casa Mancosu'', Serramanna, VS), which provided

  18. Installation of devices in water tanks to prevent drowning of wild animals (Instalacion de Estructuras Dentro de Tanques de Agua Para Evitar El Ahogamiento de Animales Silvestres)

    Science.gov (United States)

    Alberto Lafon

    2006-01-01

    Domestic farm and ranch properties use a variety of water retention structures and water supply infrastructures that benefit wildlife. Some water supply systems, however, are harmful to wild birds, small mammals, and reptiles. Water supply systems include metal water tanks, cemented reservoirs, or excavated earthen retention ponds (or tanques as they are known in...

  19. Hanford Site Protective Barrier Development Program: Fiscal year 1990 highlights

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1991-09-01

    The Hanford Site Protective Barrier Development Program was jointly developed by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to design and test an earthen cover system(s) that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. The joint PNL/WHC program was initiated in FY 1986. To date, research findings support the initial concepts of barrier designs for the Hanford Site. A fine-soil surface is planned to partition surface water into runoff and temporary storage. Transpiration by vegetation that grows in the fine-soil layer will return stored water to the atmosphere as will surface evaporation. A capillary break created by the interface of the fine-soil layer and coarser textured materials below will further limit the downward migration of surface water, making it available over a longer period of time for cycling to the atmosphere. Should water pass the interface, it will drain laterally through a coarse textured sand/gravel layer. Tested barrier designs appear to work adequately to prevent drainage under current and postulated wetter-climate (added precipitation) conditions. Wind and water erosion tasks are developing data to predict the extent of erosion on barrier surfaces. Data collected during the last year confirm the effectiveness of small burrowing animals in removing surface water. Water infiltrating through burrows of larger mammals was subsequently lost by natural processes. Natural analog and climate change studies are under way to provide credibility for modeling the performance of barrier designs over a long period of time and under shifts in climate. 10 refs., 30 figs

  20. Hanford Site Protective Barrier Development Program: Fiscal year 1990 highlights

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, L.L. (ed.)

    1991-09-01

    The Hanford Site Protective Barrier Development Program was jointly developed by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to design and test an earthen cover system(s) that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. The joint PNL/WHC program was initiated in FY 1986. To date, research findings support the initial concepts of barrier designs for the Hanford Site. A fine-soil surface is planned to partition surface water into runoff and temporary storage. Transpiration by vegetation that grows in the fine-soil layer will return stored water to the atmosphere as will surface evaporation. A capillary break created by the interface of the fine-soil layer and coarser textured materials below will further limit the downward migration of surface water, making it available over a longer period of time for cycling to the atmosphere. Should water pass the interface, it will drain laterally through a coarse textured sand/gravel layer. Tested barrier designs appear to work adequately to prevent drainage under current and postulated wetter-climate (added precipitation) conditions. Wind and water erosion tasks are developing data to predict the extent of erosion on barrier surfaces. Data collected during the last year confirm the effectiveness of small burrowing animals in removing surface water. Water infiltrating through burrows of larger mammals was subsequently lost by natural processes. Natural analog and climate change studies are under way to provide credibility for modeling the performance of barrier designs over a long period of time and under shifts in climate. 10 refs., 30 figs.

  1. Ecological effects of co-culturing sea cucumber Apostichopus japonicus (Selenka) with scallop Chlamys farreri in earthen ponds

    Science.gov (United States)

    Ren, Yichao; Dong, Shuanglin; Qin, Chuanxin; Wang, Fang; Tian, Xiangli; Gao, Qinfeng

    2012-01-01

    Monthly changes in sedimentation and sediment properties were studied for three different culture treatments: sea cucumber monoculture (Mc), sea cucumber and scallop polyculture (Ps-c) and scallop monoculture (Ms). Results indicated that the survival rate of sea cucumber was significantly higher in Ps-c cultures than in Mc cultures. Sea cucumber yield was 69.6% higher in Ps-c culture than in Mc culture. No significant differences in body weight and scallop shell length were found between Ps-c and Ms cultures. The mean sedimentation rate of total particulate matter (TPM) was 72.2 g/(m2·d) in Ps-c cultures, with a maximum of 119.7 g/(m2·d), which was markedly higher than that of Mc (mean value). Sedimentation rates of organic matter (OM), total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) in Ps-c cultures were also significantly higher than those in Mc cultures. TOC and TN contents of sediment increased rapidly in the first 5 months in Ms cultures and remained at a high level. TOC and TN contents in Mc and Ps-c cultures decreased during sea cucumber feeding seasons and increased during sea cucumber dormancy periods (summer and winter). The study demonstrates that co-culture of sea cucumber and scallop in earthen ponds is an alternative way to alleviate nutrient loads and improve water quality in coastal aquaculture systems. Moreover, it provides the additional benefit of an increased sea cucumber yield.

  2. Social benefits in the Working for Water programme as a public works initiative

    CSIR Research Space (South Africa)

    Magadlela, D

    2004-01-01

    Full Text Available The Working for Water programme is a pioneering environmental conservation initiative in that its implementation successfully combines ecological concerns and social development benefits. By addressing unemployment, skills training and empowerment...

  3. Working group report on water resources

    International Nuclear Information System (INIS)

    Baulder, J.

    1991-01-01

    The results and conclusions of a working group held to discuss climate change implications for water resources are presented. The existing water resources and climatological databases necessary to develop models and functional relationships lack integration and coordination. The density and spatial distribution of the existing sampling networks for obtaining necessary climatological data is inadequate, especially in areas of complex terrain, notably higher elevations in the Rocky Mountains. Little information and knowledge is available on potential socio-economic responses that can be anticipated from either increases in climate variability or major change. Recommended research initiatives include the following. Basic functional relationships between climatic events, climatic variability and change, and both surface and groundwater hydrologic processes need to be investigated and improved. Basin-scale and regional-scale climatic models need to be developed, tested, and interfaced with existing global climate models. Public sector attitudes to water management issues and opportunities need to be investigated, and integrated scientific, socio-economic, multidisciplinary, regional databases on climatic change and variability and associated processes need to be developed

  4. Characterisation of aroma-active and off-odour compounds in German rainbow trout (Oncorhynchus mykiss). Part II: Case of fish meat and skin from earthen-ponds farming.

    Science.gov (United States)

    Mahmoud, Mohamed Ahmed Abbas; Buettner, Andrea

    2017-10-01

    Odorous molecules in earthen-ponds rainbow trout aquaculture farming in Germany were investigated with a special focus on musty-earthy off-odorants. To this aim, fish meat and skin were extracted using solvent-assisted flavour evaporation (SAFE) and were mildly concentrated; extracts were subsequently analysed by means of one- and two-dimensional high-resolution gas chromatography coupled with mass spectrometry and olfactometry (GC-MS/O and 2D-HRGC-MS/O). Aroma extract dilution analysis (AEDA) of the solvent extracts revealed the presence of 76 odorants of which 75 were successfully identified. Thereby, rotundone (black pepper) is described for the first time as an odour-active substance in fish. Moreover, a series of compounds is described for the first time in German aquaculture rainbow trout fish, including, amongst others, (E,Z,Z)-2,4,7-tridecatrienal, (E)-4,5-epoxy-(E)-2-decenal, 4-ethyloctanoic acid, 3-methylindole (skatole), d-limonene, and indole. The analytical findings were further compared to sensory evaluation of the samples, and previously obtained data on the respective aquacultural water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 46 CFR 109.334 - Working over water.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Working over water. 109.334 Section 109.334 Shipping... Operation and Stowage of Safety Equipment § 109.334 Working over water. The master or person in charge shall insure that each person working over the water is wearing a life preserver or a buoyant work vest. ...

  6. The Community Water Model (CWATM) / Development of a community driven global water model

    Science.gov (United States)

    Burek, Peter; Satoh, Yusuke; Greve, Peter; Kahil, Taher; Wada, Yoshihide

    2017-04-01

    With a growing population and economic development, it is expected that water demands will increase significantly in the future, especially in developing regions. At the same time, climate change is expected to alter spatial patterns of hydrological cycle and will have global, regional and local impacts on water availability. Thus, it is important to assess water supply, water demand and environmental needs over time to identify the populations and locations that will be most affected by these changes linked to water scarcity, droughts and floods. The Community Water Model (CWATM) will be designed for this purpose in that it includes an accounting of how future water demands will evolve in response to socioeconomic change and how water availability will change in response to climate. CWATM represents one of the new key elements of IIASA's Water program. It has been developed to work flexibly at both global and regional level at different spatial resolutions. The model is open source and community-driven to promote our work amongst the wider water community worldwide and is flexible enough linking to further planned developments such as water quality and hydro-economic modules. CWATM will be a basis to develop a next-generation global hydro-economic modeling framework that represents the economic trade-offs among different water management options over a basin looking at water supply infrastructure and demand managements. The integrated modeling framework will consider water demand from agriculture, domestic, energy, industry and environment, investment needs to alleviate future water scarcity, and will provide a portfolio of economically optimal solutions for achieving future water management options under the Sustainable Development Goals (SDG) for example. In addition, it will be able to track the energy requirements associated with the water supply system e.g., pumping, desalination and interbasin transfer to realize the linkage with the water-energy economy. In

  7. Modelling raw water quality: development of a drinking water management tool.

    Science.gov (United States)

    Kübeck, Ch; van Berk, W; Bergmann, A

    2009-01-01

    Ensuring future drinking water supply requires a tough management of groundwater resources. However, recent practices of economic resource control often does not involve aspects of the hydrogeochemical and geohydraulical groundwater system. In respect of analysing the available quantity and quality of future raw water, an effective resource management requires a full understanding of the hydrogeochemical and geohydraulical processes within the aquifer. For example, the knowledge of raw water quality development within the time helps to work out strategies of water treatment as well as planning finance resources. On the other hand, the effectiveness of planed measurements reducing the infiltration of harmful substances such as nitrate can be checked and optimized by using hydrogeochemical modelling. Thus, within the framework of the InnoNet program funded by Federal Ministry of Economics and Technology, a network of research institutes and water suppliers work in close cooperation developing a planning and management tool particularly oriented on water management problems. The tool involves an innovative material flux model that calculates the hydrogeochemical processes under consideration of the dynamics in agricultural land use. The program integrated graphical data evaluation is aligned on the needs of water suppliers.

  8. Assessment of Types and Abundance of Live Food for Fish Farming ...

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science ... manure was effective in increasing the number of rotifers in simulation containers, but not in the earthen ponds; this was probably because, unlike the earthen ponds, the simulation containers were sheltered from external influences such as rain, flooding by tide water, etc.

  9. Yearly growth and metabolic changes in earthen pond-cultured meagre Argyrosomus regius

    Directory of Open Access Journals (Sweden)

    Luis Vargas-Chacoff

    2014-06-01

    Full Text Available Metabolic modifications associated with natural environmental conditions were assessed in the meagre Argyrosomus regius cultured in earthen ponds under natural photoperiod and temperature. Juvenile specimens (90-100 g initial weight were sampled (plasma, liver and muscle every two months for 18 months (between December 2004 and May 2006. Specimens showed seasonal variations in growth rate, with the highest values in spring and summer. Plasmatic, hepatic and muscular metabolite levels and hepatic and muscular metabolic enzymes also showed significant variations throughout the year. Enzymatic activity related to carbohydrate metabolism in the liver (HK, FBPase and G6PDH showed great modifications in summer, increasing glycogenogenic pathways, while amino acid metabolism (GDH and GOT activity was enhanced in spring and summer. However lipid-related (G3PDH activity metabolic enzymes did not show a clear seasonal pattern. In muscle, enzymatic activity related to amino acid, lipid and lactate metabolism (LDH-O activity, but not carbohydrate metabolism, showed seasonal changes in parallel with changes in growth rate. Thus A. regius specimens showed a trend to grow in summer months and mobilize their energy reserves in winter. Differences in the hepatic level were observed between the first and the second year of the study, suggesting the possible existence of metabolic changes related to specimen age or size. Our results indicate that growth and metabolic responses in A. regius are environmentally dependent and that this species is a very good candidate for diversification in aquaculture.

  10. Drying of heavy water system and works of charging heavy water in Fugen

    International Nuclear Information System (INIS)

    Matsushita, Tadashi; Iijima, Setsuo

    1980-01-01

    The advanced thermal reactor ''Fugen'' is the first heavy water-moderated, boiling light water-cooled nuclear reactor for power generation in Japan. It is a large heavy water reactor having about 130 m 3 of heavy water inventory and about 300 m 3 of helium space as the cover gas of the heavy water system. The heavy water required was purchased from FRG, which had been used for the power output test in the KKN, and the quality was 99.82 mol % mean heavy water concentration. The concentration of heavy water for Fugen used for the nuclear design is 99.70 mol%, and it was investigated how heavy water can be charged without lowering the concentration. The matters of investigation include the method of bringing the heavy water and helium system to perfect dryness after washing and light water test, the method of confirming the sufficient dryness to prevent the deterioration, and the method of charging heavy water safely from its containers. On the basis of the results of investigation, the actual works were started. The works of drying the heavy water and helium system by vacuum drying, the works of sampling heavy water and the result of the degree of deterioration, and the works of charging heavy water and the measures to the heavy water remaing in the containers are described. All the works were completed safely and smoothly. (J.P.N.)

  11. Working Paper 4: Institutions for Effective Water Demand ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-01-23

    Jan 23, 2012 ... Working Paper 4: Institutions for Effective Water Demand ... This working paper is part of WaDImena 's four Research Series on Water Demand Management ... Improving Water Demand Management Addressing Socioeconomic Inequalities and ... Women's rights and access to water and sanitation in Delhi.

  12. Development of a shower exposure model for benzene : background work for potential recommended update to the recently derived drinking water guidelines

    International Nuclear Information System (INIS)

    Knafla, A.L.; Carey, J.

    2009-01-01

    Chloroform exposure was first identified in showers. Shower exposures were then examined for other volatile substances. This presentation discussed the development of a shower exposure model for benzene and included background work for potential recommended updates to the recently derived drinking water guidelines. Specifically, the presentation addressed the relevance for oil and gas sites and the influence on the drinking water guideline. Issues and limitation with Health Canada's Khrisnan model were identified. The advantages of an alternate model development were also presented. Model structure was examined with particular reference to how model exposures are modelled and the risk associated with taking showers with impacted water. Two general types of models were discussed, notably the simple model used to estimate exposures and the integrated physiologically-based pharmacokinetic model. The relevance of the drinking water guideline revision to the petroleum industry was addressed. It was concluded that future water quality guidelines will likely incorporate shower exposures. tabs., figs.

  13. Biointrusion test plan for the Permanent Isolation Surface Barrier Prototype

    International Nuclear Information System (INIS)

    Link, S.O.; Cadwell, L.L.; Brandt, C.A.; Downs, J.L.; Rossi, R.E.; Gee, G.W.

    1994-04-01

    This document provides a testing and monitoring plan for the biological component of the prototype barrier slated for construction at the Hanford Site. The prototype barrier is an aboveground structure engineered to demonstrate the basic features of an earthen cover system. It is designed to permanently isolate waste from the biosphere. The features of the barrier include multiple layers of soil and rock materials and a low-permeability asphalt sublayer. The surface of the barrier consists of silt loam soil, covered with plants. The barrier sides are reinforced with rock or coarse earthen-fill to protect against wind and water erosion. The sublayers inhibit plant and animal intrusion and percolation of water. A series of tests will be conducted on the prototype barrier over the next several years to evaluate barrier performance under extreme climatic conditions. Plants and animals will play a significant role in the hydrologic and water and wind erosion characteristics of the prototype barrier. Studies on the biological component of the prototype barrier will include work on the initial revegetation of the surface, continued monitoring of the developing plant community, rooting depth and dispersion in the context of biointrusion potential, the role of plants in the hydrology of the surface and toe regions of the barrier, the role of plants in stabilizing the surface against water and wind erosion, and the role of burrowing animals in the hydrology and water and wind erosion of the barrier

  14. Microbiological quality of raw and processed farm reared ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... farm reared periwinkles from brackish water earthen pond Buguma, Nigeria ... the enumeration of indicator organisms and other pathogens as well as their total counts. ... The boiled shell-on periwinkle sample had the highest level of microbial growth.

  15. Effects of space allowance and earthen floor on welfare-related physiological and behavioural responses in male blue foxes.

    Science.gov (United States)

    Korhonen, H; Niemelä, P; Jauhiainen, L; Tupasela, T

    Welfare-related physiological and behavioural responses were studied in farm-bred male blue foxes (Alopex lagopus). Three different-sized cages (80-cm long [CL80], 120-cm long [CL120], and 240-cm long [CL240]; each 105-cm wide x 70-cm high) with wire-mesh floors and one enlarged cage (CL240E) with both wire-mesh floor (240-cm long x 105-cm wide x 70-cm high) and earthen floor (80-cm long x 105-cm wide x 70-cm high) were compared. N = 30 males for each group. The experiments lasted from weaning in July to pelting in December. Statistical analyses were based on the models accounting for litter as a block effect. Breaking strength of tibia was highest for foxes having access to both wire-mesh and ground floors (CL240E). Stress-induced hyperthermia was evident during capture and immobilisation. The highest rectal temperature (mean +/- SEM) was found in CL240E (capture: 39.6 +/- 0.09 degrees C, restraint:40.0 +/- 0.09 degrees C) and the lowest in CL80 (capture: 39.1 +/- 0.09 degrees C, restraint: 39.7 +/- 0.09 degrees C). Likewise, capture time (median; interquartile range) in the home cage was highest in CL240E (29; 18 to 44) and lowest in CL80 (12; 9 to 14). During capture, foxes tended to withdraw to the farthest site within the cage. CL240E foxes typically showed the most fear towards human. The most confident animals were found in CL80. The cortisol:creatinine ratio (median; interquartile range) obtained from circadian urine did not reveal statistically significant differences among CL80 (3. 5; 2.6 to 4.1), CL120 (2.3; 1.5 to 3.8) and CL240 (2.3, 1.5 to 3.7). The earthen flooring complicated the urine sampling and conclusions for CL240E (1.7; 1.2 to 2.2). CL240E foxes were the most active and explorative on both wire-mesh- and ground-floored open-field arenas. Altogether, 53% of furs from CL240E were classified as very dirty. Dirtiness of furs in other test groups was slight. In conclusion, the present results did not reveal an unambiguous superiority of any of the

  16. Development of snow water equivalent survey methods using airborne gamma measurements. Research progress, January 1975--September 1975 and suggested directions for future work

    International Nuclear Information System (INIS)

    Fritzsche, A.; Jupiter, C.

    1975-01-01

    This is a summary of the progress made during the period March 1975 through September 1975 on EG and G's support of the National Oceanic and Atmospheric Administration for development of airborne techniques for measurement of the water equivalent of snow and soil moisture. The work included a series of snow and soil moisture surveys and development of a new detector and data acquisition system. The status of this work is summarized here together with a review of plans for the immediate future

  17. Development and application of anti-washout special material for long distance. Remediation work of contaminated water at Fukushima Daiichi Nuclear Power Plant underground structure

    International Nuclear Information System (INIS)

    Otsu, Hitoshi; Nishikori, Kazumasa; Sato, Keita; Hibi, Yasuki; Yanai, Shuji; Deguchi, Amane

    2017-01-01

    The seawater piping trench of Fukushima Daiichi Nuclear Power Station connects the screen pump room and turbine building. High concentration contaminated water stagnated in the trench due to the 2011 off the Pacific coast of Tohoku Earthquake, which caused a leakage accident. In order to solve the future leakage risk, a replacement work the liquid with cement was performed to remove contaminated water inside the trench. This paper explains the development of cement filler applied to the trench and the outline of its application work. Long-distance underwater fluid filler that can flow in the water throughout the longest 85 m long shafts was developed and its fluidity was confirmed in a laboratory and mockup device. In the field application, a cement manufacturing plant was set up in the power plant premises, and it took about a year to pour the cement into the trenches of No 2, 3, and 4 Units. To prevent the leakage of contaminated water in the trench, the cement pouring was performed while controlling the water level. Due to the high concentration of contaminated water, workers' radiation exposure management was conducted on a daily and monthly basis, and cumulative radiation exposure was strictly controlled. For radiation shielding, laying crushed stone and iron plate, installation of concrete protection wall and lead wool mat, and use of tungsten vest during work were practiced. Thanks to these measures, it was possible to reduce the exposure dose to about 27% of the originally predicted level. (A.O.)

  18. Development and Optimum Composition of Locally Developed Potable Water Treatment Tablets

    Directory of Open Access Journals (Sweden)

    Josiah Oladele BABATOLA

    2009-07-01

    Full Text Available Current high level of energy cost and operational cost of membrane technologies and couple with difficulties in obtaining chemicals for potable water treatment give rooms for development of local substance and low cost adsorbents for water treatment. This paper presents a follow-up study on an earlier work in which some water treatment Tablets were produced and tested. The current work was directed at establishing the optimum composition of the tablets. Alum, calcium hypochlorite and lime were combined in proportion and made into pastes and tablets. Residual chlorine contents of the tablets were determined. The quality of stream water samples treated with the tablets was measured by chlorine content, pH and turbidity removal. It is concluded that the best composition is one part alum, two parts hypochlorite and three parts lime and this produced treated water pH of 7.8, chlorine residual of 5.0 mg/l and settled water turbidity 3.0 NTU. The product is aimed for use in rural communities to reduce rampaging death from water borne diseases.

  19. 75 FR 20352 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-04-19

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9139-3] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency. ACTION...-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National Drinking Water...

  20. 75 FR 1380 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-01-11

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9101-9] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency. ACTION... meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National Drinking Water Advisory...

  1. Bacterial community from gut of white shrimp, Penaeus vannamei, cultured in earthen ponds

    Directory of Open Access Journals (Sweden)

    Supamattaya, K.

    2007-05-01

    Full Text Available The Fluorescent in situ hybridization (FISH technique and conventional method were used to analyse the bacterial community in the gut of white shrimp cultured in earthen ponds. Samples were collectedfrom three parts, hepatopancreas, anterior intestine and posterior intestine. Gut bacterial community was enumerated by 15 probes in FISH and 3 bacterial culture technique media. The results showed that bacteriaspecific probes determined bacterial community and Eubacteria as the dominant group of microbial community in the studied gut portions. β-Proteobacteria group (29.53±5.39% and γ-Proteobacteria group (26.18±6.88% were major groups of bacterial flora in the hepatopancreas. In contrast, low G+C gram positive bacteria group (LGC was the most abundant group detected in anterior intestine (36.40±3.53% andposterior intestine (30.32±4.63%. Vibrio spp. were detected very less in hepatopancreas (0.25±0.43% and were present in 3 of 9 samples. In the case of bacterial detection using cultivation method, the number ofbacterial groups verified by TSA, TCBS and MRS showed high variation in every part of the studied digestive tract portions; however, no vibrio or lactic acid bacteria were present in the hepatopancreas ofhealthy shrimp. This study reveals the proportion of bacterial community in the digestive tract of white shrimp which can be used as important database for studying the change of the bacterial community in an abnormal condition including the efficiency of probiotics in the gut (in vivo of white shrimp.

  2. Crescimento relativo do camarão canela Macrobrachium amazonicum (Heller (Crustacea, Decapoda, Palaemonidae em viveiros Relative growth of Amazon river prawn Macrobrachium amazonicum (Heller (Crustacea, Decapoda, Palaemonidae in earthen ponds

    Directory of Open Access Journals (Sweden)

    Patrícia M.C. Moraes-Riodades

    2002-12-01

    Full Text Available Some morphometric relationships in Macrobrachium amazonicum (Heller, 1862 reared in earthen ponds were studied. A total of 239 individuals were collected, sexed and sorted to juvenile or adult. Total length (Lt, post-orbital length (Lpo, carapace length (Lcp and queliped length (Lql were measured. The relationships Lt/Lpo, Lpo/Lcp and Lt/Lcp are the same for juveniles, males and females, indicating unchanged growth pattern during post-larval ontogenetic development. While Lt/Lpo showed isometric growth, Lpo/Lcp and Lt/Lcp showed negative allometry. On the other hand, for the Lql/Lcp relationship, juveniles showed isometric growth, females slight positive allometry and males a strong positive allometry. It suggests that the importance of chelipeds may be different in these groups. Quelipeds play important role on food capture and on agonistic, social and reproductive behavior. Therefore, inter and intraspecific interactions may change during prawn growth, even after morphological

  3. Development of Water Quality Modeling in the United States

    Science.gov (United States)

    This presentation describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions. Water quality modeling has a relatively long history in the United States. While its origins lie in the work...

  4. Guidance for disposal of uranium-mill tailings: long-term stabilization of earthen cover materials

    International Nuclear Information System (INIS)

    Voorhees, L.D.; Sale, M.J.; Webb, J.W.; Mulholland, P.J.

    1983-06-01

    The primary hazard associated with uranium-mill tailings is exposure to a radioactive gas, 222 Rn, the concentration of which has been correlated with the occurrence of lung cancer. Previous studies on radon attenuation conclude that the placement of earthen cover materials over the tailings is the most effective technique for reducing radioactive emissions and dispersal of tailings. The success of such a plan, however, depends on long-term protection of these cover materials. 230 Th, which decays to 222 Rn, has a half-life of about 80,000 years. The three major options available for stabilization of uranium-mill tailings are (1) rock cover, (2) soil and revegetation, or (3) a combination of both on different portions of the tailings cover. The optimal choice among these alternatives depends on site-specific characteristics such as climate and local geomorphology and soils, and on design variables such as embankment heights and slopes, modification of upstream drainage, and revegetation practices. Generally, geomorphic evidence suggests that use of soil and vegetation alone will not be adequate to reduce erosion on slopes greater than about 5 0 . For these steeper slopes, riprap will be necessary to maximize the probability of long-term stability. The use of vegetation to control erosion on the flatter portions of the site may be practicable in regions with sufficient rainfall and suitable soil types, but revegetation practices must be carefully evaluated

  5. 75 FR 54871 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-09-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9198-8] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency (EPA... final in-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National...

  6. 75 FR 35458 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Science.gov (United States)

    2010-06-22

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9165-6] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency (EPA... fourth in-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National...

  7. Effective water influx control in gas reservoir development: Problems and countermeasures

    Directory of Open Access Journals (Sweden)

    Xi Feng

    2015-03-01

    Full Text Available Because of the diversity of geological characteristics and the complexity of percolation rules, many problems are found ineffective water influx control in gas reservoir development. The problems mainly focus on how to understand water influx rules, to establish appropriate countermeasures, and to ensure the effectiveness of technical measures. It is hard to obtain a complete applicable understanding through the isolated analysis of an individual gas reservoir due to many factors such as actual gas reservoir development phase, research work, pertinence and timeliness of measures, and so on. Over the past four decades, the exploration, practicing and tracking research have been conducted on water control in gas reservoir development in the Sichuan Basin, and a series of comprehensive water control technologies were developed integrating advanced concepts, successful experiences, specific theories and mature technologies. Though the development of most water-drive gas reservoirs was significantly improved, water control effects were quite different. Based on this background, from the perspective of the early-phase requirements of water influx control, the influencing factors of a water influx activity, the dynamic analysis method of water influx performance, the optimizing strategy of a water control, and the water control experience of typical gas reservoirs, this paper analyzed the key problems of water control, evaluated the influencing factors of water control effect, explored the practical water control strategies, and proposed that it should be inappropriate to apply the previous water control technological model to actual work but the pertinence should be improved according to actual circumstances. The research results in the paper provide technical reference for the optimization of water-invasion gas reservoir development.

  8. Development of a Portable Water Quality Analyzer

    Directory of Open Access Journals (Sweden)

    Germán COMINA

    2010-08-01

    Full Text Available A portable water analyzer based on a voltammetric electronic tongue has been developed. The system uses an electrochemical cell with two working electrodes as sensors, a computer controlled potentiostat, and software based on multivariate data analysis for pattern recognition. The system is suitable to differentiate laboratory made and real in-situ river water samples contaminated with different amounts of Escherichia coli. This bacteria is not only one of the main indicators for water quality, but also a main concern for public health, affecting especially people living in high-burden, resource-limiting settings.

  9. Direct use of low temperature geothermal water by Aquafarms International, Inc. for freshwater aquaculture (prawns and associated species). An operations and maintenance manual

    Energy Technology Data Exchange (ETDEWEB)

    Broughton, R.; Price, M.; Price, V.; Grajcer, D.

    1984-04-01

    In connection with an ongoing commercial aquaculture project in the Coachella Valley, California; a twelve month prawn growout demonstration project was conducted. This project began in August, 1979 and involved the use of low temperature (85/sup 0/F) geothermal waters to raise freshwater prawns, Macrobrachium rosenbergii (deMan), in earthen ponds. The following publication is an operations and maintenance guide which may by useful for those interested in conducting similar enterprises.

  10. An evaluation of the Contractor Development Model of Working for ...

    African Journals Online (AJOL)

    The Working for Water programme of the South African Department of Environmental Affairs has as its major objective the eradication of invasive alien plant species. However, it also has a social development component, which aims at the promotion of small business and entrepreneurship development. This paper explores ...

  11. Development of speed qualities of skilled water-polo players

    Directory of Open Access Journals (Sweden)

    Ostrovsky M.V.

    2010-02-01

    Full Text Available Swimming preparation of water-polo players is the basic factor of victory of command. There are a few variants of development of speed swimming preparation. The effective pedagogical mean of stimulation of speed qualities is brief exercises at the end of employments after long aerobic work. The purpose of work is an improvement of method of speed preparation of skilled water-polo players. 26 skilled water-polo players (MS -14 and KMS - 12 took part in an experiment in age from 21 to 32 years. The results of correction of structure of training employment are in-process presented in micro cycle. They are directed on the improvement of speed qualities of water-polo players.

  12. Guidelines to Develop Efficient Photocatalysts for Water Splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2016-04-03

    Photocatalytic overall water splitting is the only viable solar-to-fuel conversion technology. The research discloses an investigation process wherein by dissecting the photocatalytic water splitting device, electrocatalysts, and semiconductor photocatalysts can be independently studied, developed and optimized. The assumption of perfect catalysts leads to the realization that semiconductors are the limiting factor in photocatalysis. This dissertation presents a guideline for efficient photocatalysis using semiconductor particles developed from idealized theoretical simulations. No perfect catalysts exist; then the discussion focus on the development of efficient non-noble metal electrocatalysts for hydrogen evolution from water reduction. Tungsten carbide (WC) is selective for the catalysis of hydrogen without the introduction of the reverse reaction of water formation, which is critical to achieving photocatalytic overall water splitting as demonstrated in this work. Finally, photoelectrochemistry is used to characterize thoroughly Cu-based p-type semiconductors with potential for large-scale manufacture. Artificial photosynthesis may be achieved by following the recommendations herein presented.

  13. Science in and out of the classroom: A look at Water Resource at Gammams Water Care Works, Namibia

    Science.gov (United States)

    Iileka-Shinavene, Leena

    2016-04-01

    Primary school pupils in Van Rhyn School in Namibia are taught Natural Sciences from grade 4 at the age of 9. The curriculum is mainly theory/classroom based and natural science is taught through theory and various practical activities. However occasionally teachers have opportunities to supplement the pupils' learning experience through outdoor activities such as excursions to museums, municipal works and science fairs. Apart from enhancing the learning experience and improving understanding, such activities make the Natural science subject more interesting subject to learners. Water, a scarce/limited resource in Namibia, is one of the topics we cover in Natural sciences. Sustainable management of water is one of the top priorities of the government, which through various initiatives including the National Development Plan supports innovative ideas and technologies to reclaim water from sewage, recycling of industry and mining water and use semi-purified water for public recreational places. Most of the water used in Windhoek is reclaimed by City of Windhoek. To better illustrate this to the pupils, a school trip with 40 pupils of seventh grade was taken to the City of Windhoek's Gammams Water Care works. The aim of the trip was to show how the sewage purification process works and how the water is reclaimed from sewage. A guided tour of the water works was given by the resident scientists and the pupils were provided with the worksheet to complete after the tour around the Centre. They were encouraged to ask questions in all stages of water purification process and write down short notes. Most learners completed their worksheet during the tour session as they are getting information from the tour guide. The rest had to retrieve information and do further research as they got back to class so they could complete their worksheets. After the tour to Gammams, learners were asked to share what they had learned with the lower grades, 5 and 6, in a classroom

  14. Impacts of alum residues from Morton Jaffray Water Works on water quality and fish, Harare, Zimbabwe

    Science.gov (United States)

    Muisa, Norah; Hoko, Zvikomborero; Chifamba, Portia

    Metal pollution of freshwater due to human activities is a major problem confronting most urban centres in developing countries. This study determined the extent to which aluminium in the residues from Morton Jaffray Water Works in Harare were affecting the water quality of Manyame River and Lake Manyame. The study also measured aluminium bioaccumulation in Nile Tilapia ( Oreochromis niloticus) which is of importance to the commercial fisheries industry in Zimbabwe. Depth integrated water, and sediment grab samples and adult fish were collected per site in January and March, 2010. A total of six sites were selected on the Manyame River and in Lake Manyame. The levels of Total Aluminium (Al) were determined in sediments, water and fish tissues (liver, kidney, gill and muscle). Total solids, total dissolved solids, conductivity, pH, dissolved oxygen and temperature were also determined in water and residues. The texture of the sediments was also assessed. Aluminium concentration in water ranged from 2.19 mg/L to 68.93 mg/L during both sampling campaigns surpassing permissible maximum concentration limits of 0.087 to 0.75 mg/L suggested by the Environmental Protection Agency and African Union. The site upstream of the discharge point of the residues always had the lowest levels though it was higher than acceptable levels indicated above, thus suggesting the existence of other sources of aluminium in the catchment besides Morton Jaffray Water Works. However, there was a 10-fold and 100-fold increase in levels of aluminium in water and sediments, respectively, at the site 100 m downstream of the discharge point on the Manyame River. Mean aluminium concentrations in water and sediments at this site averaged 68.93 ± 61.74 mg/L and 38.18 ± 21.54 mg/L in water and 103.79 ± 55.96 mg/L and 131.84 ± 16.48 mg/L in sediments in sampling campaigns 1 and 2, respectively. These levels were significantly higher than levels obtained from all the other sites during both sampling

  15. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria.

    Science.gov (United States)

    Kaktcham, Pierre Marie; Temgoua, Jules-Bocamdé; Ngoufack Zambou, François; Diaz-Ruiz, Gloria; Wacher, Carmen; Pérez-Chabela, María de Lourdes

    2017-02-01

    The present study aimed to evaluate the bacterial load of water, Nile Tilapia and common Carp intestines from earthen ponds, isolate lactic acid bacteria (LAB) and assess their antimicrobial activity against fish spoilage and pathogenic bacteria. Following enumeration and isolation of microorganisms the antimicrobial activity of the LAB isolates was evaluated. Taxonomic identification of selected antagonistic LAB strains was assessed, followed by partial characterisation of their antimicrobial metabolites. Results showed that high counts (>4 log c.f.u ml -1 or 8 log c.f.u g -1 ) of total aerobic bacteria were recorded in pond waters and fish intestines. The microbiota were also found to be dominated by Salmonella spp., Vibrio spp., Staphylococcus spp. and Escherichia coli. LAB isolates (5.60%) exhibited potent direct and extracellular antimicrobial activity against the host-derived and non host-derived spoilage and pathogenic bacteria. These antagonistic isolates were identified and Lactococcus lactis subsp. lactis was found as the predominant (42.85%) specie. The strains displayed the ability to produce lactic, acetic, butyric, propionic and valeric acids. Bacteriocin-like inhibitory substances with activity against Gram-positive and Gram-negative (Vibrio spp. and Pseudomonas aeruginosa) bacteria were produced by three L. lactis subsp. lactis strains. In this study, the LAB from the microbiota of fish and pond water showed potent antimicrobial activity against fish spoilage or pathogenic bacteria from the same host or ecological niche. The studied Cameroonian aquatic niche is an ideal source of antagonistic LAB that could be appropriate as new fish biopreservatives or disease control agents in aquaculture under tropical conditions in particular or worldwide in general.

  16. Organising Water: The Hidden Role of Intermediary Work

    Directory of Open Access Journals (Sweden)

    Timothy Moss

    2009-02-01

    Full Text Available The increasingly complex challenges of making water management more sustainable require a critical and detailed understanding of the social organisation of water. This paper examines the hitherto neglected role that 'intermediary' organisations play in reshaping the relations between the provision and use of water and sanitation services. In response to new regulatory, environmental, social, and commercial pressures the relationships between water utilities, consumers, and regulators are changing, creating openings for both new and existing organisations to take on intermediary functions. Drawing on recent EU-funded research we provide the first systematic analysis of intermediary organisations in the European water sector, examining the contexts of their emergence, the ways they work, the functions they perform, and the impacts they can have. With a combination of conceptual and empirical analysis we substantiate and elaborate the case for appreciating the often hidden work of intermediaries. We caution, however, against over-simplistic conclusions on harnessing this potential, highlighting instead the need to reframe perspectives on how water is organised to contemplate actor constellations and interactions beyond the common triad of provider, consumer, and regulator.

  17. Status of domestic wastewater management in relation to drinking-water supply in two states of India.

    Science.gov (United States)

    Pandey, R A; Kaul, S N

    2000-01-01

    In India, supply of drinking water, treatment and disposal of domestic wastewater including faecal matter are managed by local bodies. The existing status of water supply, characteristics of domestic wastewater, modes of collection, treatment and disposal system for sewage and faecal matter in 82 municipalities and 4 municipal corporations were assessed in the States of Bihar and West Bengal in India. Domestic wastewater in the municipal areas is collected and discharged through open kachha (earthen), pucca (cement-concrete) and natural drains and discharged into water courses or disposed on land. Scavenger carriage system for night soil disposal is in-vogue at several places in the surveyed States. Open defecation by the inhabitants in some of the municipalities also occurs. The existing methods of collection, treatment and disposal of sewage impairs the water quality of different water sources. Techno-economically viable remedial measures for providing basic amenities, namely safe drinking-water supply and proper sanitation to the communities of these two States of India are suggested and discussed.

  18. "Earthen constructions" - towards creating a sustainable habitat by minimising the ecological footprint

    Directory of Open Access Journals (Sweden)

    Aparna Das

    2008-12-01

    Full Text Available Sustenance of the human race has put an immense pressure on our planet Earth in terms of sustainability of natural resources. The greenhouse effect and the ozone hole are the two most threatening effects of pollution. Constructions of buildings as well as materials contribute to a large percentage to this pollution. Again every material used in the building industry has its source in the Earth. In general the low energy materials will be least polluting. The conventionally used building materials like bricks, cement, steel, timber, plastics, glass etc. usually involve huge transportation costs and also manufacturing processes which are detriment al to the environment. On the other hand the demand for new buildings as well as the cost of building construction is growing a tremendous pace. We have to search for alternative materials which are energy efficient, environment friendly and economical like our traditional building materials - mud walls and thatch roofs. Of all the alternatives available to us which lead the way to sustainability, building with earth has been an ancient and accepted practice among communities all over the world. It is estimated that the construction and the operation of buildings is responsible for around half of all glob al C02 emissions, thereby contributing the largest single source attributable to climate change. Earthen construction has been, is and will continue to be a reality. Stabilised rammed earth walls can be used as a building integrated source of passive cooling technique. A huge population in Indi a lives in the rural areas where there has been a growing trend in shifting towards brick and concrete constructions in search for social status. Even a small percentage can lead to massive increase in glob l C02 emissions if the trend is not checked at this point. This papers looks into the current scenario and hence the corresponding responsibility on architects, planners and policy makers to bring in

  19. Gelatinous soil barrier for reducing contaminant emissions at waste-disposal sites

    International Nuclear Information System (INIS)

    Opitz, B.E.; Martin, W.J.; Sherwood, D.R.

    1982-09-01

    The milling of uranium ore produces large quantities of waste (mill tailings) that are being deposited in earthen pits or repositories. These wastes, which remain potentially hazardous for long time periods, may reach the biosphere at levels greater than those allowed by the Environmental Protection Agency (EPA). For example, the leachates associated with these wastes contain numerous radionuclides and toxic trace metals at levels 10 2 to 10 4 greater than allowable for drinking water based on EPA Primary Drinking Water Standards. As a result, technologies must be developed to ensure that such wastes will not reach the biosphere at hazardous levels. Under sponsorship of the Department of Energy's Uranium Mill Tailings Remedial Action Program (UMTRAP), Pacific Northwest Laboratory (PNL) has investigated the use of engineered barriers for use as liners and covers for waste containment. Results of these investigations have led to the development of a low permeable, multilayer earthen barrier that effectively reduces contaminant loss from waste disposal sites. The multilayer earth barrier was developed as an alternative to clay liner or cover schemes for use in areas where clays were not locally available and must be shipped to the disposal site. The barrier layer is comprised of 90% locally available materials whose liner or cover properties are enhanced by the addition of a gelatinous precipitate which entrains moisture into the cover's air-filled pore spaces, blocking the pathways through which gas would otherwise diffuse into the atmosphere or through which moisture would migrate into the ground. In field verification tests, the earthen seal reduced radon gas emissions by 95 to 99% over prior release rates with measured permeabilities on the order of 10 - 9 cm/s

  20. Development of electromagnetic filtration in the feed water circuits

    International Nuclear Information System (INIS)

    Dolle, L.

    1980-01-01

    Electromagnetic filtration in the feed water circuit of the steam generators in nuclear power plants is efficient towards insoluble corrosion products. The principle of electromagnetic filtration is shortly recalled and the results of corresponding development work are summarized. The magnitude of water volumes to be treated on the two priviledged parts of the circuit are estimated. These parts are on the feed water tank level and on the blow-down of the steam generator. The practical applications are discussed [fr

  1. R + D work on gas-cooled breeder development

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Jacobs, G.; Meyer, L.; Rehme, K.; Schumacher, G.; Wilhelm, D.

    1978-01-01

    The development work for the gas-cooled breeder in the Karlsruhe Nuclear Research Center may be assigned to two different groups: a) Investigations on fuel elements. b) Studies concerning the safety of gas-cooled fast breeder reactors. To the first group there belongs the work related to the: - heat transfer between fuel elements and coolant gas, - influence of increased content of water vapor in helium or the fuel rods. The second group concerns: - establishing a computer code for transient calculations in the primary and secondary circuit of a gas-cooled fast breeder reactor, - steam reactivity coefficients, - the core destruction phase of hypothetical accidents, - the core-catcher using borax. (orig./RW) [de

  2. Design and Development of Low-Cost Water Tunnel for Educational Purpose

    Science.gov (United States)

    Zahari, M.; Dol, S. S.

    2015-04-01

    The hydrodynamic behaviour of immersed body is essential in fluid dynamics study. Water tunnel is an example of facility required to provide a controlled condition for fluid flow research. The operational principle of water tunnel is quite similar to the wind tunnel but with different working fluid and higher flow-pumping capacity. Flow visualization in wind tunnel is more difficult to conduct as turbulent flows in wind dissipate quickly whilst water tunnel is more suitable for such purpose due to higher fluid viscosity and wide variety of visualization techniques can be employed. The present work focusses on the design and development of open flow water tunnel for the purpose of studying vortex-induced vibration from turbulent vortex shedding phenomenon. The water tunnel is designed to provide a steady and uniform flow speed within the test section area. Construction details are discussed for development of low-cost water tunnel for quantitative and qualitative fluid flow measurements. The water tunnel can also be used for educational purpose such as fluid dynamics class activity to provide quick access to visualization medium for better understanding of various turbulence motion learnt in class.

  3. development of an automated batch-process solar water disinfection

    African Journals Online (AJOL)

    user

    This work presents the development of an automated batch-process water disinfection system ... Locally sourced materials in addition to an Arduinomicro processor were used to control ..... As already mentioned in section 3.1.1, a statistical.

  4. Effects of smallmouth buffalo, Ictiobus bubalus biomass on water transparency, nutrients, and productivity in shallow experimental ponds

    Science.gov (United States)

    Goetz, Daniel B.; Kroger, Robert; Miranda, Leandro E.

    2014-01-01

    The smallmouth buffalo Ictiobus bubalus is a native benthivore to floodplain lakes in the Yazoo River Basin, USA. Based on evidence from other benthivorous fish studies we hypothesized high biomasses of I. bubalus contribute to poor water quality conditions. We tested this hypothesis in shallow (< 1.5 m) 0.05 ha earthen ponds at three stocking biomasses over a 10-week period during the summer of 2012. The most notable results from the permutational multivariate analysis of variance suggest I. bubalus at high and moderate biomasses significantly (p < 0.05) enhanced turbidity and suspended solid levels while decreasing Secchi depth. Our results suggest that effects of I. bubalus on water clarity may have considerable ecological implications in natural habitats such as shallow floodplain lakes.

  5. ANALYSIS OF GROWTH OF LALAWAK Barbonymus balleroides (VALENCIENNES, 1842 IN THREE CULTURE METHODS

    Directory of Open Access Journals (Sweden)

    Deni Radona

    2017-09-01

    Full Text Available In fish culture, optimal growth could be influenced by various culture methods. Aim of the study was to evaluate the productivity of Barbonymus balleroides, lalawak in floating net cages, concrete ponds, and earthen ponds. Cultivation was designed with the circulation water system. Experiment was conducted using completely randomized design with three treatments and three replications for each treatment. The experimental fish, sized of 4.20 ± 0.64 cm SL and weight of 2.14 ± 0.99 g, were obtained from induced breeding. The stocking density used was 20 individuals/m3. Fish were fed 3% of total weight two times every day using commercial pellet with 35% protein content for 90 day. The result showed that lalawak reared in earthen pond was no significant difference on length, weight, and biomass compared with that one in concrete pond (P>0.05, but significantly different (P0.05 among the three different culture systems for survival rate and FCR. Lalawak reared on earthen pond system supported with optimal water quality could increase productivity value.

  6. Shallow land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Daniel, D.E.

    1983-01-01

    Low-level radioactive waste has been produced since the early 1940's. Most of it has been buried in shallow pits at 11 existing sites. Several of the existing sites have performed poorly. Inability to control flow of surface and ground water into and out of disposal pits has been the most important problem. Lack of attention to design of earthen covers over the waste and improper emplacement of the waste in the pits have also contributed to poor performance. Several steps are recommended for improving disposal practices: (1) Waste settlement can be minimized by stacking wastes neatly into pits rather than dumping them randomly; (2) the earthen cover can be made to perform better by making it thicker and by maintaining it properly; and (3) groundwater contamination can be minimized by siting disposal facilities at locations with favorable geohydrologic characteristics. In addition, improved designs are needed for earthen covers, and technology for predicting ground water contamination in the saturated/unsaturated soils that underlie the waste also needs improvement

  7. Work activities within sustainable development

    Directory of Open Access Journals (Sweden)

    Francisco Duarte

    2015-06-01

    Full Text Available This paper presents the main results of a Franco-Brazilian Research project entitled "Work, Innovation and Development". The aim is to conceptually consider work activity within sustainable development, and to contribute methodologically towards developing strategies for designing sustainable work systems. After a brief description of the factors and the dimensions that have contributed to the creation of ideas on sustainable development, we will put forward two main approaches for understanding work activity within the context of sustainability, these being: the durability of work activity and the development of work activities for sustainable development. Both approaches are presented and examples are given. This is followed by a discussion of the design of sustainable work systems that focuses particularly on the political and technical dimensions of project management.

  8. Development of advanced PEM water electrolysers

    International Nuclear Information System (INIS)

    A Deschamps; C Etievant; C Puyenchet; V Fateev; S Grigoriev; A Kalinnikov; V Porembsky; P Millet

    2006-01-01

    Concerning the production of electrolytic hydrogen, the goal of present R and D is to develop advanced hydrogen generator based on proton exchange membrane (PEM) water electrolysers. PEM-based water electrolysis offers a number of advantages, such as ecological safety, high gas purity (more than 99.99% for hydrogen), the possibility of producing compressed gases (up to 200 bar) for direct pressurized storage without additional power inputs, etc. PEM electrolysers are considered as rather attractive devices to accelerate the transition to the hydrogen economy and develop a hydrogen infrastructure network (for example for the development of re-filling stations for cars, using electric power stations at night hours and renewable energy sources). The work presented here result from a cooperation between Hydrogen Energy and Plasma Technology Institute (HEPTI) of Russian Research Center (RRC) 'Kurchatov Institute', Universite Paris - Sud XI and Compagnie d'Etudes des Technologies de l'Hydrogene. This project is supported by the Commission of the European Communities within the frame of the 6. Framework Programme (GenHyPEM, STREP no 019802). (authors)

  9. Plan for the design, development, and implementation, and operation of the National Water Information System

    Science.gov (United States)

    Edwards, M.D.

    1987-01-01

    The Water Resources Division of the U.S. Geological Survey is developing a National Water Information System (NWIS) that will integrate and replace its existing water data and information systems of the National Water Data Storage and Retrieval System, National Water Data Exchange, National Water-Use Information, and Water Resources Scientific Information Center programs. It will be a distributed data system operated as part of the Division 's Distributed Information System, which is a network of computers linked together through a national telecommunication network known as GEONET. The NWIS is being developed as a series of prototypes that will be integrated as they are completed to allow the development and implementation of the system in a phased manner. It also is being developed in a distributed manner using personnel who work under the coordination of a central NWIS Project Office. Work on the development of the NWIS began in 1983 and it is scheduled for completion in 1990. This document presents an overall plan for the design, development, implementation, and operation of the system. Detailed discussions are presented on each of these phases of the NWIS life cycle. The planning, quality assurance, and configuration management phases of the life cycle also are discussed. The plan is intended to be a working document for use by NWIS management and participants in its design and development and to assist offices of the Division in planning and preparing for installation and operation of the system. (Author 's abstract)

  10. The development and application of solid polymer electrolysis enrichment device of tritium in water

    International Nuclear Information System (INIS)

    Wen Xuelian; Yang Hailan Wu Bin; Yang Huaiyuan

    2003-01-01

    This paper briefly describes the working principle of solid polymer electrolysis enrichment device of tritium in water, presents experiments and works in development of SPE tritium automatic electrolysis enrichment device by CIRP, with which the water samples had been processed for TRIC2000, and the measurement results are satisfied

  11. Development of light water reactors and subjects for hereafter

    International Nuclear Information System (INIS)

    Murao, Yoshio

    1995-01-01

    As for light water reactors, the structure is relatively simple, and the power plants of large capacity can be realized easily, therefore, they have been used for long period as main nuclear reactors. During that period, the accumulation of experiences on the design, manufacture, operation, maintenance and regulation of light water has become enormous, and in Japan, the social base for maintaining and developing light water reactor technologies has been prepared sufficiently. If the nuclear power generation using seawater uranium is considered, the utilization of uranium for light water reactor technologies can become the method of producing the own energy for Japan. As the factors that threaten the social base of light water reactor technologies, there are a the lowering of the desire to promote light water reactors, the effect of secular deterioration, the price rise of uranium resources, the effect of plutonium accumulation, the effect of the circumstances in developing countries and the sure recruiting of engineers. The construction and the principle of working of light water reactors and the development of light water reactors hereafter, for example, the improvement on small scale and the addition of new technology resulting in cost reduction and the lowering of the quality requirement for engineers, the improvement of core design, the countermeasures by design to serious accidents and others are described. (K.I.)

  12. Development and Working Life – Work for Welfare

    DEFF Research Database (Denmark)

    Hvid, Helge; Hasle, Peter

    A study of a large number of company cases with focus on development of both production and working life. A number of management oriented concepts as well as employee oriented concepts for development are analysed.......A study of a large number of company cases with focus on development of both production and working life. A number of management oriented concepts as well as employee oriented concepts for development are analysed....

  13. Histopathological evaluation of Oreochromis mossambicus gills and ...

    African Journals Online (AJOL)

    Oreochromis mossambicus were sampled from a semi-intensively managed polyculture earthen pond in Bagauda, Nigeria for histopathological changes in the gills and liver as early warning signs of pond water pollution. Pond water was sourced from nearby Bagauda dam through a single 28 inches water pipe.

  14. Climate Change and Water Working Group - User Needs to Manage Hydrclimatic Risk from Days to Decades

    Science.gov (United States)

    Raff, D. A.; Brekke, L. D.; Werner, K.; Wood, A.; White, K. D.

    2012-12-01

    The Federal Climate Change Water Working Group (CCAWWG) provides engineering and scientific collaborations in support of water management. CCAWWG objectives include building working relationships across federal science and water management agencies, provide a forum to share expertise and leverage resources, develop education and training forums, to work with water managers to understand scientific needs and to foster collaborative efforts across the Federal and non-Federal water management and science communities to address those needs. Identifying and addressing water management needs has been categorized across two major time scales: days to a decade and multi-decadal, respectively. These two time periods are termed "Short-Term" and "Long-Term" in terms of the types of water management decisions they support where Short-Term roughly correlates to water management operations and Long-Term roughly correlates to planning activities. This presentation will focus on portraying the identified water management user needs across these two time periods. User Needs for Long-Term planning were identified in the 2011 Reclamation and USACE "Addressing Climate Change in Long-Term Water Resources Planning and Management: User Needs for Improving Tools and Information." User needs for Long-Term planning are identified across eight major categories: Summarize Relevant Literature, Obtain Climate Change Information, Make Decisions About How to Use the Climate Change Information, Assess Natural Systems Response, Assess Socioeconomic and Institutional Response, Assess System Risks and Evaluate Alternatives, Assess and Characterize Uncertainties, and Communicating Results and Uncertainties to Decisionmakers. User Needs for Short-Term operations are focused on needs relative to available or desired monitoring and forecast products from the hydroclimatic community. These needs are presenting in the 2012 USACE, Reclamation, and NOAA - NWS "Short-Term Water Management Decisions: User

  15. Water Conservation and Reuse. Instructor Guide. Working for Clean Water: An Information Program for Advisory Committees.

    Science.gov (United States)

    Pennsylvania State Univ., Middletown. Inst. of State and Regional Affairs.

    Described is a learning session on water conservation intended for citizen advisory groups interested in water quality planning. Topics addressed in this instructor's manual include water conservation needs, benefits, programs, technology, and problems. These materials are components of the Working for Clean Water Project. (Author/WB)

  16. Development of a water hydraulic servovalve; Suiatsu servo ben no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Urata, E.; Nakao, Y. [Kanagawa University, Kanagawa (Japan). Faculty of Engineering; Yamashina, C.; Miyagawa, S.; Usami, Y.; Shinoda, M. [Ebara Research Co. Ltd., Kanagawa (Japan)

    1997-06-25

    An electrohydraulic servovalve that uses clear water as a pressure medium (water hydraulic servovalve) is developed. A conventional electrohydraulic servovalve cannot work with this hostile fluid. This paper explains the structure and functions of components, and the relationship between them, as well as development procedure of the water hydraulic servovalve. The basic idea for the development is to support the spool of the valve with hydrostatic bearings and to lead the water from the bearings to the flapper-nozzle system, which, in this valve contains a laminar restriction upstream from the nozzle instead of the turbulent restriction in the conventional flapper-nozzle system. This paper also explains the design procedure of the hydrostatic bearing in the valve and the connection of electromagnetic elements and the fluidic elements. The manufactured water hydraulic servovalves show good characteristics in their smooth motion, endurance and controllability, including dynamic characteristics. 25 refs., 12 figs.

  17. Effect of cold work hardening on stress corrosion cracking of stainless steels in primary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Raquet, O.; Herms, E.; Vaillant, F.; Couvant, T.; Boursier, J.M.

    2004-01-01

    A R and D program is carried out in CEA and EDF laboratories to investigate separately the effects of factors which could contribute to IASCC mechanism. In the framework of this study, the influence of cold work on SCC of ASSs in primary water is studied to supply additional knowledge concerning the contribution of radiation hardening on IASCC of ASSs. Solution annealed ASSs, essentially of type AISI 304(L) and AISI 316(L), are generally considered very resistant to SCC in nominal primary water. However, Constant Extension Rate Tests (CERTs), performed on cold pressed humped specimens in nominal primary water at 360 deg. C, reveal that these materials can exhibit a high SCC susceptibility: deepest cracks reach 1 mm (mean crack growth rate about 1 μm.h -1 ) and propagation is mainly intergranular for 304L and mainly transgranular for 316L. Indeed, work hardening in conjunction with high localized deformation can promote SCC. The influence of the nature of the cold work (shot peening, reaming, cold rolling, counter sinking, fatigue work hardening and tensile deformation) is investigated by means of screening CERTs performed with smooth specimens in 304L at 360 deg. C. For a given cold work hardening level, the susceptibility to crack initiation strongly depends on the cold working process, and no propagation is observed for a hardness level lower than 300 ±10 HV(0.49N). The propagation of cracks is observed only for dynamic loadings like CERT, traction/relaxation tests and crack growth rate tests performed with CT specimens under trapezoidal loading. Although crack initiation is observed for constant load and constant deformation tests, crack propagation do not seem to occur under these mechanical solicitations for 17000 hours of testing, even for hardness levels higher than 450 HV(0.49N). The mean crack growth rate increases when the hardness increases. An important R and D program is in progress to complement these results and to develop a SCC model for ASSs in

  18. Hliněná omítka (lepenice) na dřevěné konstrukci tradičních staveb: příprava, aplikace a údržba

    OpenAIRE

    Novotný, Martin

    2017-01-01

    The submitted methodology presents an instruction to produce and apply earthen plaster cob on log houses, or on walls made from woven lattices of wooden strips. After gaining necessary routine and skills, the submitted building technique is very effective for manual work. The submitted technique is intended for the application of two-layer anchored and not-anchored earthen plaster (cob). Anchored plaster is applied on an anchoring lattice made on wall structure, using small wooden pegs driven...

  19. Power cycles with ammonia-water mixtures as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Thorin, Eva

    2000-05-01

    It is of great interest to improve the efficiency of power generating processes, i.e. to convert more of the energy in the heat source to power. This is favorable from an environmental point of view and can also be an economic advantage. To use an ammonia-water mixture instead of water as working fluid is a possible way to improve the efficiency of steam turbine processes. This thesis includes studies of power cycles with ammonia-water mixtures as working fluid utilizing different kinds of heat sources for power and heat generation. The thermophysical properties of the mixture are also studied. They play an important role in the calculations of the process performance and for the design of its components, such as heat exchangers. The studies concern thermodynamic simulations of processes in applications suitable for Swedish conditions. Available correlations for the thermophysical properties are compared and their influence on simulations and heat exchanger area predictions is investigated. Measurements of ammonia-water mixture viscosities using a vibrating wire viscometer are also described. The studies performed show that power cycles with ammonia-water mixtures as the working fluid are well suited for utilization of waste heat from industry and from gas engines. The ammonia-water power cycles can give up to 32 % more power in the industrial waste heat application and up to 54 % more power in the gas engine bottoming cycle application compared to a conventional Rankine steam cycle. However, ammonia-water power cycles in small direct-fired biomass-fueled cogeneration plants do not show better performance than a conventional Rankine steam cycle. When different correlations for the thermodynamic properties are used in simulations of a simple ammonia-water power cycle the difference in efficiency is not larger than 4 %, corresponding to about 1.3 percentage points. The differences in saturation properties between the correlations are, however, considerable at high

  20. Working Environment and Technological Development

    DEFF Research Database (Denmark)

    Clausen, Christian; Nielsen, Klaus T.; Jensen, Per Langaa

    1997-01-01

    and their and their concept of working environment2) Technology renewal, which considers the role of the working environment in connection with the development and use of concrete technologies3) Working environment planning, which considers the existing efforts to place the working environment in a planning process.......The paper describes the purpose, themes, overarching research questions and specific projects of the programme: Working Environment and Technological Development. The major research themes are:1) Management concepts and the working environment, which considers the visions...

  1. Development of water chemistry diagnosis system for BWR primary loop

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu; Uchida, Shunsuke; Ohsumi, Katsumi.

    1988-01-01

    The prototype of a water chemistry diagnosis system for BWR primary loop has been developed. Its purposes are improvement of water chemistry control and reduction of the work burden on plant chemistry personnel. It has three main features as follows. (1) Intensifying the observation of water chemistry conditions by variable sampling intervals based on the on-line measured data. (2) Early detection of water chemistry data trends using a second order regression curve which is calculated from the measured data, and then searching the cause of anomaly if anything (3) Diagnosis of Fe concentration in feedwater using model simulations, in order to lower the radiation level in the primary system. (author)

  2. THE IMPROVEMENT OF LOW-WASTE TECHNOLOGIES OF WORKING BODY OF WATER PREPARATION AT THERMAL AND NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    K. D. Rymasheuskaya

    2017-01-01

    Full Text Available In the present work the main directions of water desalination technologies improving have been analyzed. Possible techniques of high-quality treatment of water that enable the reduction of amounts of environmentally hazardous substances to be discharged into the hydrosphere are indicated. The purpose of the work was to improve the ecological efficiency and the effectiveness of water treatment equipment at heat power plants when designing new and the modernizing existing water treatment schemes. In order to achieve this goal the following problems have been solved: the one of analyzing the main directions of the improvement of technologies of working body of water preparation at thermal and nuclear power plants; of analyzing the main directions of reduction of total volume of highly mineralized power plant wastewaters; of developing the technological scheme of recycling of concentrate of membrane installations and regenerants of ionite filters in acid and alkali; of developing the technological scheme of transformation of the sludge in pre-processing waste into valuable commodity products. The results of research can be applied for the design of new and the modernization of existing water treatment installations of thermal and nuclear power plants. It will enable to reduce considerably the use of natural water and the amount of chemicals added as well as the volume of wastewater and the concentration of dissolved solids in it. As a consequence, the negative impact of thermal and nuclear power plants on the hydrosphere will be reduced. 

  3. Moisture transfer and change in strength during the construction of earthen buildings

    Directory of Open Access Journals (Sweden)

    Schroeder, H.

    2011-09-01

    Full Text Available A number of rammed earth projects constructed in recent years in Germany and abroad testify to the high level of architectural interest in this material, not only in our country. Rammed earth has been “rediscovered”, in particular by young architects, due to its unique materiality and fascinating and individual surface aesthetics. In connection with the realisation of two rammed earth projects realised in Thuringia, Germany, in 2003/2004 some questions arose concerning the process of moisture transfer and changes in strength properties during construction. The earthen building standards detail only very rough estimates of drying times for rammed earth walls. The idea arose to develop a test programme for investigating the aspect of drying time with regard to the change in material strength in rammed earth walls, as well as for elaborating general aspects of testing procedures for rammed earth in standards. The paper presents results of a laboratory programme that attempts to approach this very complex problem. A series of test specimens were produced and the unconfined compressive strength was determined after different drying times varying from 7 to 90 days. The moisture content of the test specimens also was varied: at OMC (Proctor test and above and below the OMC.

    Una serie de proyectos de tierra apisonada construidos en los últimos años en Alemania y en el extranjero dan testimonio del alto nivel de interés arquitectónico en este material, no solo en nuestro país. La tierra apisonada ha sido “redescubierta”, en particular por los arquitectos jóvenes, debido a su materialidad única y fascinante y la estética singular de su superficie. En relación con la realización de dos proyectos de tierra apisonada realizados en Turingia, Alemania, en el período 2003/2004 surgieron algunas preguntas sobre el proceso de transferencia de la humedad y los cambios en las propiedades de resistencia durante la construcción. Las

  4. Effect of water content on the water repellency for hydrophobized sands

    Science.gov (United States)

    Subedi, S.; Kawamoto, K.; Kuroda, T.; Moldrup, P.; Komatsu, T.

    2011-12-01

    Alternative earthen covers such as capillary barriers (CBs) and evapotranspirative covers are recognized as useful technical and low-cost solutions for limiting water infiltration and controlling seepage flow at solid waste landfills in semi-arid and arid regions. However, their application to the landfills at wet regions seems to be matter of concern due to loss of their impending capability under high precipitation. One of the possible techniques to enhance the impermeable properties of CBs is to alter soil grain surfaces to be water-repellent by mixing/coating hydrophobic agents (HAs). In order to examine a potential use of model sands hydrophobized with locally available and environmental-friendly HAs such as oleic acid (OA) and stearic acid (SA) for hydrophobic CBs. In the present study, we first characterized the effect of water content on the degree of water repellency (WR) for hydrophobized sands and volcanic ash soil at different depth. Secondly, the time dependency of the contact angle in hydrophobized sands and volcanic ash soils at different water content was evaluated. Further, the effects of hydrophobic organic matter contents on the WR of hydrophobized sands were investigated by horizontal infiltration test. We investigated the degree of WR as functions of volumetric water content (θ) of a volcanic ash soil samples from different depth and water adjusted hydrophobized sand samples with different ratio of HAs by using sessile drop method (SDM). The initial contact angle (αi) measured from SDM decreased gradually with increasing water content in OA and SA coated samples. Measured αi values for volcanic ash soils increased with increasing water content and reached a peak values of 111.7o at θ= 0.325 cm3 cm-3, where-after αi gradually decreased. Each test sample exhibited sharp decrease in contact angle with time at higher water content. Sorptivity values for oleic acid coated samples decreased with increasing HA content and reached the minimum

  5. Development of Non-Platinum Catalysts for Intermediate Temperature Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Petrushina, Irina Michailovna; Bjerrum, Niels J.

    2014-01-01

    Water electrolysis is recognized as an efficient energy storage (in the form of hydrogen) supplement in renewable energy production. However, industrial alkaline water electrolyzers are rather ineffective and space requiring for a commercial use in connection with energy storage. The most effective...... modern water electrolyzers are based on polymeric proton-conducting membrane electrolytes (PEM), e.g. Nafion®, a perfluorocarbon-sulfonic acid polymer. These electrolyzers work at temperatures up to around 80 °C, and, in extreme cases, up to 130-140 °C. The most developed PEM electrolyzers...... as electrolytes for the intermediate temperature applications, such as CsHSO4, KHSO45. The most successful systems have been developed with CsH2PO4 (solid acid fuel cells (SAFCs) and Sn0.9In0.1P2O7 electrolytes6,7. While developing materials for the promising medium temperature electrolysis systems...

  6. Working to reverse a water deficit | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... and Yugoslavia, Bataineh began work for the Ministry of Water and Irrigation in 1975. ... cubic metres of wastewater treated in Jordan can only be used in agriculture ... Consequently, the ministry has started to improve existing wastewater ...

  7. Water Use for Unconventional Energy Development: How Much, What Kind, and to What Reaction?

    Science.gov (United States)

    Grubert, E.

    2017-12-01

    Water resources—access to water, protection of water, and allocation of water in particular—are a major priority for Americans, but water use for the energy sector has not previously been well characterized. Water use and management associated with unconventional energy development is of special interest, in part because it is often new to the locations and contexts where it occurs. This presentation focuses on three major questions about water use for unconventional energy development, drawing on both engineering and anthropological research. First, using results from a recent study of water use for energy in the entire United States, how much water does the US use for unconventional energy resources, and how does that compare with water use for more mature fuel cycles? Second, based on that same study, what kind of water is used for these unconventional energy resource fuel cycles? Specifically, where does the water come from, and what is its quality? Finally, drawing on recent case studies in the US and elsewhere, what has the reaction been to these water uses, and why does that matter? Case studies focused on oil and natural gas resources illustrate societal reactions to issues of both water management, particularly related to induced seismicity associated with produced water injection, and water allocation, particularly related to hydraulic fracturing. Overall, recent work finds that public concern about water used for unconventional energy resources is often better explained by observed or anticipated local impacts and the uncertainty surrounding these impacts than by specifics about quantities, allocation, and management techniques. This work provides both quantitative and qualitative characterization of water management and allocation for unconventional energy development.

  8. Development of supported biomimetic membranes for insertion of aquaporin protein water channels for novel water filtration applications

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard

    ). This constitutes a new methodology to correctly and functionally reconstitute membrane proteins in controllable amounts into giant vesicles. The method for formation of giant protein vesicles subsequently led to the first functional prototype of an aquaporin-membrane water filtration device.......Aquaporins represent a class of membrane protein channels found in all living organisms that selectively transport water molecules across biological membranes. The work presented in this thesis was motivated by the conceptual idea of incorporating aquaporin water channels into biomimetic membranes...... to develop novel water separation technologies. To accomplish this, it is necessary to construct an efficient platform to handle biomimetic membranes. Moreover, general methods are required to reliable and controllable reconstitute membrane proteins into artificially made model membranes...

  9. The construction for remediation work of contaminated water at Fukushima Daiichi Nuclear Power Plant. Closure work of seawater piping trench and screen pump chamber

    International Nuclear Information System (INIS)

    Hibi, Yasuki; Yanai, Shuji; Nishikori, Kazumasa; Soma, Yu

    2016-01-01

    In the seawater piping trench of Fukushima Daiichi Nuclear Power Plant, highly contaminated water was stagnating, which flowed in from the reactor building and turbine building affected by the tsunami caused by the Tohoku Pacific Ocean Earthquake. Although the screen pump chamber, adjacent to the seawater piping trench, escaped from the inflow and retention of contaminated water, it was exposed to the leakage risk of contaminated water from the seawater piping trench. As measures against these conditions, the following emergency work was applied: (1) contaminated water replacement and removal operation based on the implantation of fillers into the seawater piping trench, and (2) closure operation of the screen pump chamber by implanting fillers into the screen pump chamber. In face of these operations, long-distance underwater flow special filler, high workable concrete, and underwater non-separation concrete were developed and used. The implantation of the long-distance underwater-flow special fillers into the seawater piping trench was successfully completed by filling to the tunnel top without gap and without water head difference, and by preventing the occurrence of movement or water path formation of the fillers in the initial curing process. Other fillers were also able to be implanted as planned. The leakage risk of contaminated water to the periphery could be suppressed to a large extent by this work. (A.O.)

  10. Ammonia Concentrations in Different Aquaculture Holding Tanks ...

    African Journals Online (AJOL)

    High unionized ammonia recorded in the collapsible and concrete ponds was from excretion of high protein rich feed, decomposition of uneaten feed, high stocking density, low water exchange rates, water source and the alkaline medium of the systems. Low unionized ammonia in earthen pond and natural pond was ...

  11. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    OpenAIRE

    藤井, 照重; 太田, 淳一; 赤川, 浩爾; 中村, 登志; 浅野, 等

    1990-01-01

    From the view point of energy saving and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. As one of the energy conversion expanders,there is a radial outflow reaction turbine(that is,Hero's turbine). Performance characteristics of Hero's turbine using subcooled hot water as a working fluid are clarified analytically and experimentally. It is found that:(a)there is an optimum rotational speed at which maximum turbine efficie...

  12. Quantification of wet-work exposure in nurses using a newly developed wet-work exposure monitor

    NARCIS (Netherlands)

    Visser, Maaike J.; Behroozy, Ali; Verberk, Maarten M.; Semple, Sean; Kezic, Sanja

    2011-01-01

    Occupational contact dermatitis (OCD) is an important work-related disease. A major cause of OCD is 'wet work': frequent contact of the skin with water, soap, detergents, or occlusive gloves. The German guidance TRGS 401 recommends that the duration of wet work (including use of occlusive gloves)

  13. European research and development programme for water-cooled lithium-lead blankets: present status and future work

    International Nuclear Information System (INIS)

    Giancarli, L.; Leroy, P.; Proust, E.; Raepsaet, X.

    1992-01-01

    The European R and D programme in support of the development of water-cooled Pb-17Li blankets for DEMO aims at improving the data base concerning tritium behaviour and compatibility between blanket materials. The four main areas of the experimental programme are structural material corrosion by Pb-17Li, tritium extraction and permeation control.=, Pb-17Li physico-chemistry, and water/Pb-17Li interaction. This paper describes the most significant results obtained to date in the various experiments performed in Europe and the future programme required to complete the data base by 1994. 28 refs

  14. Review - Water resources development

    International Nuclear Information System (INIS)

    Todd, David K.

    1970-01-01

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  15. Review - Water resources development

    Energy Technology Data Exchange (ETDEWEB)

    Todd, David K [Civil Engineering, University of California, Berkeley (United States)

    1970-05-15

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  16. Control of water infiltration into near-surface, low-level waste-disposal units in humid regions

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1994-01-01

    This study's objective is to assess means for controlling water infiltration through waste-disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters (75 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste-disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care

  17. Development of a higher capacity, lower pressure drop steam/water separator with reduced primary-to-secondary spacing

    International Nuclear Information System (INIS)

    Pruster, W.P.; Kidwell, J.H.; Eaton, A.M.; Wall, J.R.

    1985-01-01

    The goal of this development effort was to double the steam flow capacity of an existing module steam/water separator design without significantly increasing the pressure drop while simultaneously minimizing the vertical distance (spacing) between the primary and secondary separation stages. The development work included extensive air/water and steam/water testing. The steam/water tests were performed at a common pressure of 300 psia (2.1 MPa) with comparable water and steam flows

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A hydrometric, hydrochemical and environmental isotopic study was conducted to identify the source and origin of observed springs on the foot of the hillock abutting the left flank of the Gollaleru earthen dam, Nandyal, Andhra Pradesh, India. Water samples (springs, reservoir water and groundwater) in and around the dam ...

  19. Development of regulations for water care works and process ...

    African Journals Online (AJOL)

    driniev

    In terms of the South African Qualifications Authority Act of 1995 (SAQA) and the ... persons must be trained and assessed using unit standards generated for each particular sector. ... works are common, giving rise to major pollution incidents.

  20. To built a solar hot water heater to work the sustainability problem

    Directory of Open Access Journals (Sweden)

    Carretero Gómez, María Begoña

    2012-01-01

    Full Text Available We are commemorating the Education Decade for Sustainable Development. If we want to create positive towards our environment and its sustainable development we have to begin working at school. It is necessary to show our students what problems of the environment are and which solutions can be adopted. That is the reason we have planned this activity in our secondary school. We do think that by doing daily activities we have a good opportunity to fulfil this goal. An example of such experiences is the fabrication of a solar hot water heater to make them and their families more environment conscience.

  1. Fish production practices and use of aquaculture technologies ...

    African Journals Online (AJOL)

    The study investigated types of improved aquaculture technologies used by the ... fish farmers culture fish in earthen ponds, for commercial and home consumption ... fishes/m2 (98.3%), water quality management (99.1%) and fish ...

  2. Heavy water reactors: Status and projected development. Part II. Final draft of a report to be published in the IAEA technical reports series. Working material

    International Nuclear Information System (INIS)

    2001-01-01

    In 1996, the 40th General Conference of the IAEA approved the establishment of a new International Working Group (IWG) on Advanced Technologies for Heavy Water Reactors (HWR). At its first meeting, held in June 1997, the IWG-HWR advised the Agency to prepare a TECDOC to present: a) the status of HWR advanced technology in the areas of economics, safety and fuel cycle flexibility and sustainable development; and b) the advanced technology developments needed in the following two decades to achieve the vision of the advanced HWR. The IAEA convened two consultancies and two Advisory Group Meetings to prepare the TECDOC. One of the consultancies was on 'Fuel Cycle Flexibility and Sustainable Development'; the second was on 'Passive Safety Features of HWRs Status and Projected Advances'. The members of the IWG-HWR collectively agreed on the essential features that the development of HWRs must emphasize. These 'drivers' are: improved economics: the fundamental requirement for all successful high technology developments to advance, is real economic improvements, consistent with improved quality; enhanced safety: to meet increasingly stringent requirements to satisfy the regulatory authorities, the public and the operators, an evolutionary safety path will be followed, incorporating advanced passive safety concepts where it is feasible and sensible to do so; sustainable development: the high neutron economy of HWRs results in a reactor that can burn natural uranium at high utilization, utilize spent fuel from other reactor types, and, through various recycle strategies including use of thorium, extend fissile fuel resources into the indefinite future. The objectives of this document are: to present the status of HWR technology; to document the safety characteristics of current HWR designs and the potential enhancements; to present a 'vision' of the long-term development of the HWR for use into the next century as an electricity source that is sustainable and flexible and

  3. Heavy water reactors: Status and projected development. Part I. Final draft of a report to be published in the IAEA technical reports series. Working material

    International Nuclear Information System (INIS)

    2001-01-01

    In 1996, the 40th General Conference of the IAEA approved the establishment of a new International Working Group (IWG) on Advanced Technologies for Heavy Water Reactors (HWR). At its first meeting, held in June 1997, the IWG-HWR advised the Agency to prepare a TECDOC to present: a) the status of HWR advanced technology in the areas of economics, safety and fuel cycle flexibility and sustainable development; and b) the advanced technology developments needed in the following two decades to achieve the vision of the advanced HWR. The IAEA convened two consultancies and two Advisory Group Meetings to prepare the TECDOC. One of the consultancies was on 'Fuel Cycle Flexibility and Sustainable Development'; the second was on 'Passive Safety Features of HWRs Status and Projected Advances'. The members of the IWG-HWR collectively agreed on the essential features that the development of HWRs must emphasize. These 'drivers' are: improved economics: the fundamental requirement for all successful high technology developments to advance, is real economic improvements, consistent with improved quality; enhanced safety: to meet increasingly stringent requirements to satisfy the regulatory authorities, the public and the operators, an evolutionary safety path will be followed, incorporating advanced passive safety concepts where it is feasible and sensible to do so; sustainable development: the high neutron economy of HWRs results in a reactor that can burn natural uranium at high utilization, utilize spent fuel from other reactor types, and, through various recycle strategies including use of thorium, extend fissile fuel resources into the indefinite future. The objectives of this document are: to present the status of HWR technology; to document the safety characteristics of current HWR designs and the potential enhancements; to present a 'vision' of the long-term development of the HWR for use into the next century as an electricity source that is sustainable and flexible and

  4. Enhancing Profitability of Pond Aquaculture in Ghana through Resource Management and Environmental Best Management Practices

    OpenAIRE

    Ansah, Yaw Boamah

    2014-01-01

    The accelerating pace of growth of aquaculture in sub-Saharan Africa has received much positive appraisal because of the potential of the industry to contribute to economic development and food security by providing jobs and animal protein. Adoption of best management practices (BMPs) holds the potential to ameliorate the related environmental impacts of aquaculture, such as in the amounts of nutrients and sediment that will enter natural water bodies from earthen pond effluents. The goals of...

  5. Development of a working Hovercraft model

    Science.gov (United States)

    Noor, S. H. Mohamed; Syam, K.; Jaafar, A. A.; Mohamad Sharif, M. F.; Ghazali, M. R.; Ibrahim, W. I.; Atan, M. F.

    2016-02-01

    This paper presents the development process to fabricate a working hovercraft model. The purpose of this study is to design and investigate of a fully functional hovercraft, based on the studies that had been done. The different designs of hovercraft model had been made and tested but only one of the models is presented in this paper. In this thesis, the weight, the thrust, the lift and the drag force of the model had been measured and the electrical and mechanical parts are also presented. The processing unit of this model is Arduino Uno by using the PSP2 (Playstation 2) as the controller. Since our prototype should be functioning on all kind of earth surface, our model also had been tested in different floor condition. They include water, grass, cement and tile. The Speed of the model is measured in every case as the respond variable, Current (I) as the manipulated variable and Voltage (V) as the constant variable.

  6. The development of a subsea power transmission system for deep water boosting applications

    Energy Technology Data Exchange (ETDEWEB)

    Godinho, C.A.F. [Pirelli Cabos S.A. (Brazil); Campagnac, L.A. [Siemens S.A. (Brazil); Nicholson, A. [Tronic Electronics Services Ltd. (WEC); Magalhaes, W.M. de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1996-12-31

    This paper presents the development of a sub sea power transmission in medium voltage and variable frequency, as a key system for application of Boosting technology and for electrical submersible Pumping in deep water wells. This work focuses on the design and manufacture of sub sea power cables and transformers for 1,000 m water depth. 8 refs., 6 figs.

  7. Water Saving for Development

    Science.gov (United States)

    Zacharias, Ierotheos

    2013-04-01

    The project "Water Saving for Development (WaS4D)" is financed by European Territorial Cooperational Programme, Greece-Italy 2007-2013, and aims at developing issues on water saving related to improvement of individual behaviors and implementing innovative actions and facilities in order to harmonize policies and start concrete actions for a sustainable water management, making also people and stakeholders awake to water as a vital resource, strategic for quality of life and territory competitiveness. Drinkable water saving culture & behavior, limited water resources, water supply optimization, water resources and demand management, water e-service & educational e-tools are the key words of WaS4D. In this frame the project objectives are: • Definition of water need for domestic and other than domestic purposes: regional and territorial hydro-balance; • promotion of locally available resources not currently being used - water recycling or reuse and rainwater harvesting; • scientific data implementation into Informative Territorial System and publication of geo-referred maps into the institutional web sites, to share information for water protection; • participated review of the regulatory framework for the promotion of water-efficient devices and practices by means of the definition of Action Plans, with defined targets up to brief (2015) and medium (2020) term; • building up water e-services, front-office for all the water issues in building agricultural, industrial and touristic sectors, to share information, procedures and instruments for the water management; • creation and publication of a user friendly software, a game, to promote sustainability for houses also addressed to young people; • creation of water info point into physical spaces called "Water House" to promote education, training, events and new advisory services to assist professionals involved in water uses and consumers; • implementation of participatory approach & networking for a

  8. World Water Day 2002: Water for development

    International Nuclear Information System (INIS)

    2002-01-01

    Agriculture consumes about 70 per cent of the world's available water but experts say that where there are competing demands for water use, and groundwater sources have been depleted, small farmers are the first to lose their supply. As a consequence farmers are displaced from their land and the landless, who help them, are made jobless. Environmental damage to wetlands and estuaries from upstream depletion, as well as an increase of water-borne disease, also occurs.There must be more emphasis towards increasing the efficiency of water management systems and increasing water productivity, getting more crops per drop, says the Food and Agriculture Organization (FAO). Water stress leaves women the most vulnerable. Without a ready source of water they may have to walk for several hours every day to find it, or send their children to fetch it. Child nurturing and education suffer and the water available maybe unfit for human use. The U.N. estimates that 1.2 billion people lack access to safe water and about 2.5 billion are without access to proper sanitation. The absence of safe water translates into a tremendous burden of disease, linked to gastro-intestinal infection, making it a key water associated development issue, the World Health Organization (WHO) says. 'Access to sanitation facilities is a basic human right that safeguards health and human dignity,' said Sir Richard Jolly, Chair of the Geneva-based Water Supply and Sanitation Collaborative Council (WSCC). 'We know from experience that clean water alone leads only to minor health improvements. Sound hygiene behaviour must be recognized as a separate issue in its own right, with adequate sanitation and clean water as supporting components.' This year, water pollution, poor sanitation and water shortages will kill over 12 million people, said Klaus Toepfer, Executive Director of the United Nations Environment Programme (UNEP). Millions more are in bad health and trapped in poverty, said Mr. Toepfer, much of

  9. Remote Sensing and Monitoring of Earthen Flood-Control Structures

    Science.gov (United States)

    2017-07-01

    windows also provide valuable information about the earth’s surface and are useful for purposes of both land and water mapping or change detection ...spectrum (Figures 2-2 and 2-3) are considered to be useful for detection and monitoring of boil activity as temperature differences in water from seepage...are no breaks, holes, cracks in the discharge pipes/ culverts that would result in significant water leakage . The pipe shape is still essentially

  10. Eco-friendly electron beam lithography using water-developable resist material derived from biomass

    Science.gov (United States)

    Takei, Satoshi; Oshima, Akihiro; Wakabayashi, Takanori; Kozawa, Takahiro; Tagawa, Seiichi

    2012-07-01

    We investigated the eco-friendly electron beam (EB) lithography using a high-sensitive negative type of water-developable resist material derived from biomass on hardmask layer for tri-layer processes. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of trimethylphenylammonium hydroxide. The images of 200 nm line and 800 nm space pattern with exposure dose of 7.0 μC/cm2 and CF4 etching selectivity of 2.2 with hardmask layer were provided by specific process conditions.

  11. Radon diffusion through multilayer earthen covers: models and simulations

    International Nuclear Information System (INIS)

    Mayer, D.W.; Oster, C.A.; Nelson, R.W.; Gee, G.W.

    1981-09-01

    A capability to model and analyze the fundamental interactions that influence the diffusion of radon gas through uranium mill tailings and cover systems has been investigated. The purpose of this study is to develop the theoretical basis for modeling radon diffusion and to develop an understanding of the fundamental interactions that influence radon diffusion. This study develops the theoretical basis for modeling radon diffusion in one, two and three dimensions. The theory has been incorporated into three computer models that are used to analyze several tailings and cover configurations. This report contains a discussion of the theoretical basis for modeling radon diffusion, a discussion of the computer models used to analyze uranium mill tailings and multilayered cover systems, and presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  12. Water and development -the Pakistan case

    International Nuclear Information System (INIS)

    Prinz, D.

    2005-01-01

    Water is needed in all aspects of life'. All five functions of water: subsistence, commercial, environmental, ecological and cultural functions, have to be taken into due consideration when taking decisions in any fields of 'development'. There will be no real, sustainable development without the three pillars: (1) justice within our own generation, (2) justice to future generations and (3) justice to nature. Some four trends can be identified for the 21st century which have a major impact on water use: (1) population growth, (2) urbanization, (3) global climate change and (4) economic growth and globalization. These four trends will bring about a steadily increasing water demand. Water has a key role not only in agriculture, energy, health and ecosystems, but also in combating poverty. On the other hand, poverty precludes people of thinking of tomorrow and planning for a sustainable future. Those who will suffer most in future will be the poorest people and the single greatest impact of water scarcity will be on the food supplies for the poor. A stable economic, social and environmental friendly development is feasible only with adequate water supply and therefore all instruments of water demand and supply management have to be used. In regard to water availability, Pakistan is a country of extremes, in space as well as in time and it is already facing the water crisis. This growing crisis in form of lack of adequate and affordable supplies of good quality water does affect agricultural production, industry, but causes health and sanitation problems, too. There is no doubt that socio-economic development is unthinkable without significant progress in water management, including water supply to cities and improved sanitation. There is a need for better, integrated resource management, giving water conservation the key role it deserves. (author)

  13. Development of electrospun nanofiber composites for pointof-use water treatment

    Science.gov (United States)

    Peter, Katherine T.

    sorption capacity of embedded carbon nanotubes, and achieves a key balance between material strength and reactivity towards organic pollutants. Additionally, via single-pot syntheses, we develop two optimized polymer-iron oxide composites for removal of heavy metal contamination by inclusion of iron oxide nanoparticles and either cationic or anionic surfactants in the electrospinning precursor solution. In hybrid materials that contain a well-retained quaternary ammonium surfactant (tetrabutylammonium bromide) and iron oxide nanoparticles, ion exchange sites and iron oxide sites are selective for chromate and arsenate removal, respectively. We demonstrated that a sulfonate surfactant, sodium dodecyl sulfate, acted as a removable porogen and an agent for surface segregation of iron oxide nanoparticles, thus enhancing composite performance for removal of lead, copper, and cadmium. Notably, nanoparticles embedded in composites exhibited comparable activity to freely dispersed nanoparticles. Collectively, the composites developed in this work represent a substantial advance towards the overlap of effective nanomaterial immobilization and utilization of nanomaterial reactivity. Outcomes of this work advance current knowledge of nanocomposite fabrication, and contribute to the responsible and effective deployment of nanomaterials in POU drinking water treatment.

  14. The coordinated development of China' s inland water transport%The coordinated development of China' s inland water transport

    Institute of Scientific and Technical Information of China (English)

    Deng Aimin; Tian Feng; Haasis H.D; Mao Lang; Cai Jia

    2012-01-01

    The coordinated development is the core of sustainable development and the hot issue of international research. Inland water transport (IWT) is an important part of the water resources exploiting system and comprehensive transport system under socio-economic context of river basin, and also the country' s sustainable development priorities to achieve resource-conserving and environment-friendly strategy. Based on the coordinated development content, the paper combined Germany' s successful development experience, explored the elements and problem of the coordinated development of IWT system of China' s national economic strategy and basin economy, water resourse system, comprehensive transport system, and system itself, and their countermeasures and suggestions, in order to facilitate rapid and coordinated development of China' s inland water transport.

  15. Energy-environment-development interactions. Report on working group 6

    International Nuclear Information System (INIS)

    1997-01-01

    Natural resources, including strategic resources as oil or fresh water, have been the cause of disputes and wars among nations. Natural resources have also been catalyzers of conflicts and objectives of military actions. In last decades, new potential sources of conflict have emerged, as high geographical concentration of fossil duels, acceleration of the depletion and pollution of otherwise renewable resources, and the increase of resource scarcity because of higher demands from population growth and larger consumption per capita. The potential change of climate threatens to become an important source of international tensions in the near future and to provoke the scarcity of vital resources in particular regions. If the world is to engage in a true process of sustainable development, radical changes in the present strategies and patterns of resources use are needed. This working group focused on the problems and potential solutions related to renewable energy sources. The topic of water and security were discussed as well as multilateral agreements and negotiations regarding global climate change

  16. Developing a Water Quality Index (WQI) for an Irrigation Dam.

    Science.gov (United States)

    De La Mora-Orozco, Celia; Flores-Lopez, Hugo; Rubio-Arias, Hector; Chavez-Duran, Alvaro; Ochoa-Rivero, Jesus

    2017-04-29

    Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl - , NO₃, SO₄, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study.

  17. Spatial Patterns of Development Drive Water Use

    Science.gov (United States)

    Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.

    2018-03-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.

  18. Development of a Suite of Analytical Tools for Energy and Water Infrastructure Knowledge Discovery

    Science.gov (United States)

    Morton, A.; Piburn, J.; Stewart, R.; Chandola, V.

    2017-12-01

    Energy and water generation and delivery systems are inherently interconnected. With demand for energy growing, the energy sector is experiencing increasing competition for water. With increasing population and changing environmental, socioeconomic, and demographic scenarios, new technology and investment decisions must be made for optimized and sustainable energy-water resource management. This also requires novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales. To address this need, we've developed a suite of analytical tools to support an integrated data driven modeling, analysis, and visualization capability for understanding, designing, and developing efficient local and regional practices related to the energy-water nexus. This work reviews the analytical capabilities available along with a series of case studies designed to demonstrate the potential of these tools for illuminating energy-water nexus solutions and supporting strategic (federal) policy decisions.

  19. Accuracy Analysis Comparison of Supervised Classification Methods for Anomaly Detection on Levees Using SAR Imagery

    Directory of Open Access Journals (Sweden)

    Ramakalavathi Marapareddy

    2017-10-01

    Full Text Available This paper analyzes the use of a synthetic aperture radar (SAR imagery to support levee condition assessment by detecting potential slide areas in an efficient and cost-effective manner. Levees are prone to a failure in the form of internal erosion within the earthen structure and landslides (also called slough or slump slides. If not repaired, slough slides may lead to levee failures. In this paper, we compare the accuracy of the supervised classification methods minimum distance (MD using Euclidean and Mahalanobis distance, support vector machine (SVM, and maximum likelihood (ML, using SAR technology to detect slough slides on earthen levees. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory’s (JPL’s uninhabited aerial vehicle synthetic aperture radar (UAVSAR. The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers.

  20. Progress in development and design aspects of advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Technical Committee Meeting (TCM) was to provide an international forum for technical specialists to review and discuss technology developments and design work for advanced water cooled reactors, safety approaches and features of current water cooled reactors and to identify, understand and describe advanced features for safety and operational improvements. The TCM was attended by 92 participants representing 18 countries and two international organizations and included 40 presentations by authors of 14 countries and one international organization. A separate abstract was prepared for each of these presentations. Refs, figs, tabs

  1. Epistemological Development in Social Work Education

    Science.gov (United States)

    Anderson-Meger, Jennifer

    2014-01-01

    Epistemological development is an important factor in facilitating learner identity and developing critical thinking aptitudes. This qualitative action research study explored undergraduate social work students' epistemological beliefs about knowledge, how knowledge is constructed, and implications for social work education. Data collection…

  2. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work

    Directory of Open Access Journals (Sweden)

    Junping Lv

    2017-01-01

    Full Text Available Eutrophication of water catchments and the greenhouse effect are major challenges in developing the global economy in the near future. Secondary effluents, containing high amounts of nitrogen and phosphorus, need further treatment before being discharged into receiving water bodies. At the same time, new environmentally friendly energy sources need to be developed. Integrating microalgal cultivation for the production of biodiesel feedstock with the treatment of secondary effluent is one way of addressing both issues. This article provides a comprehensive review of the latest progress in microalgal cultivation in secondary effluent to remove pollutants and accumulate lipids. Researchers have discovered that microalgae remove nitrogen and phosphorus effectively from secondary effluent, accumulating biomass and lipids in the process. Immobilization of appropriate microalgae, and establishing a consortium of microalgae and/or bacteria, were both found to be feasible ways to enhance pollutant removal and lipid production. Demonstrations of pilot-scale microalgal cultures in secondary effluent have also taken place. However there is still much work to be done in improving pollutants removal, biomass production, and lipid accumulation in secondary effluent. This includes screening microalgae, constructing the consortium, making use of flue gas and nitrogen, developing technologies related to microalgal harvesting, and using lipid-extracted algal residues (LEA.

  3. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    Science.gov (United States)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  4. Shale gas development impacts on surface water quality in Pennsylvania

    Science.gov (United States)

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  5. Characterisation of potential aquaculture pond effluents, and ...

    African Journals Online (AJOL)

    Conventional treatment of effluents from these small-scale, low-volume operations, which discharge relatively dilute effluents infrequently, might not be cost-effective. Keywords: aquaculture–environment interaction, earthen ponds, effluent characterisation, K-means clustering, t ilapia, water quality. African Journal of Aquatic ...

  6. Meeting water needs for sustainable development: an overview of approaches, measures and data sources

    Science.gov (United States)

    Lissner, Tabea; Reusser, Dominik E.; Sullivan, Caroline A.; Kropp, Jürgen P.

    2013-04-01

    An essential part of a global transition towards sustainability is the Millennium Development Goals (MDG), providing a blueprint of goals to meet human needs. Water is an essential resource in itself, but also a vital factor of production for food, energy and other industrial products. Access to sufficient water has only recently been recognized as a human right. One central MDG is halving the population without access to safe drinking water and sanitation. To adequately assess the state of development and the potential for a transition towards sustainability, consistent and meaningful measures of water availability and adequate access are thus fundamental. Much work has been done to identify thresholds and definitions to measure water scarcity. This includes some work on defining basic water needs of different sectors. A range of data and approaches has been made available from a variety of sources, but all of these approaches differ in their underlying assumptions, the nature of the data used, and consequently in the final results. We review and compare approaches, methods and data sources on human water use and human water needs. This data review enables identifying levels of consumption in different countries and different sectors. Further comparison is made between actual water needs (based on human and ecological requirements), and recognised levels of water abstraction. The results of our review highlight the differences between different accounts of water use and needs, and reflect the importance of standardised approaches to data definitions and measurements, making studies more comparable across space and time. The comparison of different use and allocation patterns in countries enables levels of water use to be identified which allow for an adequate level of human wellbeing to be maintained within sustainable water abstraction limits. Recommendations are provided of how data can be defined more clearly to make comparisons of water use more meaningful and

  7. Automated Work Package: Initial Wireless Communication Platform Design, Development, and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Al Rashdan, Ahmad Yahya Mohammad [Idaho National Laboratory; Agarwal, Vivek [Idaho National Laboratory

    2016-03-01

    The Department of Energy’s Light Water Reactor Sustainability Program is developing the scientific basis to ensure long-term reliability, productivity, safety, and security of the nuclear power industry in the United States. The Instrumentation, Information, and Control (II&C) pathway of the program aims to increase the role of advanced II&C technologies to achieve this objective. One of the pathway efforts at Idaho National Laboratory (INL) is to improve the work packages execution process by replacing the expensive, inefficient, bulky, complex, and error-prone paper-based work orders with automated work packages (AWPs). An AWP is an automated and dynamic presentation of the work package designed to guide the user through the work process. It is loaded on a mobile device, such as a tablet, and is capable of communicating with plant equipment and systems to acquire plant and procedure states. The AWP replaces those functions where a computer is more efficient and reliable than a human. To enable the automatic acquisition of plant data, it is necessary to design and develop a prototype platform for data exchange between the field instruments and the AWP mobile devices. The development of the platform aims to reveal issues and solutions generalizable to large-scale implementation of a similar system. Topics such as bandwidth, robustness, response time, interference, and security are usually associated with wireless communication. These concerns, along with other requirements, are listed in an earlier INL report. Specifically, the targeted issues and performance aspects in this work are relevant to the communication infrastructure from the perspective of promptness, robustness, expandability, and interoperability with different technologies.

  8. Advanced development and operating experience with a canned motor pump under pressurized water reactor conditions

    International Nuclear Information System (INIS)

    Dittmer, H.; Reymann, A.; Seibig, B.; Reinecker, H.

    1988-01-01

    At the research reactor FRG-2, Geesthacht, an irradiation device is in operation for testing defective light-water-reactor (LWR) test fuel rods under pressurized water reactor conditions (320 0 C, 160 bar). The requirements to the canned motor pump for cooling water circulation: medium: Demineralized water, operating temperature 320 0 C, operating pressure 155 bar, radiation field of the reactor, integration in the irradiation capsule, helium leak rate -6 mbar.dm 3 .s -1 , minimum working life 3000 hours, were high and caused difficulties in the acquisition of this component. First test runs with supplied pumps showed that the desired working life could not be achieved. The results of the development steps, the test runs, and the performance in service show that for our range of applications, the best combination of materials for the radial bearings is silicon-infiltrated SiC (8% free Si) against the same material. These bearings allowed a good working life for the pump to be achieved. (orig./GL) [de

  9. Morphology and muscle gene expression in GIFT and Supreme Nile tilapia varieties reared in two cultivation systems.

    Science.gov (United States)

    Lima, E C S; Povh, J A; Otonel, R A A; Leonhardt, J H; Alfieri, A A; Headley, S A; Souza, F P; Poveda-Parra, A R; Furlan-Murari, P J; Lopera-Barrero, N M

    2017-03-16

    Tissue growth in most fishes occurs by muscular hyperplasia and hypertrophy, which are influenced by different regulatory factors, such as myostatin. The current study evaluated the influence of cultivation in hapas and earthen ponds on the diameter of white muscle fibers and on the myostatin (MSTN-1) gene in GIFT and Supreme varieties of tilapia. Fish of both varieties were reared for 204 days and then divided into four developmental stages. White muscle samples, corresponding to 100 fibers per slide, were collected from the middle region of fish of each variety and cultivation system, and were measured and divided into two classes representing hyperplasia and hypertrophy. Samples were subjected to real-time PCR to analyze gene expression. Hyperplasia decreased during the developing stages, coupled with increased hypertrophy. There was a higher rate of hypertrophy in fish raised in earthen ponds when compared to those raised in hapas, during juvenile and developing phases, and greater hypertrophic growth was observed in GIFT specimens when compared to Supreme specimens in earthen ponds. Since increased MSTN-1 gene expression was observed in GIFT specimens during the developing phase in pond cultivations, and in Supreme tilapia in hapas, MSTN-1 expression is related to greater hypertrophy. These results demonstrate the capacity for increased muscle growth in earthen pond cultivation in which the GIFT variety developed best. How the environment affects the growth of different tilapia varieties may be employed to optimize culture management and genetic improvement programs. Further investigations should aim to describe mechanisms affecting muscle growth and development.

  10. Water, Politics and Development: Framing a Political Sociology of Water Resources Management

    NARCIS (Netherlands)

    Mollinga, P.P.; Bhat, A.; Cleaver, F.; Meinzen-Dick, R.; Molle, F.; Neef, A.; Subramanian, S.; Wester, P.

    2008-01-01

    EDITORIAL PREAMBLE: The first issue of Water Alternatives presents a set of papers that investigates the inherently political nature of water resources management. A Water, Politics and Development initiative was started at ZEF (Center for Development Research, Bonn, Germany) in 2004/2005 in the

  11. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  12. Basis for the development of a scenario for ground water risk assessment of plant protection products to banana crop in the frame work of regulation 1107/2009

    Science.gov (United States)

    Alonso-Prados, Elena; Fernández-Getino, Ana Patricia; Alonso-Prados, Jose Luis

    2014-05-01

    The risk assessment to ground water of pesticides and their main metabolites is a data requirement under regulation 1107/2009, concerning the placing of plant protection products on the market. Predicted environmental concentrations (PEC) are calculated according to the recommendations of Forum for the Co-ordination of pesticide fate models and Their Use (FOCUS). The FOCUS groundwater working group developed scenarios for the main crops in European Union. However there are several crops which grow under specific agro-environmental conditions not covered by these scenarios and it is frequent to use the defined scenarios as surrogates. This practice adds an uncertainty factor in the risk assessment. One example is represented by banana crop which in Europe is limited to sub-tropical environmental conditions and with specific agronomic practices. The Canary Islands concentrates the higher production of banana in the European Union characterized by volcanic soils. Banana is located at low altitudes where soils have been eroded or degraded, and it is a common practice to transport soil materials from the high-mid altitudes to the low lands for cultivation. These cultivation plots are locally named "sorribas". These volcanic soils, classified as Andosols according to the FAO classification, have special physico-chemical properties due to noncrystalline materials and layer silicates. The good stability of these soils and their high permeability to water make them relatively resistant to water erosion. Physical properties of volcanic clayey soils are strongly affected by allophone and Fe and Al oxyhidroxides. The rapid weathering of porous volcanic material results in accumulation of stable organo-mineral complexes and short-range-order mineral such as allophane, imogolite and ferrihydrite. These components induce strong aggregation that partly favors properties such as: reduced swelling, increased aggregate stability of clay minerals, high soil water retention capacity

  13. Development of a nonazeotropic heat pump for crew hygiene water heating

    Science.gov (United States)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.

  14. The effects of periphyton, fish and fertilizer dose on biological processes affecting water quality in earthen fish ponds.

    NARCIS (Netherlands)

    Milstein, A.; Azim, M.E.; Wahab, M.A.; Verdegem, M.C.J.

    2003-01-01

    The potential of periphyton-based aquaculture in South Asia is under investigation in an extensive research program. This paper is a further analysis of data from four experiments carried out in that framework, to explore periphyton, fish and fertilizer dose effects on water quality. Factor analysis

  15. Middle Holocene coastal environment and the rise of the Liangzhu City complex on the Yangtze delta, China

    Science.gov (United States)

    Liu, Yan; Sun, Qianli; Thomas, Ian; Zhang, Li; Finlayson, Brian; Zhang, Weiguo; Chen, Jing; Chen, Zhongyuan

    2015-11-01

    The large prehistoric city of Liangzhu and its associated earthen dike emerged on the Yangtze delta-coast after two millennia of occupation in this area by scattered communities. Details of its development have been widely discussed in the literature. Our results reveal that the city was selectively built at the head of an embayment backed by hills, with close access to food, freshwater and timber, and with protection from coastal hazards. Radiocarbon and optically stimulated luminescence (OSL) dating shows that it was built around 4.8-4.5 ka, and the earthen dike was constructed a little later at 4.1 ka. During this time, saltwater wetlands were changing to freshwater in response to rapid coastal progradation as the postglacial sea-level rise stabilized. This facilitated rice farming and furthered the development of the city with elaborate city planning. The younger large-scale earthen dike and artificial ponds possibly suggest increasing demand for flood mitigation and irrigation.

  16. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  17. Monitoring survivability and infectivity of porcine epidemic diarrhea virus (PEDv in the infected on-farm earthen manure storages (EMS

    Directory of Open Access Journals (Sweden)

    Hein Min Tun

    2016-03-01

    Full Text Available In recent years, porcine epidemic diarrhea virus (PEDv has caused major epidemics, which has been a burden to North America's swine industry. Low infectious dose and high viability in the environment are major challenges in eradicating this virus. To further understand the survivability and infectivity of PEDv in the infected manure, we performed longitudinal monitoring in two open earthen manure storages (EMSs; previously referred to as lagoon from two different infected swine farms identified in the province of Manitoba, Canada. Our study revealed that PEDv could survive up to nine months in the infected EMS after the initial outbreak in the farm. The viral load varied among different layers of the EMS with an average of 1.1 × 105 copies/ml of EMS, independent of EMS temperature and pH. In both studied EMSs, the evidence of viral replication was observed through increased viral load in the later weeks of the samplings while there was no new influx of infected manure into the EMSs, which was suggestive of presence of potential alternative hosts for PEDv within the EMSs. Decreasing infectivity of virus over time irrespective of increased viral load suggested the possibility of PEDv evolution within the EMS and perhaps in the new host that negatively impacted virus infectivity. Viral load in the top layer of the EMS was low and mostly non-infective suggesting that environmental factors, such as UV and sunlight, could diminish the replicability and infectivity of the virus. Thus, frequent agitation of the EMS that could expose virus to UV and sunlight might be a potential strategy for reduction of PEDv load and infectivity in the infected EMSs.

  18. Spatial patterns of development drive water use

    Science.gov (United States)

    Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.

    2018-01-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.

  19. Organic matter sedimentation and resuspension in Tilapia (Oreochromis niloticus) fish ponds during a growing cycle

    NARCIS (Netherlands)

    Jimenez-Montealegre, R.; Verdegem, M.C.J.; Zamora, J.E.; Verreth, J.A.J.

    2002-01-01

    The rates of sedimentation and resuspension of organic carbon and total nitrogen were measured in earthen fishponds, based on nutrient input, water quality parameters and fish size and biomass. Material collected in sediment traps and soil samples were analyzed for organic carbon, total nitrogen,

  20. Managing water supply systems using free-market economy approaches: A detailed review of the implications for developing countries

    Science.gov (United States)

    Chikozho, C.; Kujinga, K.

    2017-08-01

    Decision makers in developing countries are often confronted by difficult choices regarding the selection and deployment of appropriate water supply governance regimes that sufficiently take into account national socio-economic and political realities. Indeed, scholars and practitioners alike continue to grapple with the need to create the optimum water supply and allocation decision-making space applicable to specific developing countries. In this paper, we review documented case studies from various parts of the world to explore the utility of free-market economics approaches in water supply governance. This is one of the major paradigms that have emerged in the face of enduring questions regarding how best to govern water supply systems in developing countries. In the paper, we postulate that increasing pressure on available natural resources may have already rendered obsolete some of the water supply governance regimes that have served human societies very well for many decades. Our main findings show that national and municipal water supply governance paradigms tend to change in tandem with emerging national development frameworks and priorities. While many developing countries have adopted water management and governance policy prescriptions from the international arena, national and local socio-economic and political realities ultimately determine what works and what does not work on the ground. We thus, conclude that the choice of what constitutes an appropriate water supply governance regime in context is never simple. Indeed, the majority of case studies reviewed in the paper tend to rely on a mix of market economics and developmental statism to make their water governance regimes more realistic and workable on the ground.

  1. Philosophy for water development

    Science.gov (United States)

    Leopold, Luna Bergere; Hendricks, E.L.

    1961-01-01

    There is probably no one in this room who has not had an experience analogous to the one I here describe. You sat at the dinner table next to a nice lady who impressed you with her breadth of interest in community affairs. She said to you "Oh, you work in the field of water resources. That certainly is a major problem facing the United States, isn't it? You know, we have had long discussions about this matter in a club to which I belong. We have made a considerable study of this matter and all of us are convinced that a key element in the survival of America is to find a solution to our water problem."You know," she said, "there are certainly a lot of different kinds of organizations mixing up in the field of water. They all seem to be running off in different directions. It seems to me that one of the things we need most is a national water policy. Don't you think so?”I know how you answered the question. You must have about got started on a discussion of some of the complications when the conversation turned to the question of how long did it take you to get home in that last big snow. So, in effect, you continue to talk about the water problem even if merely as you exchange pleasantries about the day's weather. But then you went home and you thought some more about what the nice lady said and you asked yourself "well, now, truly how do we solve the Nation's water problem? What has a national water policy to do with a solution of this problem?" In the next few minutes I wish to exchange with you some of our thoughts on this matter.

  2. Private investment for building a small hydropower plant at Zetea dam base

    International Nuclear Information System (INIS)

    Popa, Florica; Paraschivescu, Adina; Vladescu, Aurelia; Popa, Bogdan

    2007-01-01

    Zetea lake grading project comprises an earthen dam, made out of local materials, having as main purposes water supply, flood control and protection against flooding. The paper analyzes the possibility of building a small hydropower plant at the base of the dam, using private investment resources, in order to put to good use the water flow evacuated from the storage lake. (authors)

  3. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  4. The Development of New Trans-border Water Routes in the South-East Baltic: Methodology and Practice

    Directory of Open Access Journals (Sweden)

    Kropinova E.

    2014-09-01

    Full Text Available This article offers an integrative approach to the development of trans-border water routes. Route development is analysed in the context of system approach as integration of geographical, climatic, meaning-related, infrastructural, and marketing components. The authors analyse the Russian and European approaches to route development. The article focuses on the institutional environment and tourist and recreational resources necessary for water route development. Special attention is paid to the activity aspect of tourist resources. At the same time, the development of all routes included an analysis of physical geographical, technological, infrastructural, economic, political, and social aspects. The case of water routes developed in the framework of the Crossroads 2.0 international project is used to describe the practical implementation of the theoretical assumptions. The work also tests the methodology of point rating for objects that can be potentially included in the route. The creation of trans-border water routes is presented as an innovative technology of identifying a territory’s potential and its further development. The authors stress the trans-border nature of water routes is their essential characteristic based on the natural properties of water routes.

  5. Development of Database and Lecture Book for Nuclear Water Chemistry

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Kim, U. C.; Na, J. W.; Choi, B. S.; Lee, E. H.; Kim, K. H.; Kim, K. M.; Kim, S. H.; Im, K. S.

    2010-02-01

    In order to establish a systematic and synthetic knowledge system of nuclear water chemistry, we held nuclear water chemistry experts group meetings. We discussed the way of buildup and propagation of nuclear water chemistry knowledge with domestic experts. We obtained a lot of various opinions that made the good use of this research project. The results will be applied to continuous buildup of domestic nuclear water chemistry knowledge database. Lessons in water chemistry of nuclear power plants (NPPs) have been opened in Nuclear Training and education Center, KAERI to educate the new generation who are working and will be working at the department of water chemistry of NPPs. The lessons were 17 and lesson period was from 12th May through 5th November. In order to progress the programs, many water chemistry experts were invited. They gave lectures to the younger generation once a week for 2 h about their experiences obtained during working on water chemistry of NPPs. The number of attendance was 290. The lessons were very effective and the lesson data will be used to make database for continuous use

  6. Fair access to water | IDRC - International Development Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2013-03-19

    Mar 19, 2013 ... ... blocks of the environment on which people, plants, and animals depend. ... the planning and monitoring will ensure fair and safe access to water for all ... Faruqui's work has focused on water management in Islam, and the ...

  7. Robust Water Supply Infrastructure Development Pathways: What, When and Where Matters the Most? (INVITED)

    Science.gov (United States)

    Reed, Patrick; Zeff, Harrison; Characklis, Gregory

    2017-04-01

    Water supply adaptation frameworks that seek robustness must adaptively trigger actions that are contextually appropriate to emerging system observations and avoid long term high regret lock-ins. As an example, emerging water scarcity concerns in southeastern United States are associated with several deeply uncertain factors, including rapid population growth, limited coordination across adjacent municipalities and the increasing risks for sustained regional droughts. Managing these uncertainties will require that regional water utilities identify regionally coordinated, scarcity-mitigating infrastructure development pathways that trigger time appropriate actions. Mistakes can lead to water shortages, overbuilt stranded assets and possibly financial failures. This presentation uses the Research Triangle area of North Carolina to illustrate the key concerns and challenges that emerged when helping Raleigh, Durham, Cary and Chapel Hill develop their long term water supply infrastructure pathways through 2060. This example shows how the region's water utilities' long term infrastructure pathways are strongly shaped by their short term conservation policies (i.e., reacting to evolving demands) and their ability to consider regional water transfers (i.e., reacting to supply imbalances). Cooperatively developed, shared investments across the four municipalities expand their capacity to use short term transfers to better manage severe droughts with fewer investments in irreversible infrastructure options. Cooperative pathways are also important for avoiding regional robustness conflicts, where one party benefits strongly at the expense of one or more the others. A significant innovation of this work is the exploitation of weekly and annual dynamic risk-of-failure action triggers that exploit evolving feedbacks between co-evolving human demands and regional supplies. These dynamic action triggers provide high levels of adaptivity, tailor actions to their specific context

  8. EDF program on SCC initiation of cold-worked stainless steels in primary water

    Energy Technology Data Exchange (ETDEWEB)

    Huguenin, P.; Vaillant, F.; Couvant, T. [Electricite de France (EDF/RD), Site des Renardieres, 77 - Moret sur loing (France); Buisse, L. [EDF UTO, 93 - Noisy-Le-Grand (France); Huguenin, P.; Crepin, J.; Duhamel, C.; Proudhon, H. [MINES ParisTech, Centre des Materiaux, 91 - Evry (France); Ilevbare, G. [EPRI California (United States)

    2009-07-01

    A few cases of Intergranular Stress Corrosion Cracking (IGSCC) on cold-worked austenitic stainless steels in primary water have been detected in French Pressurized Water Reactors (PWRs). A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with cyclic loading favoured SCC, whereas cracking under static conditions appeared to be difficult. A propagation model was also proposed. The first available results of the present study demonstrate the strong influence of a trapezoidal cyclic loading on the creep of 304L austenitic stainless steel. While no creep was detected under a pure static loading, the creep rate was increased by a factor 102 under a trapezoidal cyclic loading. The first results of SCC initiation performed on notched specimens under a trapezoidal cyclic loading at low frequency are presented. The present study aims at developing an engineering model for IGSCC initiation of 304L, 316L and weld 308L stainless steels. The effect of the pre-straining on the SCC mechanisms is more specifically studied. Such a model will be based on (i) SCC initiation tests on notched and smooth specimens under 'trapezoidal' cyclic loading and, (ii) constant strain rate SCC initiation tests. The influence of stress level, cold-work level, strain path, surface roughness and temperature is particularly investigated. (authors)

  9. International Cooperation for the Training of Water Managers from Developing Countries

    Science.gov (United States)

    Aswathanarayana, U.

    2007-12-01

    Water is the key to the well being of a community. On one hand, water security is linked to food security, as food cannot be grown without water. On the other hand, water security is linked to environmental security, as water is needed to maintain the health of a community. International cooperation is proposed for the training in Hyderabad, India, with international faculty, of ~ 300 water managers from the developing countries at an estimated cost of ~USD 3300/- per candidate (including ~ USD 1800/- for international travel), through ten interactive and customized training programmes during the period of five years, to enable them to address two crucial issues affecting the poor in the developing countries, namely, access to affordable water and coping with water scarcity. Ways of Good governance and geographical targeting of poverty alleviation programmes are built into each training programme. Each training programme will be for about three weeks (inclusive of field work). Each course will have a component common to all, plus a component customized to the biophysical and socioeconomic situation in a candidate's country. Ten course manuals will be produced. which can later be published commercially as low-cost volumes, for the benefit of the readership in the Developing countries . Each candidate will be provided his own computer, and software, and individual faculty adviser. On the basis of the training received, a candidate should be able to carry with him at the end of the course a draft outline of techno-socio-economic action plan for his country/area in respect of the theme of the course, prepared by himself/herself. A copy of this outline would be provided to the World Bank, and relevant organizations for follow- up activity

  10. Low-cost failure sensor design and development for water pipeline distribution systems.

    Science.gov (United States)

    Khan, K; Widdop, P D; Day, A J; Wood, A S; Mounce, S R; Machell, J

    2002-01-01

    This paper describes the design and development of a new sensor which is low cost to manufacture and install and is reliable in operation with sufficient accuracy, resolution and repeatability for use in newly developed systems for pipeline monitoring and leakage detection. To provide an appropriate signal, the concept of a "failure" sensor is introduced, in which the output is not necessarily proportional to the input, but is unmistakably affected when an unusual event occurs. The design of this failure sensor is based on the water opacity which can be indicative of an unusual event in a water distribution network. The laboratory work and field trials necessary to design and prove out this type of failure sensor are described here. It is concluded that a low-cost failure sensor of this type has good potential for use in a comprehensive water monitoring and management system based on Artificial Neural Networks (ANN).

  11. Effect of Organic Fertilizers on Zooplankton Production | Orji ...

    African Journals Online (AJOL)

    Effect of Organic Fertilizers on Zooplankton Production. ... Journal of Agriculture and Food Sciences ... The aquaria were thoroughly washed, filled with 20litres of bore-hole water, fertilized with the respective organic manures after 4 days fermentation and inoculated with zooplankton samples collected from an earthen fish ...

  12. Developing a water market readiness assessment framework

    Science.gov (United States)

    Wheeler, Sarah Ann; Loch, Adam; Crase, Lin; Young, Mike; Grafton, R. Quentin

    2017-09-01

    Water markets are increasingly proposed as a demand-management strategy to deal with water scarcity. Water trading arrangements, on their own, are not about setting bio-physical limits to water-use. Nevertheless, water trading that mitigates scarcity constraints can assist regulators of water resources to keep water-use within limits at the lowest possible cost, and may reduce the cost of restoring water system health. While theoretically attractive, many practitioners have, at best, only a limited understanding of the practical usefulness of markets and how they might be most appropriately deployed. Using lessons learned from jurisdictions around the world where water markets have been implemented, this study attempts to fill the existing water market development gap and provide an initial framework (the water market readiness assessment (WMRA)) to describe the policy and administrative conditions/reforms necessary to enable governments/jurisdictions to develop water trading arrangements that are efficient, equitable and within sustainable limits. Our proposed framework consists of three key steps: 1) an assessment of hydrological and institutional needs; 2) a market evaluation, including assessment of development and implementation issues; and 3) the monitoring, continuous/review and assessment of future needs; with a variety of questions needing assessment at each stage. We apply the framework to three examples: regions in Australia, the United States and Spain. These applications indicate that WMRA can provide key information for water planners to consider on the usefulness of water trading processes to better manage water scarcity; but further practical applications and tests of the framework are required to fully evaluate its effectiveness.

  13. Alternative Water Processor Test Development

    Science.gov (United States)

    Pickering, Karen D.; Mitchell, Julie; Vega, Leticia; Adam, Niklas; Flynn, Michael; Wjee (er. Rau); Lunn, Griffin; Jackson, Andrew

    2012-01-01

    The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.

  14. Estimation of Length-Weight Relationship and Proximate Composition of Catfish (Clarias gariepinus Burchell, 1822 from Two Different Culture Facilities

    Directory of Open Access Journals (Sweden)

    Olaniyi Alaba Olopade

    2015-06-01

    Full Text Available This study was carried out to determine and compare the proximate composition and length weight relationship of C. gariepinus from two culture systems (earthen and concrete ponds. The fish samples were collected from three fish farms with same cultural condition in different areas of Obio-akpor Local Government Area of Rivers State, Nigeria. Result on the length- weight relationship revealed that C.gariepinus reared in concrete tank had a total length of 15.50- 49.00cm with a mean of 32.71cm and weight of 150-625g, while total length of C. gariepinus reared in the earthen pond ranged from 19.90-58.0cm with a mean of 39.8cm and weight of 195-825g. The T- test shows that the total length of earthen pond were significantly higher than the concrete tank and the weight in the earthen pond was significantly higher than the concrete tank. Parameters of proximate composition analysed were moisture, protein, lipid, carbohydrate, ash and fiber from the fish flesh. Protein content showed a significantly higher in the earthen ponds than the concrete tanks. Ash contents varied from 1.5±1.66-7.4±0.67% in the concrete tanks and were significantly higher than the earthen ponds which ranged from 3.1±0.94-4.5±2.11%. Lipid was significantly higher in earthen ponds than concrete tanks. Generally, the two culture systems have a significant influence on length–weight relationship and nutritional value of C. gariepinus. However, C. gariepinus reared in concrete tank had a heavier body weight than earthen pond and also C. gariepinus reared in earthen pond had highest nutritive values than the concrete tank.

  15. EQUILIBRIUM OF WATER BALANCE AS A BASIC PRECONDITION OF PROGRESSIVE DEVELOPMENT OF LAND AREA

    Directory of Open Access Journals (Sweden)

    K KUDRNA

    2005-04-01

    Full Text Available The proportion of water balance components – precipitation, transpiration, evaporation, underground waters and surface runoff – is a determining factor of stabile development of land area. But this proportion can be considerably disturbed and is permanently changing. Certain many-year averages are usually accepted as a stable state. That is why, in the presented work, we have tried to defi ne water balance on symmetry and invariance principles, to express it as a limit state, which would characterize it as a natural principle and enable comparison with the present balance.

  16. Development of specific water quality index for water supply in Thailand

    Directory of Open Access Journals (Sweden)

    Chaiwat Prakirake

    2009-01-01

    Full Text Available In this study, the specific water quality index for assessing water quality in terms of water supply (WSI usage has been developed by using Delphi technique and its application in Thai rivers is proposed. The thirteen parameters including turbidity, DO, pH, NO3-N, TDS, FCB, Fe, color, BOD, Mn, NH3-N, hardness, and total PO4-P are employed for the estimation of water quality. The sub-index transformation curves are established for each variable to assess the variation in water quality level. An appropriate function to aggregate overall sub-indices was weighted Solway function that provided reasonableresults for reducing ambiguous and eclipsing effects for high and slightly polluted samples. The developed WSI couldbe applied to measure water quality into 5 levels - very good (85-100; good (80-<85; average (65-<80; poor (40-<65and very poor (<40. The proposed WSI could be used for evaluating water quality in terms of water supply. In addition, it could be used for analyzing long-term trait analysis and comparing water quality among different reaches of rivers or between different watersheds.

  17. The unique functioning of a pre-Columbian Amazonian floodplain fishery.

    Science.gov (United States)

    Blatrix, Rumsaïs; Roux, Bruno; Béarez, Philippe; Prestes-Carneiro, Gabriela; Amaya, Marcelo; Aramayo, Jose Luis; Rodrigues, Leonor; Lombardo, Umberto; Iriarte, Jose; de Souza, Jonas Gregorio; Robinson, Mark; Bernard, Cyril; Pouilly, Marc; Durécu, Mélisse; Huchzermeyer, Carl F; Kalebe, Mashuta; Ovando, Alex; McKey, Doyle

    2018-04-16

    Archaeology provides few examples of large-scale fisheries at the frontier between catching and farming of fish. We analysed the spatial organization of earthen embankments to infer the functioning of a landscape-level pre-Columbian Amazonian fishery that was based on capture of out-migrating fish after reproduction in seasonal floodplains. Long earthen weirs cross floodplains. We showed that weirs bear successive V-shaped features (termed 'Vs' for the sake of brevity) pointing downstream for outflowing water and that ponds are associated with Vs, the V often forming the pond's downstream wall. How Vs channelled fish into ponds cannot be explained simply by hydraulics, because Vs surprisingly lack fishways, where, in other weirs, traps capture fish borne by current flowing through these gaps. We suggest that when water was still high enough to flow over the weir, out-migrating bottom-hugging fish followed current downstream into Vs. Finding deeper, slower-moving water, they remained. Receding water further concentrated fish in ponds. The pond served as the trap, and this function shaped pond design. Weir-fishing and pond-fishing are both practiced in African floodplains today. In combining the two, this pre-Columbian system appears unique in the world.

  18. Public health risk status of the water supply frame work at Kwame ...

    African Journals Online (AJOL)

    The aim of the study is to assess the public health risk status of the potable water supply framework at the Kwame Nkurumah Postgraduate Residence (PG) Hall, University of Nigeria, Nsukka, (UNN), Enugu State, Nigeria, and environs. Four potable water supply frame-works at the PG Hall, UNN, and exposed stagnant ...

  19. Control of water infiltration into near surface LLW disposal units: Progress report on field experiments at a humid region site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.

    1996-08-01

    This study's objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (70 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care

  20. [Development and succession of artificial biological soil crusts and water holding characteristics of topsoil].

    Science.gov (United States)

    Wu, Li; Chen, Xiao-Guo; Zhang, Gao-Ke; Lan, Shu-Bin; Zhang, De-Lu; Hu, Chun-Xiang

    2014-03-01

    In order to understand the improving effects of cyanobacterial inoculation on water retention of topsoil in desert regions, this work focused on the development and succession of biological soil crusts and water holding characteristics of topsoil after cyanobacterial inoculation in Qubqi Desert. The results showed that after the artificial inoculation of desert cyanobacteria, algal crusts were quickly formed, and in some microenvironments direct succession of the algal crusts to moss crusts occurred after 2-3 years. With the development and succession of biological soil crusts, the topsoil biomass, polysaccharides content, crust thickness and porosity increased, while the soil bulk density decreased. At the same time, with crust development and succession, the topsoil texture became finer and the percents of fine soil particles including silt and clay contents increased, while the percents of coarse soil particles (sand content) decreased proportionately. In addition, it was found that with crust development and succession, the water holding capacity and water content of topsoil showed an increasing trend, namely: moss crust > algal crusts > shifting sand. The water content (or water holding capacity) in algal and moss crusts were 1.1-1.3 and 1.8-2.2 times of those in shifting sand, respectively. Correlation analysis showed that the water holding capacity and water content of topsoil were positively correlated with the crust biomass, polysaccharides content, thickness, bulk density, silt and clay content; while negatively correlated with the porosity and sand content. Furthermore, stepwise regression analysis showed that the main factor affecting water content was the clay content, while that affecting water holding capacity was the porosity.

  1. Water works Slatinka, Garajky, Hroncek and Tichy potok for public profit

    International Nuclear Information System (INIS)

    Holcik, V.

    2003-01-01

    There is 2890 towns and villages in Slovak Republic. About 2030 has drinking water from public ducting. Worse situation is in waste water off take - only about 490 villages are connected to public sewerage. It is necessary to have drinking water at disposal (from underground and ground sources), consequently ducting with water finishing department and at the end sewerage with water purifier. But Slovak Republic is country that has never had enough money for such investments as building drinking water basin, to process and distribute water to 38 villages and to build sewerage and water purifier for these villages. If we want to be equal partner to another European Union countries thus all villages above 2000 inhabitants should have ducting and sewerage. In Slovak Republic there is about 295 villages without ducting and sewerage. First, the source is necessary, then duct and then sewerage, not conversely. Structural, cohesive and other European Union funds should be used also for building of drinking water basins and connecting ducts and sewerage. I am confident that water works Slatinka, Garajky, Hroncek and Tichy Potok recommended by Ministry of Land management are necessary to be built and it will be for public profit

  2. Thermal performance of unfired clay bricks used in construction in the north of France: Case study

    OpenAIRE

    Fayçal El Fgaier; Zoubeir Lafhaj; Franck Brachelet; Emmanuel Antczak; Christophe Chapiseau

    2015-01-01

    The objective of this study is to demonstrate and to study the sustainability and the qualities of the earthen construction in real conditions. A demonstrative building was designed and built with unfired clay bricks, were industrially produced by the factory “Briqueteries du Nord” (BdN). This industrial plant is located in the north of France. This project aims to create conditions for the development of earthen construction techniques in the north of France. Moreover, it aims to prove the b...

  3. Catalytic models developed through social work

    DEFF Research Database (Denmark)

    Jensen, Mogens

    2015-01-01

    of adolescents placed in out-of-home care and is characterised using three situated cases as empirical data. Afterwards the concept of catalytic processes is briefly presented and then applied in an analysis of pedagogical treatment in the three cases. The result is a different conceptualisation of the social......The article develops the concept of catalytic processes in relation to social work with adolescents in an attempt to both reach a more nuanced understanding of social work and at the same time to develop the concept of catalytic processes in psychology. The social work is pedagogical treatment...

  4. Laser remote sensing of water vapor: Raman lidar development

    International Nuclear Information System (INIS)

    Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E.; Melfi, S.H.; Whiteman, D.N.; Ferrare, R.A.; Evans, K.D.

    1994-01-01

    The goal of this research is the development of a critical design for a Raman lidar system optimized to match ARM Program needs for profiling atmospheric water vapor at CART sites. This work has emphasized the development of enhanced daytime capabilities using Raman lidar techniques. This abstract touches briefly on the main components of the research program, summarizing results of the efforts. A detailed Raman lidar instrument model has been developed to predict the daytime and nighttime performance capabilities of Raman lidar systems. The model simulates key characteristics of the lidar system, using realistic atmospheric profiles, modeled background sky radiance, and lidar system parameters based on current instrument capabilities. The model is used to guide development of lidar systems based on both the solar-blind concept and the narrowband, narrow field-of-view concept for daytime optimization

  5. Field development. Concept selection in deep water environment offshore Angola

    Energy Technology Data Exchange (ETDEWEB)

    Guenot, A.; Berger, J.C.; Limet, N. [TotalFinaElf, la Defense 6, Rosa-Lirio Project Group, 92 - Courbevoie (France)

    2002-10-01

    The significant oil discoveries made at the end of the 90's in the deep water environment offshore the coast of Angola, has led to a considerable amount of development activities. The first field in production was the turnkey development of the Kuito field on the Block 14 operated by Chevron. More recently the Girassol field has been put successfully in production on the Block 17, operated by TotalFinaElf. Both developments are making use of sub-sea wells connected to a moored dedicated FPSO. On the western side of the Girassol field, several discoveries have been made. They are known as the Rosa Lirio pole, from the names of two of the main channels. Values for water depth are in the same range than on Girassol (1300- 1400 m). A project group has been established in 1999 to evaluate the development of these discoveries. The purpose of this paper is to present the conceptual work which as been carried out, and in particular to show that even if many different concepts have been evaluated, the final choice has been also to make use of sub-sea trees. (authors)

  6. Conversion of a tailing impoundment to a freshwater reservoir, the Eagle Park Reservoir project, Climax Mine, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Romig, B.R.; Cupp, J.L.; Ford, R.C.

    1999-07-01

    The Climax Molybdenum Mine, located near Leadville, Colorado, is the site of a lengthy mining history spanning more than 80 years. In the 1960's, extraction of molybdenum from oxide ore located adjacent to the massive molybdenite sulfide deposit resulted in the construction of an earthen core dam to impound fine-grained oxide tailing in the Eagle River Valley. Through recognized value of water storage and reclamation opportunities, a tailing removal project was initiated in 1993 to convert the impoundment facilities to a post-mining beneficial land use of developed water resources. An evaluation of the effect residual materials and lake dynamics would have on in-stream water quality was performed. Eagle Park Reservoir stands as a model for future reclamation efforts that involve water delivery to highly sensitive receiving waters. This paper provides a case study on project development, the evolution of water quality assessment, and the regulatory framework that contributed to this project's success.

  7. Nuclear techniques for sustainable development: Water resources and monitoring environmental pollution

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1993-01-01

    At the IAEA's Laboratories in Seibersdorf and Vienna, Austria, problems of water supply and pollution are some of the important environmental topics that scientists are addressing. Through a broad range of scientific and technical projects and services, the Laboratories develop and transfer technologies with important environmental applications, particularly in developing countries. The broad range of activities include assessments of water resources and their possible contamination, and sensitive analytical studies of toxic metals, pesticides, and other environmental pollutants. The work frequently involves using analytical methods based on radiation and isotopes ranging from neutron activation analysis and X-ray fluorescence to atomic absorption spectrometry and tracer techniques. This article - the second of a two-part series - presents a selective overview of activities at the IAEA's Seibersdorf Laboratories contributing to efforts for a sustainable development. In many cases, the Laboratories serve as the institutional centre for research networks involving scientists at analytical laboratories around the world

  8. Regulation Development for Drinking Water Contaminants

    Science.gov (United States)

    To explain what process and information underlies regulations including how the Safe Drinking Water Act applies to regulation development i.e. how does the drinking water law translate into regulations.

  9. Water on TiO2 studied by work function change: adsorption in cycles

    International Nuclear Information System (INIS)

    Bundaleski, Nenad; Silva, Ana G; Jean-Shaw, Bobbie; Teodoro, Orlando; Moutinho, Augusto

    2013-01-01

    The nature of water adsorption on TiO 2 (110) rutile surface attracts a lot of attention for quite some time. In spite of the considerable experimental and theoretical efforts a lot of details remain unclear. We have been using work function study to follow the adsorption of water on TiO 2 at room temperature, and interpreted the results in terms of fast dissociative adsorption on bridging oxygen vacancies (BOV) and much slower non-dissociative adsorption on Ti 5f rows. Additionally, we concluded that water from Ti 5f rows efficiently desorbs at room temperature which is not the case for BOV adsorption sites. Here we propose a novel experimental approach which consists of monitoring in real-time the work function change during cycles of water adsorption. Since desorption at BOVs does not take place at room temperature, this method allows us to resolve the adsorption dynamics on the two adsorption sites. The first results changed our understanding of the phenomenon: we show that both, adsorption on BOVs and Ti 5f are both very fast. Additionally, slow exponential decay of the work function is observed, which is not directly related to water adsorption. The possible explanation of the third slow contribution could be related to the migration of hydrogen atoms along the bridging oxygen rows.

  10. Final report on research and development work 1979 by the Institute for Radiochemistry

    International Nuclear Information System (INIS)

    1980-02-01

    The report gives a brief survey of the state of the research, development, and service activities in the Institute for Radiochemistry in Karlsruhe Nuclear Research Centre. The work is to be classified in the main points analytics, nuclear chemistry, isotope service, and water chemistry, with the analytic and nuclear-chemical tasks being mainly project-related. A bibliography of the publications made by the staff of the institute during 1979 is annected. (RB) [de

  11. EXPERIMENTAL STUDY AND DEVELOPMENT OF A WATER BASIN USED AS SOLAR SENSOR

    Directory of Open Access Journals (Sweden)

    S. E. Laouini

    2010-06-01

    Full Text Available Energy sources play an important role in the development of humanity, with the industrial and technological evolution of our century. Energy demand is increasing every year, for this reason we must seek an alternate source of energy more specifically new and renewable energy including solar energy. Note that solar energy is abundant, especially the south-eastern Algeria, where solar radiation is significant in any year. Given that it is the cheapest of all other energy, many researches and experiments have been conducted to recover the maximum amount of renewable energy and to address the problems of use and operation to reduce and save energy traditional.This work concerns the development of a new device is a basin filled with water used as a solar plane and a storage medium. The results obtained are very important in terms of heating water, the water temperature at outlet of basin reaches up to 74 ° C, also the inlet temperature is 29 ° C.

  12. Priority water research questions for South Africa developed through ...

    African Journals Online (AJOL)

    This paper describes a collaborative process of identifying and prioritising current and future water research questions from a wide range of water specialists within South Africa. Over 1 600 questions were collected, reduced in number and prioritised by specialists working in water research and practice. A total of 59 ...

  13. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.

    Science.gov (United States)

    Wang, Jiao; Deng, Zhiqiang

    2017-06-01

    A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

  14. Cost and effectiveness of radon barrier systems

    International Nuclear Information System (INIS)

    Baker, E.G.; Freeman, H.D.; Hartley, J.N.; Gee, G.W.

    1982-12-01

    Earthen, asphalt, and multilayer radon barrier systems can all provide reduction in the amount of radon gas released from uranium mill tailings. Pacific Northwest Laboratory field tested all three types of covers at Grand Junction, Colorado during the summer of 1981. All nine individual radon barrier systems tested currently meet the EPA standard for radon flux of 20 pCi m - 2 s - 1 . The cost of the asphalt and 3m earthen covers were about the same at the field test. Multilayer covers were significantly more costly. Cost estimates for three high priority western sites indicate 3m of earthen cover is the least costly radon barrier when earthen material is available at or near the disposal site. If earthen material must be imported more than 8 to 10 km asphalt and possibly multilayer radon barriers can be cost effective

  15. Sustainable Development of Africa's Water Resources

    OpenAIRE

    Narenda P. Sharma

    1996-01-01

    This study, African water resources: challenges and opportunities for sustainable management propose a long-term strategy for water resource management, emphasizing the socially sustainable development imperatives for Sub-Saharan Africa (SSA). The message of this strategy is one of optimism - the groundwork already exists for the sustainable management of Africa's water resources. The stra...

  16. Household Water Treatments in Developing Countries

    Science.gov (United States)

    Smieja, Joanne A.

    2011-01-01

    Household water treatments (HWT) can help provide clean water to millions of people worldwide who do not have access to safe water. This article describes four common HWT used in developing countries and the pertinent chemistry involved. The intent of this article is to inform both high school and college chemical educators and chemistry students…

  17. Water management for development of water quality in the Ruhr River basin.

    Science.gov (United States)

    Klopp, R

    2000-01-01

    On the Ruhr, a small river running through hilly country and with a mean flow of 76 m3/s, 27 water works use the method of artificial groundwater recharge to produce 350 million m3 of drinking water annually. On the basis of a special act, the Ruhr River Association is responsible for water quality and water quantity management in the Ruhr basin. The present 94 municipal sewage treatment plants ensure that the raw water is sufficiently good to be turned into drinking water. In the Ruhr's lower reaches, where dry weather results in a 20% share of the entire water flow being treated wastewater, comparatively high concentration of substances of domestic or industrial origin are likely, including substances which municipal wastewater treatment measures cannot entirely remove. These substances include ammonium, coliform bacteria or pathogens, boron and organic trace substances. Although water treatment measures have greatly contributed to the considerable improvement of the Ruhr's water quality in the last few decades, it is desirable to continue to aim at a high standard of drinking water production technologies since the Ruhr is a surface water body influenced by anthropogenic factors. However, in the case of substances infiltrating into drinking water, legislation is required if a reduction of pollution appears to be necessary.

  18. Research and development of an air-cycle heat-pump water heater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, J.T.; Erickson, A.J.; Harvey, A.C.; Toscano, W.M.

    1979-10-01

    A prototype reverse Brayton air cycle heat pump water heater has been designed and built for residential applications. The system consists of a compressor/expander, an air-water heat exchanger, an electric motor, a water circulation pump, a thermostat, and fluid management controls. The prototype development program consisted of a market analysis, design study, and development testing. A potential residential market for the new high-efficiency water heater of approximately 480,000 units/y was identified. The retail and installation cost of this water heater is estimated to be between $500 and $600 which is approximately $300 more than a conventional electric water heater. The average payback per unit is less than 3-1/2 y and the average recurring energy cost savings after the payback period is approximately $105/y at the average seasonal coefficient of performance (COP) of 1.7. As part of the design effort, a thermodynamic parametric analysis was performed on the water heater system. It was determined that to obtain a coefficient of performance of 1.7, the isentropic efficiency of both the compressor and the expander must be at least 85%. The selected mechanical configuration is described. The water heater has a diameter of 25 in. and a height of 73 in. The results of the development testing of the prototype water heater system showed: the electrical motor maximum efficiency of 78%; the compressor isentropic efficiency is 95 to 119% and the volumetric efficiency is approximately 85%; the expander isentropic efficiency is approximately 58% and the volumetric efficiency is 92%; a significant heat transfer loss of approximately 16% occurred in the expander; and the prototype heat pump system COP is 1.26 which is less than the design goal of at least 1.7. Future development work is recommended.

  19. Work safety and sustainable development in enterprise

    Institute of Scientific and Technical Information of China (English)

    TANG Min-kang; ZHOU Yue; XU Jian-hong

    2005-01-01

    The nature of work safety and the way insisting on sustainable development in enterprise were analyzed. It indicates that problem of work safety in enterprise is closely related to the public's consciousness, to the development of science and technology, and to the weakening of safety management during the economic transition period. However, it is the people's questions concerned in the final analysis for the forming and development of the problem of work safety. Therefore, in order to solve the problem of work safety radically, the most basic way of insisting on the sustainable development in safety administration is to do a good job of every aspect about people. We should improve all people quality in science and culture and strengthen their safety and legal consciousness to form correct safety value concept. We should fortify safety legislation and bring close attention to approach and apply new safety technology.

  20. Water, Politics and Development: Framing a Political Sociology of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Peter P. Mollinga

    2008-06-01

    Full Text Available The first issue of Water Alternatives presents a set of papers that investigates the inherently political nature of water resources management. A Water, Politics and Development initiative was started at ZEF (Center for Development Research, Bonn, Germany in 2004/2005 in the context of a national-level discussion on the role of social science in global (environmental change research. In April 2005 a roundtable workshop with this title was held at ZEF, sponsored by the DFG (Deutsche Forschungsgemeinschaft/German Research Foundation and supported by the NKGCF (Nationales Komitee für Global Change Forschung/German National Committee on Global Change Research, aiming to design a research programme in the German context. In 2006 it was decided to design a publication project on a broader, European and international basis. The Irrigation and Water Engineering Group at Wageningen University, the Netherlands joined as a co-organiser and co-sponsor. The collection of papers published in this issue of Water Alternatives is one of the products of the publication project. As part of the initiative a session on Water, Politics and Development was organised at the Stockholm World Water Week in August 2007, where most of the papers in this collection were presented and discussed. Through this publication, the Water, Politics and Development initiative links up with other initiatives simultaneously ongoing, for instance the 'Water governance – challenging the consensus' project of the Bradford Centre for International Development at Bradford University, UK. At this point in time, the initiative has formulated its thrust as 'framing a political sociology of water resources management'. This, no doubt, is an ambitious project, methodologically, theoretically as well as practically. Through the compilation of this collection we have started to explore whether and how such an endeavour might make sense. The participants in the initiative think it does, are quite

  1. Control of water infiltration into near surface LLW disposal units. Progress report on field experiments at a humid region site, Beltsville, Maryland: Volume 8

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.

    1995-04-01

    This study's objective is to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (75 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g., clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained, the conductive layer will wick water around the capillary break. Below-grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover, and remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier or, perhaps even better, by a resistive layer barrier/conductive layer barrier system. The latter system would then give long-term effective protection against water entry into waste without institutional care

  2. Fragility analysis of flood protection structures in earthquake and flood prone areas around Cologne, Germany for multi-hazard risk assessment

    Science.gov (United States)

    Tyagunov, Sergey; Vorogushyn, Sergiy; Munoz Jimenez, Cristina; Parolai, Stefano; Fleming, Kevin; Merz, Bruno; Zschau, Jochen

    2013-04-01

    The work presents a methodology for fragility analyses of fluvial earthen dikes in earthquake and flood prone areas. Fragility estimates are being integrated into the multi-hazard (earthquake-flood) risk analysis being undertaken within the framework of the EU FP7 project MATRIX (New Multi-Hazard and Multi-Risk Assessment Methods for Europe) for the city of Cologne, Germany. Scenarios of probable cascading events due to the earthquake-triggered failure of flood protection dikes and the subsequent inundation of surroundings are analyzed for the area between the gauges Andernach and Düsseldorf along the Rhine River. Along this river stretch, urban areas are partly protected by earthen dikes, which may be prone to failure during exceptional floods and/or earthquakes. The seismic fragility of the dikes is considered in terms of liquefaction potential (factor of safety), estimated by the use of the simplified procedure of Seed and Idriss. It is assumed that initiation of liquefaction at any point throughout the earthen dikes' body corresponds to the failure of the dike and, therefore, this should be taken into account for the flood risk calculations. The estimated damage potential of such structures is presented as a two-dimensional surface (as a function of seismic hazard and water level). Uncertainties in geometrical and geotechnical dike parameters are considered within the framework of Monte Carlo simulations. Taking into consideration the spatial configuration of the existing flood protection system within the area under consideration, seismic hazard curves (in terms of PGA) are calculated for sites along the river segment of interest at intervals of 1 km. The obtained estimates are used to calculate the flood risk when considering the temporal coincidence of seismic and flood events. Changes in flood risk for the considered hazard cascade scenarios are quantified and compared to the single-hazard scenarios.

  3. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    Science.gov (United States)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  4. Firing Room Remote Application Software Development & Swamp Works Laboratory Robot Software Development

    Science.gov (United States)

    Garcia, Janette

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is creating a way to send humans beyond low Earth orbit, and later to Mars. Kennedy Space Center (KSC) is working to make this possible by developing a Spaceport Command and Control System (SCCS) which will allow the launch of Space Launch System (SLS). This paper's focus is on the work performed by the author in her first and second part of the internship as a remote application software developer. During the first part of her internship, the author worked on the SCCS's software application layer by assisting multiple ground subsystems teams including Launch Accessories (LACC) and Environmental Control System (ECS) on the design, development, integration, and testing of remote control software applications. Then, on the second part of the internship, the author worked on the development of robot software at the Swamp Works Laboratory which is a research and technology development group which focuses on inventing new technology to help future In-Situ Resource Utilization (ISRU) missions.

  5. MULTIPLE-PURPOSE DEVELOPMENT OF WATER RESOURCES

    African Journals Online (AJOL)

    practices of cost allocations to various functions of .... approach of water resources development the most attractive and benefitial .... project plus a share of the "joint cost" which are the ... Pricing and Repayments American Water Re- sources ...

  6. Development of EEM based silicon–water and silica–water wall potentials for non-reactive molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghan; Iype, Eldhose; Frijns, Arjan J.H.; Nedea, Silvia V.; Steenhoven, Anton A. van

    2014-07-01

    Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele's potential has been used in studies of fluid–solid interface for a long time. In this work, the conceptual idea of Steele's potential was extended in order to simulate water–silicon and water–silica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a silicon–water contact angle of 129°, a quartz–water contact angle of 0°, and a cristobalite–water contact angle of 40°, which are in reasonable agreement with experimental values.

  7. IAEA activities in technology development for advanced water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Juhn, Poong Eil; Kupitz, Juergen; Cleveland, John; Lyon, Robert; Park, Je Won

    2003-01-01

    As part of its Nuclear Power Programme, the IAEA conducts activities that support international information exchange, co-operative research and technology assessments and advancements with the goal of improving the reliability, safety and economics of advanced water-cooled nuclear power plants. These activities are conducted based on the advice, and with the support, of the IAEA Department of Nuclear Energy's Technical Working Groups on Advanced Technologies for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs). Assessments of projected electricity generation costs for new nuclear plants have shown that design organizations are challenged to develop advanced designs with lower capital costs and short construction times, and sizes, including not only large evolutionary plants but also small and medium size plants, appropriate to grid capacity and owner financial investment capability. To achieve competitive costs, both proven means and new approaches should be implemented. The IAEA conducts activities in technology development that support achievement of improved economics of water-cooled nuclear power plants (NPPs). These include fostering information sharing and cooperative research in thermo-hydraulics code validation; examination of natural circulation phenomena, modelling and the reliability of passive systems that utilize natural circulation; establishment of a thermo-physical properties data base; improved inspection and diagnostic techniques for pressure tubes of HWRs; and collection and balanced reporting from recent construction and commissioning experiences with evolutionary water-cooled NPPs. The IAEA also periodically publishes Status Reports on global development of advanced designs. (author)

  8. Problems of reliability and economy work of thermal power plants water treatment based on baromembrane technologies

    Science.gov (United States)

    Chichirova, N. D.; Chichirov, A. A.; Saitov, S. R.

    2017-11-01

    The introduction of baromembrane water treatment technologies for water desalination at Russian thermal power plants was beganed more than 25 years ago. These technologies have demonstrated their definite advantage over the traditional technologies of additional water treatment for steam boilers. However, there are problems associated with the reliability and economy of their work. The first problem is a large volume of waste water (up to 60% of the initial water). The second problem a expensive and unique chemical reagents complex (biocides, antiscalants, washing compositions) is required for units stable and troublefree operation. Each manufacturer develops his own chemical composition for a certain membrane type. This leads to a significant increase in reagents cost, as well as creates dependence of the technology consumer on the certain supplier. The third problem is that the reliability of the baromembrane units depends directly on the water preliminary treatment. The popular pre-cleaning technology with coagulation of aluminum oxychloride proves to be unacceptable during seasonal changes in the quality of the source water at a number of stations. As a result, pollution, poisoning and lesion of the membrane structure or deterioration of their mechanical properties are observed. The report presents ways to solve these problems.

  9. Development of a fast-water field guide

    International Nuclear Information System (INIS)

    Hansen, K.A.

    2001-01-01

    There are several manuals for oil spill response, but few have information on fast-water conditions. Between 1992 and 1997, approximately 58 per cent of all the oil spilled by volume in the United States happened in waterways with currents exceeding one knot, and the Coast Guard recognized the absence of standard terminology that could be used for fast-water responses. For that reason, an initiative was undertaken to create a document that addresses only fast-water issues. The resulting field guide can be used for training or responding to spills in fast-water. The user must rely on other manuals for issues on toxicity and shoreline cleanup as well as local contingency and site safety plans. The fast-water guide allows on-scene commanders and area supervisors the ability to define techniques and terminology for the responders in the field. It is particularly useful for Coast Guard Marine Safety Units when working with Coast Guard operational units during an emergency response. The current version of the guide that is under review by the working group contains 9 chapters and 9 appendices. The guide includes a decision-matrix that identifies various fat-water scenarios and provides recommended strategies. It then links to other sections of the document that contain details about the necessary equipment configurations. Photographs are provided to reinforce the concepts. The guide includes a checklist of the issues that must be addressed in any spill, such as weather and nature of the spill with some fast water issues added. Links to appropriate Internet sites are also included in the guide. Information within the guide can be condensed to one sheet for use in the field. 9 refs., 4 tabs., 11 figs

  10. Experimental Polyculture of Milkfish (Chanos chanos) and Mullet ...

    African Journals Online (AJOL)

    cephalus) was studied in polyculture in six small earthen ponds in Mtwapa Creek and. Gazi Bay, Kenya ... Fish were sampled monthly, basic water quality parameters (temperature and oxygen) were monitored ... use of fertilizers and a low stocking density. (2-3 fish/m2) ..... The results suggest that improved survival of.

  11. Water, job creation, industrial development and the implementation of sustainable development goals in Africa

    CSIR Research Space (South Africa)

    Simalabwi, Alex

    2017-01-01

    Full Text Available , 2017 Pretoria, South Africa Water, Jobs, Industrial development and implementation of SDGs in Africa www.gwp.org October 2017 2/19 Outline 1. Introduction: industry and its linkages with resources, other devts., society) 2. Some initiatives.....GWP Africa and AU collaboration Water, Jobs, Industrial development and implementation of SDGs in Africa www.gwp.org October 2017 8/19 Water SDG Investment and Financing Water, Climate and Development Integrated Urban Water Management...

  12. Water Education: An e-learning platform for water-related competence development

    DEFF Research Database (Denmark)

    Eriksson, Eva; Arvin, Erik; Ucendo, Inmaculada Maria Buendia

    2011-01-01

    The Danish water sector is in dire need for competence development to accommodate the changes in Danish water governance (decentralisation,privatisation and larger entities) and the implementation of relevant EuropeanUnion (EU) directives. In parallel, the number of international students enrolled......, DTUEnvironment has created an e-learning platform called Water Education (WatEdu) scheduled to be operational in 2011....

  13. Analysing inter-relationships among water, governance, human development variables in developing countries

    Science.gov (United States)

    Dondeynaz, C.; Carmona Moreno, C.; Céspedes Lorente, J. J.

    2012-10-01

    The "Integrated Water Resources Management" principle was formally laid down at the International Conference on Water and Sustainable development in Dublin 1992. One of the main results of this conference is that improving Water and Sanitation Services (WSS), being a complex and interdisciplinary issue, passes through collaboration and coordination of different sectors (environment, health, economic activities, governance, and international cooperation). These sectors influence or are influenced by the access to WSS. The understanding of these interrelations appears as crucial for decision makers in the water sector. In this framework, the Joint Research Centre (JRC) of the European Commission (EC) has developed a new database (WatSan4Dev database) containing 42 indicators (called variables in this paper) from environmental, socio-economic, governance and financial aid flows data in developing countries. This paper describes the development of the WatSan4Dev dataset, the statistical processes needed to improve the data quality, and finally, the analysis to verify the database coherence is presented. Based on 25 relevant variables, the relationships between variables are described and organised into five factors (HDP - Human Development against Poverty, AP - Human Activity Pressure on water resources, WR - Water Resources, ODA - Official Development Aid, CEC - Country Environmental Concern). Linear regression methods are used to identify key variables having influence on water supply and sanitation. First analysis indicates that the informal urbanisation development is an important factor negatively influencing the percentage of the population having access to WSS. Health, and in particular children's health, benefits from the improvement of WSS. Irrigation is also enhancing Water Supply service thanks to multi-purpose infrastructure. Five country profiles are also created to deeper understand and synthetize the amount of information gathered. This new

  14. Analysing inter-relationships among water, governance, human development variables in developing countries

    Directory of Open Access Journals (Sweden)

    C. Dondeynaz

    2012-10-01

    Full Text Available The "Integrated Water Resources Management" principle was formally laid down at the International Conference on Water and Sustainable development in Dublin 1992. One of the main results of this conference is that improving Water and Sanitation Services (WSS, being a complex and interdisciplinary issue, passes through collaboration and coordination of different sectors (environment, health, economic activities, governance, and international cooperation. These sectors influence or are influenced by the access to WSS. The understanding of these interrelations appears as crucial for decision makers in the water sector. In this framework, the Joint Research Centre (JRC of the European Commission (EC has developed a new database (WatSan4Dev database containing 42 indicators (called variables in this paper from environmental, socio-economic, governance and financial aid flows data in developing countries. This paper describes the development of the WatSan4Dev dataset, the statistical processes needed to improve the data quality, and finally, the analysis to verify the database coherence is presented. Based on 25 relevant variables, the relationships between variables are described and organised into five factors (HDP – Human Development against Poverty, AP – Human Activity Pressure on water resources, WR – Water Resources, ODA – Official Development Aid, CEC – Country Environmental Concern. Linear regression methods are used to identify key variables having influence on water supply and sanitation. First analysis indicates that the informal urbanisation development is an important factor negatively influencing the percentage of the population having access to WSS. Health, and in particular children's health, benefits from the improvement of WSS. Irrigation is also enhancing Water Supply service thanks to multi-purpose infrastructure. Five country profiles are also created to deeper understand and synthetize the amount of information gathered

  15. Thriving with water: Developments in amphibious architecture in North America

    Directory of Open Access Journals (Sweden)

    English Elizabeth

    2016-01-01

    Full Text Available There is increasing awareness worldwide that traditional flood-mitigation strategies that attempt to control the flow of water only increase the likelihood of catastrophic consequences in the long run, when failure inevitably occurs after years of complacency and development behind flood barriers. Amphibious architecture is a non-defensive flood mitigation and climate change adaptation strategy that works in synchrony with a floodprone region’s natural cycles of flooding, allowing water to flow rather than creating an obstruction. Since the height to which an amphibious building rises is not necessarily fixed but adapts to the variable depth of flood water, amphibiation can accommodate rising sea levels and land subsidence as well. Amphibious retrofitting can provide measurable cost savings compared to other flood mitigation strategies, performing well in loss avoidance studies for both flood and wind damage. An amphibious approach to planning and construction recognizes the beneficial aspects of seasonal and occasional flooding, allowing us not merely to live with water, but to thrive with it. This paper reviews case studies of both existing and proposed amphibious buildings, with discussion of their systems and components. It also discusses the limitations of amphibious construction, some of the regulatory obstacles that have discouraged its development, and possible paths forward. The first International Conference on Amphibious Architecture, Design and Engineering, ICAADE 2015, was held in Bangkok, Thailand, in August 2015. The second, ICAADE 2017, will convene at the University of Waterloo in Canada in June 2017.

  16. 7 CFR 1948.83 - Performance of site development work.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Performance of site development work. 1948.83 Section 1948.83 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE... Development Assistance Program § 1948.83 Performance of site development work. Site development work will be...

  17. Social Work Experience and Development in China

    Science.gov (United States)

    Sibin, Wang

    2013-01-01

    This article presents the experience and limitations of government-run social work and the nonprofessional nature of social work, and suggests that the rapid development of social work and its professionalization are the inevitable results of the reform in the system. The author maintains that under market socialism, social work requires the…

  18. Seasonal and Topographical Factors Affecting Breeding Sites of Culex Larvae in Nakhon Si Thammarat, Thailand

    OpenAIRE

    Warabhorn PREECHAPORN; Mullica JAROENSUTASINEE; Krisanadej JAROENSUTASINEE; Jirawat SAETON

    2007-01-01

    This study investigated how the seasons affect the key breeding sites of Culex larvae in three topographical areas: mangrove, rice paddy and mountainous areas. We examined how the number of Culex larvae varied in different types of water containers. Water containers were categorised into the following groups: indoor/outdoor containers, artificial/natural containers, earthen/plastic containers, containers with/without lids and dark/light coloured containers. Samples were collected from 300 hou...

  19. Virtual water trade and development in Africa

    Science.gov (United States)

    Konar, Megan; Caylor, Kelly

    2014-05-01

    A debate has long existed on the relationships between human population, natural resources, and development. Recent research has expanded this debate to include the impacts of trade; specifically, virtual water trade, or the water footprint of traded commodities. We conduct an empirical analysis of the relationships between virtual water trade, population, and development in Africa. We find that increases in virtual water imports do not lead to increases in population growth nor do they diminish human welfare. We establish a new index of virtual water trade openness and show that levels of undernourishment tend to fall with increased values of virtual water trade openness. Countries with small dam storage capacity obtain a higher fraction of their agricultural water requirements from external sources, which may indicate implicit `infrastructure sharing' across nations. Globally, increased crop exports tends to correlate with increased crop water use efficiency, though this relationship does not hold for Africa. However, internal African trade is much more efficient in terms of embodied water resources than any other region in the world. Thus, internal African trade patterns may be compensating for poor internal production systems.

  20. Virtual water trade and development in Africa

    Directory of Open Access Journals (Sweden)

    M. Konar

    2013-10-01

    Full Text Available A debate has long existed on the relationships between human population, natural resources, and development. Recent research has expanded this debate to include the impacts of trade; specifically, virtual water trade, or the water footprint of traded commodities. We conduct an empirical analysis of the relationships between virtual water trade, population, and development in Africa. We find that increases in virtual water imports do not lead to increases in population growth nor do they diminish human welfare. We establish a new index of virtual water trade openness and show that levels of undernourishment tend to fall with increased values of virtual water trade openness. Countries with small dam storage capacity obtain a higher fraction of their agricultural water requirements from external sources, which may indicate implicit "infrastructure sharing" across nations. Globally, increased crop exports tend to correlate with increased crop water use efficiency, though this relationship does not hold for Africa. However, internal African trade is much more efficient in terms of embodied water resources than any other region in the world. Thus, internal African trade patterns may be compensating for poor internal production systems.

  1. Development of a Health-Protective Drinking Water Level for Perchlorate

    Science.gov (United States)

    Ting, David; Howd, Robert A.; Fan, Anna M.; Alexeeff, George V.

    2006-01-01

    We evaluated animal and human toxicity data for perchlorate and identified reduction of thyroidal iodide uptake as the critical end point in the development of a health-protective drinking water level [also known as the public health goal (PHG)] for the chemical. This work was performed under the drinking water program of the Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency. For dose–response characterization, we applied benchmark-dose modeling to human data and determined a point of departure (the 95% lower confidence limit for 5% inhibition of iodide uptake) of 0.0037 mg/kg/day. A PHG of 6 ppb was calculated by using an uncertainty factor of 10, a relative source contribution of 60%, and exposure assumptions specific to pregnant women. The California Department of Health Services will use the PHG, together with other considerations such as economic impact and engineering feasibility, to develop a California maximum contaminant level for perchlorate. We consider the PHG to be adequately protective of sensitive subpopulations, including pregnant women, their fetuses, infants, and people with hypothyroidism. PMID:16759989

  2. Visiting students work with professors to research water resources management issues

    OpenAIRE

    Davis, Lynn

    2009-01-01

    Undergraduate students visiting from universities across the continent, as well as one from Virginia Tech, are working with professors at Virginia Tech on individual research projects in a 10-week summer program that addresses issues related to sustainable management of water resources.

  3. Managing urban water supplies in developing countries Climate change and water scarcity scenarios

    Science.gov (United States)

    Vairavamoorthy, Kala; Gorantiwar, Sunil D.; Pathirana, Assela

    Urban areas of developing countries are facing increasing water scarcity and it is possible that this problem may be further aggravated due to rapid changes in the hydro-environment at different scales, like those of climate and land-cover. Due to water scarcity and limitations to the development of new water resources, it is prudent to shift from the traditional 'supply based management' to a 'demand management' paradigm. Demand management focuses on measures that make better and more efficient use of limited supplies, often at a level significantly below standard service levels. This paper particularly focuses on the intermittent water supplies in the cities of developing countries. Intermittent water supplies need to be adopted due to water scarcity and if not planned properly, results in inequities in water deliveries to consumers and poor levels of service. It is therefore important to recognise these realities when designing and operating such networks. The standard tools available for design of water supply systems often assume a continuous, unlimited supply and the supplied water amount is limited only be the demand, making them unsuitable for designing intermittent supplies that are governed by severely limited water availability. This paper presents details of new guidelines developed for the design and control of intermittent water distribution systems in developing countries. These include a modified network analysis simulation coupled with an optimal design tool. The guidelines are driven by a modified set of design objectives to be met at least cost. These objectives are equity in supply and people driven levels of service (PDLS) expressed in terms of four design parameters namely, duration of the supply; timings of the supply; pressure at the outlet (or flow-rate at outlet); and others such as the type of connection required and the locations of connections (in particular for standpipes). All the four parameters are calculated using methods and

  4. Assessment of Types and Abundance of Live Food for Fish Farming ...

    African Journals Online (AJOL)

    Daisy Ouya

    Abstract—Surveys of naturally-occurring live food for fish in Makoba earthen ponds, Zanzibar were conducted ... plankton in the water column as well as the composition of algal mats. The effect of .... the standard/control and a source of seawater. The reservoir .... could have maintained the nutrients level closer to that of ...

  5. Development of a web application for water resources based on open source software

    Science.gov (United States)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri P.

    2014-01-01

    This article presents research and development of a prototype web application for water resources using latest advancements in Information and Communication Technologies (ICT), open source software and web GIS. The web application has three web services for: (1) managing, presenting and storing of geospatial data, (2) support of water resources modeling and (3) water resources optimization. The web application is developed using several programming languages (PhP, Ajax, JavaScript, Java), libraries (OpenLayers, JQuery) and open source software components (GeoServer, PostgreSQL, PostGIS). The presented web application has several main advantages: it is available all the time, it is accessible from everywhere, it creates a real time multi-user collaboration platform, the programing languages code and components are interoperable and designed to work in a distributed computer environment, it is flexible for adding additional components and services and, it is scalable depending on the workload. The application was successfully tested on a case study with concurrent multi-users access.

  6. NERATOOM work on pump development

    International Nuclear Information System (INIS)

    Hoornweg, C.J.

    1976-01-01

    The prototype pump has been manufactured by Stork Engineerings Works at Hengelo in 1969. The full-scale test on water has been carried out as part of the procedures of acceptance. Tests on sodium have been carried out in the pumptestfacility of Interatom at Bensberg (W. Germany); these tests started in March 1971 and were finished in October 1972. During that period nearly 6000 hours of pump testing were accomplished, of which 150 hours the pump was subjected to cavitation. During 30 hours the pump was subjected to a cavitation intensity of more than 3% loss of delivery head. At some occasions the loss of delivery head was 7%. The measured NPSH with the tests on sodium was 10m, whereas the NPSH obtained with the tests on water was 9m. Attempts have been made to account for this difference of NPSH-setting on the two liquids concerned. At the end of the tests on sodium (that is after the excecution of the cavitation tests) the delivery head of the pump was 2 m.l.c. less than the rated value. After dismantling the pump it appeared that the surface of the impeller vanes was roughened, especially at those parts where the original sand cast surface had not been polished. Based on the testresults and not being contradicted by calculation-results so far, our opinion is that cavitation in sodium of reactor temperature (550 0 C) most probably is of the same order of magnitude as it is in water of roomtemperature under the same conditions of NPSH, provided the same pump operates in systems that are exact replica of one another

  7. Development of an Individual Work Performance Questionnaire

    NARCIS (Netherlands)

    Koopmans, L.; Bernaards, C.M.; Hildebrandt, V.H.; van Buuren, S.; van der Beek, A.J.; de Vet, H.C.W.

    2013-01-01

    The purpose of the current study is to develop a generic and short questionnaire to measure work performance at the individual level – the Individual Work Performance Questionnaire (IWPQ). The IWPQ was based on a four-dimensional conceptual framework, in which individual work performance consisted

  8. Guide to federal water quality programs and information: A guide with computer software developed by the interagency work group on water quality

    International Nuclear Information System (INIS)

    1993-02-01

    The publication makes key Federal information on water quality available to environmental analysts. The Guide includes information on (1) underlying demographic pressures; (2) the use of land, water, and resources; (3) pollutant loadings; (4) ambient water quality; (5) other effects of water pollution; and (6) a listing of programs established to preserve, protect and restore water quality

  9. Spatial patterns of development drive water use

    Science.gov (United States)

    G. M. Sanchez; J. W. Smith; A. Terando; G. Sun; R. K. Meentemeyer

    2018-01-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land...

  10. Advancing Work Practices Through Online Professional Development

    DEFF Research Database (Denmark)

    Noesgaard, Signe Schack

    The natural expectation for professional development courses is that they will improve a participant’s work performance, but do they? This PhD research challenges several assumptions underlying the design of online professional development courses, revealing that it is after such interventions...... was not effective and subsequently terminate change that could have advanced their practices. This underlines the need to think beyond the course format to make online professional development interventions continuous, committing, and contextual. The research suggests rethinking online professional development...... as adaptive “just-in-time” technologies and proposes a design theory called “situated online professional development,” entailing six design principles for advancing work practices....

  11. Perspectives for the Development of a Working Life Policy

    DEFF Research Database (Denmark)

    Hvid, Helge; Hasle, Peter

    2003-01-01

    A discussion of the perspectives in a working life policy with development of both a humane working life and productivity.......A discussion of the perspectives in a working life policy with development of both a humane working life and productivity....

  12. Chemical water shutoff profile research status and development trends

    Science.gov (United States)

    Xu, L. T.

    2017-08-01

    Excess water production is now a common problem encountered in almost every water flooding mature oilfield. The exploitation of oil field is faced with great challenge because of the decrease of oil field production. For the development of high water cut rare the status quo chemical water shutoff profile control technology is an important solution to solve this problem. Oilfield chemical water shutoff has important application prospects. This paper analyzes the water shutoff profile control and water shutoff profile control agent currently oilfield applications, moreover the use and development of blocking agent profile technology is to improve reservoir recovery and propose solutions. With the constant increase in water cut, profile technology should be simple, efficient, practical and profile control agent of development should be economic, environmental, and long period

  13. Experience in the development and practical use of working control levels for radiation safety

    International Nuclear Information System (INIS)

    Epishin, A.V.

    1981-01-01

    The experience of development and practical use of working control levels (WCL) of radiation safety in the Gorky region, is discussed. WCL are introduced by ''Radiation Safety Guides'' (RSG-76) and have great practical importance. Regional control levels of radiation safety are determined for certain types of operations implying radioactive hazard and differentiated according to the types of sources applied and types of operation. Dose rates, radioactive contamination of operating surfaces, skin, air and waste water are subject to normalization. Limits of individual radiation doses specified according to operation categories are included. 10 tables of regional WCL indices are developed [ru

  14. European Climate Change Programme. Working Group II. Impacts and Adaptation. Water Management. Sectoral Report

    International Nuclear Information System (INIS)

    2007-03-01

    Adaptation is a new policy area for the European climate change policy. The Impacts and Adaptation Workgroup has been set up as part of European Climate Change Programme (ECCP II). The main objective of the workgroup is to explore options to improve Europe's resilience to Climate Change Impacts, to encourage the integration of climate change adaptation into other policy areas at the European, national and regional level and to define the role of EU-wide policies complementing action by Member States. The aim of this initial programme of work is to identify good practice in the development of adaptation policy and foster learning from different sectoral experiences and explore a possible EU role in adaptation policies. The Commission has led a series of 10 sectoral meetings looking at adaptation issues for different sectors. One of these meetings looked at the impacts on the water cycle and water resources management and prediction of extreme events in particular. This report summarises the state of play in the Water Resources sector in relation to adaptation to climate change on the basis of the information gathered at the stakeholder meeting on 11 April, 2006

  15. Seepage investigation by using Isotope and Geophysical Techniques in Gumti Flood Embankment/Dyke, Comilla

    International Nuclear Information System (INIS)

    Ahmed, N.; Wallin, B. G.; Majumder, R. K.; Mikail, M.; Rahman, M. S.

    2004-06-01

    Gumti Flood Control Embankment/Dyke is vital for irrigation water supply and flood control. Water seepage/leakage and slope failures are the major issues in Gumti earthen dyke. The distinct seepage and slope failure zone were observed at three places (Farizpur, Kathalia and Ebdarpur) along the countryside of left dyke. The isotopic technique has been integrated in the conventional hydrologic investigations. The isotope methodology works essentially by developing a characteristics pattern of the isotopic composition to identify the sources and flow dynamics of seeping/leaking in the dykes. Two sampling campaigns were conducted; one was on October, 2002 and the other was on July, 2003; near the seepage/leakage site for chemical analysis and stable isotopic analysis (''2H and ''1 8 O). Both samplings were done after recession of peak water level in the Gumti river. Interpretation of the hydrochemical data implies that the groundwater near the investigated seepage zones is Na-Ca-HCO 3 type and the river water is Ca-Mg-HCO 3 type. The chlorides content of both groundwater and river water are found mostly similar, indicating mixing between the two water system. The stable isotopes (''2H and ''1 8 O) of groundwater fall on the Meteoric Water Line, ranging the oxygen-18 values from -4.98 to -5.46 per mil and deuterium values from -30.0 to -33.6 per mil. It indicates the recharge from the river water during peak water level in the river Gumti. On the other hand, the stable isotopes of the Gumti river show some evaporation effect, which might have occurred due to stagnation of flowing water in the river. The oxygen-18 and deuterium values for river water range from -3.61 to -4.43 per mil and from -22.30 to -28.48 per mil respectively. These isotope results reflect the hydraulic connectivity between the river water and groundwater through the base of dyke. The earth imaging resistivity survey was carried out in the dry period along the four above mentioned areas of the Gumti

  16. Water supply

    International Nuclear Information System (INIS)

    Peterson, F.L.

    1986-01-01

    Options and methodologies for the development of fresh water supplies on Bikini Atoll are much the same as those practiced in the rest of the Marshall Islands and for that matter, most atolls in the central Pacific Ocean Basin. That is, rainfall distribution on Bikini produces a distinct wet season, lasting from about May through November, with the remaining months being generally dry. As a result, fresh water from surface catchments tends to be plentiful during the wet season? but is usually scarce during the dry months, and alternative sources such as groundwater must be utilized during this time. On Bikini the problems of fresh water supply are somewhat more difficult than for most Marshall Island atolls because rainfall is only about half the Marshall Island's average. Tus water supply is a critical factor limiting the carrying capacity of Bikini Atoll. To address this problem BARC has undertaken a study of the Bikini Atoll water supply. Te primary objectives of this work are to determine: (1) alternatives available for fresh water supply, 2 the amounts, location and quality of available supplies and 3 optimal development methods. The study planned for one's year duration, has been underway only since the summer of 1985 and is thus not yet fully completed. However, work done to date, which is presented in this report of preliminary findings, provides a reasonably accurate picture of Bikini's fresh water supplies and the various options available for their development. The work remaining to be completed will mainly add refinements to the water supply picture presented in the sections to follow

  17. Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness.

    Science.gov (United States)

    Behera, M; Ghangrekar, M M

    2011-01-01

    Performance of four microbial fuel cells (MFC-1, MFC-2, MFC-3 and MFC-4) made up of earthen pots with wall thicknesses of 3, 5, 7 and 8.5 mm, respectively, was evaluated. The MFCs were operated in fed batch mode with synthetic wastewater having sucrose as the carbon source. The power generation decreased with increase in the thickness of the earthen pot which was used to make the anode chamber. MFC-1 generated highest sustainable power density of 24.32 mW/m(2) and volumetric power of 1.04 W/m(3) (1.91 mA, 0.191 V) at 100 Ω external resistance. The maximum Coulombic efficiencies obtained in MFC-1, MFC-2, MFC-3 and MFC-4 were 7.7, 7.1, 6.8 and 6.1%, respectively. The oxygen mass transfer and oxygen diffusion coefficients measured for earthen plate of 3 mm thickness were 1.79 × 10(-5) and 5.38 × 10(-6) cm(2)/s, respectively, which implies that earthen plate is permeable to oxygen as other polymeric membranes. The internal resistance increased with increase in thickness of the earthen pot MFCs. The thickness of the earthen material affected the overall performance of MFCs.

  18. Modelling Inter-relationships among water, governance, human development variables in developing countries with Bayesian networks.

    Science.gov (United States)

    Dondeynaz, C.; Lopez-Puga, J.; Carmona-Moreno, C.

    2012-04-01

    Improving Water and Sanitation Services (WSS), being a complex and interdisciplinary issue, passes through collaboration and coordination of different sectors (environment, health, economic activities, governance, and international cooperation). This inter-dependency has been recognised with the adoption of the "Integrated Water Resources Management" principles that push for the integration of these various dimensions involved in WSS delivery to ensure an efficient and sustainable management. The understanding of these interrelations appears as crucial for decision makers in the water sector in particular in developing countries where WSS still represent an important leverage for livelihood improvement. In this framework, the Joint Research Centre of the European Commission has developed a coherent database (WatSan4Dev database) containing 29 indicators from environmental, socio-economic, governance and financial aid flows data focusing on developing countries (Celine et al, 2011 under publication). The aim of this work is to model the WatSan4Dev dataset using probabilistic models to identify the key variables influencing or being influenced by the water supply and sanitation access levels. Bayesian Network Models are suitable to map the conditional dependencies between variables and also allows ordering variables by level of influence on the dependent variable. Separated models have been built for water supply and for sanitation because of different behaviour. The models are validated if complying with statistical criteria but either with scientific knowledge and literature. A two steps approach has been adopted to build the structure of the model; Bayesian network is first built for each thematic cluster of variables (e.g governance, agricultural pressure, or human development) keeping a detailed level for interpretation later one. A global model is then built based on significant indicators of each cluster being previously modelled. The structure of the

  19. Water footprint characteristic of less developed water-rich regions: Case of Yunnan, China.

    Science.gov (United States)

    Qian, Yiying; Dong, Huijuan; Geng, Yong; Zhong, Shaozhuo; Tian, Xu; Yu, Yanhong; Chen, Yihui; Moss, Dana Avery

    2018-03-30

    Rapid industrialization and urbanization pose pressure on water resources in China. Virtual water trade proves to be an increasingly useful tool in water stress alleviation for water-scarce regions, while bringing opportunities and challenges for less developed water-rich regions. In this study, Yunnan, a typical province in southwest China, was selected as the case study area to explore its potential in socio-economic development in the context of water sustainability. Both input-output analysis and structural decomposition analysis on Yunnan's water footprint for the period of 2002-2012 were performed at not only an aggregated level but also a sectoral level. Results show that although the virtual water content of all economic sectors decreased due to technological progress, Yunnan's total water footprint still increased as a result of economic scale expansion. From the sectoral perspective, sectors with large water footprints include construction sector, agriculture sector, food manufacturing & processing sector, and service sector, while metal products sector and food manufacturing & processing sector were the major virtual water exporters, and textile & clothing sector and construction sector were the major importers. Based on local conditions, policy suggestions were proposed, including economic structure and efficiency optimization, technology promotion and appropriate virtual water trade scheme. This study provides valuable insights for regions facing "resource curse" by exploring potential socio-economic progress while ensuring water security. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. MULTIPLE-PURPOSE DEVELOPMENT OF WATER RESOURCES

    African Journals Online (AJOL)

    practices of cost allocations to various functions of the multiple-purpose development and calls for giving ... An appraisal of water resource must consider surface as well as ground water supplies in terms of location, .... as such a very satisfactory method of cost allocation that would be equally applicable to all projects and.

  1. Monitoring psychosocial stress at work: development of the Psychosocial Working Conditions Questionnaire.

    Science.gov (United States)

    Widerszal-Bazyl, M; Cieślak, R

    2000-01-01

    Many studies on the impact of psychosocial working conditions on health prove that psychosocial stress at work is an important risk factor endangering workers' health. Thus it should be constantly monitored like other work hazards. The paper presents a newly developed instrument for stress monitoring called the Psychosocial Working Conditions Questionnaire (PWC). Its structure is based on Robert Karasek's model of job stress (Karasek, 1979; Karasek & Theorell, 1990). It consists of 3 main scales Job Demands, Job Control, Social Support and 2 additional scales adapted from the Occupational Stress Questionnaire (Elo, Leppanen, Lindstrom, & Ropponen, 1992), Well-Being and Desired Changes. The study of 8 occupational groups (bank and insurance specialists, middle medical personnel, construction workers, shop assistants, government and self-government administration officers, computer scientists, public transport drivers, teachers, N = 3,669) indicates that PWC has satisfactory psychometrics parameters. Norms for the 8 groups were developed.

  2. Development of Technology for Effective Removal of Arsenic and Cyanides from Drinking Water and Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jae

    2008-02-09

    The purpose of the project was to perform a joint research and development effort focused upon the development of methods and the prototype facility for effective removal of arsenic and cyanides from drinking water and wastewater, based on the UPEC patented technology. The goals of this project were to validate UPEC technology, to manufacture a prototype facility meeting the market requirements, and to introduce it to both industry and municipalities which deal with the water quality. The project involved design and fabrication of one experimental unit and one prototypical industrial unit, and tests at industrial and mining sites. The project used sodium ferrate (Na2FeO4) as the media to remove arsenic in drinking water and convert arsenic into non-hazardous form. The work consisted of distinct phases ending with specific deliverables in development, design, fabrication and testing of prototype systems and eventually producing validation data to support commercial introduction of technology and its successful implementation.

  3. Mitigation of Oil in Water Column: Concept Development

    Science.gov (United States)

    2016-06-01

    subsea pipeline leaks , or the leaking of oil from tanks after a damaged vessel has sunk to the bottom. Oil arriving at the surface of the water may...i Classification | CG-926 RDC | author | audience | month year Mitigation of Oil in Water Column: Concept Development Distribution...Center. June 2016 Report No. CG-D-03-16 Mitigation of Oil in Water Column: Concept Development ii UNCLAS//Public | CG-926 RDC

  4. Practices and attitudinal behavior about drinking water in an urban slum of district Rohtak, Haryana: A community-based study

    Directory of Open Access Journals (Sweden)

    Ramesh Verma

    2017-01-01

    Full Text Available Background: Globally, approximately, one billion people lack access to safe drinking water and 1.59 million deaths per year are because of contaminated water, primarily in children age <5 years. WHO reported that more than 90% of diarrhea cases can be prevented by enhancing the availability of clean water and improving hygiene measures. Methodology: The study was conducted in an urban slum of Rohtak district. Investigator interviewed the mothers at their home having children age less than 5 years using study tools in their vernacular language. Study Design: The study was a community based epidemiological study with cross-sectional design. Study Participants: 400 mothers having children less than 5 years. Results: Most of subjects (59% were in the age group of 15-25 years followed by in 25-35 years. One third of subjects belonged to upper caste and 29% of subjects from backward class. The study found that 80% of mother store water in earthen pitcher followed by plastic jug (14%. 78% of mothers said that their source of drinking water was tap while 12% had Hand pump. 83.5% of subjects said that they drink water as such ie without filtering, boiling or chlorination. Conclusion and Recommendations: The study concluded that the prevalence of diarrhea is more among children < 5 years this is because of poor knowledge, poor attitude and inadequate storage water practices of water. The study recommends creating awareness how to diminish contamination of water at household level, creating community groups for women to learn about treatment of water at household level.

  5. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  6. Recent developments in high pressure water technology

    International Nuclear Information System (INIS)

    Johnson, N.A.; Johnson, T.

    1992-01-01

    High Pressure Water Jetting has advanced rapidly in the last decade to a point where the field is splitting into specialised areas. This has left the end user or client in the dark as to whether water jetting will work and if so what equipment is best suited to their particular application. The aim of this paper is to give an overview of:-1. The way water is delivered to the surface and the parameters which control the concentration of energy available on impact. 2. The factors governing application driven selection of equipment. 3. The effects to technical advances in pumps and delivery systems on equipment selection with reference to their to their application to concrete removal and nuclear decontamination. (Author)

  7. The long-term climate change task of the Hanford permanent isolation barrier development program

    International Nuclear Information System (INIS)

    1994-01-01

    The Hanford Site Permanent Isolation Barrier Development Program is developing an in-place disposal capability for low-level nuclear waste for the US Department of Energy at the Hanford Site in southeastern Washington State. Layered earthen and engineered barriers are being developed that will function in what is currently a semiarid environment (mean annual precipitation and temperature of 16 cm and 11.8 degrees C, respectively) for at least 1,000 yr by limiting the infiltration of water through the waste. The Long-Term Climate Change Task has specific goals of (1) obtaining defensible probabilistic projections of the long-term climate variability in the Hanford Site region at many different time scales into the future; (2) developing several test-case climate scenarios that bracket the range of potential future climate, including both greenhouse warming and cycling into another ice age; and (3) using the climate scenarios both to test and to model protective barrier performance. Results from the Carp Lake Pollen Coring Project indicate that for the last approximately 100,000 yr the Columbia River Basin's long-term range of mean annual precipitation ranged from 25%--50% below to 28% above modern levels, while temperature has ranged from 7 degrees C--10 degrees C below to 2 degrees C above modern levels. This long record provides confidence that such a range should bracket potential natural climate change even if the earth cycles back into another Ice Age in the next few millennia

  8. Interactions of energy technology development and new energy exploitation with water technology development in China

    International Nuclear Information System (INIS)

    Liang, Sai; Zhang, Tianzhu

    2011-01-01

    Interactions of energy policies with water technology development in China are investigated using a hybrid input-output model and scenario analysis. The implementation of energy policies and water technology development can produce co-benefits for each other. Water saving potential of energy technology development is much larger than that of new energy exploitation. From the viewpoint of proportions of water saving co-benefits of energy policies, energy sectors benefit the most. From the viewpoint of proportions of energy saving and CO 2 mitigation co-benefits of water technology development, water sector benefits the most. Moreover, economic sectors are classified into four categories concerning co-benefits on water saving, energy saving and CO 2 mitigation. Sectors in categories 1 and 2 have big direct co-benefits. Thus, they can take additional responsibility for water and energy saving and CO 2 mitigation. If China implements life cycle materials management, sectors in category 3 can also take additional responsibility for water and energy saving and CO 2 mitigation. Sectors in category 4 have few co-benefits from both direct and accumulative perspectives. Thus, putting additional responsibility on sectors in category 4 might produce pressure for their economic development. -- Highlights: ► Energy policies and water technology development can produce co-benefits for each other. ► For proportions of water saving co-benefits of energy policies, energy sectors benefit the most. ► For proportions of energy saving and CO 2 mitigation co-benefits of water policy, water sector benefits the most. ► China’s economic sectors are classified into four categories for policy implementation at sector scale.

  9. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    International Nuclear Information System (INIS)

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large

  10. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    Science.gov (United States)

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.

  11. High frequency magnetic field technique: mathematical modelling and development of a full scale water fraction meter

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Emil

    2004-09-15

    This work is concerned with the development of a new on-line measuring technique to be used in measurements of the water concentration in a two component oil/water or three component (i.e. multiphase) oil/water/gas flow. The technique is based on using non-intrusive coil detectors and experiments were performed both statically (medium at rest) and dynamically (medium flowing through a flow rig). The various coil detectors were constructed with either one or two coils and specially designed electronics were used. The medium was composed by air, machine oil, and water having different conductivity values, i.e. seawater and salt water with various conductivities (salt concentrations) such as 1 S/m, 4.9 S/m and 9.3 S/m. The experimental measurements done with the different mixtures were further used to mathematically model the physical principle used in the technique. This new technique is based on measuring the coil impedance and signal frequency at the self-resonance frequency of the coil to determine the water concentration in the mix. By using numerous coils it was found, experimentally, that generally both the coil impedance and the self-resonance frequency of the coil decreased as the medium conductivity increased. Both the impedance and the self-resonance frequency of the coil depended on the medium loss due to the induced eddy currents within the conductive media in the mixture, i.e. water. In order to detect relatively low values of the medium loss, the self-resonance frequency of the coil and also of the magnetic field penetrating the media should be relatively high (within the MHz range and higher). Therefore, the technique was called and referred to throughout the entire work as the high frequency magnetic field technique (HFMFT). To practically use the HFMFT, it was necessary to circumscribe an analytical frame to this technique. This was done by working out a mathematical model that relates the impedance and the self-resonance frequency of the coil to the

  12. Securing water quality and quantity: Research and development perspective

    CSIR Research Space (South Africa)

    Pienaar, H

    2012-10-01

    Full Text Available : ? economic growth & development ? human & environmental needs ? meeting international obligations ? energy needs (strategic water users) ? ensuring availability and allocation (all other users) ? CSIR 2012 Slide 3 Background ? SA 30th driest country... and quantity: Research and development perspective 4th Biennial Conference Harrison Pienaar 10 October 2012 Presentation outline ? Introduction and background to water in South Africa ? Transboundary water resource aspects ? Water related challenges...

  13. Water Loss Management: Tools and Methods for Developing Countries

    OpenAIRE

    Mutikanga, H.E.

    2012-01-01

    Water utilities in developing countries are struggling to provide customers with a reliable level of service due to their peculiar water distribution characteristics including poorly zoned networks with irregular supply operating under restricted budgets. These unique conditions demand unique tools and methods for water loss control. Water loss management: Tools and Methods for Developing Countries provide a decision support toolbox (appropriate tools and methodologies) for assessing, quantif...

  14. Estimation of paddy water temperature during crop development

    International Nuclear Information System (INIS)

    Centeno, H.G.S.; Horie, T.

    1996-01-01

    The crop meristem is in direct contact with paddy water during crop's vegetative stage. Ambient air temperature becomes an important factor in crop development only when internodes elongate sufficiently for the meristem to rise above the water surface. This does not occur until after panicle initiation. Crop growth at vegetative stage is affected more by water temperature than the most commonly measured air temperature. During transplanting in 1992 dry season, the maximum paddy water temperature was 10 deg C higher than the maximum air temperature. For rice crop models, the development of a submodel to estimate water temperature is important to account the effect of paddy water temperature on plant growth. Paddy water temperature is estimated from mean air temperature, solar radiation, and crop canopy. The parameters of the model were derived using the simplex method on data from the 1993 wet- and dry-season field experiments at IRRI

  15. Four decades of working experience of Cirus primary cooling water heat exchangers

    International Nuclear Information System (INIS)

    Dubey, P.K.; Ullas, O.P.; Rao, D.V.H.; Zope, A.K.; Kharpate, A.V.

    2006-01-01

    CIRUS is a 40 MW (Th.) research reactor, commissioned in the year 1960. The reactor has natural uranium fuel rods, heavy water as moderator, demineralised water (DM water) as primary coolant, and seawater as secondary coolant. There are six Heat Exchangers in the primary cooling water (PCW) system. Five of them are required for the normal operation of the reactor and one is kept stand by. DM water flows on the shell side of the heat exchanger in two passes. Seawater is used as coolant on the tube side of the heat exchangers in four passes. Cirus has been in operation for around 41 years excluding refurbishment period. During these four decades of reactor operation, PCW heat exchangers have experienced many failures and undergone many modifications in the circuit for ensuring better performance. This paper tries to capture the essence of working experiences with PCW heat exchangers, various problems faced, remedial measures taken during those four decades of reactor operation. (author)

  16. Maternal Work Conditions and Child Development

    Science.gov (United States)

    Felfe, Christina; Hsin, Amy

    2012-01-01

    How do maternal work conditions, such as psychological stress and physical hazards, affect children's development? Combining data from the Child Development Supplement of the Panel Study of Income Dynamics and the Occupational Information Network allows us to shed some light on this question. We employ various techniques including OLS with…

  17. Barriers and Solutions to Smart Water Grid Development.

    Science.gov (United States)

    Cheong, So-Min; Choi, Gye-Woon; Lee, Ho-Sun

    2016-03-01

    This limited review of smart water grid (SWG) development, challenges, and solutions provides an initial assessment of early attempts at operating SWGs. Though the cost and adoption issues are critical, potential benefits of SWGs such as efficient water conservation and distribution sustain the development of SWGs around the world. The review finds that the keys to success are the new regulations concerning data access and ownership to solve problems of security and privacy; consumer literacy to accept and use SWGs; active private sector involvement to coordinate SWG development; government-funded pilot projects and trial centers; and integration with sustainable water management.

  18. Development of the Next Generation Type Water Recovery System

    Science.gov (United States)

    Oguchi, Mitsuo; Tachihara, Satoru; Maeda, Yoshiaki; Ueoka, Terumi; Soejima, Fujito; Teranishi, Hiromitsu

    According to NASA, an astronaut living on the International Space Station (ISS) requires approximately 7 kg of water per day. This includes 2 kg of drinking water as well as sanitary fresh water for hand washing, gargling, etc. This water is carried to the space station from the earth, so when more people are staying on the space station, or staying for a longer period of time, the cost of transporting water increases. Accordingly, water is a valuable commodity, and restrictions are applied to such activities as brushing teeth, washing hair, and washing clothes. The life of an astronaut in space is not necessarily a healthy one. JAXA has experience in the research of water recovery systems. Today, utilizing knowledge learned through experiences living on the space station and space shuttles, and taking advantage of the development of new materials for device construction, it is possible to construct a new water recovery system. Therefore, JAXA and New Medican Tech Corporation (NMT) have created a system for collaborative development. Based on the technologies of both companies, we are proceeding to develop the next generation of water recovery devices in order to contribute to safe, comfortable, and healthy daily life for astronauts in space. The goal of this development is to achieve a water purification system based on reverse osmosis (RO) membranes that can perform the following functions. • Preprocessing that removes ammonia and breaks down organic matter contained in urine. • Post-processing that adds minerals and sterilizes the water. • Online TOC measurement for monitoring water quality. • Functions for measuring harmful substances. The RO membrane is an ultra-low-pressure type membrane with a 0.0001 micron (0.1 nanometer) pore size and an operating pressure of 0.4 to 0.6 MPa. During processing with the RO membrane, nearly all of the minerals contained in the cleaned water are removed, resulting in water that is near the quality of deionized water

  19. Transboundary Water: Improving Methodologies and Developing Integrated Tools to Support Water Security

    Science.gov (United States)

    Hakimdavar, Raha; Wood, Danielle; Eylander, John; Peters-Lidard, Christa; Smith, Jane; Doorn, Brad; Green, David; Hummel, Corey; Moore, Thomas C.

    2018-01-01

    River basins for which transboundary coordination and governance is a factor are of concern to US national security, yet there is often a lack of sufficient data-driven information available at the needed time horizons to inform transboundary water decision-making for the intelligence, defense, and foreign policy communities. To address this need, a two-day workshop entitled Transboundary Water: Improving Methodologies and Developing Integrated Tools to Support Global Water Security was held in August 2017 in Maryland. The committee that organized and convened the workshop (the Organizing Committee) included representatives from the National Aeronautics and Space Administration (NASA), the US Army Corps of Engineers Engineer Research and Development Center (ERDC), and the US Air Force. The primary goal of the workshop was to advance knowledge on the current US Government and partners' technical information needs and gaps to support national security interests in relation to transboundary water. The workshop also aimed to identify avenues for greater communication and collaboration among the scientific, intelligence, defense, and foreign policy communities. The discussion around transboundary water was considered in the context of the greater global water challenges facing US national security.

  20. Water supply development and tariffs in Tanzania: From free water policy towards cost recovery

    Science.gov (United States)

    Mashauri, Damas A.; Katko, Tapio S.

    1993-01-01

    The article describes the historical development of water tariff policy in Tanzania from the colonial times to present. After gaining independence, the country introduced “free” water policy in its rural areas. Criticism against this policy was expressed already in the 1970s, but it was not until the late 1980s that change became unavoidable. All the while urban water tariffs continued to decline in real terms. In rural and periurban areas of Tanzania consumers often have to pay substantial amounts of money for water to resellers and vendors since the public utilities are unable to provide operative service. Besides, only a part of the water bills are actually collected. Now that the free water supply policy has been officially abandoned, the development of water tariffs and the institutions in general are a great challenge for the country.

  1. Radon barrier field-test monitoring at Grand Junction tailings pile

    International Nuclear Information System (INIS)

    Freeman, H.D.; Hartley, J.N.; Gee, G.W.

    1983-11-01

    Pacific Northwest Laboratory (PNL), as part of the Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) technology development program, has conducted three large-scale field tests of radon covers at the uranium mill tailings pile in Grand Junction, Colorado. The barrier systems, monitored for radon flux for over two years, include earthen, multilayer, and asphalt emulsion covers. Results of the monitoring have shown that a variety of cover systems can meet the Environmental Protection Agency (EPA) standard. The most effective covers tested were asphalt emulsion and earthen (mancos shale). 10 references, 7 figures, 1 table

  2. The potential of PIXE analytical work in water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, H.; Takahashi, Y.; Ishii, K. [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi (JP)] [and others

    1999-07-01

    A method has been developed and tested for PIXE analysis of soluble and insoluble constituents in a variety of water samples in our surroundings. Insoluble components were filtered on a Nuclepore filter of 0.4-{mu}m pores. For soluble fractions, a target of major components was made from a 0.15-ml filtrate evaporated on a user-made polycarbonate film, and in turn heavy metals in trace amounts were preconcentrated in a PIXE-target through the use of a combination of dibenzyldithiocarbamate-chelation with subsequent condensation into dibenzylidene-D-sorbitol gels. These three kinds of targets were analyzed with a PIXE system of 3-MeV proton beams. The widespread concentrations (several tenths of ppb to a few tens of ppm) of {approx}24 elements from Na to Pb were determined simultaneously in a precision sufficient to reveal the elemental distribution between the soluble and insoluble fractions of various aqueous sample such as river water, rain water and water leaking from disposal sites of industrial wastes. Hence, the methodology for preparing three types of targets promotes the PIXE analysis to a truly effective means for monitoring a water-pollution problem in our surroundings. (author)

  3. The potential of PIXE analytical work in water pollution

    International Nuclear Information System (INIS)

    Yamazaki, H.; Takahashi, Y.; Ishii, K.

    1999-01-01

    A method has been developed and tested for PIXE analysis of soluble and insoluble constituents in a variety of water samples in our surroundings. Insoluble components were filtered on a Nuclepore filter of 0.4-μm pores. For soluble fractions, a target of major components was made from a 0.15-ml filtrate evaporated on a user-made polycarbonate film, and in turn heavy metals in trace amounts were preconcentrated in a PIXE-target through the use of a combination of dibenzyldithiocarbamate-chelation with subsequent condensation into dibenzylidene-D-sorbitol gels. These three kinds of targets were analyzed with a PIXE system of 3-MeV proton beams. The widespread concentrations (several tenths of ppb to a few tens of ppm) of ∼24 elements from Na to Pb were determined simultaneously in a precision sufficient to reveal the elemental distribution between the soluble and insoluble fractions of various aqueous sample such as river water, rain water and water leaking from disposal sites of industrial wastes. Hence, the methodology for preparing three types of targets promotes the PIXE analysis to a truly effective means for monitoring a water-pollution problem in our surroundings. (author)

  4. Development of a subsea system for water separation; Desenvolvimento de sistema submarino de separacao de agua produzida

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Mauricio W. de; Ramalho, Joao Batista V.S.; Souza, Antonio Luiz S. de; Gomes, Jose Adilson T.; Burmann, Clovis P. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Oil production is normally followed by water production in increasing rates, mostly when waterflooding is used as oil recovery mechanism. In order to minimize the impact that high rates of produced water causes to the topside facilities , PETROBRAS is working on the development of a subsea system for oil-water separation, so that most of the produced water on the mud line can be removed and reinjected in the reservoir or in a bearing formation. The article shows how this development has been carried, the scenario definition for the pilot, the problems associated to an installation in a system already operating and the oil characteristics determination. These data constitute the base for the survey to define the technologies with potential application on the separation system to be developed. The special characteristic of the oil, with high tendency to form stable emulsions with water, are also analyzed, as well as the difficulties it brings to the process in the subsea environment, where there are vessel size and fluid heating limitations. (author)

  5. Water for development. World Water Day 2002 - March 22. A summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    'Water for Development' was the theme of the World Water Day 2002, which the IAEA coordinated fro the United Nations system. The IAEA transfers cutting edge nuclear technologies to scientists in developing countries to help them find a way to improve efficiency of water use, to better understand climatic change, to turn salt water into fresh water, and to grow healthy crops in saline lands. A comprehensive understanding of a hydrological system is necessary for a sustainable resource development without adverse effects on the environment. Isotope techniques are effective tools fro fulfilling critical hydrologic information needs, e.g. the origin of groundwater, recharge, residence time, interconnections between water bodies, etc. The cost of such investigations is often relatively small in comparison to the cost of classical hydrological techniques, and in addition isotopes provide information that sometimes could not be obtained by other techniques. Stable and radioactive environmental isotopes have now been used for more than four decades to study hydrological systems and have proved particularly useful for understanding groundwater systems. Applications of isotopes in hydrology are based on the general concept of 'tracing', in which either intentionally introduced isotopes or naturally occurring (environmental) isotopes are employed. Environmental isotopes (either radioactive or stable) have a distinct advantage over injected (artificial) tracers in that they facilitate the study of various hydrological processes on a much larger temporal and spatial scale through their natural distribution in a hydrological system. Thus, environmental isotope methodologies are unique in regional studies of water resources to obtain time and space integrated characteristics of groundwater systems. The use of artificial tracers generally is effective fro site-specific, local applications.

  6. Water for development. World Water Day 2002 - March 22. A summary report

    International Nuclear Information System (INIS)

    2002-01-01

    'Water for Development' was the theme of the World Water Day 2002, which the IAEA coordinated fro the United Nations system. The IAEA transfers cutting edge nuclear technologies to scientists in developing countries to help them find a way to improve efficiency of water use, to better understand climatic change, to turn salt water into fresh water, and to grow healthy crops in saline lands. A comprehensive understanding of a hydrological system is necessary for a sustainable resource development without adverse effects on the environment. Isotope techniques are effective tools fro fulfilling critical hydrologic information needs, e.g. the origin of groundwater, recharge, residence time, interconnections between water bodies, etc. The cost of such investigations is often relatively small in comparison to the cost of classical hydrological techniques, and in addition isotopes provide information that sometimes could not be obtained by other techniques. Stable and radioactive environmental isotopes have now been used for more than four decades to study hydrological systems and have proved particularly useful for understanding groundwater systems. Applications of isotopes in hydrology are based on the general concept of 'tracing', in which either intentionally introduced isotopes or naturally occurring (environmental) isotopes are employed. Environmental isotopes (either radioactive or stable) have a distinct advantage over injected (artificial) tracers in that they facilitate the study of various hydrological processes on a much larger temporal and spatial scale through their natural distribution in a hydrological system. Thus, environmental isotope methodologies are unique in regional studies of water resources to obtain time and space integrated characteristics of groundwater systems. The use of artificial tracers generally is effective fro site-specific, local applications

  7. Shale Gas Development and Drinking Water Quality.

    Science.gov (United States)

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  8. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    David Yuill

    2008-06-30

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC

  9. Earthquake countermeasure work on water intake structure based on post-construction shear reinforcement method

    International Nuclear Information System (INIS)

    Satou, Yoshihito; Wani, Masaaki; Wachi, Takamitsu

    2017-01-01

    Hamaoka Nuclear Power Station set up 'earthquake motion as the base for remodeling work' by referring to the strong earthquake fault model assumed by the 'Study meeting for Nankai Trough's mega thrust earthquake model' of the Cabinet Office. Based on this earthquake, it implemented seismic countermeasure work using ceramic fixing type post-construction shear reinforcement bars by targeting the Unit 4 water intake tank screen room. This construction work was carried out in a short period of about nine months due to a restriction in the drainage period of the water intake tank. Thanks to the improvement of process control, such as adoption of a two-shift (day and night) system, this work was completed. On the other hand, the quality of construction was secured by adopting a drilling machine with a resistance sensor at the time of drilling and plastic grout at the time of grout filling, as well as through quality inspection based on Construction Technology Review and Certification. (A.O.)

  10. Tracking Water-Use in Colorado's Energy Exploration and Development

    Science.gov (United States)

    Halamka, T. A.; Ge, S.

    2017-12-01

    By the year 2050 Colorado's population is projected to nearly double, posing many important questions about the stresses that Colorado's water resources will experience. Growing in tandem with Colorado's population is the state's energy exploration and development industry. As water demands increase across the state, the energy exploration and development industry must adapt to and prepare for future difficulties surrounding the legal acquisition of water. The goal of this study is to map out the potential sources of water within the state of Colorado that are being purchased, or will be eligible for purchase, for unconventional subsurface energy extraction. The background of this study includes an overview of the intertwined relationship between water, the energy industry, and the Colorado economy. The project also aims to determine the original purpose of legally appropriated water that is used in Colorado's energy exploration and development. Is the water primarily being purchased or leased from the agricultural sector? Is the water mostly surface water or groundwater? In order to answer these questions, we accessed data from numerous water reporting agencies and examined legal methods of acquisition of water for use in the energy industry. Using these data, we assess the future water quantity available to the energy industry. Knowledge and foresight on the origins of the water used by the energy industry will allow for better and strategic planning of water resources and how the industry will respond to statewide water-related stresses.

  11. Development of microcontroller based water flow measurement

    Science.gov (United States)

    Munir, Muhammad Miftahul; Surachman, Arif; Fathonah, Indra Wahyudin; Billah, Muhammad Aziz; Khairurrijal, Mahfudz, Hernawan; Rimawan, Ririn; Lestari, Slamet

    2015-04-01

    A digital instrument for measuring water flow was developed using an AT89S52 microcontroller, DS1302 real time clock (RTC), and EEPROM for an external memory. The sensor used for probing the current was a propeller that will rotate if immersed in a water flow. After rotating one rotation, the sensor sends one pulse and the number of pulses are counted for a certain time of counting. The measurement data, i.e. the number of pulses per unit time, are converted into water flow velocity (m/s) through a mathematical formula. The microcontroller counts the pulse sent by the sensor and the number of counted pulses are stored into the EEPROM memory. The time interval for counting is provided by the RTC and can be set by the operator. The instrument was tested under various time intervals ranging from 10 to 40 seconds and several standard propellers owned by Experimental Station for Hydraulic Structure and Geotechnics (BHGK), Research Institute for Water Resources (Pusair). Using the same propellers and water flows, it was shown that water flow velocities obtained from the developed digital instrument and those found by the provided analog one are almost similar.

  12. Managing Water supply in Developing Countries

    Science.gov (United States)

    Rogers, P. P.

    2001-05-01

    If the estimates are correct that, in the large urban areas of the developing world 30 percent of the population lack access to safe water supply and 50 percent lack access to adequate sanitation, then we are currently faced with 510 million urban residents without access to domestic water and 850 million without access to sanitation. Looking to the year 2020, we will face an additional 1,900 million in need of water and sanitation services. The provision of water services to these billions of people over the next two decades is one of the greatest challenges facing the nations of the world. In addition to future supplies, major problems exist with the management of existing systems where water losses can account for a significant fraction of the water supplied. The entire governance of the water sector and the management of particular systems raise serious questions about the application of the best technologies and the appropriate economic incentive systems. The paper outlines a few feasible technical and economic solutions.

  13. Development and characterization of polymeric membranes for water desalination

    International Nuclear Information System (INIS)

    Bresciani, Danusa; Guimaraes, Danilo H.; Santos, Diego K.M.; Brioude, Michel M.; Jose, Nadia M.; Prado, Luis A.S.A.

    2009-01-01

    This work reports a development of polymeric membranes for water desalination by reverse osmosis. The polyester was synthesized by the reaction between glycerol, and dicarboxylic acids, and was coded PAF. Cellulose acetate/PAF blends containing 10% and 30% of polyester PAF blends were prepared using compression molding. The materials were characterized by DRX, DSC, TGA and SEM techniques. The results blends showed good thermal resistance and thermal events due to the individual components of the blends. The membranes exhibited a good performance in comparison to the neat cellulose acetate membrane. The addition of PAF in the polyester composition of the polymeric blends caused a significant increase of the salt retention of the studied samples. (author)

  14. Working group report on water resources, supply and demand

    International Nuclear Information System (INIS)

    Marta, T.J.

    1990-01-01

    A summary is presented of the issues discussed, and the conclusions and recommendations of a working group on water resources, supply and demand. The issues were grouped into the categories of detecting climatic change and water impacts, simulating potential impacts, and responding to potential impacts. The workshop groups achieved consensus on the following points: the physics of global warming and climatic change have been satifactorily proven; there appears to be some evidence of climatic change and a signal could soon be detected; policy decisions and strategic plans for climatic change and its potential impacts are needed immediately; and targets and priorities for decison making should be identified and addressed immediately. Three top-priority issues are the identification of indicators for the detection of climatic change impacts on hydrology, determining response to climate-related change, and evaluation of design criteria. Better information on regional climate and hydrology under conditions of global warming is needed before design criteria could be altered

  15. Water Jet 2013 - Research, Development, Applications. Proceedings of the Conference on Water Jetting Technology

    OpenAIRE

    Sitek, Libor

    2013-01-01

    Water Jet 2013 - Research, Development, Applications is the third international meeting of researchers, manufacturers, end-users, and all those interested in the technology of high-speed water jetting organized by the Department of material disintegration of the Institute of Geonics of the ASCR Ostrava. It provides a basis not only for exchange knowledge, ideas, information and experiences in areas of research, development and applications of water jets, as well as stimulating discussio...

  16. DOES COMPOSTING OF BIODEGRADABLE MUNICIPAL SOLID WASTE ON THE LANDFILL BODY MAKE SENSE?

    OpenAIRE

    Dana Adamcová; Magdalena Vaverková

    2016-01-01

    In this study white mustard (Sinapis alba) plants were allowed to grow in earthen pots, treated with municipal solid waste compost (MSWC) to study the effect of MSWC on the plant biomass production. Twenty-one days from the establishment of the experiment sprouts and the number of growing plants occurring in the earthen pots were counted. Plants growing in the earthen pots with the compost samples exhibited an increasing plant biomass while no changes were observed in their appearance; retard...

  17. Does zero-water discharged technology enhance culture performance of pacific white shrimp (Litopenaeus vannamei Boone.)?

    Science.gov (United States)

    Suantika, Gede; Anggraeni, Jayanty; Hasby, Fahri Azhari; Yanuwiarti, Ni Putu Indah

    2014-03-01

    Litopenaeus vannamei or white leg shrimp is an introduced shrimp which has successfully cultured in Indonesia. In Indonesia, L. vannamei is commonly cultured on outdoor/earthen pond that requires renewal of water, less control in term of water quality and disease and attributed to unpredictable yield production. Based on the existing culture condition, a system that enable to minimize water consumption, improve the hygiene of the culture and at the same time maintain a more stable yield production is urgent to be developed by using a zero water discharge system. The system consists of: (a) culture tank - to retain and culture the shrimp; (b) CaCO3 grained - buffering agent and substrate of nitrifying bacteria; (c) aeration line - to provide O2 and homogenize the culture; (d) ancho (feeding) - to control an appropriate feed; (e) nitrifying bacteria adding - to consume ammonium and nitrite then convert it to nitrate, and also control pathogen Vibrio sp.; (f) diatom microalgae (Chaetoceros gracilis) - to uptake nitrate, bacteriostatic agent, feed source, provide O2 and shading. In this study, there were 2 treatments: the static culture (batch) system was set as control (K) (in 70 PL/m2), and culture system with zero-water discharge system which was inoculated by 0.02% v/v 106 CFU/ml of mixed culture nitrifying bacteria and diatom microalgae in 70 PL/m2 (P1). The white leg shrimp used in this experiment was at post larvae (PL) 10 and cultured in a batch system (1 × 1 × 0.5 m3 pond) during 2 months. Several parameters including survival rate, mean body weight, and water quality (salinity, temperature, pH, DO, ammonium, nitrite, and nitrate) were measured. Based on the results, biomass of P1 (237.12 ± 31.11) gram is significantly higher than control (K) (180.80 ± 12.26) gram (Pshrimp post larvae, except ammonium concentration in control (K) (2.612 ± 0.56) mg/L which is significantly different from P1 (1.287 ± 0.49) mg/L. Based on this research, zero-water discharge

  18. Measuring global water security towards sustainable development goals

    NARCIS (Netherlands)

    Wada, Y.|info:eu-repo/dai/nl/341387819; Gain, A.K.; Giupponi, C.

    2016-01-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals(SDGs). Many international river basins are likely to experience ‘low water

  19. Achieving the sustainable development goals: a case study of the complexity of water quality health risks in Malawi.

    Science.gov (United States)

    Holm, Rochelle; Wandschneider, Philip; Felsot, Allan; Msilimba, Golden

    2016-07-15

    Suppose 35 % of the households with children under 5 years of age in a low-income suburban neighborhood in a developing country have diarrhea where improved water sources are available. Clearly, something is amiss-but what? In addition to focusing on the need to examine water quality among water sources that meet the 'improved' category when assessing health risk, the relative importance of the range of transmission routes for diarrhea is unknown. In Malawi, relevant baseline data affecting human health are simply not available, and acquiring data is hampered by a lack of local analytical capacity for characterizing drinking water quality. The objective of this work is to develop a risk communication program with partnership among established regional development professionals for effectively meeting the sustainable development goals. A field study was conducted in the city of Mzuzu, Malawi, to study water quality (total coliform and Escherichia coli) and human dimensions leading to development of a public health risk communication strategy in a peri-urban area. A structured household questionnaire was administered to adult residents of 51 households, encompassing 284 individuals, who were using the 30 monitored shallow wells. The water quality data and human dimension questionnaire results were used to develop a household risk presentation. Sixty-seven percent and 50 % of well water and household drinking water samples, respectively, exceeded the WHO health guideline of zero detections of E. coli. Technology transfer was advanced by providing knowledge through household risk debriefing/education, establishing a water quality laboratory at the local university, and providing training to local technicians. Communicating the science of water quality and health risks in developing countries requires sample collection and analysis by knowledgeable personnel trained in the sciences, compiling baseline data, and, ultimately, an effective risk presentation back to

  20. Conversion of thermall energy to mechanical work in the oscillations with steam condensation in pool water

    International Nuclear Information System (INIS)

    Aya, Izuo; Nariai, Hideki.

    1988-01-01

    Pressure and fluid oscillations with steam injection into pool water were discussed from the view point of the conversion of thermal energy into mechanical work. When the change of fluid state moves clockwise in the p-V diagram, the oscillation sustains since the thermal energy changes into positive work. The equations difining the mechanical work at the condensation oscillations were presented. The oscillation threshold determined by the condition that mechanical work became zero, coincided with the values derived by the linear oscillation theory. The changes of pressure and specific volume during chugging were also shown with one dimensional simulation analysis. The p-V diagrams at various chugging modes were presented with the movement of steam water interface, and the conversion efficiency of thermal energy to mechanical work was also discussed. (author)

  1. Stormwater management impacts on urban stream water quality and quantity during and after development in Clarksburg, MD

    Science.gov (United States)

    Loperfido, J. V.; Noe, G. B.; Jarnagin, S.; Mohamoud, Y. M.; Van Ness, K.; Hogan, D. M.

    2012-12-01

    , geomorphology, and biology during development while implementing advanced sediment and erosion control BMPs are discussed. Also, effects of centralized versus distributed stormwater BMPs and land cover on stream water quantity and quality following suburban development are presented. This includes stream response to precipitation events, baseflow and stormflow export of water, and water chemistry data. Results from this work have informed land use planning at the local level and are being incorporated through adaptive management to maintain the high-quality stream resources in the CSPA. More generally, results from this work could inform urban development stakeholders on effective strategies to curtail urban stream syndrome.

  2. Development and Certification of Station Development Test Objective (SDTO) Experiment # 15012-U, "Near RealTime Water Quality Monitoring Demonstration for ISS Biocides Using Colorimetric Solid Phase Extraction (CSPE)"

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Shcultz, John R.; Siperko, Lorraine M.; Porter, Marc D,; Lipert, Robert J.; Limardo, Jose G.; McCoy, J. Torin

    2009-01-01

    Scientists and engineers from the Wyle Integrated Science and Engineering Group are working with researchers at the University of Utah and Iowa State University to develop and certify an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE). The kit will be launched as a Station Development Test Objective (SDTO) experiment and evaluated on the International Space Station (ISS) to determine the acceptability of CSPE technology for routine inflight water quality monitoring. Iodine and silver, the biocides used in the US and Russian on-orbit water systems, will serve as test analytes for the technology evaluation. This manuscript provides an overview of the CSPE SDTO experiment and details the development and certification of the experimental water quality monitoring kit. Initial results from reagent and standard solution stability testing and environmental testing performed on the kit hardware are also reported.

  3. The Planck-Benzinger thermal work function in the condensation of water vapor

    Science.gov (United States)

    Chun, Paul W.

    Based on the Planck-Benzinger thermal work function using Chun's method, the innate temperature-invariant enthalpy at 0 K, ?H0(T0), for the condensation of water vapor as well as the dimer, trimer, tetramer, and pentamer form in the vapor phase, was determined to be 0.447 kcal mol-1 for vapor, 1.127 for the dimer, 0.555 for the trimer, 0.236 for the tetramer, and 0.079 kcal mol-1 for the pentamer using ?G(T) data reported by Kell et al. in 1968 and Kell and McLaurin in 1969. These results suggest that the predominant dimeric form is the most stable of these n-mers. Using Nemethy and Scheraga's 1962 data for the Helmholtz free energy of liquid water, the value of ?H0(T0) was determined to be 1.21 kcal mol-1. This is very close to the value for the energy of the hydrogen bond EH of 1.32 kcal mol-1 reported by Nemethy and Scheraga, using statistical thermodynamics. It seems clear that very little energy is required for interconversion between the hypothetical supercooled water vapor and glassy water at 0 K. A hypothetical supercooled water vapor at 0 K is apparently almost as highly associated as glassy water at that temperature, suggesting a dynamic equilibrium between vapor and liquid. This water vapor condensation is highly similar in its thermodynamic behavior to that of sequence-specific pairwise (dipeptide) hydrophobic interaction, except that the negative Gibbs free energy change minimum at ?Ts?, the thermal setpoint for vapor condensation, where T?S = 0, occurs at a considerably lower temperature, 270 K (below 0°C) compared with ?350 K. The temperature of condensation ?Tcond? at which ?G(T) = 0, where water vapor begins to condense, was found to be 383 K. In the case of a sequence-specific pairwise hydrophobic interaction, the melting temperature, ?Tm?, where ?G(Tm) = 0 was found to be 460 K. Only between two temperature limits, ?Th? = 99 K and ?Tcond? = 383 K, where ?G(Tcond) = 0, is the net chemical driving force favorable for polymorphism of glassy water

  4. Valuing water gains in the Eastern Cape's Working for Water ...

    African Journals Online (AJOL)

    drinie

    2002-01-01

    Jan 1, 2002 ... reason it is crucial that the pricing of this water be an accurate reflection of its relative ..... conservation projects, but it is not the best way of pricing water ... Establishment of a Pricing Strategy for Water Use Charges in Terms.

  5. Human work interaction design meets international development

    DEFF Research Database (Denmark)

    Campos, P.; Clemmensen, T.; Barricelli, B.R.

    2017-01-01

    opportunity to observe technology-mediated innovative work practices in informal settings that may be related to the notion of International Development. In this unique context, this workshop proposes to analyze findings related to opportunities for design research in this type of work domains: a) human......Over the last decade, empirical relationships between work domain analysis and HCI design have been identified by much research in the field of Human Work Interaction Design (HWID) across five continents. Since this workshop takes place at the Interact Conference in Mumbai, there is a unique...

  6. Development of reactor water level sensor for extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miura, K; Ogasawara, T [Sukegawa Electric Co., Ltd., Hitachi, Ibaraki (Japan); Shibata, Akira; Nakamura, Jinichi; Saito, Takashi; Tsuchiya, Kunihiko [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    In the Fukushima accident, measurement failure of water level was one of the most important factors which caused serious situation. The differential pressure type water level indicators are widely used in various place of nuclear power plant but after the accident of TMI-2, the need of other reliable method has been required. The BICOTH type and the TRICOTH type water level indicator for light water power reactors had been developed for in-pile water level indicator but currently those are not adopted to nuclear power plant. In this study, the development of new type water level indicator composed of thermocouple and heater is described. Demonstration test and characteristic evaluation of the water level indicator were performed and we had obtained satisfactory results. (author)

  7. Water Reuse and Soil Column Studies for Alternative Water Resource Development

    Science.gov (United States)

    The National Risk Management Research Laboratory (NRMRL) of the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD) has developed a holistic water research program in order to identify engineering and management options for safe and expanded use ...

  8. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing

  9. The development of catalytic nucleophilic additions of terminal alkynes in water.

    Science.gov (United States)

    Li, Chao-Jun

    2010-04-20

    One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in

  10. Construction and performance of a long-term earthen liner experiment

    Science.gov (United States)

    Cartwright, Keros; Krapac, Ivan G.; Bonaparte, Rudolph

    1990-01-01

    In land burial schemes, compacted soil barriers with low hydraulic conductivity are commonly used in cover and liner systems to control the movement of liquids and prevent groundwater contamination. An experimental liner measuring 8 x 15 x 0.9 m was constructed with design criteria and equipment to simulate construction of soil liners built at waste disposal facilities. The surface of the liner was flooded with a 29.5 cm deep pond on April 12, 1988. Infiltration of water into the liner has been monitored for two years using 4 large-ring (1.5 m OD) and 32 small-ring (0.28 m OD) infiltrometers, and a water-balance that accounts for total infiltration and evaporation. Average long-term infiltration fluxes based on two years of monitoring are 5.8 x 10-9 cm/s, 6.0 x 10-8 cm/s and 5.6 x 10-8 for the large-ring, small-ring, and water-balance data, respectively. The saturated hydraulic conductivity of the liner based on small-ring data, estimated using Darcy's Law and the Green-Ampt Approximation, is 3 x 10-8 and 4 x 10-8 cm/s, respectively. All sets of data indicate that the liner's performance exceed that which is required by the U.S. EPA.

  11. Nanotechnology for potable water and general consumption in developing countries

    CSIR Research Space (South Africa)

    Hillie, T

    2012-08-01

    Full Text Available that affect people in developing and developed countries. The challenges outlined are; poor governance, water scarcity, sanitation and climate change. Nanotechnology is sufficiently advanced to help provide potable water and water for general assumption...

  12. Pakistan's Water Challenges: A Human Development Perspective

    NARCIS (Netherlands)

    S. Shezad (Shafqat); K.A. Siegmann (Karin Astrid)

    2006-01-01

    textabstractAbstract This paper gives an overview of the human and social dimensions of Pakistan’s water policies to provide the basis for water-related policy interventions that contribute to the country’s human development, with special attention being given to the concerns of women and the

  13. Development of water resources management in Iraq and its obstacles

    International Nuclear Information System (INIS)

    Jawad, A. M.

    2011-01-01

    Iraq witnessed recently a considerable development in the field of water resources management to go along with developed countries. Latest technology has been introduced in hydrology monitoring. Many stations for water measuring and monitoring have been constructed beside many irrigation and drainage canals in order to reach an optimum irrigation system. A special emphasis has been put on the role of nuclear techniques in enhancing the water resources management development. These techniques will provide the perfect opportunity for investing water and drained quantities and determining pollution resources to insure the sustainability of the agricultural sector without threatening the development processes. This development encounters the lack of knowledge of technology applied in the field of the use of peaceful atomic energy and nuclear technologies, which are essential in sustaining the momentum in the management of water resources, despite the entry of the latest developed devices and technologies in measurements and monitoring. (author)

  14. Development of water quality objectives and management systems for the lower Athabasca River in the oil sands area

    International Nuclear Information System (INIS)

    Noton, L.; McEachern, P.

    2004-01-01

    This paper addressed environmental concerns related to the increased oil sands activity along the lower Athabasca River in northeastern Alberta. The concerns include potential effects on water quality of the river even though wastewaters do not currently reach the Athabasca River, nor do they have any significant effects. However, as the industry expands, there is concern that releases of wastewater may increase significantly. A multi-stakeholder group called the Cumulative Environmental Management Association (CEMA) has addressed some of these environmental management issues in the Athabasca area by establishing a water quality task group that examines water quality protection and management activities. The task group intends to develop and recommend water quality objectives and management options on the lower Athabasca River. Their 4 part process includes: (1) defining the problem, (2) setting goals, (3) measuring performance, and (4) managing and adapting to potential impacts. The group has identified and defined about 35 water quality variables of potential concern. It has also identified the uses of water it wants to protect and intends to prevent the degradation of water quality. A plan for developing site specific water quality objectives has been established following a review of water quality guidelines. Performance will be measured using water quality models that simulate full development scenarios. The modelling work will be instrumental in designing management schemes for any potential impacts

  15. DEVELOPMENT AND PRELIMINARY TESTING OF A PARABOLIC TROUGH SOLAR WATER HEATER

    Directory of Open Access Journals (Sweden)

    O. A. Lasode

    2011-06-01

    Full Text Available Solar energy is a high-temperature, high-energy radiant energy source, with tremendous advantages over other alternative energy sources. It is a reliable, robust renewable resource which is largely undeveloped. The design and fabrication of parabolic trough solar water heater for water heating was executed. The procedure employed includes the design, construction and testing stages. The equipment which is made up of the reflector surface (curved mirror, reflector support, absorber pipe and a stand was fabricated using locally sourced materials. The results obtained. compared favourably with other research works in the literature. It depicts that employing a suitable design, selection of time of heating and proper focusing of the reflected rays to the focal spot region, solar radiation can efficiently be utilized for water heating in a tropical environment. This work presents a parabolic trough solar water heater as a suitable renewable energy technology for reducing water-heating costs.

  16. Effects of bamboo substrate and supplementary feed on growth and ...

    African Journals Online (AJOL)

    application as control (C), control and substrate installation (C + S) and, control and substrate with supplementary feeding (C + S + F) were randomly allotted to six earthen ponds each with an area of 100m2. Catfish fingerlings of mean weight 27.5g + 1.25 were stocked at the rate of 80 fish per 100m2. Water temperature, pH ...

  17. Report on results of research and development work in 1980 of the Institute for Radiochemistry

    International Nuclear Information System (INIS)

    1981-02-01

    Reported are the investigations of the Institute with the main points of analysis, nuclear chemistry and water chemistry. The analytical and nuclear chemical topics are included in the projects PWA, PNS, PSB and KMUe. The KMUe-project is performed in close co-operation with the European Institute for Transuranic Elements. The analytical investigations concentrate on fuel- and burn-up tests, on analyses of epipolar rays and neutron activations as well as on methodical development and automation of test methods. The 'Isotope-place' does preparatory works and effects irradiations in the FR2, Cyclotron and Co-60-γ-source. The radiochemical group prepares weekly several hundreds of Curie fission molybdenum 99 for nuclear medical purposes. The institute-internal project 'Drinkwater treatment and technology' treats in close co-operation with the 'Engler-Bunte-Institute' the clearing of water impurities and the analytical determination of persistent noxious substances in waters like the Rhine, the Danube and the lake Constance. (orig./HK) [de

  18. Investigating water meter performance in developing countries: A ...

    African Journals Online (AJOL)

    High levels of water losses in distribution systems are the main challenge that water utilities in developing countries currently face. The water meter is an essential tool for both the utility and the customers to measure and monitor consumption. When metering is inefficient and coupled with low tariffs, the financial ...

  19. Scenario Development for Water Resources Planning and Management

    Science.gov (United States)

    Stewart, S.; Mahmoud, M.; Liu, Y.; Hartman, H.; Wagener, T.; Gupta, H.

    2006-12-01

    The main objective of scenario development for water resources is to inform policy-makers about the implications of various policies to inform decision-making. Although there have been a number of studies conducted in the relatively-new and recent field of scenario analysis and development, very few of those have been explicitly applied to water resource issues. More evident is the absence of an established formal approach to develop and apply scenarios. Scenario development is a process that evaluates possible future states of the world by examining several feasible scenarios. A scenario is a projection of various physical and socioeconomic conditions that describe change from the current state to a future state. In this paper, a general framework for scenario development with special emphasis on applications to water resources is considered. The process comprises several progressive and reiterative phases: scenario definition, scenario construction, scenario analysis, scenario assessment, and risk management. Several characteristics of scenarios that are important in describing scenarios are also taken into account; these include scenario types, scenario themes, scenario likelihoods and scenario categories. A hindrance to the adoption of a unified framework for scenario development is inconsistency in the terminology used by scenario developers. To address this problem, we propose a consistent terminology of basic and frequent terms. Outreach for this formal approach is partially maintained through an interactive community website that seeks to educate potential scenario developers about the scenario development process, share and exchange information and resources on scenarios to foster a multidisciplinary community of scenario developers, and establish a unified framework for scenario development with regards to terminology and guidelines. The website provides information on scenario development, current scenario-related activities, key water resources scenario

  20. Water for development. World Water 2002 points to mounting challenges

    International Nuclear Information System (INIS)

    Rickwood, P.

    2002-01-01

    A looming crisis that overshadows nearly two-thirds of the Earth's population is drawing closer because of continued human mismanagement of water, population growth and changing weather patterns. In a joint statement, United Nations organizations drew attention to problems on the occasion of World Water Day 22 March 2002, for which the IAEA was the lead coordinating agency. By 2025, if present consumption patterns continue, about five billion people will be living in areas where it will be difficult or impossible to meet all their needs for fresh water. Half of them will face severe shortages. The UN organizations said that the implications will be extreme for the people most affected, who are among the world's poorest, limiting their ability to grow crops, which they need to survive, heightening disease and threatening States' national security. In the UN Millennium Declaration world leaders made a commitment to halve the number of people without access to safe and affordable water. In his World Water Day address, the UN Secretary General reported that, increasingly, countries with expertise in the management of watersheds and flood-plains, or with experience in efficient irrigation, are sharing the knowledge with others. The IAEA is among UN agencies offering a wide array of responses to the crisis, providing Member States with skills to apply isotope hydrology, to better manage groundwater. The technique permits reliable and rapid mapping of underground water sources so that they can be used safely without being exhausted. The IAEA also fosters the development of desalination to turn salt water into sweet water

  1. DEVELOPING SUSTAINABILITY INDICATORS FOR WATER RESOURCES MANAGEMENT IN TIETÊ-JACARÉ BASIN, BRAZIL

    Directory of Open Access Journals (Sweden)

    Michele de Almeida Corrêa

    2013-06-01

    Full Text Available This paper describes a tool to assist in developing water resources management, focusing on the sustainability concept, by a Basin Committee. This tool consists of a Set of Sustainability Indicators for Water Resources Management denominated CISGRH, which was identified by a conceptual and empirical review to meet the specific needs of the study herein - the Basin Committee of Tietê-Jacaré Rivers (CBH-TJ. The framework of CISGRH came about through consecutive consultation processes. In the first consultation the priority problems were identified for the study objectives, listing some possible management sustainability indicators. These preliminary indicators were also submitted to academic specialists and technicians working in CBH-TJ for a new consultation process. After these consultation stages, the CISGRH analysis and structuring were introduced. To verify the indicators’ adaptation and to compose a group as proposed by the study, these were classified according to specific sustainability principles for water resources management. The objective of the CISGRH implementation is to diagnose current conditions of water resources and its management, as well as to evaluate future conditions evidenced by tendencies and interventions undertaken by the committee.

  2. DEVELOPING SUSTAINABILITY INDICATORS FOR WATER RESOURCES MANAGEMENT IN TIETÊ-JACARÉ BASIN, BRAZIL

    Directory of Open Access Journals (Sweden)

    Michele de Almeida Corrêa

    2013-01-01

    Full Text Available This paper describes a tool to assist in developing water resources management, focusing on the sustainability concept, by a Basin Committee. This tool consists of a set of sustainability indicators for water resources management denominated CISGRH, which was identified by a conceptual and empirical review to meet the specific needs of the study herein - the basin committee of Tietê-J acaré Rivers (CBH-TJ. The framework of CISGRH came about through consecutive consultation processes. In the first consultation, the priority problems were identified for the study objectives, listing some possible management sustainability indicators. These preliminary indicators were also submitted to academic specialists and technicians working in CBH-TJ for a new consultation process. After these consultation stages, the CISGRH analysis and structuring were introduced. To verify the indicators’ adaptation and to compose a group as proposed by the study, these were classified according to specific sustainability principles for water resources management. The objective of the CISGRH implementation is to diagnose current conditions of water resources and its management, as well as to evaluate future conditions evidenced by tendencies and interventions undertaken by the committee.

  3. The geomorphic legacy of water and erosion control structures in a semiarid rangeland watershed

    Science.gov (United States)

    Nichols, Mary H.; Magirl, Christopher S.; Sayre, N.F.; Shaw, Jeremy R.

    2018-01-01

    Control over water supply and distribution is critical for agriculture in drylands where manipulating surface runoff often serves the dual purpose of erosion control. However, little is known of the geomorphic impacts and legacy effects of rangeland water manipulation infrastructure, especially if not maintained. This study investigated the geomorphic impacts of structures such as earthen berms, water control gates, and stock tanks, in a semiarid rangeland in the southwestern USA that is responding to both regional channel incision that was initiated over a century ago, and a more recent land use change that involved cattle removal and abandonment of structures. The functional condition of remnant structures was inventoried, mapped, and assessed using aerial imagery and lidar data. Headcut initiation, scour, and channel incision associated with compromised lateral channel berms, concrete water control structures, floodplain water spreader berms, and stock tanks were identified as threats to floodplains and associated habitat. Almost half of 27 identified lateral channel berms (48%) have been breached and 15% have experienced lateral scour; 18% of 218 shorter water spreader berms have been breached and 17% have experienced lateral scour. A relatively small number of 117 stock tanks (6%) are identified as structurally compromised based on analysis of aerial imagery, although many currently do not provide consistent water supplies. In some cases, the onset of localized disturbance is recent enough that opportunities for mitigation can be identified to alter the potentially damaging erosion trajectories that are ultimately driven by regional geomorphic instability. Understanding the effects of prior land use and remnant structures on channel and floodplain morphologic condition is critical because both current land management and future land use options are constrained by inherited land use legacy effects.

  4. Economic considerations for deep water Gulf of Mexico development

    International Nuclear Information System (INIS)

    Brown, R.; O'Sullivan, J.; Bayazitoglu, Y.O.

    1994-01-01

    This paper examines the economic drivers behind deep water development in the Gulf of Mexico. Capital costs are also examined versus water depth and required system. Cost categories are compared. The cost analysis was carried out by using the SEAPLAN computer program. The program is an expert system that identifies, conceptually defines, and economically compares technically feasible approaches for developing offshore oil and gas fields. The program's sizing logic and cost data base create physical and cost descriptions of systems representative of developments being planned in the deep water GOM. The examination was done separately for oil and gas developments. The material presented here is for only oil, it serves as a useful framework for viewing development economics and technology trends

  5. Development and implementation of the software for visualization and analysis of data geophysical loggers

    Science.gov (United States)

    Gordeev, V. F.; Malyshkov, S. Yu.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.

    2017-11-01

    The general trend of modern ecological geophysics is changing priorities towards rapid assessment, management and prediction of ecological and engineering soil stability as well as developing brand new geophysical technologies. The article describes researches conducted by using multi-canal geophysical logger MGR-01 (developed by IMCES SB RAS), which allows to measure flux density of very low-frequency electromagnetic radiation. It is shown that natural pulsed electromagnetic fields of the earthen lithosphere can be a source of new information on Earth's crust and processes in it, including earthquakes. The device is intended for logging electromagnetic processes in Earth's crust, geophysical exploration, finding structural and lithological inhomogeneities, monitoring the geodynamic movement of Earth's crust, express assessment of seismic hazards. The data is gathered automatically from observation point network in Siberia

  6. An integrated system dynamics model developed for managing lake water quality at the watershed scale.

    Science.gov (United States)

    Liu, Hui; Benoit, Gaboury; Liu, Tao; Liu, Yong; Guo, Huaicheng

    2015-05-15

    A reliable system simulation to relate socioeconomic development with water environment and to comprehensively represent a watershed's dynamic features is important. In this study, after identifying lake watershed system processes, we developed a system dynamics modeling framework for managing lake water quality at the watershed scale. Two reinforcing loops (Development and Investment Promotion) and three balancing loops (Pollution, Resource Consumption, and Pollution Control) were constituted. Based on this work, we constructed Stock and Flow Diagrams that embedded a pollutant load model and a lake water quality model into a socioeconomic system dynamics model. The Dianchi Lake in Yunnan Province, China, which is the sixth largest and among the most severely polluted freshwater lakes in China, was employed as a case study to demonstrate the applicability of the model. Water quality parameters considered in the model included chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The business-as-usual (BAU) scenario and three alternative management scenarios on spatial adjustment of industries and population (S1), wastewater treatment capacity construction (S2), and structural adjustment of agriculture (S3), were simulated to assess the effectiveness of certain policies in improving water quality. Results showed that S2 is most effective scenario, and the COD, TN, and TP concentrations in Caohai in 2030 are 52.5, 10.9, and 0.8 mg/L, while those in Waihai are 9.6, 1.2, and 0.08 mg/L, with sustained development in the watershed. Thus, the model can help support the decision making required in development and environmental protection strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Development of an Airborne Micropulse Water Vapor DIAL

    Science.gov (United States)

    Nehrir, A. R.; Ismail, S.

    2012-12-01

    Water vapor plays a key role in many atmospheric processes affecting both weather and climate. Airborne measurements of tropospheric water vapor profiles have been a longstanding observational need to not only the active remote sensing community but also to the meteorological, weather forecasting, and climate/radiation science communities. Microscale measurements of tropospheric water vapor are important for enhancing near term meteorological forecasting capabilities while mesoscale and synopticscale measurements can lead to an enhanced understanding of the complex coupled feedback mechanisms between water vapor, temperature, aerosols, and clouds. To realize tropospheric measurements of water vapor profiles over the microscale-synopticscale areas of meteorological interest, a compact and cost effective airborne micropulse differential absorption lidar (DIAL) is being investigated using newly emerging semiconductor based laser technology. Ground based micropulse DIAL (MPD) measurements of tropospheric water vapor and aerosol profiles up to 6 km and 15 km, respectively, have been previously demonstrated using an all semiconductor based laser transmitter. The DIAL transmitter utilizes a master oscillator power amplifier (MOPA) configuration where two semiconductor seed lasers are used to seed a single pass traveling wave tapered semiconductor optical amplifier (TSOA), producing up to 7μJ pulse energies over a 1 μs pulse duration at a 10 kHz pulse repetition frequency (PRF). Intercomparisons between the ground based instrument measurements and radiosonde profiles demonstrating the MPD performance under varying atmospheric conditions will be presented. Work is currently ongoing to expand upon the ground based MPD concept and to develop a compact and cost effective system capable of deployment on a mid-low altitude aircraft such as the NASA Langley B200 King Air. Initial lab experiments show that a two-three fold increase in the laser energy compared to the ground

  8. The development of water services and their interaction with water resources in European and Brazilian cities

    Science.gov (United States)

    Barraqué, B.; Formiga Johnsson, R. M.; Nogueira de Paiva Britto, A. L.

    2008-08-01

    The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  9. Control of water infiltration into near surface LLW [low-level radioactive waste] disposal units

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.O.

    1990-12-01

    Three kinds of waste disposal unit covers a barriers to water infiltration are being investigated. They are: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g. clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained the conductive layer will wick water around the capillary break. Below grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry to waste and without institutional care. These various concepts are being assessed in six large (70ft x 45ft x 10ft each) lysimeters at Beltsville, Maryland. 6 refs., 20 figs.,

  10. The development of water quality methods within ecological ...

    African Journals Online (AJOL)

    The development of water quality methods within ecological Reserve ... Water Act (NWA, No 36 of 1998), the ecological Reserve is defined as the quality and quantity ... provide ecologically important flow-related habitat, or geomorphological ...

  11. Learning at work: competence development or competence-stress.

    Science.gov (United States)

    Paulsson, Katarina; Ivergård, Toni; Hunt, Brian

    2005-03-01

    Changes in work and the ways in which it is carried out bring a need for upgrading workplace knowledge, skills and competencies. In today's workplaces, and for a number of reasons, workloads are higher than ever and stress is a growing concern (Health Risk Soc. 2(2) (2000) 173; Educat. Psychol. Meas. 61(5) (2001) 866). Increased demand for learning brings a risk that this will be an additional stress factor and thus a risk to health. Our research study is based on the control-demand-support model of Karasek and Theorell (Health Work: Stress, Productivity and the Reconstruction of Working Life, Basic Books/Harper, New York, 1990). We have used this model for our own empirical research with the aim to evaluate the model in the modern workplace. Our research enables us to expand the model in the light of current workplace conditions-especially those relating to learning. We report empirical data from a questionnaire survey of working conditions in two different branches of industry. We are able to define differences between companies in terms of working conditions and competence development. We describe and discuss the effects these conditions have on workplace competence development. Our research results show that increased workers' control of the learning process makes competence development more stimulating, is likely to simplify the work and reduces (learning-related) stress. It is therefore important that learning at work allows employees to control their learning and also allows time for the process of learning and reflection.

  12. Mechano-Magnetic Telemetry for Underground Water Infrastructure Monitoring

    Directory of Open Access Journals (Sweden)

    Daniel Orfeo

    2018-06-01

    Full Text Available This study reports on the theory of operation, design principles, and results from laboratory and field tests of a magnetic telemetry system for communication with underground infrastructure sensors using rotating permanent magnets as the sources and compact magnetometers as the receivers. Many cities seek ways to monitor underground water pipes with centrally managed Internet of Things (IoT systems. This requires the development of numerous reliable low-cost wireless sensors, such as moisture sensors and flow meters, which can transmit information from subterranean pipes to surface-mounted receivers. Traditional megahertz radio communication systems are often unable to penetrate through multiple feet of earthen and manmade materials and have impractically large energy requirements which preclude the use of long-life batteries, require complex (and expensive built-in energy harvesting systems, or long leads that run antennas near to the surface. Low-power magnetic signaling systems do not suffer from this drawback: low-frequency electromagnetic waves readily penetrate through several feet of earth and water. Traditional magnetic telemetry systems that use energy-inefficient large induction coils and antennas as sources and receivers are not practical for underground IoT-type sensing applications. However, rotating a permanent magnet creates a completely reversing oscillating magnetic field. The recent proliferation of strong rare-earth permanent magnets and high-sensitivity magnetometers enables alternative magnetic telemetry system concepts with significantly more compact formats and lower energy consumption. The system used in this study represents a novel combination of megahertz radio and magnetic signaling techniques for the purposes of underground infrastructure monitoring. In this study, two subterranean infrastructure sensors exploit this phenomenon to transmit information to an aboveground radio-networked magnetometer receiver. A flow

  13. Results and Prospects of Development of Works on Structural Core Materials for Russian Fast Reactors

    International Nuclear Information System (INIS)

    Nikitina, A.A.; Ageev, V.S.; Leontyeva-Smirnova, M.V.; Mitrofanova, N.M.; Tselishchev, A.V.

    2015-01-01

    The strategy of development of atomic energy in Russia in the first half of XXI century contemplates construction and putting in operation of fast reactors of new generation with different types of coolant: sodium (BN-800, BN-1200, MBIR), lead (BREST-OD-300) and lead-bismuth eutectic (SVBR-100). For assurance of the working capacity of reactors that are under construction and achievement of economically reasonable burn-up of nuclear fuel the structural core materials with necessary level of radiation resistance, heat resistance, corrosion resistance to products of fuel fission, corrosion resistance in coolant and in water must be developed and justified. For sodium cooled reactors the key challenge is creation of radiation resistant and heat resistant cladding materials, which must ensure the achievement of damage doses at least 140 dpa. The solution of this problem is provided by phased use as cladding materials of austenitic steels ChS68 and EK164 (maximum damage doses ~ 92 and ~110-115 dpa, respectively), precipitation-hardening heat resistant ferritic-martensitic steels EK181 and ChS139 (maximum damage dose ~140 dpa) and oxide dispersion strengthened (ODS) steels (maximum damage dose more than 140 dpa). For development of core materials for reactors with lead and lead-bismuth eutectic coolants the most serious challenge is corrosion resistance of materials in coolant. Therefore at present time a very wide range of works on study of corrosion resistance of candidate materials is carrying out. As the basic material for the cladding tubes is considered a ferritic-martensitic steel EP823 with high silicon content. In this report the main results of works on justification of the working capacity of materials of different classes in respect to use it in cores of operating and prospective fast reactors with different types of coolant and prospects of further development of works are presented. (author)

  14. Analysis of Spring Development and Gravity Flow System to Capture Water for Local Communities

    Directory of Open Access Journals (Sweden)

    Adiningrum Cita

    2017-01-01

    Full Text Available Springs as water sources are relatively inexpensive but highly susceptible to contamination since they are fed by shallow groundwater. Proper spring development helps protect the water from contamination. This study presents an analysis and design of spring development including the type of broncaptering/collecting wall, the dimension for the spring box and the conduction line. In addition, a guideline on “Springwater Construction” published by the Ministry of Public Works has been used in this design. A concentrated spring in Wates, Magelang, Central Java is used as a case study. The design calls for the collection of water from a spring using sets of broncaptering and a spring box, then piping it by gravity a distance of 5.1 kilometers to Van Lith Senior High School. Analysis was done using a manual calculation, which is subsequently compared to the result of HYDROFLO 3 software. Results show that the spring with a flow rate of 0.12 litre/s (manual and 0.17 litre/s (software will be collected into a 5 m3 volume of spring box. The spring box with a +543 m water surface elevation is being supplied to Van Lith +384 m ground elevation using a uniform PVC pipelines with a ¾ inch of diameter.

  15. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  16. An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs

    Science.gov (United States)

    Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai

    2017-12-01

    Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.

  17. Underwater and Dive Station Work-Site Noise Surveys

    National Research Council Canada - National Science Library

    Wolgemuth, Keith S; Cudahy, Edward A; Schwaller, Derek W

    2008-01-01

    Previous work performed by the Naval Submarine Medical Research Laboratory (NSMRL) had developed in-water permissible continuous noise exposure guidance Work performed by the Navy Experimental Diving Unit...

  18. Developing and implementing institutional controls for ground water remediation

    International Nuclear Information System (INIS)

    Ulland, L.M.; Cooper, M.G.

    1995-01-01

    The US DOE has initiated its Ground Water Project as the second phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project authorized under the Uranium Mill Tailings Radiation Control Act (UMTRCA). In the Ground Water Project, the DOE must reduce risk from ground water contaminated by uranium mill processing activities at 24 inactive processing sites by meeting the US EPA standards. The UMTRCA also requires consistency with federal statutes such as the Resource Conservation and Recovery Act (RCRA). The use of institutional controls to reduce risk from contaminated ground water is one element of compliance with standards and the protection of public health and the environment. Institutional controls are active or passive measures that reduce exposure to risks by preventing intrusion or restricting direct access to an area, or restricting access to the contamination through secondary means. Because of inconsistent regulations and multi-party authorities for ground water management, the key to selecting and implementing effective institutional controls lies with developing a consensus between the parties responsible for ground water remediation; those with authority to implement, monitor, and maintain institutional controls; and those facing the risks from contaminated ground water. These parties must develop a consensus for an institutional control program that meets minimum regulatory requirements and protects public health and the environment. Developing consensus and implementing a successful institutional controls program was achieved by the DOE during the cleanup of uranium mill tailings. An effective institutional controls program can also be developed to protect against risks from contaminated ground water. Consensus building and information transmission are the critical elements of an institutional control program that protects human health and the environment from risks associated with ground water contamination

  19. Development Project of Supercritical-water Cooled Power Reactor

    International Nuclear Information System (INIS)

    Kataoka, K.; Shiga, S.; Moriya, K.; Oka, Y.; Yoshida, S.; Takahashi, H.

    2002-01-01

    A Supercritical-water Cooled Power Reactor (SCPR) development project (Feb. 2001- Mar. 2005) is being performed by a joint team consisting of Japanese universities and nuclear venders with a national fund. The main objective of this project is to provide technical information essential to demonstration of SCPR technologies through concentrating three sub-themes: 'plant conceptual design', 'thermohydraulics', and 'material and water chemistry'. The target of the 'plant conceptual design sub-theme' is simplify the whole plant systems compared with the conventional LWRs while achieving high thermal efficiency of more than 40 % without sacrificing the level of safety. Under the 'thermohydraulics sub-theme', heat transfer characteristics of supercritical-water as a coolant of the SCPR are examined experimentally and analytically focusing on 'heat transfer deterioration'. The experiments are being performed using fron-22 for water at a fossil boiler test facility. The experimental results are being incorporated in LWR analytical tools together with an extended steam/R22 table. Under the 'material and water chemistry sub-theme', material candidates for fuel claddings and internals of the SCPR are being screened mainly through mechanical tests, corrosion tests, and simulated irradiation tests under the SCPR condition considering water chemistry. In particular, stress corrosion cracking sensitivity is being investigated as well as uniform corrosion and swelling characteristics. Influences of water chemistry on the corrosion product characteristics are also being examined to find preferable water condition as well as to develop rational water chemistry controlling methods. (authors)

  20. Developing America's Shale Reserves - Water Strategies For A Sustainable Future (Invited)

    Science.gov (United States)

    Shephard, L. E.; Oshikanlu, T.

    2013-12-01

    The development of shale oil and gas reserves over the last several years has had a significant impact on securing America's energy future while making substantial contributions to our nation's economic prosperity. These developments have also raised serious concerns about potential detrimental impacts to our environment (i.e., land, air and water) with much media attention focused on the impacts to our nation's fresh water supply. These concerns are being discussed across the nation often with little or no distinction that the nature of the water issues vary depending on local circumstances (e.g., depth of aquifer and reservoir zone, water demand and availability, availability of discharge wells, regulatory framework, etc.) and regional shale reservoir development strategies (depth of wells, length of laterals, fluid-type used for fracturing, etc.). Growing concerns over long standing drought conditions in some areas and competing demands for water from other sectors (e.g., agriculture, domestic, etc.) add even greater uncertainty relative to fresh water. Water demands for gas and oil wells vary from region to region but nominally range from 10 to 15 acre feet of water (4 to 6 million gallons) for drilling and hydraulic fracturing applications. Flowback water from the hydraulic fracturing process varies and can range from 5 to 40 % of the water used for drilling and 'fracing'. Produced water can be substantial, leading to significant volumes of 'disposed water' where injection wells are available. A science-based systems approach to water lifecycle management that incorporates leading-edge technology development and considers economic and social impacts is critical for the long-term sustainable development of shale reserves. Various water recycling and reuse technologies are being deployed within select regions across the nation with each having limited success depending on region. The efficacy of reuse technology will vary based on produced water quantity and

  1. Developing a methodological framework for estimating water productivity indicators in water scarce regions

    Science.gov (United States)

    Mubako, S. T.; Fullerton, T. M.; Walke, A.; Collins, T.; Mubako, G.; Walker, W. S.

    2014-12-01

    Water productivity is an area of growing interest in assessing the impact of human economic activities on water resources, especially in arid regions. Indicators of water productivity can assist water users in evaluating sectoral water use efficiency, identifying sources of pressure on water resources, and in supporting water allocation rationale under scarcity conditions. This case study for the water-scarce Middle Rio Grande River Basin aims to develop an environmental-economic accounting approach for water use in arid river basins through a methodological framework that relates water use to human economic activities impacting regional water resources. Water uses are coupled to economic transactions, and the complex but mutual relations between various water using sectors estimated. A comparison is made between the calculated water productivity indicators and representative cost/price per unit volume of water for the main water use sectors. Although it contributes very little to regional economic output, preliminary results confirm that Irrigation is among the sectors with the largest direct water use intensities. High economic value and low water use intensity economic sectors in the study region include Manufacturing, Mining, and Steam Electric Power. Water accounting challenges revealed by the study include differences in water management regimes between jurisdictions, and little understanding of the impact of major economic activities on the interaction between surface and groundwater systems in this region. A more comprehensive assessment would require the incorporation of environmental and social sustainability indicators to the calculated water productivity indicators.

  2. Water resources development in the Molai area, Greece

    International Nuclear Information System (INIS)

    1981-01-01

    The first volume of this report describes the work, carried out by the Government of Greece, with the assistance of UNDP and FAO, to assess the availability of groundwater for the irrigation of up to 6000 km in the Molai plain, located in the southern Peloponnese. The limestone reservoir of groundwater is restricted to the area 10 km 2 . Its groundwater is of rather poor quality (EC more than 2.0 mmho/cm) and it has a low head 3-7 m above sea level, which is 77-150 m below land surface. A water balance is presented which has been confirmed on a groundwater model. The fresh water of the limestone aquifer is characterised by the admixture of a variable amount of sea-water. The water of the Neogene aquifer is of much better quality. Combining the available resources, the irrigated area in the Molai plain can be tripled to cover half the net irrigable area. The economic feasibility of such a project has been studied

  3. The development of interpersonal communication competence at work

    OpenAIRE

    Laajalahti, Anne

    2007-01-01

    [Introduction] Many researchers emphasise the importance of interpersonal communication competence in learning, in working life, and in society in general (Daly, 1998; Morreale, Osborn and Pearson, 2000). Changes in the working life (e.g., globalisation, the development of information and communication technology, the increase in abstract, conceptual, and knowledge-intensive work, and the increase in collaborative interaction) have established new challenges to interpersonal...

  4. A Many-Objective Approach to Developing Adaptive Water Supply Portfolios in the 'Research Triangle' Region of North Carolina

    Science.gov (United States)

    Zeff, H. B.; Kasprzyk, J. R.; Reed, P. M.; Characklis, G. W.

    2012-12-01

    , cost-benefit type analyses to evaluate water management techniques as they move beyond the construction of large storage infrastructure. This work can help water providers develop the analytical tools to evaluate complex, adaptive techniques that are becoming more attractive in an era of growing municipal demand, risking infrastructure costs, and uncertain hydrology.

  5. The influence of demographics and work related goals on adaptive development for work related learning amongst private hospital employees.

    Science.gov (United States)

    Tones, Megan; Pillay, Hitendra; Fraser, Jennifer

    2010-01-01

    Contemporary lifespan development models of adaptive development have been applied to the workforce to examine characteristics of the ageing employee. Few studies have examined adaptive development in terms of worker perceptions of workplace, or their learning and development issues. This study used the recently developed Revised Learning and Development Survey to investigate employee selection and engagement of learning and development goals, opportunities for learning and development at work, and constraints to learning and development at work. Demographic and career goal variables were tested amongst a sample of private hospital employees, almost all of whom were nurses. Workers under 45 years of age perceived greater opportunities for training and development than more mature aged workers. Age and physical demands interacted such that physical demands of work were associated with lower engagement in learning and development goals in mature aged workers. The opposite was observed amongst younger workers. Engagement in learning and development goals at work predicted goals associated with an intention to decrease work hours or change jobs to a different industry when opportunities to learn via work tasks were limited. At the same time limited opportunities for training and development and perceptions of constraints to development at work predicted the intention to change jobs. Results indicate consideration must be paid to employee perceptions in the workplace in relation to goals. They may be important factors in designing strategies to retain workers.

  6. Potential of Nanotechnology based water treatment solutions for the improvement of drinking water supplies in developing countries

    Science.gov (United States)

    Dutta, Joydeep; Bhattacharya, Prosun; Bundschuh, Jochen

    2016-04-01

    Over the last decades explosive population growth in the world has led to water scarcity across the globe putting additional pressure already scarce ground water resources and is pushing scientists and researchers to come up with new alternatives to monitor and treat water for use by mankind and for food security. Nearly 4 billion people around the world are known to lack access to clean water supply. Systematic water quality data is important for the assessment of health risks as well as for developing appropriate and affordable technologies for waste and drinking water treatments, and long-term decision making policy against water quality management. Traditional water treatment technologies are generally chemical-intensive processes requiring extremely large infrastructural support thus limiting their effective applications in developing nations which creates an artificial barrier to the application of technological solutions for the provision of clean water. Nanotechnology-based systems are in retrospect, smaller, energy and resource efficient. Economic impact assessment of the implementation of nanotechnology in water treatment and studies on cost-effectiveness and environmental and social impacts is of key importance prior to its wide spread acceptance. Government agencies and inter-governmental bodies driving research and development activities need to measure the effective potential of nanotechnology as a solution to global water challenges in order to effectively engage in fiscal, economic and social issues at national and international levels for different types of source waters with new national and international initiatives on nanotechnology and water need to be launched. Environmental pollution and industrialization in global scale is further leading to pollution of available water sources and thus hygienically friendly purification technologies are the need of the hour. Thus cost-effective treatment of pollutants for the transformation of hazardous

  7. The development of a remote repair system for deep water pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Ian; Giles, John [Stolt Offshore MS Ltd., Aberdeen (United Kingdom)

    2000-07-01

    The ability to maintain a high level of flexibility within the contingency plans for sub sea pipeline repair is a critical issue normally achieved by basing the repair plans on diver intervention. This allows the pipeline operator flexibility to respond to particular repair situations as they occur, minimize up front planning and optimize the investment in repair equipment and stock. However for deep water pipelines all intervention must be performed by remote methods, which require the development of suitable equipment and more detailed repair procedures. This paper describes the development of a remotely operated pipeline repair system capable of working down to 3000 m and allowing a relatively high level of flexibility with minimum investment in repair stock. The repair system is based upon the Modular Advanced Tie-In System (MATIS) which has been successfully developed for the tie-in of deep water flow lines. The MATIS repair system is based on the use of standard flanges to replace a damaged section of pipe with a spool piece in a similar manner to a hyperbaric welded repair. Various repair scenarios are discussed in the paper together with the equipment and the procedures used to perform the repair. The paper will also discuss the other remote repair options such as hot tapping and friction stitch welding. (author)

  8. Effect of type of water supply on water quality in a developing community in South Africa

    CSIR Research Space (South Africa)

    Genthe, Bettina

    1997-01-01

    Full Text Available Efforts to provide water to developing communities in South Africa have resulted in various types of water supplies being used. This study examined the relationship between the type of water supply and the quality of water used. Source (communal...

  9. The development of water services and their interaction with water resources in European and Brazilian cities

    Directory of Open Access Journals (Sweden)

    B. Barraqué

    2008-08-01

    Full Text Available The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  10. Scenario analysis for sustainable development of Chongming Island: water resources sustainability.

    Science.gov (United States)

    Ni, Xiong; Wu, Yanqing; Wu, Jun; Lu, Jian; Wilson, P Chris

    2012-11-15

    With the socioeconomic and urban development of Chongming Island (the largest alluvial island in the world), water demand is rapidly growing. To make adjustments to the water utilization structure of each industry, allocate limited water resources, and increase local water use efficiency, this study performed a scenario analysis for the water sustainability of Chongming Island. Four different scenarios were performed to assess the water resource availability by 2020. The growth rate for water demand will be much higher than that of water supply under a serious situation prediction. The water supply growth volume will be 2.22 × 10(8)m(3) from 2010 to 2020 under Scenario I and Scenario II while the corresponding water demand growth volume will be 2.74 × 10(8)m(3) and 2.64 × 10(8)m(3), respectively. There will be a rapid growth in water use benefit under both high and low development modes. The water use benefit will be about 50 CNY/m(3) under Scenarios I and II in 2020. The production structure will need to be adjusted for sustainable utilization of water resources. Sewage drainage but not the forest and grass coverage rate will be a major obstacle to future development and environmental quality. According to a multi-level fuzzy comprehensive evaluation, Scenario II is finally deemed to be the most desirable plan, suggesting that the policy of rapid socioeconomic development and better environmental protection may achieve the most sustainable development of Chongming Island in the future. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Problems of Nitrogen at Central Municipal Water Works in Ostrava

    Directory of Open Access Journals (Sweden)

    Praus Petr

    2003-09-01

    Full Text Available Nitrogen is very important nutrient and must be removed during wastewater treatment process. The presented article describes the situation of nitrogen removal at the Central Municipal Water Works in Ostrava. At present, this biological sewage plant operates with only 45% nitrogen removal efficiency. The current three corridor denitrification-nitrification (D-N system is planed to be reconstructed. One of several solution is modification of the activation tank into four step D-N system that could be completed by postdenitrification in the redundant clarifiers.In this paper the analytical methods, used for determination of nitrogen compounds in waste waters, are described as well. Only sufficiently precise and accurate methods must be selected and that is why the standardized or fully validated procedures are preferred. Laboratory results are used for monitoring of treatment process and for making of important technological decisions. For this purpose, introduction of the quality control and quality assurance system into laboratory practise is desired.

  12. Method Development and Monitoring of Cyanotoxins in Water

    Science.gov (United States)

    This presentation describes method development of two ambient water LC/MS/MS methods for microcystins, cylindrospermopsin and anatoxin-a. Ruggedness of the methods will be demonstrated by evaluation of quality control samples derived from various water bodies across the country.

  13. Water assessment for the Lower Colorado River region-emerging energy technology development

    Science.gov (United States)

    1981-08-01

    Water supply availability for two hypothetical levels of emerging energy technology development are assessed. The water and related land resources implications of such hypothetical developments are evaluated. Water requirement, the effects on water quality, costs of water supplies, costs of disposal of wastewaters, and the environmental, economic and social impacts are determined, providing information for the development of non-nuclear energy research.

  14. Work Values System Development during Adolescence

    Science.gov (United States)

    Porfeli, Erik J.

    2007-01-01

    Work values stability, change, and development can be appreciably reduced to a living system model [Ford, D. H. (1994). "Humans as self-constructing living systems: A developmental perspective on behavior and personality" (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates]. This theoretical model includes discrepancy-reducing and…

  15. Assessment of Work Performance (AWP)--development of an instrument.

    Science.gov (United States)

    Sandqvist, Jan L; Törnquist, Kristina B; Henriksson, Chris M

    2006-01-01

    Adequate work assessments are a matter of importance both for individuals and society [5,29,31,38,40,46,52]. However, there is a lack of adequate and reliable instruments for use in work rehabilitation [14,15,20,21,31,44]. The purpose of this study was to develop and evaluate an observation instrument for assessing work performance, the AWP (Assessment of Work Performance). The purpose of the 14-item instrument is to assess the individual's observable working skills in three different areas: motor skills, process skills, and communication and interaction skills. This article describes the development and results of preliminary testing of the AWP. The testing indicates a satisfactory face validity and utility for the AWP and supports further research and testing of the instrument.

  16. Sustainable development of water resources in Pakistan and environmental issues

    International Nuclear Information System (INIS)

    Shakir, A.S.; Bashir, M.A

    2005-01-01

    Irrigation water represents an essential input for sustaining agricultural growth in Pakistan's arid to semi arid climate. While the surface water availability for irrigation has been more or less stagnant for the last three decades, the ground water utilization also appears to have touched the peak in most of the sweet aquifers. In the present state of inaction for the water resources development, the overall water availability is in fact declining due to progressive sedimentation of the existing storages and gradual lowering of water table in fresh ground water areas. The paper discusses major water resources concerns that threaten the sustainability of Pakistan's irrigated agriculture. The paper identifies overall water scarcity, high degree of temporal variability in river flows, lack of balancing storages and declining capacity of existing storages due to natural sedimentation as the serious concerns. Over exploitation of ground water and water quality concerns also seems to be emerging threats for environmentally sustainable irrigated agriculture in this country. The salt-water intrusion and increase in soil and ground water salinity are indicators of over exploitation of ground water for irrigation. The continuous use of poor quality ground water for irrigation is considered as one of the major causes of salinity in the area of irrigated agriculture. Indiscriminate pumping of the marginal and saline ground water can add to the root zone salinity and ultimately reduce the crop yields. The paper presents various management options for development and efficient utilization of water resources for environment friendly sustainable development of irrigated agriculture in Pakistan. These include construction of additional storage, modernization of irrigation system and effective conjunctive use of surface and groundwater resources. The better soil and water management practices, saline agriculture, use of biotechnology and genetic engineering can further increase

  17. Working conditions at hospital food service and the development of venous disease of lower limbs.

    Science.gov (United States)

    da Luz, Clarissa Medeiros; da Costa Proença, Rossana Pacheco; de Salazar, Begoña Rodriguez Ortiz; do Nascimento Galego, Gilberto

    2013-12-01

    The present study assesses some factors that may influence the development of lower limb venous disease in workers of a hospital food service unit. An Ergonomic analysis of work was carried out at a hospital located in the south of Brazil. As for data collection, the following were used: interviews and body mass index assessment; specific clinical examination to diagnose venous disease, water displacement volumetry of the lower limbs. The activities performed at the workplace were followed by direct observation with image registration, use of pedometers, stopwatches, decibel meter, and digital thermo-hygrometer. It was observed different degrees of venous disease in 78% of the cases investigated. The volumetric variation of the lower limbs was 5.13%, showing the presence of edema. Working in hospital food service is associated with circulatory disorders of lower limbs, such as edema and venous disease. The following risk factors were identified: standing activities at work during a long period of time, high temperature, and humidity and carrying heavy weights.

  18. Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Karimipour, Arash; Taghipour, Abdolmajid [Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Malvandi, Amir, E-mail: amirmalvandi@aut.ac.ir [Department of Mechanical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of)

    2016-12-01

    This paper aims to investigate magnetic field and slip effects on developing laminar forced convection of nanofluids in the microchannels. A novel mixture of water and FMWNT carbon nanotubes is used as the working fluid. To do this, fluid flow and heat transfer through a microchannel is simulated by a computer code in FORTRAN language. The mixture of FMWNT carbon nanotubes suspended in water is considered as the nanofluid. Slip velocity is supposed as the hydrodynamic boundary condition while the microchannel's lower wall is insulated and the top wall is under the effect of a constant heat flux. Moreover, the flow field is subjected to a magnetic field with a constant strength. The results are presented as the velocity, temperature and Nusselt number profiles. It is observed that nanofluid composed of water and carbon nanotubes (FMWNT) can work well to increase the heat transfer rate along the microchannel walls. Furthermore, it is indicated that imposing the magnetic field is very effective at the thermally developing region. In contrast, the magnetic field effect at fully developed region is insignificant, especially at low values of Reynolds number. - Highlights: • Simulation of water/FMWNT carbon nanotubes flow in a microchannel. • The effects of magnetic field strength on nanofluid's slip velocity. • The effects of Ha, Re, ϕ and slip coefficient on averaged Nusselt number. • Magnetic field effect at developing flow region is significant.

  19. The role of work stress in the development of accidents

    NARCIS (Netherlands)

    Vaas, F.

    2003-01-01

    At December 2nd, 2003 the Third International Tripod Symposium: Loss of Control was took place. At the symposium a lecture was held by Dr. F. Vaas of TNO Work and Employment about the role of work stress in the development of accidents. At TNO Work and Employment a management tool was developed to

  20. Perceptions of Nongovernmental Organization (NGO Staff about Water Privatization in Developing Countries

    Directory of Open Access Journals (Sweden)

    Ellis A. Adams

    2014-11-01

    Full Text Available Almost a billion people globally lack access to potable water. In the early 1990’s, attempts to improve potable water access in the global south included a massive push for water services privatization, often involving the transfer of public water services to private companies. Critics of water privatization claim it rarely improves access to water, and in most cases, unfairly affect poor people. Proponents on the other hand argue that it is necessary for efficient management and capital investment in the water sector. Although development NGOs play an important role in developing country water provision, hardly any studies have sought to understand their perceptions about the potential role of water privatization towards improving access to potable water in developing countries. We interviewed the key staff among 28 international and national NGO staff about water privatization, its opportunities and constraints. Their perceptions were mixed. While most criticized water privatization as increasing water costs to the poor, some noted that privatization is necessary for improving water access through increased capital investment. We present the findings and discuss larger implications for water policies and reforms in developing countries.

  1. Developing a Hygrometer for Water-Undersaturated Lherzolite Melts

    Science.gov (United States)

    Guild, M. R.; Till, C. B.

    2017-12-01

    The effect of water on the composition of primitive mantle melts at arc volcanoes is a topic of wide interest and has been addressed in a number of previous experimental studies including Hirose & Kawamoto (1995), Gaetani & Grove (1998), Till et al. (2012) and Mitchell & Grove (2015). The current study builds upon the work by previous authors in an effort to develop a more robust hygrometer for primitive lherzolite melts at water-undersaturated conditions. The starting composition for this experimental study is a mixture of 75% primitive upper mantle and 25% primitive basalt (Baker et al., 1991) with a bulk H2O content of 2 wt. %. Experiments were performed at Arizona State University in the Experimental Petrology and Igneous processes Center (EPIC) from 1.2-1.6 GPa at 1150-1300 ºC for 2 days in a piston cylinder apparatus to reflect conditions relevant for arc melt equilibration (Till 2017). A double capsule design was used to prevent Fe and H2O loss with an inner Fe-presaturated Au80Pd20 capsule and an outer Au80Pd20 capsule. Run products were analyzed by electron microprobe and determined to be successful when they demonstrated 0-5% Fe-loss, olivine-melt KDs of 0.27-0.30, and minimal H2O loss. The water-undersaturated melt composition are in equilibrium with ol+opx+sp±cpx. Run products at 1.6 GPa do not contain cpx in the mineral assemblage over the studied temperature range. Observed melt compositions have SiO2 contents of 48-49 wt. % at 1.2 GPa and 46-49 wt.% at 1.6 GPa. Our experimental results suggest an enhanced effect of water on increasing the SiO2 content of the melt compared to previous studies on systems with similar water contents and anhydrous systems. Baker, et al., JGR 96, 21819-21842 (1991). Gaetani & Grove, CMP 131, 323-346 (1998). Hirose & Kawamoto, EPSL 133, 463-473 (1995). Mitchell & Grove, CMP 170, 13 (2015). Till, Am. Mineral, 102, 931-947 (2017). Till, et al., JGR 117 (2012).

  2. The Water-Energy-Food Nexus in a Rapidly Developing Resource Sector

    Science.gov (United States)

    Allen, D. M.; Kirste, D. M.

    2014-12-01

    Technological advances and access to global markets have changed the rate at which resource exploitation takes place. The environmental impact of the rapid development and distribution of resources such as minerals and hydrocarbons has led to a greater potential for significant stress on water resources both in terms of quality and quantity. How and where those impacts manifest is crucial to determining appropriate risk management strategies. North East British Columbia has an abundance of shale gas reserves that are anticipated to be exploited at a large scale in coming years, primarily for export as liquefied natural gas (LNG). However, there is growing concern that fracking and other activities related to shale gas development pose risks to water quality and quantity in the region. Water lies at the center of the water-energy-food nexus, with an accelerating water demand for fracking and industrial operations as well as for domestic, environmental and agricultural uses. Climate change is also anticipated to alter the hydrologic regime, posing added stress to the water resource. This case study examines the water-energy-food nexus in the context of a region that is impacted by a rapidly developing resource sector, encompassing water demand/supply, climate change, interaction between deep aquifers and shallow aquifers/surface waters, water quality concerns related to fracking, land use disturbance, and community impacts. Due to the rapid rate of development, there are significant knowledge gaps in our understanding of the water resource. Currently agencies are undertaking water resource assessments and establishing monitoring sites. This research aims to assess water security in North East British Columbia in a coordinated fashion through various partnerships. In addition to collecting baseline knowledge and data, the study will evaluate risk and resilience indicators in relation to water security. A risk assessment framework specific to the shale gas development

  3. Pakistan's water resources development and the global perspective

    International Nuclear Information System (INIS)

    Mushtaq, M.; Sufi, A.B.

    2005-01-01

    Pakistan's economy is dependent on irrigated agriculture. About 80% of agriculture is irrigated. It contributes 30% of GDP. Agriculture provides 55% job opportunities. This sector provides 60% of country's exports. The development of agriculture will prosper and up-lift 70% of the total population that is annually growing by 3%. The total area of Pakistan is 197.7 MA (79.6 Mha). Out of which about 103.2 MA (41.77 Mha) comprises of rugged mountains, narrow valleys and foot hills, the remaining area of 93.5 MA (37.83 Mha) consists about 54.6 MA (22.1 Mha) is currently cultivated. Remaining 22.5 MA (9.1 Mha) is lying barren lacking water for irrigation. The total surface water availability is 154.5 MAF. Population density is the highest in the canal irrigated areas in the north east of Indus Plains. The increasing population and the associated social, technical and economic activities all depend, directly or indirectly, on the exploitation of water-as a resource. The total surface water availability is 154.5 MAF. Presently water diverted at canal heads is 106 MAF. In Vision 2025 Programme WAPDA has identified to build water sector and hydropower projects such as: i) Water Sector Projects (Gomal Zam, Mirani, Raised Mangla, Satpara. Kurram Tangi Dams and Greater Thai, Kachhi and Rainee Canals) and ii) Hydropower Projects (Jinnah Barrage, Allai Khwar, Khan Khwar, Duber Khwar, Golen Gole, Neelum Jhelum and Low Head Hydropower Project). Besides the above some more projects are under various stages of planning i.e.; (i) Basha Diamer Dam Project - Feasibility Detailed Design and Tenders, (ii) Akhori Dam Project - Feasibility, (iii) Sehwan Barrage - Feasibility. (iv) Chashma Right Bank Canal Lift Scheme Feasibility and Design, (v) Bunji Hydropower Project Pre-feasibility, (vi) Dasu Hydropower Project - Pre-feasibility and Skardu Dam - Prefeasibility. While, keeping in view the planning and development activities regarding water sector and hydropower projects, the country will

  4. Development of Ukrainian legislation on sanitary protection of water resources in the XX century

    Directory of Open Access Journals (Sweden)

    Ю. А. Чуприна

    2015-05-01

    Full Text Available Problem Setting. The article investigates the formation in Ukraine of legal regulation of the state sanitary control of water, the process of creating of general and special jurisdiction for its implementation, as well as the regulation regime, methods and tools for health protection of waters of different categories. The relevance of this article due to the need to systematize the individual areas of water law, including the protection of water and sanitation of the twentieth century. Analysis of the recent researches and publications. The article devoted to the study of formation in Ukraine of legal regulation of the state sanitary control of water, the process of creating of general and special jurisdiction for its implementation, as well as the regulation regime, methods and tools for health protection of waters of different categories. Paper objective. The relevance of this article due to the need to identify viable methods and instruments of legal regulation of sanitary protection of water during the formation of the main areas of water legislation of Ukraine in the twentieth century. Terms used in the legal protection of water, sanitary water use rules, the bodies of sanitary supervision, the state sanitary inspection. Conclusions. Research in the field of water legislation, and therefore the individual concerned and its protection issues, many scientists were engaged as ecologists and environmentalists. However, the special historical and legal work in a range twentieth century. no. This gap makes it difficult to analyze the current state of affairs in the field of sanitary protection of water. Detection of historical stages of development of water legislation in this area, identifying the main patterns and dynamics of legal regulation of sanitary protection of water in specific historical circumstances will improve the current regime of water protection. The author analyzes the main laws and regulations in the field of materials of

  5. TEAM CONSOLIDATION BY DEVELOPING WELFARE AT WORK

    Directory of Open Access Journals (Sweden)

    CATALINA BONCIU

    2011-04-01

    Full Text Available The development of welfare at work should contribute not only to strengthen the company’s position on the market. Maybe before measuring the economical results we should first analyze the social consequences of a microeconomic policy supportive of all the elements of good practice conducive to employees. Environmental aspects (inside or outside the company, which affect the workers’ current behavior, should be interpreted. It is the case of the actual conditions on the world market, as well as the state of things among employees’ needs: job security, new aspirations for wage and personal development; professional entourage: complexity, uncertainty, lack of flexibility, fluctuation…The most pressing element of the employees’ welfare is the research of: the work psychopathology; the psychoactive substances at work; the stress causes and manifestations, exhaustion, sleep disorders, but also behavioral; strikes, conflicts, crises, bullying and violence, harassment and sexism…To opt for a leadership where understanding and helping employees is a must also means having an interest in generalizing the state of health among employees, and this is reflected in their high quality of life.

  6. Salinity Induced Changes in β-carotene, Thiamine, Riboflavin and Ascorbic Acid Content in Spinacia oleracea L. var. All Green

    Directory of Open Access Journals (Sweden)

    Anjali Ratnakar

    2014-05-01

    Full Text Available Vitamins are the functional components of various enzyme-regulated biochemical reactions occurring to create energy. Vitamin contents of plants are known to show altered metabolism under the influence of salinity. Not much of work has been done on the influence of salinity on the vitamin content in higher plants. Present study was carried out to study the influence of NaCl salinity on vitamin content in the leaves of Spinacia oleracea. Spinacia oleracea plants were grown in earthen pots and were subjected to different concentrations of saline water (NaCl treatment. Control plants were irrigated with tap water. Treatments started after the seedling emergence and continued till the plants were 45 day old. Mature leaves of these plants were harvested and used for studies. Thiamine and riboflavin content were found to increase with increase in NaCl concentration, however, β-carotene was found to decrease with increasing level of NaCl in the growth medium.

  7. Regulation of water resources for sustaining global future socioeconomic development

    Science.gov (United States)

    Chen, J.; SHI, H.; Sivakumar, B.

    2016-12-01

    With population projections indicating continued growth during this century, socio-economic problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if proper planning, development, and management strategies are not adopted. In the present study, firstly, we explore the vital role of dams in promoting economic growth through analyzing the relationship between dams and Gross Domestic Product (GDP) at both global and national scales. Secondly, we analyze the current situation of global water scarcity based on the data representing water resources availability, dam development, and the level of economic development. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, this study addresses the question of dam development in the future and predicts the locations of future dams around the world.

  8. Water: The conveyor belt for sustainable livelihoods and economic development

    Science.gov (United States)

    Mapani, Benjamin; Meck, Maideyi; Makurira, Hodson; Magole, Lapologang; Mashauri, Damas; mazvimavi, Dominic; Mul, Marloes

    2016-04-01

    The theme for the 2014 symposium focused on the contribution of integrated water resources management (IWRM) to socio-economic development. A number of papers presented various methods that could be used to enable society to access clean water; sanitation and provision of water for rainfed and irrigation based agriculture and aquaculture. Water is the engine of development, that drives both money generating ventures as well as activities which cannot be assigned exact monetary value, but are essential for the social and economic well being of communities. It is now accepted that in order to produce most products, the contribution of water has to be factored in; from manufacturing to mining. The role that water plays in the has a much higher economic value than most people realize.

  9. Taking water-based mud to extremes : new ultra-high temperature water-based mud development and applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Conn, L.; Cullum, D.; Ray, R.; Marinescu, P. [Mi SWACO, Calgary, AB (Canada)

    2008-07-01

    The design, development and field applications of an ultra-high temperature water-based mud used for drilling very deep and hot wells in continental Europe was described. Basin-centred gas production from unconventional tight sands represents a significant resources that may revive exploration and gas production. However, these accumulations lie deep down from normal-pressure reservoirs and the bottom hole static temperatures are greater than 200 degrees C. In addition, they host acid gases such as carbon dioxide and hydrogen sulfide. As such, there are severe limitations on the design and choice of drilling fluids. This paper also described the extensive laboratory work that is needed to optimize the formulation of drilling fluids for high densities and extreme high temperatures. The lessons learned were described with reference to critical engineering guidelines for running a water-based system in such harsh conditions. The effectiveness of new fluids in delivering optimum drilling in extreme high temperature high pressure (HTHP) conditions were demonstrated using a unique software program that predicted the rheological behaviour, pressure losses, equivalent circulating density and equivalent static density. The new water-based system proved to be effective in drilling HTHP wells in areas where invert emulsion drilling fluid systems are not allowed.

  10. Leaf water stable isotopes and water transport outside the xylem.

    Science.gov (United States)

    Barbour, M M; Farquhar, G D; Buckley, T N

    2017-06-01

    How water moves through leaves, and where the phase change from liquid to vapour occurs within leaves, remain largely mysterious. Some time ago, we suggested that the stable isotope composition of leaf water may contain information on transport pathways beyond the xylem, through differences in the development of gradients in enrichment within the various pathways. Subsequent testing of this suggestion provided ambiguous results and even questioned the existence of gradients in enrichment within the mesophyll. In this review, we bring together recent theoretical developments in understanding leaf water transport pathways and stable isotope theory to map a path for future work into understanding pathways of water transport and leaf water stable isotope composition. We emphasize the need for a spatially, anatomically and isotopically explicit model of leaf water transport. © 2016 John Wiley & Sons Ltd.

  11. Development and Testing of Infrared Water Current Meter | Ezenne ...

    African Journals Online (AJOL)

    Continuous monitoring of the river flow is essential for assessing water availability. River flow velocity is crucial to simulate discharge hydrographs of water in the hydrological system.This study developed a digital water current meter with infrared. The infrared current meter was tested using Ebonyi River at Obollo-Etiti and ...

  12. University of Idaho Water of the West Initiative: Development of a sustainable, interdisciplinary water resources program

    Science.gov (United States)

    Boll, J.; Cosens, B.; Fiedler, F.; Link, T.; Wilson, P.; Harris, C.; Tuller, M.; Johnson, G.; Kennedy, B.

    2006-12-01

    Recently, an interdisciplinary group of faculty from the University of Idaho was awarded a major internal grant for their project "Water of the West (WoW)" to launch an interdisciplinary Water Resources Graduate Education Program. This Water Resources program will facilitate research and education to influence both the scientific understanding of the resource and how it is managed, and advance the decision-making processes that are the means to address competing societal values. By educating students to integrate environmental sciences, socio-economic, and political issues, the WoW project advances the University's land grant mission to promote economic and social development in the state of Idaho. This will be accomplished through novel experiential interdisciplinary education activities; creation of interdisciplinary research efforts among water resources faculty; and focusing on urgent regional problems with an approach that will involve and provide information to local communities. The Water Resources Program will integrate physical and biological sciences, social science, law, policy and engineering to address problems associated with stewardship of our scarce water resources. As part of the WoW project, faculty will: (1) develop an integrative problem-solving framework; (2) develop activities to broaden WR education; (3) collaborate with the College of Law to offer a concurrent J.D. degree, (4) develop a virtual system of watersheds for teaching and research, and (5) attract graduate students for team-based education. The new program involves 50 faculty from six colleges and thirteen departments across the university. This university-wide initiative is strengthened by collaboration with the Idaho Water Resources Research Institute, and participation from off-campus Centers in Idaho Falls, Boise, Twin Falls, and Coeur d'Alene. We hope this presentation will attract university faculty, water resources professionals, and others for stimulating discussions on

  13. Working Memory Underpins Cognitive Development, Learning, and Education

    Science.gov (United States)

    Cowan, Nelson

    2014-01-01

    Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then, I…

  14. Mechanisation and automation technologies development in work at construction sites

    Science.gov (United States)

    Sobotka, A.; Pacewicz, K.

    2017-10-01

    Implementing construction work that creates buildings is a very complicated and laborious task and requires the use of various types of machines and equipment. For years there has been a desire for designers and technologists to introduce devices that replace people’s work on machine construction, automation and even robots. Technologies for building construction are still being developed and implemented to limit people’s hard work and improve work efficiency and quality in innovative architectonical and construction solutions. New opportunities for improving work on the construction site include computerisation of technological processes and construction management for projects and processes. The aim of the paper was to analyse the development of mechanisation, automation and computerisation of construction processes and selected building technologies, with special attention paid to 3D printing technology. The state of mechanisation of construction works in Poland and trends in its development in construction technologies are presented. These studies were conducted on the basis of the available literature and a survey of Polish construction companies.

  15. Development of the ELEX process for water detritiation

    International Nuclear Information System (INIS)

    Bruggeman, A.; Meynendonckx, L.; Parmentier, C.; Goossens, W.R.A.; Baetsle, L.H.

    1984-01-01

    The ELEX process which appears to be very suitable for the detritiation of CTR cooling water and wastewater, is based on the electrolysis of water and the catalytic exchange of tritium between hydrogen and water. The exchange is carried out in a simple countercurrent packed-bed reactor and it is promoted by a proprietary hydrophobic catalysts. After a study of the single constituent steps with a.o. the development of an appropriate hydrophobic catalyst, the integrated ELEX process was successfully demonstrated by detritiating more than 1000 dm 3 water in a 0.18 dm 3 h -1 bench-scale installation. (author)

  16. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  17. Fire and Water combined: Understanding the Relevance of Working Life Studies through a Concept of Practical Activity

    Directory of Open Access Journals (Sweden)

    Keijo Räsänen

    2015-11-01

    Full Text Available When I presented the basic ideas of this paper at a conference, a Swedish colleague commented: ‘you manage to combine water and fire.’ I understood his kind comment to mean that he used water and fire as metaphors for practice and theory. The comment puzzled me for a while. Water and fire obviously destroy each other, or at least radically transform each other. Then I realized that humans have actually managed to combine water and fire in several ways. One solution is the kettle. It makes possible to use fire in a controlled way for the human purpose of boiling water. Thus, this paper can be taken as an attempt at offering a kettle-like vehicle for bringing together practicetheoretical concepts and vocational practice. My kettle is a concept of practical activity. I am trying to boil up an answer to the following question: in what senses a study of work can be practically relevant to those who are doing the work being studied?

  18. 76 FR 295 - Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To...

    Science.gov (United States)

    2011-01-04

    ... and development of water resources of the Delaware River Basin during the implementation of natural... states and Federal government work together to manage water resources in an integrated manner for the... new Article 7 of DRBC's Water Quality Regulations to protect the water resources of the Basin during...

  19. GEOSS Water Cycle Integrator

    Science.gov (United States)

    Koike, Toshio; Lawford, Richard; Cripe, Douglas

    2013-04-01

    It is critically important to recognize and co-manage the fundamental linkages across the water-dependent domains; land use, including deforestation; ecosystem services; and food-, energy- and health-securities. Sharing coordinated, comprehensive and sustained observations and information for sound decision-making is a first step; however, to take full advantage of these opportunities, we need to develop an effective collaboration mechanism for working together across different disciplines, sectors and agencies, and thereby gain a holistic view of the continuity between environmentally sustainable development, climate change adaptation and enhanced resilience. To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the intergovernmental Group on Earth Observations (GEO) is implementing the Global Earth Observation System of Systems (GEOSS). A component of GEOSS now under development is the "GEOSS Water Cycle Integrator (WCI)", which integrates Earth observations, modeling, data and information, management systems and education systems. GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and inter-agency coordination in Asia and Africa, GEOSS

  20. Monitoring Water Targets in the Post-2015 Development Goals

    Science.gov (United States)

    Lawford, R. G.

    2015-12-01

    The Water Sustainable Development Goal (SDG) provides a comprehensive approach to developing water services in a way that ensures social equity, health, well-being and sustainability for all. In particular, the water goal includes targets related to sanitation, wastewater, water quality, water efficiency, integrated water management and ecosystems (details to be finalized in September 2015). As part of its implementation, methods to monitor target indicators must be developed. National governments will be responsible for reporting on progress toward these targets using national data sets and possibly information from global data sets that applies to their countries. Oversight of this process through the use of global data sets is desirable for encouraging the use of standardized information for comparison purposes. Disparities in monitoring due to very sparse data networks in some countries can be addressed by using geospatially consistent data products from space-based remote sensing. However, to fully exploit these data, capabilities will be needed to downscale information, to interpolate and assimilate data both in time and space, and to integrate these data with socio-economic data sets, model outputs and survey data in a geographical information system framework. Citizen data and other non-standard data types may also supplement national data systems. A comprehensive and integrated analysis and dissemination system is needed to enable the important contributions that satellites could make to achieving Water SDG targets. This presentation will outline the progress made in assessing the needs for information to track progress on the Water SDG, options for meeting these needs using existing data infrastructure, and pathways for expanding the role of Earth observations in SDG monitoring. It will also discuss the potential roles of Future Earth's Sustainable Water Futures Programme (SWFP) and the Group on Earth Observations (GEO) in coordinating these efforts.

  1. Organisational and task factors influencing teachers’ professional development at work

    NARCIS (Netherlands)

    Evers, A.T.; Heijden, B.I.J.M. van der; Kreijns, K.

    2016-01-01

    - Purpose – The purpose of this paper is to investigate organisational (cultural and relational) and task factors which potentially enhance teachers’ professional development at work (TPD at Work). The development of lifelong learning competencies and, consequently, the careers of teachers, has

  2. Clean Water Action Plan: Restoring and protecting America`s waters

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    On October 18, 1997, the 25th anniversary of the enactment of the Clean Water Act, the Vice President called for a renewed effort to restore and protect water quality. The Vice President asked that the Secretary of Agriculture and the Administrator of the Environmental Protection Agency (EPA), working with other affected agencies, develop a Clean Water Action Plan that builds on clean water successes and addresses three major goals: (1) enhanced protection from public health threats posed by water pollution; (2) more effective control of polluted runoff; and (3) promotion of water quality protection on a watershed basis.

  3. Developing and implementing the use of predictive models for estimating water quality at Great Lakes beaches

    Science.gov (United States)

    Francy, Donna S.; Brady, Amie M.G.; Carvin, Rebecca B.; Corsi, Steven R.; Fuller, Lori M.; Harrison, John H.; Hayhurst, Brett A.; Lant, Jeremiah; Nevers, Meredith B.; Terrio, Paul J.; Zimmerman, Tammy M.

    2013-01-01

    Predictive models have been used at beaches to improve the timeliness and accuracy of recreational water-quality assessments over the most common current approach to water-quality monitoring, which relies on culturing fecal-indicator bacteria such as Escherichia coli (E. coli.). Beach-specific predictive models use environmental and water-quality variables that are easily and quickly measured as surrogates to estimate concentrations of fecal-indicator bacteria or to provide the probability that a State recreational water-quality standard will be exceeded. When predictive models are used for beach closure or advisory decisions, they are referred to as “nowcasts.” During the recreational seasons of 2010-12, the U.S. Geological Survey (USGS), in cooperation with 23 local and State agencies, worked to improve existing nowcasts at 4 beaches, validate predictive models at another 38 beaches, and collect data for predictive-model development at 7 beaches throughout the Great Lakes. This report summarizes efforts to collect data and develop predictive models by multiple agencies and to compile existing information on the beaches and beach-monitoring programs into one comprehensive report. Local agencies measured E. coli concentrations and variables expected to affect E. coli concentrations such as wave height, turbidity, water temperature, and numbers of birds at the time of sampling. In addition to these field measurements, equipment was installed by the USGS or local agencies at or near several beaches to collect water-quality and metrological measurements in near real time, including nearshore buoys, weather stations, and tributary staff gages and monitors. The USGS worked with local agencies to retrieve data from existing sources either manually or by use of tools designed specifically to compile and process data for predictive-model development. Predictive models were developed by use of linear regression and (or) partial least squares techniques for 42 beaches

  4. Water Resources of Israel: Trackrecord of the Development

    Directory of Open Access Journals (Sweden)

    Nicolai S. Orlovsky

    2018-01-01

    Full Text Available Israel is a country in the Near East consisting for 95% of the arid regions in which 60% of the territory are covered by the Negev Desert. Therefore, the water resources are scant here and formed mostly by atmospheric precipitations. In the period from 1989 to 2005 the average precipitations were 6 billion cu. m, of which 60–70% were evaporated soon after rainfalls, at least 5% run down by rivers into the sea (mostly in winter and the remaining 25% of precipitations infiltrated into soil from where the greater part of water got into the sea with ground waters. In Israel there are two groups of water resources: surface and underground. Israel is not rich in surface waters. The natural reservoir of surface fresh water is the Kinneret Lake in the northeast of the country. It gets water from the Jordan River and its tributaries. The average annual amount of available water of this lake is around 370 million cu. m, which accounts for one-third of the country’s water needs and still higher share of the drinking water needs. The greater part of fresh waters (37% of water supply of Israel as of 2011 in this country is supplied from ground water sources. Owing to insufficiency of available natural resources, unevenness of precipitations by years and seasons and with the growth of the population and economic development the issues of provision with the quality drinking water of the population as well as agriculture and industry, rehabilitation of natural environment cause permanently growing concern. In view of the water shortage untiring efforts have been taken to improve the irrigation efficiency and to reduce water use by improving the efficacy of irrigation techniques and application of advanced system management approaches. Among the water saving technologies applied in Israel there are: drop irrigation, advanced filtration, up to date methods of water leak detection from networks, rainwater collection and processing systems. At the same time

  5. High-sensitivity green resist material with organic solvent-free spin-coating and tetramethylammonium hydroxide-free water-developable processes for EB and EUV lithography

    Science.gov (United States)

    Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2015-03-01

    We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.

  6. Coping with water crisis in Cuba | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Even those that did had to treat their water before it was safe to drink. ... containers were distributed only after it was clear that the filters were working properly. ... factors in the urban environment that affect human health — in other words, they ...

  7. Economic, Energetic, and Environmental Impact Evaluation of the Water Discharge Networks from Mining Works

    Directory of Open Access Journals (Sweden)

    Andrei Cristian Rada

    2018-01-01

    Full Text Available Sustainable development represents an optimistic scenario for the evolution of contemporary civilization. The object of this paper is to define certain evaluation criteria regarding the performances of water discharge networks from mining works, and propose a method for aggregating the specific indicators for monetary costs, energetic costs, and environmental impact-related costs. The global pollution index (GPI represents a method for assessing environment health status or pollution levels. The GPI quantitatively expresses this status based on its index, which results from a ratio between the ideal value and the given value of certain quality indices that are considered specific for the analyzed environmental factors at certain moments. The proposed method in this paper tries to perform a synergistic aggregation of the balance sheet of harmfulness and classic balance sheets for matter and energy for an industrial process.

  8. Theoretical and experimental work on steam generator integrity and reliability with particular reference to leak development and detection. United Kingdom status report. October 1983

    International Nuclear Information System (INIS)

    Smedley, J.A.; Edge, D.M.

    1984-01-01

    This paper reviews the experimental and theoretical work in the UK on the characteristics of sodium-water reactions and describes work on the development of leak detection systems. A review of the operating experience with the PFR steam generators and the protection philosophy used on PFR is also given and the design studies for the Commercial Demonstration Fast Reactor (CDFR) are described

  9. Potentials for development of hydro-powered water desalination in Jordan

    International Nuclear Information System (INIS)

    Akash, B.A.; Mohsen, M.S.

    1998-01-01

    Due to the increase in population and development in agriculture, Jordan will deplete all of its renewable sources of fresh water in the next few years. On the other hand, the level of the Dead Sea has been falling at a high rate for the past three decades, due to the diversion of water from the Jordan River for irrigation. The solution to these issues could be in finding other alternatives such as the development of hydro-powered water desalination plant. Desalted water would be produced in order to make up for the shortage of fresh water using membrane technology, and thus reserve fresh ground water for future generations. This paper finds, on an annual basis, that about 2133 million cubic meters (MCM) of water can be drawn from the Red Sea. The power generated due to difference in elevation is used to desalinate Red Sea water. About 533 MCM of fresh water is produced in such a process. The brine, which is about 1600 MCM, is discharged into the Dead Sea. (author)

  10. WIPDash: Work Item and People Dashboard for Software Development Teams

    NARCIS (Netherlands)

    Jakobsen, M. R.; Fernandez, R.; Czerwinski, M.; Inkpen, K.; Kulyk, Olga Anatoliyivna; Robertson, G.G.

    2009-01-01

    We present WIPDash, a visualization for software development teams designed to increase group awareness of work items and code base activity. WIPDash was iteratively designed by working with two development teams, using interviews, observations, and focus groups, as well as sketches of the

  11. The long-term dynamics of mortality benefits from improved water and sanitation in less developed countries.

    Science.gov (United States)

    Jeuland, Marc A; Fuente, David E; Ozdemir, Semra; Allaire, Maura C; Whittington, Dale

    2013-01-01

    The problem of inadequate access to water, sanitation and hygiene (WASH) in less-developed nations has received much attention over the last several decades (most recently in the Millennium Development Goals), largely because diseases associated with such conditions contribute substantially to mortality in poor countries. We present country-level projections for WASH coverage and for WASH-related mortality in developing regions over a long time horizon (1975-2050) and provide dynamic estimates of the economic value of potential reductions in this WASH-related mortality, which go beyond the static results found in previous work. Over the historical period leading up to the present, our analysis shows steady and substantial improvements in WASH coverage and declining mortality rates across many developing regions, namely East Asia and the Pacific, Latin America and the Caribbean, Eastern Europe and the Middle East. The economic value of potential health gains from eliminating mortality attributable to poor water and sanitation has decreased substantially, and in the future will therefore be modest in these regions. Where WASH-related deaths remain high (in parts of South Asia and much of Sub-Saharan Africa), if current trends continue, it will be several decades before economic development and investments in improved water and sanitation will result in the capture of these economic benefits. The fact that health losses will likely remain high in these two regions over the medium term suggests that accelerated efforts are needed to improve access to water and sanitation, though the costs and benefits of such efforts in specific locations should be carefully assessed.

  12. The long-term dynamics of mortality benefits from improved water and sanitation in less developed countries.

    Directory of Open Access Journals (Sweden)

    Marc A Jeuland

    Full Text Available The problem of inadequate access to water, sanitation and hygiene (WASH in less-developed nations has received much attention over the last several decades (most recently in the Millennium Development Goals, largely because diseases associated with such conditions contribute substantially to mortality in poor countries. We present country-level projections for WASH coverage and for WASH-related mortality in developing regions over a long time horizon (1975-2050 and provide dynamic estimates of the economic value of potential reductions in this WASH-related mortality, which go beyond the static results found in previous work. Over the historical period leading up to the present, our analysis shows steady and substantial improvements in WASH coverage and declining mortality rates across many developing regions, namely East Asia and the Pacific, Latin America and the Caribbean, Eastern Europe and the Middle East. The economic value of potential health gains from eliminating mortality attributable to poor water and sanitation has decreased substantially, and in the future will therefore be modest in these regions. Where WASH-related deaths remain high (in parts of South Asia and much of Sub-Saharan Africa, if current trends continue, it will be several decades before economic development and investments in improved water and sanitation will result in the capture of these economic benefits. The fact that health losses will likely remain high in these two regions over the medium term suggests that accelerated efforts are needed to improve access to water and sanitation, though the costs and benefits of such efforts in specific locations should be carefully assessed.

  13. Dual Arm Work Module Development and Appplications

    Energy Technology Data Exchange (ETDEWEB)

    Noakes, M.W.

    1999-04-25

    The dual arm work module (DAWM) was developed at Oak Ridge National Laboratory (ORNL) by the Robotics Technology Development Program (RTDP) as a development test bed to study issues related to dual arm manipulation, including platform cotilguration, controls, automation, operations, and tooling. The original platform was based on two Schilling Titan II manipulators mounted to a 5-degree-of- freedom (DOF) base fabricated by RedZone Robotics, Inc. The 5-DOF articulation provided a center torso rotation, linear actuation to change the separation between the arms, and arm base rotation joints to provide "elbows up," elbows down," or "elbows out" orientation. A series of tests were conducted on operations, tooling, and task space scene analysis (TSSA)-driven robotics for overhead transporter- mounted and crane hook-deployed scenarios. A concept was developed for DAWM deployment from a large remote work vehicle, but the project was redirected to support dismantlement of the Chicago Pile #5 (CP-5) reactor at Argonne National Laboratory in fiscal year (FY) 1997. Support of CP-5 required a change in focus of the dual arm technology from that of a development test bed to a system focussed for a specific end user. ORNL teamed with the Idaho National Environmental ,Engineering Laboratory, Sandia National Laboratory, and the Savannah River Technology Center to deliver a crane-deployed derivative of the DAWM, designated the dual arm work platform (DAWP). RTDP staff supported DAWP at CP-5 for one FY; Argonne staff continued operation through to dismantlement of the reactor internals. Lessons learned from this interaction were extensive. Beginning in FY 1999, dual arm development activities are again being pursued in the context of those lessons learned. This paper describes the progression of philosophy of the DAWM from initial test bed to lessons learned through interaction at CP-5 and to the present investigation of telerobotic assist of teleoperation and TSSA- driven robotics.

  14. Using a simple model for water and nitrogen transport in soil in the practical works of Horticulture

    Directory of Open Access Journals (Sweden)

    A. Lidón

    2017-08-01

    Full Text Available Simulation models for the transport of water and nitrogen in the soil are useful tools for evaluating the consequences  of  different  crop  management  practices  without  waiting  until  the  end  of  the  crop  cycle.  Particularly,  simple compartmental models for the transport of water and nitrogen are based on the solution of mass balance equations for  the  water  and  a  system  of  ordinary  differential  equations  for  the  nitrogen  cycle.  In this work, these models are used to evaluate different possible scenarios of irrigation and nitrogen fertilization in a cauliflower crop, as a practical work for the students of Horticulture course. The results show that different irrigation and fertilization strategies lead to different results for the nitrate leaching, water drainage and nitrogen uptake.

  15. Comparative study on the growth performance of the hybrid catfish ...

    African Journals Online (AJOL)

    Growth performance of the hybrid catfish Heteroclarias reared in concrete and earthen pond systems were investigated in a 92-day experiment. Experiment was conducted using four rectangular ponds (2 concrete and 2 earthen) each measuring 14 × 6 × 1.5 metres in duplicates. The ponds were uniformly limed, fertilized ...

  16. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    Science.gov (United States)

    Enoeda, M.; Kosaku, Y.; Hatano, T.; Kuroda, T.; Miki, N.; Honma, T.; Akiba, M.; Konishi, S.; Nakamura, H.; Kawamura, Y.; Sato, S.; Furuya, K.; Asaoka, Y.; Okano, K.

    2003-12-01

    This paper presents results of conceptual design activities and associated R&D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R&D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  17. Recent IAEA activities to support advanced water cooled reactor technology development

    International Nuclear Information System (INIS)

    Choi, J.-H.; Bilbao y Leon, S.; Rao, A.S.

    2009-01-01

    The International Atomic Energy Agency (IAEA) is the world's center of cooperation in the nuclear field. The IAEA works with its Member States and multiple partners worldwide to promote safe, secure and peaceful nuclear technologies. To catalyse innovation in nuclear power technology in Member States, the IAEA coordinates cooperative research, promotes information exchange, and analyses technical data and results, with a focus on reducing capital costs and construction periods while further improving performance, safety and proliferation resistance. This paper summarizes the recent major IAEA activities to support technology development for water cooled reactors, which is the most common type of reactor design at present and will probably still be in the near future. (author)

  18. Development of REFLA/TRAC code for engineering work station

    International Nuclear Information System (INIS)

    Ohnuki, Akira; Akimoto, Hajime; Murao, Yoshio

    1994-03-01

    The REFLA/TRAC code is a best-estimate code which is expected to check reactor safety analysis codes for light water reactors (LWRs) and to perform accident analyses for LWRs and also for an advanced LWR. Therefore, a high predictive capability is required and the assessment of each physical model becomes important because the models govern the predictive capability. In the case of the assessment of three-dimensional models in REFLA/TRAC code, a conventional large computer is being used and it is difficult to perform the assessment efficiently because the turnaround time for the calculation and the analysis is long. Then, a REFLA/TRAC code which can run on an engineering work station (EWS) was developed. Calculational speed of the current EWS is the same order as that of large computers and the EWS has an excellent function for multidimensional graphical drawings. Besides, the plotting processors for X-Y drawing and for two-dimensional graphical drawing were developed in order to perform efficient analyses for three-dimensional calculations. In future, we can expect that the assessment of three-dimensional models becomes more efficient by introducing an EWS with higher calculational speed and with improved graphical drawings. In this report, each outline for the following three programs is described: (1) EWS version of REFLA/TRAC code, (2) Plot processor for X-Y drawing and (3) Plot processor for two-dimensional graphical drawing. (author)

  19. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish numerical model boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing

  20. Laboratory studies conducted for the development of a plant to concentrate the radioactive waste from tritiated water

    International Nuclear Information System (INIS)

    Bornea, Anisia; Zamfirache, Marius; Stefanescu, Ioan; Vasut, Felicia; Soare, Amalia

    2010-01-01

    The Cernavoda Nuclear Power Plant is the biggest operational source of tritium, in Europe and one of the most important in the world. The recovery of tritium from the moderator of operating Candu reactors and from the reactors to operate, represents a good opportunity for Romania to be involved in international collaboration programs in the field of nuclear fusion. Our interest is especially focussed on tritiated waste water with low activity resulted from the maintenance work performed on reactors with the purpose of reducing their volume and their reprocessing. The system presented in this work is based on the catalytic isotopic exchange and molecular dissociation CECE (Combined Electrolysis Catalytic Exchange). It has been noticed a growing interest regarding the electrolysers having polymer membranes as electrolyte SPM (solid polymer membrane). The advantage of using polymer membranes consists in the fact that membranes are actually the electrolyte and performs in the same time hydrogen and its isotopes separation. The present paper presents a conceptual design scheme for a tritium concentration system resulted from the tritiated waste water. This conceptual design represented the basis for the development of the installation for the tritiated waste water concentration, and the experiments to be performed will represent a support for promoting this technology. For designing the system and for analysing its functionality, a theoretical model for calculating tritium separation and concentration, has been developed.

  1. How to quantify sustainable development: a risk-based approach to water quality management.

    Science.gov (United States)

    Sarang, Amin; Vahedi, Arman; Shamsai, Abolfazl

    2008-02-01

    Since the term was coined in the Brundtland report in 1987, the issue of sustainable development has been challenged in terms of quantification. Different policy options may lend themselves more or less to the underlying principles of sustainability, but no analytical tools are available for a more in-depth assessment of the degree of sustainability. Overall, there are two major schools of thought employing the sustainability concept in managerial decisions: those of measuring and those of monitoring. Measurement of relative sustainability is the key issue in bridging the gap between theory and practice of sustainability of water resources systems. The objective of this study is to develop a practical tool for quantifying and assessing the degree of relative sustainability of water quality systems based on risk-based indicators, including reliability, resilience, and vulnerability. Current work on the Karoun River, the largest river in Iran, has included the development of an integrated model consisting of two main parts: a water quality simulation subroutine to evaluate Dissolved Oxygen Biological Oxygen Demand (DO-BOD) response, and an estimation of risk-based indicators subroutine via the First Order Reliability Method (FORM) and Monte Carlo Simulation (MCS). We also developed a simple waste load allocation model via Least Cost and Uniform Treatment approaches in order to consider the optimal point of pollutants control costs given a desired reliability value which addresses DO in two different targets. The Risk-based approach developed herein, particularly via the FORM technique, appears to be an appropriately efficient tool for estimating the relative sustainability. Moreover, our results in the Karoun system indicate that significant changes in sustainability values are possible through dedicating money for treatment and strict pollution controls while simultaneously requiring a technical advance along change in current attitudes for environment protection.

  2. Safe drinking water production in rural areas: a comparison between developed and less developed countries.

    Science.gov (United States)

    Cotruvo, J A; Trevant, C

    2000-01-01

    At the fundamental level, there are remarkable parallels between developed and less developed countries in problems of providing safe drinking water in rural areas, but of course, they differ greatly in degree and in the opportunities for resolution. Small water supplies frequently encounter difficulty accessing sufficient quantities of drinking water for all domestic uses. If the water must be treated for safety reasons, then treatment facilities and trained operating personnel and finances are always in short supply. Ideally, each solution should be sustainable within its own cultural, political and economic context, and preferably with local personnel and financial resources. Otherwise, the water supply will be continuously dependent on outside resources and thus will not be able to control its destiny, and its future will be questionable. The history of success in this regard has been inconsistent, particularly in less developed but also in some developed countries. The traditional and ideal solution in developing countries has been central water treatment and a piped distribution network, however, results have had a mixed history primarily due to high initial costs and operation and maintenance, inadequate access to training, management and finance sufficient to support a fairly complex system for the long term. These complete systems are also slow to be implemented so waterborne disease continues in the interim. Thus, non-traditional, creative, cost-effective practical solutions that can be more rapidly implemented are needed. Some of these options could involve: small package central treatment coupled with non piped distribution, e.g. community supplied bottled water; decentralized treatment for the home using basic filtration and/or disinfection; higher levels of technology to deal with chemical contaminants e.g. natural fluoride or arsenic. These technological options coupled with training, technical support and other essential elements like community

  3. Water Poverty and Rural Development: Evidence from South Africa

    OpenAIRE

    Matshe, Innocent; Moyo-Maposa, Sibonginkosi; Zikhali, Precious

    2013-01-01

    Using household data from the 2009 General Household Survey, this paper examines the role of natural resource scarcity in rural development in South Africa, with a particular focus on water scarcity. It seeks to examine whether there is a direct link between household water and economic poverty of rural households, with households’ total monthly income used as an indicator of economic poverty. An adaptation of a comprehensive water poverty index, which considers water access, quality, use, ...

  4. Technology development for indigenous water lubricated bearings

    International Nuclear Information System (INIS)

    Limaye, P.K.; Soni, N.L.; Agrawal, R.G.

    2010-01-01

    Water Lubricated Bearings (WLB) are used in various mechanisms of fuel handling systems of PHWRs and AHWR. Availability and random failures of these bearings was a major factor in refuelling operations. Indigenous development of these bearings was taken up and 7 types of antifriction bearings in various sizes (totaling 37 variants) for PHWR, AHWR and Dhruva applications were successfully developed. This paper deals with various aspects of WLB development. (author)

  5. Water erosion and soil water infiltration in different stages of corn development and tillage systems

    Directory of Open Access Journals (Sweden)

    Daniel F. de Carvalho

    2015-11-01

    Full Text Available ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L. development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models of Kostiakov-Lewis, Horton and Philip. Based on the obtained results, the combination of effects between soil tillage system and corn development stages reduces soil and water losses. The contour tillage system promoted improvements in soil physical properties, favoring the reduction of erosion in 59.7% (water loss and 86.6% (soil loss at 75 days after planting, and the increase in the stable infiltration rate in 223.3%, compared with the exposed soil. Associated to soil cover, contour cultivation reduces soil and water losses, and the former is more influenced by management. Horton model is the most adequate to represent soil water infiltration rate under the evaluated conditions.

  6. Water Reclamation Technology Development at Johnson Space Center

    Science.gov (United States)

    Callahan, Michael R.; Pickering, Karen

    2014-01-01

    Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.

  7. Status report for the Small-Tube Lysimeter Facility; Fiscal year 1992

    International Nuclear Information System (INIS)

    Sackschewsky, M.R.; Kemp, C.J.; Cadwell, L.L.

    1993-07-01

    Westinghouse Hanford Company and Pacific Northwest Laboratory are jointly developing earthen protective barriers for the near-surface disposal of radioactive and hazardous waste at the Hanford Site. The proposed barrier design consists of a blanket of fine-textured soil overlying a sequence of layers, varying from sand to basalt riprap. The experiments conducted at the Small-Tube Lysimeter Facility (STLF) were designed to measure the influence of erosion-control practices and alternate barrier layer configurations on water movement within the barrier, and extraction of water from the barrier. This report describes the results of data collected during the period from September 1988 through May 1992 at the STLF. Four concurrent experiments are being performed at this facility, each of these experiments are designed to test different components of the proposed barrier. The experiments are as follows

  8. Progress report on research and development work 1991 of the Department of Hot Chemistry, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    1991-03-01

    In the year under review, the Institute of Hot Chemistry (IHCH) was in the midst of a thematic reorientation process. The priority of future chemical-technical work will be in the field of the development of supercriticality processes. The objective of such work consists in seeking new ways for getting rid of resistant chemical pollutants (halogenated organic compounds). The following projects are presented in detail: 1) Waste control in the environment (communal waste management; water and soil; emission-reducing processes; highly polluted soils); 2) Solid state and materials research (chemistry of materials research); basic physical research (neutrino and particle physics); 3) Nuclear waste management (concluding work on reprocessing technology), and 4) Other research projects (Institute-related research). The Annex lists the publications made by the IHCH staff. (BBR) [de

  9. Heavy metal content in the meat of common carp (Cyprinuscarpio L.and rainbow trout (Oncorhynchus mykiss W., cultivated under different technologies

    Directory of Open Access Journals (Sweden)

    St. Stoyanova

    2016-03-01

    Full Text Available Abstract. Water pollution from industrial production and developing agriculture is a serious problem in aquaculture. The aim of this study was to determine the content of heavy metals Zn (zink, Pb(lead, Ni (nickel and Cd (cadmium in the muscles of common carp (Cyprinus carpio L. and rainbow trout (Oncorhynchus mykiss W., grown under different technologies. In the current study were investigated common carp (Cyprinus carpio and rainbow trout (Oncorhynchus mykiss, cultivated in net cages, earthen ponds and raceways. The concentration of heavy metals in the muscles of fish was determined by the methods of AAS in the Scientific laboratory of the Faculty of Agriculture. The influence of different production technologies on the bioaccumulation of Zn, Pb, Ni and Cd (in the flesh of common carp and rainbow trout was found. The Ni content in muscles was 31.25% higher in common carp, cultured at earthen ponds, compared with its content in the flesh of the fish raised in net cages. The concentration of Pd and Ni in rainbow trout, raised in raceways was higher than that determinated for rainbow trout cultivated in net cages, by 25.0% and 7.14%, respectively. The concentration of Cd and Zn of these species, grown in raceways were lower by 33.33% and 2.14%, respectively, compared with their concentration in rainbow trout, cultivated in net cages.

  10. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of the Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors

  11. The Development of Attention Systems and Working Memory in Infancy.

    Science.gov (United States)

    Reynolds, Greg D; Romano, Alexandra C

    2016-01-01

    In this article, we review research and theory on the development of attention and working memory in infancy using a developmental cognitive neuroscience framework. We begin with a review of studies examining the influence of attention on neural and behavioral correlates of an earlier developing and closely related form of memory (i.e., recognition memory). Findings from studies measuring attention utilizing looking measures, heart rate, and event-related potentials (ERPs) indicate significant developmental change in sustained and selective attention across the infancy period. For example, infants show gains in the magnitude of the attention related response and spend a greater proportion of time engaged in attention with increasing age (Richards and Turner, 2001). Throughout infancy, attention has a significant impact on infant performance on a variety of tasks tapping into recognition memory; however, this approach to examining the influence of infant attention on memory performance has yet to be utilized in research on working memory. In the second half of the article, we review research on working memory in infancy focusing on studies that provide insight into the developmental timing of significant gains in working memory as well as research and theory related to neural systems potentially involved in working memory in early development. We also examine issues related to measuring and distinguishing between working memory and recognition memory in infancy. To conclude, we discuss relations between the development of attention systems and working memory.

  12. Organisational and Task Factors Influencing Teachers' Professional Development at Work

    Science.gov (United States)

    Evers, Arnoud T.; Van der Heijden, Béatrice I. J. M.; Kreijns, Karel

    2016-01-01

    Purpose: The purpose of this paper is to investigate organisational (cultural and relational) and task factors which potentially enhance teachers' professional development at work (TPD at Work). The development of lifelong learning competencies and, consequently, the careers of teachers, has become a permanent issue on the agenda of schools…

  13. Work for Play: Careers in Video Game Development

    Science.gov (United States)

    Liming, Drew; Vilorio, Dennis

    2011-01-01

    Video games are not only for play; they also provide work. Making video games is a serious--and big--business. Creating these games is complex and requires the collaboration of many developers, who perform a variety of tasks, from production to programming. They work for both small and large game studios to create games that can be played on many…

  14. Santa Lucia River basin. Development of water resources

    International Nuclear Information System (INIS)

    1970-01-01

    The main objective of this study was to orient the development of water resources of the Santa Lucia River basin to maximum benefit in accordance with the priorities established by Government in relation to the National Development Plans

  15. Development of next-generation light water reactor

    International Nuclear Information System (INIS)

    Ishibashi, Fumihiko; Yasuoka, Makoto

    2010-01-01

    The Next-Generation Light Water Reactor Development Program, a national project in Japan, was inaugurated in April 2008. The primary objective of this program is to meet the need for the replacement of existing nuclear power plants in Japan after 2030. With the aim of setting a global standard design, the reactor to be developed offers greatly improved safety, reliability, and economic efficiency through several innovative technologies, including a reactor core system with uranium enrichment of 5 to 10%, a seismic isolation system, long-life materials, advanced water chemistry, innovative construction techniques, optimized passive and active safety systems, innovative digital technologies, and so on. In the first three years, a plant design concept with these innovative features is to be established and the effectiveness of the program will be reevaluated. The major part of the program will be completed in 2015. Toshiba is actively engaged in both design studies and technology development as a founding member of this program. (author)

  16. Improving Water Resources Management on Global and Region Scales - Evaluating Strategies for Water Futures with the IIASA's Community Water Model

    Science.gov (United States)

    Burek, P.; Kahil, T.; Satoh, Y.; Greve, P.; Byers, E.; Langan, S.; Wada, Y.

    2017-12-01

    Half of the planet's population is severely impacted by severe water issues including absent or unreliable water supply, sanitation, poor water quality, unmitigated floods and droughts, and degraded water environments. In recent years, global water security has been highlighted not only by the science community but also by business leaders as one of the greatest threats to sustainable human development for different generations. How can we ensure the well-being of people and ecosystems with limited water, technology and financial resources? To evaluate this, IIASA's Water Futures and Solutions Initiative (WFaS) is identifying a portfolios of robust and cost-effective options across different economic sectors including agriculture, energy, manufacturing, households, and environment and ecosystems. Options to increase water supply and accessibility are evaluated together with water demand management and water governance options. To test these solution-portfolios in order to obtain a clear picture of the opportunities but also of the risks and the trade-offs we have developed the Community Water Model (CWATM) which joins IIASA's integrated assessment modeling framework, coupling hydrology with hydro-economics (ECHO model), energy (MESSAGE model) and land use (GLOBIOM model). CWATM has been developed to work flexibly with varying spatial resolutions from global to regional levels. The model is open source and community-driven to promote our work amongst the wider water and other science community worldwide, with flexibility to link to other models and integrate newly developed modules such as water quality. In order to identify the solution portfolios, we present a global hotspots assessment of water-related risks with the ability to zoom in at regional scale using the example of the Lake Victoria basin in E. Africa. We show how socio-economic and climate change will alter spatial patterns of the hydrological cycle and have regional impacts on water availability. At

  17. Importance of bottom-up approach in water management - sustainable development of catchment areas in Croatia

    Science.gov (United States)

    Pavic, M.; Cosic-Flajsig, G.; Petricec, M.; Blazevic, Z.

    2012-04-01

    Association for preservation of Croatian waters and sea SLAP is a non-governmental organization (NGO) that gathers more than 150 scientist, hydrologist and civil engineers. SLAP has been established in 2006 and since then had organized many conferences and participated in projects dealing with water management. We have started our work developing plans to secure water supply to the 22 (21) villages in the rural parts of Dubrovnik (Pozega) area and trough the years we have accumulated knowledge and experience in dealing with stakeholders in hydrology and water management. Within this paper we will present importance of bottom-up approach to the stakeholders in water management in Croatia on two case studies: (1) Management of River Trebizat catchment area - irrigation of the Imotsko-Bekijsko rural parts; (2) Development of multipurpose water reservoirs at the River Orljava catchment area. Both projects were designed in the mid and late 1980's but due to the war were forgotten and on halt. River Trebizat meanders between Croatia and Bosnia and Herzegovina and acquires joint management by both countries. In 2010 and 2011 SLAP has organized conferences in both countries gathering all the relevant stakeholders from representatives of local and state governments, water management companies and development agencies to the scientist and interested NGO's. The conferences gave firm scientific background of the topic including presentation of all previous studies and measurements as well as model results but presented in manner appropriate to the stakeholders. The main result of the conference was contribution to the development of joint cross-border project sent to the EU Pre-Accession funds in December 2011 with the aim to strengthen capacities of both countries and prepare larger project dealing with management of the whole Trebizat catchment area to EU structural funds once Croatia enters EU in 2013. Similar approach was taken for the Orljava catchment in the northern

  18. Development of a novel processing system for efficient sour water stripping

    International Nuclear Information System (INIS)

    Kazemi, Abolghasem; Mehrabani-Zeinabad, Arjomand; Beheshti, Masoud

    2017-01-01

    Application of vapor recompression systems can result in enhanced energy efficiency and reduced energy requirements of distillation systems. In vapor recompression systems, temperature and dew point temperature of the top product of the column are increased through compression. By transferring heat from top to bottoms product, required boil up and reflux streams for the column are provided. In this paper, a new system is proposed for efficient stripping of sour water based on vapor recompression. Ammonia and H 2 S are the contaminants of sour water. Initially, based on a certain specifications of products, a sour water stripping system is implemented. A novel processing system is then developed and simulated to reduce utility requirements. The two processing systems are economically evaluated by Aspen Economic Evaluation software. There are 89.0% and 83.7% reduction of hot and cold utility requirements for the proposed system in comparison to the base processing system. However, the new processing system requires new equipment such as compressor and corresponding mechanical work that increases its capital and operating costs in comparison to the base case. However, the results indicate that the proposed system results in reduction of 11.4% of total annual costs and 14.9% of operating costs. - Highlights: • A novel system was developed for enhancement of performance of a distillation system based on vapor recompression. • In this system, utility streams are used for providing thermal energy. • A parametric study is carried out on the proposed processing system. • Applying the proposed system resulted in reduction of energy and utility requirements and costs of the separation process. • Environmental performance of the model was investigated.

  19. Development of an Integrated Water and Wind Erosion Model

    Science.gov (United States)

    Flanagan, D. C.; Ascough, J. C.; Wagner, L. E.; Geter, W. F.

    2006-12-01

    Prediction technologies for soil erosion by the forces of wind or water have largely been developed independently from one another, especially within the United States. Much of this has been due to the initial creation of equations and models which were empirical in nature (i.e., Universal Soil Loss Equation, Wind Erosion Equation) and based upon separate water erosion or wind erosion plot and field measurements. Additionally, institutional organizations in place typically divided research efforts and funding to unique wind or water erosion research and modeling projects. However, during the past 20 years computer technologies and erosion modeling have progressed to the point where it is now possible to merge physical process-based computer simulation models into an integrated water and wind erosion prediction system. In a physically- based model, many of the processes which must be simulated for wind and water erosion computations are the same, e.g., climate, water balance, runoff, plant growth, etc. Model components which specifically deal with the wind or water detachment, transport and deposition processes are those that must differ, as well as any necessary parameterization of input variables (e.g., adjusted soil erodibilities, critical shear stresses, etc.) for those components. This presentation describes current efforts towards development of a combined wind and water erosion model, based in part upon technologies present in the Water Erosion Prediction Project (WEPP) and the Wind Erosion Prediction System (WEPS) models. Initial efforts during the past two years have resulted in modular modeling components that allow for prediction of infiltration, surface runoff, and water erosion at a hillslope scale within an Object Modeling System. Additional components currently in development include wind detachment at a single field point, continuous water balance, and unified plant growth. Challenges in this project are many, and include adequate field

  20. Automated Work Packages Prototype: Initial Design, Development, and Evaluation. Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna Helene [Idaho National Lab. (INL), Idaho Falls, ID (United States); Al Rashdan, Ahmad [Idaho National Lab. (INL), Idaho Falls, ID (United States); Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bly, Aaron Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The goal of the Automated Work Packages (AWP) project is to demonstrate how to enhance work quality, cost management, and nuclear safety through the use of advanced technology. The work described in this report is part of the digital architecture for a highly automated plant project of the technical program plan for advanced instrumentation, information, and control (II&C) systems technologies. This report addresses the DOE Milestone M2LW-15IN0603112: Describe the outcomes of field evaluations/demonstrations of the AWP prototype system and plant surveillance and communication framework requirements at host utilities. A brief background to the need for AWP research is provided, then two human factors field evaluation studies are described. These studies focus on the user experience of conducting a task (in this case a preventive maintenance and a surveillance test) while using an AWP system. The remaining part of the report describes an II&C effort to provide real time status updates to the technician by wireless transfer of equipment indications and a dynamic user interface.

  1. Automated Work Packages Prototype: Initial Design, Development, and Evaluation. Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    Oxstrand, Johanna Helene; Al Rashdan, Ahmad; Le Blanc, Katya Lee; Bly, Aaron Douglas; Agarwal, Vivek

    2015-01-01

    The goal of the Automated Work Packages (AWP) project is to demonstrate how to enhance work quality, cost management, and nuclear safety through the use of advanced technology. The work described in this report is part of the digital architecture for a highly automated plant project of the technical program plan for advanced instrumentation, information, and control (II&C) systems technologies. This report addresses the DOE Milestone M2LW-15IN0603112: Describe the outcomes of field evaluations/demonstrations of the AWP prototype system and plant surveillance and communication framework requirements at host utilities. A brief background to the need for AWP research is provided, then two human factors field evaluation studies are described. These studies focus on the user experience of conducting a task (in this case a preventive maintenance and a surveillance test) while using an AWP system. The remaining part of the report describes an II&C effort to provide real time status updates to the technician by wireless transfer of equipment indications and a dynamic user interface.

  2. Hydraulic modeling development and application in water resources engineering

    Science.gov (United States)

    Simoes, Francisco J.; Yang, Chih Ted; Wang, Lawrence K.

    2015-01-01

    The use of modeling has become widespread in water resources engineering and science to study rivers, lakes, estuaries, and coastal regions. For example, computer models are commonly used to forecast anthropogenic effects on the environment, and to help provide advanced mitigation measures against catastrophic events such as natural and dam-break floods. Linking hydraulic models to vegetation and habitat models has expanded their use in multidisciplinary applications to the riparian corridor. Implementation of these models in software packages on personal desktop computers has made them accessible to the general engineering community, and their use has been popularized by the need of minimal training due to intuitive graphical user interface front ends. Models are, however, complex and nontrivial, to the extent that even common terminology is sometimes ambiguous and often applied incorrectly. In fact, many efforts are currently under way in order to standardize terminology and offer guidelines for good practice, but none has yet reached unanimous acceptance. This chapter provides a view of the elements involved in modeling surface flows for the application in environmental water resources engineering. It presents the concepts and steps necessary for rational model development and use by starting with the exploration of the ideas involved in defining a model. Tangible form of those ideas is provided by the development of a mathematical and corresponding numerical hydraulic model, which is given with a substantial amount of detail. The issues of model deployment in a practical and productive work environment are also addressed. The chapter ends by presenting a few model applications highlighting the need for good quality control in model validation.

  3. The Water Demand of Energy: Implications for Sustainable Energy Policy Development

    Directory of Open Access Journals (Sweden)

    Kaveh Madani

    2013-11-01

    Full Text Available With energy security, climate change mitigation, and sustainable development as three main motives, global energy policies have evolved, now asking for higher shares of renewable energies, shale oil and gas resources in the global energy supply portfolios. Yet, concerns have recently been raised about the environmental impacts of the renewable energy development, supported by many governments around the world. For example, governmental ethanol subsidies and mandates in the U.S. are aimed to increase the biofuel supply while the water footprint of this type of energy might be 70–400 times higher than the water footprint of conventional fossil energy sources. Hydrofracking, as another example, has been recognized as a high water-intensive procedure that impacts the surface and ground water in both quality and quantity. Hence, monitoring the water footprint of the energy mix is significantly important and could have implications for energy policy development. This paper estimates the water footprint of current and projected global energy policies, based on the energy production and consumption scenarios, developed by the International Energy Outlook of the U.S. Energy Information Administration. The outcomes reveal the amount of water required for total energy production in the world will increase by 37%–66% during the next two decades, requiring extensive improvements in water use efficiency of the existing energy production technologies, especially renewables.

  4. Water Quality Vocabulary Development and Deployment

    Science.gov (United States)

    Simons, B. A.; Yu, J.; Cox, S. J.

    2013-12-01

    Semantic descriptions of observed properties and associated units of measure are fundamental to understanding of environmental observations, including groundwater, surface water and marine water quality. Semantic descriptions can be captured in machine-readable ontologies and vocabularies, thus providing support for the annotation of observation values from the disparate data sources with appropriate and accurate metadata, which is critical for achieving semantic interoperability. However, current stand-alone water quality vocabularies provide limited support for cross-system comparisons or data fusion. To enhance semantic interoperability, the alignment of water-quality properties with definitions of chemical entities and units of measure in existing widely-used vocabularies is required. Modern ontologies and vocabularies are expressed, organized and deployed using Semantic Web technologies. We developed an ontology for observed properties (i.e. a model for expressing appropriate controlled vocabularies) which extends the NASA/TopQuadrant QUDT ontology for Unit and QuantityKind with two additional classes and two properties (see accompanying paper by Cox, Simons and Yu). We use our ontology to populate the Water Quality vocabulary with a set of individuals of each of the four key classes (and their subclasses), and add appropriate relationships between these individuals. This ontology is aligned with other relevant stand-alone Water Quality vocabularies and domain ontologies. Developing the Water Quality vocabulary involved two main steps. First, the Water Quality vocabulary was populated with individuals of the ObservedProperty class, which was determined from a census of existing datasets and services. Each ObservedProperty individual relates to other individuals of Unit and QuantityKind (taken from QUDT where possible), and to IdentifiedObject individuals. As a large fraction of observed water quality data are classified by the chemical substance involved, the

  5. Developing optimal nurses work schedule using integer programming

    Science.gov (United States)

    Shahidin, Ainon Mardhiyah; Said, Mohd Syazwan Md; Said, Noor Hizwan Mohamad; Sazali, Noor Izatie Amaliena

    2017-08-01

    Time management is the art of arranging, organizing and scheduling one's time for the purpose of generating more effective work and productivity. Scheduling is the process of deciding how to commit resources between varieties of possible tasks. Thus, it is crucial for every organization to have a good work schedule for their staffs. The job of Ward nurses at hospitals runs for 24 hours every day. Therefore, nurses will be working using shift scheduling. This study is aimed to solve the nurse scheduling problem at an emergency ward of a private hospital. A 7-day work schedule for 7 consecutive weeks satisfying all the constraints set by the hospital will be developed using Integer Programming. The work schedule for the nurses obtained gives an optimal solution where all the constraints are being satisfied successfully.

  6. Of deadlocks and peopleware-collaborative work practices in global software development

    OpenAIRE

    Avram, Gabriela

    2007-01-01

    peer-reviewed As part of a research project dedicated to the Social Organizational and Cultural Aspects of Global Software Development, the author has chosen to focus on collaborative work practices and knowledge management aspects of collaborative work. More precisely, the focus is on how the global distribution of software development affects collaborative work. The current paper is a first attempt to unveil, through a concrete situation observed in a distributed software development ...

  7. Development of sustainable water treatment technology using scientifically based calculated indexes of source water quality indicators

    Directory of Open Access Journals (Sweden)

    А. С. Трякина

    2017-10-01

    Full Text Available The article describes selection process of sustainable technological process flow chart for water treatment procedure developed on scientifically based calculated indexes of quality indicators for water supplied to water treatment facilities. In accordance with the previously calculated values of the indicators of the source water quality, the main purification facilities are selected. A more sustainable flow chart for the modern water quality of the Seversky Donets-Donbass channel is a two-stage filtering with contact prefilters and high-rate filters. The article proposes a set of measures to reduce such an indicator of water quality as permanganate oxidation. The most suitable for these purposes is sorption purification using granular activated carbon for water filtering. The increased water hardness is also quite topical. The method of ion exchange on sodium cation filters was chosen to reduce the water hardness. We also evaluated the reagents for decontamination of water. As a result, sodium hypochlorite is selected for treatment of water, which has several advantages over chlorine and retains the necessary aftereffect, unlike ozone. A technological flow chart with two-stage purification on contact prefilters and two-layer high-rate filters (granular activated carbon - quartz sand with disinfection of sodium hypochlorite and softening of a part of water on sodium-cation exchangers filters is proposed. This technological flow chart of purification with any fluctuations in the quality of the source water is able to provide purified water that meets the requirements of the current sanitary-hygienic standards. In accordance with the developed flow chart, guidelines and activities for the reconstruction of the existing Makeevka Filtering Station were identified. The recommended flow chart uses more compact and less costly facilities, as well as additional measures to reduce those water quality indicators, the values of which previously were in

  8. Water Loss Management: Tools and Methods for Developing Countries

    NARCIS (Netherlands)

    Mutikanga, H.E.

    2012-01-01

    Water utilities in developing countries are struggling to provide customers with a reliable level of service due to their peculiar water distribution characteristics including poorly zoned networks with irregular supply operating under restricted budgets. These unique conditions demand unique tools

  9. Water Loss Management : Tools and Methods for Developing Countries

    NARCIS (Netherlands)

    Mutikanga, H.E.

    2012-01-01

    Water utilities in developing countries are struggling to provide customers with a reliable level of service due to their peculiar water distribution characteristics including poorly zoned networks with irregular supply operating under restricted budgets. These unique conditions demand unique tools

  10. A feeling for Systems Development Work - Design of the ROSA project

    DEFF Research Database (Denmark)

    Bødker, Susanne; Greenbaum, Joan

    1988-01-01

    This article is based on the design of a research project that will look at intuition, learning processes, language and roles in the development of computer systems. The research project, called ROSA (a Danish acronym for Roles and Cooperation in Systems Development) grew out of our interest...... in the informal working practices among systems developers, because it is these informal working relationships that are most often overlooked in research about computer science methods and tools. The project applies a gender perspective to look at the informal work relations of systems developers. The concept...

  11. Water Development: A Philosophical and Ethical Issue

    Science.gov (United States)

    Perkins, D.

    2015-12-01

    As one reviewer said about John McPhee's Encounters With the Archdruid:"So the real issues relate to what is natural? How should lands be used? What role do humans have in using, caring for, being part of the land and can we do so responsibly?" This quote applies equally to more than just land development -- it applies to water project too. Although Marc Reisner wrote Cadillac Desert in 1986, the lessons it presents about water development are current today. Not much has changed really in the past three decades. People still live in arid places where, perhaps, they should not live. Engineers still redesign nature to meet human needs, only to find out later that there are unintended consequences. About the only thing that has changed is that today the Bureau of Reclamation and other agencies do not spend megabucks to construct huge water projects. And, insignificant by comparison, some restoration and dam removal projects have begun on a limited scale. We developed an exercise, based on selected chapters from Reisner's book and a video derived from the book, to help students develop critical thinking and ethical reasoning skills. As we did so, we realized that there was much more that could be included. The ethical dilemmas associated with water development and related engineering projects are many. So, now, the original exercise has been expanded to 7 units. The original five units are based on Cadillac Desert. The sixth is based on a recent great documentary film, DamNation. The last unit is inspired by a terrific chapter from John McPhee's 1971 book Encounters with the Archdruid. The format is that student read articles and book chapters and then write responses to questions designed to get them to reflect on what they read. So, the exercises may be assigned as homework, but for the most value there must be some significant group discussions. If all units are used, this provides several weeks of homework for students, but instructors may cherry pick the units

  12. Development of a district information system for water management planning and strategic decision making

    Science.gov (United States)

    Loukas, A.; Tzabiras, J.; Spiliotopoulos, M.; Kokkinos, K.; Fafoutis, C.; Mylopoulos, N.

    2015-06-01

    The overall objective of this work is the development of a District Information System (DIS) which could be used by stakeholders for the purposes of a district day-to-day water management as well as for planning and strategic decisionmaking. The DIS was developed from a GIS-based modeling approach, which integrates a generic crop model and a hydraulic model of the transport/distribution system, using land use maps generated by Landsat TM imagery. The main sub-objectives are: (i) the development of an operational algorithm to retrieve crop evapotranspiration from remote sensing data, (ii) the development of an information system with friendly user interface for the data base, the crop module and the hydraulic module and (iii) the analysis and validation of management scenarios from model simulations predicting the respective behavior. The Lake Karla watershed is used in this study, but the overall methodology could be used as a basis for future analysis elsewhere. Surface Energy Balance Algorithm for Land (SEBAL) was used to derive monthly actual evapotranspiration (ET) values from Landsat TM imagery. Meteorological data from the archives of the Institute for Research and Technology, Thessaly (I.RE.TE.TH) has also been used. The methodology was developed using high quality Landsat TM images during 2007 growing season. Monthly ET values are used as an input to CROPWAT model. Outputs of CROPWAT model are then used as input for WEAP model. The developed scenario is based on the actual situation of the surface irrigation network of the Local Administration of Land Reclamation (LALR) of Pinios for the year of 2007. The DIS is calibrated with observed data of this year and the district parameterization is conducted based on the actual operation of the network. The operation of the surface irrigation network of Pinios LALR is simulated using Technologismiki Works, while the operation of closed pipe irrigation network of Lake Karla LALR is simulated using Watercad. Four

  13. Development of management system for plant repairing work

    International Nuclear Information System (INIS)

    Terauchi, Makoto

    1999-01-01

    In the fast breeder reactor, ''Monju'', in order to conduct nuclear plant repairing works securely and effectively, development of a computer system to assist management business on plant repairing work was begun on 1993. The system has been applied to about 5,000 times of operational management through past four times of plant inspection and to daily inspections and maintenance, and is daily used at working places of ''Monju'' such as issue/management of about 110,000 times of operational prohibition tag in isolated management. And, by automation of issue/management on working sheets and operational prohibition tag and others conducted hitherto by hand, the management business has been largely rationalized. (G.K.)

  14. Research and Development Roadmap for Water Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  15. Control of water infiltration into near surface LLW disposal units - progress report on field experiments at a Humid Region Site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    O'Donnell, E.; Ridky, R.W.; Schulz, R.K.

    1990-01-01

    Three kinds of waste disposal unit covers or barriers to water infiltration are being investigated. They are: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management. The resistive layer barrier consists of compacted earthen material (e.g. clay). The conductive layer barrier consists of a conductive layer in conjunction with a capillary break. As long as unsaturated flow conditions are maintained the conductive layer will wick water around the capillary break. Below grade layered covers such as (1) and (2) will fail if there is appreciable subsidence of the cover. Remedial action for this kind of failure will be difficult. A surface cover, called bioengineering management, is meant to overcome this problem. The bioengineering management surface barrier is easily repairable if damaged by subsidence; therefore, it could be the system of choice under active subsidence conditions. The bioengineering management procedure also has been shown to be effective in dewatering saturated trenches and could be used for remedial action efforts. After cessation of subsidence, that procedure could be replaced by a resistive layer barrier, or perhaps even better, a resistive layer barrier/conductive layer barrier system. This latter system would then give long-term effective protection against water entry to waste and without institutional care. These various concepts are being assessed in six large (70 x 45 x 10 each) lysimeters at Beltsville, Maryland. 6 refs., 21 figs

  16. Storms do not alter long-term watershed development influences on coastal water quality.

    Science.gov (United States)

    Chen, Yushun; Cebrian, Just; Lehrter, John; Christiaen, Bart; Stutes, Jason; Goff, Josh

    2017-09-15

    A twelve year (2000-2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially in the degree of watershed urban development and nutrient loading rates. In total the lagoons experienced 22 storm events during the period studied. Specifically, we examine (1) whether there are influences on water quality in the lagoons from watershed development, (2) whether there are influences on water quality in the lagoons from storm activity, and (3) whether water quality is affected to a greater degree by watershed development versus storm activity. The two urbanized lagoons typically showed higher water-column nitrate, dissolved organic nitrogen, and phosphate compared with the non-urbanized lagoon. One of the urbanized lagoons had higher water-column chlorophyll a concentrations than the other two lagoons on most sampling dates, and higher light extinction coefficients on some sampling dates. The non-urbanized lagoon had higher water-column dissolved oxygen concentrations than other lagoons on many sampling dates. Our results suggest long-term influences of watershed development on coastal water quality. We also found some evidence of significant storm effects on water quality, such as increased nitrate, phosphate, and dissolved oxygen, and decreased salinity and water temperature. However, the influences of watershed development on water quality were greater. These results suggest that changes in water quality induced by human watershed development pervade despite the storm effects. These findings may be useful for environmental management since they suggest that storms do not profoundly alter long-term changes in water quality that resulted from human development of watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    Science.gov (United States)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  18. Observation technology for remote operation in contaminated turbid water

    International Nuclear Information System (INIS)

    Kishimoto, Manabu; Mitsui, Takashi

    2016-01-01

    Remote underwater work in contaminated tanks and pools is one of major decontamination and decommissioning works under high-dose radiation environment. Generally in this kind of work, visual information is limited due to turbid water caused by suspended sludge particles in the water and it makes remote underwater work difficult to be performed safely and efficiently. Therefore, some alternative observation methods to optical cameras have been required. In order to satisfy this requirement, the alternative observation technology which can obtain visual information in contaminated turbid water has been developed since 2014. It is a technology using an acoustic imaging system in a designated airtight container. It provides the visual information in real time regardless of turbidity without significant contamination of any parts of the system. This paper will present development details of this innovative observation technology and its effectiveness to various remote works in contaminated turbid water. (author)

  19. Cost of radon-barrier systems for uranium mill tailings

    International Nuclear Information System (INIS)

    Baker, E.G.; Hartley, J.N.

    1982-08-01

    This report deals specifically with the cost of three types of radon barrier systems, earthen covers, asphalt emulsion covers, and multilayer covers, which could meet standards proposed by the Environmental Protection Agency to stabilize uranium mill tailings located primarily in the western US. In addition, the report includes a sensitivity analysis of various factors which significantly effect the overall cost of the three systems. These analyses were based on a generic disposal site. Four different 3m thick earthen covers were tested and cost an average of $27/m 2 . The least expensive earthen cover cost was about $21/m 2 . The asphalt cover system (6 to 7 cm of asphalt topped with 0.6m of overburden) cost about $28/m 2 . The four multilayer covers averaged $57/m 2 , but materials handling problems encountered during the test inflated this cost above what was anticipated and significant cost reductions should be possible. The least expensive multilayer cover cost $43/m 2 . Based on the results of the Grand Junction field test we estimated the cost of covering the tailings from three high priority sites, Durango, Shiprock, and Salt Lake City (Vitro). The cost of a 3m earthen cover ranged from $18 to 33/m 2 for the seven disposal sites (two or three at each location) studied. The cost of asphalt cover systems were $23 to 28/m 2 and the multilayer cover costs were between $31 to 36/m 2 . The earthen cover costs are less than the Grand Junction field test cost primarily because cover material is available at or near most of the disposal sites selected. Earthen material was imported from 6 to 10 miles for the field test. Assuming more efficienct utilization of materials significantly reduced the cost of the multilayer covers

  20. Estimating national water use associated with unconventional oil and gas development

    Science.gov (United States)

    Carter, Janet M.; Macek-Rowland, Kathleen M.; Thamke, Joanna N.; Delzer, Gregory C.

    2016-05-18

    The U.S. Geological Survey’s (USGS) Water Availability and Use Science Program (WAUSP) goals are to provide a more accurate assessment of the status of the water resources of the United States and assist in the determination of the quantity and quality of water that is available for beneficial uses. These assessments would identify long-term trends or changes in water availability since the 1950s in the United States and help to develop the basis for an improved ability to forecast water avail- ability for future economic, energy-production, and environmental uses. The National Water Census (http://water.usgs.gov/watercensus/), a research program of the WAUSP, supports studies to develop new water accounting tools and assess water availability at the regional and national scales. Studies supported by this program target focus areas with identified water availability concerns and topical science themes related to the use of water within a specific type of environmental setting. The topical study described in this fact sheet will focus on understanding the relation between production of unconventional oil and gas (UOG) for energy and the water needed to produce and sustain this type of energy development. This relation applies to the life-cycle of renewable and nonrenewable forms of UOG energy and includes extraction, production, refinement, delivery, and disposal of waste byproducts. Water-use data and models derived from this topical study will be applied to other similar oil and gas plays within the United States to help resource managers assess and account for water used or needed in these areas. Additionally, the results from this topical study will be used to further refine the methods used in compiling water-use data for selected categories (for example, mining, domestic self-supplied, public supply, and wastewater) in the USGS’s 5-year national water-use estimates reports (http://water.usgs.gov/watuse/).

  1. An overview of the development of solar water heater industry in China

    International Nuclear Information System (INIS)

    Runqing, Hu; Peijun, Sun; Zhongying, Wang

    2012-01-01

    This article introduce the development of China solar water heater industry .Gives an overview of stages, market, manufacturing, application and testing about China solar water heater industry. Show the market data from 1998 to 2009. Analyze the experiences and features about the industry. The article also introduces the policy for solar hot water industry in China. These policies have accelerated the development of industry in which the main two incentive policies have the greatest influence on solar water heater industry. First one is the policy of mandatory installation of solar water heater implemented since 2007 by some local governments at provincial and municipal levels. Second is the subsidy policy for solar water heaters in the household appliances going to the countryside scheme implemented since 2009. At last the article gives the reason why China solar water heater industry have so rapid growth. From technology research, industrialization, prices and policy environment gives analysis. - Highlights: ► We compared International and China market about solar thermal products. ► The reason for rapid development of China solar water heater is explained. ► The experience of China solar water heater industry would give reference to other develop country. ► “Meet the demands of customer” is the main driver for the solar water heater industry development. ► The policy framework about China solar thermal industry was introduced. The industry achieved commercial operation without subsidy.

  2. Developments in nuclear power plant water chemistry

    International Nuclear Information System (INIS)

    Fruzetti, K.; Wood, C.J.

    2007-01-01

    This paper illustrates the changing role of water chemistry in current operation of nuclear power plants. Water chemistry was sometimes perceived as the cause of materials problems, such as denting in PWR steam generators and intergranular stress corrosion cracking in BWRs. However, starting in the last decade, new chemistry options have been introduced to mitigate stress corrosion cracking and reduce fuel performance concerns. In BWRs and PWRs alike, water chemistry has evolved to successfully mitigate many problems as they have developed. The increasing complexity of the chemistry alternatives, coupled with the pressures to increase output and reduce costs, have demonstrated the need for new approaches to managing plant chemistry, which are addressed in the final part of this paper. (orig.)

  3. Cultured Construction: Global Evidence of the Impact of National Values on Piped-to-Premises Water Infrastructure Development.

    Science.gov (United States)

    Kaminsky, Jessica A

    2016-07-19

    In 2016, the global community undertook the Sustainable Development Goals. One of these goals seeks to achieve universal and equitable access to safe and affordable drinking water for all people by the year 2030. In support of this undertaking, this paper seeks to discover the cultural work done by piped water infrastructure across 33 nations with developed and developing economies that have experienced change in the percentage of population served by piped-to-premises water infrastructure at the national level of analysis. To do so, I regressed the 1990-2012 change in piped-to-premises water infrastructure coverage against Hofstede's cultural dimensions, controlling for per capita GDP, the 1990 baseline level of coverage, percent urban population, overall 1990-2012 change in improved sanitation (all technologies), and per capita freshwater resources. Separate analyses were carried out for the urban, rural, and aggregate national contexts. Hofstede's dimensions provide a measure of cross-cultural difference; high or low scores are not in any way intended to represent better or worse but rather serve as a quantitative way to compare aggregate preferences for ways of being and doing. High scores in the cultural dimensions of Power Distance, Individualism-Collectivism, and Uncertainty Avoidance explain increased access to piped-to-premises water infrastructure in the rural context. Higher Power Distance and Uncertainty Avoidance scores are also statistically significant for increased coverage in the urban and national aggregate contexts. These results indicate that, as presently conceived, piped-to-premises water infrastructure fits best with spatial contexts that prefer hierarchy and centralized control. Furthermore, water infrastructure is understood to reduce uncertainty regarding the provision of individually valued benefits. The results of this analysis identify global trends that enable engineers and policy makers to design and manage more culturally appropriate

  4. Facing the water barrier | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    A world "water crisis" is poised to deliver its most devastating blow to the Middle ... across the region is needed to deepen knowledge, develop research tools, and ... issues as privatization, wastewater reuse, and participatory management.

  5. Development of sea water pipe thickness measurement technique

    International Nuclear Information System (INIS)

    Morimoto, Kazuo; Wakayama, Seiichi; Takeuchi, Iwao; Masamori, Sigero; Yamasita, Takesi.

    1995-01-01

    In nuclear and thermal power plants, wall wear of sea water pipes is reported to occur in the inner surface due to corrosion and erosion. From the viewpoint of improving the equipments reliability, it is desirable that wall thickness should be measured from the outer surface of the pipe during operation. In the conventional method, paint on the outer surface of the pipe was locally removed at each point of a 20 by 50 mm grid, and inspection was carried out at these spots. However, this method had some problems, such as (1) it was necessary to replace the paint, and (2) it was difficult to obtain the precise distribution of wall thickness. Therefore, we have developed a wall thickness measuring system which has the following features. (1) It is possible to perform inspection from the outer surface without removing paint during operation. (2) It is possible to measure the distribution of wall thickness and display it as color contour map simultaneously. (3) The work of inspectors can be alleviated by the automatic recording of measured data. (author)

  6. Impact of development and urbanization on variation of water quality ...

    African Journals Online (AJOL)

    The spatial and temporal variations of the physico-chemical water quality parameters, microfauna and micro-flora composition of the Nima Creek in Accra vividly illustrate the environmental problems associated with water bodies in a community where development and urbanization are in progress. Monthly water and ...

  7. Studies of water-in-oil emulsions : energy and work threshold as a function of temperature

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.; Lerouge, L.

    2001-01-01

    A study was conducted in which the effect of temperature on the kinetics and stability of water-in-oil formation was examined. Previous studies have shown that viscosity influences the formation and stability of water in oil emulsions, therefore a viscosity window has been postulated as necessary for the formation of stable emulsions. The temperature dependence of this physical property is examined through a study of 3 oils, Green Canyon, Arabian Light and Point Arguello. The oils were subjected to mixing at 5, 15 and 25 degrees C. Both Arabian Light and Point Arguello formed meso-stable emulsions at 15 degrees C and were examined further. Arabian Light had a relatively high viscosity, while Point Arguello had a low viscosity. The objective was to examine the effects of changing viscosity resulting from changes in temperature on oil at either end of the observed viscosity window. The total energy applied to the oil/water in the emulsion formation apparatus was varied from about 50 to 600,000 ergs. Work was varied from 1 to 5123 Joules per second. It was determined that a minimum energy threshold is needed for most emulsion formation, but only work correlates with the stability value. The emulsions formed at lower temperatures exhibited higher stability than would be expected from the increase in viscosity. This is most likely because the increase was insufficient, in the case of Green Canyon oil, to result in the formation of emulsions. It was concluded that the stability of an emulsion formed from a given oil increases with decreasing formation temperature. The apparent viscosity is higher at the lower temperature. The work was found to correlate most closely with the stability of the emulsion or water-in-oil state. 7 refs., 4 tabs., 6 figs

  8. Evaluation and development of process operators' working practices

    International Nuclear Information System (INIS)

    Norros, L.

    1998-01-01

    The practical aim of our research was to enhance the safety of NPP operations through the development of competencies and design of man-machine interfaces, and through contributing to safety management by providing better human reliability assessment methods. A prerequisite for achievements in these issues is understanding of the nature of the work in the NPP. We have focused on the comprehension of the control room operators' core task. With the premise of the intentional nature of human activity we have developed a new contextual approach for the analysis of activity in real-life situations. It is called the Contextual Analysis of Working Practices (CAWP). Habit of action is a central concept, and we have proposed a practical way to identify habits of action through the analysis of the actors' ways of taking account of the possibilities and constraints of the situation and of using available resources. We have carried out empirical studies in two nuclear power plants and executed four series of simulator experiments. This has taken place in close co-operation with the simulator trainers and experts of the plants, and nearly all control room crews of these plants have been involved. The central result of this work is the development of the CAWP methodology. With the help of it we have identified differences in the NPP operators' working practices that seem to have relevance for the adequacy of process control. We have also found indications of the significance of working practices for a situationally adaptive use of information aids in the control room, which ought to be verified later. Our research method has been adapted for a routinely used simulator training method. Moreover, the methodology has been applied as a tool in the validation of control room information aids, and incorporated into a new dynamic human reliability method (not discussed here). (orig.)

  9. Knowledge work productivity effect on quality of knowledge work in software development process in SME

    Science.gov (United States)

    Yusoff, Mohd Zairol; Mahmuddin, Massudi; Ahmad, Mazida

    2016-08-01

    Knowledge and skill are necessary to develop the capability of knowledge workers. However, there is very little understanding of what the necessary knowledge work (KW) is, and how they influence the quality of knowledge work or knowledge work productivity (KWP) in software development process, including that in small and medium-sized (SME) enterprise. The SME constitutes a major part of the economy and it has been relatively unsuccessful in developing KWP. Accordingly, this paper seeks to explore the influencing dimensions of KWP that effect on the quality of KW in SME environment. First, based on the analysis of the existing literatures, the key characteristics of KW productivity are defined. Second, the conceptual model is proposed, which explores the dimensions of the KWP and its quality. This study analyses data collected from 150 respondents (based on [1], who involve in SME in Malaysia and validates the models by using structural equation modeling (SEM). The results provide an analysis of the effect of KWP on the quality of KW and business success, and have a significant relevance for both research and practice in the SME

  10. Achieving Sustainable Development Goals from a Water Perspective

    Directory of Open Access Journals (Sweden)

    Anik Bhaduri

    2016-10-01

    Full Text Available Efforts to meet human water needs only at local scales may cause negative environmental externality and stress on the water system at regional and global scales. Hence, assessing SDG targets requires a broad and in-depth knowledge of the global to local dynamics of water availability and use. Further, Interconnection and trade-offs between different SDG targets may lead to sub-optimal or even adverse outcome if the set of actions are not properly pre-designed considering such interlinkages. Thus scientific research and evidence have a role to play in facilitating the implementation of SDGs through assessments and policy engagement from global to local scales. The paper addresses some of these challenges related to implementation and monitoring the targets of the Sustainable Development Goals from a water perspective, based on the key findings of a conference organised in 2015 with the focus on three essential aspects of SDGs- indicators, interlinkages and implementation. The paper discusses that indicators should not be too simple but ultimately deliver sustainability measures. The paper finds that remote sensing and earth observation technologies can play a key role in supporting the monitoring of water targets. It also recognises that implementing SDGs is a societal process of development, and there is need to link how SDGs relate to public benefits and communicate this to the broader public.

  11. Making the connections: AIDS and water.

    Science.gov (United States)

    Ball, Anna-Marie

    2006-01-01

    Acknowledging AIDS as a crosscutting development issue, a Zambian rural water supply project that provides safe accessible water to rural communities embarked on a new initiative to mainstream AIDS into the water sector. The work of providing safe water takes the predominantly male workforce away from their spouses and families, into the rural villages of Zambia's Eastern Province, for long periods of time. With an HIV prevalence rate of 16.1%, the risk of HIV exposure exists for both employees and rural villagers. AIDS mainstreaming activities were designed to target both groups. An AIDS mainstreaming strategy was developed by identifying components that could be influenced in the external domain (the organization's usual work) and the internal domain (the workplace). Basic questions were addressed such as: how does AIDS affect the organization, how might the usual work aggravate susceptibility to HIV infection, and where is the comparative advantage? A workplace program including peer education, employee health education (including condoms) and a workplace policy was established for employees. For the target population, a series of five messages connecting safe water and AIDS was developed and disseminated through educational drama, community meetings and trainings, and integrated into the regular water, sanitation and hygiene activities. As an efficient utilization of resources that makes a broad impact, AIDS mainstreaming does not change the sector's mandate but takes advantage of the extensive geographic coverage and natural distribution system of water projects to disseminate AIDS information and make linkages with AIDS partners.

  12. Sampling and decontamination plan for the Transuranic Storage Area--1/-R container storage unit

    International Nuclear Information System (INIS)

    Barry, G.A.

    1992-11-01

    This document describes the sampling and decontamination of the Transuranic Storage Area (TSA)-l/-R container storage area and the earthen-covered portion of the TSA-2 container storage unit at the Radioactive Waste Management Complex. Stored containers from the earthen-covered asphalt pads will be retrieved from the TSA-l/-R and TSA-2 container storage units. Container retrieval will be conducted under the TSA retrieval enclosure, a fabricated steel building to be constructed over the earthen-covered pad to provide containment and weather protection. Following container retrieval, the TSA retrieval enclosure will be decontaminated to remove radioactive and hazardous contamination. The underlying soils will be sampled and analyzed to determine whether any contaminated soils require removal

  13. Philippines -- country wide water development projects and funds needed. Water crisis in Manila coincide with parliamentarians seminar on water resources and population.

    Science.gov (United States)

    1997-01-01

    The Philippines' Clean Water Act was developed to protect the country's remaining water resources by institutionalizing mechanisms to monitor, regulate, and control human and industrial activities which contribute to the ongoing environmental degradation of marine and freshwater resources. Approximately 70 participants attended the Philippine Parliamentarians' Conference on Water Resources, Population and Development held December 3-4, 1997, at the Sulo Hotel in Quezon City. Participants included the legislative staff of the members of the House of Representatives and the Senate, Committee Secretaries of the House and Senate, and government and nongovernmental organization officials. Following the opening programs, panel discussions were held on the role of nongovernmental organizations as legitimate monitors of governments' activities; the need to evaluate water sector assessment methods, water policy and strategy, and water legislation standards; and waste water treatment and sewerage systems used in households and industries. The following issues were raised during the conference's open forum: the need to implement new methods in water resource management; the handling of water for both economic and social purposes; the need to implement guidelines, policies, and pricing mechanisms on bottled water; regulating the construction of recreational facilities such as golf courses; and transferring watershed rehabilitation from the Department of Environment and Natural Resources to local water districts. A declaration was prepared and signed by the participants at the close of the conference.

  14. Technology: New Ways for Clean Water

    Science.gov (United States)

    Roberts, Amanda S.

    2012-01-01

    Water purification promotes healthy living. While the developing world is working to provide its citizens with future access to clean water sources, the demand for that water is a pressing need today. It should be understood that drinking water, sanitation, and hygiene are interwoven and are all necessary for the overall improved standard of…

  15. Work-home interaction from a work psychological perspective : Development and validation of a new questionnaire, the SWING

    NARCIS (Netherlands)

    Geurts, S.A.E.; Taris, T.W.; Kompier, M.A.J.; Dikkers, J.S.E.; Hooff, M.L.M. van; Kinnunen, U.

    2005-01-01

    This paper reports on the stepwise development of a new questionnaire for measuring work-home interaction, i.e. the Survey Work-home Interaction—NijmeGen, the SWING). Inspired by insights from work psychology, more specifically from Effort-Recovery Theory (Meijman & Mulder, 1998), we defined

  16. Sustainability of Water Safety Plans Developed in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Luca Rondi

    2015-08-01

    Full Text Available In developing countries, the drinking water supply is still an open issue. In sub-Saharan Africa, only 68% of the population has access to improved sources of drinking water. Moreover, some regions are affected by geogenic contaminants (e.g., fluoride and arsenic and the lack of access to sanitation facilities and hygiene practices causes high microbiological contamination of drinking water in the supply chain. The Water Safety Plan (WSP approach introduced by the World Health Organisation (WHO in 2004 is now under development in several developing countries in order to face up to these issues. The WSP approach was elaborated within two cooperation projects implemented in rural areas of Burkina Faso and Senegal by two Italian NGOs (Non-Governmental Organisations. In order to evaluate its sustainability, a questionnaire based on five different sustainability elements and a cost and time consumption evaluation were carried out and applied in both the case studies. Results demonstrated that the questionnaire can provide a useful and interesting overview regarding the sustainability of the WSP; however, further surveys in the field are recommended for gathering more information. Time and costs related to the WSP elaboration, implementation, and management were demonstrated not to be negligible and above all strongly dependent on water quality and the water supply system complexity.

  17. Water developments and canids in two North American deserts: a test of the indirect effect of water hypothesis.

    Directory of Open Access Journals (Sweden)

    Lucas K Hall

    Full Text Available Anthropogenic modifications to landscapes intended to benefit wildlife may negatively influence wildlife communities. Anthropogenic provisioning of free water (water developments to enhance abundance and distribution of wildlife is a common management practice in arid regions where water is limiting. Despite the long-term and widespread use of water developments, little is known about how they influence native species. Water developments may negatively influence arid-adapted species (e.g., kit fox, Vulpes macrotis by enabling water-dependent competitors (e.g., coyote, Canis latrans to expand distribution in arid landscapes (i.e., indirect effect of water hypothesis. We tested the two predictions of the indirect effect of water hypothesis (i.e., coyotes will visit areas with free water more frequently and kit foxes will spatially and temporally avoid coyotes and evaluated relative use of free water by canids in the Great Basin and Mojave Deserts from 2010 to 2012. We established scent stations in areas with (wet and without (dry free water and monitored visitation by canids to these sites and visitation to water sources using infrared-triggered cameras. There was no difference in the proportions of visits to scent stations in wet or dry areas by coyotes or kit foxes at either study area. We did not detect spatial (no negative correlation between visits to scent stations or temporal (no difference between times when stations were visited segregation between coyotes and kit foxes. Visitation to water sources was not different for coyotes between study areas, but kit foxes visited water sources more in Mojave than Great Basin. Our results did not support the indirect effect of water hypothesis in the Great Basin or Mojave Deserts for these two canids.

  18. The Economic Value of Water

    Directory of Open Access Journals (Sweden)

    Pedro Arrojo Agudo

    1999-10-01

    Full Text Available The economic term of water is seen from the perspective of an ecological economy, an Aristotelian sense that integrates social values, environmental considerations and financial issues. Water should thus be conceptualized as an “ecosocial” good and not merely as a simple factor of production. Therefore, the focus of water management should not limit itself to managing a scarce resource. Rather the focus should be to articulate an institutional framework that would allow for the use of management tools based on the financial value of water (pricing policies, fiscal incentives, economic penalties for inefficiency... fixed to a somewhat interventionist market, or which answers to administration mechanisms, with constraints setting the conditions of sustainablity that the sound management of water requires in each territory. This approach brings to the table a profoundly territorial andcontextualized view of water management within the paradigm of Sustainable Development. Having said this does not imply disregarding the classical economic science tools of cost/benefit analysis, though. Quite the contrary: today, economic science can provide highly useful, multiple concepts and traditional techniques to the creation of a new model of the economic management of water. At bottom, the challenge is to take advantage of the previous conceptual and methodological body of work, refining the work in some cases,contextualizing it in others, and above all, complementing the previous work with other value-based perspectives to develop a multi-criteria decision-making model for the management and financial assessment of water policies.

  19. Home drinking-water purifiers

    International Nuclear Information System (INIS)

    Pizzichini, Massimo; Pozio, Alfonso; Russo, Claudio

    2005-01-01

    To salve the widespread problem of contaminated drinking water, home purifiers are now sold in Italy as well as other countries. This article describes how these devices work, how safe they are to use and how safe the water they produce, in the broad context of regulations on drinking water and mineral water. A new device being developed by ENEA to treat municipal water and ground water could provide greater chemical and bacteriological safety. However, the appearance of these new systems makes it necessary to update existing regulations [it

  20. Development of navigational working memory: evidence from 6- to 10-year-old children.

    Science.gov (United States)

    Piccardi, Laura; Leonzi, Marina; D'Amico, Simonetta; Marano, Assunta; Guariglia, Cecilia

    2014-06-01

    The ability to learn complex environments may require the contribution of different types of working memory. Therefore, we investigated the development of different types of working memory (navigational, reaching, and verbal) in 129 typically developing children. We aimed to determine whether navigational working memory develops at the same rate as other types of working memory and whether the gender differences reported in adults are already present during development. We found that navigational working memory is less developed than both verbal and reaching working memory and that gender predicts performance only for navigational working memory. Our results are in line with reports that children made significantly more errors in far space than adults, showing that near space representation develops before far space representation. © 2014 The British Psychological Society.

  1. Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair

    OpenAIRE

    Hassan, Hassan

    2014-01-01

    In the present study, dynamic analysis and performance evaluation of a solar-powered continuous operation adsorption chiller are introduced. The adsorption chiller uses silica gel and water as the working pair. The developed mathematical model represents the heat and mass transfer within the reactor coupled with the energy balance of the collector plate and the glass cover. Moreover, a non-equilibrium adsorption kinetic model is taken into account by using the linear driving force equation. T...

  2. Development of a water quality index based on a European ...

    African Journals Online (AJOL)

    This index has advantages over pre-existing indices by reflecting the appropriateness of water for specific use, e.g. drinking water supply rather than general supply, and has been developed by studying the supranational standard, i.e. the European Community Standard. Three classification schemes for water quality are ...

  3. Hydrologic and Water Quality Model Development Using Simulink

    Directory of Open Access Journals (Sweden)

    James D. Bowen

    2014-11-01

    Full Text Available A stormwater runoff model based on the Soil Conservation Service (SCS method and a finite-volume based water quality model have been developed to investigate the use of Simulink for use in teaching and research. Simulink, a MATLAB extension, is a graphically based model development environment for system modeling and simulation. Widely used for mechanical and electrical systems, Simulink has had less use for modeling of hydrologic systems. The watershed model is being considered for use in teaching graduate-level courses in hydrology and/or stormwater modeling. Simulink’s block (data process and arrow (data transfer object model, the copy and paste user interface, the large number of existing blocks, and the absence of computer code allows students to become model developers almost immediately. The visual depiction of systems, their component subsystems, and the flow of data through the systems are ideal attributes for hands-on teaching of hydrologic and mass balance processes to today’s computer-savvy visual learners. Model development with Simulink for research purposes is also investigated. A finite volume, multi-layer pond model using the water quality kinetics present in CE-QUAL-W2 has been developed using Simulink. The model is one of the first uses of Simulink for modeling eutrophication dynamics in stratified natural systems. The model structure and a test case are presented. One use of the model for teaching a graduate-level water quality modeling class is also described.

  4. Meeting the flow assurance challenges of deep water developments - from CAPEX development to field start up

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.M.; Feasey, N.D. [National Aluminium Company Ltd. (Nalco), Cheshire (United Kingdom); Afonso, M.; Silva, D. [NALCO Brasil Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    As oil accumulations in easily accessible locations around the world become less available developments in deeper water become a more common target for field development. Deep water projects, particularly sub sea development, present a host of challenges in terms of flow assurance and integrity. In this paper the focus will be on the chemical control of flow assurance challenges in hydrate control, scale control and wax/asphaltene control within deep water (>750 meter) developments. The opportunities for kinetic hydrate control vs. conventional thermodynamic hydrate control will be outlined with examples of where these technologies have been applied and the limitations that still exist. The development of scale control chemical formulations specifically for sub sea application and the challenges of monitoring such control programs will be highlighted with developments in real time and near real time monitoring. Organic deposit control (wax/asphaltene) will focus on the development of new chemicals that have higher activity but lower viscosity than currently used chemicals hence allowing deployment at colder temperatures and over longer distances. The factors that need to be taken into account when selecting chemicals for deep water application will be highlighted. Fluid viscosity, impact of hydrostatic head on injectivity, product stability at low temperature and interaction with other production chemicals will be reviewed as they pertain to effective flow assurance. This paper brings learning from other deep water basins with examples from the Gulf of Mexico, West Africa and Brazil, which will be used to highlight these challenges and some of the solutions currently available along with the technology gaps that exist. (author)

  5. The Risk of Developing Diabetes in Association With Long Working Hours Differs by Shift Work Schedules

    Directory of Open Access Journals (Sweden)

    Akira Bannai

    2016-09-01

    Full Text Available Background: The impact of long working hours on diabetes is controversial; however, shift work is known to increase the risk of diabetes. This study aimed to investigate the association between long working hours and diabetes among civil servants in Japan separately by shift work schedules. Methods: A prospective cohort study was conducted from April 2003 to March 2009. A total of 3195 men aged ≥35 years who underwent an annual health checkup at baseline were analyzed by shift work schedules (2371 nonshift workers and 824 shift workers. Self-reported working hours were categorized as 35–44 and ≥45 hours per week. The incidence of diabetes was confirmed by fasting plasma glucose concentration ≥126 mg/dL and/or selfreported medical diagnosis of diabetes at the annual checkup. A Cox proportional model was used to calculate hazard ratios (HRs and 95% confidence intervals (CIs for developing diabetes associated with long working hours. Results: The median follow-up period of non-shift and shift workers was 5.0 and 4.9 years, respectively. During this period, 138 non-shift workers and 46 shift workers developed diabetes. A decreased HR was found among nonshift workers working ≥45 hours per week (HR 0.84; 95% CI, 0.57–1.24; however, shift workers working ≥45 hours per week had a significantly increased risk of diabetes (HR 2.43; 95% CI, 1.21–5.10 compared with those working 35–44 hours per week. An analysis restricted to non-clerical workers also showed similar results. Conclusions: The risk of diabetes associated with long working hours differed by shift work schedules.

  6. The Risk of Developing Diabetes in Association With Long Working Hours Differs by Shift Work Schedules.

    Science.gov (United States)

    Bannai, Akira; Yoshioka, Eiji; Saijo, Yasuaki; Sasaki, Sachiko; Kishi, Reiko; Tamakoshi, Akiko

    2016-09-05

    The impact of long working hours on diabetes is controversial; however, shift work is known to increase the risk of diabetes. This study aimed to investigate the association between long working hours and diabetes among civil servants in Japan separately by shift work schedules. A prospective cohort study was conducted from April 2003 to March 2009. A total of 3195 men aged ≥35 years who underwent an annual health checkup at baseline were analyzed by shift work schedules (2371 non-shift workers and 824 shift workers). Self-reported working hours were categorized as 35-44 and ≥45 hours per week. The incidence of diabetes was confirmed by fasting plasma glucose concentration ≥126 mg/dL and/or self-reported medical diagnosis of diabetes at the annual checkup. A Cox proportional model was used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for developing diabetes associated with long working hours. The median follow-up period of non-shift and shift workers was 5.0 and 4.9 years, respectively. During this period, 138 non-shift workers and 46 shift workers developed diabetes. A decreased HR was found among non-shift workers working ≥45 hours per week (HR 0.84; 95% CI, 0.57-1.24); however, shift workers working ≥45 hours per week had a significantly increased risk of diabetes (HR 2.43; 95% CI, 1.21-5.10) compared with those working 35-44 hours per week. An analysis restricted to non-clerical workers also showed similar results. The risk of diabetes associated with long working hours differed by shift work schedules.

  7. Working memory, phonological awareness, and developing language skills

    OpenAIRE

    Engel de Abreu, Pascale; Gathercole, S

    2008-01-01

    The relationship between working memory, verbal short-term memory, phonological awareness, and developing language skills was explored longitudinally in children growing up in a multilingual society. A sample of 121 children from Luxembourg were followed from the end of Kindergarten to 1st Grade, and completed multiple assessments of verbal short-term memory, complex working memory, phonological awareness, native and foreign vocabulary knowledge, language comprehension, and reading. Resu...

  8. Self-assessment of professional development at work.

    NARCIS (Netherlands)

    Evers, Arnoud

    2018-01-01

    Short discussion: What is professional development/learning at work and why is it relevant? • Filling in the questionnaire • Compare your own numbers to mean scores of teachers in the Netherlands • Focus group discussion about need for adjustment of the questions in the US context

  9. TOURISM DEVELOPMENT IMPACTS ON WATER RESOURCES IN NORTHERN KUTA DISTRICT OF BADUNG BALI

    Directory of Open Access Journals (Sweden)

    I Nyoman Sunarta

    2016-03-01

    Full Text Available One of the problem in the development of Bali tourism is declining carrying capacity supporting tourism resources, especially water. In the past, rural areas have never experienced a lack of water, by which presently facing a water crisis. This condition corresponds to the higher intensity of exploitation of water resources as a result of tourism development. The rapid development of business on accommodation facilities in North Kuta District is potential to accupy rice paddy and water resources. If this development is not properly controlled can cause negative impacts not only on the existence of the fields, but also for the potential of water resources. Tourism is significantly depend on adequacy of water resources to be able to function properly, thus in case of a water crisis in the tourist areas of Bali in particular, then sooner or later will create the economic crisis and the crisis of tourism. The research was located in North Kuta District aimed to know the impacts of the development of the tourism on water resources potential. In order to understand the impact on water resources used geography disciplines approach, and applying survey research methods. Tourism development is determined by the interpretation of Quickbird imagery in a different location. Carrying capacity of water resources is determined by using the guidelines of Per Men LH. No. 17 year 2009. Impact of tourism development on water resources was determined using comparative analysis of surface water and groundwater, both an quantity and quality. There were two patterns of land use change in North Kuta District, namely from the rice fields to tourist accommodation and from the dryland/orchard land, to tourist accommodation. Changes from rice field for about 16 years (1992-2008 in North Kuta District was 1,218.44 Ha. Carrying capacity of water resources was considered deficit at all village in North Kuta District. Development of tourism, especially tourism accommodation

  10. Research and development of a high efficiency gas-fired water heater. Volume 2. Task reports

    Energy Technology Data Exchange (ETDEWEB)

    Vasilakis, A.D.; Pearson, J.F.; Gerstmann, J.

    1980-01-01

    Design and development of a cost-effective high efficiency gas-fired water heater to attain a service efficiency of 70% (including the effect of exfiltration) and a service efficiency of 78% (excluding exfiltration) for a 75 GPD draw at a 90/sup 0/F temperature rise, with a stored water to conditioned air temperature difference of 80/sup 0/F, are described in detail. Based on concept evaluation, a non-powered natural draft water heater was chosen as the most cost-effective design to develop. The projected installed cost is $374 compared to $200 for a conventional unit. When the project water heater is compared to a conventional unit, it has a payback of 3.7 years and life cycle savings of $350 to the consumer. A prototype water heater was designed, constructed, and tested. When operated with sealed combustion, the unit has a service efficiency of 66.4% (including the effect of exfiltration) below a burner input of 32,000 Btu/h. In the open combustion configuration, the unit operated at a measured efficiency of 66.4% Btu/h (excluding exfiltration). This compares with a service efficiency of 51.3% for a conventional water heater and 61% for a conventional high efficiency unit capable of meeting ASHRAE 90-75. Operational tests showed the unit performed well with no evidence of stacking or hot spots. It met or exceeded all capacity or usage tests specified in the program test plan and met all emission goals. Future work will concentrate on designing, building, and testing pre-production units. It is anticipated that both sealed combustion and open draft models will be pursued.

  11. DEVELOPMENT ELECTRONIC MAPS OF ECOLOGICAL STATUS OF WATER OBJECTS OF THE VOLGA RIVER DELTA

    Directory of Open Access Journals (Sweden)

    Z. N. Isenalieva

    2016-01-01

    Full Text Available Abstract. Aim. The aim of this work was the comprehensive study of the ecological state of water objects of the Volga River delta. Methods. The following methods were used: field (collection, observation, organoleptic, uniform chemical analysis techniques are based on colorimetric, settlement, photometric, spectrometric measurement methods. Results. On the basis of results of researches for 2010-2014 performed a comparative analysis of the dynamics of the content of hydro-chemical indicators of environmental quality in waters of the Volga River delta and the residential areas of the background. Applying an integrated approach to the study of biological indicators of water quality. Created digitized map of the quality of aquatic ecosystems of the Volga River delta. Displaying modern ecological condition of watercourses investigated, determined the degree of contamination, the overall trophic and saprobic. Main conclusions. The work has identified adverse environmental situation in water objects of the Astrakhan and the surrounding areas. Average annual concentrations of toxicological substances water objects in the background zone 10 times less than in the water objects of settlements. As a result of work on the basis of ArcGis 10.2.2 created information environment "Eco-monitor", which is a systematic set of information, and quantitatively characterizing the ecological status of water objects. Created on the basis of ArcGis 10.2.2 information environment monitoring system of waterways allows for a temporary and spatial analysis, to assess the quality of different streams in the control sections.

  12. The development of a municipal water conservation and demand ...

    African Journals Online (AJOL)

    The implementation of water conservation and water demand management ... and the municipalities do not have the necessary financial, technical and institutional capacity to support such a ... The methodology for this study was developed as part of the ... Study' for the Vaal River system (DWAF, 2006; DWAF, 2009).

  13. Impact of Shale Gas Development on Water Resource in Fuling, China

    Science.gov (United States)

    Yang, Hong; Huang, Xianjin; Yang, Qinyuan; Tu, Jianjun

    2015-04-01

    As a low-carbon energy, shale gas rapidly developed in U.S. in last years due to the innovation of the technique of hydraulic fracture, or fracking. Shale gas boom produces more gas with low price and reduced the reliance on fuel import. To follow the American shale gas success, China made an ambitious plan of shale gas extraction, 6.5 billion m3 by 2015. To extract shale gas, huge amount water is needed to inject into each gas well. This will intensify the competition of water use between industry, agricultural and domestic sectors. It may finally exacerbate the water scarcity in China. After the extraction, some water was returned to the ground. Without adequate treatment, the flowback water can introduce heavy metal, acids, pesticides, and other toxic material into water and land. This may inevitably worsen the water and land contamination. This study analysed the potential water consumption and wastewater generation in shale gas development in Fuling, Southwest China. The survey found the average water consumption is 30,000 cubic meter for one well, higher than shale well in U.S. Some 2%-20% water flowed back to the ground. The water quality monitoring showed the Total Suspended Solid (TSS) and Chemical Oxygen Demand (COD) were the main factors above those specified by China's water regulation. Shale gas is a lower-carbon energy, but it is important to recognize the water consuming and environmental pollution during the fracking. Strict monitoring and good coordination during the shale gas exploitation is urgently needed for the balance of economic development, energy demand and environmental protection.

  14. Why Closely Coupled Work Matters in Global Software Development

    DEFF Research Database (Denmark)

    Jensen, Rasmus Eskild

    2014-01-01

    We report on an ethnographic study of an offshore global software development project between Danish and Philippine developers in a Danish company called GlobalSoft. We investigate why the IT- developers chose to engage in more closely coupled work as the project progressed and argue that closely...

  15. Development of an interdisciplinary model cluster for tidal water environments

    Science.gov (United States)

    Dietrich, Stephan; Winterscheid, Axel; Jens, Wyrwa; Hartmut, Hein; Birte, Hein; Stefan, Vollmer; Andreas, Schöl

    2013-04-01

    Global climate change has a high potential to influence both the persistence and the transport pathways of water masses and its constituents in tidal waters and estuaries. These processes are linked through dispersion processes, thus directly influencing the sediment and solid suspend matter budgets, and thus the river morphology. Furthermore, the hydrologic regime has an impact on the transport of nutrients, phytoplankton, suspended matter, and temperature that determine the oxygen content within water masses, which is a major parameter describing the water quality. This project aims at the implementation of a so-called (numerical) model cluster in tidal waters, which includes the model compartments hydrodynamics, morphology and ecology. For the implementation of this cluster it is required to continue with the integration of different models that work in a wide range of spatial and temporal scales. The model cluster is thus suggested to lead to a more precise knowledge of the feedback processes between the single interdisciplinary model compartments. In addition to field measurements this model cluster will provide a complementary scientific basis required to address a spectrum of research questions concerning the integral management of estuaries within the Federal Institute of Hydrology (BfG, Germany). This will in particular include aspects like sediment and water quality management as well as adaptation strategies to climate change. The core of the model cluster will consist of the 3D-hydrodynamic model Delft3D (Roelvink and van Banning, 1994), long-term hydrodynamics in the estuaries are simulated with the Hamburg Shelf Ocean Model HAMSOM (Backhaus, 1983; Hein et al., 2012). The simulation results will be compared with the unstructured grid based SELFE model (Zhang and Bapista, 2008). The additional coupling of the BfG-developed 1D-water quality model QSim (Kirchesch and Schöl, 1999; Hein et al., 2011) with the morphological/hydrodynamic models is an

  16. Web-Gis Solutions Development for Citizens and Water Companies

    Science.gov (United States)

    Şercăianu, M.

    2013-05-01

    This paper describes the development of a web-GIS solution in which urban residents, from Buzau City, could be involved in decision-support process of water companies, in order to reduce water losses, by collecting information directly from citizens. In recent years, reducing material and economic losses, recorded in the entire municipal networks management process has become the main focus of public companies in Romania. Due to problems complexity that arise in collecting information from citizens and issues identified in urban areas, more analyzes were required related to web-GIS solutions used in areas such as local government, public utilities, environmental protection or financial management. Another important problem is the poor infrastructure development of spatial databases founded in public companies, and connection to web platforms. Developing the entire communication process between residents and municipal companies has required the use of concept "citizen-sensor" in the entire reporting process. Reported problems are related to water distribution networks with the possibility of covering the entire public utilities infrastructure.

  17. Isotope techniques in water resources development 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Water resources are scarce in many parts of the world. Often, the only water resource is groundwater. Overuse usually invites a rapid decline in groundwater resources which are recharged insufficiently, or not at all, by prevailing climatic conditions. These and other problems currently encountered in hydrology and associated environmental fields have prompted an increasing demand for the utilization of isotope methods. Such methods have been recognized as being indispensable for solving problems such as the identification of pollution sources, characterization of palaeowater resources, evaluation of recharge and evaporative discharge under arid and semi-arid conditions, reconstruction of past climates, study of the interrelationships between surface and groundwater, dating of groundwater and validation of contaminant transport models. Moreover, in combination with other hydrogeological and geochemical methods, isotope techniques can provide useful hydrological information, such as data on the origin, replenishment and dynamics of groundwater. It was against this background that the International Atomic Energy Agency, in co-operation with the United Nations Educational, Scientific and Cultural Organization and the International Association of Hydrological Sciences, organized this symposium on the Use of Isotope Techniques in Water Resources Development, which took place in Vienna from 11 to 15 March 1991. The main themes of the symposium were the use of isotope techniques in solving practical problems of water resources assessment and development, particularly with respect to groundwater protection, and in studying environmental problems related to water, including palaeohydrological and palaeoclimatological problems. A substantial part of the oral presentations was concerned with the present state and trends in groundwater dating, and with some methodological aspects. These proceedings contain the papers of 37 oral and the extended synopses of 47 poster

  18. Development of datamining software for the city water supply company

    Science.gov (United States)

    Orlinskaya, O. G.; Boiko, E. V.

    2018-05-01

    The article considers issues of datamining software development for city water supply enterprises. Main stages of OLAP and datamining systems development are proposed. The system will allow water supply companies analyse accumulated data. Accordingly, improving the quality of data analysis would improve the manageability of the company and help to make the right managerial decisions by executives of various levels.

  19. Whose waters? Large-scale agricultural development and water grabbing in the Wami-Ruvu River Basin, Tanzania

    Directory of Open Access Journals (Sweden)

    Aurelia van Eeden

    2016-10-01

    Full Text Available In Tanzania like in other parts of the global South, in the name of 'development' and 'poverty eradication' vast tracts of land have been earmarked by the government to be developed by investors for different commercial agricultural projects, giving rise to the contested land grab phenomenon. In parallel, Integrated Water Resources Management (IWRM has been promoted in the country and globally as the governance framework that seeks to manage water resources in an efficient, equitable and sustainable manner. This article asks how IWRM manages the competing interests as well as the diverse priorities of both large and small water users in the midst of foreign direct investment. By focusing on two commercial sugar companies operating in the Wami-Ruvu River Basin in Tanzania and their impacts on the water and land rights of the surrounding villages, the article asks whether institutional and capacity weaknesses around IWRM implementation can be exploited by powerful actors that seek to meet their own interests, thus allowing water grabbing to take place. The paper thus highlights the power, interests and alliances of the various actors involved in the governance of water resources. By drawing on recent conceptual insights from the water grabbing literature, the empirical findings suggest that the IWRM framework indirectly and directly facilitates the phenomenon of water grabbing to take place in the Wami-Ruvu River Basin in Tanzania.

  20. Learning Strategies at Work and Professional Development

    Science.gov (United States)

    Haemer, Hannah Deborah; Borges-Andrade, Jairo Eduardo; Cassiano, Simone Kelli

    2017-01-01

    Purpose: This paper aims to investigate the prediction of current and evolutionary perceptions of professional development through five learning strategies at work and through training and how individual and job characteristics predict those strategies. Design/methodology/approach: Variables were measured in a cross-sectional survey, with 962…

  1. Improved water density feedback model for pressurized water reactors

    International Nuclear Information System (INIS)

    Casadei, A.L.

    1976-01-01

    An improved water density feedback model has been developed for neutron diffusion calculations of PWR cores. This work addresses spectral effects on few-group cross sections due to water density changes, and water density predictions considering open channel and subcooled boiling effects. An homogenized spectral model was also derived using the unit assembly diffusion method for employment in a coarse mesh 3D diffusion computer program. The spectral and water density evaluation models described were incorporated in a 3D diffusion code, and neutronic calculations for a typical PWR were completed for both nominal and accident conditions. Comparison of neutronic calculations employing the open versus the closed channel model for accident conditions indicates that significant safety margin increases can be obtained if subcooled boiling and open channel effects are considered in accident calculations. This is attributed to effects on both core reactivity and power distribution, which result in increased margin to fuel degradation limits. For nominal operating conditions, negligible differences in core reactivity and power distribution exist since flow redistribution and subcooled voids are not significant at such conditions. The results serve to confirm the conservatism of currently employed closed channel feedback methods in accident analysis, and indicate that the model developed in this work can contribute to show increased safety margins for certain accidents

  2. The Development and Calculation of an Energy-saving Plant for Obtaining Water from Atmospheric Air

    Science.gov (United States)

    Uglanov, D. A.; Zheleznyak, K. E.; Chertykovsev, P. A.

    2018-01-01

    The article shows the calculation of characteristics of energy-efficient water generator from atmospheric air. This installation or the atmospheric water generator is the unique mechanism which produces safe drinking water by extraction it from air. The existing atmospheric generators allow to receive safe drinking water by means of process of condensation at air humidity at least equal to 35% and are capable to give to 25 liters of water in per day, and work from electricity. Authors offer to use instead of the condenser in the scheme of installation for increase volume of produced water by generator in per day, the following refrigerating machines: the vapor compression refrigerating machines (VCRM), the thermoelectric refrigerating machines (TRM) and the Stirling-cycle refrigerating machines (SRM). The paper describes calculation methods for each of refrigerating systems. Calculation of technical-and-economic indexes for the atmospheric water generator was carried out and the optimum system with the maximum volume of received water in per day was picked up. The atmospheric water generator which is considered in article will work from autonomous solar power station.

  3. From Good Work to Sustainable Development - Human Resources Consumption and Regeneration in the Post-Bureaucratic Working Life

    OpenAIRE

    Kira, Mari

    2003-01-01

    The thesis concentrates on the psychological consequences ofthe contemporary work. Two focal question of the thesis are,first, why do employees’psychological resources becomeconsumed in the contemporary working life? Second, how tocreate regenerative work enabling employees’developmentin the present situation? The latter question aims todistinguish the conditions for sustainable individual andcollective development at work. The empirical research consistsof two studies; the Empirical Study I ...

  4. Development of Water Quality Forecasting Models Based on the SOM-ANN on TMDL Unit Watershed in Nakdong River

    Science.gov (United States)

    KIM, M.; Kim, J.; Baek, J.; Kim, C.; Shin, H.

    2013-12-01

    It has being happened as flush flood or red/green tide in various natural phenomena due to climate change and indiscreet development of river or land. Especially, water being very important to man should be protected and managed from water quality pollution, and in water resources management, real-time watershed monitoring system is being operated with the purpose of keeping watch and managing on rivers. It is especially important to monitor and forecast water quality in watershed. A study area selected Nak_K as one site among TMDL unit watershed in Nakdong River. This study is to develop a water quality forecasting model connected with making full use of observed data of 8 day interval from Nakdong River Environment Research Center. When forecasting models for each of the BOD, DO, COD, and chlorophyll-a are established considering correlation of various water quality factors, it is needed to select water quality factors showing highly considerable correlation with each water quality factor which is BOD, DO, COD, and chlorophyll-a. For analyzing the correlation of the factors (reservoir discharge, precipitation, air temperature, DO, BOD, COD, Tw, TN, TP, chlorophyll-a), in this study, self-organizing map was used and cross correlation analysis method was also used for comparing results drawn. Based on the results, each forecasting model for BOD, DO, COD, and chlorophyll-a was developed during the short period as 8, 16, 24, 32 days at 8 day interval. The each forecasting model is based on neural network with back propagation algorithm. That is, the study is connected with self-organizing map for analyzing correlation among various factors and neural network model for forecasting of water quality. It is considerably effective to manage the water quality in plenty of rivers, then, it specially is possible to monitor a variety of accidents in water quality. It will work well to protect water quality and to prevent destruction of the environment becoming more and more

  5. The implications of economic development, climate change and European Water Policy on surface water quality threats

    Directory of Open Access Journals (Sweden)

    Jolanta Dąbrowska

    2017-06-01

    Full Text Available The paper presents historical background, up-to-date situation and future perspectives for the development of nutrient pollution threats to European surface water quality, as well as the evolution of the approach to water pollution. Utilized agricultural area in European countries is slightly diminishing, however the consumption of mineral fertilisers is steadily increasing. The consumption in Europe in the years 2015–2030 is projected to increase by 10%, and in the world by 20%. Both climate changes leading to the increase of temperature even of ca. 6°C (in comparison to the pre-industrial period and accelerated soil erosion due to high intensity rainfall cause increased productivity of water ecosystems. Those aspects have to be taken into consideration in water management. Due to legal regulations introduced in the last twenty years, wastewater treatment has been made more effective and population connected to wastewater treatment systems has increased. The improvement has been seen mainly in eastern and southern parts of Europe. After the implementation of Water Framework Directive theories regarding modern water management have been developed, with the aim to increase the ecosystem’s capacity and its resilience to climate changes and anthropopressure.

  6. Sustainable development of energy, water and environment systems

    International Nuclear Information System (INIS)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav; Klemeš, Jiří Jaromír; Mathiessen, Brian vad; Yan, Jinyue

    2013-01-01

    Highlights: ► This special issue of contributions presented at the 6th SDEWES Conference. ► Buildings are becoming energy neutral. ► Process integration enables significant improvements of energy efficiency. ► The electrification of transport and measures to increase its efficiency are needed. ► Renewable energy is becoming more viable while being complicated to integrate. -- Abstract: The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water and environment systems and their many combinations.

  7. Working memory in Farsi-speaking children with normal development and cochlear implant.

    Science.gov (United States)

    Soleymani, Zahra; Amidfar, Meysam; Dadgar, Hooshang; Jalaie, Shohre

    2014-04-01

    Working memory has an important role in language acquisition and development of cognition skills. The ability of encoding, storage and retrieval of phonological codes, as activities of working memory, acquired by audition sense. Children with cochlear implant experience a period that they are not able to perceive sounds. In order to assess the effect of hearing on working memory, we investigated working memory as a cognition skill in children with normal development and cochlear implant. Fifty students with normal hearing and 50 students with cochlear implant aged 5-7 years participated in this study. Children educated in the preschool, the first and second grades. Children with normal development were matched based on age, gender, and grade of education with cochlear implant. Two components of working memory including phonological loop and central executive were compared between two groups. Phonological loop assessed by nonword repetition task and forward digit span. To assess central executive component backward digit span was used. The developmental trend was studied in children with normal development and cochlear implant as well. The effect of age at implantation in children with cochlear implants on components of working memory was investigated. There are significant differences between children with normal development and cochlear implant in all tasks that assess working memory (p memory between different grades showed significant differences both in children with normal development and in children with cochlear implant (p implied that children with cochlear implant may experience difficulties in working memory. Therefore, these children have problems in encoding, practicing, and repeating phonological units. The results also suggested working memory develops when the child grows up. In cochlear implant children, with decreasing age at implantation and increasing their experience in perceiving sound, working memory skills improved. Copyright © 2014 Elsevier

  8. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, E. [Alliance for Residential Building Innovation, Davis, CA (United States); Hoeschele, E. [Alliance for Residential Building Innovation, Davis, CA (United States)

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  9. The Work of Hunger: Security, Development and Food-for-Work in Post-crisis Jakarta

    OpenAIRE

    Jamey Essex

    2009-01-01

    Food-for-work programs distribute food aid to recipients in exchange for labor, and are an important mode of aid delivery for both public and private aid providers. While debate continues as to whether food-for-work programs are socially just and economically sensible, governments, international institutions, and NGOs continue to tout them as a flexible and cost-effective way to deliver targeted aid and promote community development. This paper critiques the underlying logic of food-for-wor...

  10. Development of an Information System for Diploma Works Management

    Science.gov (United States)

    Georgieva-Trifonova, Tsvetanka

    2011-01-01

    In this paper, a client/server information system for the management of data and its extraction from a database containing information for diploma works of students is proposed. The developed system provides users the possibility of accessing information about different characteristics of the diploma works, according to their specific interests.…

  11. The UK solar water heating industry: a period of development and growth

    International Nuclear Information System (INIS)

    Blower, John

    2001-01-01

    This 2001 edition of the guide to UK renewable energy companies examines the solar water heating sector in the UK and presents an illustration of the layout of a typical solar water heating system. The rising demand for solar water heating and growth in sales especially in the export market are noted. Developments within the UK solar water heating manufacturing industry are considered, and details are given of design and development in innovative policy infrastructure, and the SHINE 21 project supported by the EU's ADAPT programme and the UK Department of Trade and Industry involving collaboration between the solar water heating and plumbing industries. Developments in the new build sectors including in-roof solar collector products and the increasing number of solar water heating systems installed in UK houses are discussed along with the promising future for the market

  12. Developing midwifery practice through work-based learning: an exploratory study.

    Science.gov (United States)

    Marshall, Jayne E

    2012-09-01

    To explore what effect the introduction of a Work-Based Learning Module undertaken by midwives in a range of maternity settings has had on their personal professional development, as well as the impact on developing local maternity and neonatal care provision. A case study approach was used consisting of mixed methods. Quantitative data were collected through questionnaires from midwives and their Clinical Supervisors at the end of the module, with a survey questionnaire to each midwifery manager, six months following the implementation of the midwives' project in practice. Qualitative data were collected by focus groups at six different work place locations, with health professionals who had experienced the midwives' projects within the workplace. Quantitative data were manually analysed whereas content analysis was used to identify recurrent themes from the qualitative data, with the support of Computer Assisted Qualitative Data Analysis Software. The University of Nottingham granted ethical approval for the study. Twelve midwives who undertook the work-based module, their respective Clinical Supervisors (n = 12), their employers/managers (n = 12) and health professionals (n = 28) within six individual National Health Service Trusts in the East Midlands of the United Kingdom took part in the study. The work-based learning module not only led to the personal and professional development of the midwife, but also to improving multi-professional collaboration and the consequential development of maternity services within the local Trusts. The value of leading change by completing an innovative and tangible work-based project through a flexible mode of study strengthened the midwives' clinical credibility among colleagues and employers and supports the philosophy of inter-professional learning and working. This novel Work Based approach to learning has the potential to further develop the provision of post-registration education for midwives and other health

  13. Water Loss in Small Settlements

    OpenAIRE

    Mindaugas Rimeika; Anželika Jurkienė

    2014-01-01

    The main performance indicators of a water supply system include the quality and safety of water, continuous work, relevant pressure and small water loss. The majority of foreign and local projects on reducing water loss have been carried out in the water supply systems of metropolitans; however, the specificity of small settlements differs from that of big cities. Differences can be observed not only in the development of infrastructure and technical indicators but also in the features of wa...

  14. Measuring global water security towards sustainable development goals

    Science.gov (United States)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-12-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience ‘low water security’ over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated—physical and socio-economic—approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term ‘security’ is conceptualized as a function of ‘availability’, ‘accessibility to services’, ‘safety and quality’, and ‘management’. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  15. Measuring Global Water Security Towards Sustainable Development Goals

    Science.gov (United States)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-01-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience 'low water security' over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated-physical and socio-economic-approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  16. Experimental modal identification of an existent earthen residential building

    OpenAIRE

    Aguilar, Rafael; Ramos, Luís F.; Torrealva, D.; Chácara, C.

    2013-01-01

    The paper presents the preliminary round of in-situ experimental tests carried out at “Hotel Comercio”, a historical construction located at the historical centre of Lima (capital of Peru). The building is a three story republican-type construction built at 19th Century with composite structure of Adobe and “Quincha”. The experimental works consisted on Operational Modal Analysis (OMA) tests aiming at identifying the dynamic characteristics of the building using the environmental noise as sou...

  17. Hydrogen water chemistry for BWRs: A status report on the EPRI development program

    International Nuclear Information System (INIS)

    Jones, R.L.; Nelson, J.L.

    1990-01-01

    Many BWRs have experienced extensive intergranular stress corrosion cracking (IGSCC) in their austenitic stainless steel coolant system piping, resulting in serious adverse impacts on plant capacity factors, O and M costs, and personnel radiation exposures. A major research program to provide remedies for BWR pipe cracking was co-funded by EPRI, GE, and the BWR Owners Group for IGSCC Research between 1979 and 1988. Results from this program show that the likelihood of IGSCC depends on reactor water chemistry (particularly on the concentrations of ionic impurities and oxidizing radiolysis products) as well as on material condition and the level of tensile stress. Tests have demonstrated that the concentration of oxidizing radiolysis products in the recirculating water of a BWR can be reduced substantially by injecting hydrogen into the feedwater. Recent plant data show that the use of hydrogen injection can reduce the rate of IGSCC to insignificant levels if the concentration of ionic impurities in the reactor water is kept sufficiently low. This approach to the control of BWR pipe cracking is called hydrogen water chemistry (HWC). This paper presents a review of the results of EPRI's HWC development program from 1980 to the present. In addition, plans for additional work to investigate the feasibility of adapting HWC to protect the BWR vessel and major internal components from potential stress corrosion cracking problems are summarized. (orig.)

  18. Development test procedure High Pressure Water Jet System

    International Nuclear Information System (INIS)

    Crystal, J.B.

    1995-01-01

    Development testing will be performed on the water jet cleaning fixture to determine the most effective arrangement of water jet nozzles to remove contamination from the surfaces of canisters and other debris. The following debris may be stained with dye to simulate surface contaminates: Mark O, Mark I, and Mark II Fuel Storage Canisters (both stainless steel and aluminum), pipe of various size, (steel, stainless, carbon steel and aluminum). Carbon steel and stainless steel plate, channel, angle, I-beam and other surfaces, specifically based on the Scientific Ecology Group (SEG) inventory and observations of debris within the basin. Test procedure for developmental testing of High Pressure Water Jet System

  19. Irrigation water quality as indicator of sustainable rural development

    Directory of Open Access Journals (Sweden)

    Trajković Slaviša

    2004-01-01

    Full Text Available The sustainable rural development more and more depends on the efficient usage of water resources. Most often, at least in one part of the year, the rain is not sufficient for plant growth and rain plant production significantly depends on the yearly precipitation variation. The increase and stability of the agricultural production is possible in the irrigation conditions. The most part (around 70% of the global water resources is used for food production. Irrigation water quality indicator is used to show if the available water resources have the required quality for application in agriculture. Irrigation is characterised by the complex water-plant-soil relationship, and in that eco-system the man as the end user of the irrigated fields occupies a very important place. That explains the difficulties in producing one universal classification of irrigation water quality. The paper analyses numerous water quality classifications from the aspect of the applicability on the quantifying of this indicator. The adopted classification should possess understandable, qualified and internationally comparable indicator. Thus, local classifications (Neigebauer, Miljkovic cannot be used for this indicator. United Nation Food and Agricultural Organization (FAO and US Salinity Laboratory (USSL classifications are used for the evaluation of the irrigation water quality throughout the world. FAO classification gives the complex picture of the usability of the irrigation water from the point of its influence on the soil and the plants. However, the scope of the analyses is not often suited to the needs of that classification, which makes it difficult to apply. The conclusion is that the USSL (US Salinity Laboratory classification is best suited to this range of chemical water analyses. The evaluation of the irrigation water quality indicator in the Juzna Morava river basin, upstream from the Toplica river estuary is given in this paper. Based on the obtained

  20. Restored drill cuttings for wetlands creation: Results of a two year mesocosm approach to emulate field conditions under varying hydrologic regimes

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, G.P.; Hester, M.W.; Miller, S.; DesRoches, D.J.; Souther, R.F.; Childers, G.W.; Campo, F.M.

    1998-11-01

    It is well documented that Louisiana has the highest rate of wetland loss in the United States. Deep-water channel dredging and leveeing of the Mississippi River since the 1930s have interrupted the natural delta cycle that builds new marshes through sediment deposition. Many of the areas that are subsiding and deteriorating are isolated from riverine sediment sources; therefore alternative methods to deposit sediment and build marshes must be implemented. This project demonstrates that the earthen materials produced when drilling oil and gas wells can be used as a suitable substrate for growing wetland plants. Drilling fluids (muds) are used to lubricate drill bits and stabilize the earth around drill holes and become commingled with the earthen cuttings. Two processes have been reported to restore drill cuttings to acceptable levels by removal of any toxic components found in drilling muds. The main objective of this project was to assess the potential of drill cuttings processed by these two methods in terms of their ability to support wetland vegetation and potential toxicity.