WorldWideScience

Sample records for earth ruthenates prepared

  1. Crystal growth of various ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Kunkemoeller, Stefan; Braden, Markus [II. Physikalisches Institut, Universitaet zu Koeln (Germany); Nugroho, Agung [Institut Teknologi Bandung (Indonesia)

    2013-07-01

    Ruthenates of the Ruddlesdon-Popper series exhibit a variety of interesting phenomena ranging from unconventional superconductivity to orbitally polarized Mott insulators. Unfortunately the crystal growth of most of these ruthenates is extremely difficult partially due to the high evaporation of ruthenium; this strongly limits the research on these fascinating materials. We have started to grow single crystals of layered and perovskite ruthenates by the travelling floating-zone method using a Canon SC1-MDH mirror furnace. For the layered Ca{sub 2-x}Sr{sub x}RuO{sub 4} series we focused first on the range of concentration where recent My-SR experiments reveal spin-density wave ordering to occur at relatively high temperature and with a sizeable ordered moment. Good quality crystals of Ca{sub 1.5}Sr{sub 0.5}RuO{sub 4} can be obtained, when an excess of 15 percent of ruthenium is added to the initial preparation of the rod and when a high growth speed up to 40mm/h is used. Even slight modifications of the growing conditions result in large amounts of (Sr/Ca)RuO{sub 3} and (Sr/Ca){sub 3}Ru{sub 2}O{sub 7} intergrowth phases. First attempts to grow perovskite and double-layered ruthenates are discussed as well.

  2. Swelling, intercalation, and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate

    International Nuclear Information System (INIS)

    Fukuda, Katsutoshi; Kato, Hisato; Sato, Jun; Sugimoto, Wataru; Takasu, Yoshio

    2009-01-01

    The intercalation chemistry of a layered protonic ruthenate, H 0.2 RuO 2.1 .nH 2 O, derived from a layered potassium ruthenate was studied in detail. Three phases with different hydration states were isolated, H 0.2 RuO 2.1 .nH 2 O (n=∼0, 0.5, 0.9), and its reactivity with tetrabutylammonium ions (TBA + ) was considered. The layered protonic ruthenate mono-hydrate readily reacted with TBA + , affording direct intercalation of bulky tetrabutylammonium ions into the interlayer gallery. Fine-tuning the reaction conditions allowed exfoliation of the layered ruthenate into elementary nanosheets and thereby a simplified one-step exfoliation was achieved. Microscopic observation by atomic force microscopy and transmission electron microscopy clearly showed the formation of unilamellar sheets with very high two-dimensional anisotropy, a thickness of only 1.3±0.1 nm. The nanosheets were characterized by two-dimensional crystallites with the oblique cell of a=0.5610(8) nm, b=0.5121(6) nm and γ=109.4(2) o on the basis of in-plane diffraction analysis. - Graphical abstract: Layered protonic ruthenate derived from a potassium form was directly reacted with bulky tetrabutylammonium ions to trigger exfoliation into nanosheets as long as it is highly hydrated.

  3. Preparation and characterization of bismuth ruthenate pyrochlore via solid state reaction and sol-gel methods

    Directory of Open Access Journals (Sweden)

    Mayuree Sansernnivet

    2010-01-01

    Full Text Available Bismuth ruthenate pyrochlores, potential cathode materials for intermediate temperature solid oxide fuel cells(ITSOFCs, were prepared via solid-state and sol-gel method. Effects of the preparation routes and conditions on the phase and microstructures of the materials were investigated in this study using XRD and SEM. The study showed that the preparation method and the adding sequence of the starting meterials have a significant effect on the crystal phase and the particle size obtained. Sol-gel synthesis could yield a material with only pyrochlore structure, i.e. Bi2Ru2O7, while the solid state method yielded powder with a small amount of the secondary RuO2 phase. The sol-gel synthesis resulted in materialswith a finer particle size (~0.3-1.0 μm compared to powder synthesized via the solid state reaction method.

  4. Structure and properties of PZT thin films on strontium ruthenate and calcium ruthenate electrodes

    International Nuclear Information System (INIS)

    Wu, T.-J.; Tsai, D.-S.

    2004-01-01

    PZT thin films have been prepared via metalorganic CVD (MOCVD) on four substrates of conducting oxides of ruthenates, SrRuO 3 /Pt/Ti/SiO 2 /Si(1 0 0), SrRuO 3 /SiO 2 /Si(1 0 0), CaRuO 3 /Pt/Ti/SiO 2 /Si(1 0 0), CaRuO 3 /SiO 2 /Si(1 0 0). The conducting ruthenate layers were also grown using MOCVD. Ferroelectric properties of polarization fatigue and leakage current density are measured. The internal strain of PZT thin crystal which is mainly constrained by the bottom electrode seems to be the decisive factor in ferroelectric properties. The internal strain of PZT is represented by its tetragonality ratio. The PZT thin film in the capacitor Au/PZT/SrRuO 3 /Pt/Ti/SiO 2 /Si, with the largest tetragonality ratio 1.026, exhibits an optimum combination of large polarization, less fatigue, and low leakage current density. Both SrRuO 3 and CaRuO 3 are good diffusion barriers to prevent interdiffusion of cations between the ferroelectric and the electrode. The slightly higher intermixing at the CaRuO 3 -to-Pt/Ti interface is owing to the high annealing temperature needed in CaRuO 3 synthesis

  5. Photostriction of strontium ruthenate

    KAUST Repository

    Wei, Tzu-Chiao; Wang, Hsin-Ping; Liu, Heng-Jui; Tsai, Dung-Sheng; Ke, Jr-Jian; Wu, Chung-Lun; Yin, Yu-Peng; Zhan, Qian; Lin, Gong-Ru; Chu, Ying-Hao; He, Jr-Hau

    2017-01-01

    Transition metal oxides with a perovskite crystal structure exhibit a variety of physical properties associated with the lattice. Among these materials, strontium ruthenate (SrRuO3) displays unusually strong coupling of charge, spin and lattice

  6. Studies of Novel Quantum Phenomena in Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Zhiqiang

    2011-04-08

    Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated

  7. Toward nano-fabrication of superconducting ruthenate qubits

    International Nuclear Information System (INIS)

    Wood, Kent S.; Horwitz, James S.; Wu, H.-D.; Bounnak, Sommy S.; Yaguchi, Hiroshi; Maeno, Yoshiteru; Gulian, Armen M.

    2004-01-01

    The lack of thin films is one of the major obstacles in exploring the intriguing quantum properties specific to triplet superconductors. To have a single-domain chiral structure the sample should be made out of thin film, but crystalline imperfections until now have not allowed anybody to succeed in deposition of superconducting thin films of ruthenates. This stops not only general progress in investigating their properties, but in particular forbids practical realization of triplet superconductor qubits. Using the material properties of ruthenates, we have elaborated a method to overcome this problem. This report contains experimental aspects of our recent progress towards triplet superconductor qubits

  8. Ruthenates: simple superconducting qubits

    International Nuclear Information System (INIS)

    Gulian, Armen M.; Wood, Kent S.

    2004-01-01

    We propose triplet superconductors, such as ruthenates, as a prospective material for qubit construction. The vectorial nature of the order parameter in triplet superconductors makes it conceptually very easy to imagine the performance of the qubits. The Cooper condensate of pairs in triplet superconductors has all the attributes of the Bose-Einstein condensates and should facilitate long decoherence times of these qubits versus other 'vectorial' schemes for qubits, such as small ferromagnets. There are other benefits, which the superconducting state provides for a requirement like entanglement between qubits via the proximity effect

  9. Lattice effects on ferromagnetism in perovskite ruthenates

    Science.gov (United States)

    Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.

    2013-01-01

    Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477

  10. Optical conductivity of layered ruthenates. The role of spin-orbit coupling and Coulomb anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Sarvestani, Esmaeel; Zhang, Guoren; Gorelov, Evgeny; Pavarini, Eva [Institute for Advanced Simulation, Forschungszentrum Juelich (Germany)

    2016-07-01

    We use the combination of density functional theory and dynamical mean-field theory (LDA+DMFT) to calculate the optical conductivity of the layered ruthenates Sr{sub 2}RuO{sub 4} and Sr{sub 3}Ru{sub 2}O{sub 7}. The calculations are performed via linear response theory and Kubo's formalism. For Sr{sub 2}RuO{sub 4} two sets of interaction parameters, (U,J)=(2.3,0.4)eV and (3.1,0.7)eV, both commonly employed for ruthenates, are used. We show that including the spin-orbit coupling improves the agreement with experimental data. Finally, we analyze the effects of low-symmetry Coulomb interaction.

  11. Magnetism in layered Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Steffens, Paul C.

    2008-07-01

    In this thesis, the magnetism of the layered Ruthenates has been studied by means of different neutron scattering techniques. Magnetic correlations in the single-layer Ruthenates of the series Ca{sub 2-x}Sr{sub x}RuO{sub 4} have been investigated as function of Sr-concentration (x=0.2 and 0.62), temperature and magnetic field. These inelastic neutron scattering studies demonstrate the coexistence of ferromagnetic paramagnon scattering with antiferromagnetic fluctuations at incommensurate wave vectors. The temperature dependence of the amplitudes and energies of both types of excitations indicate the proximity to magnetic instabilities; their competition seems to determine the complex behavior of these materials. In Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4}, which shows a metamagnetic transition, the ferromagnetic fluctuations are strongly suppressed at low temperature, but appear at higher temperature or application of a magnetic field. In the high-field phase of Ca{sub 1.8}Sr{sub 0.2}RuO{sub 4} above the metamagnetic transition, a ferromagnetic magnon dominates the excitation spectrum. Polarized neutron scattering revealed the existence of a very broad signal around the zone centre, in addition to the well-known incommensurate excitations at Q=(0.3,0.3,0) in the unconventional superconductor Sr{sub 2}RuO{sub 4}. With this additional contribution, it is possible to set up a general model for the Q-dependent magnetic susceptibility, which is well consistent with the results of other measurement methods that do not resolve the Q-dependence. Upon doping with Ti, the incommensurate fluctuations are enhanced, in particular near the critical concentration for the onset of magnetic order, but no divergence down to very low temperature is observed. In the bilayer Ti-doped Ca{sub 3}Ru{sub 2}O{sub 7}, the existence of magnetic order with a propagation vector of about ((1)/(4),(1)/(4),0) has been discovered and characterized in detail. Above and below T{sub N}, excitations at this

  12. Magnetism in layered Ruthenates

    International Nuclear Information System (INIS)

    Steffens, Paul C.

    2008-01-01

    In this thesis, the magnetism of the layered Ruthenates has been studied by means of different neutron scattering techniques. Magnetic correlations in the single-layer Ruthenates of the series Ca 2-x Sr x RuO 4 have been investigated as function of Sr-concentration (x=0.2 and 0.62), temperature and magnetic field. These inelastic neutron scattering studies demonstrate the coexistence of ferromagnetic paramagnon scattering with antiferromagnetic fluctuations at incommensurate wave vectors. The temperature dependence of the amplitudes and energies of both types of excitations indicate the proximity to magnetic instabilities; their competition seems to determine the complex behavior of these materials. In Ca 1.8 Sr 0.2 RuO 4 , which shows a metamagnetic transition, the ferromagnetic fluctuations are strongly suppressed at low temperature, but appear at higher temperature or application of a magnetic field. In the high-field phase of Ca 1.8 Sr 0.2 RuO 4 above the metamagnetic transition, a ferromagnetic magnon dominates the excitation spectrum. Polarized neutron scattering revealed the existence of a very broad signal around the zone centre, in addition to the well-known incommensurate excitations at Q=(0.3,0.3,0) in the unconventional superconductor Sr 2 RuO 4 . With this additional contribution, it is possible to set up a general model for the Q-dependent magnetic susceptibility, which is well consistent with the results of other measurement methods that do not resolve the Q-dependence. Upon doping with Ti, the incommensurate fluctuations are enhanced, in particular near the critical concentration for the onset of magnetic order, but no divergence down to very low temperature is observed. In the bilayer Ti-doped Ca 3 Ru 2 O 7 , the existence of magnetic order with a propagation vector of about ((1)/(4),(1)/(4),0) has been discovered and characterized in detail. Above and below T N , excitations at this wave vector and another one, related to Sr 3 Ru 2 O 7 , have been

  13. Chemical synthesis and characterization of nano-sized rare-earth ...

    Indian Academy of Sciences (India)

    2017-12-06

    Dec 6, 2017 ... exhibited the average particle size in the range of 36.4–73.8nm. The data on the ... For example, some of the rare-earth ruthenates Ln2Ru2O7 ..... From qualitative band-model consideration of the type discussed by ...

  14. Photostriction of strontium ruthenate

    KAUST Repository

    Wei, Tzu-Chiao

    2017-04-24

    Transition metal oxides with a perovskite crystal structure exhibit a variety of physical properties associated with the lattice. Among these materials, strontium ruthenate (SrRuO3) displays unusually strong coupling of charge, spin and lattice degrees of freedom that can give rise to the photostriction, that is, changes in the dimensions of material due to the absorption of light. In this study, we observe a photon-induced strain as high as 1.12% in single domain SrRuO3, which we attribute to a nonequilibrium of phonons that are a result of the strong interaction between the crystalline lattice and electrons excited by light. In addition, these light-induced changes in the SrRuO3 lattice affect its electrical resistance. The observation of both photostriction and photoresistance in SrRuO3 suggests the possibility of utilizing the mechanical and optical functionalities of the material for next-generation optoelectronics, such as remote switches, light-controlled elastic micromotors, microactuators and other optomechanical systems.

  15. Fabrication of ruthenium metal nanosheets via topotactic metallization of exfoliated ruthenate nanosheets.

    Science.gov (United States)

    Fukuda, Katsutoshi; Sato, Jun; Saida, Takahiro; Sugimoto, Wataru; Ebina, Yasuo; Shibata, Tatsuo; Osada, Minoru; Sasaki, Takayoshi

    2013-03-04

    The metallization behavior of molecularly thin RuO2 nanosheets obtained from complete delamination of layered ruthenates was studied. Interestingly, the RuO2 nanosheets in a monolayer state topotactically transformed into a single layer of Ru atoms, i.e., ruthenium metal nanosheets, which can be regarded as a new family of nanosized metals.

  16. Negative differential transconductance in electrolyte-gated ruthenate

    International Nuclear Information System (INIS)

    Hassan, Muhammad Umair; Dhoot, Anoop Singh; Wimbush, Stuart C.

    2015-01-01

    We report on a study of electric field-induced doping of the highly conductive ruthenate SrRuO 3 using an ionic liquid as the gate dielectric in a field-effect transistor configuration. Two distinct carrier transport regimes are identified for increasing positive gate voltage in thin (10 nm) films grown heteroepitaxially on SrTiO 3 substrates. For V g  = 2 V and lower, the sample shows an increased conductivity of up to 13%, as might be expected for electron doping of a metal. At higher V g  = 2.5 V, we observe a large decrease in electrical conductivity of >20% (at 4.2 K) due to the prevalence of strongly blocked conduction pathways

  17. Negative differential transconductance in electrolyte-gated ruthenate

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Muhammad Umair [Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Center for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Park Road, Shehzad Town 44000, Islamabad (Pakistan); Dhoot, Anoop Singh, E-mail: asd24@cam.ac.uk [Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Wimbush, Stuart C. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand)

    2015-01-19

    We report on a study of electric field-induced doping of the highly conductive ruthenate SrRuO{sub 3} using an ionic liquid as the gate dielectric in a field-effect transistor configuration. Two distinct carrier transport regimes are identified for increasing positive gate voltage in thin (10 nm) films grown heteroepitaxially on SrTiO{sub 3} substrates. For V{sub g} = 2 V and lower, the sample shows an increased conductivity of up to 13%, as might be expected for electron doping of a metal. At higher V{sub g} = 2.5 V, we observe a large decrease in electrical conductivity of >20% (at 4.2 K) due to the prevalence of strongly blocked conduction pathways.

  18. Colossal negative thermal expansion in reduced layered ruthenate.

    Science.gov (United States)

    Takenaka, Koshi; Okamoto, Yoshihiko; Shinoda, Tsubasa; Katayama, Naoyuki; Sakai, Yuki

    2017-01-10

    Large negative thermal expansion (NTE) has been discovered during the last decade in materials of various kinds, particularly materials associated with a magnetic, ferroelectric or charge-transfer phase transition. Such NTE materials have attracted considerable attention for use as thermal-expansion compensators. Here, we report the discovery of giant NTE for reduced layered ruthenate. The total volume change related to NTE reaches 6.7% in dilatometry, a value twice as large as the largest volume change reported to date. We observed a giant negative coefficient of linear thermal expansion α=-115 × 10 -6  K -1 over 200 K interval below 345 K. This dilatometric NTE is too large to be attributable to the crystallographic unit-cell volume variation with temperature. The highly anisotropic thermal expansion of the crystal grains might underlie giant bulk NTE via microstructural effects consuming open spaces in the sintered body on heating.

  19. Preparation of rare earth fluorides from apatite concentrate

    International Nuclear Information System (INIS)

    Mulyarchuk, I.F.; Voloshchenko, M.V.; Zen'kovich, E.G.; Sumenkova, V.V.; AN Ukrainskoj SSR, Kiev. Inst. Problem Lit'ya)

    1980-01-01

    The processes of preparation of the rare earths element sum from apatite concentrate of the Khibins, connected with preliminary extraction of rare earth phosphates from nitric acid extract using solvent extraction or direct precipitation from the extract by solution of potassium and ammonium fluorides. The sequence of the processes of the first variant is the following: solvent extraction of rare earths by tributylphosphate from clarified nitric acid extract of apatite with subsequent reextraction of rare earths with water and precipitation of rare earth phosphates from aqueous solution during neutralization by ammonia. In case of fluoride preparation from rare earth phosphate the main attention is paid to precipitation and filtration of fluorides. Technological scheme and cost price of industry for the production of 1800 t of rare earth trifluorides a year are calculated. When taking account of TBP losses according to its solubility the industry cost price is 1O times lower the modern cost of rare earth fluorides

  20. Rare earths and rare earth alloys electrolytic preparation process and device for this process

    International Nuclear Information System (INIS)

    Seon, F.; Barthole, G.

    1986-01-01

    Electrolysis of a molten salt of rare earth or rare earth alloy for preparation of the metal or alloy is described. The molten salt bath comprises at least a rare earth chloride, at least an alkaline or alkaline earth chloride and at least an alkaline or alkaline earth fluoride [fr

  1. Preparation and characteristics of various rare earth nitrides

    International Nuclear Information System (INIS)

    Imamura, H.; Imahashi, T.; Zaimi, M.; Sakata, Y.

    2008-01-01

    Active nanocrystalline nitrides of EuN and YbN with high surface areas were successfully prepared by the thermal decomposition of the rare earth amides (Eu(NH 2 ) 2 , Yb(NH 2 ) 2 and Yb(NH 2 ) 3 ). For the preparation of CeN, PrN and NdN, the direct reaction of the rare earth metals with ammonia was extensively studied to determine optimal conditions. In the reaction of rare earth metals with ammonia, hydrides besides the nitrides were competitively formed. The reaction conditions such as temperatures and ratios of ammonia to rare earth metal were crucial in preferential formation of nitride. The nanocrystalline YbN and EuN readily absorbed large amounts of ammonia even at room temperature upon contact with ammonia (13.3 kPa). The absorbed ammonia existed in at least two forms on/in the nitride; the one was surface-adsorbed ammonia and the other ammonia absorbed in the nitride in a decomposed state. The properties of ammonia absorbed by the nitride were further evaluated by temperature-programmed desorption (TPD), FT-IR and XRD techniques

  2. Preparing rare earth-silicon-iron-aluminum alloys

    International Nuclear Information System (INIS)

    Marchant, J.D.; Morrice, E.; Herve, B.P.; Wong, M.M.

    1980-01-01

    As part of its mission to assure the maximum recovery and use of the Nation's mineral resources, the Bureau of Mines, investigated an improved procedure for producing rare earth-silicon alloys. For example, a charge consisting of 681 grams of mixed rare-earth oxides, 309 grams of ferrosilicon (75 wt-pct Si), and 182 grams of aluminum metal along with a flux consisting of 681 grams of CaO and 45 grams of MgO was reacted at 1500 0 C in an induction furnace. Good slag-metal separation was achieved. The alloy product contained, in weight-percent, 53 RE, 28 Si, 11 Fe, and 4 Al with a rare earth recovery of 80 pct. In current industrial practice rare earth recoveries are usually about 60 pct in alloy products that contain approximately 30 wt-pct each of rare earths and silicon. Metallurgical evaluations showed the alloys prepared in this investigation to be as effective in controlling the detrimental effect of sulfur in steel and cast iron as the commercial rare earth-silicon-iron alloys presently used in the steel industry

  3. On possibility of preparation of catalysts for ammonia synthesis based on cyanocomplexes of some d-metals

    International Nuclear Information System (INIS)

    Sergeeva, A.N.; Dovgej, V.V.; Pavlenko, L.I.; Zubritskaya, D.I.; Tkachenko, Zh.I.; Okorskaya, A.P.; Lyubchenko, Yu.A.

    1983-01-01

    The catalytic properties of the systems prepared on the basis of coordination cyanides of iron, ruthenium, osmium, rhenium, molydenum, vanadium and other d-metals in the ammonia synthesis reaction are studied. It has been found that thermal stability of catalytic systems containing vanadium and molybdenum is considerably higher than that of the industrial sample of similar type containing aluminium. The systems prepared on the basis of hexacyanoferrates, ruthenates and osmates can be referred to low-temperature type catalysts

  4. Study on Preparation and Properties of PVC Film Modified by Rare Earth

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The transparent PVC films were prepared by tape casting. In the process of preparation, rare earth nitrate, as a kind of modifier, was added to the solution of PVC and THF. These PVC films were tested after being crosslinked by ultraviolet light. It is found that the mechanical and physical properties of all the PVC films modified by rare earth nitrate are greatly enhanced.

  5. Preparation, thermogravimetric study and infrared spectra of rare earth acetates

    International Nuclear Information System (INIS)

    Graehlert, X.; Starke, M.

    1992-01-01

    The anhydrous and the hydrated acetates of Ho, Er, Tm, Yb and Lu have been prepared. The compounds obtained have been investigated by thermogravimetric analysis and infrared spectroscopy. The thermal decomposition of the rare earth acetates may proceed via various steps. It depends on both the number of crystal water molecules in the acetates and the rare earth element's behaviour. (orig.)

  6. Preparation and characterization of rare-earth bulks with controllable nanostructures

    International Nuclear Information System (INIS)

    Song Xiaoyan; Zhang Jiuxing; Li Erdong; Lu Nianduan; Yin Fuxing

    2006-01-01

    The preparation and characterization of pure rare-earth-metal bulks with controllable nanostructures are reported in this paper. A novel 'oxygen-free' in situ synthesis technique that combines inert-gas condensation with spark plasma sintering (SPS) technology is proposed. Taking into account the special mechanisms of SPS consolidation and the scale effects of nanoparticles, we introduced practical procedures for preparing rare-earth bulks of amorphous, mixed amorphous and nanocrystals, and nanocrystalline microstructures, respectively. Compared with the conventional polycrystalline bulk, these nanostructured bulks exhibit substantially improved physical and mechanical properties. This technique enables comprehensive studies on the microstructures and properties of a large variety of nanostructured metallic materials that are highly reactive in the air

  7. Magnetism, spin-lattice-orbital coupling and exchange-correlation energy in oxide heterostructures: Nickelate, titanate, and ruthenate

    Science.gov (United States)

    Han, Myung-Joon

    Many interesting physical phenomena and material characteristics in transition-metal oxides (TMO) come out of the intriguing interplay between charge, spin, orbital, and lattice degrees of freedom. In the thin film and/or heterointerface form of TMO, this feature can be controlled and thus be utilized. Simultaneously, however, its detailed characteristic is more difficult to be identified experimentally. For this reason, the first-principles-based approach has been playing an important role in this field of research. In this talk, I will try to give an overview of current status of first-principles methodologies especially for the magnetism in the correlated oxide heterostructures or thin films. Nickelate, titanate, and ruthenate will be taken as representative examples to demonstrate the powerfulness of and the challenges to the current methodologies On the one hand, first-principles calculation provides the useful information, understanding and prediction which can hardly be obtained from other theoretical and experimental techniques. Nickelate-manganite superlattices (LaNiO3/LaMnO3 and LaNiO3/CaMnO3) are taken as examples. In this interface, the charge transfer can induce the ferromagnetism and it can be controlled by changing the stacking sequence and number of layers. The exchange-correlation (XC) functional dependence seems to give only quantitatively different answers in this case. On the other hand, for the other issues such as orbital polarization/order coupled with spin order, the limitation of current methodology can be critical. This point will be discussed with the case of tatinate superlattice (LaTiO3/LaAlO3) . For ruthenates (SrRuO3\\ and Sr2RuO4) , we found that the probably more fundamental issue could be involved. The unusually strong dependence on the XC functional parametrization is found to give a qualitatively different conclusion for the experimentally relevant parameter regions. This work was supported by National Research Foundation of

  8. Study on Preparation and Property of Poly-Aminosilicone-Rare Earth Composite

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming(张明); Qiu Guanming(邱关明); Chen Haiyan(陈海燕); Zhou Lanxiang(周兰香); Inoue Shinich; Okamoto Hiroshi

    2003-01-01

    The poly-aminosilicone-rare earth composite was prepared by poly-aminosilicone cross-linked with rare earth and active silanol. The thermal stability of the composites was studied by thermogravimetric analysis (TG). Force condition of the composites in electric field was analyzed and relative polarizability was derived. It is found that the composites containing different rare earth ions have different relative polarizability. The experiment results reveal that organosilicon materials with different electrical performance can be obtained by this way. Meanwhile, the absorption and flourescene spectrum of composites were also investigated. Compared to rare earth chloride, the spectrum properties of the composite are changed obviously. The possible reasons for these phenomena were discussed.

  9. Preparation of rare earth-cobalt magnet alloy by reduction-diffusion process

    International Nuclear Information System (INIS)

    Krishnan, T.S.

    1980-01-01

    Preparation of rare earth-cobalt alloys by reduction-diffusion (R-D) process is described. The process essentially involves mixing of the rare earth oxide and cobalt/cobalt oxide powders in proper proportion and high temperature reduction of the charge in hydrogen atmosphere, followed by aqueous leaching of the reduced mass to yield the alloy powder. Comparison is made of the magnetic properties of the R-D powder with those of the powder prepared by the direct melting (DM) route and it is observed from the reported values for SmCo 5 that the energy product of the R-D powder (approximately 22 MGOe) is only marginally lower than that of the directly melted alloy (approximately 25 MGOe). The paper also includes the results of studies carried out at the Bhabha Atomic Research Centre, Bombay, on the preparation of misch metal-cobalt alloy by the R-D process. (auth.)

  10. Preparation and Property of Acrylic Acid Rare Earth Complex and Its Hydrosilylation

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Chen Haiyan; Chen Xiaosong; Dai Shaojun; Inoue Shinich; Okamoto Hiroshi

    2004-01-01

    Acrylic acid rare earth complex was prepared. Its chemical composition was determined by chemical and elemental analysis, and its structure as well as properties was characterized using IR, Fluorescence and UV spectrum, and its solubility was also investigated. Meanwhile a kind of elastic functional polymer with rare earth units in the side chains was produced. It is confirmed by IR spectrum that the Si-H bonds really react with acrylic acid rare earth.

  11. Mixed-conducting polyaniline-Fuller's Earth nanocomposites prepared by stepwise intercalation

    International Nuclear Information System (INIS)

    Rajapakse, R.M.G.; Krishantha, D.M.M.; Tennakoon, D.T.B.; Dias, H.V.R.

    2006-01-01

    A series of polyaniline-Fuller's Earth (PANI-FE) nanocomposites were prepared by the successive intercalation of anilinium ions followed by polymerisation within the interlayer spaces of Fuller's Earth (a type of calcium montmorillonite). The first member in the series is prepared by exchanging the calcium ions in Fuller's Earth for ammonium ions and subsequently for anilinium ions and polymerising the latter using an externally introduced oxidant. The emeraldine salt form of polyaniline formed is then neutralised with ammonium hydroxide and more anilinium ions are exchanged for ammonium ions and polymerised to get the second member. In this manner, by making use the unique chemistry of clay and polyniline, four members of PANI-FE are prepared. In the last member, the negative layer charges of Fuller's Earth is completely neutralised by the positive charges of the polymer. The extent of polymer loading in each stage, the effect polymer has on the host structure and the electronic and ionic components of the conductivities of the new PANI-FE nanocomposites are investigated. The Fe(III) sites in FE are capable of spontaneously polymerising aniline within its intergalleries. The extent of spontaneous polymerisation is limited by the amount of Fe(III) present in the FE. The deliberate polymerisation of remaining anilinium ions by externally introduced oxidant results in highly conductive emeraldine salt-FE (EMS-FE) nanocomposites. The FE host accommodates higher amount of emeraldine salt and the repetitive insertions of the polymer could be done four times for complete layer charge neutralisation whereas with Bentonite the layer charge saturation takes place with three successive insertions. The new EMS-FE nanocomposites exhibit more than order of magnitude greater tuneable ionic and electronic conductivities compared to those of the same polymer incorporated in Bentonite

  12. Interplay of oxygen octahedral rotations and electronic instabilities in strontium ruthenate Ruddlesden-Poppers from first principles

    Science.gov (United States)

    Voss, Johannes; Fennie, Craig J.

    2011-03-01

    The Ruddlesden-Popper ruthenates Sr n+1 Ru n O3 n + 1 display a broad range of electronic phases including p -wave superconductivity, electronic nematicity, and ferromagnetism. Elucidating the role of the number of perovskite blocks, n , in the realization of these differently ordered electronic states remains a challenge. Additionally dramatic experimental advances now enable the atomic scale growth of these complex oxide thin films on a variety of substrates coherently, allowing for the application of tunable epitaxial strain and subsequently the ability to control structural distortions such as oxygen octahedral rotations. Here we investigate from first principles the effect of oxygen octahedral rotations on the electronic structure of Sr 2 Ru O4 and Sr 3 Ru 2 O7 . We discuss possible implications for the physics of the bulk systems and point towards new effects in thin films.

  13. Preparation and characterization of PT-rare earth/C electrocatalysts for PEM fuel cells

    International Nuclear Information System (INIS)

    Santoro, Thais Aranha de Barros

    2009-01-01

    Pt-rare earth/C electrocatalysts (rare earth = La, Ce, Pr, Nd, Sm, Tb, Dy, Ho, Er, Tm, and Lu) were prepared (20 wt.% and Pt-to-RE atomic ratio of 50:50) by an alcohol reduction process using H 2 PtCl 6 .6H 2 O (Aldrich) and rare earth (III) chlorides (Aldrich) as metal sources, ethylene glycol as solvent and reducing agent, and Vulcan XC72 as support. The electrocatalysts were characterized by Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffractometry (XRD) and Transmission Electron Microscopy (TEM). The energy dispersive x-ray spectroscopy analysis showed that the Pt-Rare Earth atomic ratios obtained for all electrocatalysts were similar to those used in the preparations. In all diffractograms, it was observed a broad peak at about 25 degree which was associated to the Vulcan XC72 support material and four peaks at approximately 28=40 degree, 47 degree, 67 degree and 82 degree, which were associated to the (111), (200), (220), (311), and (222) planes, respectively, of the face-centered cubic (fcc) structure characteristic of platinum and platinum alloys. For the Pt-Rare Earth/C electrocatalysts, it was also observed peaks related to the rare earth oxides on the X ray diffractograms. PtLa/C electrocatalysts were prepared at different atomic ratio. Transmission electronic microscopy micrographs of electrocatalysts showed a reasonable distribution of the Pt particles on the carbon support with some agglomerations, which is in agreement with x-ray diffractometry result. The performance for CO, methanol and ethanol oxidation was investigated by cyclic voltammetry, chronoamperometry and Fourier transform infrared spectroscopy spectroscopy. The electrocatalytic activity of the Pt-Rare Earth/C electro catalyst, specially PtLa/C, were higher than that of the Pt/C electrocatalyst. Fourier transform infrared spectroscopy studies for ethanol oxidation on Pt-Rare Earth/C electrocatalyst showed that acetaldehyde and acetic acid were the main products. The PtLa/C (30

  14. High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaemin [Department; Shih, Pei-Chieh [Department; Tsao, Kai-Chieh [Department; Pan, Yung-Tin [Department; Yin, Xi [Department; Sun, Cheng-Jun [X-ray; Yang, Hong [Department

    2017-08-17

    Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge for the production of hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y2Ru2O7-δ) electrocatalyst that has significantly enhanced performance towards OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1-M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y2Ru2O7-δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band center energy for the overlap between Ru 4d and O 2p orbitals and therefore more stable Ru-O bond than RuO2, highlighting the effect of yttrium on the enhancement in stability. The Y2Ru2O7-δ pyrochlore is also free of expensive iridium metal, thus a cost-effective candidate for practical applications.

  15. Simplify and Accelerate Earth Science Data Preparation to Systemize Machine Learning

    Science.gov (United States)

    Kuo, K. S.; Rilee, M. L.; Oloso, A.

    2017-12-01

    Data preparation is the most laborious and time-consuming part of machine learning. The effort required is usually more than linearly proportional to the varieties of data used. From a system science viewpoint, useful machine learning in Earth Science likely involves diverse datasets. Thus, simplifying data preparation to ease the systemization of machine learning in Earth Science is of immense value. The technologies we have developed and applied to an array database, SciDB, are explicitly designed for the purpose, including the innovative SpatioTemporal Adaptive-Resolution Encoding (STARE), a remapping tool suite, and an efficient implementation of connected component labeling (CCL). STARE serves as a universal Earth data representation that homogenizes data varieties and facilitates spatiotemporal data placement as well as alignment, to maximize query performance on massively parallel, distributed computing resources for a major class of analysis. Moreover, it converts spatiotemporal set operations into fast and efficient integer interval operations, supporting in turn moving-object analysis. Integrative analysis requires more than overlapping spatiotemporal sets. For example, meaningful comparison of temperature fields obtained with different means and resolutions requires their transformation to the same grid. Therefore, remapping has been implemented to enable integrative analysis. Finally, Earth Science investigations are generally studies of phenomena, e.g. tropical cyclone, atmospheric river, and blizzard, through their associated events, like hurricanes Katrina and Sandy. Unfortunately, except for a few high-impact phenomena, comprehensive episodic records are lacking. Consequently, we have implemented an efficient CCL tracking algorithm, enabling event-based investigations within climate data records beyond mere event presence. In summary, we have implemented the core unifying capabilities on a Big Data technology to enable systematic machine learning in

  16. Composite nanoparticles containing rare earth metal and methods of preparation thereof

    Science.gov (United States)

    Kandapallil, Binil Itty Ipe; Krishnan, Lakshmi; Johnson, Francis

    2018-04-10

    The present invention is directed to composite nanoparticles comprising a metal, a rare earth element, and, optionally, a complexing ligand. The invention is also directed to composite nanoparticles having a core-shell structure and to processes for preparation of composite nanoparticles of the invention.

  17. Mixed-conducting polyaniline-Fuller's Earth nanocomposites prepared by stepwise intercalation

    Energy Technology Data Exchange (ETDEWEB)

    Rajapakse, R.M.G. [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka)]. E-mail: rmgr@pdn.ac.lk; Krishantha, D.M.M. [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka); Tennakoon, D.T.B. [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka); Dias, H.V.R. [Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065 (United States)

    2006-02-25

    A series of polyaniline-Fuller's Earth (PANI-FE) nanocomposites were prepared by the successive intercalation of anilinium ions followed by polymerisation within the interlayer spaces of Fuller's Earth (a type of calcium montmorillonite). The first member in the series is prepared by exchanging the calcium ions in Fuller's Earth for ammonium ions and subsequently for anilinium ions and polymerising the latter using an externally introduced oxidant. The emeraldine salt form of polyaniline formed is then neutralised with ammonium hydroxide and more anilinium ions are exchanged for ammonium ions and polymerised to get the second member. In this manner, by making use the unique chemistry of clay and polyniline, four members of PANI-FE are prepared. In the last member, the negative layer charges of Fuller's Earth is completely neutralised by the positive charges of the polymer. The extent of polymer loading in each stage, the effect polymer has on the host structure and the electronic and ionic components of the conductivities of the new PANI-FE nanocomposites are investigated. The Fe(III) sites in FE are capable of spontaneously polymerising aniline within its intergalleries. The extent of spontaneous polymerisation is limited by the amount of Fe(III) present in the FE. The deliberate polymerisation of remaining anilinium ions by externally introduced oxidant results in highly conductive emeraldine salt-FE (EMS-FE) nanocomposites. The FE host accommodates higher amount of emeraldine salt and the repetitive insertions of the polymer could be done four times for complete layer charge neutralisation whereas with Bentonite the layer charge saturation takes place with three successive insertions. The new EMS-FE nanocomposites exhibit more than order of magnitude greater tuneable ionic and electronic conductivities compared to those of the same polymer incorporated in Bentonite.

  18. Earth Science Data Analytics: Preparing for Extracting Knowledge from Information

    Science.gov (United States)

    Kempler, Steven; Barbieri, Lindsay

    2016-01-01

    Data analytics is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. Data analytics is a broad term that includes data analysis, as well as an understanding of the cognitive processes an analyst uses to understand problems and explore data in meaningful ways. Analytics also include data extraction, transformation, and reduction, utilizing specific tools, techniques, and methods. Turning to data science, definitions of data science sound very similar to those of data analytics (which leads to a lot of the confusion between the two). But the skills needed for both, co-analyzing large amounts of heterogeneous data, understanding and utilizing relevant tools and techniques, and subject matter expertise, although similar, serve different purposes. Data Analytics takes on a practitioners approach to applying expertise and skills to solve issues and gain subject knowledge. Data Science, is more theoretical (research in itself) in nature, providing strategic actionable insights and new innovative methodologies. Earth Science Data Analytics (ESDA) is the process of examining, preparing, reducing, and analyzing large amounts of spatial (multi-dimensional), temporal, or spectral data using a variety of data types to uncover patterns, correlations and other information, to better understand our Earth. The large variety of datasets (temporal spatial differences, data types, formats, etc.) invite the need for data analytics skills that understand the science domain, and data preparation, reduction, and analysis techniques, from a practitioners point of view. The application of these skills to ESDA is the focus of this presentation. The Earth Science Information Partners (ESIP) Federation Earth Science Data Analytics (ESDA) Cluster was created in recognition of the practical need to facilitate the co-analysis of large amounts of data and information for Earth science. Thus, from a to

  19. Preparation of new phthalocyanine complexes of some rare-earth elements

    International Nuclear Information System (INIS)

    Sugimoto, Hiroshi; Higashi, Teruaki; Mori, Masayasu

    1982-01-01

    The reaction of tris(1,3-diphenyl-1,3-propanedionato) complexes of heavier rare-earth elements, M 3+ (dbm) 3 and lithium phthalocyaninato (2-), Li 2 (pc) gave two types of new stable phthalocyanine complexes, [M 3+ (pc)(dbm)(dbmH)] and [M 3+ (pc)(dbm)] depending on the solvents used for the preparation. The structure of both types of complexes are tentatively proposed. (author)

  20. Preparing Earth Data Scientists for 'the sexiest job of the 21st century'

    Science.gov (United States)

    Kempler, S. J.

    2014-12-01

    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, and/or have varied in approach. This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.

  1. Preparing Earth Data Scientists for 'The Sexiest Job of the 21st Century'

    Science.gov (United States)

    Kempler, Steven

    2014-01-01

    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, andor have varied in approach.This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.

  2. Electrodeposition Techniques for the Preparation of Beta-Sprectroscopy Sources of Rare-Earth Elements

    DEFF Research Database (Denmark)

    Hansen, P. Gregers; Høgh, J.; Nielsen, H. L.

    1964-01-01

    Thin, uniform radioactive deposits of rare earths and related elements can be prepared by cathodic electrodeposition of their hydroxides. The main theoretical and experimental features of this process are reviewed and plating cell design and the choice of conditions are described together...

  3. Preparation and characterization of Pt Sn / C-rare earth and PtRu / C-rare earth using an alcohol reduction process for ethanol electron-oxidation

    International Nuclear Information System (INIS)

    Rodrigues, Rita Maria de Sousa

    2011-01-01

    The electro catalyst PtRu / C-rare earth and PtSn/C-rare earth (20 wt%) were prepared by alcohol reduction method using H 2 PtCl 6 .6H 2 O Ru Cl xH 2 O, SnCl 2 .2H 2 O as a source of metals 85 % Vulcan - 15 % rare earth as a support and, finally, ethylene glycol as reducing agent. The electrocatalysts were characterized physically by X-ray diffraction (XRD), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). Analyses by EDX showed that the atomic ratios of different electrocatalysts, prepared by alcohol reduction method are similar to the nominal starting compositions indicating that this methodology is promising for the preparation of electrocatalysts. In all the XRD patterns for the prepared electrocatalysts there is a broad peak at about 2θ = 25 o , which is associated with the carbon support and four additional diffraction peaks at approximately 2θ = 40 o , 47 o , 67 o e 82 o , which in turn are associated with the plans (111), (200), (220) e (311), respectively, of face-centered cubic structure (FCC) platinum. The results of X-ray diffraction also showed average crystallite sizes between 2.0 and 4.0 nm for PtSn e 2,0 a 3,0 para PtRu. The studies for the electrochemical oxidation of ethanol in acid medium were carried out using the technique of chronoamperometry in a solution 0,5 mol.L-1 H 2 SO 4 , + 1,0 mol.L-1 de C 2 H 5 OH. The polarization curves obtained in the fuel cell unit, powered directly by ethanol, are in agreement with the results of voltammetry and chronoamperometry noting the beneficial effect of rare earths in the preparation of electrocatalysts and attesting that the electrocatalysts PtSn/C are more effective than PtRu/C for the oxidation of ethanol.

  4. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    Science.gov (United States)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  5. Effect of ozone on ruthenium species in alkaline medium. Pt. II. Oxidation of pentahydroxo nitrosyl ruthenate(II) ion RuNO(OH)52-

    International Nuclear Information System (INIS)

    Floquet, S.; Eysseric, C.

    2006-01-01

    Oxidation of the nitrosyl ruthenium complex RuNO(OH) 5 2- has been carried out in sodium hydroxide solutions in contact with a gas flow containing ozone. The RuNO(OH) 5 2- complex is converted successively into ruthenate and perruthenate ions. An empirical kinetic rate law for the first step has been determined and was shown to depend on concentrations of (i) the ruthenium complex, (ii) the hydroxide ions and (iii) ozone concentration in the gas flow. The second step of the reaction, corresponding to the perruthenate ion formation, shows a complex mechanism and four competing reactions have been proposed to represent it. The influences on the second step kinetics of several parameters such as ozone or hydroxide concentrations or the conditions of the gas-liquid exchange area are also qualitatively discussed. (orig.)

  6. Preparation of Rare Earth Doped Alumina-Siloxane Gel and Its ER Effect

    Institute of Scientific and Technical Information of China (English)

    李幼荣; 张明; 周兰香; 邱关明; 井上真一; 冈本宏

    2002-01-01

    Poly(methyl methacrylate) (PMMA) was used to wrap alumina-siloxane sol through emulsion polymerization. A kind of suspensions with notable ER effect was produced by fully mixing the prepared microcapsule with silicon oil. Meanwhile a series of PMMA wrapped alumina-siloxane gel doped with rare earths was obtained and its ER effect was tested, like viscosity of different rare earth ion doped samples in different powder concentrations and at different temperatures, at the same time, leak current density and dielectric constant were measured. Results show that the ER effect of this suspension is remarkable, and its stability is much better. The condition of emulsion polymerization and the mechanism of effect are discussed.

  7. Earth System Documentation (ES-DOC) Preparation for CMIP6

    Science.gov (United States)

    Denvil, S.; Murphy, S.; Greenslade, M. A.; Lawrence, B.; Guilyardi, E.; Pascoe, C.; Treshanksy, A.; Elkington, M.; Hibling, E.; Hassell, D.

    2015-12-01

    During the course of 2015 the Earth System Documentation (ES-DOC) project began its preparations for CMIP6 (Coupled Model Inter-comparison Project 6) by further extending the ES-DOC tooling ecosystem in support of Earth System Model (ESM) documentation creation, search, viewing & comparison. The ES-DOC online questionnaire, the ES-DOC desktop notebook, and the ES-DOC python toolkit will serve as multiple complementary pathways to generating CMIP6 documentation. It is envisaged that institutes will leverage these tools at different points of the CMIP6 lifecycle. Institutes will be particularly interested to know that the documentation burden will be either streamlined or completely automated.As all the tools are tightly integrated with the ES-DOC web-service, institutes can be confident that the latency between documentation creation & publishing will be reduced to a minimum. Published documents will be viewable with the online ES-DOC Viewer (accessible via citable URL's). Model inter-comparison scenarios will be supported using the ES-DOC online Comparator tool. The Comparator is being extended to:• Support comparison of both Model descriptions & Simulation runs;• Greatly streamline the effort involved in compiling official tables.The entire ES-DOC ecosystem is open source and built upon open standards such as the Common Information Model (CIM) (versions 1 and 2).

  8. Preparation of Pt Ru/C + rare earths by the method of reduction by alcohol for the electro-oxidation of ethanol

    International Nuclear Information System (INIS)

    Tusi, M.M.; Rodrigues, R.M.S.; Spinace, E.V.; Oliveira Neto, A.

    2010-01-01

    PtRu/C electrocatalyst was prepared in a single step, while that PtRu/85%C-15%Ce, PtRu/85%C-15%La, PtRu/85%C-15%Nd and PtRu/85%C-15%Er electrocatalyst were prepared in a two step. In the first step a Carbon Vulcan XC72 + rare earth supports were prepared. In the second step PtRu electrocatalyst were prepared by an alcohol-reduction process using ethylene glycol as solvent and reducing agent and supported on Vulcan XC72 + earth rare. The obtained electrocatalysts were characterized by EDAX, XRD and chronoamperometry. The electro-oxidation of ethanol was studied by chronoamperometry at room temperature. PtRu/85%C- 15%Ce electrocatalyst showed a significant increase of performance for ethanol oxidation compared to PtRu/C electrocatalyst. (author)

  9. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    Science.gov (United States)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  10. Rare earth oxyhydrides and preparation process

    International Nuclear Information System (INIS)

    Diaz, H.

    1986-01-01

    Rare earth oxyhydrides of formula RE 1-q Th q Ni 5-p M p O x H y are claimed. RE is a rare earth, Th can be replaced by Yt, M is Cu, Mn, Al, Fe, Cr or Co, o O C and the hydrides are oxidized. They are catalysts for various chemical reactions [fr

  11. Effect of ozone on ruthenium species in alkaline medium. Pt. II. Oxidation of pentahydroxo nitrosyl ruthenate(II) ion RuNO(OH){sub 5}{sup 2-}

    Energy Technology Data Exchange (ETDEWEB)

    Floquet, S. [Commissariat a l' Energie Atomique (CEA/Valrho), Bagnols-sur-Ceze (France); Inst. Lavoisier, IREM UMR 8637, Univ. de Versailles Saint-Quentin, Versailles (France); Eysseric, C. [Commissariat a l' Energie Atomique (CEA/Valrho), Bagnols-sur-Ceze (France)

    2006-07-01

    Oxidation of the nitrosyl ruthenium complex RuNO(OH){sub 5}{sup 2-} has been carried out in sodium hydroxide solutions in contact with a gas flow containing ozone. The RuNO(OH){sub 5}{sup 2-} complex is converted successively into ruthenate and perruthenate ions. An empirical kinetic rate law for the first step has been determined and was shown to depend on concentrations of (i) the ruthenium complex, (ii) the hydroxide ions and (iii) ozone concentration in the gas flow. The second step of the reaction, corresponding to the perruthenate ion formation, shows a complex mechanism and four competing reactions have been proposed to represent it. The influences on the second step kinetics of several parameters such as ozone or hydroxide concentrations or the conditions of the gas-liquid exchange area are also qualitatively discussed. (orig.)

  12. Rare earths: preparation of spectro chemically pure standards, study of their carbonates and synthesis of a new compound series - the peroxy carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos Alberto da Silva

    1996-05-01

    In this work the following studies are concerned: I) preparation of lanthanum, cerium, praseodymium, neodymium and samarium oxides for use as spectro chemically pure standards; II) behavior of the rare earth (La, Ce, Pr, Nd, Sm) carbonates soluble in ammonium carbonate and mixture of ammonium carbonate/ammonium hydroxide, and III) synthesis and characterization of rare earth peroxy carbonates - a new series of compounds. Data for the synthesis and characterization of the rare earths peroxy carbonates described for the first time in this work are presented and discussed. With the aid of thermal analysis (TG-DTG) the thermal stability and the stoichiometric composition for new compounds were established and a mechanism of thermal decomposition was proposed. The peroxy carbonate was prepared by the addition of hydrogen peroxyde to the complexed soluble rare earths carbonates. These studies included also the determinations of active oxygen, the total rare earth oxide by gravimetry and complexometry and the C, H and N contents by microanalysis. The new compounds were also investigated by infrared spectroscopy. (author)

  13. Electronic and magnetic properties of triple-layered ruthenate Sr4Ru3O10 single crystals grown by a floating-zone method

    International Nuclear Information System (INIS)

    Zhou, M.; Hooper, J.; Fobes, D.; Mao, Z.Q.; Golub, V.; O'Connor, C.J.

    2005-01-01

    We have grown high-quality single crystals of the triple-layered perovskite ruthenate Sr 4 Ru 3 O 10 using a floating-zone (FZ) method and measured their electronic transport and magnetic properties. Our experiments results are consistent with those previously reported for Sr 4 Ru 3 O 10 flux crystals; the magnetic ground state of Sr 4 Ru 3 O 10 is poised between an itinerant metamagnetic and itinerant ferromagnetic state, and its electronic ground state is a Fermi liquid. In addition, we have investigated the effect of disorder on the metallic state of Sr 4 Ru 3 O 10 . From resistivity measurements of various Sr 4 Ru 3 O 10 crystals with different levels of disorder, we found that disorder enhances both temperature-independent elastic scattering and also temperature-dependent inelastic scattering. The in-plane metamagnetic transition is also found to be sensitive to disorder. Disorder results in an increase in the metamagnetic transition field and different magnetic behavior above the transition. We discuss the implications of this interesting observation

  14. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Yasukawa, Akemi, E-mail: yasukawa@cc.hirosaki-u.ac.jp [School of Home Economics, Faculty of Education, Hirosaki University, 1-bunkyo, Hirosaki, Aomori 036-8560 (Japan); Kandori, Kazuhiko [School of Chemistry, Osaka University of Education, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582 (Japan); Tanaka, Hidekazu [Department of Material Science, Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 (Japan); Gotoh, Keiko [Faculty of Human Life and Environment, Nara Women' s University, Kita-uoya-nishi, Nara 630-8506 (Japan)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. Black-Right-Pointing-Pointer The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln{sup 3+} contents. Black-Right-Pointing-Pointer A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0-0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+}) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X{sub Ln}]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X{sub Y}] {<=} 0.10 for substituting Y system and at [X{sub Ln}] {<=} 0.01-0.03 for substituting the other Ln systems. LnPO{sub 4} was mixed with LnCaHap at higher [X{sub Ln}] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X{sub Y}] = 0-0.10 were investigated using XRD, TEM, ICP-AES, IR and TG-DTA in detail.

  15. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    International Nuclear Information System (INIS)

    Yasukawa, Akemi; Kandori, Kazuhiko; Tanaka, Hidekazu; Gotoh, Keiko

    2012-01-01

    Highlights: ► LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. ► The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln 3+ contents. ► A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0–0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y 3+ , Gd 3+ , Dy 3+ , Er 3+ and Yb 3+ ) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X Ln ]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X Y ] ≤ 0.10 for substituting Y system and at [X Ln ] ≤ 0.01–0.03 for substituting the other Ln systems. LnPO 4 was mixed with LnCaHap at higher [X Ln ] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X Y ] = 0–0.10 were investigated using XRD, TEM, ICP-AES, IR and TG–DTA in detail.

  16. Magnetic interactions in praseodymium ruthenate Pr{sub 3}RuO{sub 7} with fluorite-related structure

    Energy Technology Data Exchange (ETDEWEB)

    Inabayashi, Masaki; Doi, Yoshihiro; Wakeshima, Makoto; Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp

    2017-06-15

    . Significant spin polarization is seen on the magnetic Pr and Ru ions, but there is also some on the O(1), (3) ligands of Ru. - Highlights: • New fluorite-related quaternary praseodymium ruthenates were prepared. • Pr{sub 3}RuO{sub 7} shows an antiferromagnetic transition at 55 K. • The Ru-O-Pr superexchange interactions are three-dimensional.

  17. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  18. Synthesis and physicochemical investigation of complexes of rare earth, alkaline earth elements and copper with some β-diketones

    International Nuclear Information System (INIS)

    Nichiporuk, R.V.; Pechurova, N.I.; Snezhko, N.I.; Martynenko, L.I.; Kaul', A.R.; Zanina, A.S.; Shergina, S.I.; Sokolov, I.E.

    1991-01-01

    Complexes of rare earth, alkaline earth elements and copper with 2-methoxy-2,6,6-trimethylheptanedion-3,5 as well as complexes of yttrium and barium with 2-methoxy-2,6-dimethylheptanedion-3,5 were synthesized. Prepared complexes were investigated by the methods of chemical, thermal, X-ray phase analyses, IR spectroscopy. Complex sublimation was studied at 10 -1 -10 -2 mm Hg. Complexes of rare earths and copper don't change their composition during sublimation, and sublimation of hydrated complexes of barium, strontium and calcium leads to formation of anhydrous complexes. All prepared complexes are able to transsublimate multiply and qualitatively without change of composition. All isolated complexes can be used for preparation of film oxide coatings by CVD method

  19. Earth bag dome workshop run by Paulina Wojciechowska – director of Earth Hands and Houses [lectures, research] Sussex, UK; 27 May 2010

    OpenAIRE

    Kolakowski, Marcin M.

    2010-01-01

    Construction of a small earth bag wall in south Sussex: constructing the formwork for entrance, preparing and filling earth bags, ramming layers of earth bags, plastering, artistic sculpturing of the exterior and interior.

  20. The MY NASA DATA Project: Preparing Future Earth and Environmental Scientists, and Future Citizens

    Science.gov (United States)

    Chambers, L. H.; Phelps, C. S.; Phipps, M.; Holzer, M.; Daugherty, P.; Poling, E.; Vanderlaan, S.; Oots, P. C.; Moore, S. W.; Diones, D. D.

    2008-12-01

    global Earth System. These armchair explorers learn to unite datasets in a region to learn about places like and unlike where they live. In a world that's becoming smaller and smaller with the aid of technology, projects like MND prepare our students for their global future. A teacher located in an area of California strongly impacted by pollution and potential climate changes noted that this project makes available data that are very relevant to issues that will affect her students' lives. She points out that not all scientific information they currently see is in a form that is understandable to an educated citizen, and that the experience with MND will enable her students to have better than average skills not only for deciphering scientific maps and graphs; but also for creating maps and graphics that successfully convey information to others.

  1. Development of a Memory Game to Improve Knowledge Retention in Preparation for Broad Scope Exams in an Introductory Earth Science Course

    Science.gov (United States)

    Cook, H. M.; Bilsley, N. A.

    2015-12-01

    As the demand for introductory earth science classes rises at educational institutions, large class sizes place strain on the educator's time and ability to offer extensive project-based assignments. As a result, exams covering a broad spectrum of material are more heavily weighted in students' grades. Students often struggle on the first exam, as they attempt to retain a large amount of information from several different topics, while having no exposure to the type of questions that will be asked. This frequently leads to a large dropout rate early in the academic term, or at least a sense of discouragement and stress among struggling students. To better prepare students for a broad scope exam, a review activity modelled after the traditional Milton Bradley "Memory" game was developed to remind students of what would be covered on the exam, prepare them for the style of questions that may be asked, as well as provide a fun, interactive, and educational activity. The Earth Science Memory Game was developed to have interchangeable sets to cover a broad range of topics and thus also be reusable for the duration of the course. Example games sets presented include, but are not limited to, the scientific method, minerals, rocks, topographic maps, tectonics, geologic structures, volcanoes, and weather. The Earth Science Memory Game not only provides an effective review tool to improve success rates on broad scope exams, but is also customizable by the instructor, reusable, and easily constructed by common office supplies.

  2. Sun-Earth Day, 2001

    Science.gov (United States)

    Adams, Mitzi L.; Mortfield, P.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To promote awareness of the Sun-Earth connection, NASA's Marshall Space Flight Center, in collaboration with the Stanford SOLAR Center, sponsored a one-day Sun-Earth Day event on April 27, 2001. Although "celebrated" on only one day, teachers and students from across the nation, prepared for over a month in advance. Workshops were held in March to train teachers. Students performed experiments, results of which were shared through video clips and an internet web cast. Our poster includes highlights from student experiments (grades 2 - 12), lessons learned from the teacher workshops and the event itself, and plans for Sun-Earth Day 2002.

  3. Luminescence investigation of R{sup 3+}-doped alkaline earth tungstates prepared by a soft chemistry method

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Helliomar P. [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Kai, Jiang [Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Química, Rio de Janeiro, RJ, Brazil (Brazil); Silva, Ivan G.N.; Rodrigues, Lucas C.V. [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Felinto, Maria C.F.C. [Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, SP (Brazil); Hölsä, Jorma [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Department of Chemistry, University of Turku,FI-20014 Turku (Finland); Turku University Centre for Materials and Surfaces (MatSurf), Turku (Finland); Malta, Oscar L. [Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.br [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil)

    2016-02-15

    Highly luminescent rare earth (R{sup 3+}) doped alkaline-earth tungstates MWO{sub 4}:R{sup 3+} (M{sup 2+}: Ca, Sr and Ba, R{sup 3+}: Eu, Tb, Gd) were prepared with a room temperature coprecipitation method. The phosphors were characterized by X-ray powder diffraction (XPD), thermal analysis (TG), infrared absorption spectroscopy (FTIR) and UV excited photoluminescence. The as-prepared MWO{sub 4}:R{sup 3+} particles belong to the tetragonal scheelite phase, and are well crystallized and are of the average size of 16–48 nm. The excitation and emission spectra of the materials were recorded at 300 and 77 K temperatures. The luminescent materials exhibit intense red (Eu{sup 3+}) and green (Tb{sup 3+}) colors under UV excitation. The excitation spectra of the Eu{sup 3+} doped materials show broad bands arising from the ligand-to-metal charge transfer transitions (O{sup 2−}→W{sup VI} and O{sup 2−}→Eu{sup 3+}) as well as narrow bands from 4f–4f intraconfigurational transitions of Eu{sup 3+}. 4f–4f emission data of the Eu{sup 3+} and Tb{sup 3+} in the MWO{sub 4} host matrices as well as the values of emission quantum efficiencies of the {sup 5}D{sub 0} level and the 4f–4f experimental intensity parameters of Eu{sup 3+} ion are presented and discussed. - Highlights: • Highly red Europium and green Terbium doped tungstate under UV excitation. • Efficient energy transfer process from tungstate to R{sup 3+} ion. • Promising candidates for a red (Eu{sup 3+}) and green (Tb{sup 3+}) emitting phosphors. • Ligand Metal charge transfer to R{sup 3+} ion. • Charge compensation with Na{sup +}.

  4. Indexing, screening, coding and cataloging of earth resources aircraft mission data

    Science.gov (United States)

    1977-01-01

    Tasks completed are as follows: (1) preparation of large Area Crop Inventory experiment for data base entry;(2) preparation of Earth Observations Aircraft Flight summary reports for publication; (3) updating of the aircraft mission index coverage map and Ames aircraft flight map; (4) Prepared of Earth Observation Helicopter Flight reports for publication; and (5) indexing of LANDSAT imagery. (6) formulation of phase 3 biowindows 1, 2, 3, and 4 listings by country, footprint, and acqusition dates; (7) preparation of flight summary reports; and (8) preparation of an Alaska state index coverage map.

  5. Materials Preparation Center

    Data.gov (United States)

    Federal Laboratory Consortium — MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: rare earth metals,...

  6. Earth retaining structures manual

    Science.gov (United States)

    2009-10-29

    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  7. The Texas Earth and Space Science (TXESS) Revolution: A Model for the Delivery of Earth Science Professional Development to Minority-Serving Teachers

    Science.gov (United States)

    Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.

    2013-01-01

    The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…

  8. Rare earth intermetallic compounds produced by a reduction-diffusion process

    International Nuclear Information System (INIS)

    Cech, R.E.

    1975-01-01

    A reduction-diffusion process is given for producing novel rare earth intermetallic compounds, such as cobalt--rare earth intermetallic compounds, especially compounds useful in preparing permanent magnets. A particulate mixture of rare earth metal halide, cobalt and calcium hydride is heated to effect reduction of the rare earth metal halide and to diffuse the resulting rare earth metal into the cobalt to form the intermetallic compound

  9. Preparation of polymer-rare earth complex using salicylic acid-containing polystyrene and its fluorescence emission property

    Energy Technology Data Exchange (ETDEWEB)

    Gao Baojiao, E-mail: gaobaojiao@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Zhang Wei; Zhang Zhengguo; Lei Qingjuan [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China)

    2012-08-15

    Salicylic acid (SA) was first bonded onto the side chains of polystyrene (PS), obtaining functional macromolecule SAPS. Using the salicylic acid-containing polystyrene as a macromolecular ligand, a polymer-rare earth complex, SAPS-Eu(III), was prepared. The structure of SAPS-Eu(III) was characterized, and the fluorescence properties of SAPS-Eu(III) were mainly investigated. The experimental results show that the complex SAPS-Eu(III) has fine chemical stability because of the bidentate chelating effect of salicylic acid ligand. More important, the ligand SA on the side chains of PS can strongly sensitize the fluorescence emission of the center ion, Eu{sup 3+} ion, and it enables the complex SAPS-Eu(III) to produce the apparent 'Antenna Effect'. In the diluted solution of the functional macromolecule SAPS, the formed complex SAPS-Eu(III) belongs to an intramolecular complex, or an intrachain complex. For the binary intramolecular complex SAPS-Eu(III), the apparent saturated coordination number of SA of SAPS towards Eu{sup 3+} ion is equal to 10, and here the binary intrachain complex SAPS-Eu(III) has the strongest fluorescence emission. On this basis, small-molecule 1,10-phenanthroline (Phen) acting as a co-ligand is added and the ternary complex SAPS-Eu(III)-Phen will be formed. As long as a small amount of Phen is added (in the molar ratio 1:1 (n(Phen):n(Eu))), the coordination of the two kinds of ligands, SA of SAPS and Phen, to Eu{sup 3+} ion will reach complete saturation, and here the fluorescence emission of the ternary complex will be further enhanced via the complementary coordination effect in comparison with that of the binary complex SAPS-Eu(III). - Highlights: Black-Right-Pointing-Pointer We prepared the functional polystyrene, SAPS, on whose side chain salicylic acid ligand was bonded. Black-Right-Pointing-Pointer The polymer-rare earth complex, SAPS-Eu(III), was prepared and a stronger 'antenna effect' was produced. Black

  10. Preparation of polymer–rare earth complex using salicylic acid-containing polystyrene and its fluorescence emission property

    International Nuclear Information System (INIS)

    Gao Baojiao; Zhang Wei; Zhang Zhengguo; Lei Qingjuan

    2012-01-01

    Salicylic acid (SA) was first bonded onto the side chains of polystyrene (PS), obtaining functional macromolecule SAPS. Using the salicylic acid-containing polystyrene as a macromolecular ligand, a polymer–rare earth complex, SAPS–Eu(III), was prepared. The structure of SAPS–Eu(III) was characterized, and the fluorescence properties of SAPS–Eu(III) were mainly investigated. The experimental results show that the complex SAPS–Eu(III) has fine chemical stability because of the bidentate chelating effect of salicylic acid ligand. More important, the ligand SA on the side chains of PS can strongly sensitize the fluorescence emission of the center ion, Eu 3+ ion, and it enables the complex SAPS–Eu(III) to produce the apparent “Antenna Effect”. In the diluted solution of the functional macromolecule SAPS, the formed complex SAPS–Eu(III) belongs to an intramolecular complex, or an intrachain complex. For the binary intramolecular complex SAPS–Eu(III), the apparent saturated coordination number of SA of SAPS towards Eu 3+ ion is equal to 10, and here the binary intrachain complex SAPS–Eu(III) has the strongest fluorescence emission. On this basis, small-molecule 1,10-phenanthroline (Phen) acting as a co-ligand is added and the ternary complex SAPS–Eu(III)–Phen will be formed. As long as a small amount of Phen is added (in the molar ratio 1:1 (n(Phen):n(Eu))), the coordination of the two kinds of ligands, SA of SAPS and Phen, to Eu 3+ ion will reach complete saturation, and here the fluorescence emission of the ternary complex will be further enhanced via the complementary coordination effect in comparison with that of the binary complex SAPS–Eu(III). - Highlights: ► We prepared the functional polystyrene, SAPS, on whose side chain salicylic acid ligand was bonded. ► The polymer-rare earth complex, SAPS–Eu(III), was prepared and a stronger “antenna effect” was produced. ► For the intramolecular complex SAPS–Eu(III), the apparent

  11. Superconductors preparation process and products obtained. Procede de preparation de supraconducteurs et produits ainsi obtenus

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, M O; Magnier, C

    1989-03-24

    A superconducting fine powder is prepared by mixing a rare earth sol with a solution of at least an alkaline earth nitrate and at least a transition metal nitrate, the pH is fixed for the said nitrates to stay in solution. The mixture is dried, calcined and eventually crushed.

  12. Production of rare earth-silicon-iron alloys

    International Nuclear Information System (INIS)

    Mehra, O.K.; Bose, D.K.; Gupta, C.K.

    1987-01-01

    At Metallurgy Division, BARC, improved procedures for producing rare earth-silicon alloys have been investigated. In these methods, reduction of mixed rare earth oxide by a ferro-silicon and aluminium mixture in combination with CaO-MgO flux/CaO-CaF 2 flux have been tried to prepare an alloy product with a higher rare earth recovery at a higher rare earth content than the present commercial production method. The rare earth recovery using CaO-CaF 2 was 85 per cent while in the case of CaO-MgO flux it was 76 per cent. The corresponding rare earth contents in the alloy correspond to 40 per cent and 55 per cent by weight respectively. (author)

  13. Preparing for the biggest experiment on earth

    CERN Multimedia

    2007-01-01

    "An international team of over 2'000 scientists, led by Professor Tejinder Virdee from Imperial College London's Department of Physics is stepping up preparations for the world's largest ever physics experiment, starting next year at CERN near Geneva, Switzerland." (1 page)

  14. Superconductors preparation process and products obtained

    International Nuclear Information System (INIS)

    Lafon, M.O.; Magnier, C.

    1989-01-01

    A superconducting fine powder is prepared by mixing a rare earth sol with a solution of at least an alkaline earth nitrate and at least a transition metal nitrate, the pH is fixed for the said nitrates to stay in solution. The mixture is dried, calcined and eventually crushed [fr

  15. Separation of rare earth mixtures by gas chromatography using dipivaloylmethane as complexing agent

    International Nuclear Information System (INIS)

    Golubtsova, V.Yu.; Luchinkin, V.V.; Martynenko, L.I.; Murav'eva, I.A.; Sokolov, D.N.

    1981-01-01

    Possibility of using dipivaloylmethave for quantitative separation of rare earth element mixtures under the regime of chromatography for preparative and analytical purposes, is studied. Introduction of β-diketone surplus into the chromatographic solution is shown to remove the necessity of column conditioning. It is stated that chelate solution should have concentration above the threshold one. The developed method is applicable for quantitative separation of some rare earth mixtures for preparative purposes, as well as for the analysis of rare earth mixtures, containing components in equivalent quantities [ru

  16. Preparation and physical properties of rare earth, alkaline earth, and transition metal ternary chalcogenides

    International Nuclear Information System (INIS)

    Georgobiani, A.N.

    1997-01-01

    A study was made on current-voltage characteristics, temperature dependences of electric conductivity and currents of thermoinduced depolarization of monocrystals, including EuGa 2 S 4 and (Ga 2 S 3 ) 1-x (Eu 2 O 3 ) x solid solutions. It is shown that these compounds, activated by europium, cerium, neodymium and other rare earths, manifest effective luminescence under the effect of ultraviolet and X-radiation, as well as under the effect of electron beams and electric field

  17. Preparation and characterization of PbTi03 ceramics modified by a natural mixture of rare earth oxides of xenotime

    International Nuclear Information System (INIS)

    Baltazar-Rodrigues, Jair; Rodrigues Junior, Pedro; Cruz, Gerson K. da; Lente, Manuel H.; Eiras, Jose A.

    2014-01-01

    Lead titanate ceramics modified by xenotime (Xm) with nominal composition (Pb, Xm)TiO 3 , Xm 10 or 15 mol %, were prepared by the conventional oxide mixture technique. Xenotime is a natural mineral consisting of a mixture of rare earth oxides. Thermal, structural and electric properties were investigated through differential and gravimetric thermal analysis, X-ray diffraction and dielectric measurements as a function of temperature. The results of both compositions revealed a higher density and free of cracks ceramic body, compared to pure PbTiO 3 prepared by the same procedure. On the other hand, the structural characteristics and Curie temperature are nearly the same as those of pure PbTiO 3 . The hysteresis loop measured at room temperature revealed a hard ferroelectric material with coercive field of 10.7 kV/cm and a remanent polarization of 0.2 μC/cm 2 . These finding reveal a material with properties that highlight potential to be used as electronic devices that operate at high temperature and high frequencies. (author)

  18. Earth Sciences Division annual report 1981

    International Nuclear Information System (INIS)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences

  19. Pseudo-capacitor device for aqueous electrolytes

    Science.gov (United States)

    Prakash, Jai; Thackeray, Michael M.; Dees, Dennis W.; Vissers, Donald R.; Myles, Kevin M.

    1998-01-01

    A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A.sub.2 ›B.sub.2-x Pb.sub.x !O.sub.7-y, where A=Pb, Bi, and B=Ru, Ir, and Ocapacitor. The amount of expensive ruthenate and iridium can be substantially reduced in the pseudo-capacitor by increasing the lead content while improving energy storage capacity.

  20. Spectrographic determination of some rare earths in thorium compounds

    International Nuclear Information System (INIS)

    Brito, J. de.

    1977-01-01

    A method for spectrographic determination of Gd, Sm, Dy, Eu, Y, Yb, Tm and Lu in thorium compounds has been developed. Sensibilities of 0.01 μg rare earths/g Th02 were achieved. The rare earth elements were chromatographycally separated in a nitric acid-ether-cellulose system. The solvent mixture was prepared by dissolving 11% of concentrated nitric acid in ether. The method is based upon the sorption of the rare earths on activated cellulose, the elements being eluted together with 0.01 M HNO 3 . The retention of the 152 , 154 Eu used as tracer was 99,4%. The other elements showed recoveries varying from 95 to 99%. A direct carrier destillation procedure for the spectrochemical determination of the mentioned elements was used. Several concentrations of silver chloride were used to study the volatility behavior of the rare earths. 2%AgCl was added to the matrix as definite carrier, being lantanum selected as internal standard. The average coefficient of variation for this method was +- -+ 7%. The method has been appleid to the analysis of rare earths in thorium coumpounds prepared by Thorium Purification Pilot Plant at Atomic Energy Institute, Sao Paulo [pt

  1. Rare earths refining by vacuum sublimation method

    International Nuclear Information System (INIS)

    Rytus, N.N.

    1983-01-01

    The process of rare earths refining by the sUblimation; method in high and superhigh oil-free vacuum, is investigated. The method is effective for rare earths obtaining and permits to prepare metal samples with a high value of electric resistance ratio γ=RsUb(298 K)/Rsub(4.2 K). The estimation of general purity is performed for Sm, Eu, Yb, Tm, Dy, Ho, Er and Se

  2. Use of a piezo-electric quartz as substrate for the preparation of self-supporting rare earth targets, in metallic form, not oxidized

    International Nuclear Information System (INIS)

    Bonetti, C.

    1975-01-01

    A technique for preparing rare earth self-supporting targets is described. These high purity foils are used for nuclear spectroscopy, with a tandem Van de Graaff accelerator. Target thicknesses range from 1000μg/cm 2 to 2500μg/cm 2 . The originality of this procedure consists in using the piezo-electric quartz for target thickness measurements and for temporary substrate. With this method, it is possible to measure the target thickness without geometrical errors and to suppress the effects of the molecular flux anisotropy. (Auth.)

  3. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  4. Method for preparing high cure temperature rare earth iron compound magnetic material

    Science.gov (United States)

    Huang, Yuhong; Wei, Qiang; Zheng, Haixing

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  5. Preparation of Pt Ru/C + rare earths by the method of reduction by alcohol for the electro-oxidation of ethanol; Preparacao de eletrocatalisadores PtRu/C + terras raras pelo metodo da reducao por alcool para a eletro-oxidacao do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Tusi, M M; Rodrigues, R M.S.; Spinace, E V; Oliveira Neto, A., E-mail: aolivei@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    PtRu/C electrocatalyst was prepared in a single step, while that PtRu/85%C-15%Ce, PtRu/85%C-15%La, PtRu/85%C-15%Nd and PtRu/85%C-15%Er electrocatalyst were prepared in a two step. In the first step a Carbon Vulcan XC72 + rare earth supports were prepared. In the second step PtRu electrocatalyst were prepared by an alcohol-reduction process using ethylene glycol as solvent and reducing agent and supported on Vulcan XC72 + earth rare. The obtained electrocatalysts were characterized by EDAX, XRD and chronoamperometry. The electro-oxidation of ethanol was studied by chronoamperometry at room temperature. PtRu/85%C- 15%Ce electrocatalyst showed a significant increase of performance for ethanol oxidation compared to PtRu/C electrocatalyst. (author)

  6. Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts

    DEFF Research Database (Denmark)

    Basith, M. A.; Islam, M. A.; Ahmmad, Bashir

    2017-01-01

    of crystalline and amorphous phases. FESEM images demonstrate the formation of nanoparticles with average particle size in the range of 50–100 nm for both ultrasonication and 4 h (h) of ball milling. The bulk materials and nanoparticles synthesized by both ultrasonication and 4 h ball milling exhibit...... of the nanoparticles due to ball milling particularly for milling time exceeding 8 h. This investigation demonstrates the potential of ultrasonication as a simple route to prepare high crystalline rare-earth based manganite nanoparticles with improved control compared to the traditional ball milling technique....

  7. Chromates (3) and chromates (5) of rare earths

    International Nuclear Information System (INIS)

    Suponitskij, Yu.L.

    1986-01-01

    Data on preparation methods, structure and properties of chromates (3, 5) and mixed chromates (3) of rare earths, scandium and yttrium are generalized. Phase diagrams of systems Ln 2 O 3 -Cr 2 O 3 (Ln - rare earths, Sc, Y), chemical and thermodynamic properties of chromates (3, 5), their crystal structure and character of thermal decomposition are considered. Application fields of the compounds mentioned are suggested

  8. Sc, Y, La-Lu - Rare Earth Elements

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    At present extensive efforts are being made in completing work on system number Rare Earth Elements. Part A is devoted to the occurrence of these elements on the earth and in the universe. Part B deals with the pure metals; the 7 volumes published cover the description of the separation from the raw materials, the preparation of pure metals,their uses and toxicology, the physical properties of nuclei, atoms, molecules, and isotopes; in addition the behavior of ions in solution and the electrochemical behavior of rare earth elements are described. The compounds are described in Part C. Part D with 6 volumes has been devoted to the description of coordination compounds and is completed. The volume ''Rare Earth Elements C 10'' deals with the rare earth tellurides, oxide tellurides, tellurates, telluride halides, tellurate halides, sulfide tellurides, selenide tellurides, and alkali rare earth tellurates. Another topic of this volume are the compounds of the rare earth elements with polonium. So far as meaningful and in accordance with all earlier volumes of ''Rare Earth Elements'' Series C, comparative data are presented in sections preceding treatment of the individual compounds and systems

  9. Rare earths: preparation of spectro chemically pure standards, study of their carbonates and synthesis of a new compound series - the peroxy carbonates; Terras-raras: obtencao de padroes espectroquimicos, estudo dos carbonatos e sintese dos peroxicarbonatos. Uma nova serie de compostos

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Carlos Alberto da Silva

    1996-05-01

    In this work the following studies are concerned: I) preparation of lanthanum, cerium, praseodymium, neodymium and samarium oxides for use as spectro chemically pure standards; II) behavior of the rare earth (La, Ce, Pr, Nd, Sm) carbonates soluble in ammonium carbonate and mixture of ammonium carbonate/ammonium hydroxide, and III) synthesis and characterization of rare earth peroxy carbonates - a new series of compounds. Data for the synthesis and characterization of the rare earths peroxy carbonates described for the first time in this work are presented and discussed. With the aid of thermal analysis (TG-DTG) the thermal stability and the stoichiometric composition for new compounds were established and a mechanism of thermal decomposition was proposed. The peroxy carbonate was prepared by the addition of hydrogen peroxyde to the complexed soluble rare earths carbonates. These studies included also the determinations of active oxygen, the total rare earth oxide by gravimetry and complexometry and the C, H and N contents by microanalysis. The new compounds were also investigated by infrared spectroscopy. (author)

  10. To the Geoportal and Beyond! Preparing the Earth Observing Laboratory's Datasets for Inter-Repository Discovery

    Science.gov (United States)

    Gordon, S.; Dattore, E.; Williams, S.

    2014-12-01

    Even when a data center makes it's datasets accessible, they can still be hard to discover if the user is unaware of the laboratory or organization the data center supports. NCAR's Earth Observing Laboratory (EOL) is no exception. In response to this problem and as an inquiry into the feasibility of inter-connecting all of NCAR's repositories at a discovery layer, ESRI's Geoportal was researched. It was determined that an implementation of Geoportal would be a good choice to build a proof of concept model of inter-repository discovery around. This collaborative project between the University of Illinois and NCAR is coordinated through the Data Curation Education in Research Centers program. This program is funded by the Institute of Museum and Library Services.Geoportal is open source software. It serves as an aggregation point for metadata catalogs of earth science datasets, with a focus on geospatial information. EOL's metadata is in static THREDDS catalogs. Geoportal can only create records from a THREDDS Data Server. The first step was to make EOL metadata more accessible by utilizing the ISO 19115-2 standard. It was also decided to create DIF records so EOL datasets could be ingested in NASA's Global Change Master Directory (GCMD). To offer records for harvest, it was decided to develop an OAI-PMH server. To make a compliant server, the OAI_DC standard was also implemented. A server was written in Perl to serve a set of static records. We created a sample set of records in ISO 19115-2, FGDC, DIF, and OAI_DC. We utilized GCMD shared vocabularies to enhance discoverability and precision. The proof of concept was tested and verified by having another NCAR laboratory's Geoportal harvest our sample set. To prepare for production, templates for each standard were developed and mapped to the database. These templates will help the automated creation of records. Once the OAI-PMH server is re-written in a Grails framework a dynamic representation of EOL's metadata will

  11. Preparation, analysis, and release of simulated interplanetary grains into low earth orbit

    International Nuclear Information System (INIS)

    Stephens, J.R.; Strong, I.B.; Kunkle, T.D.

    1985-01-01

    Astronomical observations which reflect the optical and dynamical properties of interstellar and interplanetary grains are the primary means of identifying the shape, size, and the chemistry of extraterrestrial grain materials and is a major subject of this workshop. Except for recent samplings of extraterrestrial particles in near-Earth orbit and in the stratosphere, observations have been the only method of deducing the properties of extraterrestrial particles. Terrestrial laboratory experiments typically seek not to reproduce astrophysical conditions but to illuminate fundamental dust processes and properties which must be extrapolated to interesting astrophysical conditions. In this report, we discuss the formation and optical characterization of simulated interstellar and interplanetary dust with particular emphasis on studying the properties on irregularly shaped particles. We also discuss efforts to develop the techniques to allow dust experiments to be carried out in low-Earth orbit, thus extending the conditions under which dust experiments may be performed. The objectives of this study are threefold: (1) Elucidate the optical properties, including scattering and absorption, of simulated interstellar grains including SiC, silicates, and carbon grains produced in the laboratory. (2) Develop the capabilities to release grains and volatile materials into the near-Earth environment and study their dynamics and optical properties. (3) Study the interaction of released materials with the near-Earth environment to elucidate grain behavior in astrophysical environments. Interaction of grains with their environment may, for example, lead to grain alignment or coagulation, which results in observable phenomena such as polarization of lighter or a change of the scattering properties of the grains

  12. Synthesis and investigation of rare earth tris-acetylacetonates addUcts with acetylaceoneimine

    International Nuclear Information System (INIS)

    Trembovetskij, G.V.; Smirnov, E.V.; Murav'eva, I.A.; Martynenko, L.I.

    1983-01-01

    Adducts of tris-acetylacetonates of pare earths With acetylacetonimine of the composition MA 3 x2L (M=La, Pr, Nd, Eu, Gd, Tb) and MA 3 XL (M=Dy, Ho, Er, Tm, Yb, LU) have been synthesized. The compounds prepared are studied using the methods of elemental analysis, IR spectroscopy, PMR spectroscopy, X-ray phase analysis. Volatile tris-acetylacetonates of the yttrium subgroUp rare earths have been prepared by thermal decomposition of MA 3 xL in vacuum

  13. Developing and Applying a Set of Earth Science Literacy Principles

    Science.gov (United States)

    Wysession, Michael E.; LaDue, Nicole; Budd, David A.; Campbell, Karen; Conklin, Martha; Kappel, Ellen; Lewis, Gary; Raynolds, Robert; Ridky, Robert W.; Ross, Robert M.; Taber, John; Tewksbury, Barbara; Tuddenham, Peter

    2012-01-01

    The 21st century will be defined by challenges such as understanding and preparing for climate change and ensuring the availability of resources such as water and energy, which are issues deeply rooted in Earth science. Understanding Earth science concepts is critical for humanity to successfully respond to these challenges and thrive in the…

  14. Resin catalysts and method of preparation

    Science.gov (United States)

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  15. On fluorozirconates and fluorohafnates of rare earths

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Antipov, P.I.; Novoselova, A.V.

    1980-01-01

    It has been shown by the method of X-ray phase analysis that on interaction between rare-earth fluorides and zirconium and hafnium tetrafluorides, compounds with 1:1, 1:2, 1:3 molar ratios of components are formed. Compounds of the LnHfF 4 type are prepared for all rare-earths. Fluoro-metals of the LnHf 2 F 11 composition are typical only of light lanthanides from lanthanum to neodymium, while pentafluorated salts Ln(EF 5 ) 3 are formed in the reaction between EF 4 with fluorides of heavy rare-earth elements from samarium to lutecium, as well as with yttrium trifluoride. Parameters of unit cells of heptafluohafnates and pentafluometallates are determined

  16. Recent research in earth structure, earthquake and mine seismology, and seismic hazard evaluation in South Africa

    CSIR Research Space (South Africa)

    Wright, C

    2003-07-01

    Full Text Available of earthquakes, earthquake hazard and earth structure in South Africa was prepared for the centennial handbook of the Interna- tional Association of Seismology and the Physics of the Earth?s Interior(IASPEI).3 Referencestothesescompletedinthelastfour...

  17. Yttrium and rare earths separation by ion exchange resin

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Ayres, M.J.G.; Ribeiro, S.; Silva, G.L.J.P.; Silva, M.L.C.P.; Martins, A.H.

    1988-01-01

    The experimental results of yttrium and rare earths separation from Brazilian xenotime are presented. The research consist in five stage: 1) Preparation of yttrium, erbium and lutetium standard solutions, from solubilization of pure oxides 2) yttrium and rare earths separation by ion exchange chromatrography 3) Separation and recovery of EDTA 4) Precipitation and calcination and 4) Analytical control of process. (C.G.C.) [pt

  18. Preparation and characterization of PbTi0{sub 3} ceramics modified by a natural mixture of rare earth oxides of xenotime

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar-Rodrigues, Jair; Rodrigues Junior, Pedro; Cruz, Gerson K. da, E-mail: jbr@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Departamento de Fisica; Lente, Manuel H.; Eiras, Jose A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Fisica

    2014-01-15

    Lead titanate ceramics modified by xenotime (Xm) with nominal composition (Pb, Xm)TiO{sub 3}, Xm 10 or 15 mol %, were prepared by the conventional oxide mixture technique. Xenotime is a natural mineral consisting of a mixture of rare earth oxides. Thermal, structural and electric properties were investigated through differential and gravimetric thermal analysis, X-ray diffraction and dielectric measurements as a function of temperature. The results of both compositions revealed a higher density and free of cracks ceramic body, compared to pure PbTiO{sub 3} prepared by the same procedure. On the other hand, the structural characteristics and Curie temperature are nearly the same as those of pure PbTiO{sub 3}. The hysteresis loop measured at room temperature revealed a hard ferroelectric material with coercive field of 10.7 kV/cm and a remanent polarization of 0.2 μC/cm{sup 2}. These finding reveal a material with properties that highlight potential to be used as electronic devices that operate at high temperature and high frequencies. (author)

  19. GLOBE and the Earth SySTEM Model in Teacher Preparation

    Science.gov (United States)

    Jabot, M.; Moore, J.; Dorofy, P.

    2017-12-01

    This presentation will share the growing body of work linking ArcMap and GLOBE and the Earth SySTEM approach in the development of preservice teachers. Our work is linking the power of ArcMap with the vast database of GLOBE in a unique way that links the power of geospatial technologies in shaping the planning for and delivery of science instruction in the P-5 classroom.

  20. Superhydrophobic diatomaceous earth

    Science.gov (United States)

    Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  1. Introduction. Progress in Earth science and climate studies.

    Science.gov (United States)

    Thompson, J Michael T

    2008-12-28

    In this introductory paper, I review the 'visions of the future' articles prepared by top young scientists for the second of the two Christmas 2008 Triennial Issues of Phil. Trans. R. Soc.A, devoted respectively to astronomy and Earth science. Topics covered in the Earth science issue include: trace gases in the atmosphere; dynamics of the Antarctic circumpolar current; a study of the boundary between the Earth's rocky mantle and its iron core; and two studies of volcanoes and their plumes. A final section devoted to ecology and climate covers: the mathematical modelling of plant-soil interactions; the effects of the boreal forests on the Earth's climate; the role of the past palaeoclimate in testing and calibrating today's numerical climate models; and the evaluation of these models including the quantification of their uncertainties.

  2. Earth Sciences Division annual report 1981. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  3. Earth Sciences as a Vehicle for Gifted Education--The Hong Kong Experience

    Science.gov (United States)

    Murphy, Phillip J.; Chan, Lung Sang; Murphy, Elizabeth

    2012-01-01

    The development and delivery of an Earth-science-focused short course designed to prepare Hong Kong students for university level study is described. Earth sciences provide an inspirational and challenging context for learning and teaching in Hong Kong's increasingly skills-based curriculum. (Contains 3 figures and 4 online resources.)

  4. Determination of active oxygen content in rare earth peroxides

    International Nuclear Information System (INIS)

    Queiroz, Carlos A.S.; Abrao, Alcidio

    1993-01-01

    The content of active oxygen in rare earth peroxides have been determined after the dissolution of the samples with hydrocloridic acid in the presence of potassium iodide. The free generated iodine is titrated with sodium thiosulfate using starch as indicator. The oxidation of iodide to the free iodine indicates the presence of a higher valence state rare earth oxide, until now specifically recognized for the oxides of cerium (Ce O 2 ), praseodymium (Pr 6 O 1 1) and terbium (TB 4 O 7 ). recently the authors synthesized a new series of rare earth compounds, the peroxides. These new compounds were prepared by precipitating the rare earth elements complexed with carbonate ion by addition of hydrogen peroxide. the authors demonstrated that all rare earth elements, once solubilized by complexing with carbonate ion, are quantitatively precipitated as peroxide by addition of hydrogen peroxide. (author)

  5. Development of polysulfonic composite beads for extraction and separation of rare earths

    International Nuclear Information System (INIS)

    Yadav, K.K.; Singh, D.K.; Singh, H.; Varshney, L.

    2012-01-01

    Solvent extraction technology has been extensively applied to the practical separation of rare earth metals. Among the extractants commonly employed at present, di(2-ethylhexyl) hydrogen phosphate (D2EHPA) and 2-ethylhexyl hydrogen 2-ethylhexylphosphonate (PC-88A) are known to have advantages of high separation efficiency for rate earth metals and of low solubility in water. However, separation via solvent extraction requires multistage cycles of extraction and back extraction in order to attain favorable separation. Novel adsorbents such as solvent impregnated resins (SIRS), metal-imprinted polymers and microcapsules containing extractants might have wide applicability due to their characteristics having respective advantages of solvent extraction and the ion-exchange technique. In the present work, polymeric composite material impregnating extractants such as D2EHPA, PC88A and DNPPA were prepared and tested for rare earths recovery from chloride medium. Exploratory tests were conducted with Yttrium (taking as representative of rare earths) to evaluate the suitability of the composite beads having D2EHPA, PC88A and DNPPA. Preparation of beads comprises of following steps. Initially, a polymer solutions containing suitable amount of polymer (5 to 15% with 1% water soluble additive) in N-methyl pyrrolidone (NMP) was prepared. The above prepared solutions were then mixed with organophosphorus type of extractant namely D2EHPA, PC88A and di nonyl phenyl phosphoric acid (DNPPA). This polymer solution was gradually dropped drop wise into the water bath through a syringe needle. In the preparation, the temperature of the water was kept constant using a thermostatic unit. As as polymeric drop comes in contact with water due to phase inversion, polysulfonic microcapsules impregnated with the extractant were obtained, these microcapsules were immersed and stabilized in the water bath for 24 h

  6. Enhanced Photocatalytic Activity of Rare Earth Metal (Nd and Gd doped ZnO Nanostructures

    Directory of Open Access Journals (Sweden)

    P. Logamani

    2017-06-01

    Full Text Available Presence of harmful organic pollutants in wastewater effluents causes serious environmental problems and therefore purification of this contaminated water by a cost effective treatment method is one of the most important issue which is in urgent need of scientific research. One such promising treatment technique uses semiconductor photocatalyst for the reduction of recalcitrant pollutants in water. In the present work, rare earth metals (Nd and Gd doped ZnO nanostructured photocatalyst have been synthesized by wet chemical method. The prepared samples were characterized by X-ray diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM and energy dispersive X-ray spectroscopy (EDS. The XRD results showed that the prepared samples were well crystalline with hexagonal Wurtzite structure. The results of EDS revealed that rare earth elements were doped into ZnO structure. The effect of rare earth dopant on morphology and photocatalytic degradation properties of the prepared samples were studied and discussed. The results revealed that the rare earth metal doped ZnO samples showed enhanced visible light photocatalytic activity for the degradation of methylene blue dye than pure nano ZnO photocatalyst.

  7. Effect of the kind of alkaline and rare earth ions on the structure of a glass rich in earth

    International Nuclear Information System (INIS)

    Quintas, Arnaud; Caurant, Daniel; Majerus, Odile; Lenoir, Marion; Dussossoy, Jean-Luc; Charpentier, Thibault; Neuville, Daniel R.; Gervais, C.

    2006-01-01

    In the framework of a structural study of a nuclear wastes containment glass of type alumino borosilicate and rich in rare earths, the influence of the kind of alkaline or rare earth ions is analyzed. For that, two glasses series have been prepared in which the Na + ion (respectively Ca 2+ ions) present in the standard composition is totally substituted by another alkaline ion Li + , K + , Rb + or Cs + (respectively another rare earth ion Mg 2+ , Sr 2+ or Ba 2+ ). These glasses, analyzed by optical absorption, Raman and 27 Al or 11 B NMR spectroscopies have revealed the strong impact of the kind of the modifying ion as well as the structure of the vitreous lattice (variation of the ratio BO 3 /BO 4 and local variations of the polymerization degree) than the local surroundings of the rare earth (decrease of the covalency degree of the bond Nd-O with the increase of the field force of the modifying ion). (O.M.)

  8. Exploiting Untapped Information Resources in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  9. Coprecipitation of rare earth elements with hydroxyapatite

    International Nuclear Information System (INIS)

    Fujino, Osamu

    1979-01-01

    The distribution behavior of trace rare earth elements between an aqueous phase and hydroxyapatite crystals was investigated. The apatite prepared by adding phosphate ion extremely slowly to an aqueous solution containing calcium, rare earth elements, ethylenediamine and nitrilotriacetate ion at 80 0 C. Apparently the coprecipitation reaction seems to be anomalous, because the apparent distribution coefficient did not have a constant value through the reaction. But when the true distribution coefficient was calculated by using the thermodynamic data at 80 0 C, it was revealed that rare earth ions were coprecipitated obeying logarithmic distribution law. The true distribution coefficient values of trivalent yttrium, scandium, europium and cerium ions were about 10sup(7.3), 10sup(9.8), 10sup(7.4) and 10sup(6.5) respectively. (author)

  10. Thin-film method-XRF determination of the composition of rare earth oxides

    International Nuclear Information System (INIS)

    Xiao Deming

    1992-01-01

    The author describes the thin-film sample preparation by precipitation-pumping filtering method and the composition of rare earth oxide materials by XRF determination. The determination limits are 0.01% to 0.17%. The coefficients of variation are in the range of 0.85% to 14.9%. The analytical results of several kinds of rare earth oxide materials show that this method can be applied to the determination of the composition of rare earth oxide mixtures

  11. Contribution for the studies of rare earth dithionates

    International Nuclear Information System (INIS)

    Schmitz, L.C.

    1988-01-01

    The main objective of this work is the synthesis and investigation of some properties of rare earth dithionates. The rare earth dithionates were prepared from the respective sulphates, by the reaction of the latter with BaS sub(2) O sub(6) in aqueous solutions. The lanthanide ion content was estimated by complexometric titration with EDTA; analysis for H were carried out by microanalysis and the water content was determinated by Karl Fischer titration. This experimental results in addition to thermogravimetric (TG) data gave the stoichiometry of the compounds. (author)

  12. Preparing the Next Generation of Earth Scientists: An Examination of Federal Education and Training Programs

    Science.gov (United States)

    National Academies Press, 2013

    2013-01-01

    Earth science, which in this context does not include oceanic, atmospheric, and space sciences, is vital to the wellbeing of the United States and many of its issues, such as water resources, are expected to grow in importance. An earth science workforce will be needed to deal with this issues and it's important that this workforce draw on the…

  13. An alternative path to improving university Earth science teaching and developing the geoscience workforce: Postdoctoral research faculty involvement in clinical teacher preparation

    Science.gov (United States)

    Zirakparvar, N. A.; Sessa, J.; Ustunisik, G. K.; Nadeau, P. A.; Flores, K. E.; Ebel, D. S.

    2013-12-01

    It is estimated that by the year 2020 relative to 2009, there will be 28% more Earth Science jobs paying ≥ $75,000/year1 in the U.S.A. These jobs will require advanced degrees, but compared to all arts and science advanced degrees, the number of physical science M.S. and Ph.D. awarded per year decreased from 2.5% in 1980 to 1.5% in 20092. This decline is reflected on a smaller scale and at a younger age: in the New York City school system only 36% of all 8th graders have basic proficiency in science 3. These figures indicate that the lack achievement in science starts at a young age and then extends into higher education. Research has shown that students in grades 7 - 12 4,5 and in university level courses 6 both respond positively to high quality science teaching. However, much attention is focused on improving science teaching in grades 7- 12, whereas at many universities lower level science courses are taught by junior research and contingent faculty who typically lack formal training, and sometimes interest, in effective teaching. The danger here is that students might enter university intending to pursue geoscience degrees, but then encounter ineffective instructors, causing them to lose interest in geoscience and thus pursue other disciplines. The crux of the matter becomes how to improve the quality of university-level geoscience teaching, without losing sight of the major benchmark of success for research faculty - scholarly publications reporting innovative research results. In most cases, it would not be feasible to sidetrack the research goals of early career scientists by placing them into a formal teacher preparation program. But what happens when postdoctoral research scientists take an active role in clinical teacher preparation as part of their research appointments? The American Museum of Natural History's Masters of Arts in Teaching (AMNH-MAT) urban residency pilot program utilizes a unique approach to grade 7 - 12 Earth Science teacher

  14. An Analysis of Earth Science Data Analytics Use Cases

    Science.gov (United States)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  15. Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles

    Directory of Open Access Journals (Sweden)

    Timothy A. DeVol

    2010-03-01

    Full Text Available This paper reviews the synthesis, structure and applications of metal fluoride nanoparticles, with particular focus on rare earth (RE doped fluoride nanoparticles obtained by our research group. Nanoparticles were produced by precipitation methods using the ligand ammonium di-n-octadecyldithiophosphate (ADDP that allows the growth of shells around a core particle while simultaneously avoiding particle aggregation. Nanoparticles were characterized on their structure, morphology, and luminescent properties. We discuss the synthesis, properties, and application of heavy metal fluorides; specifically LaF3:RE and PbF2, and group IIA fluorides. Particular attention is given to the synthesis of core/shell nanoparticles, including selectively RE-doped LaF3/LaF3, and CaF2/CaF2 core/(multi-shell nanoparticles, and the CaF2-LaF3 system.

  16. Thermochemical and thermophysical properties of alkaline-earth perovskites

    International Nuclear Information System (INIS)

    Yamanaka, Shinsuke; Kurosaki, Ken; Maekawa, Takuji; Matsuda, Tetsushi; Kobayashi, Shin-ichi; Uno, Masayoshi

    2005-01-01

    In order to contribute to safety evaluation of high burnup oxide fuels, we studied the thermochemical and thermophysical properties of alkaline-earth perovskites known as oxide inclusions. Polycrystalline samples of alkaline-earth perovskites, BaUO 3 , BaZrO 3 , BaCeO 3 , BaMoO 3 , SrTiO 3 , SrZrO 3 , SrCeO 3 , SrMoO 3 , SrHfO 3 and SrRuO 3 , were prepared and the thermal expansion coefficient, melting temperature, elastic moduli, Debye temperature, microhardness, heat capacity, and thermal conductivity were measured. The relationship between some physical properties was studied

  17. Bioleaching of rare earth elements from monazite sand.

    Science.gov (United States)

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. © 2015 Wiley Periodicals, Inc.

  18. Photo- and electroluminescence of undoped and rare earth doped ZnO electroluminors

    International Nuclear Information System (INIS)

    Bhushan, S.; Pandey, A.N.; Kaza, B.R.

    1977-01-01

    A series of undoped and rare earth (Dy, Yb, Nd, Pr, Gd, La, Sm and Er) doped ZnO electroluminors have been prepared and their photo- (PL) and electroluminescence (EL) spectra at different concentrations of rare earth ions have been investigated. PL and EL spectra of undoped electroluminescence consist of three peaks. Due to the addition of the rare earth ions these peaks are shifted either to the longer or to the shorter wavelength side. The intensities are also either decreased or increased. Experimental results favour the donor-accepted model for this system. (Auth.)

  19. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    Energy Technology Data Exchange (ETDEWEB)

    Cai Jingshun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Cao Fahe, E-mail: nelson_cao@zju.edu.cn [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Chang Linrong; Zheng Junjun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Zhang Jianqing; Cao Chunan [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-02-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  20. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    International Nuclear Information System (INIS)

    Cai Jingshun; Cao Fahe; Chang Linrong; Zheng Junjun; Zhang Jianqing; Cao Chunan

    2011-01-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  1. Preparation, characterization and mechanical properties of rare-earth-based nanocomposites

    Directory of Open Access Journals (Sweden)

    Musbah S.S.

    2012-01-01

    Full Text Available This study reports research related to different preparation methods and characterization of polymer nanocomposites for optical applications. The Eu-ion doped Gd2O3 nanophosphor powder with different nanoparticle content was embedded in the matrix of PMMA. Preparation was carried out by mixing molding (bulk, electrospinning (nanofibers and solution casting (thin films with neat particles and particles coated with AMEO silane. Among the pros and cons for proposed methods, the mixing molding enables to avoid solvent use while the best deagglomeration and nanoparticle distribution is gained using the electrospinning method. The results of dynamic mechanical analysis (DMA and nanoindentation revealed that the storage modulus of the composites was higher than that of pure PMMA and increased with nanophosphor content. Surface modification of particles improved the mechanical properties of nanocomposites.

  2. Handbook on the physics and chemistry of rare earths

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Eyring, L.

    1982-01-01

    This handbook is a six-volume work which covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The first volume is devoted to the rare earth metals, the second to rare earth alloys and intermetallics, and the third and fourth volumes to the non-metallic rare earth materials, including solutions, complexes and bioinorganic substances, in addition to solid inorganic compounds. The electronic structure of these unique elements is the primary basis of understanding their physical, metallurgical and chemical natures. The interrelationship of the 4f and valence electrons and the observed optical, electrical, magnetic, crystallographic, elastic, thermal, mechanical, chemical, geochemical and biological behaviors is brought forth time and again throughout the chapters. Also discussed are the preparative, separation and solution chemistry of the elements and their compounds and the various chemical and physical analytical methods for determining the rare earths in various materials and impurities in a rare earth matrix. Vol. 5 is a update complement of the previous volumes. Volume 6 is concerned with ternary and higher order materials. (Auth.)

  3. Determination of the heavy rare earth radionuclides in melted rock

    International Nuclear Information System (INIS)

    Li Yinming; Wang Yalong; Zhang Quanshi

    1995-01-01

    There are some heavy rare earth radionuclides in the melted rocks, such as 160 Tb, 168,170 Tm, 88,91 Y, 174,177 Lu, 169 Yb, etc.. Because their contents are very low in the melted rocks and the light rare earth fission products are interfered with their determination, it is very complicated to measure them quantitatively. So a new method has been studied in which P507 resin is used to separate and purify the rare earths. Radioactive sources are prepared by the pieces of filter paper for determining chemical yield with X-fluorescence analysis, and radioactive activity is determined with the γ-spectra analysis. It is proved that this method has satisfied the demands of experiments

  4. Unique catalytic properties of a butoxy chain-containing ruthenated porphyrin towards oxidation of uric acid and reduction of dioxygen for visible light-enhanced fuel cells

    International Nuclear Information System (INIS)

    Liu, Junchen; Wang, Yi; Deng, Qiang; Zhu, Licai; Chao, Hui; Li, Hong

    2016-01-01

    Highlights: • Ru(II)PTPP/CdS shows two Ru(II)-based oxidation peaks at 0.296 V and 0.830 V. • Photoelectrocatalytic oxidation of UA exhibits good linear responses. • The butoxy chain endows Ru(II)PTPP with multifunctional catalytic properties. • Ru(II)PTPP on CF electrode can remarkably promote the reduction of oxygen. • The assembled cell has I_S_C of 0.136 mA cm"−"2 and P_m_a_x of 31.50 μW cm"−"2. - Abstract: This paper reports the photoelectrocatalytic activities of a ruthenated porphyrin [Ru(phen)_2(IP-C_4O-TPP)]"2"+ (denoted as Ru(II)PTPP, phen = 1,10-phenanthroline, IP = imidazo[4,5-f][1,10]phenanthroline and TPP = 5,10,15,20-tetraphenylporphyrin) containing a covalently-linked butoxy chain (-C_4O-) between IP and TPP moieties by means of various electrochemical techniques in combination with absorption spectroscopy and scanning electronic microscopy. Ru(II)PTPP is assembled on the surface of CdS nanoparticles, showing two Ru(II)-based peaks at 0.296 V and 0.830 V, where uric acid (UA) can be photoelectrocatalytically oxidized in a linear range of 0.01-10.0 mmol L"−"1. The −C_4O- chain endows the Ru(II)PTPP/carbon felt (CF) electrode with favorable dioxygen (O_2) binding sites to achieve a couple of new redox peaks at −0.213 V, where O_2 involves electrocatalytic reduction reactions. While employing 5.0 mmol L"−"1 UA as fuel, and 60 mL min"−"1 O_2 as oxidant, the proposed photoelectrochemical fuel cell shows open-circuit photovoltage of 0.656 V, short-circuit photocurrent density of 0.136 mA cm"−"2, and maximum power density of 31.50 μW cm"−"2 at 0.497 V under visible-light illumination of 0.18 mW cm"−"2. The present study provides an interesting platform for the utilization of renewable energy sources.

  5. Preparation of ammonium sulfate, calcium oxide and rare earth concentrate from phospho-gypsum

    International Nuclear Information System (INIS)

    Andrianov, A.M.; Rusin, N.F.; Dejneka, G.F.; Zinchenko, T.A.; Burova, T.I.

    1978-01-01

    A technological scheme is proposed which gives ammonium sulfate, purified (from admixtures of silicon, iron, titanium, aluminium) calcium oxide with direct yield of calcium 91% and rare-earth concentrate, containing 5.6% of Ln 2 O 3 with direct yield of 99.5%

  6. Deriving Earth Science Data Analytics Requirements

    Science.gov (United States)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  7. On the conditions of preparation of hydrated rare earth orthovanadates

    International Nuclear Information System (INIS)

    Nakhodnova, A.P.; Belousova, E.E.; Shuba, Yu.I.; Zaslavskij, L.V.

    1988-01-01

    The properties of Ln(NO 3 ) 3 -Na 3 VO 4 -H 2 O solution series, where Ln is Er, Ho, Eu are investigated by the methods of residual concentrations, conductometry and potentiometry. It is found that at equivalent ratios of the initial components LnVO 4 xmH 2 O hydrated orthovanadates are formed. Deviations towards excess of rare earths or vanadium result in contamination of the compounds by products of side reactions. According to the data on X-ray phase analysis, hydrated erbium, holmium, europium orthovanadates have the zirconium crystal structure typical for anhydrous compounds. It is shown that hydrate water, being a component of orthovanadates, can be referred to adsorbed and interlayer water

  8. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  9. Earth Sciences Division annual report 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  10. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  11. Study on Magnetic Responsibility of Rare Earth Ferrite/Polyacrylamide Magnetic Microsphere

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Wang Zhifeng; Zhang Hong; Dai Shaojun; Qiu Guanming; Okamoto Hiroshi

    2005-01-01

    In inverse microemulsion, rare earth ferrite/polyacrylamide magnetic microsphere were prepared and their magnetic responsibility were studied by magnetic balance. Results indicate that the magnetic responsibility of microsphere relates to magnetic moment of rare earth ion, and it can be improved by the addition of dysprosium ion of high magnetic moment. Dysprosium content has an effect on magnetic responsibility of dysprosium ferrite/polyacrylamide magnetic microsphere. The microsphere displays strong magnetic responsibility when the molar ratio of Dy3+/iron is 0.20.

  12. Separation of traces of traces of trans-plutonium elements in weight quantities of rare earths

    International Nuclear Information System (INIS)

    SORET, Christian

    1969-08-01

    The author reports the separation of trans-plutonium elements and their dosing in a mixture of fission products. In some situations dosing is performed on both rare earths and trans-plutonium elements. The chemical separation process is a chromatographic method of exchange on an anionic resin in concentrated lithium chloride. He proposes a brief overview of separation processes, describes the separation mechanism, and then reports preliminary studies of the influence of increasing quantities of rare earths and the influence of increasing heights of resin bed in order to determine the best conditions of separation. He describes the preparation of resin and of the column, the introduction of the fixing solution at the top of the column, the preparation of lithium chloride solutions. He presents the adjustment and measurement devices, and the calculation of the resin minimum volume. Results are then presented and discussed. The operation mode is addressed: devices, reagents, preparation techniques (preparation of lithium chloride solutions) [fr

  13. On the conditions of preparation of hydrated rare earth orthovanadates

    Energy Technology Data Exchange (ETDEWEB)

    Nakhodnova, A P; Belousova, E E; Shuba, Yu I; Zaslavskij, L V

    1988-10-01

    The properties of Ln(NO/sub 3/)/sub 3/-Na/sub 3/VO/sub 4/-H/sub 2/O solution series, where Ln is Er, Ho, Eu are investigated by the methods of residual concentrations, conductometry and potentiometry. It is found that at equivalent ratios of the initial components LnVO/sub 4/xmH/sub 2/O hydrated orthovanadates are formed. Deviations towards excess of rare earths or vanadium result in contamination of the compounds by products of side reactions. According to the data on X-ray phase analysis, hydrated erbium, holmium, europium orthovanadates have the zirconium crystal structure typical for anhydrous compounds. It is shown that hydrate water, being a component of orthovanadates, can be referred to adsorbed and interlayer water.

  14. The common principles established to expert's preparation by a remote methods in the Earth sciences field, and their decision

    Science.gov (United States)

    Kudzh, S.; Trofimov, S.

    Modern socially economic situation in the country and in an education system is those, that traditional forms of getting education and training model cannot satisfy all needs for the educational services usually concentrated in the big cities, and so - the increased interest to new, progressive specialities has received the development in electronic - training systems. The attitude to education on the part of the states, the governments, societies has changed also. Education began to be considered as the major factor of economic growth and social development of the countries, the decision of some global problems connected to survival of mankind. In this connection, recently development and practical introduction of technologies of remote and open education are conducted in the different countries, the especial attention is given to the systems, capable to comprise, transfer and analyze huge streams of information. The experience which has been saved up by foreign colleagues, shows, that the sanction of this technological conflict lays, generally, in sphere of creation of a wide network of remote training, and, in narrow, both quality and quantity of a substantial part, also it is necessary not to forget about a choice of electronic-training systems with their reference to various areas. And an occurrence of the computer equipment in the user's end, development of existing ways and means of data transmission, functional expansion of already existing and creation of absolutely new hardware-software complexes, and many other things has begun occurrence of new scientific directions in such basic area of sciences as the Earth - science. (These are geoinformation systems, research of natural resources by space methods, organization and technology of data protection in geoinformation systems etc.) Clearly, that new specialities impose the certain conditions for preparation of experts, and, carrying out the analysis of already existing electronic training systems in the

  15. The electrorheological properties of nano-sized SiO2 particle materials doped with rare earths

    International Nuclear Information System (INIS)

    Liu Yang; Liao Fuhui; Li Junran; Zhang Shaohua; Chen Shumei; Wei Chenguan; Gao Song

    2006-01-01

    Electrorheological (ER) materials of pure SiO 2 and SiO 2 doped with rare earths (RE = Ce, Gd, Y) (non-metallic glasses (silicates)) were prepared using Na 2 SiO 3 and RECl 3 as starting materials. The electrorheological properties are not enhanced by all rare earth additions. The material doped with Ce exhibits the best ER performance

  16. Modification of Yellow River Sediment Based Stabilized Earth Bricks

    Directory of Open Access Journals (Sweden)

    Junxia Liu

    2016-12-01

    Full Text Available This paper presents an experimental study on the microstructure and performance of stabilized earth bricks prepared from the Yellow River sediment. The sediment is modified by inorganic cementitious material, polymer bonding agent, and jute fibre. The results show that the sediment is preliminarily consolidated when the mixture ratio of activated sediment/cementitious binder/sand is 65/25/10. Compressive strength and softening coefficient of stabilized earth bricks is further improved by polymer bonding agent and jute fibre. SEM images and EDS spectral analysis indicate that there is indeed synergy among inorganic hydration products, polymer network and jute fibre to strengthen the sediment.

  17. μ(3)-Carbonato-κO:O':O''-tris-{(η-ben-zene)[(R)-1-(1-amino-ethyl)naphthyl-κC,N]ruthenium(II)} hexa-fluorido-phosphate dichloro-methane solvate.

    Science.gov (United States)

    Sortais, Jean-Baptiste; Brelot, Lydia; Pfeffer, Michel; Barloy, Laurent

    2008-02-15

    The title compound, [Ru(3)(C(12)H(12)N)(3)(CO(3))(C(6)H(6))(3)]PF(6)·CH(2)Cl(2), was obtained unintentionally as the product of an attempted deprotonation of the monomeric parent ruthenium complex [Ru(C(12)H(12)N)(C(6)H(6))(C(2)H(3)N)]PF(6). The carbonate ligand bridges three half-sandwich cyclo-ruthenated fragments, each of them exhibiting a pseudo-tetra-hedral geometry. The configuration of the Ru atoms is S. The naphthyl groups of the enanti-opure cyclo-ruthenated benzylic amine ligands point in the same direction, adopting a propeller shape.

  18. DFT Calculations using WIEN2K to determine oxygen defect structure of rare earth doped ceria

    CERN Document Server

    Khalife, Ali Rida

    2014-01-01

    We perform density functional calculations using the program WIEN2K in order to study oxygen vacancies in rare earth doped ceria. The calculation for all rare earth elements were prepared, however only those foe Cadmium and Europium were performed due to lack of time. Also a short description of my stay at CERN was presented

  19. Influence of rare earth additions on the oxidation resistance of chromia forming alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    1995-01-01

    The addition of rare earths to alloys, either in elemental form or as surface coatings reduces the oxidation rate of chromia forming alloys. The rare earths either act as nucleation sites for surface oxides or get incorporates into the surface oxide and diffuse to oxide grain boundaries. If the latter occurs, a change in the defect structure close to the grain boundaries, probably takes place. In this manner, the rare earths inhibits the movement of chromium ions to the oxide/gas interface. The influence of rare earth additions to AISI 316, AISI 316L and Ni-20 Cr on their oxidation behavior has been studied., AISI 316+Ce, AISI 316+Y, Ni-20 Cr and Ni-20 Cr-2 Al-1 Ce were prepared by melting and AISI 316L, AISI 316L+Ce O 2 and AISI 316L+Y 2 O 3 by powder compaction. The effect of superficial deposits of rare earth oxides was also studied. The alloys were coated with rare earth oxides by high temperature conversion of the respective rare earth nitrates. Isothermal oxidation tests were carried out at 900-1100 deg C and the cyclic oxidation tests consisted of 6 cycles of 2 hours each at 900 deg C, followed by cooling to room temperature. All the tests were carried out in air. Oxidation behavior was evaluated gravimetrically. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis and X-ray diffraction techniques were used to identify oxide constituents. Overall, it has been observed that with the addition of rare earths, oxidation resistance increases by decreasing oxidation rates and increasing oxide adhesion. Addition of rare earths to AISI 316 prepared by melting resulted in rapid formation of a chromium rich oxide layered near the metal/oxide interface which reduced overall oxidation rate. The addition of Ce O 2 to AISI 316L was found to improve oxidation behavior after 10 hours at 1100 deg C and also inhibit the formation of volatile Cr O 3 . The isothermal oxidation behavior of rare earth oxide covered Ni-20 Cr at 900 deg C

  20. Soft X-ray imaging techniques for calculating the Earth's dayside boundaries

    Science.gov (United States)

    Connor, Hyunju; Kuntz, Kip; Sibeck, David; Collier, Michael; Aryan, Homayon; Branduardi-Raymont, Graziella; Collado-Vega, Yaireska; Porter, Frederick; Purucker, Michael; Snowden, Steven; Raeder, Joachim; Thomas, Nicholas; Walsh, Brian

    2016-04-01

    Charged particles and neutral atoms exchange electrons in many space plasma venues. Soft X-rays are emitted when highly charged solar wind ions, such as C6+. O7+, and Fe13+, interact with Hydrogen and Helium atoms. Soft X-ray images can be a powerful technique to remotely probe the plasma and neutral density structures created when the solar wind interacts with planetary exospheres, such as those at the Earth, Moon, Mars, Venus, and comets. The recently selected ESA-China joint spacecraft mission, "Solar wind - Magnetosphere - Ionosphere Link Explorer (SMILE)" will have a soft X-ray imager on board and provide pictures of the Earth's dayside system after its launch in 2021. In preparation for this future mission, we simulate soft X-ray images of the Earth's dayside system, using the OpenGGCM global magnetosphere MHD model and the Hodges model of the Earth's exosphere. Then, we discuss techniques to determine the location of the Earth's dayside boundaries (bow shock and magnetopause) from the soft X-ray images.

  1. Apollo 11 Earth Training Exercises

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11 crew members underwent training to practice activities they would be performing during the mission. In this photograph, taken at the Manned Spacecraft Center in Houston, Texas, an engineer, Bob Mason, donned in a space suit, goes through some of those training exercises on the mock lunar surface. He performed activites similar to those planned for astronauts Neil Armstrong and Edwin Aldrin during their moon walk. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  2. A study of new rare-earth metal group-13 chalcohalides. Structures, chemistry, and optical properties

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Van Calcar, P.M.

    1998-01-01

    Full text: Several new quaternary compounds from the rare-earth metal group-13 chalcohalide family have been prepared from alkaline earth halide flux reactions of binary and elemental starting materials. One compound, for example, Ca 2 La 6G a 2 S 1 4 , crystallizes as needles in an hexagonal cell while another, more disordered structure, La 11 Ga 19 Cl 6 S 42 , crystallizes as monoclinic plates. The former is a condensed structure with channels that contain the alkaline earth element while the latter forms a layered structure containing rare-earth halide clusters within interlayer galleries. These compounds are new members of a family of rare-earth metal main-group chalcogenides which show promise as electroluminescent materials. Structural and spectroscopic studies of these and related compounds will be discussed

  3. Preparation of rare earth and other metal alloys containing aluminum and silicon

    International Nuclear Information System (INIS)

    Mitchell, A.; Goldsmith, J.R.; Gray, M.

    1981-01-01

    A method is provided for making alloys of aluminum and silicon with a third metal which may be a rare earth or a member of groups 4b, 5b, or 6b of the periodic table. The flux system CaF 2 -CaO-Al 2 O 3 is used as a solvent to provide a reactive medium for the alloy-forming reactions. Aluminum is supplied as a reducing agent, and silicon is added as a sink for the alloying metal. The resulting alloy may be used in steels. (L.L.)

  4. An Earth-sized planet with an Earth-like density.

    Science.gov (United States)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  5. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  6. μ3-Carbonato-κ3 O:O′:O′′-tris­{(η6-ben­zene)[(R)-1-(1-amino­ethyl)naphthyl-κ2 C 2,N]ruthenium(II)} hexa­fluorido­phosphate dichloro­methane solvate

    Science.gov (United States)

    Sortais, Jean-Baptiste; Brelot, Lydia; Pfeffer, Michel; Barloy, Laurent

    2008-01-01

    The title compound, [Ru3(C12H12N)3(CO3)(C6H6)3]PF6·CH2Cl2, was obtained unintentionally as the product of an attempted deprotonation of the monomeric parent ruthenium complex [Ru(C12H12N)(C6H6)(C2H3N)]PF6. The carbonate ligand bridges three half-sandwich cyclo­ruthenated fragments, each of them exhibiting a pseudo-tetra­hedral geometry. The configuration of the Ru atoms is S. The naphthyl groups of the enanti­opure cyclo­ruthenated benzylic amine ligands point in the same direction, adopting a propeller shape. PMID:21201869

  7. THE EFFECTS OF RARE EARTHS ON ACTIVITY AND SURFACE ...

    African Journals Online (AJOL)

    A series of Ru-RE/γ-AL2O3 (RE = Ce, Pr, La, Sm, Tb or Gd) and Ru/γ-AL2O3 catalysts were prepared by impregnation method. The influence of rare earths on the catalytic performance of Ru/γ-AL2O3 catalyst for the water gas shift reaction was studied. The catalysts were characterized by X-ray diffraction (XRD), ...

  8. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    Science.gov (United States)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  9. Synthesis of amino acid rare earth complexes and its application in agriculture

    International Nuclear Information System (INIS)

    Luo, G.-T.; Lian, P.; Hu, Y.H.; Guo, G.-R.

    1998-01-01

    Full text: The application of rare-earth compounds in agriculture has been widely reported. So far, most rare-earth compounds used in agriculture were inorganic salt and they were difficult to be absorbed by croup. The synthesis method and structure of amino acid rare-earth complexes have been reported. In this paper, we reported the preparation of mixed amino acids rare-earth complexes and their application in agriculture. The mixed amino acids were obtained by hydrolysis of waste natural protein. Rare earth was lanthanum oxide(99%). Mixed amino acids lanthanum complexes(MALa) was prepared according to the previous method. Investigation to the effect of croup by MALa, we have make tests of citrus, rice and mung bean. The results show as follows: 1) When the experiment group citrus was sprinkled twice 400ppm MALa at bouquet stage and young fruit stage, the sugar, morose, sucrose, soluble solid matter and vitamin C of fruit were increased 21%, 20%, 22%, 22% and 6% as compared to the control group, respectively. The area of leaf and foliage branch in Spring were also increased 4.6% and 2.2%. 2) When the rice was sprinkled 300ppm MALa at early tillering stage, the productively of rice was addition to 10-15%, and the relative effect of prevention was 45.61% for sheath and culm blight of rice. 3) In the test of mungbean growth, the low consistency of MALa ( 250ppm) retain from sprouting seed. As the same time, it was similar action to seeding growth. Preliminary results indicated MLAa could used as the plant growth regulation agent on the croup. Investigation to the effect of MALa on other croup and the mechanism of biological effect on the croup are still going on

  10. New Trident Molecule with Phosphoric Acid Functionality for Trivalent Rare Earth Extraction

    Directory of Open Access Journals (Sweden)

    Keisuke Ohto

    2017-11-01

    Full Text Available Tripodal extraction reagent with three phosphoric acid groups, together with the corresponding monopodal molecule has been prepared to investigate some metals extraction behavior, in particular, trivalent rare earth elements (REEs. The tripodal reagent exhibited extremely high selectivity for metals with high valency such as Zr(IV, In(III, Lu(III, and Fe(III. Tripodal reagent also exhibited exceptionally high extraction ability compared with the corresponding monopodal one in the extraction of trivalent rare earths. The result for the stoichiometry of tripodal reagent to heavy rare earths showed the inflection point between Er (2:1 for a ligand with ion and Tm (1:1. The extraction reactions were determined for all rare earths with both reagents. The extraction equilibrium constants (Kex, the separation factors (β, half pH values (pH1/2, difference half pH values (ΔpH1/2 for extraction of REEs with both reagents are estimated.

  11. Professionality of Junior High School (SMP) Science Teacher in Preparing Instructional Design of Earth and Space Sciences (IPBA)

    Science.gov (United States)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2017-02-01

    The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.

  12. 8. Seminar of the IMP-IIE-ININ on technological specialties. Topic 10: Earth Sciences

    International Nuclear Information System (INIS)

    1996-01-01

    The document contains two papers within INIS subject scope which were presented at the 8th Seminar of the IMP-IIE-ININ on technological specialties. Topic 10: Earth Sciences. A separate abstract was prepared for each paper

  13. Stepwise hydrochloric acid extraction of monazite hydroxides for the recovery of cerium lean rare earths, cerium, uranium and thorium

    International Nuclear Information System (INIS)

    Swaminathan, T.V.; Nair, V.R.; John, C.V.

    1988-01-01

    Monazite sand is normally processed by the caustic soda route to produce mixed rare earth chloride, thorium hydroxide and trisodium phosphate. Bulk of the mixed rare earth chloride is used for the preparation of FC catalysts. Recently some of the catalyst producers have shown preference to cerium depleted (lanthanum enriched) rare earth chloride rather than the natural rare earth chloride obtained from monazite. Therefore, a process for producing cerium depleted rare earth chloride, cerium, thorium and uranium from rare earth + thorium hydroxide obtained by treating monazite, based on stepwise hydrochloric acid extraction, was developed in the authors laboratory. The process involves drying of the mixed rare earth-thorium hydroxide cake obtained by monazite-caustic soda process followed by stepwise extraction of the dried cake with hydrochloric acid under specified conditions

  14. Study on rare earths complexes separation by means of different type of ion exchangers

    International Nuclear Information System (INIS)

    Hubicka, H.

    1990-01-01

    The applicability of different types of ion exchangers for purification and separation of rare earths complexes has been examined. The experimental work has been carried out on 14 chelating ion exchangers. The investigation results proved the great usefulness chelating ion exchangers especially of amino acid and phosphorus-type. Application of that type ion exchangers in column chromatographic process gave the excellent rare earths separation as well as enabled to obtain their preparates of high purity. 218 refs, 21 figs, 27 tabs

  15. A Kinetic Insight into the Activation of n -Octane with Alkaline-Earth ...

    African Journals Online (AJOL)

    Alkaline-earth metal hydroxyapatites are prepared by the co-precipitation method and characterized using XRD, ICP,NH3-TPD, SEM-EDX, TEM and N2 physisorption analysis. The metal present in the hydroxyapatite influences the acidity of the catalyst. Oxidative dehydrogenation reactions carried out in a continuous flow ...

  16. Microstructure and mechanical properties of multi-components rare earth oxide-doped molybdenum alloys

    International Nuclear Information System (INIS)

    Zhang Guojun; Sun Yuanjun; Zuo Chao; Wei Jianfeng; Sun Jun

    2008-01-01

    Pure molybdenum and molybdenum alloys doped with two- or three-components rare earth oxide particles were prepared by powder metallurgy. Both the tensile property and fracture toughness of the pure molybdenum and multi-components rare earth oxide-doped molybdenum alloys were determined at room temperature. The multi-components rare earth oxide-doped molybdenum alloys are fine grained and contain a homogeneous distribution of fine particles in the submicron and nanometer size ranges, which is why the molybdenum alloys have higher strength and fracture toughness than pure molybdenum. Quantitative analysis is used to explain the increase in yield strength with respect to grain size and second phase strengthening. Furthermore, the relationship between the tensile properties and microstructural parameters is quantitatively established

  17. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu; Zhao Long; Xiao Jun; Wu Peng; Zhu Yongbing

    2007-01-01

    This paper presents a detailed investigation into the influence of the rare earth (RE) oxide (La 2 O 3 ) addition upon the densification and the resultant microstructural characteristics of the submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. It is found that the relative density of the laser sintered sample with 1 wt.% La 2 O 3 addition increased by 11.5% as compared with the sample without RE addition. The addition of RE element favored the microstructural refinement and improved the particulate dispersion homogeneity and the particulate/matrix interfacial coherence. The metallurgical functions of the RE element in improving the sinterability were also addressed. It shows that due to the unique properties of RE element such as high surface activity and large atomic radius, the addition of trace RE element can decrease the surface tension of the melt, resist the grain growth coarsening and increase the heterogeneous nucleation rate during laser sintering

  18. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  19. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  20. A New Dimension for Earth Science Learning

    Science.gov (United States)

    Bland, G.; Henry, A.; Bydlowski, D.

    2017-12-01

    NASA Science Objectives include capturing the global view of Earth from space. This unique perspective is often augmented by instrumented research aircraft, to provide in-situ and remote sensing observations in support of the world picture. Our "Advancing Earth Research Observations with Kites and Atmospheric /Terrestrial Sensors" (AEROKATS) project aims to bring this novel and exciting perspective into the hands of learners young and old. The practice of using instrumented kites as surrogate satellites and aircraft is gaining momentum, as our team undertakes the technical, operational, and scientific challenges in preparations to bring new and easy-to-field tools to broad audiences. The third dimension in spatial perception ("up") has previously been difficult to effectively incorporate in learning and local-scale research activities. AEROKATS brings simple to use instrumented aerial systems into the hands of students, educators, and scientists, with the tangible benefits of detailed, high resolution measurements and observations directly applicable to real-world studies of the environments around us.

  1. Synthesis and investigation of some physicochemical properties of rare earth nitrobarbiturates

    International Nuclear Information System (INIS)

    Biryulina, V.N.; Chupakhina, R.A.; Serebrennikov, V.V.

    1984-01-01

    Crystal depositions of L 3 MnH 2 O composition where L is anion of nitrobarbituric acid C 4 H 2 N 3 O 5 - ; M is rare earth ion excluding Ce 3+ and Pm 3+ ; n=12 are extracted under dissolution of freshly prepared hydroxides of rare earth elements (REE) in ethanol aqueous solution of nitrobarbituric acid. The method of IR spectroscopy has been applied to disclose relation of rare earth ion with groups of C=0 acid. The method of derivatography has been used to study thermolysis of REE nitrobarbiturates; dehydration proceeds in two stages with decrease of temperature of the beginning of dehydration by 20 deg C in the La 3+ → Lu 3+ series. The curve of dependence of REE nitrobarbiturate solubility in water at 25 deg C on serial number of REE passes through the minimum accounted for Sm 3+

  2. Broadening the Participation of Native Americans in Earth Science

    Science.gov (United States)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  3. Spectroscopic identification of rare earth elements in phosphate glass

    Science.gov (United States)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  4. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  5. Structural and optical studies of nano-structure silica gel doped with different rare earth elements, prepared by two different sol -gel techniques

    International Nuclear Information System (INIS)

    Battisha, I.K.; El Beyally, A.; Seliman, S.I.; El Nahrawi, A.S.

    2005-01-01

    Structural and optical characteristics of pure silica gel (silica-xerogel, SiO 2 ) and doped with different concentrations ranging from 1 up to 6% of some rare earth (REEs) ions such as, praseodymium Pr +3 ,and Europium Eu +3 , Erbium Er +3 and Holmium Ho +3 , ions, in the form of thin film and monolith materials were prepared by sol - gel technique, Using tetra-ethoxysilane as precursor materials, which are of particular interest for sol-gel integrated optics applications. Some structural and optical features of sol-gel derived monolith and thin films are analyzed and compared, namely the structure of nano-particle monolith and thin film silica-gel samples, based on X-ray diffraction (XRD). The types of structural information obtainable are compared in detail. It is show that the XRD spectra of a-cristobalite are obtained for the two type materials and even by doping with the four REEs ions. Optical measurements of monolith and thin films were also studied and compared, the normal transmission and specular reflection were measured. The refractive index were calculated and discussed

  6. Field Studies in Science Teacher Preparation Programs: Examples of Research-Oriented Earth and Environmental Science Field Projects for Pre-service and In-service Teachers

    Science.gov (United States)

    O'Neal, M. L.

    2005-12-01

    Science teaching reforms of the past 10 to 20 years have focused on a pedagogical shift from verification-style laboratory exercises, toward hands-on and inquiry-based constructivist teaching methods. Such methods, however, require teachers to be proficient in more than just basic content and teaching strategies. To be effective teachers, these professionals must also be skilled in the design and implementation of research-style investigations. At Loyola College in Maryland, topics in the earth and environmental sciences are used as the basis for field research projects that teach our students science content, along with how to design age-appropriate investigative activities and how to implement them in a stimulating, inquiry-based learning environment. Presented here are examples of three projects, demonstrating how these themes are woven throughout our pre- and in-service teacher preparation programs, at both undergraduate and graduate levels. 1. Watershed Studies - In our undergraduate, pre-service, elementary education teacher preparation program, students design and implement a water quality study in a local watershed. In the classroom, students use topographic maps and aerial photographs to delineate the watersheds' boundaries, to identify current land use patterns, and to select appropriate locations on the trunk stream for testing. Water testing at these sites is conducted during field trips, with data analysis and interpretation performed on-site. On-site work allows students to make connections between stream water quality and adjacent land use practices. Students then relate the content and research results to science teaching standards, in order to develop a unit-plan for use in their future classrooms. 2. Land Use Assessment - In our graduate, in-service, elementary and middle school science program, a local stream valley is used as the basis for an analysis of potential land use changes. Students first construct a topographic base map of the area, and

  7. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  8. Research report for fiscal 1998. Research for 'New Earth 21' project implementation program preparation; 1998 nendo chosa hokokusho. 'Chikyu saisei keikaku' no jisshi keikaku sakusei ni kansuru chosa jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the establishment of a CO2 measures introduction scenario which the world would accept, the latest information was collected, the DNE21 (Dynamic New Earth 21) model was improved, and simulation was reviewed. In fiscal 1998, simulation was performed for each district using an LDNE21 (Linear Dynamic New Earth 21) model, and an energy flow chart, energy balance table, and trade table were prepared and subjected to detailed deliberation. Studied were also conducted about the changes to occur in methanol production when the natural gas reserves and plant cost data were given different values. In the DNE21 model, the 'macro economy model' and 'warming damage function' were integrated, and simulation was performed for verification. Using a standard model compatible with COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change), comparison was made between a case in which different CO2 emission constraints were imposed on the advanced area and developing area separately and a case in which one and the same constraint was imposed on the world as a whole, and calculations were made about CDM (Clean Development Mechanism). (NEDO)

  9. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  10. Low-energy near Earth asteroid capture using Earth flybys and aerobraking

    Science.gov (United States)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2018-04-01

    Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun-Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby.

  11. A review of the US Global Change Research Program and NASA's Mission to Planet Earth/Earth Observing System

    Science.gov (United States)

    Moore, Berrien, III; Anderson, James G.; Costanza, Robert; Gates, W. Lawrence; Grew, Priscilla C.; Leinen, Margaret S.; Mayewski, Paul A.; McCarthy, James J.; Sellers, Piers J.

    1995-01-01

    This report reflects the results of a ten-day workshop convened at the Scripps Institution of Oceanography July 19-28, 1995. The workshop was convened as the first phase of a two part review of the U.S. Global Change Research Program (USGCRP). The workshop was organized to provide a review of the scientific foundations and progress to date in the USGCRP and an assessment of the implications of new scientific insights for future USGCRP and Mission to Planet Earth/Earth Observing System (MTPE/EOS) activities; a review of the role of NASA's MTPE/EOS program in the USGCRP observational strategy; a review of the EOS Data and Information System (EOSDIS) as a component of USGCRP data management activities; and an assessment of whether recent developments in the following areas lead to a need to readjust MTPE/EOS plans. Specific consideration was given to: proposed convergence of U.S. environmental satellite systems and programs, evolving international plans for Earth observation systems, advances in technology, and potential expansion of the role of the private sector. The present report summarizes the findings and recommendations developed by the Committee on Global Change Research on the basis of the presentations, background materials, working group deliberations, and plenary discussions of the workshop. In addition, the appendices include summaries prepared by the six working groups convened in the course of the workshop.

  12. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    International Nuclear Information System (INIS)

    Hackbarth, Liisa

    2015-01-01

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H_2O)_5][B(CN)_4]_3.0.5 H_2O, where LRE"3"+ is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H_2O)_7][B(CN)_4]_3 and the [HRE(H_2O)_8][B(CN)_4]_3.3 H_2O, where HRE"3"+ is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical measurements indicate that the tetracyanidoborates with rare earth metal cations

  13. NAGT: Partnering to Expand and Improve the Teaching of Earth Sciences at all Levels of Instruction while Increasing Earth Literacy to the General Public

    Science.gov (United States)

    Herbstrith, K. G.

    2016-12-01

    Now more than ever, we need an Earth literate public and a workforce that can develop and be engaged in viable solutions to current and future environmental and resource challenges. The National Association of Geoscience Teachers (NAGT) is a member driven organization dedicated to fostering improvement in the teaching of the Earth Sciences at all levels of formal and informal instruction, to emphasizing the cultural significance of the Earth sciences and to disseminating knowledge in this field to the general public. NAGT offers a number of ways to partner and collaborate including our sponsored sessions, events and programs; two publications; workshop programming; three topical focused divisions; educational advocacy; and website offerings hosted through the Science Education Resource Center (SERC). A growing number of associations, institutions, projects, and individual educators are strengthening their professional networks by partnering with NAGT. Locating and connecting members of the Earth education community with shared values and interest is an important part of collaborating and NAGT's topical divisions assist community members who wish to work on the topics of 2-year college faculty, geoscience education research, and teacher preparation. The NAGT website and the linked websites of its collaborating partners provides a peer reviewed venue for educators to showcase their pedagogy and to learn best practices of others. The annual Earth Educators' Rendezvous is an opportunity to network face-to-face with the Earth education community, strengthening our relationships while working with those who share our interests and challenges while also learning from those who have divergent experiences. NAGT is a non-profit organization that advocates for the advancement of the geosciences and supports the work of Earth educators and geoscience education researchers. For more information about NAGT, visit our website at www.nagt.org

  14. Processes for the production of rare earths from monazite (Paper No. 36)

    International Nuclear Information System (INIS)

    Murthy, T.K.S.

    1979-01-01

    A few typical cases are briefly described to illustrate different methods available for rare earth concentration and separation from mixed rare earths chloride obtained for monazite. In the case of cerium, rare earths chloride mixture is treated with sodium sulphate to precipitate rare earths as double sulphates from which hydroxide cake is prepared. The cake is dried to oxidise cerium. Trivalent rare earths are selectively leached and the product is treated with HNO 3 . The resulting ceric nitrate solution is purified by liquid-liquid extraction using TBP. The scrubbed extract is reduced with H 2 O 2 and cerous nitrate is recovered by evaporation. Lanthanum is first concentrated by selective precipitation of hydroxides from rare earths chloride using air-ammonia mixture. The hydroxyde cake is dissolved in HNO 3 and NH 4 NO 3 to get the double nitrate which is subjected to counter current crystallisation for purification. Europium is present at a concentration of 0.01% in the rare earths chloride. It is concentrated in several steps by liquid-liquid extraction using di-2-ethyl hexyl phosphoric acid. The product is purified by selective reduction and europium is obtained as europium sulphate. In the same solvent extraction process samarium and gadolinium are also concentrated to about 25%. They are further upgraded to above 90% purity by repetion of liquid-liquid extraction technique. Cerium, lanthanum and europium obtained by the above processes analyse > 99% as oxides. (M.G.B.)

  15. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Kuang Qin; Lin Zhiwei; Lian Wei; Jiang Zhiyuan; Xie Zhaoxiong; Huang Rongbin; Zheng Lansun

    2007-01-01

    In this paper, we report a versatile synthetic method of ordered rare-earth metal (RE) oxide nanotubes. RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction (XRD) have been employed to characterize the morphology and composition of the as-prepared nanotubes. It is found that as-prepared RE oxides evolve into bamboo-like nanotubes and entirely hollow nanotubes. A new possible formation mechanism of RE oxide nanotubes in the AAO channels is proposed. These high-quantity RE oxide nanotubes are expected to have promising applications in many areas such as luminescent materials, catalysts, magnets, etc. - Graphical abstract: A versatile synthetic method for the preparation of ordered rare-earth (RE) oxide nanotubes is reported, by which RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates

  16. 6. Seminar of the IIE-ININ-IMP on technological specialties. Topic 13: earth sciences

    International Nuclear Information System (INIS)

    1992-01-01

    The document includes 12 papers presented at the 6. Seminar of the IIE-ININ-IMP (Mexico) on technological specialties in the field of earth sciences. (Topic 13). Four items were in INIS subject scope and a separate abstract was prepared for each of them

  17. Determination of Rare Earth Elements in Thai Monazite by Inductively Coupled Plasma and Nuclear Analytical techniques

    International Nuclear Information System (INIS)

    Busamongkol, Arporn; Ratanapra, Dusadee; Sukharn, Sumalee; Laoharojanaphand, Sirinart

    2003-10-01

    The inductively coupled plasma atomic emission spectroscopy (ICP-AES) for the determination of individual rare-earth elements (REE) was evaluated by comparison with instrumental neutron activation analysis (INAA) and x-ray fluorescence spectrometry (XRF). The accuracy and precision of INAA and ICP-AES were evaluated by using standard reference material IGS-36, a monazite concentrate. For INAA, the results were close to the certified value while ICP-AES were in good agreement except for some low concentration rare earth. The techniques were applied for the analysis of some rare earth elements in two Thai monazite samples preparing as the in-house reference material for the Rare Earth Research and Development Center, Chemistry Division, Office of Atoms for Peace. The analytical results obtained by these techniques were in good agreement with each other

  18. Rare earth ion controlled crystallization of mica glass-ceramics

    International Nuclear Information System (INIS)

    Garai, Mrinmoy; Karmakar, Basudeb

    2016-01-01

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO_2, Nd_2O_3, Sm_2O_3 and Gd_2O_3 doped K_2O−MgO−B_2O_3−Al_2O_3−SiO_2−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm"−"3) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T_g) and crystallization temperature (T_c). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg_3(AlSi_3O_1_0)F_2 by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10"−"6/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque fluorophlogopite mica glass-ceramics by single-step heat treatment. • Nanocrystalline glass

  19. Comparison of La3+ and mixed rare earths-loaded magnetic chitosan beads for fluoride adsorption

    DEFF Research Database (Denmark)

    Liang, Peng; An, Ruiqi; Li, Ruifen

    2018-01-01

    La3+ and mixed-rare earth magnetic chitosan beads (MCLB and MCLRB) were successfully prepared for fluoride removal, respectively. The adsorbents were characterized by scanning electron microscope and magnetic response. Batch experiments were carried out to investigate the adsorbent performance...

  20. Understanding of Earth and Space Science Concepts: Strategies for Concept-Building in Elementary Teacher Preparation

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2009-01-01

    This research is concerned with preservice teacher understanding of six earth and space science concepts that are often taught in elementary school: the reason for seasons, phases of the moon, why the wind blows, the rock cycle, soil formation, and earthquakes. Specifically, this study examines the effect of readings, hands-on learning stations,…

  1. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  2. Hybrid Cloud Computing Environment for EarthCube and Geoscience Community

    Science.gov (United States)

    Yang, C. P.; Qin, H.

    2016-12-01

    The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.

  3. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.

    Science.gov (United States)

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.

  4. Earth Observations: Experiences from Various Communication Strategies

    Science.gov (United States)

    Lilja Bye, Bente

    2015-04-01

    With Earth observations and the Group of Earth Observations as the common thread, a variety of communication strategies have been applied showcasing the use of Earth observations in geosciences such as climate change, natural hazards, hydrology and more. Based on the experiences from these communication strategies, using communication channels ranging from popular articles in established media, video production, event-based material and social media, lessons have been learned both with respect to the need of capacity, skills, networks, and resources. In general it is not difficult to mobilize geoscientists willing to spend some time on outreach activities. Time for preparing and training is however scarce among scientists. In addition, resources to cover the various aspects of professional science outreach is far from abundant. Among the challenges is the connection between the scientific networks and media channels. Social media competence and capacity are also issues that needs to be addressed more explicitly and efficiently. An overview of the experiences from several types of outreach activities will be given along with some input on possible steps towards improved communication strategies. Steady development of science communication strategies continuously integrating trainging of scientists in use of new outreach tools such as web technology and social innovations for more efficient use of limited resources will remain an issue for the scientific community.

  5. Properties and adduct structure of rare earth tris-acetylacetonates with o-phenanthroline

    International Nuclear Information System (INIS)

    Dzyubenko, N.G.; Martynenko, L.I.

    1986-01-01

    Adducts of acetylacetonates of rare earths (M, REE) with O-phenanthroline (Phen) of the composition MA 3 xPhen (M=La-Lu, Y) are synthesized by different methods and studied. Phen coordination by M 3+ ion is proved using infrared spectroscopy, individual character of obtained preparations and their isostructure in a series of REE derivatives is confirmed by X-ray radiography. MA 3 xPhen thermal stability is much higher than that of corresponding hydrates of rare-earth acetylacetonates MA 3 xnH 2 O. In high vacuum under conditions of mass-spectrometric measurements MA 3 xPhen adducts degradate forming volatile rare earth acetylacetonates of MA 3 composition. When heating in vacuum (∼ 10 2 mm Hg) MA 3 xPhen are qualitatively sublimated not changing the composition. MA 3 xPhen volatility determined for the whole REE series may be of interest in practical problem solving

  6. ISS EarthKam: Taking Photos of the Earth from Space

    Science.gov (United States)

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  7. Earth & Space Science in the Next Generation Science Standards: Promise, Challenge, and Future Actions. (Invited)

    Science.gov (United States)

    Pyle, E. J.

    2013-12-01

    of match must be supported not just by disciplinary core ideas, but also by SEPs and CCCs. Such a structured approach to Earth science instruction also requires specialized approaches to teacher preparation and professional development. Many teachers of Earth science are underprepared, and an examination of how Earth science teachers are prepared and supported to use to new curricular materials is also warranted. This presentation will (a) compare the structure of the NGSS and NSES for Earth & Space Science, (b) discuss the review of the NGSS drafts with respect to the intent of the Curriculum Framework, (c) provide definition to the particular challenges to instruction offered by the NGSS beyond prior instructional experience, and (d) define and reinforce concepts of what it means for curricula, instructional materials, and teacher preparation and professional development to be considered 'aligned' with the NGSS.

  8. Synthesis and luminescence studies of novel rare earth activated lanthanum pentaborate

    International Nuclear Information System (INIS)

    Nagpure, P.A.; Bajaj, N.S.; Omanwar, S.K.; Sonekar, R.P.

    2011-01-01

    The lanthanum pentaborate (LaB 5 O 9 ) is a novel material which exhibits excellent luminescence when doped with rare earth ions. It was prepared by a novel technique which is a slight variation of solution combustion synthesis. The synthesis is based on the exothermic reaction between the fuel (urea) and oxidizer (ammonium nitrate). The structure of the prepared material was confirmed by powder XRD technique. The photoluminescence of rare earth ions (Ce 3+ , Eu 3+ ) and sensitized luminescence of Gd 3+ (Pr 3+ -Gd 3+ and Bi 3+ -Gd 3+ ) in LaB 5 O 9 have been studied. LaB 5 O 9 :Ce 3+ shows broad band UV emission at 317 nm and LaB 5 O 9 :Eu 3+ shows orange red emission. LaB 5 O 9 : Pr 3+ -Gd 3+ and LaB 5 O 9 : Bi 3+ -Gd 3+ exhibit efficient luminescence of Gd 3+ in narrow UVB region at 310 nm. The material (La 0.5 Pr 0.4 )B 5 O 9 :Gd 0.1 exhibits intense narrow band UVB emission at 310 nm and could be a potential candidate for UVB phosphors used in phototherapy lamps. (author)

  9. Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning

    Science.gov (United States)

    Wiyanto; Widiyatmoko, Arif

    2016-01-01

    According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…

  10. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  11. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  12. Rare-earth-metal nitridophosphates through high-pressure metathesis

    International Nuclear Information System (INIS)

    Kloss, Simon David; Schnick, Wolfgang

    2015-01-01

    Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare-earth-metal nitridophosphate LiNdP_4N_8 is reported. High-pressure solid-state metathesis between LiPN_2 and NdF_3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single-crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd"3"+ ions were measured by SQUID magnetometry. LiNdP_4N_8 serves as a model system for the exploration of rare-earth-metal nitridophosphates that may even be expanded to transition metals. High-pressure metathesis enables the systematic study of these uncharted regions of nitride-based materials with unprecedented properties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Powder of a copper oxide superconductor precursor, fabrication process and use for the preparation of superconducting oxide

    International Nuclear Information System (INIS)

    Dehaudt, P.

    1990-01-01

    The precursor powder comprises at least a copper compound (hydroxide, oxide and hydroxynitrates), at least a rare earth and/or yttrium compound (nitrates, hydroxides and hydroxynitrates) or bismuth oxide and at least an alkaline earth nitrate. It can be prepared by atomization drying of a suspension a copper precipitate or coprecipitate and other elements of the superconducting oxide in solution [fr

  14. Communicating The Need For Earth Literacy Across The Curriculum

    Science.gov (United States)

    Herbstrith, K. G.

    2015-12-01

    California needs 11 trillion gallons of water to relieve the current drought, according to NASA, and there is 1.5 million tons of debris floating across the Pacific Ocean, a side effect of the 2011 earthquake and tsunami that struck Japan. These are merely two examples of the types of massive, global issues that students in high school and college will face in the coming years and decades. With an eye towards preparing students to learn the necessary skills to solve these problems head on, The InTeGrate (Interdisciplinary Teaching about Earth for a Sustainable Future) project is developing a new breed of teaching materials that can be utilized in general education courses, teacher preparation courses, core courses within geoscience majors, and courses designed for other majors including environmental studies, social science, engineering, and other sciences. To interest faculty, educators, and students, we must communicate the need for Earth literacy not just to the general public, but also to other educators across disciplinary fields. To this end, the InTeGrate project is utilizing both macro and micro level communication strategies with key stakeholders, partnering organizations, targeted professional development, a variety of social media platforms, and educators across fields and institutional types. This combination allows us to capitalize on personal interactions while linking them into a communication network that can scale.

  15. Alignment of Learning Goals, Assessments and Curricula in an Earth Sciences Program to Prepare the Geoscience Workforce for the 21st Century

    Science.gov (United States)

    Mogk, D. W.; Schmitt, J.

    2013-12-01

    The Dept. of Earth Sciences, Montana State University, recently completed a comprehensive revision of its undergraduate curriculum to meet challenges and opportunities in training the next generation geoscience workforce. The department has 280 undergraduate majors in degree options that include: geology, geography (physical and human), snow science, paleontology and GIS/planning. We used a 'backward design' approach by first considering the profile of a student leaving our program: what should they know and be able to do, in anticipation of professional development for traditional (exploration, environmental, regulatory agencies) and non-traditional (planning, policy, law, business, teaching) jobs or for further training in graduate school. We adopted an Earth system approach to be better aligned with contemporary approaches to Earth science and to demonstrate the connections between sub-disciplines across the curriculum. Learning sequences were designed according to Bloom's Taxonomy to develop higher level thinking skills (starting from observations and progressing to descriptions, interpretations, applications, integration of multiple lines of evidence, synthetic and analytical thinking and evaluation). Central themes are reinforced in multiple classes: history and evolution of the Earth system, composition and architecture of Earth, surface of Earth and the 'critical zone' and human dimensions. The cornerstones of the curriculum are strong background in cognate sciences, geologic 'habits of mind', an emphasis on geologic processes and field instruction. Ancillary learning goals include development of quantitative, communication, and interpersonal skills; use of Earth data and modeling; systems thinking; research and research-like experiences; and applications to societal issues. The first year course of study includes a slate of courses to explore the Earth system, primarily to engage and recruit students to the major. Second year studies are foundational for

  16. Global Change Research Related to the Earth's Energy and Hydrologic Cycle

    Science.gov (United States)

    1998-01-01

    The Institute for Global Change Research and Education (IGCRE) is a joint initiative of the Universities Space Research Association (USRA) and the University of Alabama in Huntsville (UAH) for coordinating and facilitating research and education relevant to global environmental change. Created in 1992 with primary support from the National Aeronautics and Space Administration (NASA), IGCRE fosters participation by university, private sector and government scientists who seek to develop long-term collaborative research in global change science, focusing on the role of water and energy in the Earth's atmosphere and physical climate system. IGCRE is also chartered to address educational needs of Earth system and global change science, including the preparation of future scientists and training of primary and secondary education teachers.

  17. Digital Earth – A sustainable Earth

    International Nuclear Information System (INIS)

    Mahavir

    2014-01-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth

  18. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  19. Rare Earths and Clean Energy: analyzing China's upper hand

    International Nuclear Information System (INIS)

    Seaman, J.

    2010-01-01

    An ominous but avoidable resource crunch in the so-called 'rare earth elements' is now threatening the development of a number of key industries from energy to defense to consumer electronics. As key components in the latest generation of technologies, including specialized magnets for windmills and hybrid cars, lasers for range finders and 'smart' munitions, and phosphors for LCD screens, demand for these rare metals is expected to grow rapidly in the years to come. But decades of under-investment in the mining and separation of these elements across the globe has left the industry ill-prepared to meet thi s growing demand. Over the years, only China has recognized the strategic significance of these resources and has succeeded in gaining a near monopoly on production, currently churning out 97% of the world' s rare earth oxides. Faced with problems of its own, and eager to use its resource advantage to master higher levels of value-added production of rare earth-dependent products, China has increasingly limited the rest of the world's access to these raw materials. This only complicates what was already projected to be a problematic resource shortage. This issue demands a higher quality of public debate. Rare earth consuming countries outside of China have only recently become aware of their dependence and started to take stock of the risks. Time is of the essence. Bringing new supplies online to meet growing demand is a long, complicated and risky process but is nevertheless necessary to ensure the development of high tech industries, notably clean energy. Accessible reserves of rare earths do exist outside of China and mitigating the effects of the looming shortage requires opening up these reserves to production. Yet, as the Chinese experience attests, there are substantial risks to the environment associated with mining and separating rare earths. Care must be taken to ensure responsible mining practices across the globe. Longer-term solutions, such as

  20. The microstructure and magnetic properties of anisotropic polycrystalline Nd2Fe14B nanoflakes prepared by surfactant-assisted cryomilling

    International Nuclear Information System (INIS)

    Liu, Lidong; Zhang, Jian; Xia, Weixing; Du, Juan; Yan, Aru; Ping Liu, J; Li, Wei; Guo, Zhaohui

    2014-01-01

    A new method for fabricating rare-earth-transition metal nanoflakes and nanoparticles, surfactant-assisted cryomilling (SACM), was developed. The effects of milling temperature on the particle size, microstructure and magnetic performance of Nd 2 Fe 14 B nanoflakes were investigated systematically. Compared with Nd 2 Fe 14 B nanoflakes prepared by surfactant-assisted ball milling (SABM) at room temperature, the samples prepared by SACM showed more intriguing features such as smaller particle sizes, larger microstrain, smaller grain size and higher coercivity, which were ascribed to a higher defect concentration generated in the nanoflakes. The optimal coercivity of the samples prepared by SACM was about 50% higher than that of the samples milled at room temperature. It is demonstrated that SACM is an effective way to prepare rare-earth-transition metal nanoflakes with higher coercivity and smaller particle size. These findings are of importance for research on sintered magnets and high-performance nanocomposite magnets. (papers)

  1. The role of Facilities in Engaging and Informing the Public of EarthScope Science

    Science.gov (United States)

    Charlevoix, D. J.; Taber, J. J.; Berg, M.; Dorr, P. M.; McQuillan, P.; Olds, S. E.

    2013-12-01

    The IRIS and UNAVCO facilities play an important role in support of EarthScope through joint and independent education and outreach activities. These activities are focused on providing data and data products to a wide range of audiences, disseminating EarthScope science results through formal and informal venues, and informing the public of the broader impacts of EarthScope. The facilities are particularly well-suited for sustained engagement of multiple audiences over the decade-long course of EarthScope. One such example of a long-term effort was the Transportable Array student siting program, where over an 8 year period, students from about 55 institutions across the US and Canada conducted site reconnaissance and talked to landowners about EarthScope. Another activity focused on students was the development of a student intern program to support field engineering efforts during the construction of the Plate Boundary Observatory. Other ongoing activities include developing and maintaining relationships with media representatives and annual training of National Parks staff throughout the western U.S. The UNAVCO-IRIS partnership has been particularly valuable for EarthScope-related activities, where UNAVCO and IRIS work closely with the EarthScope National Office (ESNO) to bring EarthScope science to national, regional and local audiences within the EarthScope footprint. Collaborations have ranged across each group's products and services, including: EarthScope-focused teacher workshops, participation in EarthScope interpretive workshops for informal educators (led by ESNO), development of content for the IRIS Active Earth Monitor, preparing PBO-, USArray- and EarthScope-focused materials on topics such as Episodic Tremor and Slip for wider distribution through print, web, and mobile information technologies, and organizing research experiences for undergraduates on EarthScope-related topics. Other collaborations have focused on social media, and the development

  2. Earth observation from the manned low Earth orbit platforms

    Science.gov (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan

    2016-05-01

    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  3. Tetracyanidoborates with triply charged rare earth metal cations and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hackbarth, Liisa

    2015-11-24

    The aim of this thesis is the description of the synthesis and characterization of a new group of tetracyanidoborates: tetracyanidoborates with trivalent rare earth metal cations. Their optical properties in the ultraviolet and visible range are also discussed. Common synthetic routes for tetracyanidoborates are adapted and applied to the preparation of the rare earth tetracyanidoborate hydrates. They are accessible with high yields and high purity through a reaction between the tetracyanidoboronic acid and rare earth hydroxides. It is shown that the rare earth tetracyanidoborates form isostructural groups, like the [LRE(H{sub 2}O){sub 5}][B(CN){sub 4}]{sub 3}.0.5 H{sub 2}O, where LRE{sup 3+} is La, Ce, Pr, Nd, Sm, Eu and Gd, the [HRE(H{sub 2}O){sub 7}][B(CN){sub 4}]{sub 3} and the [HRE(H{sub 2}O){sub 8}][B(CN){sub 4}]{sub 3}.3 H{sub 2}O, where HRE{sup 3+} is Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. Furthermore, the coordination number 9 is noticed to be common among the light rare earth cations, whereas the minor coordination number 8 is prevalent for the heavy rare earth cations in their tetracyanidoborates. This different construction of the coordination spheres between light and heavy rare earth cations leads to different structures depending on the energetic efficiency of the structural arrangement. Generally, the rare earth tetracyanidoborate hydrates are found to crystallize in the monoclinic crystal system. Moreover, other different crystal structures are observed depending on the crystallization temperature and the type of coordinated ligands and co-crystallized solvent molecules. The tetracyanidoborate hydrates with triply charged rare earth cations are characterized comprehensively by X-ray diffraction, vibrational spectroscopy, NMR-spectroscopy as well as by thermal analysis. Furthermore, the optical properties of some dehydrated rare earth tetracyanidoborates are investigated by UV-spectroscopy and luminescence measurements. The results of the optical

  4. Separation of rare earth by column chromatography using organic resins XAD/DEPHA

    Energy Technology Data Exchange (ETDEWEB)

    Zini, J.; Ferreira, J.C.; Bergamaschi, V.S.; Santos, I.; Carvalho, F.M.S., E-mail: jcferrei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (CCCH/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio

    2013-07-01

    The designation of light and heavy rare earth was used the fractionation used in separation processes. In this study the process of separation of rare earth, in groups, by chromatographic column consisting in fixing of cations these elements in an organic resin Amberlite XAD16 functionalized with the extracting agent DEPHA and another portion functionalized with a mixture of extractors DEPHA/TOP. The preparation of these resins was performed in two forms, one directly as the extracting agent to the resin and the other to be used in ethyl alcohol. Conditioned resins were introduced in chromatographic columns in separation of groups, light and heavy, using a standard solution of cerium nitrate and standard solution of holmium nitrate groups to represent light and heavy respectively. The characterization technique used to identify the rare earth elements was Spectrometry X-Ray Fluorescence (XRF). The results using the technique of chromatography were satisfactory, obtaining 100% separation of the elements. (author)

  5. Separation of rare earth by column chromatography using organic resins XAD/DEPHA

    International Nuclear Information System (INIS)

    Zini, J.; Ferreira, J.C.; Bergamaschi, V.S.; Santos, I.; Carvalho, F.M.S.

    2013-01-01

    The designation of light and heavy rare earth was used the fractionation used in separation processes. In this study the process of separation of rare earth, in groups, by chromatographic column consisting in fixing of cations these elements in an organic resin Amberlite XAD16 functionalized with the extracting agent DEPHA and another portion functionalized with a mixture of extractors DEPHA/TOP. The preparation of these resins was performed in two forms, one directly as the extracting agent to the resin and the other to be used in ethyl alcohol. Conditioned resins were introduced in chromatographic columns in separation of groups, light and heavy, using a standard solution of cerium nitrate and standard solution of holmium nitrate groups to represent light and heavy respectively. The characterization technique used to identify the rare earth elements was Spectrometry X-Ray Fluorescence (XRF). The results using the technique of chromatography were satisfactory, obtaining 100% separation of the elements. (author)

  6. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  7. Structure and properties of rare earth-rich glassed for nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Bardez, I.

    2004-11-01

    A new nuclear glass composition, able to immobilize highly radioactive liquid wastes from high burn-up UO 2 fuel, was established and its structure studied. The composition of the selected rare earth-rich glass is (molar %): 61.79 SiO 2 - 8.94 B 2 O 3 - 3.05 Al 2 O 3 - 14.41 Na 2 O - 6.32 CaO - 1.89 ZrO 2 - 3.60 RE 2 O 3 (with RE = La, Ce, Pr and Nd). The aim of this study was to determine the local environment of the rare earth in this glass and also to glean information about the effect of glass composition on the rare earth neighbouring (influence of Si, B, Al, Na and Ca contents). To this end, several series of glasses, prepared from the baseline glass, were studied by different characterisation methods such as EXAFS spectroscopy at the neodymium LIII-edge, optical absorption spectroscopy, Raman spectroscopy and 29 Si, 27 Al and 11 B MAS-NMR. By coupling all the results obtained, several hypotheses about the nature of the rare earth neighbouring in the glass were proposed. (author)

  8. An Earth-sized planet with an Earth-like density

    DEFF Research Database (Denmark)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W.

    2013-01-01

    significantly larger than the Earth. Recently, the planet Kepler-78b was discovered(8) and found to have a radius of only 1.16R(circle plus). Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth...

  9. Sythesis of rare earth metal - GIC graphite intercalation compound in molten chloride system

    International Nuclear Information System (INIS)

    Ito, Masafumi; Hagiwara, Rika; Ito, Yasuhiko

    1994-01-01

    Graphite intercalation compounds of ytterbium and neodymium have been prepared by interacting graphite and metals in molten chlorides. These rare earth metals can be suspended in molten chlorides in the presence of trichlorides via disproportionation reaction RE(0) + RE(III) = 2RE(II) at lower than 300 degC. Carbides-free compounds are obtained in these systems. (author)

  10. Destiny's Earth Observation Window

    Science.gov (United States)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  11. Rare earth ion controlled crystallization of mica glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2016-09-05

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO{sub 2}, Nd{sub 2}O{sub 3}, Sm{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} doped K{sub 2}O−MgO−B{sub 2}O{sub 3}−Al{sub 2}O{sub 3}−SiO{sub 2}−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm{sup −3}) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T{sub g}) and crystallization temperature (T{sub c}). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg{sub 3}(AlSi{sub 3}O{sub 10})F{sub 2} by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10{sup −6}/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque

  12. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Avazpour, L.; Toroghinejad, M.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 13876-71557 (Iran, Islamic Republic of)

    2016-11-30

    Highlights: • The nanostructured rare earth doped Co-ferrite thin film was synthesized by the sol–gel method. • The coercivity of as high as 1.8 kOe is achieved for 20% substituted cobalt ferrite. • The average particle diameter of particulate film is decreasing by increasing substitute content. • Kerr spectra of films shifted to higher energies. • Kerr rotation angle increased to 1.65° for 0.1 Eu doped thin film. - Abstract: A series of rare-earth (RE)-doped nanocrystalline Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol–gel process, and the influences of different RE{sup 3+} ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300–850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2–3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced

  13. Earth Sciences Data and Information System (ESDIS) program planning and evaluation methodology development

    Science.gov (United States)

    Dickinson, William B.

    1995-01-01

    An Earth Sciences Data and Information System (ESDIS) Project Management Plan (PMP) is prepared. An ESDIS Project Systems Engineering Management Plan (SEMP) consistent with the developed PMP is also prepared. ESDIS and related EOS program requirements developments, management and analysis processes are evaluated. Opportunities to improve the effectiveness of these processes and program/project responsiveness to requirements are identified. Overall ESDIS cost estimation processes are evaluated, and recommendations to improve cost estimating and modeling techniques are developed. ESDIS schedules and scheduling tools are evaluated. Risk assessment, risk mitigation strategies and approaches, and use of risk information in management decision-making are addressed.

  14. Powder metallurgical processing of magnetostrictive materials based on rare earth-iron intermetallic compounds

    International Nuclear Information System (INIS)

    Malekzadeh, M.

    1978-01-01

    Procedures are described for fabrication of high density rare earth-iron magnetostrictive compounds by powder metallurgical techniques. The fabrication involves a sequence of steps which includes preparing the pre-alloyed compounds, pulverizing them into a fine powder, compacting in suitable sizes and shapes, and sintering. Samples prepared by these procedures are carefully characterized by scanning electron microscopy, x-ray diffraction, dilatometry, and magnetic measurements. Process steps are found to exert important influences upon densities, microstructure and magnetic properties attained after densification. Investigations on a number of these process steps, including milling time and medium, sintering, and magnetic powder alignment are described

  15. A new continuous two-step molecular precursor route to rare-earth oxysulfides Ln2O2S

    International Nuclear Information System (INIS)

    De Crom, N.; Devillers, M.

    2012-01-01

    A continuous two-step molecular precursor pathway is designed for the preparation of rare-earth oxysulfides Ln 2 O 2 S (Ln=Y, La, Pr, Nd, Sm–Lu). This new route involves a first oxidation step leading to the rare-earth oxysulfate Ln 2 O 2 SO 4 which is subsequently reduced to the rare-earth oxysulfide Ln 2 O 2 S by switching to a H 2 –Ar atmosphere. The whole process occurs at a temperature significantly lower than usual solid state synthesis (T≤650 °C) and avoids the use of dangerous sulfur-based gases, providing a convenient route to the synthesis of the entire series of Ln 2 O 2 S. The molecular precursors consist in heteroleptic dithiocarbamate complexes [Ln(Et 2 dtc) 3 (phen)] and [Ln(Et 2 dtc) 3 (bipy)] (Et 2 dtc=N,N-diethyldithiocarbamate; phen=1,10-phenanthroline; bipy=2,2′-bipyridine) and were synthesized by a new high yield and high purity synthesis route. The nature of the molecular precursor determines the minimum synthesis temperature and influences therefore the purity of the final Ln 2 O 2 S crystalline phase. - Graphical abstract: A continuous two-step molecular precursor pathway was designed for the preparation of rare-earth oxysulfides Ln 2 O 2 S (Ln=Y, La, Pr, Nd, Sm–Lu), starting from heteroleptic dithiocarbamate complexes. The influence of the nature of the molecular precursor on the minimum synthesis temperature and on the purity of the final Ln 2 O 2 S crystalline phase is discussed. Highlights: ► A new high yield and high purity synthesis route of rare earth dithiocarbamates is described. ► These compounds are used as precursors in a continuous process leading to rare-earth oxysulfides. ► The oxysulfides are obtained under much more moderate conditions than previously described.

  16. Preparation of neodymium acetate for use in nuclear area and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, C.A.S.; Seneda, J.A., E-mail: cqueiroz@ipen.br, E-mail: jaseneda@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Filho, W. R. Pedreira, E-mail: walter.pedreira@fundacentro.gov.br [Fundação Jorge Duprat Figueiredo, de Segurança e Medicina do Trabalho (FUNDACENTRO), Sao Paulo, SP (Brazil)

    2017-07-01

    Neodymium and its compounds are being increasingly applied in the manufacture of new materials. In nuclear area neodymium isotopes are used in a variety of scientific applications. Nd-142 has been used to produce short-lived Tm and Yb isotopes. Nd-146 has been suggested to produce Pm-147 and Nd-150 has been used to study double beta decay. Due to the several modern applications using nanomaterials, more and more highly rare earth compounds have been demanded. The researches at IPEN uses the experience gained in rare earth separation for the preparation of some pure acetates, purity > 99.9% for application in nanotechnology research. A simple and economical chemical process to obtaining neodymium acetate of high purity is studied. The raw material in the form of mixed rare earths carbonate comes from Brazilian monazite. It is used the technique of strong cationic exchange resin, proper to water treatment, to the neodymium's fractionation and it is achieved a purity of 99.9% in Nd{sub 2}O{sub 3} and yield greater than or equal 80%, with the elution of rare earths by EDTA solution in pH controlled. The complex of EDTA-neodymium is transformed in neodymium oxide, subsequently the oxide is dissolved in acetic acid to obtain the neodymium acetate. The solid salt was characterized via molecular absorption spectrophotometry, mass spectrometry, thermal analysis, chemical analysis and X ray diffraction. In summary the analytical data collected allowed to conclude that the stoichiometric formula for the neodymium acetate prepared is Nd(CH {sub 3}COOH)3.1.5H{sub 2}O. (author)

  17. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.

    Directory of Open Access Journals (Sweden)

    Pierre Gueriau

    Full Text Available The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.

  18. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  19. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    International Nuclear Information System (INIS)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-01-01

    In this paper spectroscopic investigation of Cu 2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu 2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu 2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds

  20. Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Nikumbh, A.K., E-mail: aknik@chem.unipune.ac.in; Pawar, R.A.; Nighot, D.V.; Gugale, G.S.; Sangale, M.D.; Khanvilkar, M.B.; Nagawade, A.V.

    2014-04-15

    Pure nanoparticles of the rare-earth substituted cobalt ferrites CoRE{sub x}Fe{sub 2−x}O{sub 4} (where RE=Nd, Sm and Gd and x=0.1 and 0.2) were prepared by the chemical co-precipitation method. X-ray diffraction, Transmission electron microscopy (TEM), d.c. electrical conductivity, Magnetic hysteresis and Thermal analysis are utilized in order to study the effect of variation in the rare-earth substitution and its impact on particle size, magnetic properties like M{sub S}, H{sub C} and Curie temperature. The phase identification of the materials by X-ray diffraction reveals the single-phase nature of the materials. The lattice parameter increased with rare-earth content for x≤0.2. The Transmission electron micrographs of Nd-, Sm- and Gd-substituted CoFe{sub 2}O{sub 4} exhibit the particle size 36.1 to 67.8 nm ranges. The data of temperature variation of the direct current electrical conductivity showed definite breaks, which corresponds to ferrimagnetic to paramagnetic transitions. The thermoelectric power for all compound are positive over the whole range of temperature. The dielectric constant decreases with frequency and rare-earth content for the prepared samples. The magnetic properties of rare-earth substituted cobalt ferrites showed a definite hysteresis loop at room temperature. The reduction of coercive force, saturation magnetization, ratio M{sub R}/M{sub S} and magnetic moments may be due to dilution of the magnetic interaction.

  1. Preparation and characterization of thick metastable sputter deposits

    International Nuclear Information System (INIS)

    Allen, R.P.; Dahlgren, S.D.; Merz, M.D.

    1975-01-01

    High-rate dc supported-discharge sputtering techniques were developed and used to prepare 0.1 mm to 5.0 mm-thick deposits of a variety of metastable materials including amorphous alloys representing more than 15 different rare-earth-transition metal systems and a wide range of compositions and deposition conditions. The ability to prepare thick, homogeneous deposits has made it possible for the first time to investigate the structure, properties, and annealing behavior of these unique sputtered alloys using neutron diffraction, ultrasonic, and other experimental techniques that are difficult or impractical for thin films. More importantly, these characterization studies show that the structure and properties of the massive sputter deposits are independent of thickness and can be reproduced from deposit to deposit. Other advantages and applications of this metastable materials preparation technique include the possibility of varying structure and properties by control of the deposition parameters and the ability to deposit even reactive alloys with a very low impurity content

  2. The Earth: A Changing Planet

    Science.gov (United States)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    hours of class time for students from 13 to 14 years of age. During the learning process, different methodological tools of teaching and learning have been used. After reading and understanding news about natural disasters such as earthquakes and eruptions, cooperative group work and an oral presentation are prepared. In addition, it has been very useful to follow-up with some web simulations to predict natural phenomena, which can then be tested in the laboratory. Finally, the students apply their new understanding on a visit to a geological formation, where applying the language learned by observing the rocks, they demonstrate that the planet Earth has changed over the course of many millions of years. Natural hazards are a small and timely demonstration of the ability to change our planet.

  3. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  4. Magsat - A new satellite to survey the earth's magnetic field

    Science.gov (United States)

    Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.

    1980-01-01

    The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.

  5. Red-emitting alkaline-earth rare-earth pentaoxometallates powders ...

    Indian Academy of Sciences (India)

    Moisture-insensitive metal carboxylates that are mostly liquids at room temperature have been first applied to ... alkaline-earth ion, or possibly even a rare-earth ion and alkali metal ... sion spectra of the powders were recorded on a fluorescent.

  6. Earth - South America (first frame of Earth Spin Movie)

    Science.gov (United States)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  7. Superconducting materials fabrication process and materials obtained. Procede de preparation de materiaux supraconducteurs et materiaux ainsi obtenus

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, M O; Magnier, C

    1989-03-24

    The preparation process of a fine powder of YBaCuO type superconductors of easy sintering comprises: mixing in presence of alcohol an aqueous solution of rare earth nitrate or acetate, alkaline earth nitrate or acetate and copper nitrate or acetate and an oxalic acid solution, the pH value of the mixture is comprised between 2 and 4, the obtained precipitate is separated, dried, calcined and eventually crushed.

  8. Influence of rare-earth addition on microstructure and dielectric behavior of Ba0.6Sr0.4TiO3 ceramics

    International Nuclear Information System (INIS)

    Zhang Jingji; Zhai Jiwei; Chou Xiujian; Yao Xi

    2008-01-01

    Ba 0.6 Sr 0.4 TiO 3 (BST) ceramics with 0.5 mol% various trivalent rare-earth additions prepared by a solid-state route are investigated. A strong correlation is observed between the microstructure, dielectric properties and rare-earth element dopant. The results display that comparing with the lattice constants of undoped and doped rare-earth BST, the structure transforms from cubic to tetragonal structure. In addition, the dopant improves the tetragonal distortion with the ionic radius of rare earth decreasing, and then deteriorates it with further decreasing. Large ions rare-earth additions effectively suppress the grain growth of BST. It is found that the temperature-permittivity characteristics for the BSTR (R, namely, rare earth) system could be controlled using various rare-earth elements. Especially, such as Sm, Eu, Gd dopants are effective to satisfy the tunable microwave devices application due to the decrease of permittivity and the improvement of dissipation factors of BST ceramic with the accompanying high-tunability

  9. Building a Dashboard of the Planet with Google Earth and Earth Engine

    Science.gov (United States)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  10. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    There is some controversial evidence for the theory that the first life on Earth itself may have been transported here on meteorites from Mars. The possibility of a major meteorite impact on Earth in the near future emphasizes the dramatic nature of these recent discoveries, which are having deep impacts in the Earth sciences ...

  11. Teach and Touch the Earth and Sky

    Science.gov (United States)

    Florina Tendea, Camelia

    2017-04-01

    My name is Camelia Florina Tendea. I am primary school teacher at "Horea, Closca and Crisan" Secondary School, in Brad, a town in the west side of Transylvania. I am permanently interested to develop my knowledge and teaching skills about space sciences (Earth and Sky) because the new generations of students are very well informed and couriouse about these topics. In this context the teachers must be prepared to deal with such requests in school. Introducing of activity: For a primary school teacher is a real challenge teaching about Earth and Sky, so I consider that a collaboration with science teachers, engineers and other specialists in the sciences is absolutely essential and beneficial in the educational design. In my opinion, the contents about Earth ans Sky-Space in a single word- are very attractive for students and they are a permanent source of discoveries and provide a multidisciplinary vision, so required in the education. Possible contents to teach in primary school: about Earth: -Terra -the third Planet from the Sun; How Earth spins; Land and water; The Earth seen from space, Trip between Earth and Moon,Weather Phenomena; the Poles; about Sky: Solar System, Asteroids, Comets, Meteorites; Rosetta Mission or rendez-vous with a comet; Sun.Moon. Earth. Eclipse;Light Pollution and protection of the night sky; Life in Space. Astronauts and experiences; Mission X:- Train Like an Astronaut;About ISS. For teachers it is important to know from the beginning how they teach, a viable support is the teaching of STEM subjects, which provides access to careers in astronomy, science/technology space. We could teach about earth and sky using different kinds of experiments, simulations, hands-on activities, competitions, exhibitions, video presentations. Competences developed in primary school through these contents: Comunication, individual studying, understanding and valorisation of scientific information, relating to the natural environment. In addition, they are

  12. Morphology and pore structure of rare earth oxides

    International Nuclear Information System (INIS)

    Bruce, L.A.; Hoang, M.; Hardin, S.; Turney, T.W.

    1991-01-01

    The morphology observed by transmission electron microscopy of rare earth oxides, prepared by two different routes, has been related to adsorption, characteristics for nitrogen at 77 K. The most common morphology was that of thin sheets, then small equiaxed particles, and, more rarely, rod-like particles. The presence of small equiaxed particles was found to be a prerequisite for adsorption hysteresis. Evaluation of linear 't' plots indicated freedom from micropores in all samples, but positive deviations in the presence of sheet morphology at high relative pressures left open the possibility of wedge-like pores in these samples. 14 refs., 3 tabs., 5 figs

  13. Novel laser nanomaterials based on rare-earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Darayas N., E-mail: dpatel@oakwood.edu [Oakwood University, Department of Mathematics and Computer Science, 7000 Adventist Blvd. Huntsville, AL 35896 (United States); Hardy, Lauren A.; Smith, Tabatha J.; Smith, Eva S.; Wright, Donald M. [Oakwood University, Department of Mathematics and Computer Science, 7000 Adventist Blvd. Huntsville, AL 35896 (United States); Sarkisov, Sergey [SSS Optical Technologies, LLC, 515 Sparkman Drive, Suite 122, Huntsville, AL 35816 (United States)

    2013-01-15

    We report on the infrared-to-visible upconversion luminescence in microcrystalline powders and photonic crystal fibers filled with nanocolloids of trivalent rare-earth ion co-doped NaYF{sub 4} phosphor. The phosphor was prepared using a simple co-precipitation synthetic method. Nanocolloids of the phosphor were prepared by selective precipitation in methanol and laser ablation in water. Optical dynamic scatterometry determined average particle sizes of the nanocolloids of 1.5-1.9 nm in methanol and 83.8-86.4 nm in water. Nanocolloids of these phosphors were utilized as laser filling medium in photonic crystal fibers. - Highlights: Black-Right-Pointing-Pointer Synthesize highly efficient hexagonal-phase NaYF{sub 4}:Er{sup 3+}, Yb{sup 3+} powder and nanocolloid. Black-Right-Pointing-Pointer Laser/amplifier containing the NaYF{sub 4} nanocolloid were pumped with 980 nm diode laser. Black-Right-Pointing-Pointer Emission peaks were observed at 540 nm, 654 nm and 840.4 nm from the fiber arrangement.

  14. For Earth into space: The German Spacelab Mission D-2

    Science.gov (United States)

    Sahm, P. R.; Keller, M. H.; Schiewe, B.

    The Spacelab Mission D-2 successfully lifted off from Kennedy Space Center on April 26, 1993. With 88 experiments on board covering eleven different research disciplines it was a very ambitious mission. Besides materials and life science subjects, the mission also encompassed astronomy, earth observation, radiation physics and biology, telecommunication, automation and robotics. Notable results were obtained in almost all cases. To give some examples of the scientific output, building upon results obtained in previous missions (FSLP, D1) diffusion in melts was broadly represented delivering most precise data on the atomic mobility within various liquids, and crystal growth experiments (the largest gallium arsenide crystal grown by the floating zone technique, so far obtained anywhere, was one of the results), biological cell growth experiments were continued (for example, beer yeast cultures, continuing their growth on earth, delivered a qualitatively superior brewery result), the human physiology miniclinic configuration ANTHRORACK gave novel insights concerning cardiovascular, pulmonary, and renal (fluid volume determining) factors. Astronomical experiments yielded insights into our own galaxy within the ultra violet spectrum, earth observation experiments delivered the most precise resolution data superimposed by thematic mapping of many areas of the Earth, and the robotics experiment brought a remarkable feature in that a flying object was caught by the space robot, which was only achieved through several innovative advances during the time of experiment preparation. The eight years of preparation were also beneficial in another sense. Several discoveries have been made, and various technology transfers into ground-based processes were verified. To name the outstanding ones, in the materials science a novel bearing materials production process was developped, a patent granted for an improved high temperature heating chamber; with life sciences a new hormone

  15. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  16. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  17. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  18. Study on the light-color mixing of rare earth luminescent materials for anti-counterfeiting application

    Science.gov (United States)

    Zhang, Jishu; Zhang, Yingzi; Tao, Jin; Zhu, Yanan

    2018-04-01

    In order to find out the light color mixing mechanism of rare earth luminescent materials used in anti-counterfeiting fibers, we prepared three kinds of rare earth luminescent materials according to RGB tri-primary color, and mixed it together to form different mixtures in certain proportion. The phase structures of the luminescent material monomers were measured by x-ray diffractometer. The photochromic properties of the luminescent materials were tested and analyzed by fluorescence spectrophotometer. The results show that the light color mixing was consistent with the blending principle of additive color, but not the same because of the photochromic properties of rare earth luminescent materials, and we explored the reasons in the light wavelength and intensity. It was found that the enhancement of the luminescence intensity of the mixture on account of the superimposing of luminescence.

  19. Atmospheric acceleration and Earth-expansion deceleration of the Earth rotation

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2017-11-01

    Full Text Available Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation deceleration. Atmospheric solar semi-diurnal tide has a small amplitude and certain amount of phase lead. This periodic global air-mass excess distribution exerts a quasi-constant torque to accelerate the Earth's spin rotation. Using an updated atmospheric tide model, we re-estimate the amounts of this atmospheric acceleration torque and corresponding energy input, of which the associated change rate in LOD (length of day is −0.1 ms/cy. In another aspect, evidences from space-geodesy and sea level rise observations suggest that Earth expands at a rate of 0.35 mm/yr in recent decades, which gives rise to the increase of LOD at rate of 1.0 ms/cy. Hence, if the previous estimate due to the tidal friction is correct, the secular Earth rotation deceleration due to tidal friction and Earth expansion should be 3.15 ms/cy.

  20. Preparation, characterization and antimicrobial efficiency of Ag/PDDA-diatomite nanocomposite.

    Science.gov (United States)

    Panáček, Aleš; Balzerová, Anna; Prucek, Robert; Ranc, Václav; Večeřová, Renata; Husičková, Vendula; Pechoušek, Jiří; Filip, Jan; Zbořil, Radek; Kvítek, Libor

    2013-10-01

    Nanocomposites consisting of diatomaceous earth particles and silver nanoparticles (silver NPs) with high antimicrobial activity were prepared and characterized. For the purpose of nanocomposite preparation, silver NPs with an average size of 28nm prepared by modified Tollens process were used. Nanocomposites were prepared using poly(diallyldimethylammonium) chloride (PDDA) as an interlayer substance between diatomite and silver NPs which enables to change diatomite original negative surface charge to positive one. Due to strong electrostatic interactions between negatively charged silver NPs and positively charged PDDA-modified diatomite, Ag/PDDA-diatomite nanocomposites with a high content of silver (as high as 46.6mgAg/1g of diatomite) were prepared. Because of minimal release of silver NPs from prepared nanocomposites to aqueous media (<0.3mg Ag/1g of nanocomposite), the developed nanocomposites are regarded as a potential useful antimicrobial material with a long-term efficiency showing no risk to human health or environment. All the prepared nanocomposites exhibit a high bactericidal activity against Gram-negative and Gram-positive bacteria and fungicidal activity against yeasts at very low concentrations as low as 0.11g/L, corresponding to silver concentration of 5mg/L. Hence, the prepared nanocomposites constitute a promising candidate suitable for the microbial water treatment in environmental applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  2. Early Earth(s) Across Time and Space

    Science.gov (United States)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  3. Research report for fiscal 1998. Research for 'New Earth 21' project implementation program preparation; 1998 nendo chosa hokokusho. 'Chikyu saisei keikaku' no jisshi keikaku sakusei ni kansuru chosa jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the establishment of a CO2 measures introduction scenario which the world would accept, the latest information was collected, the DNE21 (Dynamic New Earth 21) model was improved, and simulation was reviewed. In fiscal 1998, simulation was performed for each district using an LDNE21 (Linear Dynamic New Earth 21) model, and an energy flow chart, energy balance table, and trade table were prepared and subjected to detailed deliberation. Studied were also conducted about the changes to occur in methanol production when the natural gas reserves and plant cost data were given different values. In the DNE21 model, the 'macro economy model' and 'warming damage function' were integrated, and simulation was performed for verification. Using a standard model compatible with COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change), comparison was made between a case in which different CO2 emission constraints were imposed on the advanced area and developing area separately and a case in which one and the same constraint was imposed on the world as a whole, and calculations were made about CDM (Clean Development Mechanism). (NEDO)

  4. A rare earth-based metal-organic framework for moisture removal and control in confined spaces

    KAUST Repository

    Eddaoudi, Mohamed

    2017-04-13

    A method for preparing a metal-organic framework (MOF) comprising contacting one or more of a rare earth metal ion component with one or more of a tetratopic ligand component, sufficient to form a rare earth-based MOF for controlling moisture in an environment. A method of moisture control in an environment comprising adsorbing and/or desorbing water vapor in an environment using a MOF, the MOF including one or more of a rare earth metal ion component and one or more of a tetratopic ligand component. A method of controlling moisture in an environment comprising sensing the relative humidity in the environment comprising a MOF; and adsorbing water vapor on the MOF if the relative humidity is above a first level, sufficient to control moisture in an environment. The examples relate to a MOF created from 1,2,4,5-Tetrakis(4-carboxyphenyl )benzene (BTEB) as tetratopic ligand, 2-fluorobenzoic acid and Y(NO3)3, Tb(NO3)3 and Yb(NO3)3 as rare earth metals.

  5. Development of an Interdisciplinary Undergraduate Major in The Earth System, Environment and Society

    Science.gov (United States)

    Wuebbles, D. J.

    2003-12-01

    full complexities of the science of the Earth system) and Human Dimensions of the Earth System (this option will have a heavier focus on the relationship of Earth System Science to policy and decision analysis and to society and social science interactions). The two options will allow students to prepare for career paths, including graduate study, in any number of possible areas.

  6. Evolution of Mg-5Al-0.4Mn microstructure after rare earth elements addition

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2011-04-01

    Full Text Available Mg-5Al-0.4Mn-xRE (x = 0, 1, 2, 3 wt.% magnesium alloys were prepared successfully by casting method. The microstructure wasinvestigated by light microscopy. The influence of rare earth (RE elements on the area fraction of eutectic was analysed. The obtainedresults revealed that the as-cast Mg-5Al-0.4Mn alloy consist of α - Mg matrix and eutectic α + γ (where γ is Mg17Al12. However, whilerare earth elements were added to the Mg-Al type alloy, Al11RE3 precipitates were formed. The amount of the Al11RE3 precipitatesincreased with increasing addition of RE, but the amount of γ - Mg17Al12 decreased.

  7. Significant improvement of accuracy and precision in the determination of trace rare earths by fluorescence analysis

    International Nuclear Information System (INIS)

    Ozawa, L.; Hersh, H.N.

    1976-01-01

    Most of the rare earths in yttrium, gadolinium and lanthanum oxides emit characteristic fluorescent line spectra under irradiation with photons, electrons and x rays. The sensitivity and selectivity of the rare earth fluorescences are high enough to determine the trace amounts (0.01 to 100 ppM) of rare earths. The absolute fluorescent intensities of solids, however, are markedly affected by the synthesis procedure, level of contamination and crystal perfection, resulting in poor accuracy and low precision for the method (larger than 50 percent error). Special care in preparation of the samples is required to obtain good accuracy and precision. It is found that the accuracy and precision for the determination of trace (less than 10 ppM) rare earths by fluorescence analysis improved significantly, while still maintaining the sensitivity, when the determination is made by comparing the ratio of the fluorescent intensities of the trace rare earths to that of a deliberately added rare earth as reference. The variation in the absolute fluorescent intensity remains, but is compensated for by measuring the fluorescent line intensity ratio. Consequently, the determination of trace rare earths (with less than 3 percent error) is easily made by a photoluminescence technique in which the rare earths are excited directly by photons. Accuracy is still maintained when the absolute fluorescent intensity is reduced by 50 percent through contamination by Ni, Fe, Mn or Pb (about 100 ppM). Determination accuracy is also improved for fluorescence analysis by electron excitation and x-ray excitation. For some rare earths, however, accuracy by these techniques is reduced because indirect excitation mechanisms are involved. The excitation mechanisms and the interferences between rare earths are also reported

  8. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  9. Remote sensing image fusion in the context of Digital Earth

    International Nuclear Information System (INIS)

    Pohl, C

    2014-01-01

    The increase in the number of operational Earth observation satellites gives remote sensing image fusion a new boost. As a powerful tool to integrate images from different sensors it enables multi-scale, multi-temporal and multi-source information extraction. Image fusion aims at providing results that cannot be obtained from a single data source alone. Instead it enables feature and information mining of higher reliability and availability. The process required to prepare remote sensing images for image fusion comprises most of the necessary steps to feed the database of Digital Earth. The virtual representation of the planet uses data and information that is referenced and corrected to suit interpretation and decision-making. The same pre-requisite is valid for image fusion, the outcome of which can directly flow into a geographical information system. The assessment and description of the quality of the results remains critical. Depending on the application and information to be extracted from multi-source images different approaches are necessary. This paper describes the process of image fusion based on a fusion and classification experiment, explains the necessary quality measures involved and shows with this example which criteria have to be considered if the results of image fusion are going to be used in Digital Earth

  10. Cerium concentrate and mixed rare earth chloride by the oxidative decomposition of bastnaesite in molten sodium hydroxide

    International Nuclear Information System (INIS)

    Iijima, Toshio; Kato, Kazuhiro; Kuno, Toyohiko; Okuwaki, Akitsugu; Umetsu, Yoshiaki; Okabe, Taijiro

    1993-01-01

    Bastnaesite was treated in molten NaOH at 623-777 K for 10-60 min under atmosphere. Cerium-(III) in the ore was easily oxidized 95% or more within 30 min to give an oxidation product composed of solid solutions of CeO 2 -rich and CeO 2 -lean phases and Ce-free rare earth oxide phase. Simultaneously fluoride ion was removed 97% or more. Cerium concentrate was prepared from the oxidation product by leaching with 0.1-3 M HCl solution. The yield of cerium concentrate and the CeO 2 content reached 55-57% and 70-72%, respectively. Mixed rare earth chloride is composed of about 90% rare earth chloride and 10% alkaline earth chloride, and the contents of CeCl 3 , LaCl 3 , NdCl 3 , and PrCl 3 are 11.5, 58.5, 14.4, and 5.4%, respectively. The particle size of resulting cerium concentrate was fairly uniform and about 0.1 μm

  11. Desulfurization of the exhaust gas with zeolite synthesized from diatomaceous earth

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, M

    1975-07-01

    Both A type and X type zeolites were prepared from diatomaceous earth and tested for use in flue gas desulfurization. Several diatomaceous earths of known chemical compositions were mixed to obtain a desired molar ratio of silicates, whose maturation was achieved in two steps; room temperature maturation and reflux maturation by heating. If the second maturation was carried out for more than 12 hr, the X type zeolite formation was low. At the best conditions, 80% pure zeolite could be prepared for both types according to their x-ray diffraction spectra. The synthesized x type zeolite adsorbed sulfur dioxide more efficiently than A type zeolite. When a simulated flue gas containing 680 to 840 ppM sulfur dioxide was passed at a flow rate of 9.0 Nl/min through a 250 g zeolite column, the column breaking time (time required for the SO/sub 2/ concentration of the column effluent to reach 10% of the initial SO/sub 2/ concentration) was 5.3 hr, while that for the commercial zeolite and activated carbon was 6.8 hr and 8.0 hr, respectively. If the flue gas contained more than 1% moisture, the adsorbed water reacted with SO/sub 2/ and the zeolite crystal tended to break down. The use of zeolite for flue gas desulfurization was more costly than the use of activated carbon.

  12. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    Science.gov (United States)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  13. Current extraction and separation of uranium, thorium and rare earths elements from monazite leach solution using organophosphorous extractants

    International Nuclear Information System (INIS)

    Biswas, Sujoy; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.

    2014-01-01

    A new process based on solvent extraction has been developed for separation of uranium, thorium and rare earths from monazite leach solution using organophosphorous extractants. The Thorium cake coming from monazite source was dissolved in HNO 3 medium in presence of trace amount of HF for feed preparation. The separation of U(VI) was carried out by liquid-liquid extraction using tris-2-ethyl hexyl phosphoric acid (TEHP) in dodecane leaving thorium and rare earths elements in the raffinate. The thorium from raffinate was selectively extracted using 1M tri iso amyl phosphate (TiAP) in dodecane in organic phase leaving all rare earths elements in aqueous solution. The uranium and thorium from organic medium was quantitatively stripped using 0.05 M HNO 3 counter current mode. Results indicate the quantitative separation of uranium, thorium and rare earths from thorium cake (monazite source) using organophosphorous extractant in counter current mode

  14. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    Science.gov (United States)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  15. Raising awareness for research on earth walls, and earth scientific aspects

    Science.gov (United States)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Baas, Henk; Groenewoudt, Bert; Peen, Charlotte

    2013-04-01

    A conference to raise awareness In the Netherlands, little research on earth walls has been done. To improve attention for earth walls, a number of organisations, including Geoheritage NL, organized a conference at the RCE, the Cultural Heritage Agency of the Netherlands. The conference* presented a state-of-the-art of research done. The book with the presentations, and extra case studies added, was published in December 2012. The book concludes with a research action list, including earth science research, and can be downloaded freely from the internet. It has English summaries. The earth science aspects Historical earth walls do not only add cultural value to a landscape, but also geodiversity value. Apart from geomorphological aspects, the walls contain information about past land- and climate conditions: - They cover up a former topography, a past landscape. A relevant source of scientific information where lands are levelled, as is the case in many parts of The Netherlands; - The soil formation under the earth wall is a reference soil. The soil formation in the top of the wall gives insight in the rate of soil formation in relationship with the age and parent material of the wall; - The soil profiles of different age have ecological significance. Older walls with a more pronounced soil formation often hold forest flora that has disappeared from the surrounding environment, such as historical bush or tree species, autogenetic DNA material or a specific soil fauna; - The materials in the earth walls tell about the process of wall-building. Paleosols and sedimentary structures in the earth walls, in the gullies and colluvial fans along the walls contain information about past land management and climate. - The eroded appearance of the earth walls is part of their history, and contain information about past management and land conditions, has ecological relevance, for example for insects, and is often visually more interesting. Insight in the rates of erosion are

  16. Extraction of rare earths from iron-rich rare earth deposits

    OpenAIRE

    Bisaka, K.; Thobadi, I.C.; Pawlik, C.

    2017-01-01

    Rare earth metals are classified as critical metals by the United Nations, as they have found wide application in the fabrication of magnets, particularly those used in green energy technologies which mitigate global warming. Processing of ores containing rare earth elements is complex, and differs according to the nature of each ore. In the conventional process, run of mine (ROM) ores are processed in a physical separation plant to produce a concentrate from which rare earth elements are ext...

  17. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    International Nuclear Information System (INIS)

    DEROSA, D.C.

    2000-01-01

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping

  18. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    DEROSA, D.C.

    2000-01-13

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

  19. Astrobiology in the Field: Studying Mars by Analogue Expeditions on Earth

    Science.gov (United States)

    Conrad, Pamela G.

    2011-01-01

    We will present a strategy for how one prepares to engage in fieldwork on another planets by practicing in analogous environments on the Earth, including at Mono Lake. As an example, we will address the problem of how to study the habitability of an environment when you have no idea what kind of life might be there to exploit it. This will all be related to the upcoming launch of the Mars Science Laboratory to Mars in late November this year.

  20. Preparation of polycrystalline lithium-yttrium fluoride for subsequent mono crystallization

    International Nuclear Information System (INIS)

    Kowalczyk, E.; Radomski, J.; Diduszko, R.; Iwanejko, J.; Kowalczyk, Z.; Grasza, K.

    1994-01-01

    High purity lithium-yttrium (YLF) doped with rare earth elements (Nd, Pr, Ho or Tm) was obtained in a two-stage synthesis consisting of (1) reaction of ammonium fluoride with a mixture of lithium carbonate, yttrium oxide, and oxides of lanthanides, and (2) heating of the obtained reaction products at a temperature of about 700 C in an inert gas atmosphere. The phase and chemical purities of the obtained materials were characterized by X-ray diffraction and mass spectrometry techniques. Single crystal growth tests were carried out by means of the Bridgman method. The results showed that the proposed method for manufacture of polycrystalline YLF doped with rare earth elements is appropriate in principle but some parameters of the preparation process are to be more strictly defined. (author). 9 refs, 4 figs, 1 tab

  1. Preparation of polycrystalline lithium-yttrium fluoride for subsequent mono crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, E.; Radomski, J.; Diduszko, R.; Iwanejko, J. [Institute of Vacuum Technology, Warsaw (Poland); Kowalczyk, Z. [Warsaw Univ. (Poland); Grasza, K. [Polska Akademia Nauk, Warsaw (Poland). Inst. Fizyki

    1994-12-31

    High purity lithium-yttrium (YLF) doped with rare earth elements (Nd, Pr, Ho or Tm) was obtained in a two-stage synthesis consisting of (1) reaction of ammonium fluoride with a mixture of lithium carbonate, yttrium oxide, and oxides of lanthanides, and (2) heating of the obtained reaction products at a temperature of about 700 C in an inert gas atmosphere. The phase and chemical purities of the obtained materials were characterized by X-ray diffraction and mass spectrometry techniques. Single crystal growth tests were carried out by means of the Bridgman method. The results showed that the proposed method for manufacture of polycrystalline YLF doped with rare earth elements is appropriate in principle but some parameters of the preparation process are to be more strictly defined. (author). 9 refs, 4 figs, 1 tab.

  2. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  3. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  4. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  5. Preparation and chemical crystallographic study of new hydrides and hydro-fluorides of ionic character; Preparation et etude cristallochimique de nouveaux hydrures et fluorohydrures a caractere ionique

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyung-Ho

    1988-07-22

    Within the context of a growing interest in the study of reversible hydrides with the perspective of their application in hydrogen storage, this research thesis more particularly addressed the case of ternary hydrides and fluorides, and of hydro-fluorides. The author reports the development of a method of preparation of alkaline hydrides, of alkaline earth hydrides and of europium hydride, and then the elaboration of ternary hydrides. He addresses the preparation of caesium fluorides and of calcium or nickel fluorides, of Europium fluorides, and of ternary fluorides. Then, he addresses the preparation of hydro-fluorides (caesium, calcium, europium fluorides, and caesium and nickel fluorides). The author presents the various experimental techniques: chemical analysis, radio-crystallographic analysis, volumetric mass density measurement, magnetic measurements, ionic conductivity measurements, Moessbauer spectroscopy, and nuclear magnetic resonance. He reports the crystallographic study of some ternary alkaline and alkaline-earth hydrides (KH-MgH{sub 2}, RbH-CaH{sub 2}, CsH-CaH{sub 2}, RbH-MgH{sub 2} and CsH-MgH{sub 2}) and of some hydro-fluorides (CsCaF{sub 2}H, EuF{sub 2}H, CsNiF{sub 2}H) [French] Dans une premiere partie, de nouveaux hydrures ternaires ont ete prepares et caracterises. Les systemes etudies sont AH-MH 2 (A = K, Rb, Cs et M = Mg, Ca). Dans les systemes AH-MgH 2 l'evolution structurale a ete discutee en fonction du caractere iono-covalent de la liaison magnesium-hydrogene. Dans une deuxieme partie, plusieurs nouveaux fluorohydrures ont ete mis en evidence. L'effet de la substitution de l'hydrogene au fluor dans ces phases a ete etudiee en utilisant la RMN, la spectroscopie Moessbauer, la conductivite ionique et les mesures magnetiques.

  6. Structure and spectroscopy of rare earth – Doped lead phosphate glasses

    International Nuclear Information System (INIS)

    Pisarski, Wojciech A.; Żur, Lidia; Goryczka, Tomasz; Sołtys, Marta; Pisarska, Joanna

    2014-01-01

    Highlights: • Lead phosphate glasses doped with rare earth ions were prepared. • The local structure was examined using X-ray diffraction and spectroscopic methods. • Different structural phosphate groups are present in lead phosphate glasses. • The electron–phonon coupling strength and phonon energy of the glass host was determined. • Several observed emission bands are due to 4f–4f electronic transitions of rare earth ions. -- Abstract: Lead–gallium phosphate glasses doped with rare the earth ions (Eu 3+ , Dy 3+ , Tb 3+ , Er 3+ ) were synthesized. The structure of obtained glasses was examined by means of use: X-ray diffraction (XRD), nuclear magnetic resonance ( 207 Pb and 31 P NMR), fourier transform infrared (FT-IR) and Raman spectroscopy. In contrast to fully amorphous Ln-doped samples (Ln = Eu, Dy, Tb), in Er-doped sample the GaPO 4 crystalline phase was identified. It was found from the NMR, FT-IR and Raman spectroscopic techniques that, different structural phosphate groups were present in lead phosphate glasses. Based on absorption measurements, the UV–VIS cut-off wavelength for lead phosphate glass was determined and its value is close to 305 nm. Excitation and emission spectra of rare earths were also detected. From excitation spectra of Eu 3+ the electron–phonon coupling strength and phonon energy of the glass host were determined. Due to 4f 6 –4f 6 (Eu 3+ ), 4f 8 –4f 8 (Tb 3+ ), 4f 9 –4f 9 (Dy 3+ ) and 4f 11 –4f 11 (Er 3+ ) electronic transitions of trivalent rare earth ions several luminescence bands were stated

  7. Surface biosignatures of exo-earths: remote detection of extraterrestrial life.

    Science.gov (United States)

    Hegde, Siddharth; Paulino-Lima, Ivan G; Kent, Ryan; Kaltenegger, Lisa; Rothschild, Lynn

    2015-03-31

    Exoplanet discovery has made remarkable progress, with the first rocky planets having been detected in the central star's liquid water habitable zone. The remote sensing techniques used to characterize such planets for potential habitability and life rely solely on our understanding of life on Earth. The vegetation red edge from terrestrial land plants is often used as a direct signature of life, but it occupies only a small niche in the environmental parameter space that binds life on present-day Earth and has been widespread for only about 460 My. To more fully exploit the diversity of the one example of life known, we measured the spectral characteristics of 137 microorganisms containing a range of pigments, including ones isolated from Earth's most extreme environments. Our database covers the visible and near-infrared to the short-wavelength infrared (0.35-2.5 µm) portions of the electromagnetic spectrum and is made freely available from biosignatures.astro.cornell.edu. Our results show how the reflectance properties are dominated by the absorption of light by pigments in the visible portion and by strong absorptions by the cellular water of hydration in the infrared (up to 2.5 µm) portion of the spectrum. Our spectral library provides a broader and more realistic guide based on Earth life for the search for surface features of extraterrestrial life. The library, when used as inputs for modeling disk-integrated spectra of exoplanets, in preparation for the next generation of space- and ground-based instruments, will increase the chances of detecting life.

  8. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    Science.gov (United States)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  9. Preparing for the regulation of greenhouse gases

    International Nuclear Information System (INIS)

    Ezekiel, R.; Wilson, P.

    2001-01-01

    The Earth is warming, and this belief is shared by the leading scientists that sit on the Intergovernmental Panel on Climate Change, where it is expected that the average surface temperature of the Earth will rise 2.5 to 10.4 degrees Fahrenheit between 1990 and 2100. It is felt that the main culprit is greenhouse gas emissions such as carbon dioxide. The Kyoto Protocol was adopted in 1992 with the aim of reducing greenhouse gas emissions to specified targets below 1990 levels by 2012. For Canada, this commitment is a reduction to 6 per cent below 1990 levels. To avoid penalizing a country that adopts greenhouse gas regulations where the neighbouring country does not follow, negotiations are being held at the international level in an attempt to keep everyone on a level playing field. The United States recently decided not to pursue a cap on greenhouse gas emissions, which could seriously jeopardize the effectiveness of the Kyoto Protocol. The authors examined what the future looks like, in terms of policy options and market-based instruments. In the next section, they discussed the preparations for the regulation of greenhouse gases. The topics reviewed were carbon taxes, command and control regulation, emissions trading, contracts and baseline protection. Canada's baseline protection initiative (BPI) process was closely examined, and identified what reductions are eligible and touched upon ownership issues. The authors concluded that it might be prudent for emitters in Canada to prepare for a variety of regulatory scenarios, as there are a number of uncertainties remaining. Emissions trading must be carefully documented

  10. The preparation and analysis of minerals for use as reference material

    International Nuclear Information System (INIS)

    Stoch, H.

    1976-01-01

    This report covers the progress made in the collection of the material for reference samples, and the five interlaboratory analytical programmes (ferrochromium slags, fluorspar, 'mixed' NIMROC samples, rare earths, and ferromanganese slags). The description of the internal analytical programme has been subdivided into eight main categories, and a comprehensive list of evaluated results covering a wide range of materials is included. Additional results for thorium, rare earths, tin, tantalum, and niobium for the appropriate reference samples are included in updated tables. The main purpose in the preparation of these samples is to provide control samples for analytical work at the National Institute for Metallurgy. Where there is a special need, limited quantities of the samples can be made available to other laboratories

  11. Magnetic interactions in rhenium-containing rare earth double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths)

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Atsuhide; Doi, Yoshihiro; Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp

    2017-04-15

    The perovskite-type compounds containing both rare earth and rhenium Sr{sub 2}LnReO{sub 6} (Ln=Y, Tb-Lu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln{sup 3+} and Re{sup 5+} ions are structurally ordered at the B site of the perovskite SrBO{sub 3}. Magnetic anomalies are found in their magnetic susceptibility and specific heat measurements at 2.6–20 K for Ln=Y, Tb, Dy, Yb, Lu compounds. They are due to magnetic interactions between Re{sup 5+} ions. The results of the magnetic hysteresis and remnant magnetization measurements for Sr{sub 2}YReO{sub 6} and Sr{sub 2}LuReO{sub 6} indicate that the antiferromagnetic interactions between Re{sup 5+} ions below transition temperatures have a weak ferromagnetic component. The analysis of the magnetic specific heat data for Sr{sub 2}YbReO{sub 6} shows that both the Yb{sup 3+} and Re{sup 5+} ions magnetically order at 20 K. For the case of Sr{sub 2}DyReO{sub 6}, magnetic ordering of the Re{sup 5+} moments occurs at 93 K, and with decreasing temperature, the moments of Dy{sup 3+} ferromagnetically order at 5 K from the measurements of magnetic susceptibility and specific heat. - Graphical abstract: Crystal structure of double perovskite Sr{sub 2}LnReO{sub 6}. Red and black lines show cubic and monoclinic unit cells, respectively. - Highlights: • Double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths) were prepared. • They show an antiferromagnetic transition at 2.6–20 K. • In Sr{sub 2}DyReO{sub 6}, Dy and Re moments magnetically order at 5 and 93 K, respectively.

  12. Low-temperature SCR of NO with NH{sub 3} over activated semi-coke composite-supported rare earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinping; Yan, Zheng; Liu, Lili; Zhang, Yingyi; Zhang, Zuotai; Wang, Xidong, E-mail: xidong@pku.edu.cn

    2014-08-01

    The catalysts with different rare earth oxides (La, Ce, Pr and Nd) loaded onto activated semi-coke (ASC) via hydrothermal method are prepared for the selective catalytic reduction (SCR) of NO with NH{sub 3} at low temperature (150–300 °C). It is evidenced that CeO{sub 2} loaded catalysts present the best performance, and the optimum loading amount of CeO{sub 2} is about 10 wt%. Composite catalysts by doping La, Pr and Nd into CeO{sub 2} are prepared to obtain further improved catalytic properties. The SCR mechanism is investigated through various characterizations, including XRD, Raman, XPS and FT-IR, the results of which indicate that the oxygen defect plays an important role in SCR process and the doped rare earth elements effectively serve as promoters to increase the concentration of oxygen vacancies. It is also found that the oxygen vacancies in high concentration are favored for the adsorption of O{sub 2} and further oxidation of NO, which facilitates a rapid progressing of the following reduction reactions. The SCR process of NO with NH{sub 3} at low temperature over the catalysts of ASC composite-supported rare earth oxides mainly follows the Langmuir–Hinshlwood mechanism.

  13. Earth elevation map production and high resolution sensing camera imaging analysis

    Science.gov (United States)

    Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai

    2010-11-01

    The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.

  14. Preparation and luminescent properties of the novel polymer-rare earth complexes composed of Poly(ethylene-co-acrylic acid) and Europium ions

    Science.gov (United States)

    Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde

    2018-06-01

    A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.

  15. Towards Big Earth Data Analytics: The EarthServer Approach

    Science.gov (United States)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  16. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  17. Establishing Esri ArcGIS Enterprise Platform Capabilities to Support Response Activities of the NASA Earth Science Disasters Program

    Science.gov (United States)

    Molthan, A.; Seepersad, J.; Shute, J.; Carriere, L.; Duffy, D.; Tisdale, B.; Kirschbaum, D.; Green, D. S.; Schwizer, L.

    2017-12-01

    NASA's Earth Science Disasters Program promotes the use of Earth observations to improve the prediction of, preparation for, response to, and recovery from natural and technological disasters. NASA Earth observations and those of domestic and international partners are combined with in situ observations and models by NASA scientists and partners to develop products supporting disaster mitigation, response, and recovery activities among several end-user partners. These products are accompanied by training to ensure proper integration and use of these materials in their organizations. Many products are integrated along with other observations available from other sources in GIS-capable formats to improve situational awareness and response efforts before, during and after a disaster. Large volumes of NASA observations support the generation of disaster response products by NASA field center scientists, partners in academia, and other institutions. For example, a prediction of high streamflows and inundation from a NASA-supported model may provide spatial detail of flood extent that can be combined with GIS information on population density, infrastructure, and land value to facilitate a prediction of who will be affected, and the economic impact. To facilitate the sharing of these outputs in a common framework that can be easily ingested by downstream partners, the NASA Earth Science Disasters Program partnered with Esri and the NASA Center for Climate Simulation (NCCS) to establish a suite of Esri/ArcGIS services to support the dissemination of routine and event-specific products to end users. This capability has been demonstrated to key partners including the Federal Emergency Management Agency using a case-study example of Hurricane Matthew, and will also help to support future domestic and international disaster events. The Earth Science Disasters Program has also established a longer-term vision to leverage scientists' expertise in the development and delivery of

  18. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science

    Science.gov (United States)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos

    2016-04-01

    facilities, complex processing and visualization tools etc. Computational Earth Science (CES) services are identified as a transversal activity and is planned to be harmonized and provided within the ICS. Currently a comprehensive requirements and use cases elicitation process is started through interactions with the ten different Thematic Core Service work packages. The results of this will be used to harmonize the DDSS elements and prepare for interoperability across the various disciplines. For this purpose a dedicated workshop is planned where the representatives of all the TCS communities will jointly discuss and agree upon the harmonization process. The technical integration of the DDSS elements to a metadata structure adopting CERIF (Common European Research Information Format) standards will start after the harmonization process is completed. Various levels of maturity in the handling and availability of TCS specific DDSS elements among the different TCS groups, is one of the most challenging aspects of this integration. For this reason a roadmap for integration is being prepared where most mature DDSS elements will be implemented during the next 2 years after a community driven testing and validation process. Integration of the remaining DDSS elements will be a continuously evolving process in the coming years.

  19. Preparation and thermopower of new mischmetal-based partially filled skutterudites Mm yFe4-x(Co/Ni) xSb12

    International Nuclear Information System (INIS)

    Bourgoin, B.; Berardan, D.; Alleno, E.; Godart, C.; Rouleau, O.; Leroy, E.

    2005-01-01

    We report on sample preparation and electron probe microanalysis (EPMA) in the series Mm y Fe 4-x (Co/Ni) x Sb 12 with Mm being mischmetal. We show the possibility of preparing mischmetal-based partially filled skutterudites without any segregation of the rare-earths. Room temperature thermopower is similar in mischmetal-based skutterudites to cerium- or ytterbium-based partially filled skutterudites

  20. Development of separation process of Dy, Y, Tm and Yb from heavier rare earth residue by solvent impregnated resin

    International Nuclear Information System (INIS)

    Shibata, J.; Matsumoto, S.

    1998-01-01

    Full text: Heavier rare earth which is contained in a small amount in ores such as bastnesite and monazite has been accumulated as heavier rare earth residue without doing separation and purification due to lack of suitable methods. The heavier rare earth residue includes seven rare earth elements such as Tb, Dy, Ho, Y, Er, Tm and Yb. Separation and recovery process of Dy, Y, Tm and Yb from leached solution of the heavier rare earth residue was investigated by using a column method with a solvent impregnated resin. The solvent impregnated resin was prepared by impregnation of organophosphorous extractant whose trade name is PC-88A into a macro porous resin, Amberlite XAD-7. It was almost impossible to separate them in simple adsorption and elution steps. However, we attained to individually separate Dy, Y, Tm and Yb from the leached solution first by changing eluent concentration gradually from pH 2 to 2mol/ l HCl in the elution step, and secondly by using a development column and changing eluent concentration in the elution step. The separation process flow was proposed for heavier rare earth residue by using the solvent impregnated resin method

  1. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  2. Studies on Three Liquid Phase Extraction (TLPE) system for separation of rare earths

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Anitha, M.; Singh, H.

    2014-01-01

    Three-liquid-phase extraction (TLPE) is relatively a new separation technique, which takes the advantage of the differences in physicochemical properties of three coexisted phases to achieve multi-phase liquid separation of two or more components in one-step extraction. TLPE system consists of three liquid layers namely an organic solvent phase (organophosphorous type) and two aqueous phases one rich in polymer phase (poly alkylene glycol) and other a salt solution. To study the feasibility of using such system for separation of rare earths, it is important to optimize the preparatory conditions by selective suitable polymer and salt solutions at an appropriate pH to obtain a stable three phase layers to effect the separation. D2EHPA (di-2-ethyl hexyl phosphoric acid) is a well- established extractant in the rare earth industry and has been chosen in the present work to form a TLPE with polymer and salt solution. In the present investigation after preparing the stable three phase, the feasibility of using TLPE has been examined to separate rare earths from a multicomponent solutions. This study has demonstrated the ability of TLPE having D2EHPA as organic phase to separate rare earths from a multicomponent system. Effect of pH, concentration and types of polymer, complexing agent and D2EHPA concentration has been studied. Variation in pH study indicated that 4.0 leads to extraction of rare earths in the polymer phase. PEG 600 was found to be best amongst the polymer investigated. Presence of DTPA as complexing agent in the salt solution having pH >4.0 resulted in enhanced extraction of rare earths in PEG phase

  3. Structure study and properties of rare earth-rich glassed for the conditioning of nuclear waste

    International Nuclear Information System (INIS)

    Bardez, I.

    2004-11-01

    A new nuclear glass composition, able to immobilize highly radioactive liquid wastes from high burn-up UO 2 fuel, was established and its structure studied. The composition of the selected rare earth-rich glass is (molar %): 61.79 SiO 2 - 8.94 B 2 O 3 - 3.05 Al 2 O 3 - 14.41 Na 2 O - 6.32 CaO - 1.89 ZrO 2 - 3.60 RE 2 O 3 (with RE = La, Ce, Pr and Nd) The aim of this study was to determine the local environment of the rare earth in this glass and also to glean information about the effect of glass composition on the rare earth neighbouring (influence of Si, B, Al, Na and Ca contents). To this end, several series of glasses, prepared from the baseline glass, were studied by different characterisation methods such as EXAFS spectroscopy at the neodymium L III -edge, optical absorption spectroscopy, Raman spectroscopy and 29 Si, 27 Al and 11 B MAS-NMR. By coupling all the results obtained, several hypotheses about the nature of the rare earth neighbouring in the glass were proposed. (author)

  4. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    Science.gov (United States)

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  5. A high resolution cross section transmission electron microscopy study of epitaxial rare earth fluoride/GaAs(111) interfaces prepared by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chien, C.J.; Bravman, J.C.

    1990-01-01

    The authors report the HRXTEM study of epitaxial rare earth fluoride/GaAs(111) interfaces. Such interfaces are of interest because they are the starting point for growth of buried epitaxial rare earth/rare earth fluoride sandwich structures which exhibit interesting and non bulk-like magnetic properties. Also, the optical transitions in ultrathin epitaxial NdF 3 films may be influenced by strain and defects in the NdF 3 film and the nature of the interface to GaAs. The authors find that the rare earth fluoride/GaAs interfaces are semi-coherent but chemically abrupt with the transition taking place within 3 Angstrom. However, the interface is physically rough and multiple monolayer steps in the GaAs surface tend to tilt boundaries in the fluoride. The origin of these steps is believed to be thermal etching of the GaAs during the heat- cleaning stage prior to epitaxy. The surface of the fluoride film is much smoother than the initial GaAs surface indicating planarization during epitaxy

  6. Effect of the kind of alkaline and rare earth ions on the structure of a glass rich in earth; Effet de la nature des ions alcalins et alcalino-terreux sur la structure d un verre riche en terre

    Energy Technology Data Exchange (ETDEWEB)

    Quintas, Arnaud; Caurant, Daniel; Majerus, Odile [Laboratoire de Chimie Appliquee de l Etat Solide, UMR 7574, ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, (France); Lenoir, Marion; Dussossoy, Jean-Luc [Commissariat a l Energie Atomique, Centre d Etudes de la Vallee du Rhone, DIEC/SCDV/LEBM, 30207 Bagnols-sur-Ceze, (France); Charpentier, Thibault [Service de Chimie Moleculaire, DSM/DRECAM/CEA Saclay, 91191 Gif-sur-Yvette Cedex, (France); Neuville, Daniel R. [Laboratoire de Physique des Mineraux et des Magmas, UMR 7047-CNRS-IPGP, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, (France); Gervais, C. [Laboratoire de Chimie de la matiere condensee, UMR7574, Universite Pierre et Marie Curie, 4 place Jussieu, F-75252 Paris Cedex 05, (France)

    2006-07-01

    In the framework of a structural study of a nuclear wastes containment glass of type alumino borosilicate and rich in rare earths, the influence of the kind of alkaline or rare earth ions is analyzed. For that, two glasses series have been prepared in which the Na{sup +} ion (respectively Ca{sup 2+} ions) present in the standard composition is totally substituted by another alkaline ion Li{sup +}, K{sup +}, Rb{sup +} or Cs{sup +} (respectively another rare earth ion Mg{sup 2+}, Sr{sup 2+} or Ba{sup 2+}). These glasses, analyzed by optical absorption, Raman and {sup 27}Al or {sup 11}B NMR spectroscopies have revealed the strong impact of the kind of the modifying ion as well as the structure of the vitreous lattice (variation of the ratio BO{sub 3}/BO{sub 4} and local variations of the polymerization degree) than the local surroundings of the rare earth (decrease of the covalency degree of the bond Nd-O with the increase of the field force of the modifying ion). (O.M.)

  7. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  8. Observation and integrated Earth-system science: A roadmap for 2016-2025

    Science.gov (United States)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  9. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  10. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    International Nuclear Information System (INIS)

    Chevalier, G.; Chevalier, G.; Sinatra, S.T.; Oschman, J.L.; Sokal, K.; Sokal, P.

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and un wellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits including better sleep and reduced pain from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance

  11. Next-generation Digital Earth.

    Science.gov (United States)

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  12. Synthesis and crystal structure of the isotypic rare earth thioborates Ce[BS3], Pr[BS3], and Nd[BS3

    International Nuclear Information System (INIS)

    Hunger, Jens; Borna, Marija; Kniep, Ruediger

    2010-01-01

    The orthothioborates Ce[BS 3 ], Pr[BS 3 ] and Nd[BS 3 ] were prepared from mixtures of the rare earth (RE) metals together with amorphous boron and sulfur summing up to the compositions CeB 3 S 6 , PrB 5 S 9 and NdB 3 S 6 . The following preparation routes were used: solid state reactions with maximum temperatures of 1323 K and high-pressure high-temperature syntheses at 1173 K and 3 GPa. Pr[BS 3 ] and Nd[BS 3 ] were also obtained from rare earth chlorides RECl 3 and sodium thioborate Na 2 B 2 S 5 by metathesis type reactions at maximum temperatures of 1073 K. The crystal structure of the title compounds was determined from X-ray powder diffraction data. The thioborates are isotypic and crystallize in the orthorhombic spacegroup Pna2 1 (No. 33; Z=4; Ce: a=7.60738(6)A, b=6.01720(4)A, c=8.93016(6)A; Pr: a=7.56223(4)A, b=6.00876(2)A, c=8.89747(4)A; Nd: a=7.49180(3)A, b=6.00823(2)A, c=8.86197(3)A) . The crystal structures contain isolated [BS 3 ] 3- groups with boron in trigonal-planar coordination. The sulfur atoms form the vertices of undulated kagome nets, which are stacked along [100] according to the sequence ABAB. Within these nets every second triangle is occupied by boron and the large hexagons are centered by rare earth ions, which are surrounded by overall nine sulfur species. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure The isotypic orthothioborates Ce[BS 3 ], Pr[BS 3 ] and Nd[BS 3 ] were prepared using different preparation routes. The crystal structure of the title compounds was determined from X-ray powder diffraction data. The crystal structures contain isolated [BS 3 ] 3- groups with boron in trigonal-planar coordination. The sulfur atoms form the vertices of corrugated kagome nets (sketched with blue dotted lines), which are stacked along [100] according to the sequence ABAB. Within these nets every second triangle is occupied by boron and the large hexagons are centered by rare earth ions, which are surrounded by

  13. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Johnson, Benjamin W.; Goldblatt, Colin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  14. Determination of rare earth elements by photometric microtitration using xylenol orange

    International Nuclear Information System (INIS)

    Kuban, V.; Jancarova, I.; Sommer, L.

    1989-01-01

    Stock solutions were prepared of rare earth elements in approx 0.1M nitric acid, xylenol orange and EDTA. All measurements were made using a double-beam digital recording spectrophotometer (Superscan 3) with a titration measuring cell with a volume of approx. 30 ml and optical length of 20 mm. Titration agents were pipetted using an automatic piston microburette. Measured were absorbance pH curves of solutions of several lanthanides with xylenol orange, the absorption spectra of solutions of xylenol orange with lanthanides with increasing addition of titration agents EDTA, and the titration curves of the dependence of absorbance of lanthanide solutions with xylenol orange during titration with the EDTA solution. It was found that photometric microtitration allowed accurate and correct determination of all rare earth elements within the concentration range 0.04 - 0.5 mmol/l by titration with standard EDTA solution of a concentration of xylenol orange of 20 μmol/l. (E.S.). 4 figs., 3 tabs., 7 refs

  15. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  16. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  17. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  18. Studies with the EC-Earth seamless Earth system prediction model

    NARCIS (Netherlands)

    Hazeleger, W.; Bintanja, R.

    2012-01-01

    EC-Earth is a new Earth System Model (ESM) based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF). Climate and weather forecasting applications share a common ancestry and are build on the same physical principles. The emerging concept of

  19. Study of the oxygen reduction reaction using Pt-Rare earths (La, Ce, Er) electrocatalysts for application of PEM fuel cells

    International Nuclear Information System (INIS)

    Gomes, Thiago Bueno

    2013-01-01

    The complexity of the oxygen reduction reaction (ORR) and its potential losses make it responsible for the most part of efficiency losses at the Fuel Cells. For this reaction the electrocatalyst witch is most appropriated and shows better performance is platinum, a noble metal that elevates the cost, raising barriers for Fuel Cells technology to enter the market. First this work focuses on reducing the amount of platinum used in the cathode, by being replaced by rare earths. The most common methods of synthesis involves a large amount of steps and this work proposed to prepare the electrocatalyst through a simpler way that would not take so many steps and time to be done. Using an ultrasound mixer the electrocatalyst was prepared mixing platinum supported on carbon black and the rare earths lanthanum, cerium and erbium oxides to be applied in a half-cell study of the ORR. The Koutecky-Levich plots shows that among the electrocatalysts prepared the Pt80Ce20/C had the catalytic activity close to the commercial BASF platinum on carbon black, suggesting that the reaction was taken by the 4-electron path. As found in some works in literature, among the rare earth used to study the ORR, cerium is the one witch shows the better performance because it is able to store and provide oxygen. This feature is of great interest for the ORR because this reaction is first order to the oxygen concentration. Results show that is possible to reduce the amount of platinum maintaining the same electrocatalyst activity. (author)

  20. Investigation on rare earth magnets recycling by organophosphoric extractant encapsulated polymeric beads for separation of dysprosium

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Kain, V.

    2017-01-01

    Rare earth elements (REEs) are a basic requirement of the electronics and new industries including green technology. In the present work an organophosphoric extractant encapsulating polyethersulfone (PES) beads has been developed and employed for dysprosium (Dy) separation from aqueous stream. Polyethersulfonic beads encapsulating PC88A were prepared by phase inversion method. During the synthesis of the beads, preparatory parameters were also optimized to obtain best suited beads which were subsequently characterized for their encapsulation capacity and micro structural investigation. The results obtained in the present investigation suggested that PES/PVAJPC88A composite beads could be used for separation of rare earths from aqueous medium obtained from the solubilisation of magnetic scrap materials

  1. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  2. The Impact of Discovering Life beyond Earth

    Science.gov (United States)

    Dick, Steven J.

    2016-01-01

    Introduction: astrobiology and society Steven J. Dick; Part I. Motivations and Approaches. How Do We Frame the Problems of Discovery and Impact?: Introduction; 1. Current approaches to finding life beyond earth, and what happens if we do Seth Shostak; 2. The philosophy of astrobiology: the Copernican and Darwinian presuppositions Iris Fry; 3. History, discovery, analogy: three approaches to the impact of discovering life beyond earth Steven J. Dick; 4. Silent impact: why the discovery of extraterrestrial life should be silent Clément Vidal; Part II. Transcending Anthropocentrism. How Do We Move beyond our Own Preconceptions of Life, Intelligence and Culture?: Introduction; 5. The landscape of life Dirk Schulze-Makuch; 6. The landscape of intelligence Lori Marino; 7. Universal biology: assessing universality from a single example Carlos Mariscal; 8. Equating culture, civilization, and moral development in imagining extraterrestrial intelligence: anthropocentric assumptions? John Traphagan; 9. Communicating with the other: infinity, geometry, and universal math and science Douglas Vakoch; Part III. Philosophical, Theological, and Moral Impact. How Do We Comprehend the Cultural Challenges Raised by Discovery?: Introduction; 10. Life, intelligence and the pursuit of value in cosmic evolution Mark Lupisella; 11. 'Klaatu barada nikto' - or, do they really think like us? Michael Ruse; 12. Alien minds Susan Schneider; 13. The moral subject of astrobiology: guideposts for exploring our ethical and political responsibilities towards extraterrestrial life Elspeth Wilson and Carol Cleland; 14. Astrobiology and theology Robin Lovin; 15. Would you baptize an extraterrestrial? Guy Consolmagno, SJ; Part IV. Practical Considerations: How Should Society Prepare for Discovery - and Non-Discovery?: Introduction; 16. Is there anything new about astrobiology and society? Jane Maienschein; 17. Evaluating preparedness for the discovery of extraterrestrial life: considering potential

  3. The Earth System Grid Federation (ESGF) Project

    Science.gov (United States)

    Carenton-Madiec, Nicolas; Denvil, Sébastien; Greenslade, Mark

    2015-04-01

    The Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) enterprise system is a collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of model output and observational data. ESGF's primary goal is to facilitate advancements in Earth System Science. It is an interagency and international effort led by the US Department of Energy (DOE), and co-funded by National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), National Science Foundation (NSF), Infrastructure for the European Network of Earth System Modelling (IS-ENES) and international laboratories such as the Max Planck Institute for Meteorology (MPI-M) german Climate Computing Centre (DKRZ), the Australian National University (ANU) National Computational Infrastructure (NCI), Institut Pierre-Simon Laplace (IPSL), and the British Atmospheric Data Center (BADC). Its main mission is to support current CMIP5 activities and prepare for future assesments. The ESGF architecture is based on a system of autonomous and distributed nodes, which interoperate through common acceptance of federation protocols and trust agreements. Data is stored at multiple nodes around the world, and served through local data and metadata services. Nodes exchange information about their data holdings and services, trust each other for registering users and establishing access control decisions. The net result is that a user can use a web browser, connect to any node, and seamlessly find and access data throughout the federation. This type of collaborative working organization and distributed architecture context en-lighted the need of integration and testing processes definition to ensure the quality of software releases and interoperability. This presentation will introduce the ESGF project and demonstrate the range of tools and processes that have been set up to support release management activities.

  4. Earth Science Outreach: A Move in the Right Direction

    Science.gov (United States)

    McLarty Halfkenny, B.; Schröder Adams, C.

    2009-05-01

    There is concern within the Geoscience Community about the public's limited understanding of Earth Science and its fundamental contribution to society. Earth Science plays only a minor role in public school education in Ontario leaving many students to stumble upon this field of study in post-secondary institutions. As the Earth Sciences offer relevant advice for political decisions and provide excellent career opportunities, outreach is an increasingly important component of our work. Recruitment of post-secondary students after they have chosen their discipline cannot remain the sole opportunity. Outreach must be directed to potential students at an early stage of their education. High school teachers are influential, directing students towards professional careers. Therefore we are first committed to reach these teachers. We provide professional development, resources and continued support, building an enthusiastic community of educators. Specific initiatives include: a three day workshop supported by a grant from EdGEO introducing earth science exercises and local field destinations; a resource kit with minerals, rocks, fossils, mineral identification tools and manuals; a CD with prepared classroom exercises; and in-class demonstrations and field trip guiding on request. Maintaining a growing network with teachers has proven highly effective. Direct public school student engagement is also given priority. We inspire students through interaction with researchers and graduate students, hand-on exercises, and by providing opportunities to visit our department and work with our collections. Successful projects include our week-long course "School of Rock" for the Enrichment Mini-Course Program, classroom visits and presentations on the exciting and rewarding career paths in geology during Carleton University open houses. Outreach to the general public allows us to educate the wider community about the Geoheritage of our region, and initiate discussions about

  5. The International Year of Planet Earth (2007-2009):Earth Sciences for Society

    Institute of Scientific and Technical Information of China (English)

    Eduardo F.J.de Mulder; Ted Nield; Edward Derbyshire

    2006-01-01

    Natural disasters like the 2004 tsunami bear graphic testimony to the Earth's incredible power. More effective use of geoscientific knowledge can save lives and protect property. Such knowledge also enables us to satisfy, in a sustainable manner,the growing need for Earth's resources by an expanding human population. Such knowledge is readily available in the practical experience and publications of some half a million Earth scientists all over the world, a professional community that is ready and willing to contribute to a safer, healthier and wealthier society if called upon by politicians and decision makers. Professional guidance by Earth scientists is available in many aspects of everyday life including, for example, identification of the best areas for urban expansion, sites to avoid for waste disposal, the location of new underground fresh water resources, and where certain toxic agents implicated in Earth-related diseases may be located, etc.The International Year of Planet Earth (2007-2009) aims to build on existing knowledge and make it more available for the improvement of everyday life, especially in the less developed countries, as expressed in the Year's subtitle: Earth sciences for Society. Ambitious outreach and science programmes constitute the backbone of the International Year, now politically endorsed by all 191 member states of the United Nations Organisation which has proclaimed 2008, the central year of the triennium, as the UN Year of Planet Earth. This paper describes who is behind the initiative,how it will work, and how the political process leading to United Nations proclamation proceeded. It also describes the financial and organisational aspects of the International Year, sets out the commitments necessary for the realization of the Year's ambitions by all nations, and explains how the raising of US$ 20 million will be approached.

  6. OpenEarth : Using Google Earth as outreach for NCK's data

    NARCIS (Netherlands)

    de Boer, G.J.; Baart, F.; Bruens, A.; Damsma, T.; van Geer, P.; Grasmeijer, B.; den Heijer, C.; van Koningsveld, M.; Santinelli, G.

    2012-01-01

    In 2003 various projects at Deltares and the TU-Delft merged their toolboxes for marine and coastal science and engineering into one toolbox, culminating in 2008 in an open source release, known as OpenEarthTools (OET). OpenEarth adopts the wikipedia approach to growth: web 2.0 crowd sourcing. All

  7. Interdisciplinary Navigation Unit for Mathematics and Earth Science Using Geospatial Technology

    Science.gov (United States)

    Smaglik, S. M.; Harris, V.

    2006-12-01

    Central Wyoming College (CWC) is located northeast of the Wind River Mountains. Although many people find recreation in the wilderness and remote areas surrounding the area, people still lose their lives because they become lost or disoriented. Creating an interdisciplinary field-based curriculum unit within mathematics (MATH 1000) and earth science (GEOL 1070) courses for non-science and education majors, provides students an opportunity to develop critical thinking skills and quantitative literacy. It also provides some necessary skills for survival and an understanding of landscape formation and wilderness navigation using geoscience. A brief history of navigation, including the importance of finding latitude and longitude, and the fairly recent implementation of the Global Positioning System, precedes activities in which students learn to use a basic compass. In addition to learning how to adjust for magnetic declination they read topographic maps, specifically USGS quadrangles, and learn how to use the scale in the legend to verify calculations using the Pythagorean Theorem. Students learn how to estimate distance and time required for traveling a pre- determined distance while using dimensional analysis to convert from the English system to metric. They learn how to read and measure latitude and longitude, as well as universal transverse Mercator projection measurements (UTM's), to find their position. The basic mathematical skills are assessed through hands-on activities such as finding their location on a map using a compass, a GPS unit, and Google Earth, and using a combination of maps, compasses, and GPS units to navigate through a course. Our goal is to provide life-saving information to students while incorporating necessary core curriculum from both mathematics and earth science classes. We work to create field-based activities, as well as assessments, to insure that students who complete the course are prepared to safely enjoy the outdoors and are

  8. Rare earths: occurrence, production and applications

    International Nuclear Information System (INIS)

    Murthy, T.K.S.; Mukherjee, T.K.

    2002-01-01

    The mining and processing of rare earth minerals, particularly of monazite, began in a modest way in 1880s for commercialized production of mantle for gas lighting. For all major applications up to mid-twentieth century- production of lighter flints, misch metal as a metallurgical alloying agent, colouring, decolourizing and polishing agents for glass, petroleum cracking catalysts and arc-carbons, unseparated or partially separated rare earths were adequate. These applications continue till today. With the development and industrial application of powerful techniques like ion exchange and solvent extraction for the separation of rare earths, the decades after 1960 saw increasing utilization of the specific properties of the individual rare earths. Some of these advanced technological applications include: special glass for optical systems including camera lenses, phosphors for colour television, cathode ray tubes and fluorescent lighting, X-ray intensification screens, high intensity permanent magnets, electro optical devices, lasers, hydrogen storage materials, hydride rechargeable batteries, photomagnetic data storage systems, autoexhaust catalysts, special ceramics of unusual toughness, artificial diamonds and nonpoisonous plastic colorants. The topics covered in the book include rare earths: their story identity, rare earth resources, processing of ores and recovery of mixed rare earths products, separation and purification of rare earths, nonmetallic applications of rare earths, rare earth metals: production and applications, rare earth alloys and their applications, analysis of rare earth, processing of rare earth resources in India by Indian Rare Earth Ltd. and availability and market conditions

  9. Preparation of red phosphor (Y, Gd)BO3:Eu by soft chemistry methods

    International Nuclear Information System (INIS)

    Cui Xiangzhong; Zhuang Weidong; Yu Zhijian; Xia Tian; Huang Xiaowei; Li Hongwei

    2008-01-01

    The three soft chemistry methods were employed to prepare the red phosphor (Y, Gd)BO 3 :Eu, such as coprecipitation-combustion method, salt assisted combustion method and emulsion method. The main factors affecting particle size, particle distribution and luminescent properties of the product were investigated in detail, and as a result, the preparation processes were optimized. The phosphors were characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM) and vacuum ultraviolet (VUV) spectra. Results reveal that phosphors with different morphology, small particle size and high luminescence intensity could be obtained by soft chemistry methods. The difference between the luminescence properties of phosphors in this work and commercial rare earth borate phosphor is discussed. The phosphor with grain shape and high luminescence intensity could be prepared by coprecipitation-combustion method, nanophosphor could be prepared by salt assisted combustion method, and spherical phosphor with a narrow size distribution could be obtained by using emulsion method

  10. Laboratory Earth: Connecting Everything to Everything Else Online for Pre-college Educators

    Science.gov (United States)

    Gosselin, D.; Bonnstetter, R.; Yendra, S.; Slater, T.

    2007-12-01

    The Laboratory Earth professional development series, which has been funded by NASA, consists of three, three- credit hour, graduate level, distance-delivered, online courses designed for K- 8 (and above) educators. Currently, we have delivered two module-based courses, Laboratory Earth I: Earth and its Systems and Laboratory Earth II: Earth's Natural Resource Systems. A third course tentatively titled, Laboratory Earth: Earth's Changing Environments, is under development. Our objectives are to deliver a high quality professional development experience, improve participant's ability to understand and apply Earth system science concepts in their classroom, and to increase teacher's sense of belonging to a community. Each course consists of four modules that engage students using multiple strategies to meet a variety of learning styles. To document learning, content questions are used to focus the student on the concepts they will be learning throughout the course. These questions are also used to assess the progress the student has made toward learning the concepts from the beginning to the end of the course. Analysis of the responses to the content questions from Lab Earth I demonstrates significant knowledge gains from the beginning to the end of the course. Preliminary data also suggests that the extent of learning is higher in the 8-week version than it is in the 16-week version of the course. An implicit goal of the courses is to help participants focus on learning, not grades. Unfortunately, grades have to be issued. Our grading strategy has evolved to a system that uses the ability of students to master course content along with active participation and the on-time, quality completion of the grading elements in the course. Course content mastery can be demonstrated in a variety of ways and it is up to the student to choose the method that they would like to use. Methods include writing essays, creating presentations, preparing an oral journal, and developing

  11. Preparation of MAl 2 O 4 : Eu 2+ , Sm 3+ (M = Ca, Sr, Ba) Phosphors ...

    African Journals Online (AJOL)

    A series of MAl2O4: Eu2+, Sm3+ (M = Ca, Sr, Ba) phosphors was prepared by the combustion method, and the influence of these alkaline earth metals on the structure and luminescent performances for these phosphors was investigated. A relationship was established between their composition, crystallization capacity and ...

  12. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  13. Radioluminescence of rare-earth doped aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, M.; Molina, P. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Barros, V. S.; Khoury, H. J.; Elihimas, D. R., E-mail: msantiag@exa.unicen.edu.ar [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, Recife, PE 50740-540 (Brazil)

    2011-10-15

    Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al{sub 2}O{sub 3} samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  14. Radioluminescence of rare-earth doped aluminum oxide

    International Nuclear Information System (INIS)

    Santiago, M.; Molina, P.; Barros, V. S.; Khoury, H. J.; Elihimas, D. R.

    2011-10-01

    Carbon-doped aluminum oxide (Al 2 O 3 :C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al 2 O 3 samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  15. Rare earths 1998 market update

    International Nuclear Information System (INIS)

    Tourre, J.M.

    1998-01-01

    The rare earth industry has always been a world of rapid change with the emergence of new markets, new ores and new players, as well as the disappearance of old applications. Rare earth based products are used in a great diversity of applications such as hard disk drives, CD drives, batteries, capacitors, pigments, ceramics, polishing powders, fuel cells, flints, catalyst converter, fluid cracking catalysts, etc. South East Asia holds the largest share of the known reserve of rare earth ores and is one of the major markets for rare earth compounds; in the last ten years, China has become the largest producer of rare earth intermediates as well as an important exporter of separated rare earth elements. Today, China has approximately 150 factories producing rare earth compounds, most of which are experiencing financial difficulties due to the lack of knowledge of true market needs, lack of control of their distribution channels and production over-capacity. Recently the Chinese rare earth producers have recognized the situation and efforts are underway to rationalize rare earth production. Japan has dominated many of the major application markets, and is by far the largest market for metal and alloy products. This will remain the case for the next five years; however, new countries are emerging as significant users of rare earth products such as Korea, Taiwan and Malaysia. During the last ten years rare earth producers adjusted to several radical changes that affected the raw materials, the application mix and the price structure. New producers have emerged, especially from China; some have subsequently stopped their activities while others have focused their efforts in a specific market segment

  16. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    Science.gov (United States)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  17. Magnetic properties and structural transitions of fluorite-related rare earth osmates Ln3OsO7 (Ln=Pr, Tb)

    International Nuclear Information System (INIS)

    Hinatsu, Yukio; Doi, Yoshihiro

    2013-01-01

    Ternary rare-earth osmates Ln 3 OsO 7 (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr 3 OsO 7 exhibits magnetic transitions at 8 and 73 K, and Tb 3 OsO 7 magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln 3+ sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice. - Graphical abstract: Ternary rare-earth osmates Ln 3 OsO 7 (Ln=Pr, Tb) have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr 3 OsO 7 exhibits magnetic transitions at 8 and 73 K, and Tb 3 OsO 7 magnetically orders at 8 and 60 K. Highlights: ► Ternary rare-earth osmates Ln 3 OsO 7 (Ln=Pr, Tb) with an ordered defect-fluorite structure have been prepared. ► Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). ► These compounds show complex magnetic behavior at low temperatures due to magnetic ordering of Ln and Os.

  18. Earth and Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kosygin, Yu A

    1986-12-01

    Rocks, the age of which according to certain data exceeds considerably the recognized age of the Earth and approximates the age of the Universe, have been detected on the Earth. There is a necessity to coordinate the geological data with cosmological structures.

  19. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  20. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... and accepted. The European Space Agency mission Gaia is a proposed space observatory, designed to perform a highly accurate census of our galaxy, the Milky Way, and beyond. Through accurate measurement of star positions, Gaia is expected to discover thousands of extra-solar planets and follow the bending...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  1. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  2. The Chinese Society of Rare Earth is Studying The Feasibility of Marketing Rare Earth Futures

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Lin Donglu,secretary-general of the Chinese Society of Rare Earth recently said,the Chinese Society of Rare Earth undertook the research on subject of the National Social Science Fund Foundation on the reform of Chinese rare earth trading pricing mechanism on promoting RMB globalization,and is focusing on studying the feasibility of marketing rare earth futures variety.

  3. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    Science.gov (United States)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under

  4. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025

    Science.gov (United States)

    Fellous, Jean-Louis

    2016-07-01

    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of

  5. Geosynclinal process and establishment of the earth's crust

    Energy Technology Data Exchange (ETDEWEB)

    Peyve, A V; Ivanov, I B; Knipper, A L; Leonov, M G

    1981-01-01

    The results of work on the commission on geology ''Geosynclinal Process and Establishment of the Earth's Crust'' with 170 participating leading specialists from the USSR, Bulgaria, Hungary, GDR, Poland, Vietnam, Mongolia and Romania have been published in the monographs ''Precambrian Foundation of the East European Platform and Phanerozoic of its Western Surrounding Region''; ''Early Stages of Development of Geosynclines and Their Ophiolite Complexes''; ''Flysch Masses of Some Ridges of Central Eastern Europe''; ''Problems of Geology of Chaotic Complexes''; ''Laws Governing the Development and Spatial Position of Molasses and Regions of Their Formation''; ''Magmatism of the Epoch of Molasse Formation and Ore Mineralization Associated With Them''; ''Tectonic Deformation of Alpine-Type Regions''; ''Deformation and Metamorphism of Rocks''; ''Block Structure and Consolidated Regions of the Earth's Crust''; ''Magmatism and Mineralization in Relation to Phanerozoic Tectonic Processes''; ''Problems of Global Correlation of Geological Phenomena.'' In addition ''Atlas of Structures of Plastic Flow of Rocks'' and ''Dictionary of Molasse Terms'' have been prepared for publication. The work of the international commission not only has theoretical but great practical importance. Joint studies have created an efficient collective with unified approach to the problems of geology and mutual understanding on many particular and general problems of geological knowledge.

  6. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  7. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  8. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja

    2008-01-01

    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)

  9. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  10. Safety aspects in rare earths recovery

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2014-01-01

    Recovery of rare earths involves mining of beach sands, mineral separation to obtain monazite and its chemical processing to obtain rare earth composites. The composites are then subjected to further chemical treatment to obtain individual rare earths. Although the separated out rare earths are not radioactive, the process for recovery of rare earths involve both radiological as well as conventional hazards. This paper highlights the safety aspects in the mining, mineral separation and chemical processing of monazite to obtain rare earths

  11. Our Mission to Planet Earth: A guide to teaching Earth system science

    Science.gov (United States)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  12. Moving Closer to EarthScope: A Major New Initiative for the Earth Sciences*

    Science.gov (United States)

    Simpson, D.; Blewitt, G.; Ekstrom, G.; Henyey, T.; Hickman, S.; Prescott, W.; Zoback, M.

    2002-12-01

    EarthScope is a scientific research and infrastructure initiative designed to provide a suite of new observational facilities to address fundamental questions about the evolution of continents and the processes responsible for earthquakes and volcanic eruptions. The integrated observing systems that will comprise EarthScope capitalize on recent developments in sensor technology and communications to provide Earth scientists with synoptic and high-resolution data derived from a variety of geophysical sensors. An array of 400 broadband seismometers will spend more than ten years crossing the contiguous 48 states and Alaska to image features that make up the internal structure of the continent and underlying mantle. Additional seismic and electromagnetic instrumentation will be available for high resolution imaging of geological targets of special interest. A network of continuously recording Global Positioning System (GPS) receivers and sensitive borehole strainmeters will be installed along the western U.S. plate boundary. These sensors will measure how western North America is deforming, what motions occur along faults, how earthquakes start, and how magma flows beneath active volcanoes. A four-kilometer deep observatory bored directly into the San Andreas fault will provide the first opportunity to observe directly the conditions under which earthquakes occur, to collect fault rocks and fluids for laboratory study, and to monitor continuously an active fault zone at depth. All data from the EarthScope facilities will be openly available in real-time to maximize participation from the scientific community and to provide on-going educational outreach to students and the public. EarthScope's sensors will revolutionize observational Earth science in terms of the quantity, quality and spatial extent of the data they provide. Turning these data into exciting scientific discovery will require new modes of experimentation and interdisciplinary cooperation from the Earth

  13. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    Science.gov (United States)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  14. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    International Nuclear Information System (INIS)

    Neumann, Bjoern

    2013-11-01

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [de

  15. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. J., E-mail: yadav.pooja75@yahoo.in [Department of Electronics, RTM Nagpur University, Nagpur (India); Joshi, C. P. [Physics Department, RCOEM, Nagpur (India); Moharil, S. V., E-mail: svmoharil@yahoo.com [Physics Department, RTM Nagpur University, Nagpur (India)

    2014-10-15

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6}, Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.

  16. Seismological evidence for a localized mushy zone at the Earth?s inner core boundary

    OpenAIRE

    Tian, Dongdong; Wen, Lianxing

    2017-01-01

    Although existence of a mushy zone in the Earth?s inner core has been hypothesized several decades ago, no seismic evidence has ever been reported. Based on waveform modeling of seismic compressional waves that are reflected off the Earth?s inner core boundary, here we present seismic evidence for a localized 4?8?km thick zone across the inner core boundary beneath southwest Okhotsk Sea with seismic properties intermediate between those of the inner and outer core and of a mushy zone. Such a ...

  17. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    Science.gov (United States)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  18. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  19. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  20. X-ray fluorescence analysis of high purity rare earth oxides for common trace rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Dixit, R.M.; Khanna, P.P.; Deshpande, S.S.; Machado, I.J.; Kapoor, S.K.

    1990-01-01

    Methods for the determination of individual trace common rare earth (RE) elements have been developed for fifteen RE oxide matrices viz. La 2 O 3 to Lu 2 O 3 and Y 2 O 3 . In general, for each matrix, two or three neighbouring elements on both sides of the matrix element are determined. The minimum determination limit (MDL) achieved is 0.002% for most of the elements. Special efforts were made to use a small amount of sample (as low as 400 mg) for the analysis by the use of double layer pellet technique and critical thickness studies. Practical experiences with 15 RE matrices, most of which are investigated for the first time, are discussed. Details of selection of instrumental parameters and analysis lines, precision and accuracy and preparation of samples and synthetic standards are given. Theoretical minimum detection limit (TMDL) for each analyte element is calculated in all the 15 matrices. (author). 50 tabs., 2 figs

  1. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  2. Development of an earth pressure model for design of earth retaining structures in piedmont soil.

    Science.gov (United States)

    2008-10-01

    Anecdotal evidence suggests that earth pressure in Piedmont residual soils is typically over estimated. Such estimates of earth pressure impact the design of earth retaining structures used on highway projects. Thus, the development of an appropriate...

  3. Earth Girl 2: Learning and Perfecting Tsunami Preparedness with a Casual Strategy Game

    Science.gov (United States)

    Kerlow, I.; Taisne, B.; Switzer, A.; Meltzner, A. J.; Hubbard, J.; Sieh, K.

    2014-12-01

    "Earth Girl 2: Preparing for the Tsunami" is an interactive game about making strategic decisions that can directly increase the survival rate in coastal communities during earthquake and tsunami scenarios. Earth Girl is the host and guide in this casual strategy game with social impact, and the player is the protagonist. The game was developed by an interdisciplinary team of scientists and game artists at the Earth Observatory of Singapore. Earth Girl 2 is based on real-life situations, with an emphasis on learning preparedness and survival skills. It was inspired by the kids who live in coastal communities throughout Asia, and by the stories told by survivors of recent tsunamis. The action takes place in four main areas: the Market, the Map, the Toolbox, and two dozen game levels with a variety of evacuation scenarios. The gameplay encourages proactive exploration and discovery of these scenarios, with Earth Girl providing knowledge, tips and feedback throughout the game. The basic game play includes: learning about tsunami hazards by talking to people at the market, choosing tools based on a budget, exploring the site and making strategic decisions, and learning from watching the simulation. The level of success of players in this game depends on their strategic decisions which is somewhat tied to their level of interaction with the virtual community. The game is currently being tested with children in Southeast Asian communities and is scheduled for release in late 2014. The presentation will demonstrate aspects of the game (played on an iPad connected to the projector), and will describe some of the challenges and solutions encountered by the interdisciplinary team.

  4. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].

    Science.gov (United States)

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo

    2015-08-01

    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  5. Determination of the composition of surface optical layers prepared with the use of rare earth and zirconium oxides

    International Nuclear Information System (INIS)

    Mishchenko, V.T.; Shilova, L.P.; Shkol'nikova, T.M.

    1991-01-01

    Simple titrimetric and gravimetric methods for determination of optical oxide layers (rare earth and zirconium oxides), sputtered on glass or quartz sublayer, have been developed. The minimal determined oxide mass in surface layers is equal to 0.01 mg in titrimetric determination and 0.1 mg - in gravimetric one. It is shown that composition of films and pellets, used for film sputtering, is identical

  6. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  7. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    Science.gov (United States)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee

  8. Double selenates of rare earths and ammonium

    International Nuclear Information System (INIS)

    Iskhakova, L.D.; Kozlova, N.P.; Makarevich, L.G.

    1991-01-01

    Double selenates of rare earths with ammonium were prepared in result of crystallization. It is shown that NH 4 Ln(SeO 4 ) · nH 2 O crystalline hydrates are presented by penta-and trihydrates. Existance of two modifications was revealed for NH 4 Ln(SeO 4 ) · 5H 2 O: monoclinic form of NH 4 La(SeO 4 ) 2 · 5H 2 O, isostructural RbCe(SeO 4 ) 2 · 5H 2 O, and earlier unknown rhombic form of salts with Ln = Pr, Nd. Trihydrates with Ln = Sm-Yb belong to structural type of RbNd(SeO 4 ) 2 · 3H 2 O. Anhydrous salts NH 4 Ln(SeO 4 ) 2 are isostructural with monoclinic KNd(SO 4 ) 2 modification. Lattice parameters of binary selenates are presented

  9. COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2009-01-01

    In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.

  10. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  11. Development of a Carbon Sequestration Visualization Tool using Google Earth Pro

    Science.gov (United States)

    Keating, G. N.; Greene, M. K.

    2008-12-01

    The Big Sky Carbon Sequestration Partnership seeks to prepare organizations throughout the western United States for a possible carbon-constrained economy. Through the development of CO2 capture and subsurface sequestration technology, the Partnership is working to enable the region to cleanly utilize its abundant fossil energy resources. The intent of the Los Alamos National Laboratory Big Sky Visualization tool is to allow geochemists, geologists, geophysicists, project managers, and other project members to view, identify, and query the data collected from CO2 injection tests using a single data source platform, a mission to which Google Earth Pro is uniquely and ideally suited . The visualization framework enables fusion of data from disparate sources and allows investigators to fully explore spatial and temporal trends in CO2 fate and transport within a reservoir. 3-D subsurface wells are projected above ground in Google Earth as the KML anchor points for the presentation of various surface subsurface data. This solution is the most integrative and cost-effective possible for the variety of users in the Big Sky community.

  12. Earth Science Enterprise Technology Strategy

    Science.gov (United States)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  13. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    Science.gov (United States)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  14. The Earth is a Planet Too!

    Science.gov (United States)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  15. Influence of thermal charge preparation on coke comminution under blast-furnace operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-01-01

    An investigation is described for the study of structural breakdown of coke by thermochemical action of alkali and alkaline-earth metal vapors under blast furnace operating conditions. Bench-scale test facilities are described in which a pair of coke samples are exposed to the metal vapors then subjected to gasification. Structural strength tests were performed before and after each experiment. Coke samples were obtained in either moist or thermally prepared condition. The value of thermal charge preparation (heat treatment of the coal at 150/sup 0/C in a fluidized bed) was established, since it shifts the pore size distribution to the smaller size, thereby retarding adsorption of the metal vapors. 16 references, 4 figures, 2 tables.

  16. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  17. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  18. The Earth System Model

    Science.gov (United States)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  19. A program wide framework for evaluating data driven teaching and learning - earth analytics approaches, results and lessons learned

    Science.gov (United States)

    Wasser, L. A.; Gold, A. U.

    2017-12-01

    There is a deluge of earth systems data available to address cutting edge science problems yet specific skills are required to work with these data. The Earth analytics education program, a core component of Earth Lab at the University of Colorado - Boulder - is building a data intensive program that provides training in realms including 1) interdisciplinary communication and collaboration 2) earth science domain knowledge including geospatial science and remote sensing and 3) reproducible, open science workflows ("earth analytics"). The earth analytics program includes an undergraduate internship, undergraduate and graduate level courses and a professional certificate / degree program. All programs share the goals of preparing a STEM workforce for successful earth analytics driven careers. We are developing an program-wide evaluation framework that assesses the effectiveness of data intensive instruction combined with domain science learning to better understand and improve data-intensive teaching approaches using blends of online, in situ, asynchronous and synchronous learning. We are using targeted online search engine optimization (SEO) to increase visibility and in turn program reach. Finally our design targets longitudinal program impacts on participant career tracts over time.. Here we present results from evaluation of both an interdisciplinary undergrad / graduate level earth analytics course and and undergraduate internship. Early results suggest that a blended approach to learning and teaching that includes both synchronous in-person teaching and active classroom hands-on learning combined with asynchronous learning in the form of online materials lead to student success. Further we will present our model for longitudinal tracking of participant's career focus overtime to better understand long-term program impacts. We also demonstrate the impact of SEO optimization on online content reach and program visibility.

  20. Effect of molarity in geo polymer earth brick reinforced with fibrous coir wastes using sandy soil and quarry dust as fine aggregate. (Case study

    Directory of Open Access Journals (Sweden)

    P. Palanisamy

    2018-06-01

    Full Text Available The studies are mainly carried out on strength development for various grades of geo-polymer mortar with varying molarity (M for producing geo-polymer earth brick (GPEB. The studies are focused on use of more sandy soil sieved from the raw earth available at site and quarry dust on replaced with river sand for making the un-burnt brick. The brick is reinforced with fibrous coir waste to increase shear strength and further pressed by hand compaction. Geo-polymer mortar is based on an inorganic alumina silicate binder system and it has more advantages of quick strength gain, negligence of water curing, best mechanical properties, eco-friendly, sustainable and alternate to ordinary Portland cement (OPC based mortar. Fly Ash (FA, Ground Granulated Blast-furnace Slag (GGBS, sandy soil sieved from earth and Quarry Dust (QD are mixed with alkaline solution in different molarities 6 M, 8 M and 10 M to prepare specimens. Specimens are tested against workability, compressive strength, and water absorption test, rate of water absorption, abraded test and also fiber content of the brick. The research found that the brick is made by FA & GGBS as binders and soil & quarry dust as fine aggregate in ratio of 0.5:0.5:1.75:0.25 with fibrous coir waste 1% and alkaline solution 10 M for preparing mortar to produce, excellent compressive strength, low water absorption, low rate of absorption, good abrasive resistance etc., The new brick is placed an alternate to compressed stabilized earth block, cement block and traditional burnt brick. Keywords: Fiber reinforced geo-polymer earth brick, Geo-polymer mortar using sandy soil and quarry dust as fine-aggregate, Nature fibrous coir wastes, Un-burnt brick, Alternate to compressed stabilized earth block

  1. A high-orbit collimating infrared earth simulator

    International Nuclear Information System (INIS)

    Zhang Guoyu; Jiang Huilin; Fang Yang; Yu Huadong; Xu Xiping; Wang, Lingyun; Liu Xuli; Huang Lan; Yue Shixin; Peng Hui

    2007-01-01

    The earth simulator is the most important testing equipment ground-based for the infrared earth sensor, and it is also a key component in the satellite controlling system. for three orbit heights 18000Km, 35786Km and 42000Km, in this paper we adopt a project of collimation and replaceable earth diaphragm and develop a high orbit collimation earth simulator. This simulator can afford three angles 15.19 0 , 17.46 0 and 30.42 0 , resulting simulating the earth on the ground which can be seen in out space by the satellite. In this paper we introduce the components, integer structure, and the earth's field angles testing method of the earth simulator in detail. Germanium collimation lens is the most important component in the earth simulator. According to the optical configuration parameter of Germanium collimation lens, we find the location and size of the earth diaphragm and the hot earth by theoretical analyses and optics calculation, which offer foundation of design in the study of the earth simulator. The earth angle is the index to scale the precision of earth simulator. We test the three angles by experiment and the results indicate that three angles errors are all less than ±0.05 0

  2. Electronic and Crystalline Structure, Magnetic Response, and Optical Characterization of Rare-Earth Ruthenate Sr2HoRuO6

    Science.gov (United States)

    Velásquez Moya, X. A.; Cardona, R.; Villa Hernández, J. I.; Landínez Téllez, D. A.; Roa-Rojas, J.

    2018-03-01

    Sr2HoRuO6 ceramic has been synthesized and its structural, morphological, magnetic, optical, and electronic properties studied. Rietveld refinement of x-ray diffraction patterns revealed that this oxide material crystallizes in monoclinic perovskite structure in space group P2 1 /n (no. 14). Scanning electron microscopy revealed polycrystalline surface morphology. x-Ray dispersive spectroscopy suggested that Sr2HoRuO6 was obtained with expected stoichiometry. Magnetic susceptibility curves as a function of temperature revealed ferrimagnetic feature of this material below the Néel temperature T N of 14 K. Evidence of magnetic disorder was provided by the irreversibility observed in the zero-field-cooled and field-cooled responses of the susceptibility below T irr = 169 K. Analysis of the diffuse reflectance spectrum suggested that this material behaves as a semiconductor with energy gap E g of 1.38 eV. Results of band structure and density-of-states calculations are in agreement with the interpretation of Sr2HoRuO6 as a semiconductor. The ferrimagnetic behavior is interpreted as due to exchange mechanisms of d-f (Ru-O-Ho) electrons. The effective magnetic moment calculated from density functional theory was 93.5% of the experimental value obtained from Curie-Weiss fitting of the susceptibility curve.

  3. The Blueprint for Change: A National Strategy to Enhance Access to Earth and Space Science Education Resources

    Science.gov (United States)

    Geary, E. E.; Barstow, D.

    2001-12-01

    Enhancing access to high quality science education resources for teachers, students, and the general public is a high priority for the earth and space science education communities. However, to significantly increase access to these resources and promote their effective use will require a coordinated effort between content developers, publishers, professional developers, policy makers, and users in both formal and informal education settings. Federal agencies, academic institutions, professional societies, informal science centers, the Digital Library for Earth System Education, and other National SMETE Digital Library Projects are anticipated to play key roles in this effort. As a first step to developing a coordinated, national strategy for developing and delivering high quality earth and space science education resources to students, teachers, and the general public, 65 science educators, scientists, teachers, administrators, policy makers, and business leaders met this June in Snowmass, Colorado to create "Earth and Space Science Education 2010: A Blueprint for Change". The Blueprint is a strategy document that will be used to guide Earth and space science education reform efforts in grades K-12 during the next decade. The Blueprint contains specific goals, recommendations, and strategies for coordinating action in the areas of: Teacher Preparation and Professional Development, Curriculum and Materials, Equity and Diversity, Assessment and Evaluation, Public Policy and Systemic Reform, Public and Informal Education, Partnerships and Collaborations, and Technology. If you develop, disseminate, or use exemplary earth and space science education resources, we invite you to review the Blueprint for Change, share it with your colleagues and local science educators, and join as we work to revolutionize earth and space science education in grades K-12.

  4. Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses

    Science.gov (United States)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2018-03-01

    Seven rare earth (Sm3+, Eu3+ and Nd3+) doped lead alumino phosphate glasses were prepared. The protective and sensing measures from gamma rays were analysed in terms of parameters viz. density (ρ), refractive index, energy band gap (Eg), mean free path (mfp), effective atomic number (Zeff) and buildup factors (energy absorption EABF as well as exposure buildup factor EBF). The energy dependent parameters (mfp, Zeff, EABF and EBF) were investigated in the energy region from 15 keV to 15 MeV. EABF and EBF values were observed to be maximum in the intermediate energy region. Besides, the EABF and EBF values for the prepared samples are shown to have strong dependence on chemical composition of the glass at lower energy, whereas, it is almost independent of chemical composition in higher energy region. The prepared glass samples are found to have potential applications in radiation shielding as well as radiation sensing, which further find numerous applications in the field of medicine and industry.

  5. Non-rocket Earth-Moon transportation system

    Science.gov (United States)

    Bolonkin, A.

    Author suggests and researches one of his methods of flights to outer Space, described in book "Non Rocket Flights in Space", which is prepared and offered for publication. In given report the method and facilities named "Bolonkin Transport System" (BTS) for delivering of payload and people to Moon and back is presented. BTS can be used also for free trip to outer Space up at altitude 60,000 km and more. BTS can be applying as a trust system for atmospheric supersonic aircrafts, and as a free energy source. This method uses, in general, the rotary and kinetic energy of the Moon. The manuscript contains the theory and results of computation of special Project. This project uses three cables (main and two for driving of loads) from artificial material: fiber, whiskers, nanotubes, with the specific tensile strength (ratio the tensile stress to density) k=/=4*10^7 or more. The nanotubes with same and better parameters are received in scientific laboratories. Theoretical limit of nanotubes SWNT is about k=100*10^7. The upper end of the cable is connected to the Moon. The lower end of the cable is connected to an aircraft (or buoy), which flies (i.e. glides or slides) in Earth atmosphere along the planet's surface. The aircraft (and Moon) has devices, which allows the length of cables to be changed. The device would consists of a spool, motor, brake, transmission, and controller. The facility could have devices for delivering people and payloads t o the Moon and back using the suggested Transport System. The delivery devices include: containers, cables, motors, brakes, and controllers. If the aircraft is small and the cable is strong the motion of the Moon can be used to move the airplane. For example (see enclosed project), if the airplane weighs 15 tons and has an aerodynamic ratio (the lift force to the drag force) equal 5, a thrust of 3000 kg would be enough for the aircraft to fly for infinity without requiring any fuel. The aircraft could use a small turbine engine

  6. Raman scattering of rare earth hexaborides

    International Nuclear Information System (INIS)

    Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru

    2009-01-01

    Raman scattering spectra were measured for the rare-earth hexaborides RB 6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B 6 vibrations were observed in the range 600 - 1400 cm -1 . Anomalous peaks were detected below 200 cm -1 , which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.

  7. The Earth's Plasmasphere

    Science.gov (United States)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  8. Earth formation porosity log

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1977-01-01

    A method for determining the porosity of earth formations in the vicinity of a cased well borehole is described, comprising the steps of: irradiating the earth formations in the vicinity of the cased well borehole with fast neutrons from a source of fast neutrons passed into the borehole; and generating a signal representative of the fast neutron population present in the well borehole at a location in the borehole, the signal is functionally related to the porosity of the earth formations in the vicinity of the borehole

  9. Origin of the earth and moon

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1981-01-01

    The composition of the Earth's interior and its bearing on the Earth's origin are discussed. It seems likely that the terrestrial planets formed by the accretion of solid planetisimals from the nebula of dust and gas left behind during the formation of the Sun. The scenario proposed is simpler than others. New evidence based upon a comparison of siderophile element abundances in the Earth's mantle and in the Moon imply that the Moon was derived from the Earth's mantle after the Earth's core had segregated

  10. Charting a Course to Earth System Science Literacy

    Science.gov (United States)

    Karsten, J. L.; Koch, L.; Ridky, R.; Wei, M.; Ladue, N.

    2008-12-01

    Public literacy of fundamental ideas in Earth System Science (ESS) is immensely important, both because of its relevance to the daily lives of individual citizens and the role played by informed policy decisions related to water, energy, climate change, and hazards in securing our Nation's well-being and prosperity. The National Science Education Standards (NRC, 1996) argued that topics which comprise ESS also have tremendous value in providing context and meaning for the teaching of Biology, Chemistry, and Physics concepts and their applications, thereby serving the goals of the America COMPETES Act. Yet, as documented in the 2006 Program for International Student Assessment (PISA) results, the U.S. continues to lag significantly behind other developed nations in science literacy. A major obstacle to improving public ESS literacy, specifically, and strengthening science literacy, in general, is the fact that fewer than 30% of students in U.S. high schools take any courses related to ESS. Often, these courses are taught by teachers with limited preparation in this content area. A new grass-roots movement within the geoscience research and education communities, fueled by interagency collaboration, is seeking to overcome these obstacles and steer a new course for ESS education in the Nation. The Earth System Science Literacy Initiative (ESSLI) builds on recent efforts within portions of the geosciences community to reach consensus on what defines scientific literacy within their fields. Individual literacy frameworks now exist for the ocean, atmospheric science, Earth science, and climate topic areas, and others are under development. The essential principles and fundamental concepts articulated in these frameworks provide consistent core messages that can be delivered and reinforced not only through formal education channels, but also through informal education activities and the media, thereby avoiding the inherent obstacles of the formal education setting

  11. Rare-Earth Oxide Ion (Tm3+, Ho3+, and U3+) Doped Glasses and Fibres for 1.8 to 4 Micrometer Coherent and Broadband Sources

    Science.gov (United States)

    2006-07-24

    oxide ( TeO2 ) , fluorine- containing silicate (SiOF2) and germanate (GeOF2) glass hosts for each dopant by characterising the spectroscopic properties...Earth Oxide Ion (Tm3+, Ho3+, And U3+) Doped Glasses And Fibres For 1.8 To 4 Micrometer Coherent And Broadband Sources 5c. PROGRAM ELEMENT NUMBER 5d...Rare-earth oxide ion (Tm3+, Ho3+, and U3+) doped glasses and fibres for 1.8 to 4 micrometer coherent and broadband sources Report prepared

  12. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    Science.gov (United States)

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  13. STS-39 Earth observation of Earth's limb at sunset shows atmospheric layers

    Science.gov (United States)

    1991-01-01

    STS-39 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, shows the Earth's limb at sunset with numerous atmospheric scattering layers highlighted. The layers consist of fine particles suspended in very stable layers of the atmosphere. The layers act as a prism for the sunlight.

  14. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    Science.gov (United States)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  15. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    Science.gov (United States)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  16. Influence of Ti.sup.4+./sup. on the magnetic state of CaRu.sub.1-x./sub.Ti.sub.x./sub.O.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Zorkovská, A.; Baran, A.; Bradarič, I.; Savič, I.; Šebek, Josef; Šantavá, Eva; Svoboda, P.; Marinčev, D.; Kohout, S.; Keller, H.; Feher, A.

    2007-01-01

    Roč. 316, - (2007), e699-e702 ISSN 0304-8853 Grant - others:Czech and Slovak bilateral project(SK) SK92-CZ117 Institutional research plan: CEZ:AV0Z10100520 Keywords : ruthenates * magnetism * specific heat * non-Fermi liquid * spin glass Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  17. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  18. Ion exchange separation of rare earths. I

    International Nuclear Information System (INIS)

    Nghi, Nguyen danh; Matous, K.

    1977-01-01

    The optimal conditions of separating selected rare earths by two ion exchange chromatography using Ostion KS cation exchange resin were studied. The effect of acetic acid concentration in the sorption solution was investigated. The elution process was studied in dependence on the concentration of Na 2 H 2 EDTA, on the total concentration of EDTA 4- ion, on elution agent flow, and on temperature. The optimal conditions were determined by evaluating integral elution curves and changes in acid concentration for systems Y-Pr, La-Pr, Er-Pr, Eu-Pr as follows: The sorption solution requires the presence of Na 2 H 2 EDTA of 0.03M in concentration. The basic elution solution was prepared in the following way: 0.183M Na 2 Mg 2 EDTA, 9.6x10 -3 M Na 2 H 2 EDTA, 3.84x10 -3 M CH 3 COOH, 2.30x10 -2 M CH 3 COONH 4 , 2.30x10 -2 M (NH 4 ) 2 SO 4 . Approximate pH 5.7 to 6.0. The optimal elution solution was prepared by diluting the basic solution so that the total concentration of EDTA 4- equalled 0.075M. The optimal flow was determined to be 0.86 ml.cm -2 .min -1 at a temperature of 55 degC. (author)

  19. Separation of pure Cerium oxides from rare earth compounds. Homogeneous precipitation using Urea-Hydrogen Peroxide

    International Nuclear Information System (INIS)

    Umeda, K.; Abrao, E.

    1975-01-01

    The obtainment of ceric oxide (CeO 2 ) of purity higher than 97% by application of homogeneous precipitation technique is described. The selective separation of cerium was reached by hydrolysis of urea in the presence of hydrogen peroxide, using a rare earths concentrate named rare earths chloride, a natural mixture of all lanthanides provenient from the industrialization of monazite. The best conditions for the preparation of CeO 2 of 94% purity are: 35-70g R 2 O 3 /1 and pH2,0 hydrolysis temperature: 88-90 0 C, urea/R 2 O 3 ratio: 4, H 2 O 2 /Ce 2 O 3 ratio: 1,5-5,0 and hydrolysis duration: 4 hours. A leaching procedure of the precipitate with 0,25-0,75M NHO 3 leads to a product of 97-99,5% CeO 2

  20. The radioactive earth

    International Nuclear Information System (INIS)

    Plant, J.A.; Saunders, A.D.

    1996-01-01

    Uranium, thorium and potassium are the main elements contributing to natural terrestrial radioactivity. The isotopes 238 U, 235 U, 232 Th and 40 K decay with half-lives so long that significant amounts remain in the earth, providing a continuing source of heat. The slow decay of these isotopes also provides the basis for radiometric age dating and isotopic modelling of the evolution of the earth and its crust. There is a complex interplay between their heat production and the processes involved in crust formation. Phenomena such as volcanism, earthquakes, and large-scale hydrothermal activity associated with ore deposition reflect the dissipation of heat energy from the earth, much of which is derived from natural radioactivity. The higher levels of radioactive elements during the early history of the earth resulted in higher heat flow. All three of the radioactive elements are strongly partitioned into the continental crust, but within the crust their distribution is determined by their different chemical properties. The behaviour of U, which has two commonly occurring oxidation states, is more complex than that of Th and K. Uranium deposits are diverse, and are mostly associated with granites, acid volcanics, or detrital sedimentary rocks. The most important U deposits economically are unconformity-type ores of Proterozoic age, in which U is enriched by up to 5 x 10 6 with respect to bulk earth values. In some cases natural radioactivity can be of environmental concern. The most significant risk is posed by accumulations of radon, the gaseous daughter product of U. (author)

  1. Geohistory. Global evolution of the earth

    Energy Technology Data Exchange (ETDEWEB)

    Ozima, Minoru

    1987-01-01

    A full understanding of the earth's evolution can be achieved only by considering it as a continuous process starting with the birth of the solar system. This book traces the evolution of the earth, mainly on the basis of radiogenic isotopes from long half-life parent elements, and discusses it in terms of the latest developments in astrophysical theory, which impose unique constraints on the earth's origin and early evolution. By its 'historical' nature, geohistorical study also offers a unique approach to forecasting the future of the earth, yielding useful clues for the understanding of environmental problems, such as radioactive waste disposal. This book aims to provide an outline of global evolution of the planet earth for students of general science and for earth scientists.

  2. What can earth tide measurements tell us about ocean tides or earth structure?

    Science.gov (United States)

    Baker, T. F.

    1978-01-01

    Current experimental problems in Earth tides are reviewed using comparisons of tidal gravity and tilt measurements in Europe with loading calculations are examples. The limitations of present day instrumentation and installation techniques are shown as well as some of the ways in which they can be improved. Many of the geophysical and oceanographic investigations that are possible with Earth tide measurements are discussed with emphasis on the percentage accuracies required in the measurements in order to obtain new information about Earth or its oceans.

  3. EARTH FROM SPACE

    Indian Academy of Sciences (India)

    Table of contents. EARTH FROM SPACE · Slide 2 · Earth System · Slide 4 · Global water cycle · Slide 6 · Slide 7 · Direct Observations of Recent Climate Change · Slide 9 · Slide 10 · Snow cover and Arctic sea ice are decreasing · Polar Melting & Global Heat Transport · Antarctica: Melting and Thickening · Slide 14 · Slide 15.

  4. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  5. Preparation and physical properties of rare earth, alkaline earth, and transition metal ternary chalcogenides; Poluchenie i fizicheskie svojtsva trojnykh khal`kogenidov redkozemel`nykh, shchelochnykh i perekhodnykh ehlementov

    Energy Technology Data Exchange (ETDEWEB)

    Georgobiani, A N [RAN, Moskva (Russian Federation). Fizicheskij Inst. im. P.N.Lebedeva; Dzhabbarov, R B; Izzatov, B M; Musaeva, N N; Sultanov, F N; Tagiev, B G; Tagiev, O B [Inst. Fiziki im. G.M.Abdullaeva Akademii nauk Azerbajdzhana, Baku (Azerbaijan)

    1997-02-01

    A study was made on current-voltage characteristics, temperature dependences of electric conductivity and currents of thermoinduced depolarization of monocrystals, including EuGa{sub 2}S{sub 4} and (Ga{sub 2}S{sub 3}){sub 1-x}(Eu{sub 2}O{sub 3}){sub x} solid solutions. It is shown that these compounds, activated by europium, cerium, neodymium and other rare earths, manifest effective luminescence under the effect of ultraviolet and X-radiation, as well as under the effect of electron beams and electric field. 13 refs., 7 figs.

  6. Influence of thermal charge preparation on coke comminution under blast-furnace operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-09-01

    Reactions of coke in the blast furnace are determined mainly by the nature of the coke itself which depends on the coal properties, its preparation and the coking conditions. In the blast furnace the coke reacts with alkali and alkaline earth metals in the burden. Preheated coal charges were found to absorb far less sodium and potassium carbonates than a conventional moist charge over an equivalent period, due to the smaller pore volume available.

  7. Earth's Trojan asteroid.

    Science.gov (United States)

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-27

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years.

  8. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    Science.gov (United States)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  9. HABEBEE: habitability of eyeball-exo-Earths.

    Science.gov (United States)

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  10. Pull vs. Push: How OmniEarth Delivers Better Earth Observation Information to Subscribers

    Science.gov (United States)

    Fish, C.; Slagowski, S.; Dyrud, L.; Fentzke, J.; Hargis, B.; Steerman, M.

    2015-04-01

    Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The "secret sauce" is no longer about having the highest resolution imagery, but rather it is about using that imagery - in conjunction with a number of other sources - to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers' ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.

  11. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    Science.gov (United States)

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  12. Metallothermic reduction of rare earth oxides

    International Nuclear Information System (INIS)

    Sharma, R.A.

    1986-01-01

    Rare earth oxides can be reduced to rare earth metals by a novel, high yield, metallothermic process. The oxides are dispersed in a suitable, molten, calcium chloride bath along with sodium metal. The sodium reacts with the calcium chloride to produce calcium metal which reduces the rare earth oxides to rare earth metals. The metals are collected in a discrete layer in the reaction vessel

  13. Earthing the human body influences physiologic processes.

    Science.gov (United States)

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  14. Rare earth industries: Strategies for Malaysia

    International Nuclear Information System (INIS)

    2011-01-01

    Evidently, many reports cite Malaysia as having reasonably substantial amounts of rare earths elements. In fact, based on the rare earths found in the residual tin deposits alone, Malaysia has about 30,000 tonnes. This does not take into account unmapped deposits which experts believe may offer more tonnages of rare earths. Brazil which is reported to have about 48,000 tonnes has announced plans to invest aggressively in the rare earths business. China has on record the largest reserves with about 36 million tonnes. This explains why China has invested heavily in the entire value chain of the rare earths business. Chinas committed investment in rare earths started many years ago when the country's foremost leaders proclaimed the strategic position of rare earths in the world economy. That forecast is now a reality where the rise in the green high-tech economy is seen driving global demand for rare earths in a big way. Malaysia needs to discover and venture into new economic growth areas. This will help fuel the country's drive to achieve a high income status by 2020 as articulated in the New Economic Model (NEM) and the many supporting Economic Transformation Plans that the Government has recently launched. Rare earths may be the new growth area for Malaysia. However, the business opportunities should not just be confined to the mining, extraction and production of rare earths elements alone if Malaysia is to maximise benefits from this industry. The industry's gold mine is in the downstream products. This is also the sector that China wants to expand. Japan which now controls about 50 % of the global market for downstream rare earths-based high-tech components is desperately looking for partners to grow their stake in the business. Malaysia needs to embark on the right strategies in order to build the rare earths industry in the country. What are the strategies? (author)

  15. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  16. Who Uses Earth Observations? User Types in Group on Earth Observations

    Science.gov (United States)

    Fontaine, K. S.

    2011-12-01

    How can we communicate concepts in the physical sciences unless we know our audience? The Group on Earth Observations (GEO) User Interface Committee (UIC) has a responsibility within GEO to support and advocate for the user community in the development of Global Earth Observations System of Systems (GEOSS) and related work. As part of its efforts, the UIC has been working on developing a taxonomy that can be used to characterize the broad spectrum of users of GEOSS and its data, services, and applications. The user type taxonomy is designed to be broad and flexible but aims at describing the needs of the users GEOSS is going to serve. These user types represent a continuum of users of Earth observations from research through to decision support activities, and it includes organizations that use GEOSS as a tool to provide data and services for customers and consumers of the information. The classification scheme includes factors about skills and capacity for using Earth observations, sophistication level, spatial resolution, latency, and frequency of data. As part of the effort to develop a set of User Types, the GEO UIC foresees that those inside and outside GEO can use the typologies to understand how to engage users at a more effective level. This talk presents the GEOSS User Type taxonomy, explaining the development and highlights of key feedback. The talk will highlight possible ways to use the User Type taxonomy to communicate concepts and promote the use of Earth observations to a wide variety of users.

  17. Preparation and characterization of complexes of RE3+ with furfural modified water-soluble chitosan

    Institute of Scientific and Technical Information of China (English)

    WANG Maoyuan; QIU Ligan; MA Guilin

    2008-01-01

    Degraded chitosan, with highly water-solubility, was obtained by the oxidation of chitosan with H2O2, and then reacted with furfural The final product coordinated with the rare earth ions (RE3+ = Sm3+,Eu3+), which led to the formation of the complexes. The prepared complexes were characterized with Inflated Spectroscopy (IR), Ultra Violet (UV), fluorescence, X-Ray Diffraction (XRD), and Thermogravimetric-Differential Scanning Calorimetry (TG-DSC) measurements.

  18. The Quantitative Preparation of Future Geoscience Graduate Students

    Science.gov (United States)

    Manduca, C. A.; Hancock, G. S.

    2006-12-01

    Modern geoscience is a highly quantitative science. In February, a small group of faculty and graduate students from across the country met to discuss the quantitative preparation of geoscience majors for graduate school. The group included ten faculty supervising graduate students in quantitative areas spanning the earth, atmosphere, and ocean sciences; five current graduate students in these areas; and five faculty teaching undergraduate students in the spectrum of institutions preparing students for graduate work. Discussion focused in four key ares: Are incoming graduate students adequately prepared for the quantitative aspects of graduate geoscience programs? What are the essential quantitative skills are that are required for success in graduate school? What are perceived as the important courses to prepare students for the quantitative aspects of graduate school? What programs/resources would be valuable in helping faculty/departments improve the quantitative preparation of students? The participants concluded that strengthening the quantitative preparation of undergraduate geoscience majors would increase their opportunities in graduate school. While specifics differed amongst disciplines, a special importance was placed on developing the ability to use quantitative skills to solve geoscience problems. This requires the ability to pose problems so they can be addressed quantitatively, understand the relationship between quantitative concepts and physical representations, visualize mathematics, test the reasonableness of quantitative results, creatively move forward from existing models/techniques/approaches, and move between quantitative and verbal descriptions. A list of important quantitative competencies desirable in incoming graduate students includes mechanical skills in basic mathematics, functions, multi-variate analysis, statistics and calculus, as well as skills in logical analysis and the ability to learn independently in quantitative ways

  19. Rare earth industries: Downstream business

    International Nuclear Information System (INIS)

    2011-01-01

    The value chain of the rare earths business involves mining, extraction, processing, refining and the manufacture of an extensive range of downstream products which find wide applications in such industries including aerospace, consumer electronics, medical, military, automotive, renewable wind and solar energy and telecommunications. In fact the entire gamut of the high-tech industries depends on a sustainable supply of rare earths elements. The explosive demand in mobile phones is an excellent illustration of the massive potential that the rare earths business offers. In a matter of less than 20 years, the number of cell phones worldwide has reached a staggering 5 billion. Soon, going by the report of their growth in sales, the world demand for cell phones may even exceed the global population. Admittedly, the rare earths business does pose certain risks. Top among the risks are the health and safety risks. The mining, extraction and refining of rare earths produce residues and wastes which carry health and safety risks. The residues from the extraction and refining are radioactive, while their effluent waste streams do pose pollution risks to the receiving rivers and waterways. But, as clearly elaborated in a recent report by IAEA experts, there are technologies and systems available to efficiently mitigate such risks. The risks are Rare Earth manageable. However, it is crucial that the risk and waste management procedures are strictly followed and adhered to. This is where effective monitoring and surveillance throughout the life of all such rare earths facilities is crucial. Fortunately, Malaysia's regulatory standards on rare earths follow international standards. In some areas, Malaysia's regulatory regime is even more stringent than the international guidelines. (author)

  20. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    Science.gov (United States)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one

  1. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    Science.gov (United States)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  2. Greenhouse Earth: A Traveling Exhibition

    International Nuclear Information System (INIS)

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a ''demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a ''satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change

  3. The earth and the moon

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    The moon is the only body in the solar system outside of the Earth that has been visited by humans. More than 440 pounds of lunar material are brought by NASA and Soviet space missions to Earth for study. The information gleaned about the moon from this relatively small pile of rocks is mind-boggling and stands as the greatest proof that Martian planetary science would be greatly enhanced by returning samples to Earth. Compositional studies of lunar rocks show that the moon and the Earth are made of similar material, and because lunar material has not been reworked through erosion and plate te

  4. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  5. The industry of metallic rare earths (R.E.)

    International Nuclear Information System (INIS)

    Poirier, P.

    1979-01-01

    The following subjects are discussed: rare earths resources (rare earths abondance and world reserves, main ores). Rare earths separation and purification (ionic exchange, solvent extraction). Metallic rare earths and their mixtures, metallothermic reduction of oxides or fluorides (Ca, Mg, Al, Si or rare earth metals), Co-reduction process for intermetallic compounds (SmCo 5 ). Industrial applications of metallic rare earths (traditional applications such as flints, nodular cast iron, steel refining, magnesium industrie, applications under development such as rare earths/cobalt magnets, LaNi 5 for hydrogen storage, special alloys (automotive post combustion), magnetostrictive alloys). Economical problems: rare earth are elements relatively abundant and often at easily accessible prices. However, this group of 15 elements are liable to certain economical restraints. It is difficult to crack ore for only one rare earth. Availability of one given rare earth must be associated with the other corresponding rare earths to absorb all the other rare earths in other applications. Rare-earth industry has a strong expanding rate. 20% per year average for 6 years with Rhone-Poulenc. Thanks to their exceptional, specific characteristics rare earths have a bright future particularly for their metals

  6. Rigidly framed earth retaining structures thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    CERN Document Server

    Aboumoussa, Walid

    2014-01-01

    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....

  7. Sally Ride EarthKAM - Automated Image Geo-Referencing Using Google Earth Web Plug-In

    Science.gov (United States)

    Andres, Paul M.; Lazar, Dennis K.; Thames, Robert Q.

    2013-01-01

    Sally Ride EarthKAM is an educational program funded by NASA that aims to provide the public the ability to picture Earth from the perspective of the International Space Station (ISS). A computer-controlled camera is mounted on the ISS in a nadir-pointing window; however, timing limitations in the system cause inaccurate positional metadata. Manually correcting images within an orbit allows the positional metadata to be improved using mathematical regressions. The manual correction process is time-consuming and thus, unfeasible for a large number of images. The standard Google Earth program allows for the importing of KML (keyhole markup language) files that previously were created. These KML file-based overlays could then be manually manipulated as image overlays, saved, and then uploaded to the project server where they are parsed and the metadata in the database is updated. The new interface eliminates the need to save, download, open, re-save, and upload the KML files. Everything is processed on the Web, and all manipulations go directly into the database. Administrators also have the control to discard any single correction that was made and validate a correction. This program streamlines a process that previously required several critical steps and was probably too complex for the average user to complete successfully. The new process is theoretically simple enough for members of the public to make use of and contribute to the success of the Sally Ride EarthKAM project. Using the Google Earth Web plug-in, EarthKAM images, and associated metadata, this software allows users to interactively manipulate an EarthKAM image overlay, and update and improve the associated metadata. The Web interface uses the Google Earth JavaScript API along with PHP-PostgreSQL to present the user the same interface capabilities without leaving the Web. The simpler graphical user interface will allow the public to participate directly and meaningfully with EarthKAM. The use of

  8. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  9. Earthing the Human Body Influences Physiologic Processes

    Science.gov (United States)

    Sokal, Karol

    2011-01-01

    Abstract Objectives This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments Five (5) experiments are presented: experiment 1—effect of earthing on calcium–phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2—effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3—effect of earthing on thyroid function (N = 12); experiment 4—effect of earthing on glucose concentration (N = 12); experiment 5—effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Results Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Conclusions Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium–phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems. PMID:21469913

  10. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  11. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  12. Ancient and Medieval Earth in Armenia

    Science.gov (United States)

    Farmanyan, S. V.

    2015-07-01

    Humankind has always sought to recognize the nature of various sky related phenomena and tried to give them explanations. The purpose of this study is to identify ancient Armenians' pantheistic and cosmological perceptions, world view, notions and beliefs related to the Earth. The paper focuses on the structure of the Earth and many other phenomena of nature that have always been on a major influence on ancient Armenians thinking. In this paper we have compared the term Earth in 31 languages. By discussing and comparing Universe structure in various regional traditions, myths, folk songs and phraseological units we very often came across to "Seven Heavens" (Seven heavens is a part of religious cosmology found in many major religions such as Islam, Judaism, Hinduism and Christianity (namely Catholicism) and "Seven Earths". Armenians in their turn divided Earth and Heavens into seven layers. And in science too, both the Earth and the Heavens have 7 layers. The Seven Heavens refer to the layers of our atmosphere. The Seven Earths refer to the layers of the Earth (from core to crust), as well as seven continents. We conclude that the perception of celestial objects varies from culture to culture and preastronomy had a significant impact on humankind, particularly on cultural diversities.

  13. Radiation environment of the earth

    International Nuclear Information System (INIS)

    Furukawa, Masahide

    2003-01-01

    The radiation environment of the earth consists of natural and artificial radiation. This paper explains the distribution and some exposure examples of natural radiation and the relation between life and natural radiation. The earth was born before about 46 hundreds of millions of years. In the present earth, there are some natural radiations with long half-life originated by the earth. They are 232 Th (141 hundreds of millions of years of half-life), 238 U (45 hundreds of millions of years of half-life) and 40 K (13 hundreds of millions of years of half-life). Natural radiation (α-, β-, and γ-ray) from natural radionuclides exists everywhere in the earth. Natural radio nuclides are heat source of the earth, which is about 0.035 μcal/g/y. γ-ray from them is called as ''the earth's crust γ-ray'', which is about 55 nGy/h average of the world and about 50 nGy/h in Japan. The distribution of γ-ray is depended on the kinds of soil and rock. 222 Rn and 230 Rn are rare gases and the concentration of them in a room is larger than outside. Natural radiations originated from the cosmos are proton, ionizing components, neutron component with muon and electron, 3 H, 14 C and 10 Be. Effect of cosmic rays on birth of life, change of temperature, amount of cloud and ultra resistant cell are stated. (S.Y.)

  14. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  15. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide

    International Nuclear Information System (INIS)

    Li Jinhuan; Yang Xia; Yu Xiaodan; Xu, Leilei; Kang Wanli; Yan Wenhua; Gao Hongfeng; Liu Zhonghe; Guo Yihang

    2009-01-01

    Rare-earth oxide-doped titania nanocomposites (RE 3+ /TiO 2 , where RE = Eu 3+ , Pr 3+ , Gd 3+ , Nd 3+ , and Y 3+ ) were prepared by a one-step sol-gel-solvothermal method. The products exhibited anatase phase structure, mesoporosity, and interesting surface compositions with three oxygen species and two titanium species. The products were used as the photocatalysts to degrade a partially hydrolysis polyacrylamide (HPAM) under UV-light irradiation, a very useful polymer in oil recovery. For comparison, Degussa P25 and as-prepared pure TiO 2 were also tested under the same conditions. The enhanced photocatalytic activity was obtained on as-prepared Eu 3+ (Gd 3+ , Pr 3+ )/TiO 2 composites, and the reasons were explained. Finally, the degradation pathway of HPAM over the RE 3+ /TiO 2 composite was put forward based on the intermediates produced during the photocatalysis procedure.

  16. Preparation and characterization of rare earth modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying.

    Science.gov (United States)

    Wang, Y; Tian, W; Yang, Y

    2009-02-01

    The preparation and characterization of RE modified nanocrystalline Al2O3/13 wt%TiO2 feedstock for plasma spraying are described in this paper. Taking individual nano particles as starting materials, by wet ball milling, spray drying, sintering and plasma treating, nanocrystalline plasma sprayable feedstock is prepared. The as-prepared feedstocks were analyzed by XRD, SEM, EDS, TEM and HRTEM methods. As shown from analyses results, the reconstituted agglomerate feedstock possesses spherical geometry, proper particle size, homogeneous composition distribution and nano scaled grains. There are three dimensional net structures in the prepared feedstock, which could be retained in coatings if the feedstock does not melt or partially melts during the plasma spray process. The three dimensional net structures could play an important role in improving crack propagation resistance and wear resistance of coatings. The reconstitution process and characterization methods discussed in this paper can also be applied to prepare intraclass nanocrystalline feedstock such as ZrO2/Y2O3 and Cr2O3 et al.

  17. Earth as art 4

    Science.gov (United States)

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  18. Dimension of the Earth's general ellipsoid

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Raděj, K.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2002-01-01

    Roč. 91, č. 1 (2002), s. 31-41 ISSN 0167-9295 Institutional research plan: CEZ:AV0Z1003909 Keywords : Earth's dimensions * Earth's ellipsoid * fundamental constants Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.364, year: 2002

  19. The international earth observing system: a cultural debate about earth sciences from space

    NARCIS (Netherlands)

    Menenti, M.

    1996-01-01

    This paper gives an overview of the International Earth Observing System, i.e. the combined earth observation programmes of space agencies worldwide and of the relevance of advanced space-borne sensor systems to the study and understanding of interactions between land surface and atmosphere. The

  20. The preparation and corrosion resistance of Ce and Nd modified anodic films on aluminum

    International Nuclear Information System (INIS)

    Li Qizheng; Tang Yuming; Zuo Yu

    2010-01-01

    Rare earth element Ce and Nd modified anodic films were prepared on aluminum surface by a relatively simple method: the aluminum samples were first immersed in Ni(NO 3 ) 2 solutions containing Ce or Nd salts at 90 deg. C, then were dried and anodized. The contents of Ce or Nd in the anodic films were from 0.5% to 0.9%, and about 4-5% Ni was also introduced in the films. The modified anodic films were more compact with much smaller pores and increased hardness. In neutral, acidic and basic NaCl solutions, the rare earth modified films showed obviously improved corrosion resistance. The Ce modified films showed better corrosion resistance than Nd modified films. The cracking resistance of the films under heating was also improved.

  1. Magnetic properties and structural transitions of fluorite-related rare earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb)

    Energy Technology Data Exchange (ETDEWEB)

    Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Doi, Yoshihiro [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2013-02-15

    Ternary rare-earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr{sub 3}OsO{sub 7} exhibits magnetic transitions at 8 and 73 K, and Tb{sub 3}OsO{sub 7} magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln{sup 3+} sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice. - Graphical abstract: Ternary rare-earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb) have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr{sub 3}OsO{sub 7} exhibits magnetic transitions at 8 and 73 K, and Tb{sub 3}OsO{sub 7} magnetically orders at 8 and 60 K. Highlights: Black-Right-Pointing-Pointer Ternary rare-earth osmates Ln{sub 3}OsO{sub 7} (Ln=Pr, Tb) with an ordered defect-fluorite structure have been prepared. Black-Right-Pointing-Pointer Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). Black-Right-Pointing-Pointer These compounds show complex magnetic behavior at low temperatures due to magnetic ordering of Ln and Os.

  2. Rare earth elements: end use and recyclability

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  3. A Course in Earth System Science: Developed for Teachers by Teachers

    Science.gov (United States)

    Wong, K.; Read, K.; Charlevoix, D.; Tomkin, J.; Hug, B.; Williams, M.; Pianfetti, E.

    2008-12-01

    ESES 202 is a new general education course in physical science at the University of Illinois's School of Earth, Society and Environment, designed for pre-service K-8 teachers. The goal of the course is to help future classroom teachers become confident with teaching earth science content. The designers of this course include a faculty expert in earth system science, a pre-service teacher and a former middle school science teacher. The goal of the in the curriculum design was to utilize the unique perspectives and experiences of our team. Our poster will highlight the unique nature of the curriculum development outlining the challenges and successes of designing the course. The general format of the class will be a combination of discussions, hands on experiences, and opportunities for students to design their own lessons. Class meetings will be once per week in a three-hour block, allowing students to immediately transfer new content knowledge into classroom activities. The end goal is that they can use these same activities with their students once they are practicing teachers. The content of the course shall be taught using an earth systems approach by showing the relationships among the four spheres: biosphere, hydrosphere, atmospheric, and anthrosphere. There are five units in the course: Introduction to Earth Systems, Carbon Cycle, Water Quality, El Niño and Climate Change. In addition to the science portion of the course, students will spend time reflecting on the classroom activities from the perspective of future educators. Activities will be presented at a late elementary school level; however, time will be devoted to discussing methods to adapt the lesson to different grade levels and differentiation needs within a classroom. Additionally, students in this course will be instructed on how to utilize a multitude of resources from stream tables to science education databases to prepare them for the dynamic nature of the classroom. By the end of the class

  4. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  5. An analytical electron microscopy characterization of melt-spun iron/rare-earth/boron magnetic materials

    International Nuclear Information System (INIS)

    Dickenson, R.C.; Lawless, K.R.; Hadjipanayis, G.C.

    1986-01-01

    Iron/rare-earth/boron permanent magnet materials have recently been developed to reduce the need for the strategic element cobalt, which was previously the primary component of high-energy magnets. These materials are generally produced by annealing rapidly solidified ribbons or by conventional powder metallurgy techniques. This paper reports results from an analytical electron microscopy characterization undertaken to establish the relationship between the magnetic properties and the microstructure of two iron/rare-earth/boron (Fe/RE/B) alloys. Ribbons of Fe 75 Pr 15 B 10 and Fe 77 Tb 15 B 8 were produced by melt-spinning. To obtain optimum magnetic properties, both alloys were then annealed at 700 0 C, the FePrB ribbons for 6 minutes and the FeTbB ribbons for 90 minutes. Foils for transmission electron microscopy were prepared by ion-milling the ribbons on a cold stage and examined using a Philips 400T TEM/STEM equipped with an energy dispersive x-ray unit

  6. Detecting Water on Super-Earths Using JAVST

    Science.gov (United States)

    Deming, D.

    2010-01-01

    Nearby lower train sequence stars host a class of planets known as Super-Earths, that have no analog in our own solar system. Super-Earths are rocky and/or icy planets with masses up to about 10 Earth masses, They are expected to host atmospheres generated by a number of processes including accretion of chondritic material. Water vapor should be a common constituent of super-Earth atmospheres, and may be detectable in transiting super-Earths using transmission spectroscopy during primar y eclipse, and emission spectroscopy at secondary eclipse. I will discuss the prospects for super-Earth atmospheric measurements using JWST.

  7. How Big is Earth?

    Science.gov (United States)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  8. Online preconcentration ICP-MS analysis of rare earth elements in seawater

    Science.gov (United States)

    Hathorne, Ed C.; Haley, Brian; Stichel, Torben; Grasse, Patricia; Zieringer, Moritz; Frank, Martin

    2012-01-01

    The rare earth elements (REEs) with their systematically varying properties are powerful tracers of continental inputs, particle scavenging intensity and the oxidation state of seawater. However, their generally low (˜pmol/kg) concentrations in seawater and fractionation potential during chemical treatment makes them difficult to measure. Here we report a technique using an automated preconcentration system, which efficiently separates seawater matrix elements and elutes the preconcentrated sample directly into the spray chamber of an ICP-MS instrument. The commercially available "seaFAST" system (Elemental Scientific Inc.) makes use of a resin with ethylenediaminetriacetic acid and iminodiacetic acid functional groups to preconcentrate REEs and other metals while anions and alkali and alkaline earth cations are washed out. Repeated measurements of seawater from 2000 m water depth in the Southern Ocean allows the external precision (2σ) of the technique to be estimated at mine water reference materials diluted with a NaCl matrix with recommended values in the literature. This makes the online preconcentration ICP-MS technique advantageous for the minimal sample preparation required and the relatively small sample volume consumed (7 mL) thus enabling large data sets for the REEs in seawater to be rapidly acquired.

  9. Development and application of earth system models.

    Science.gov (United States)

    Prinn, Ronald G

    2013-02-26

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important "systems" problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981-2000 to 2091-2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether "climate engineering" is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.

  10. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    Science.gov (United States)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  11. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    Science.gov (United States)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  12. Magnetic nanosized rare earth iron garnets R_3Fe_5O_1_2: Sol–gel fabrication, characterization and reinspection

    International Nuclear Information System (INIS)

    Opuchovic, Olga; Kareiva, Aivaras; Mazeika, Kestutis; Baltrunas, Dalis

    2017-01-01

    The magnetic nanosized rare earth iron garnets (R_3Fe_5O_1_2, where R=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were prepared by an aqueous sol–gel method. Herein we present, that all these garnets can be obtained by this effective synthesis method simply by changing the temperature of the final annealing. It was also demonstrated, that a different annealing temperature leads to a different particle size distribution of the final product. The SEM analysis results revealed that the smallest particles were formed in the range of 75–130 nm. The phase purity and structure of the rare earth iron garnets were estimated using XRD analysis and Mössbauer spectroscopy. Magnetic properties were determined by magnetization measurements. The relation between the particle size, composition and magnetic properties of the sol-gel derived garnets were also discussed in this study. - Highlights: • First time series of R_3Fe_5O_1_2 (R=from Sm to Lu) are prepared by sol–gel process. • Different sintering temperature leads to the different particle size distribution. • Correlation between microstructure, composition and magnetic properties is shown.

  13. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  14. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  15. Google Earth: A Virtual Globe for Elementary Geography

    Science.gov (United States)

    Britt, Judy; LaFontaine, Gus

    2009-01-01

    Originally called Earth Viewer in 2004, Google Earth was the first virtual globe easily available to the ordinary user of the Internet. Google Earth, at earth.google.com, is a free, 3-dimensional computer model of Earth, but that means more than just a large collection of pretty pictures. It allows the viewer to "fly" anywhere on Earth "to view…

  16. The effect of rare earth dopants on the structure, surface texture and photocatalytic properties of TiO2-SiO2 prepared by sol-gel method

    International Nuclear Information System (INIS)

    Mohamed, R.M.; Mkhalid, I.A.

    2010-01-01

    The sol-gel method was successfully used to prepare a series of TiO 2 -SiO 2 and rare earth (RE) (La 3+ , Nd 3+ , Sm 3+ , Gd 3+ )-doped TiO 2 -SiO 2 nanoparticles at a doping level of 3 atomic percent. The structural features of parent TiO 2 -SiO 2 and RE-TiO 2 -SiO 2 fired at 550 o C have been investigated by XRD, UV-diffuse reflection, SEM and nitrogen adsorption measurements at -196 o C. XRD data verified the formation of typical characteristic anatase form in all the prepared RE-doped TiO 2 -SiO 2 samples. In comparison with the pure TiO 2 -SiO 2 samples (ca. 35 nm in diameter), the RE-TiO 2 -SiO 2 samples have relatively small particle size indicating that the doping with RE metal ions can improve the particle morphology, and retard the grain growth of TiO 2 -SiO 2 during heat treatment. The results indicated that Gd 3+ doped TiO 2 -SiO 2 has the lowest bandgap and particle size compared with pure TiO 2 -SiO 2 and other nanoparticles of RE-doped TiO 2 -SiO 2 . The highest surface area (S BET ) and pore volume (V p ) values were recorded for Gd-TiO 2 -SiO 2 as well. The effect of doping on the photoactivity was evaluated by the photocatalytic degradation of EDTA as a probe reaction. Among all the pure and RE-doped TiO 2 -SiO 2 , Gd 3+ -TiO 2 -SiO 2 performed the highest catalytic activity towards the tested reaction. That might be due to its special characteristics of particle size, surface texture and bandgap properties. Details of the synthesis procedure and results of the characterization studies of the produced RE-TiO 2 -SiO 2 are presented in this paper.

  17. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    Science.gov (United States)

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  18. A CCIR-based prediction model for Earth-Space propagation

    Science.gov (United States)

    Zhang, Zengjun; Smith, Ernest K.

    1991-01-01

    At present there is no single 'best way' to predict propagation impairments to an Earth-Space path. However, there is an internationally accepted way, namely that given in the most recent version of CCIR Report 564 of Study Group 5. This paper treats a computer code conforming as far as possible to Report 564. It was prepared for an IBM PS/2 using a 386 chip and for Macintosh SE or Mach II. It is designed to be easy to write and read, easy to modify, fast, have strong graphic capability, contain adequate functions, have dialog capability and windows capability. Computer languages considered included the following: (1) Turbo BASIC, (2) Turbo PASCAL, (3) FORTRAN, (4) SMALL TALK, (5) C++, (6) MS SPREADSHEET, (7) MS Excel-Macro, (8) SIMSCRIPT II.5, and (9) WINGZ.

  19. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    Science.gov (United States)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  20. Next-generation digital earth

    NARCIS (Netherlands)

    Goodchild, M.F.; Guo, H.; Annoni, A.; Bian, L.; Bie, de K.; Campbell, F.; Craglia, M.; Ehlers, M.; Genderen, van J.; Skidmore, A.K.; Wang, C.; Woodgate, P.

    2012-01-01

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google

  1. iSTEM: Celebrating Earth Day with Sustainability

    Science.gov (United States)

    Sibley, Amanda; Kurz, Terri L.

    2014-01-01

    Earth Day is celebrated annually on April 22. Teachers often commemorate Earth Day with their classes by planting trees, discussing important conservation topics (such as recycling or preventing pollution), and encouraging students to take care of planet Earth. To promote observance of Earth Day in an intermediate elementary school classroom, this…

  2. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    Science.gov (United States)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  3. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  4. Relationship between the Neoproterozoic snowball Earth and Cambrian explosion

    Science.gov (United States)

    Maruyama, S.; Yoshihara, A.; Isozaki, Y.

    2007-12-01

    Origin of snowball Earth has been debated in terms of greenhouse gas (e.g., Hoffman and Schrag), obliqueness of Earth's rotation axis (Williams, 1975), true polar wander (Evans, 2003), Galactic cosmic ray radiation (Shaviv and Veizer, 2003; Svensmark, 2006), or weakened geomagnetism (Maruyama and Yoshihara, 2003). A major difficulty for the greenhouse gas hypothesis is the on-off switch causing decrease and increase of appropriate amounts of CO2 by plume- and plate tectonics, and also in available amount of CO2 in atmosphere to be consistent with the observations. In contrast, the cosmic ray radiation models due to the star burst peaked at 2.5- 2.1 Ga and 1.4-0.8 Ga can explain on-off switch more easily than the greenhouse gas model. Cosmic ray radiations, however, must be modified by the geomagnetic intensity, fluctuating 150"% to cause the snowball Earth. Time difference between the Neoproterozoic snowball Earth and Cambrian explosion is as large as 250 millions years, and this refuses their direct close-relationship. Role of frequent mass extinctions, i.e., 8 times during 100 m.y. from 585 Ma to 488 Ma, during the Ediacaran and Cambrian, has been proposed (Zhu et al., 2007). This frequency is one order of magnitude higher compared to that in the post-Ordovician time. Yet, the Cambrian explosion cannot be explained by mass extinction which replaced the vacant niches shortly after the mass extinction and never created a new animal with a new body plan. A new model proposed herein is derived from weakened geomagnetism and resultant extensive cosmic radiation to alter gene and genome for a long period over advancement of low magnetic intensity and cosmic radiations (Svensmark, 2006) from 1.2-0.8Ga. As to the new body plans of animals, it took an appreciably long time to prepare all 34 genometypes before the apparent Cambrian explosion. Geochemically extreme conditions and widened shallow marine environment on continental shelf by the return-flow of sweater into

  5. Keeping Earth at work: Using thermodynamics to develop a holistic theory of the Earth system

    Science.gov (United States)

    Kleidon, Axel

    2010-05-01

    The Earth system is unique among terrestrial planets in that it is maintained in a state far from thermodynamic equilibrium. Practically all processes are irreversible in their nature, thereby producing entropy, and these would act to destroy this state of disequilibrium. In order to maintain disequilibrium in steady state, driving forces are required that perform the work to maintain the Earth system in a state far from equilibrium. To characterize the functioning of the Earth system and the interactions among its subsystems we need to consider all terms of the first and second law of thermodynamics. While the global energy balance is well established in climatology, the global entropy and work balances receive little, if any, attention. Here I will present first steps in developing a holistic theory of the Earth system including quantifications of the relevant terms that is based on the first and second laws of thermodynamics. This theory allows us to compare the significance of different processes in driving and maintaining disequilibrium, allows us to explore interactions by investigating the role of power transfer among processes, and specifically illustrate the significance of life in driving planetary disequilibrium. Furthermore, the global work balance demonstrates the significant impact of human activity and it provides an estimate for the availability of renewable sources of free energy within the Earth system. Hence, I conclude that a holistic thermodynamic theory of the Earth system is not just some academic exercise of marginal use, but essential for a profound understanding of the Earth system and its response to change.

  6. The Crew Earth Observations Experiment: Earth System Science from the ISS

    Science.gov (United States)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  7. Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design

    Science.gov (United States)

    Anderson, B. J.; Justus, C. G.; Batts, G. W.

    2001-01-01

    Thermal analysis and design of Earth orbiting systems requires specification of three environmental thermal parameters: the direct solar irradiance, Earth's local albedo, and outgoing longwave radiance (OLR). In the early 1990s data sets from the Earth Radiation Budget Experiment were analyzed on behalf of the Space Station Program to provide an accurate description of these parameters as a function of averaging time along the orbital path. This information, documented in SSP 30425 and, in more generic form in NASA/TM-4527, enabled the specification of the proper thermal parameters for systems of various thermal response time constants. However, working with the engineering community and SSP-30425 and TM-4527 products over a number of years revealed difficulties in interpretation and application of this material. For this reason it was decided to develop this guidelines document to help resolve these issues of practical application. In the process, the data were extensively reprocessed and a new computer code, the Simple Thermal Environment Model (STEM) was developed to simplify the process of selecting the parameters for input into extreme hot and cold thermal analyses and design specifications. In the process, greatly improved values for the cold case OLR values for high inclination orbits were derived. Thermal parameters for satellites in low, medium, and high inclination low-Earth orbit and with various system thermal time constraints are recommended for analysis of extreme hot and cold conditions. Practical information as to the interpretation and application of the information and an introduction to the STEM are included. Complete documentation for STEM is found in the user's manual, in preparation.

  8. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  9. 8. Seminar of the IMP-IIE-ININ on technological specialties. Topic 10: Earth Sciences; 8. Seminario IMP-IIE-ININ sobre especialidades tecnologicas. Mesa 10: Ciencias de la Tierra

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The document contains two papers within INIS subject scope which were presented at the 8th Seminar of the IMP-IIE-ININ on technological specialties. Topic 10: Earth Sciences. A separate abstract was prepared for each paper.

  10. Synthesis, characterization and thermal behavior of rare earth amido sulfonates

    International Nuclear Information System (INIS)

    Luiz, Jose Marques; Nunes, Ronaldo Spezia; Matos, Jivaldo do Rosario

    2013-01-01

    Hydrated compounds prepared in aqueous solution by reaction between amidosulfonic acid [H 3 NSO 3 ] and suspensions of rare earth hydroxycarbonates [Ln 2 (OH) x (CO 3 ) y .zH 2 O] were characterized by elemental analysis (% Ln, % N and % H), infrared spectroscopy (FTIR) and thermogravimetry (TG). The compounds presented the stoichiometry Ln(NH 2 SO 3 ) 3 .xH 2 O (where x = 1, 5, 2.0 or 3.0). The IR spectra showed absorptions characteristic of H 2 O molecules and NH 2 SO 3 groups. Degree of hydration, thermal decomposition steps and formation of stable intermediates of the type [Ln 2 (SO 4 ) 3 ] and (Ln 2 O 2 SO 4 ), besides formation of their oxides, was determined by thermogravimetry. (author)

  11. Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform

    Science.gov (United States)

    Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut

    2016-04-01

    The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development

  12. Comparison of Freshmen's Cognitive Frame about 'Crisis of the Earth' upon Taking the Earth Science 1 in High School

    Science.gov (United States)

    Chung, Duk Ho; Park, Seon Ok

    2016-04-01

    The purpose of this study is to demonstrate if freshmen's cognitive frame about 'Crisis of the Earth' upon taking the Earth science 1I in high school reflects the school curriculum. The data was collected from 67 freshmen who'd graduated high school in formal education. They expressed 'Crisis of the Earth' as a painting with explanation and then we extracted units of meaning from paintings, respectively. We analyzed the words and frame using the Semantic Network Analysis. The result is as follows; First, as every participant forms the cognitive frame for the crisis of the Earth, it is shown that they connect each part which that composes the global environment and realize it as the changing relation with interaction. Secondly, forming a cognitive frame regarding crisis of the Earth, both groups connect it with human endeavor. Especially, it seems that the group of participants who finished Earth Science 1 fully reflects the course of the formal education. It is necessary to make the students recognize it from a universal point of view, not only from the Earth. Also, much effort is required in order to enlighten about the appropriateness regarding problem-solving of the Earth and expand their mind as time changes. Keywords : Earth Science 1, cognitive frame, crisis of the earth, semantic network analysis

  13. Discover Earth: an earth system science program for libraries and their communities

    Science.gov (United States)

    Dusenbery, P.

    2011-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public's understanding of Earth's physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The Space Science Institute's National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. STAR-Net includes two exhibitions: Discover Earth and Discover Tech. The Discover Earth exhibition will focus on local earth science topics-such as weather, water cycle, and ecosystem changes-as well as a global view of our changing planet. The main take-away message (or Big Idea) for this exhibition is that the global environment changes - and is changed by - the host community's local environment. The project team is testing whether this approach will be a good strategy for engaging the public, especially in rural America. This presentation will provide an overview of the Discover Earth project and how it is integrating climate change ideas into the exhibit

  14. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  15. Superconductivity in alkaline earth-substituted La2CuO/sub 4-y/

    International Nuclear Information System (INIS)

    Bednorz, J.G.; Mueller, K.A.; Takashige, M.

    1987-01-01

    La 2 CuO/sub 4-y/ ceramics containing a few percent of Ca 2+ , Sr 2+ , and Ba 2+ ions have been prepared. Resistivity and susceptibility measurements exhibit superconductive onsets (as in earlier Ba 2+ -containing samples). The onset temperature La 2 CuO/sub 4-y/ with Sr 2+ is higher and its superconductivity-induced diamagnetism larger than that found with Ba 2+ and Ca 2+ . This is proof that the electronic change resulting from alkaline earth-doping, rather than the size effect, is responsible for superconductivity. The ionic radius of Sr 2+ is close to that of La 3+ for which it presumably substitutes

  16. Characterization of magnetization processes in nanostructured rare earth-transition metal films

    International Nuclear Information System (INIS)

    Zheng Guangping; Zhan Yangwen; Liu Peng; Li Mo

    2003-01-01

    We synthesize rare earth-transition metal (RE-TM) amorphous films using the electrodeposition method (RE=Nd, Gd and TM=Co). Nanocrystructured RE-TM films are prepared by thermal treatment of as-synthesized films below the glass-crystal transition temperature. Based on the magnetoelastic effect, the magnetization processes in nanostructured samples are characterized by acoustic internal friction measurements using the vibrating-reed technique. Since internal friction and the Young's modulus are sensitive to grain boundary and magnetic domains movement, this technique seems to characterize the effects of nanostructures on the magnetization processes in RE-TM films well. We find that the magnetoelastic effect in nanostructured RE-TM film increases with an increase in grain size

  17. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  18. Earth-Affecting Solar Causes Observatory (EASCO): a mission at the Sun-Earth L5

    DEFF Research Database (Denmark)

    Gopalswamy, Nat; Davila, Joseph M.; Auchère, Frédéric

    2011-01-01

    Observatory (STEREO) missions, but these missions lacked some key measurements: STEREO did not have a magnetograph; SOHO did not have in-situ magnetometer. SOHO and other imagers such as the Solar Mass Ejection Imager (SMEI) located on the Sun-Earth line are also not well-suited to measure Earth-directed CMEs....... The Earth-Affecting Solar Causes Observatory (EASCO) is a proposed mission to be located at the Sun-Earth L5 that overcomes these deficiencies. The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center, to see how the mission can be implemented....... The study found that the scientific payload (seven remote-sensing and three in-situ instruments) can be readily accommodated and can be launched using an intermediate size vehicle; a hybrid propulsion system consisting of a Xenon ion thruster and hydrazine has been found to be adequate to place the payload...

  19. HfO2 - rare earth oxide systems in the region with high content of rare earth oxide

    International Nuclear Information System (INIS)

    Shevchenko, A.V.; Lopato, L.M.

    1982-01-01

    Using the methods of annealing and hardenings (10 2 -10 4 deg/s cooling rate) and differential thermal analysis elements of state diagrams of HfO 2 - rare earth oxide (rare earths-La, Pr, Nd, Sm, Gd, Tb, Dy, Y, Er, Yb, Lu, Sc) systems from 1800 deg C up to melting in the range of 60-100 mol% rare earth oxide concentration were constructed. Regularities of HfQ 2 addition effect on high-temperature polymorphic transformations of rare earth oxides were studied. Results of investigation were discussed from viewpoint of crystal chemistry

  20. Behaviour of Rare Earth Elements during the Earth's core formation

    Science.gov (United States)

    Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth

    2017-04-01

    Rare Earth Elements (REE) are classified in the refractory group, which means that they have a high temperature condensation and their volatility-controlled fractionation is limited to high-temperature processes. Anomalies have been measured for Eu, Yb and Sm, which are the REE with the lowest condensation temperatures in CAIs and chondrules (e.g. [1]). REE are particularly abundant in the sulfides of enstatite chondrites, 100 to 1000 times the CI value [e.g. 2,3], proving that these elements are not strictly lithophile under extremely reducing conditions. However by investigating experimentally the impact of Earth's core formation on the behavior of Sm and Nd, we have shown the absence of fractionation between Sm and Nd during the segregation of the metallic phase [4]. Recently, Wohlers and Wood [5] proposed that Nd and Sm could be fractionated in presence of a S-rich alloy phase. However, their results were obtained at pressure and temperature conditions below the plausible conditions of the Earth's core formation. Clearly, large pressure range needs to be covered before well-constrained model can be expected. Furthermore, our preliminary metal-silicate partitioning results show that Ce and Eu have higher metal/silicate partition coefficients than their neighboring elements, and that the presence of sulphur enhances the relative difference between partition coefficients. In this presentation, we will present and discuss new metal-silicate partition coefficients of all REE at a deep magma ocean at pressures ranging from those of the uppermost upper mantle ( 5 GPa) to a maximum pressure expected in the range of 20 GPa, temperatures ranging from 2500 to about 3000 K, and oxygen fugacities within IW-1 to IW-5 (1 to 5 orders of magnitude lower than the iron-wüstite buffer). We will discuss the effect of S, as well as the effect of H2O on the behaviour of REE during the Earth's core formation: recent models suggest that contrary to currently accepted beliefs, the

  1. Orion Ammonia Boiler System Preflight Test Preparations

    Science.gov (United States)

    Levitt, Julia L.

    2017-01-01

    The Environmental Controls and Life Support Systems (ECLSS) branch at Kennedy Space Center (KSC) is currently undergoing preparations for ground testing of the Orion Multi-Purpose Crew Vehicle (MPCV) to prepare its subsystems for EM-1 (Exploration Mission-1). EM-1, Orions second unmanned flight, is a three-week long lunar mission during which the vehicle will complete a 6-day retrograde lunar orbit before returning to Earth. This paper focuses on the work done during the authors 16-week internship with the Mechanical Engineering Branch of KSCs Engineering Directorate. The authors project involved assisting with the preparations for testing the Orion MPCVs ammonia boiler system. The purpose of the ammonia boiler system is to keep the spacecraft sufficiently cool during the reentry portion of its mission, from service module (SM) separation to post-landing. This system is critical for keeping both the spacecraft (avionics and electronics) and crew alive during reentry, thus a successful test of the system is essential to the success of EM-1. XXXX The author was able to draft a detailed outline of the procedure for the ammonia system functional test. More work will need to be done on the vehicle power-up and power-down portions of the procedure, but the ammonia system testing portion of the procedure is thorough and includes vehicle test configurations, vehicle commands, and GSE. The author was able to compile a substantial list of questions regarding the ammonia system functional test with the help of her mentors. A significant number of these questions were answered in the teleconferences with Lockheed Martin.

  2. Electronic structure of Sr2RuO4 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Iwasawa, H.; Aiura, Y.; Saitoh, T.; Yoshida, Y.; Hase, I.; Ikeda, S.I.; Bando, H.; Kubota, M.; Ono, K.

    2007-01-01

    Electronic structure of the monolayer strontium ruthenate Sr 2 RuO 4 was investigated by high-resolution angle-resolved photoemission spectroscopy. We present photon-energy (hν) dependence of the electronic structure near the Fermi level along the ΓM line. The hν dependence has shown a strong spectral weight modulation of the Ru 4d xy and 4d zx bands

  3. Earth Systems Science: An Analytic Framework

    Science.gov (United States)

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  4. Earth Science Literacy: Building Community Consensus

    Science.gov (United States)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  5. USGEO Common Framework For Earth Observation Data

    Science.gov (United States)

    Walter, J.; de la Beaujardiere, J.; Bristol, S.

    2015-12-01

    The United States Group on Earth Observations (USGEO) Data Management Working Group (DMWG) is an interagency body established by the White House Office of Science and Technology Policy (OSTP). The primary purpose of this group is to foster interagency cooperation and collaboration for improving the life cycle data management practices and interoperability of federally held earth observation data consistent with White House documents including the National Strategy for Civil Earth Observations, the National Plan for Civil Earth Observations, and the May 2013 Executive Order on Open Data (M-13-13). The members of the USGEO DMWG are working on developing a Common Framework for Earth Observation Data that consists of recommended standards and approaches for realizing these goals as well as improving the discoverability, accessibility, and usability of federally held earth observation data. These recommendations will also guide work being performed under the Big Earth Data Initiative (BEDI). This talk will summarize the Common Framework, the philosophy behind it, and next steps forward.

  6. Earth current monitoring circuit for inductive loads

    CERN Document Server

    Montabonnet, V; Thurel, Y; Cussac, P

    2010-01-01

    The search for higher magnetic fields in particle accelerators increasingly demands the use of superconducting magnets. This magnet technology has a large amount of magnetic energy storage during operation at relatively high currents. As such, many monitoring and protection systems are required to safely operate the magnet, including the monitoring of any leakage of current to earth in the superconducting magnet that indicates a failure of the insulation to earth. At low amplitude, the earth leakage current affects the magnetic field precision. At a higher level, the earth leakage current can additionally generate local losses which may definitively damage the magnet or its instrumentation. This paper presents an active earth fault current monitoring circuit, widely deployed in the converters for the CERN Large Hadron Collider (LHC) superconducting magnets. The circuit allows the detection of earth faults before energising the circuit as well as limiting any eventual earth fault current. The electrical stress...

  7. Preparation of reactive and refractory metal powders (Paper No. 25)

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Sharma, B.P.; Krishnan, T.S.

    1979-01-01

    In devising processes for the preparation of refractory and reactive metal powders, one has to reckon with many relevant factors. The choice of specific flowsheets is governed by the characteristics of the metal compounds and the reducing agents, the purity required and achievable in the as-reduced powder, the need for further refining of the metal, the possibilities of chemical/physical/mechanical comminution of the purified metal without contamination, and the end application of the powder metal. Micron size zirconium powder used as trigger material in photo-flash bulbs and detonator compositions, tantalum powder of controlled particle size and high purity for the production of electrolytic capacitors, and beryllium metal powder for the preparation of hot pressed powder metallurgy components are illustrative of the variety of reactive metal powders for industrial applications. The work carried out at the Bhabha Atomic Research Centre, Bombay, on the preparation of special metal powders, with particular emphasis on Group IV and V metals and also beryllium is presented. Reduction of metal oxides with alkaline earth metals/hydrides, reduction of metal halides with sodium/magnesium, vacuum arc and electron beam melt purification followed by comminution by hydrogen embrittlement/mechanical comminution are among the processes discussed. (auth.)

  8. Electrically conducting perovskites for SOFC and catalysis. Preparation characterization and testing

    Energy Technology Data Exchange (ETDEWEB)

    Gordes, P

    1998-12-31

    Solid oxide fuel cells offer the possibility of high efficiency and low pollution energy source. A fuel cell converts chemical energy directly to electricity without combustion as an intermediate step. H{sub 2}, CO or hydrocarbons can be used as fuel gas. At present the main problems in developing a commercial SOFC are related to the air electrode and interconnect. Commercial air electrode and interconnect materials are still not on the market. This dissertation concerns the following main tasks: 1. A theoretical part on the co-optimization of electronic and catalytic properties of perovskites (ABO{sub 3}) where the A position is occupied by mixed rare earth or alkaline earth metal (Ca, Sr, Ba, La, etc) and the B position is occupied by a mixture of transition metals (Mn, Fe, Co, Ni, Cr, etc). 2. Optimization of the drip pyrolysis method and fabrication of high quality perovskite powders of selected compositions for further studies. This work involves a detailed characterization of powders prepared in terms of phase homogeneity, crystallite size, agglomeration, chemical composition etc. 3. Development of the necessary processing technology for fabrication of shaped samples with a closely controlled porosity and pore size distribution. This work involves development of a suitable shaping process (uniaxial pressing, extrusion, tape casting), and a detailed study of the phase evolution and densification properties of the powders as a function of temperature. 4. Characterization of the prepared perovskite components in terms of phase homogeneity, microstructure, as well as electrical and catalytic properties. 5. Recommendations for future work. (EG) 151 refs.

  9. Electrically conducting perovskites for SOFC and catalysis. Preparation characterization and testing

    Energy Technology Data Exchange (ETDEWEB)

    Gordes, P.

    1997-12-31

    Solid oxide fuel cells offer the possibility of high efficiency and low pollution energy source. A fuel cell converts chemical energy directly to electricity without combustion as an intermediate step. H{sub 2}, CO or hydrocarbons can be used as fuel gas. At present the main problems in developing a commercial SOFC are related to the air electrode and interconnect. Commercial air electrode and interconnect materials are still not on the market. This dissertation concerns the following main tasks: 1. A theoretical part on the co-optimization of electronic and catalytic properties of perovskites (ABO{sub 3}) where the A position is occupied by mixed rare earth or alkaline earth metal (Ca, Sr, Ba, La, etc) and the B position is occupied by a mixture of transition metals (Mn, Fe, Co, Ni, Cr, etc). 2. Optimization of the drip pyrolysis method and fabrication of high quality perovskite powders of selected compositions for further studies. This work involves a detailed characterization of powders prepared in terms of phase homogeneity, crystallite size, agglomeration, chemical composition etc. 3. Development of the necessary processing technology for fabrication of shaped samples with a closely controlled porosity and pore size distribution. This work involves development of a suitable shaping process (uniaxial pressing, extrusion, tape casting), and a detailed study of the phase evolution and densification properties of the powders as a function of temperature. 4. Characterization of the prepared perovskite components in terms of phase homogeneity, microstructure, as well as electrical and catalytic properties. 5. Recommendations for future work. (EG) 151 refs.

  10. Rare earth mobility in hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Cornell, D.H.; Schade, J.; Scheepers, R.; Watkeys, M.K.

    1988-01-01

    Rocks and ores which form by magmatic processes display a range of chondrite-normalised rare earth profiles. One REE (rare earth elements) profile feature which seems unrelated to magmatic processes is the birdwing profile, in which both heavy and light rare earths are enriched relative to the middle rare earths. Birdwing rare earth profiles are an easily identified geochemical anomaly. It is proposed that rare earth geochemistry could be applied in geochemical prospecting for ore formed by hydrothermal processes. 5 figs

  11. Influence of Rare Earth Doping on the Structural and Catalytic Properties of Nanostructured Tin Oxide

    Directory of Open Access Journals (Sweden)

    Maciel Adeilton

    2008-01-01

    Full Text Available AbstractNanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.

  12. Earth thermics

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, M

    1960-01-01

    The thermodynamics of the Earth are described, including terrestrial heat flow, internal temperatures and thermal history. The value of the geothermal gradient has been considered to be 3/sup 0/C/100 m but measured values are slightly different. The values of terrestrial heat flow are relatively constant and are calculated be about 2.3 x 10 to the minus 6 cal/cm/sup 2/ sec (2.3 HFU). The Earth's internal temperature can be calculated from the adiabatic temperature gradient of adiabatic expansion. Using Simon's equation No. 9, a value of 2100-2500/sup 0/C is obtained, this is much lower than it was previously thought to be. The value of 2.3 HFU can easily be obtained from this internal temperature figure.

  13. Non-rocket Earth-Moon transport system

    Science.gov (United States)

    Bolonkin, Alexander

    2003-06-01

    This paper proposes a new transportation system for travel between Earth and Moon. This transportation system uses mechanical energy transfer and requires only minimal energy, using an engine located on Earth. A cable directly connects a pole of the Earth through a drive station to the lunar surface_ The equation for an optimal equal stress cable for complex gravitational field of Earth-Moon has been derived that allows significantly lower cable masses. The required strength could be provided by cables constructed of carbon nanotubes or carbon whiskers. Some of the constraints on such a system are discussed.

  14. The Earth is flat when personally significant experiences with the sphericity of the Earth are absent.

    Science.gov (United States)

    Carbon, Claus-Christian

    2010-07-01

    Participants with personal and without personal experiences with the Earth as a sphere estimated large-scale distances between six cities located on different continents. Cognitive distances were submitted to a specific multidimensional scaling algorithm in the 3D Euclidean space with the constraint that all cities had to lie on the same sphere. A simulation was run that calculated respective 3D configurations of the city positions for a wide range of radii of the proposed sphere. People who had personally experienced the Earth as a sphere, at least once in their lifetime, showed a clear optimal solution of the multidimensional scaling (MDS) routine with a mean radius deviating only 8% from the actual radius of the Earth. In contrast, the calculated configurations for people without any personal experience with the Earth as a sphere were compatible with a cognitive concept of a flat Earth. 2010 Elsevier B.V. All rights reserved.

  15. Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses

    Science.gov (United States)

    Siva Rama Krishna Reddy, K.; Swapna, K.; Mahamuda, Sk.; Venkateswarlu, M.; Srinivas Prasad, M. V. V. K.; Rao, A. S.; Prakash, G. Vijaya

    2018-05-01

    Sm3+ ions doped Alkaline-Earth Boro Tellurite (AEBT) glasses were prepared by using conventional melt quenching technique and characterized using the spectroscopic techniques such as FT-IR, optical absorption, emission and decay spectral measurements to understand their utility in optoelectronic devices. From absorption spectra, the bonding parameters, nephelauxetic ratios were determined to know the nature of bonding between Sm3+ ions and its surrounding ligands. From the measured oscillator strengths, the Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ions in AEBT glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 in the visible region for which the emission cross-sections and branching ratios were evaluated. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition showed single exponential for lower concentration and non-exponential for higher concentration of doped rare earth ion in the as prepared glasses. Conversion of decay spectral profiles from single to non-exponential have been analyzed using Inokuti-Hirayama (I-H) model to understand the energy transfer mechanism involved in the decay process. CIE Chromaticity coordinates were measured using emission spectral data to identify the exact region of emission from the as-prepared glasses. From the evaluated radiative parameters, emission cross-sections and quantum efficiencies, it was observed that AEBT glass with 1 mol% of Sm3+ ions is more suitable for designing optoelectronic devices.

  16. Rapid response tools and datasets for post-fire modeling: Linking Earth Observations and process-based hydrological models to support post-fire remediation

    Science.gov (United States)

    M. E. Miller; M. Billmire; W. J. Elliot; K. A. Endsley; P. R. Robichaud

    2015-01-01

    Preparation is key to utilizing Earth Observations and process-based models to support post-wildfire mitigation. Post-fire flooding and erosion can pose a serious threat to life, property and municipal water supplies. Increased runoff and sediment delivery due to the loss of surface cover and fire-induced changes in soil properties are of great concern. Remediation...

  17. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    Science.gov (United States)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  18. External Fuel Tank, Clouds and Earth Limb

    Science.gov (United States)

    1991-01-01

    It's fuel consumed, the expendable external fuel tank was jettisoned moments earlier from the Space Shuttle Atlantis and now begins its plunge back to Earth (20.5N, 36.0W). Backdropped against the void of space and the thin blue line of the Earth's airglow above the Earth Limb, the harshness of the blackness of space is softened by the fleeciness of Earth's cloud cover below.

  19. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  20. Rare earth elements behavior in Peruibe black mud

    International Nuclear Information System (INIS)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da

    2015-01-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  1. Rare earth elements behavior in Peruibe black mud

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da, E-mail: jeffkoy@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  2. Addressing the Big-Earth-Data Variety Challenge with the Hierarchical Triangular Mesh

    Science.gov (United States)

    Rilee, Michael L.; Kuo, Kwo-Sen; Clune, Thomas; Oloso, Amidu; Brown, Paul G.; Yu, Honfeng

    2016-01-01

    We have implemented an updated Hierarchical Triangular Mesh (HTM) as the basis for a unified data model and an indexing scheme for geoscience data to address the variety challenge of Big Earth Data. We observe that, in the absence of variety, the volume challenge of Big Data is relatively easily addressable with parallel processing. The more important challenge in achieving optimal value with a Big Data solution for Earth Science (ES) data analysis, however, is being able to achieve good scalability with variety. With HTM unifying at least the three popular data models, i.e. Grid, Swath, and Point, used by current ES data products, data preparation time for integrative analysis of diverse datasets can be drastically reduced and better variety scaling can be achieved. In addition, since HTM is also an indexing scheme, when it is used to index all ES datasets, data placement alignment (or co-location) on the shared nothing architecture, which most Big Data systems are based on, is guaranteed and better performance is ensured. Moreover, our updated HTM encoding turns most geospatial set operations into integer interval operations, gaining further performance advantages.

  3. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  4. Immersive Earth: Teaching Earth and Space with inexpensive immersive technology

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.; Law, C. C.; Handron, K.

    2003-12-01

    In 1995 we pioneered "Space Update", the Digital Library for the rest of us", software that was so simple that a child could use it without a keyboard and yet would allow one-click updating of the daily earth and space science images without the dangers of having an open web browser on display. Thanks to NASA support, it allowed museums and schools to have a powerful exhibit for a tiny price. Over 40,000 disks in our series have been distributed so far to educators and the public. In 2003, with our partners we are again revolutionizing educational technology with a low-cost hardware and software solution to creating and displaying immersive content. Recently selected for funding as part of the REASoN competition, Immersive Earth is a partnership of scientists, museums, educators, and content providers. The hardware consists of a modest projector with a special fisheye lens to be used in an inflatable dome which many schools already have. This, coupled with a modest personal computer, can now easily project images and movies of earth and space, allows training students in 3-D content at a tiny fraction of the cost of a cave or fullscale dome theater. Another low-cost solution is the "Imove" system, where spherical movies can play on a personal computer, with the user changing the viewing direction with a joystick. We were the first to create immersive earth science shows, remain the leader in creating educational content that people want to see. We encourage people with "allsky" images or movies to bring it and see what it looks like inside a dome! Your content could be in our next show!

  5. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  6. Propagation Velocity of Solid Earth Tides

    Science.gov (United States)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  7. Earth evolution as a thermal system

    Science.gov (United States)

    Tang, C.

    2014-12-01

    After fifty years of plate-tectonic theory, the reasons why earth sometime freezed as a snowball or sometime became lethally hot resulting in mass extinction remain enigmatic. This article proposes a new hypothesis on Earth evolution. The unbalance of heat between the input and output is considered as the driving force for the Earth evolution, the lithospheric expansion and associated uplift are the triggers, the self-organized progressive failure leading to collapse of the Earth are the amplifier, and the global scale response in terms of volcanism and magmatism is the globalizer. This shallow process of lithosphere may reach a critical state with a positive feedback loop, and result in the formation of no-plume original Large Igneous Provinces (NPOLIP) in a top-down pattern. Endothermic phase changes during de-compressive melting remove heat from and cool their surroundings, including the upper parts of the lithosphere. The huge loss of Earth's heat during eruption of LIPs, together with the endothermic cooling, may put the thermal cycle to an end and a new start of the cycle initiates. In summary, Earth drives itself to evolve in terms of thermal cycles. Global cooling and warming are the two stages of the many cycles during the Earth evolution. Glaciations are the extreme result of global cooling, whereas the LIPs, sometime accompanied with remarkable sea level dropping, are the extreme result of global warming, with a long recovering age, the interglacialstage, between them. They come and go as thermal cycle evolves, with climate warming, being caused by Earth itself rather than by external forces or human activities, as the most attractive prediction.

  8. High temperature heat pipe experiments in low earth orbit

    International Nuclear Information System (INIS)

    Woloshun, K.; Merrigan, M.A.; Sena, J.T.; Critchley, E.

    1993-01-01

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented

  9. Luminescent nanocrystals in the rare-earth niobate–zirconia system formed via hydrothermal method

    International Nuclear Information System (INIS)

    Hirano, Masanori; Dozono, Hayato

    2013-01-01

    Luminescent nanocrystals based on the rare-earth niobates (Ln 3 NbO 7 , Ln=Y, Eu) and zirconia (ZrO 2 ) that were composed of 50 mol% Ln 3 NbO 7 and 50 mol% ZrO 2 , were hydrothermally formed as cubic phase under weakly basic conditions at 240 °C. The lattice parameter of the as-prepared nanoparticles corresponding to the composition of Y 3−x Eu x NbO 7 –4ZrO 2 that was estimated as a single phase of cubic gradually increased as the content of europium x increased. The existence of small absorbance peaks at 395 and 466 nm corresponding to the Eu 3+7 F 0 → 5 L 6 , and 7 F 0 → 5 D 2 excitation transition, respectively, was clearly observed in the diffuse reflectance spectra of the as-prepared samples containing europium. The optical band gap of the as-prepared samples was in the range from 3.5 to 3.7 eV. The photoluminescence spectra of the as-prepared nanocrystals containing europium showed orange and red luminescences with main peaks at 590 and 610 nm, corresponding to 5 D 0 → 7 F 1 and 5 D 0 → 7 F 2 transitions of Eu 3+ , respectively, under excitation at 395 nm Xe lamp. The emission intensity corresponding to 5 D 0 → 7 F 2 transition increased as heat-treatment temperature rose from 800 to 1200 °C. - Graphical abstract: This graphical abstract shows the excitation and emission spectra and a transmission electron microscopy image of nanocrystals (with composition based on the rare-earth niobates (Ln 3 NbO 7 , Ln=Y, Eu) and zirconia (ZrO 2 ) that were composed of 50 mol% Ln 3 NbO 7 and 50 mol% ZrO 2 ) formed via hydrothermal route. Display Omitted - Highlights: • Nanocrystals composed of 50 mol% Y 3−x Eu x NbO 7 and 50 mol% ZrO 2 was directly formed. • The nanocrystals were hydrothermally formed under weakly basic conditions at 240 °C. • The Y 3 NbO 7 showed an UV-blue and broad-band emission under excitation at 240 nm. • The emission is originated from the niobate octahedral group [NbO 6 ] 7− . • The nanocrystals showed orange and

  10. High anisotropic NdFeB submicro/nanoflakes prepared by surfactant-assisted ball milling at low temperature

    Science.gov (United States)

    An, Xiaoxin; Jin, Kunpeng; Abbas, Nadeem; Fang, Qiuli; Wang, Fang; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2017-11-01

    Hard magnetic NdFeB submicro/nanoflakes were successfully prepared by surfactant-assisted ball milling at low temperature (SABMLT) by specially using 2-methyl pentane and trioctylamine (TOA) as solvent and surfactant, respectively. Influences of the amount of TOA and milling temperature on the crystal structure, morphology and magnetic performances of the as-prepared NdFeB powders were investigated systematically. There is significant difference on morphology between the NdFeB powders milled at room and low temperature. The NdFeB powders with flaky morphology could be obtained even with a small amount of TOA by SABMLT, which could not be achieved by surfactant-assisted ball milling at room temperature (SABMRT). The better crystallinity, better grain alignment, higher coercivity, larger saturation magnetization and remanence ratio were achieved in the samples prepared by SABMLT. Furthermore, the final NdFeB powders prepared by SABMLT possessed a lower amount of residual TOA than those prepared by SABMRT. It was demonstrated that SABMLT is a promising way to fabricate rare-earth-transition metal nanoflakes with high anisotropy for permanent magnetic materials. The effective method of preparing NdFeB flakes by lowering temperature will be also useful to fabricate flakes of other functional materials.

  11. Sun-Earth Day Connects History, Culture and Science

    Science.gov (United States)

    Cline, T.; Thieman, J.

    2003-12-01

    The NASA Sun-Earth Connection Education forum annually promotes and event called Sun-Earth Day: a national celebration of the Sun, the space around the Earth (geospace), and how all of it affects life on our planet. For the past 3 years this event has provided a venue by which classrooms, museums, planetaria, and at NASA centers have had a sensational time sharing stories, images, and activities related to the Sun-Earth connections and the views o fthe Sun from Earth. Each year we select a different theme by which NASA Space Science can be further related to cross-curricular activities. Sun-Earth Day 2002, "Celebrate the Equinox", drew parallels between Native American Cultures and NASA's Sun-Earth Connection research via cultural stories, interviews, web links, activities and Native American participation. Sun-Earth Day 2003, "Live From the Aurora", shared the beauty of the Aurora through a variety of activities and stories related to perspectives of Northern Peoples. Sun-Earth Day 2004 will share the excitement of the transit of Venus through comparisons of Venus with Earth and Mars, calculations of the distances to nearby stars, and the use of transits to identify extra-solar planets. Finally, Sun-Earth Day 2005 will bring several of these themes together by turning our focus to the history and culture surrounding ancient observatories such as Chaco Canyon, Machu Picchu, and Chichen Itza.

  12. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    Science.gov (United States)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These

  13. Looking at the earth from space

    Science.gov (United States)

    Geller, Marvin A.

    1988-01-01

    Some of the scientific accomplishments attained in observing the earth from space are discussed. A brief overview of findings concerning the atmosphere, the oceans and sea ice, the solid earth, and the terrestrial hydrosphere and biosphere is presented, and six examples are examined in which space data have provided unique information enabling new knowledge concerning the workings of the earth to be derived. These examples concern stratospheric water vapor, hemispheric differences in surface and atmosphere parameters, Seasat altimeter mesoscale variability, variability of Antarctic sea ice, variations in the length of day, and spaceborne radar imaging of ancient rivers. Future space observations of the earth are briefly addressed.

  14. Earth Surface Processes, Landforms and Sediment Deposits

    Science.gov (United States)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  15. Preparation of Trivalent Chromium and Rare Earth Composite Conversion Coating on Aluminum Alloy Surface

    Science.gov (United States)

    Huang, Jianzhen

    2018-01-01

    In this paper, the surface conversion film on 6063 aluminum alloy was prepared by chemical plating process with chromium sulfate, lanthanum sulfate and sodium phosphate as film forming agent. The corrosion resistance and surface morphology of the conversion film were analyzed by pitting corrosion test of copper sulfate and SEM. The results show that when Cr2(SO4)3 is 10 g/L, La2(SO4)3 is 2 g/L, Na3PO4 is 8 g/L, pH value is 3, temperature is 40 °C, reaction time is 10 min, the corrosion resistance of the surface conversion film is the best. The conversion coating is light green, composed of Cr, La, P, Al, O and other elements.

  16. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  17. Perbandingan intensitas warna CPO dengan menggunakan Bleaching Earth (BE) dan Spent Bleaching Earth (SBE) di PT. SMART Tbk.

    OpenAIRE

    Aritonang, Dwi Christina

    2016-01-01

    Comparative studies have been conducted on the effect of bleaching earth quality bleachibility power on CPO (crude palm oil). by using the tool Lovibond Tintometer model of F in PT Smart Tbk Medan – Belawan.From experiments obtained initial color with the CPO 20R - 20Y after addition Bleaching Earth and spent bleaching earth with the CPO each - each 10,2R - 20Y and 17.3R - 20Y . The results showed that purification using Bleaching Earth better than the purification of Spent Bleaching Earh ...

  18. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  19. Spectroscopic and visible luminescence properties of rare earth ions in lead fluoroborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Anjaiah, G. [Department of Physics, Osmania University, Hyderabad 500007 (India); Nayab Rasool, SK. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Kistaiah, P., E-mail: pkistaiah@yahoo.com [Department of Physics, Osmania University, Hyderabad 500007 (India)

    2015-03-15

    The lanthanide doped lead lithium calcium zinc fluoroborate glasses (LLCZFB:Ln) of composition 20PbF{sub 2}+10Li{sub 2}O+5Cao+5ZnO+59B{sub 2}O{sub 3}+1Ln{sub 2}O{sub 3} (where Ln=Sm, Eu and Dy in mol%) were prepared by conventional melt quench technique. The amorphous nature of these glasses was confirmed by X-ray diffraction studies. The glass transition temperatures (T{sub g}) were studied by DSC analysis. The glass structure and spectroscopic properties were investigated using optical absorption, vibrational and fluorescence spectra. The FT-IR spectra and Raman spectra reveal the presence of BO{sub 3}, BO{sub 4} and non-bridging oxygen's. The Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4, 6) were determined from the spectral intensities of absorption bands. These parameters were used to calculate the radiative parameters such as radiative transition probability (A{sub R}), radiative life time (τ{sub R}) and branching ratio (β{sub r}) for various excited luminescent states of rare earth ions. The visible emission spectra for different rare earth ions were recorded by exciting the samples at different wavelengths and the decay rates for the different rare earth ions were measured. Using the emission spectra, full width half maxima (FWFM), stimulated emission cross section (σ{sup E}{sub p}) were evaluated. The nature of decay profiles of {sup 4}F{sub 9/2}, {sup 4}G{sub 5/2} and {sup 5}D{sub 0} states of Dy, Sm and Eu ions respectively are analyzed. Comparison of luminescence features of these glasses and also with those reported for different glass hosts indicates that the LLCZFB:Dy glass has strong luminescence in the visible region. - Highlights: • LLCZFB:Ln glasses are prepared with Ln: Sm, Eu and Dy. • Glasses are characterized by XRD, FTIR, Raman, absorption and emission spectra. • J–O theory is used to calculate different radiative properties. • Green, yellow and red emissions are observed. • Glasses are useful for the development

  20. Student Learning of Complex Earth Systems: Conceptual Frameworks of Earth Systems and Instructional Design

    Science.gov (United States)

    Scherer, Hannah H.; Holder, Lauren; Herbert, Bruce

    2017-01-01

    Engaging students in authentic problem solving concerning environmental issues in near-surface complex Earth systems involves both developing student conceptualization of Earth as a system and applying that scientific knowledge using techniques that model those used by professionals. In this first paper of a two-part series, we review the state of…