WorldWideScience

Sample records for earth oxide gel

  1. Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method

    Directory of Open Access Journals (Sweden)

    Majid Mohadesi

    2014-03-01

    Full Text Available Biodiesel fuel is considered as an alternative to diesel fuel. This fuel is produced through transesterification reactions of vegetable oils or animal fat by alcohols in the presence of different catalysts. Recent studies on this process have shown that, basic heterogeneous catalysts have a higher performance than other catalysts. In this study different alkali earth metal oxides (CaO, MgO and BaO doped SiO2 were used as catalyst for the biodiesel production process. These catalysts were synthesis by using the sol-gel method. A transesterification reaction was studied after 8h by mixing corn oil, methanol (methanol to oil molar ratio of 16:1, and 6 wt. % catalyst (based on oil at 60oC and 600rpm. Catalyst loading was studied for different catalysts ranging in amounts from 40, 60 to 80%. The purity and yield of the produced biodiesel for 60% CaO/SiO2 was higher than other catalysts and at 97.3% and 82.1%, respectively.

  2. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Kuang Qin; Lin Zhiwei; Lian Wei; Jiang Zhiyuan; Xie Zhaoxiong; Huang Rongbin; Zheng Lansun

    2007-01-01

    In this paper, we report a versatile synthetic method of ordered rare-earth metal (RE) oxide nanotubes. RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction (XRD) have been employed to characterize the morphology and composition of the as-prepared nanotubes. It is found that as-prepared RE oxides evolve into bamboo-like nanotubes and entirely hollow nanotubes. A new possible formation mechanism of RE oxide nanotubes in the AAO channels is proposed. These high-quantity RE oxide nanotubes are expected to have promising applications in many areas such as luminescent materials, catalysts, magnets, etc. - Graphical abstract: A versatile synthetic method for the preparation of ordered rare-earth (RE) oxide nanotubes is reported, by which RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates

  3. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  4. Crystallization of mixed rare earth (didymium) molybdates in silica gel

    Indian Academy of Sciences (India)

    Experiments on the growth of mixed rare earth (didymium—a combination of La, Nd, Pr and Sm) molybdates in silica gel medium are reported. The optimum conditions conducive for the growth of these crystals are described and discussed. Concentration programming is reported to enhance the size of crystals by two-fold; ...

  5. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  6. Rare earth oxide doping in oxide cathodes

    International Nuclear Information System (INIS)

    Engelsen, Daniel den; Gaertner, Georg

    2006-01-01

    The effect on life performance and poisoning with O 2 by doping oxide cathodes with rare earth oxides and pseudo rare earth oxides, notably yttria, is qualitatively explained in terms of electrolysis of BaO during emission of electrons. Doped cathodes show less electrolysis and consume therefore less Ba during life: consequently, doped cathodes have a better life performance. However, the lower Ba-production makes doped cathodes more sensitive to oxygen poisoning. The experimentally found relation between conductivity and yttria concentration was the motive to propose a new model for the crystal imperfections in BaO. In this new imperfection model most Y 3+ -ions will combine with barium vacancies, therefore, the increase of the conductivity is modest and also the effect on the position of the Fermi level is modest. By assuming a combination of bulk and surface conductivity, the agreement between experiment and theory can be improved further

  7. Metallothermic reduction of rare earth oxides

    International Nuclear Information System (INIS)

    Sharma, R.A.

    1986-01-01

    Rare earth oxides can be reduced to rare earth metals by a novel, high yield, metallothermic process. The oxides are dispersed in a suitable, molten, calcium chloride bath along with sodium metal. The sodium reacts with the calcium chloride to produce calcium metal which reduces the rare earth oxides to rare earth metals. The metals are collected in a discrete layer in the reaction vessel

  8. Sol-Gel Derived, Nanostructured Oxide Lubricant Coatings

    National Research Council Canada - National Science Library

    Taylor, Douglas

    2000-01-01

    In this program, we deposited oxide coatings of titanium and nickel by wet-chemical deposition methods, also referred to as sol-gel, which showed excellent tribological properties in previous investigations...

  9. Sol-gel preparation of uranium oxide spheres

    International Nuclear Information System (INIS)

    Dolezal, J.; Urbanek, V.

    1978-01-01

    Information is presented on problems of preparing nuclear fuel by the sol-gel method. Basic data on different process types are given. A more detailed description of the method of preparation of spherical particles of uranium oxide gel developed and used at the Nuclear Research Institute at Rez is given. Advantages and disadvantages of sol-gel materials are discussed in comparison with fuel materials prepared by classical precipitation methods. The feasibility of the sol-gel methods for preparing other materials is shortly mentioned and their application outlined. (author)

  10. Structure of chitosan thermosensitive gels containing graphene oxide

    Science.gov (United States)

    Tylman, Michał; Pieklarz, Katarzyna; Owczarz, Piotr; Maniukiewicz, Waldemar; Modrzejewska, Zofia

    2018-06-01

    The supramolecular hydrogels of chitosan and graphene oxide (GO) have been prepared at temperature of the human body, by controlling the concentration of GO and ratio of chitosan to GO. During the preparation of gels the sodium β-glycerophosphate (Na-β-GP) was used as a neutralizing agent. The structure of obtained gels was determined on the basis of FTIR spectra and XRD diffraction patterns. The results of structural studies have been referenced to gels without graphene oxide. It was found that the gels crystalline structure after the addition of GO does not change. The XRD diffraction patterns are characterized by a number of peaks associated with precipitated NaCl during drying and presence of sodium β-glycerophosphate.

  11. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  12. Elaboration and characterisation of yttrium oxide and hafnium oxide powders by the sol-gel process

    International Nuclear Information System (INIS)

    Hours, T.

    1988-01-01

    The two classical sol-gel processes, colloidal and polymeric are studied for the preparation of yttrium oxide and hafnium oxide high performance powders. In the colloidal process, controlled and reproducible conditions for the preparation of yttrium oxide and hafnium oxide sols from salts or alkoxides are developed and the hydrothermal synthesis monodisperse hafnium oxide colloids is studied. The polymeric process is studied with hafnium ethyl-hexylate, hydrolysis kinetics for controlled preparation of sols and gels is investigated. Each step of preparation is detailed and powders obtained are characterized [fr

  13. Sol-gel based oxidation catalyst and coating system using same

    Science.gov (United States)

    Watkins, Anthony N. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Patry, JoAnne L. (Inventor); Schryer, Jacqueline L. (Inventor)

    2010-01-01

    An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.

  14. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Zachary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Padilla Cintron, Cristina [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-27

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology creates monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.

  15. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  16. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    International Nuclear Information System (INIS)

    Neumann, Bjoern

    2013-11-01

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [de

  17. Recovery of Filtered Graphene Oxide Residue Using Elastic Gel Packed in a Column by Cross Flow

    Directory of Open Access Journals (Sweden)

    Yuji Takaoka

    2018-04-01

    Full Text Available To recover the filtered residues on a gel layer in a column, the method using the elasticity of the gel layer and flowing water in a cross-flow manner is proposed. Polymerized spherical gel (40 μm was packed in a column to a set height of 0.7 cm. The suspensions of graphene oxide at various sizes and shapes were injected on the top of the gel layer and then water was flowed at a flow rate of 1000 mL·h−1 until 0.10 MPa. By releasing the applied pressure, the elastic gel layer rose up, and the filtered graphene oxide also rose above the layer. This rise of the gel layer is due to the difference of pressure between the gel layer, including the filtered graphene oxide, and the open bottom of the column, using the flow of water. The cross flow of water through the column carried away the larger-sized filtered graphene oxide floating above the gel layer. The elasticity of the gel layer and cross flow through the column has the potential to recover the filtered particles.

  18. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘

    2001-01-01

    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  19. HfO2 - rare earth oxide systems in the region with high content of rare earth oxide

    International Nuclear Information System (INIS)

    Shevchenko, A.V.; Lopato, L.M.

    1982-01-01

    Using the methods of annealing and hardenings (10 2 -10 4 deg/s cooling rate) and differential thermal analysis elements of state diagrams of HfO 2 - rare earth oxide (rare earths-La, Pr, Nd, Sm, Gd, Tb, Dy, Y, Er, Yb, Lu, Sc) systems from 1800 deg C up to melting in the range of 60-100 mol% rare earth oxide concentration were constructed. Regularities of HfQ 2 addition effect on high-temperature polymorphic transformations of rare earth oxides were studied. Results of investigation were discussed from viewpoint of crystal chemistry

  20. Preparation of oxide glasses from metal alkoxides by sol-gel method

    Science.gov (United States)

    Kamiya, K.; Yoko, T.; Sakka, S.

    1987-01-01

    An investigation is carried out on the types of siloxane polymers produced in the course of the hydrolysis of silicon tetraethoxide, as well as the preparation of oxide glasses from metal alkoxides by the sol-gel method.

  1. Preparation of Rare Earth Doped Alumina-Siloxane Gel and Its ER Effect

    Institute of Scientific and Technical Information of China (English)

    李幼荣; 张明; 周兰香; 邱关明; 井上真一; 冈本宏

    2002-01-01

    Poly(methyl methacrylate) (PMMA) was used to wrap alumina-siloxane sol through emulsion polymerization. A kind of suspensions with notable ER effect was produced by fully mixing the prepared microcapsule with silicon oil. Meanwhile a series of PMMA wrapped alumina-siloxane gel doped with rare earths was obtained and its ER effect was tested, like viscosity of different rare earth ion doped samples in different powder concentrations and at different temperatures, at the same time, leak current density and dielectric constant were measured. Results show that the ER effect of this suspension is remarkable, and its stability is much better. The condition of emulsion polymerization and the mechanism of effect are discussed.

  2. Partial Oxidation of n-Butane over a Sol-Gel Prepared Vanadium Phosphorous Oxide

    Directory of Open Access Journals (Sweden)

    Juan M. Salazar

    2013-01-01

    Full Text Available Vanadium phosphorous oxide (VPO is traditionally manufactured from solid vanadium oxides by synthesizing VOHPO4∙0.5H2O (the precursor followed by in situ activation to produce (VO2P2O7 (the active phase. This paper discusses an alternative synthesis method based on sol-gel techniques. Vanadium (V triisopropoxide oxide was reacted with ortho-phosphoric acid in an aprotic solvent. The products were dried at high pressure in an autoclave with a controlled excess of solvent. This procedure produced a gel of VOPO4 with interlayer entrapped molecules. The surface area of the obtained materials was between 50 and 120 m2/g. Alcohol produced by the alkoxide hydrolysis reduced the vanadium during the drying step, thus VOPO4 was converted to the precursor. This procedure yielded non-agglomerated platelets, which were dehydrated and evaluated in a butane-air mixture. Catalysts were significantly more selective than the traditionally prepared materials with similar intrinsic activity. It is suggested that the small crystallite size obtained increased their selectivity towards maleic anhydride.

  3. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Bjoern

    2013-11-15

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [German] Bis heute werden heterogene Katalysatoren ueberwiegend per ''trial and error'' entwickelt. Dies liegt daran, dass es mit Hilfe der traditionellen Herstellungsmethoden sehr schwierig ist, auf der Nanometerskala Strukturen gezielt herzustellen. Im Zuge der rasanten Entwicklungen in den Materialwissenschaften ist es jedoch moeglich geworden, verschiedenste Materialen mit massgeschneiderten Eigenschaften vom makroskopischen bis hinein in den Nanometerbereich herzustellen. Ziel dieser Arbeit war es, dieses Potential fuer die Katalyse zu nutzen. Dabei bestand die Aufgabe darin

  4. Cermets based on rhenium and rare earth element oxides

    International Nuclear Information System (INIS)

    Varfolomeev, M.B.; Velichko, A.V.; Zajtseva, L.L.; Shishkov, N.V.

    1977-01-01

    The reduction of perrhenates of rare earth elements and of yttrium by hydrogen and the subsequent sintering have yielded cermets based on rhenium and rare earth element oxides inherent in which are more disperse and homogeneous structures than those of the ''molecular'' rare earth element-Tc cermets. The dispersity of cermets increases in the rare earth elements series from La to Lu. The microhardness of the Re phase in cermets is 490 kgf/mm 2 ; the total microhardness of a cermet is substantially higher

  5. Fluorescence yield in rare-earth-doped sol-gel silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Silversmith, A.J., E-mail: asilvers@hamilton.ed [Physics Department, Hamilton College, 198 College Hill Road, Clinton, NY 13323 (United States); Nguyen, Nguyen T.T.; Campbell, D.L. [Physics Department, Hamilton College, 198 College Hill Road, Clinton, NY 13323 (United States); Boye, D.M.; Ortiz, C.P. [Davidson College, Davidson, NC 28035 (United States); Hoffman, K.R. [Whitman College, Walla Walla, WA 99362 (United States)

    2009-12-15

    We have used trivalent terbium to investigate the mechanism behind fluorescence enhancement by Al{sup 3+} co-doping. Our results indicate that rare-earth (RE) ions cluster together in aluminum-rich regions of the glass, and behave as if they were dispersed uniformly throughout these regions when the ratio of Al to RE is {approx}10 or greater. We also studied the effects of adding chemical drying agents to the precursor solution for the synthesis of sol-gel-derived silicate glasses. Such glasses can be treated at significantly higher annealing temperatures without degradation of optical quality, and have the density of melt glass. Fluorescence yield from doped RE ions improves markedly with the addition of the drying agents, and the denser glasses are not subject to rehydration.

  6. Structural and optical studies of nano-structure silica gel doped with different rare earth elements, prepared by two different sol -gel techniques

    International Nuclear Information System (INIS)

    Battisha, I.K.; El Beyally, A.; Seliman, S.I.; El Nahrawi, A.S.

    2005-01-01

    Structural and optical characteristics of pure silica gel (silica-xerogel, SiO 2 ) and doped with different concentrations ranging from 1 up to 6% of some rare earth (REEs) ions such as, praseodymium Pr +3 ,and Europium Eu +3 , Erbium Er +3 and Holmium Ho +3 , ions, in the form of thin film and monolith materials were prepared by sol - gel technique, Using tetra-ethoxysilane as precursor materials, which are of particular interest for sol-gel integrated optics applications. Some structural and optical features of sol-gel derived monolith and thin films are analyzed and compared, namely the structure of nano-particle monolith and thin film silica-gel samples, based on X-ray diffraction (XRD). The types of structural information obtainable are compared in detail. It is show that the XRD spectra of a-cristobalite are obtained for the two type materials and even by doping with the four REEs ions. Optical measurements of monolith and thin films were also studied and compared, the normal transmission and specular reflection were measured. The refractive index were calculated and discussed

  7. Rare earth oxides in gaseous desulfurization

    International Nuclear Information System (INIS)

    Kay, D.A.R.; Wilson, W.G.

    1988-01-01

    Phase stability diagrams are used to predict the abilities of lanthanum and cerium oxides to desulfurize coal gasification products in the temperature range 800-1000 C. Results of desulfurization studies in laboratory fixed bed reactors illustrate the effects of sorbent preparation, input gas quality and temperature, on the desulfurization reaction: 2CeO( 2 - x )(s) + H 2 S(g) + (1-2x)H 2 = Ce 2 O 2 S(s) + 2(1 - x)H 2 O(g). The results of desulfurization/oxidation regeneration cycles are also reported

  8. Evolution of the Oxidation State of the Earth's Mantle

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, E.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3(+) at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. In our previous experiments on shergottite compositions, variable fO2, T, and P less than 4 GPa, Fe3(+)/sigma Fe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3(+)/sigma Fe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3(+). Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Preliminary multi-anvil experiments with Knippa basalt as the starting composition were conducted at 5-7 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal to Fe3(+)/2(+). Experiments are underway to produce glassy samples that can be measured by EELS and XANES, and are conducted at higher pressures.

  9. Synthesis of lithium doped zinc oxide by sol gel

    International Nuclear Information System (INIS)

    Meziane, K; Elhichou, A; Elhamidi, A; Almaggoussi, A; CHHIBA, M

    2016-01-01

    Li-doped ZnO thin films were prepared by sol-gel method and deposed on glass substrate using spin coating technique. The effects of Li on structural and optical properties were investigated. The X-ray diffraction (XRD) analysis reveals that Li incorporation leads to the great improvement of the crystalline quality of ZnO thin films. Scanning electron microscopy (SEM) images showed that nanowires are aligned nearly perpendicular to the substrate plane and are affected significantly by Li incorporation. The optical transmission of the films was higher than 80% in the visible region. It is found that the optical gap and the refractive index remain practically constant. (paper)

  10. Sol-Gel/Hydrothermal Synthesis of Mixed Metal Oxide

    African Journals Online (AJOL)

    Keywords: Nanocomposites, Titanium dioxide, Zinc oxide, Particle sizes, Optical property, X-Ray Diffraction. ABSTRACT. 321 .... holey carbon support film were used to prepare the samples for SEM .... absorb photons in the visible range of the.

  11. Effects of Mixed Alkaline Earth Oxides in Potash Silicate Glass ...

    African Journals Online (AJOL)

    The aim of this work is to investigate the effects of mixed alkaline earth oxide in potash silicate glasses with regards to their physical properties. More recently; there has been an increase in the demand for light weight glasses which retains their physical and chemical properties for both domestic and industrial applications.

  12. Sol-gel/hydrothermal synthesis of mixed metal oxide of Titanium and ...

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition using titanium oxy-(1, 2 - pentadione) and zinc acetate without hazardous additives. The resulting composites were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope ...

  13. Influence of protecting gel film on oxidation of zirconium alloys

    Czech Academy of Sciences Publication Activity Database

    Frank, H.; Weishauptová, Zuzana; Vrtílková, V.

    2007-01-01

    Roč. 360, č. 3 (2007), s. 282-292 ISSN 0022-3115 R&D Projects: GA ČR GA106/04/0043 Institutional research plan: CEZ:AV0Z30460519 Keywords : fuel cladding * corrosion * Zirconium oxide Subject RIV: JF - Nuclear Energetics Impact factor: 1.643, year: 2007

  14. Catalytic oxidation of dichloromethane over sol-gel oxides supported Pd or Ni

    International Nuclear Information System (INIS)

    Martinez; Leidy Marcela; Montes, Consuelo

    2004-01-01

    Several supported Pd or Ni catalysts were synthesized by the sol-gel method using y-alumina, silica, sulfated zirconium and sulfated titanium as carriers. The resulting catalysts were characterized by XRD and nitrogen adsorption, and evaluated in the catalytic oxidation of dichloromethane. The effect of different parameters were determined, i.e. method of synthesis, temperature and the type of support. The durability of the best catalyst (0,5% Pd impregnated over sulfated titanium) was tested between 300 degrades Celsius and 350 degrades Celsius during 48 h. Under the conditions of this study, impregnated catalysts exhibited higher activity than those prepared by cogelation. Pd loaded catalysts showed higher conversion into CO 2 and HCl. Catalyst activity also increased with increasing temperature. Y-Alumina and sulfated titanium showed good activity but the formation of CO is favored instead of CO 2 . Therefore, bifunctional catalysts, i.e. containing metallic and acid sites appear to be required for the decomposition of methylene chloride into CO 2 and HCI

  15. Evolution of the local structure of ferric gels and polymers during the crystallisation of iron oxides. Application to uranium trapping

    International Nuclear Information System (INIS)

    Combes, Jean-Marie

    1988-01-01

    A first part of this research thesis reports the study of the structure of the main iron oxides and oxy-hydroxides, and of the protocols for the synthesis of ferric gels. The second part reports a topological approach by EXAFS (Extended X-Ray Absorption Fine Structure) of the structure of Mn and Fe oxides and oxy-hydroxides. The third part reports the study of the formation of ferric oxides from aqueous solutions by using a polyhedral approach by X-ray absorption spectroscopy in the case of hydrolysis and formation of ferric gels, and in the case of haematite formation from ferric gels. The next parts respectively report the study of the local structure of gels synthesised from iron(II), and the study of the local structure of natural ferric gels. Then, the author reports the study of sites of uranium bonding on ferric gels [fr

  16. Determination of Insulator-to-Semiconductor Transition in Sol-Gel Oxide Semiconductors Using Derivative Spectroscopy.

    Science.gov (United States)

    Lee, Woobin; Choi, Seungbeom; Kim, Kyung Tae; Kang, Jingu; Park, Sung Kyu; Kim, Yong-Hoon

    2015-12-23

    We report a derivative spectroscopic method for determining insulator-to-semiconductor transition during sol-gel metal-oxide semiconductor formation. When an as-spun sol-gel precursor film is photochemically activated and changes to semiconducting state, the light absorption characteristics of the metal-oxide film is considerable changed particularly in the ultraviolet region. As a result, a peak is generated in the first-order derivatives of light absorption ( A' ) vs. wavelength (λ) plots, and by tracing the peak center shift and peak intensity, transition from insulating-to-semiconducting state of the film can be monitored. The peak generation and peak center shift are described based on photon-energy-dependent absorption coefficient of metal-oxide films. We discuss detailed analysis method for metal-oxide semiconductor films and its application in thin-film transistor fabrication. We believe this derivative spectroscopy based determination can be beneficial for a non-destructive and a rapid monitoring of the insulator-to-semiconductor transition in sol-gel oxide semiconductor formation.

  17. Fatigue Resistance of Filled NR with PMMA-Wrapped and Rare Earth-Doped Alumina-Siloxane Gel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Poly (methyl methacrylate) (PMMA) was used to wrap alumina-siloxane sol which was produced by water glass, aluminum nitrate and α-methacrylic acid, and as a result, alumina-siloxane gel wrapped by PMMA was obtained. Meanwhile, rare earth ions were employed to dope in the course of reaction, and the formed rare earth doped PMMA microcapsule powder was filled into natural rubber (NR). It is found through the analysis of mechanical properties that Young′s modulus universally improves and a remarkable resistance to fatigue is displayed. Retention rate of tensile strength is twice that of the controlled sample after ten thousand times of extension fatigue.

  18. Fundamental electrochemiluminescence characteristics of fluorine-doped tin oxides synthesized by sol-gel combustion.

    Science.gov (United States)

    Moon, B H; Chaoumead, A; Sung, Y M

    2013-10-01

    Fluorine-doped tin oxide (FTO) materials synthesized by sol-gel combustion method were investigated for electrochemical luminescence (ECL) application. Effects of sol-gel combustion conditions on the structures and morphology of the porous FTO (p-FTO) materials were studied. ECL efficiency of p-FTO-based cell was about 251 cd/m2 at 4 V bias, which is higher than the sell using only FTO electrodes (102.8 cd/m2). The highest intensity of the emitting light was obtained at the wavelength of about 610 nm. The porous FTO layer was effective for increasing ECL intensities.

  19. Mixed U/Pu oxide fabrication facility for gel-sphere-pac fuel

    International Nuclear Information System (INIS)

    1978-09-01

    This paper describes a conceptual plant which uses the gel-sphere-pac process to fabricate mixed oxide (MOX) fuel and covers (1) fabrication of co-processed MOX fuel and (2) fabrication of co-processed spiked MOX fuel, using 60 Co. The report describes: the fuel fabrication process and plant layout, including scrap and waste processing; and maintenance safety and ventilation measures. A description of the conversion of U and Pu nitrate using a gel sphere process is given in Appendix A

  20. Aloe vera gel improves behavioral deficits and oxidative status in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Tabatabaei, Seyed Reza Fatemi; Ghaderi, Shahab; Bahrami-Tapehebur, Mohammad; Farbood, Yaghoob; Rashno, Masome

    2017-12-01

    Oxidative stress has a major role in progression of diabetes-related behavioral deficits. It has been suggested that Aloe vera has anti-diabetic, antioxidative, and neuroprotective effects. The present study was designed to determine the effects of Aloe vera gel on behavioral functions, oxidative status, and neuronal viability in the hippocampus of streptozotocin (STZ)-induced diabetic rats. Fifty five adult male Wistar rats were randomly divided into five groups, including: control (normal saline 8ml/kg/day; P.O.), diabetic (normal saline 8ml/kg/day; P.O.), Aloe vera gel (100mg/kg/day; P.O.), diabetic+Aloe vera gel (100mg/kg/day; P.O.) and diabetic+NPH insulin (10 IU/kg/day; S.C.). All treatments were started immediately following confirmation of diabetes in diabetic groups and were continued for eight weeks. Behavioral functions were evaluated by employing standard behavioral paradigms. Additionally, oxidative status and neuronal viability were assessed in the hippocampus. The results of behavioral tests showed that diabetes enhanced anxiety/depression-like behaviors, reduced exploratory and locomotor activities, decreased memory performance, and increased stress related behaviors. These changes in diabetic rats were accompanied by increasing oxidative stress and neuronal loss in the hippocampus. Interestingly, eight weeks of treatment with Aloe vera gel not only alleviated all the mentioned deficits related to diabetes, but in some aspects, it was even more effective than insulin. In conclusion, the results suggest that both interrelated hypoglycemic and antioxidative properties of Aloe vera gel are possible mechanisms that improve behavioral deficits and protect hippocampal neurons in diabetic animals. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaohui [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Chen, Changlong, E-mail: chem.chencl@hotmail.com [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Han, Liuyuan [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Shao, Baiqi [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Wei, Yuling [Instrumental Analysis Center, Qilu University of Technology, Jinan 250353, Shandong (China); Liu, Qinglong; Zhu, Peihua [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-15

    Highlights: • In{sub 2}O{sub 3} octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In{sub 2}O{sub 3} octahedrons could significantly enhance room temperature NO{sub 2} gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO{sub 2} gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on.

  2. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    International Nuclear Information System (INIS)

    Mu, Xiaohui; Chen, Changlong; Han, Liuyuan; Shao, Baiqi; Wei, Yuling; Liu, Qinglong; Zhu, Peihua

    2015-01-01

    Highlights: • In 2 O 3 octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In 2 O 3 octahedrons could significantly enhance room temperature NO 2 gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO 2 gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on

  3. A sol-gel method to synthesize indium tin oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xiuhua Li; Xiujuan xu; Xin Yin; Chunzhong Li; Jianrong Zhang

    2011-01-01

    Transparent conductive indium tin oxide (ITO) nanoparticles were synthesized by a novel sol-gel method.Granulated indium and tin were dissolved in HNO3 and partially complexed with citric acid.A sol-gel process was induced when tertiary butyl alcohol was added dropwise to the above solution.ITO nanoparticles with an average crystallite size of 18.5 nm and surface area of 32.6 m2/g were obtained after the gel was heat-treated at 700 C.The ITO nanoparticles showed good sinterability,the starting sintering temperature decreased sharply to 900 C,and the 1400 C sintered pellet had a density of 98.1 % of theoretical density (TD).

  4. High purity samarium oxide from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos A. da S.; Seneda, Jose A.; Vasconcellos, Mari E. de; Pedreira Filho, Walter dos R.

    2013-01-01

    A simple and economical chemical process for the production of highly pure samarium oxides is discussed. The raw material, which was used in the form of rare earth carbonates was produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography was performed using a strong cationic resin that is typically employed in water treatment processes to fractionate rare earth elements (REE) without the use of retention ions. Under these conditions, 99.9% pure Sm 2 O 3 was eluted using the ammonium salt of ethylenediaminetetraacetic acid (EDTA) at a controlled pH. The EDTA-samarium complex was separated from EDTA and then precipitated as oxalate and fired to samarium oxide. Molecular absorption spectrophotometry was used to monitor the samarium content during the proposed process, and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the samarium oxide. Typical samarium oxide obtained from the proposed procedure contained the following contaminants in micrograms per gram: Sc (20.90); Y (11.80); La (8.4); Ce (4.3); Pr (2.5); Nd (5.1); Eu (94); Gd (114); Tb (3.6); Dy (2.5), Ho (2.3); Er (3.0); Tm (2.3); Yb (38,2); Lu (25.6). The high-purity samarium oxides produced in the present study can be used as an alternative to imported products in research and development applications. (author)

  5. Nanosized Ni-Mn Oxides Prepared by the Citrate Gel Process and Performances for Electrochemical Capacitors

    Institute of Scientific and Technical Information of China (English)

    Jianxin ZHOU; Xiangqian SHEN; Maoxiang JING

    2006-01-01

    Nanosized Ni-Mn oxide powders have been successfully prepared by thermal decomposition of the Ni-Mn citrate gel precursors. The powder materials derived from calcination of the gel precursors with various molar ratios of nickel and manganese at different temperatures and time were characterized using thermal analysis (TG-DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmet-Teller (BET).The optimized processing conditions of calcination at 400℃ for 1 h with Ni/Mn molar ratio 6 were proved to produce the nanosized Ni-Mn oxide powders with a high specific surface area of 109.62 m2/g and nanometer particle sizes of 15~30 nm. The capacitance characteristics of the nanosized Ni-Mn oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) and exhibited both a doublelayer capacitance and a Faradaic capacitance which could be attributed to the electrode consisting of Ni-Mn oxides and residual carbons from the organic gel thermal decomposition. A specific capacitance of 194.8 F/g was obtained for the electrode at the sweep rate of 10 mV/s in 4 mol/L KOH electrolyte and the capacitor showed quite high cyclic stability and is promising for advanced electrochemical capacitors.

  6. Oxidative decontamination of chemical and biological warfare agents using L-Gel.

    Science.gov (United States)

    Raber, Ellen; McGuire, Raymond

    2002-08-05

    A decontamination method has been developed using a single reagent that is effective both against chemical warfare (CW) and biological warfare (BW) agents. The new reagent, "L-Gel", consists of an aqueous solution of a mild commercial oxidizer, Oxone, together with a commercial fumed silica gelling agent, Cab-O-Sil EH-5. L-Gel is non-toxic, environmentally friendly, relatively non-corrosive, maximizes contact time because of its thixotropic nature, clings to walls and ceilings, and does not harm carpets or painted surfaces. The new reagent also addresses the most demanding requirements for decontamination in the civilian sector, including availability, low maintenance, ease of application and deployment by a variety of dispersal mechanisms, minimal training and acceptable expense. Experiments to test the effectiveness of L-Gel were conducted at Lawrence Livermore National Laboratory and independently at four other locations. L-Gel was tested against all classes of chemical warfare agents and against various biological warfare agent surrogates, including spore-forming bacteria and non-virulent strains of real biological agents. Testing showed that L-Gel is as effective against chemical agents and biological materials, including spores, as the best military decontaminants.

  7. Vanadium oxide thin films and fibers obtained by acetylacetonate sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Berezina, O.; Kirienko, D. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Pergament, A., E-mail: aperg@psu.karelia.ru [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Stefanovich, G.; Velichko, A. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Zlomanov, V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation)

    2015-01-01

    Vanadium oxide films and fibers have been fabricated by the acetylacetonate sol–gel method followed by annealing in wet nitrogen. The samples are characterized by X-ray diffraction and electrical conductivity measurements. The effects of a sol aging, the precursor decomposition and the gas atmosphere composition on the annealing process, structure and properties of the films are discussed. The two-stage temperature regime of annealing of amorphous films in wet nitrogen for formation of the well crystallized VO{sub 2} phase is chosen: 1) 25–550 °C and 2) 550–600 °C. The obtained films demonstrate the metal–insulator transition and electrical switching. Also, the effect of the polyvinylpyrrolidone additive concentration and electrospinning parameters on qualitative (absence of defects and gel drops) and quantitative (length and diameter) characteristics of vanadium oxide fibers is studied. - Highlights: • Vanadium oxide thin films and fibers are synthesized by sol–gel method. • The effect of annealing, atmosphere, time and electrospinning parameters is studied. • Produced VO{sub 2} structures exhibit metal–insulator transition and electrical switching.

  8. Controlled formation of emulsion gels stabilized by salted myofibrillar protein under malondialdehyde (MDA)-induced oxidative stress.

    Science.gov (United States)

    Zhou, Feibai; Sun, Weizheng; Zhao, Mouming

    2015-04-15

    This study presented the cold-set gelation of emulsions stabilized by salted myofibrillar protein (MP) under oxidative stress originated from malondialdehyde (MDA). Gel properties were compared over a range of MDA/NaCl concentrations including gel viscoelastic properties, strength, water-holding capacity (WHC), amount of protein entrapped, and microstructure. The oxidative stability of emulsion gels as indicated by lipid hydroperoxide was further determined and compared. Results indicated that emulsion stabilized by MP at swollen state under certain ionic strengths (0.2-0.6 M) was the premise of gel formation under MDA. In the presence of intermediate MDA concentrations (2.5-10 mM), the emulsion gels showed an improved elasticity, strength, WHC, and oxidative stability. This improvement should be mainly attributed to the enhanced protein-protein cross-linkings via MDA, which were homogeneously formed among absorbed and/or unabsorbed proteins, entrapping a greater amount and fractions of protein within network. Therefore, the oil droplets were better adherent to the gel matrix. Nevertheless, addition of high MDA concentrations (25-50 mM) led to the formation of excessive covalent bonds, which might break protein-protein bonds and trigger the desorption of protein from the interface. This ultimately caused "oil leak" phenomena as well as the collapse of gel structure and, thus, overall decreased gel properties and oxidative stability.

  9. Improving the scratch resistance of sol-gel metal oxide coatings cured at 250 C through use of thermogenerated amines

    NARCIS (Netherlands)

    Langanke, J.; Arfsten, N.; Buskens, P.; Habets, R.; Klankermayer, J.; Leitner, W.

    2013-01-01

    Scratch resistant sol-gel metal oxide coatings typically require a thermal post-treatment step (curing process) at temperatures between 400 and 700 C. In this report, we demonstrate that the in situ generation of amines within sol-gel films facilitates the preparation of scratch resistant metal

  10. Novel Materials through Non-Hydrolytic Sol-Gel Processing: Negative Thermal Expansion Oxides and Beyond

    Directory of Open Access Journals (Sweden)

    Cora Lind

    2010-04-01

    Full Text Available Low temperature methods have been applied to the synthesis of many advanced materials. Non-hydrolytic sol-gel (NHSG processes offer an elegant route to stable and metastable phases at low temperatures. Excellent atomic level homogeneity gives access to polymorphs that are difficult or impossible to obtain by other methods. The NHSG approach is most commonly applied to the preparation of metal oxides, but can be easily extended to metal sulfides. Exploration of experimental variables allows control over product stoichiometry and crystal structure. This paper reviews the application of NHSG chemistry to the synthesis of negative thermal expansion oxides and selected metal sulfides.

  11. Comparison of sol-gel prepared catalysts for CO oxidation and N2O decomposition reactions.

    OpenAIRE

    Euesden, Claire

    2002-01-01

    This thesis comprises analysis for two types of catalysis: CO oxidation and N2O decomposition; related by their research in sol-gel catalysis. The CO oxidation work was undertaken on behalf of Servomex plc in order to understand how their catalyst-based sensor (Tfx 1750) worked and why it failed when exposed to coal power station flue streams within its two-year guarantee period. This research will show, by means of many analytical techniques and catalytic tests: 1. A comparison of the Servom...

  12. Thermal and oxidative degradation studies of formulated C-ethers by gel-permeation chromatography

    Science.gov (United States)

    Jones, W. R., Jr.; Morales, W.

    1982-01-01

    Gel-permeation chromatography was used to analyze C-ether lubricant formulations from high-temperature bearing tests and from micro-oxidation tests. Three mu-styragel columns (one 500 and two 100 A) and a tetrahydrofuran mobile phase were found to adequately separate the C-ether degradation products. The micro-oxidation tests yielded degradation results qualitatively similar to those observed from the bearing tests. Micro-oxidation tests conducted in air yielded more degradation than did tests in nitrogen. No great differences were observed between the thermal-oxidative stabilities of the two C-ether formulations or between the catalytic degradation activities of silver and M-50 steel. C-ether formulation I did yield more degradation than did formulation II in 111- and 25-hour bearing tests, respectively.

  13. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O [Univ. of California, Davis, CA (United States)

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  14. Influence of rare earth oxides in the oxidation of chromia forming alloys

    International Nuclear Information System (INIS)

    Ramanathan, L.V.

    1989-01-01

    The influence of superficial application of rare earth oxides such as CeO sub(2), La sub(2)O sub(3), Nd sub(2)O sub(3), Sm sub(2)O sub(3), and Gd sub(2)O sub (3) to AISI 304 and 310 stainless steels, on their isothermal oxidation behavior at 900 sup(0) and 1000 sup(0)C, and cyclic oxidation behavior between 20 sup(0) and 1000 sup(0)C has been studied. The application of rare earth oxides (REO) has been found to increase the oxidation resistance at AISI 304. No significant improvements in oxidation resistance of AISI 310 were noted. The oxidation resistance of AISI 304 was highest in the presence of CeO sub(2) on its surface. The other REO in decreasing order of influence on oxidation resistance are La sub(2)O sub(3), Nd sub(2)O sub(3), Sm sub(2)O sub(3) and Gd sub(2)O sub(3). SEM investigations of the oxide scale morphology revealed that the improved resistance is probably due to the formation of a thin layer of fine grained compact Cr sub(2)O sub(3) and the higher adhesion of the scale to its increased plasticity. (author)

  15. International strategic minerals inventory summary report; rare-earth oxides

    Science.gov (United States)

    Jackson, W.D.; Christiansen, Grey

    1993-01-01

    Bastnaesite, monazite, and xenotime are currently the most important rare-earth minerals. Bastnaesite occurs as a primary mineral in carbonatites. Monazite and xenotime also can be found in primary deposits but are recovered principally from heavy-mineral placers that are mined for titanium or tin. Each of these minerals has a different composition of the 15 rare-earth elements. World resources of economically exploitable rare-earth oxides (REO) are estimated at 93.4 million metric tons in place, composed of 93 percent in primary deposits and 7 percent in placers. The average mineral composition is 83 percent bastnaesite, 13 percent monazite, and 4 percent of 10 other minerals. Annual global production is about 67,000 metric tons of which 41 percent is from placers and 59 percent is from primary deposits; mining methods consist of open pits (94 percent) and dredging (6 percent). This output could be doubled if the operations that do not currently recover rare earths would do so. Resources are more than sufficient to meet the demand for the predictable future. About 52 percent of the world's REO resources are located in China. Ranking of other countries is as follows: Namibia (22 percent), the United States (15 percent), Australia (6 percent), and India (3 percent); the remainder is in several other countries. Conversely, 38 percent of the production is in China, 33 percent in the United States, 12 percent in Australia, and 5 percent each in Malaysia and India. Several other countries, including Brazil, Canada, South Africa, Sri Lanka, and Thailand, make up the remainder. Markets for rare earths are mainly in the metallurgical, magnet, ceramic, electronic, chemical, and optical industries. Rare earths improve the physical and rolling properties of iron and steel and add corrosion resistance and strength to structural members at high temperatures. Samarium and neodymium are used in lightweight, powerful magnets for electric motors. Cerium and yttrium increase the

  16. A divalent rare earth oxide semiconductor: Yttrium monoxide

    Science.gov (United States)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.

  17. Novel precursors for the deposition of rare earth oxides

    International Nuclear Information System (INIS)

    Ahlers, Mareike

    2010-01-01

    During this work rare earth solvates with nitrate and perchlorate anions have been investigated. All compounds have been structurally characterized and analyzed using thermal gravimetric analysis. The decomposition residues were analyzed using powder diffraction methods. Almost all compounds showed a characteristically intense exothermic decomposition step during the thermal decomposition, most likely caused by an intramolecular redox reaction between the nitrate or perchlorate anion respectively and the organic solvent molecules. The nitrates RE(NO 3 ) 3 (CH(OCH 3 ) 3 ) 2 (RE = Sm, Eu) were isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. The known compound group of dimethoxyethane solvates was then expanded with RE(NO 3 ) 3 (O 2 C 4 H 10 ) (RE = La, Sm, Eu). Considering the possible use as precursor material the already described neodymium compound is also discussed. The thermal decomposition of these compounds yields the respective cubic rare earth oxide and shows the typical intense exothermic decomposition reaction. A variety of different precursor system based on nitrate solvates for the deposition of rare earth oxide layers on a silicon surface was developed and investigated in collaboration with the group of Prof. Dr. Al-Shamery (Univ. Oldenburg). Ultra thin films on a H-Si(111) surface were obtained via the deposition of the precursor, which was dissolved in organic solvents. An oxide layer was detected after the heating of the sample. The film thickness was measured as < 10 nm, whereas the thickness of the film was controlled by the concentration of the precursor solution. Sm(ClO 4 ) 3 (CH(OCH 3 ) 3 ) 3 was isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. Eu(ClO 4 ) 3 (CH(OCH 3 ) 3 ) 2 (MeOH) 2 was obtained without recrystallization. The methanol molecules, formed during the hydrolysis of the trimethyl

  18. A divalent rare earth oxide semiconductor: Yttrium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kaminaga, Kenichi; Sei, Ryosuke [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Department of Chemistry, Tohoku University, Sendai 980-8578 (Japan); Hayashi, Kouichi [Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Happo, Naohisa [School of Information Sciences, Hiroshima City University, Hiroshima 731-3194 (Japan); Tajiri, Hiroo [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, Sayo 679-5198 (Japan); Oka, Daichi; Fukumura, Tomoteru, E-mail: tomoteru.fukumura.e4@tohoku.ac.jp [Department of Chemistry, Tohoku University, Sendai 980-8578 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan)

    2016-03-21

    Rare earth oxides are usually widegap insulators like Y{sub 2}O{sub 3} with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y{sup 2+} (4d{sup 1}) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y{sub 2}O{sub 3}, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10{sup −1} to 10{sup 3} Ω{sup −1 }cm{sup −1} was attributed to the presence of oxygen vacancies serving as electron donor. Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.

  19. Patterned transparent zinc oxide films produced by sol-gel embossing

    Energy Technology Data Exchange (ETDEWEB)

    Rao, J.; Koh, L.H.K.; Crean, G.M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); Department of Microelectronic Engineering, University College Cork, Cork (Ireland); O' Brien, S. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); Winfield, R.J.

    2008-08-15

    A low cost zinc oxide embossing technique is reported as a method of fabricating structures relevant to a variety of applications. A zinc based sol-gel material was prepared from zinc acetate[Zn(C{sub 2}H{sub 3}O{sub 2}){sub 2}], monoethanolamine[H{sub 2}NC{sub 2}H{sub 4}OH] and isopropanol. The sol-gel was cast into a polydimethylsiloxane (PDMS) mould a track design, placed in contact with the substrate and dried under vacuum at 70 C for 3 hours. The formed track pattern was further densified to provide a stable conductor film that retained the embossed shape. An optimum Zn sol-gel content of 0.6 M was identified. The embossed films had a transparency of greater than 83% in the visible region. The optical bandgap energy was evaluated to be 3.306 eV. The influence of ZnO sol-gel film synthesis and embossing parameters on the microstructure, morphology and optical transparency of fabricated structures is described. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Optical and electrochromic properties of sol-gel deposited Ti- doped vanadium oxide films

    International Nuclear Information System (INIS)

    Oezer, N.; Sabuncu, S.

    1997-01-01

    Because of the yellowish color, vanadium oxide films in the as deposited state is not as favorable as transparent coatings for most elector chromic devices. an interesting possibility to alter the yellowish colours is the doping with other non-absorbing metal oxides. Ti doped vanadium oxide films with various amounts of titanium were synthesized and investigated as transparent counter electrodes for electrochromic transmissive device application. Electrochromic titanium doped vanadium pentoxide (V sub 2 O 5) coatings were prepared by the sol-gel dip coating technique. The coating solutions were synthesized from vanadium tri(isopropoxide) precursors. X-ray diffraction (XRD) studies showed that the sol-gel deposited doped films heat treated at temperatures below 350 degree centigrade, were amorphous, whereas hose heat treated at higher temperatures were slight y crystalline. The optical and electrochemical properties of the Ti doped vanadium oxide films has been investigated in 0.1 m LiClO sub 4 propylene carbonate solution color changes by dropping were noted for all investigated films exhibits good electrochemical cycling (CV) measurements also showed that Ti doped V sub 2 O sub 5 films exhibits good electrochemical cycling reversibility, 'in situ' optical measurement revealed that those films exhibits good electrochemical cycling the spectra range 300 < lambda < 800 nm and change color between yellow and light green. The change in visible transmittance was 25 % for 5% Ti doped film. (author)

  1. Morphology and pore structure of rare earth oxides

    International Nuclear Information System (INIS)

    Bruce, L.A.; Hoang, M.; Hardin, S.; Turney, T.W.

    1991-01-01

    The morphology observed by transmission electron microscopy of rare earth oxides, prepared by two different routes, has been related to adsorption, characteristics for nitrogen at 77 K. The most common morphology was that of thin sheets, then small equiaxed particles, and, more rarely, rod-like particles. The presence of small equiaxed particles was found to be a prerequisite for adsorption hysteresis. Evaluation of linear 't' plots indicated freedom from micropores in all samples, but positive deviations in the presence of sheet morphology at high relative pressures left open the possibility of wedge-like pores in these samples. 14 refs., 3 tabs., 5 figs

  2. Isomerization of butene-1 on rare earth oxides. [Rare earths: La, Nd, Dy

    Energy Technology Data Exchange (ETDEWEB)

    Khodakov, Yu S; Nesterov, V K; Minachev, Kh M [AN SSSR, Moscow. Inst. Organicheskoj Khimii

    1975-09-01

    A study has been made into the isomerization of butene-1 on oxides of rare-earth elements. The dependence of the reaction rate at 20/sup 0/C on the baking temperature of La and Nd oxides have the maximum at 700/sup 0/C. A decrease in the activity of these oxides after bakinq at 800/sup 0/C is observed, as well as during experiments at -30 deq C. In the case of Dy/sub 2/O/sub 3/, the activity at 20/sup 0/C increases gradually with Tsub(bak)=500 to 800/sup 0/C Zeolite 0.57LaNaY exhibits maximum activity at Tsub(bak)=500/sup 0/C Similar data as to the effect of the baking temperature on the catalyst activity were obtained earlier for hydrogenation of ethylene. According to their maximum activity, oxides of rare-earth elements, in the isomerization as well as hydrogenation reactions, can be arranged as follows: La/sub 2/O/sub 3/>Nd/sub 2/O/sub 3/oxides and zeolite 0.57LaNaY in the reactions of double bond shift in butenes and hydroqenation of ethylene are similar.

  3. Synthesis and Characterization of Oxide Dispersion Strengthened Ferritic Steel via a Sol-Gel Route

    International Nuclear Information System (INIS)

    Sun Qinxing; Zhang Tao; Wang Xianping; Fang Qianfeng; Hu Jing; Liu Changsong

    2012-01-01

    Nanocrystalline oxide dispersion strengthened (ODS) ferritic steel powders with nominal composition of Fe-14Cr-3W-0.3Ti-0.4Y 2 O 3 are synthesized using sol-gel method and hydrogen reduction. At low reduction temperature the impurity phase of CrO is detected. At higher reduction temperature the impurity phase is Cr 2 O 3 which eventually disappears with increasing reduction time. A pure ODS ferritic steel phase is obtained after reducing the sol-gel resultant products at 1200°C for 3 h. The HRTEM and EDS mapping indicate that the Y 2 O 3 particles with a size of about 15 nm are homogenously dispersed in the alloy matrix. The bulk ODS ferritic steel samples prepared from such powders exhibit good mechanical performance with an ultimate tensile stress of 960 MPa.

  4. Hydrogen permeation through steel coated with erbium oxide by sol-gel method

    International Nuclear Information System (INIS)

    Yao Zhenyu; Suzuki, Akihiro; Levchuk, Denis; Chikada, Takumi; Tanaka, Teruya; Muroga, Takeo; Terai, Takayuki

    2009-01-01

    Er 2 O 3 coating is formed on austenitic stainless steel 316ss by sol-gel method. The results showed good crystallization of coating by baking in high purity flowing-argon at 973 K, and indicated that a little oxygen in baking atmosphere is necessary to crystallization of coating. The best baking temperature could be thought as 973 K, to get good crystallization of coating and avoid strong oxidation of steel substrate. The deuterium permeation test was performed for coated and bare 316ss, to evaluate the property of Er 2 O 3 sol-gel coating as a potential tritium permeation barrier. In this study, the deuterium permeability of coated 316ss is about 1-2 orders of magnitude lower than that of bare 316ss, and is about 2-3 orders of magnitude than the referred data of bare Eurofer97 and F82H martensitic steel.

  5. Sol-gel prepared active ternary oxide coating on titanium in cathodic protection

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2007-12-01

    Full Text Available The characteristics of a ternary oxide coating, on titanium, which consisted of TiO2, RuO2 and IrO2 in the molar ratio 0.6:0.3:0.1, calculated on the metal atom, were investigated for potential application for cathodic protection in a seawater environment. The oxide coatings on titanium were prepared by the sol gel procedure from a mixture of inorganic oxide sols, which were obtained by forced hydrolysis of metal chlorides. The morphology of the coating was examined by scanning electron microscopy. The electrochemical properties of activated titanium anodes were investigated by cyclic voltammetry and polarization measurements in a H2SO4- and NaCl-containing electrolyte, as well as in seawater sampled on the Adriatic coast in Tivat, Montenegro. The anode stability during operation in seawater was investigated by the galvanostatic accelerated corrosion stability test. The morphology and electrochemical characteristics of the ternary coating are compared to that of a sol-gel-prepared binary Ti0.6Ru0.4O2 coating. The activity of the ternary coating was similar to that of the binary Ti0.6Ru0.4O2 coating in the investigated solutions. However, the corrosion stability in seawater is found to be considerably greater for the ternary coating.

  6. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique

    International Nuclear Information System (INIS)

    Shang Wei; Chen Baizhen; Shi Xichang; Chen Ya; Xiao Xiang

    2009-01-01

    Protective composite coatings were obtained on a magnesium alloy by micro-arc oxidation (MAO) and sol-gel technique. The coatings consisted of a MAO layer and a sol-gel layer. The microstructure and composition of the MAO coating and the composite coatings were analyzed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX). Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and total immersion tests were used to evaluate the corrosion behavior of these coatings in a 3.5 wt.% NaCl solution. The results show that the sol-gel layer provides corrosion protection by physically sealing the pores in the MAO coating and acting as a barrier. The composite coatings can suppress the corrosion process by preventing the corrosive ions from transferring or diffusing to the magnesium alloy substrate. This enhances the corrosion resistance of the magnesium alloy AZ91D significantly

  7. Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films

    Science.gov (United States)

    Della Gaspera, Enrico; Menin, Enrico; Sada, Cinzia

    2018-01-01

    Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors. PMID:29538338

  8. Hybrid manganese oxide films for supercapacitor application prepared by sol-gel technique

    International Nuclear Information System (INIS)

    Chen, Chin-Yi; Wang, Sheng-Chang; Tien, Yue-Han; Tsai, Wen-Ta; Lin, Chung-Kwei

    2009-01-01

    Hybrid films were prepared by adding various concentrations of meso-carbon microbeads (MCMB) during sol-gel processing of manganese oxide films. The heat-treated films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In addition, electrochemical performance of the MCMB-added Mn-oxide hybrid coatings was evaluated by cyclic voltammetry (CV) and compared with its unadded counterpart. Experimental results showed that Mn-oxide films exhibited a mixture of Mn 2 O 3 and Mn 3 O 4 phases. The higher the heat-treatment temperature, the more Mn 2 O 3 can be observed. The specific capacitance of the unadded Mn-oxide electrodes is 209 F/g. Because the MCMB particles provide more interfacial surface area for electrochemical reactions, a significant improvement can be noticed by adding MCMB in Mn-oxide coatings. The 300 o C heat-treated hybrid Mn-oxide coating with a Mn/MCMB ratio of 10/1 exhibits the highest value of 350 F/g, showing a ∼ 170% increase in specific capacitance.

  9. Synthesis of Copper-Based Transparent Conductive Oxides with Delafossite Structure via Sol-Gel Processing

    OpenAIRE

    Götzendörfer, Stefan

    2011-01-01

    Starting off with solubility experiments of possible precursors, the present study reveals the whole development of a sol gel processing route for transparent p type semiconductive thin films with delafossite structure right to the fabrication of functional p-n junctions. The versatile sol formulation could successfully be modified for several oxide compositions, enabling the synthesis of CuAlO2, CuCrO2, CuMnO2, CuFeO2 and more. Although several differences in the sintering behaviour of powde...

  10. Lithium containing MgAl mixed oxides obtained from sol-gel hydrotalcite for transesterification

    Directory of Open Access Journals (Sweden)

    Renata A. B. Lima-Corrêa

    Full Text Available Abstract The innumerous advantages of heterogeneous catalysts employed in biodiesel production have stimulated the search for a solid catalyst capable of replacing the industrially used homogeneous catalysts. This paper investigates the effect of the sol-gel method in the catalytic activity and stability of Li-MgAl mixed oxides prepared by the “in situ” lithium addition to a MgAl hydrotalcite. The analyses based on N2 physisorption, thermogravimetric analysis, X-ray diffractometry, scanning electron microscopy and temperature-programmed desorption of CO2 were carried out to elucidate the properties of the catalysts. Considerable differences in the physico-chemical properties of the catalysts were observed with the Li addition. Li reduced the surface area and increased the crystallite size of the oxides. Furthermore, Li-MgAl mixed oxides prepared by the calcination of the sol-gel MgAl hydrotalcites presented substantial morphological differences when compared to the same oxides obtained by heat treatment of hydrotalcites synthesized via the conventional co-precipitation route. Furthermore, Li increased the number and strength of the base sites which resulted in the increase of the oxide reactivities towards the transesterification reaction between methyl acetate and ethanol. The activity was dependent on the Li loading on the catalysts. The catalyst containing only 5 wt.% Li turned out to be highly active (( 85% conversion at 50°C, ethanol/methyl acetate molar ratio = 6/1, 4 wt.% of catalyst and 30 min of reaction. Stability tests showed that the Li-MgAl catalysts lose activity after 3 reuse cycles.

  11. Thin-film method-XRF determination of the composition of rare earth oxides

    International Nuclear Information System (INIS)

    Xiao Deming

    1992-01-01

    The author describes the thin-film sample preparation by precipitation-pumping filtering method and the composition of rare earth oxide materials by XRF determination. The determination limits are 0.01% to 0.17%. The coefficients of variation are in the range of 0.85% to 14.9%. The analytical results of several kinds of rare earth oxide materials show that this method can be applied to the determination of the composition of rare earth oxide mixtures

  12. Oxidizing gel formulation for nuclear decontamination: rheological and acidic properties of the organic matrix and its ozonolysis

    International Nuclear Information System (INIS)

    Rouy, E.

    2003-10-01

    An acidic and oxidizing gel was formulated with a purely organic matrix, xanthan gum, at low concentrations (1 to 2 wt %). This polymer gel was investigated in various media (aqueous, acidic and ceric) by means of rheology: shear thinning behaviour, thixotropy, yield stress... Evidences of unexpected rheological properties in highly concentrated media show that xanthan is quite convenient for industrial projection of this type of gel on metallic walls in nuclear plants, notwithstanding its time-limited resistance to oxidation (about a few hours). Complexation mechanisms between ceric species and polar sites of the polymer led us to characterise acidic properties of our xanthan sample by potentiometric titration and 1 H NMR techniques. The matrix was finally treated by ozonolysis to suppress organic residues, as required to handle nuclear wastes. In acidic medium, ozonolysis of the gel was achieved successfully while in acidic and ceric medium this process showed limited efficiency, needing further investigation to be clarified. (author)

  13. RBS and NRA of cobalt oxide thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    Andrade, E.; Huerta, L.; Pineda, J.C.; Zavala, E.P.; Barrera, E.; Rocha, M. F.; Vargas, C.A.

    2001-01-01

    This work presents a study of cobalt oxide thin films produced by the sol-gel process on aluminum and glass substrates. These films have been analyzed using two ion beam analysis (IBA) techniques: a) a standard RBS 4 He 2 MeV and b) nuclear reaction analysis (NRA) using a 1 MeV deuterium beam. The 12 C(d,p 0 ) 13 C nuclear reaction provides information that carbon is incorporated into the film structure, which could be associated to the sinterization film process. Other film measurements such as optical properties, XRD, and SEM were performed in order to complement the IBA analysis. The results show that cobalt oxide film coatings prepared by this technique have good optical properties as solar absorbers and potential uses in solar energy applications

  14. Comparison of the redox activities of sol-gel and conventionally prepared Bi-Mo-Ti mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wildberger, M.; Grundwaldt, J.D.; Mallat, T.; Baiker, A. [Lab. of Technical Chemistry, Swiss Federal Inst. of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1998-12-31

    Novel sol-gel Bi-Mo-Ti oxides have been prepared and characterized by XRD, XPS, FT-Raman and HRTEM. The surface Bi{sup 3+} and Mo{sup 6+} species of some xerogels and an aerogel could be reduced and oxidized at room temperature, whereas the conventionally prepared reference materials were not reduced by H{sub 2} below 300 C. The unusual redox properties, under very mild conditions, are likely due to the unique morphology of Bi-Mo-oxides stabilized by titania. During butadiene oxidation to furan at above 400 C to sol-gel mixed oxides restructured considerably and their performance was barely better than that of titania-supported Bi-Mo oxides. (orig.)

  15. Sol-Gel Synthesis and Characterization of Cubic Bismuth Zinc Niobium Oxide Nanopowders

    Directory of Open Access Journals (Sweden)

    Ganchimeg Perenlei

    2014-01-01

    Full Text Available Bismuth zinc niobium oxide (BZN was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.

  16. Radioluminescence of rare-earth doped aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, M.; Molina, P. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Barros, V. S.; Khoury, H. J.; Elihimas, D. R., E-mail: msantiag@exa.unicen.edu.ar [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, Recife, PE 50740-540 (Brazil)

    2011-10-15

    Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al{sub 2}O{sub 3} samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  17. Radioluminescence of rare-earth doped aluminum oxide

    International Nuclear Information System (INIS)

    Santiago, M.; Molina, P.; Barros, V. S.; Khoury, H. J.; Elihimas, D. R.

    2011-10-01

    Carbon-doped aluminum oxide (Al 2 O 3 :C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al 2 O 3 samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  18. Synthesis and Characterization of Some Alkaline-Earth-Oxide Nanoparticles

    Science.gov (United States)

    Singh, Jitendra Pal; Lim, Weon Cheol; Won, Sung Ok; Song, Jonghan; Chae, Keun Hwa

    2018-04-01

    The present work reports the synthesis of MgO and CaO nanoparticles by using the sol-gel autocombustion method. The annealing of the precursor at 1200 °C was observed to lead the formation of MgO nanoparticles having average crystallite size of 31 nm. Annealing the precursor at same temperature produced materials having a CaO phase with a minor impure phase of calcium carbonate ( 3%). The crystallite size corresponding to the CaO phase was 38 nm. A change of thermal history in the precursor was observed not to result in an improvement of the CaO phase. The change of thermal history in the precursor gave rise to mixed phases of CaCO3 and Ca(OH)2 rather than the phase of CaO. Further, annealing at 1200 °C for 12 h resulted in the formation of the CaO phase along with almost 1 - 5% of calcium hydroxide as an impurity phase. X-ray absorption spectroscopic measurements carried out on these materials revealed that the local electronic/atomic structure of these oxides was not only affected by the impurity phases but also influenced by the carbaneous impurities attached to the crystallites.

  19. Extraction of rare earths and hydrochloric acid by trialkylphosphine oxide

    International Nuclear Information System (INIS)

    Mikhajlichenko, A.I.; Karmannikov, V.P.; Klimenko, M.A.; Fedulova, T.V.

    1983-01-01

    Extraction of rare earth chlorides and hydrochloric acid by trialkylphosphine oxide with different radicals (POR) (RR' 2 PO-POR, where RR'=alkyl of a normal structure, containing 7 to 9 carbon atoms, R=isoamyl) has been studied. Distribution of lanthanum-, neodymium-, lutetium- and yttrium chlorides during extraction with 1.28 mol/l POR solution in white spirit is investigated in the salt concentration range in the equilibrium aqueous phase from 0 to 2.8 mol/l. Lanthanide distribution coefficients increase with an increase in the order number of elements, with the separation coefficients of two extreme members of the series (Lu and La) for chlorides and nitrates constituting 100 and 80, respectively microquantities of Ln against the background of macroquantities of La is 2.6 mol/l. According to the results of measurements of viscosity, electric conductivity and water content in the extracts a conclusion is made on the state of salt in the organic phase. In the systems POR-LnCl 3 -HCl-H 2 O the hydrochloric acid extraction increases with an increase in the rare earth chloride concentration and order number of the element

  20. Influence of rare earth additions on the oxidation resistance of chromia forming alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    1995-01-01

    The addition of rare earths to alloys, either in elemental form or as surface coatings reduces the oxidation rate of chromia forming alloys. The rare earths either act as nucleation sites for surface oxides or get incorporates into the surface oxide and diffuse to oxide grain boundaries. If the latter occurs, a change in the defect structure close to the grain boundaries, probably takes place. In this manner, the rare earths inhibits the movement of chromium ions to the oxide/gas interface. The influence of rare earth additions to AISI 316, AISI 316L and Ni-20 Cr on their oxidation behavior has been studied., AISI 316+Ce, AISI 316+Y, Ni-20 Cr and Ni-20 Cr-2 Al-1 Ce were prepared by melting and AISI 316L, AISI 316L+Ce O 2 and AISI 316L+Y 2 O 3 by powder compaction. The effect of superficial deposits of rare earth oxides was also studied. The alloys were coated with rare earth oxides by high temperature conversion of the respective rare earth nitrates. Isothermal oxidation tests were carried out at 900-1100 deg C and the cyclic oxidation tests consisted of 6 cycles of 2 hours each at 900 deg C, followed by cooling to room temperature. All the tests were carried out in air. Oxidation behavior was evaluated gravimetrically. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis and X-ray diffraction techniques were used to identify oxide constituents. Overall, it has been observed that with the addition of rare earths, oxidation resistance increases by decreasing oxidation rates and increasing oxide adhesion. Addition of rare earths to AISI 316 prepared by melting resulted in rapid formation of a chromium rich oxide layered near the metal/oxide interface which reduced overall oxidation rate. The addition of Ce O 2 to AISI 316L was found to improve oxidation behavior after 10 hours at 1100 deg C and also inhibit the formation of volatile Cr O 3 . The isothermal oxidation behavior of rare earth oxide covered Ni-20 Cr at 900 deg C

  1. Thermoemission properties of tungsten with additions of rare earth oxides

    International Nuclear Information System (INIS)

    Gural'nik, N.I.; Evstifeev, V.V.; Imangulova, N.G.

    1988-01-01

    Thermoemission properties of tungsten with addition of rare earth oxides are studied in the superhigh vacuum set with oil-free pumping system. Electronic work function eφ is determined by the method of total saturation current. Temperature dependences are obtained of the work function for three types of cathodes: W+La 2 O 3 ; W+φ 2 O 3 and W+Dy 2 O 3 . It is stated, that the first two types eφ decreases approximately from 4.2 to 3.3 eV and from 4.5 to 3.8 eV, respectively, after activation at proper temperatures. These cathodes are the most effective ones at the temperature of 1700 (W+La 2 O 3 ) and 1900-2100 K (W+ φ 4 O 3 ). The work function of cathodes with addition of dysprosium oxide did not practically vary (4.55-4.3 eV) within the whole studied temperature interval (1500-2100 K)

  2. Microstructure, optical, and electrochromic properties of sol-gel nanoporous tungsten oxide films

    Science.gov (United States)

    Djaoued, Yahia; Ashrit, P. V.; Badilescu, S.; Bruning, R.

    2003-08-01

    Porous tungsten oxide films have been prepared by a nonhydrolitic sol-gel method using poly(ethylene glycol) (PEG) as a structure directing agent. The method entails the hydrolysis of an ethanolic solution of tungsten ethoxide (formed by the reaction of WCl6 with ethanol) followed by condensation and polymerization at the PEG-tungsten oxide oligometers interface. A highly porous WO3 framework was obtained after PEG was burned off by calcination at a relativley low temperature. AFM images of the films treated thermally show an ordered material rather than microscopic particulates. Both fibrilar nanostructures and striped phase can be obtained via this approach, depending on the concentration of PEG in the coating solution. XRD data from the fibrils indicate that they are crystalline with very small crystals, whereas the striped phases obtained with 20% PEG correspond to two crystalline phases, one, the stoichiometric WO3 and the other one an oxygen deficient phase, containing larger crystals (~28 nm). The results show that PEG promotes the formation of oxygen deficient phases and delays crystallization. Compared to WO3 with no PEG, the optical and electrochromic properties of the macroporous tungsten oxide films appear to be significantly improved. The formation of organized nanostructures is tentatively accounted for by the strong hydrogen bonding interactions between PEG and the tungsten oxide oligomers.

  3. Processing and mechanical behavior of Nicalon{reg_sign}/SiC composites with sol-gel derived oxide interfacial coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugham, S.; Liaw, P.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Materials Science and Engineering

    1996-10-01

    Recent analytical and finite element modeling studies have indicated that low modulus interface materials are desirable for obtaining Nicalon/SiC composites with good toughness. Two oxides, Al titanate and mullite, were chosen on this basis as interface materials. The oxide and C coatings were deposited by sol-gel and CVD, respectively. Nicalon/SiC composites with oxide/C and C/oxide/C interfaces were fabricated and evaluated for flexure strength in the as-processed and oxidized conditions. Composites with C/oxide/C interfaces retained considerable strength and damage-tolerant behavior even after 500 h oxidation at 1000 C in air. The C/oxide/C interface shows promise as a viable oxidation-resistant interface alternative to C or BN interfaces.

  4. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    Science.gov (United States)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  5. The formation of crystals in glasses containing rare earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Fadzil, Syazwani Mohd [Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Hrma, Pavel [Pohang University of Science and Technology (POSTECH), Pohang, South Korea and Pacific Northwest National Laboratory, Richland, Washington (United States); Crum, Jarrod [Pacific Northwest National Laboratory, Richland, Washington (United States); Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt [National University of Malaysia, Bandar Baru Bangi, Selangor (Malaysia)

    2014-02-12

    with 5%, 10% and 15% addition of mixed rare earth oxides. The component coefficients T{sub B2O3}, T{sub SiO2}, T{sub CaO}, and T{sub RE2O3} were also evaluated using a recently published study.

  6. Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering

    International Nuclear Information System (INIS)

    Ahn, Byung Gil; Park, Hwan Seo; Kim, Hwan Young; Lee, Han Soo; Kim, In Tae

    2010-01-01

    In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare earth oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix (ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilized with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

  7. Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity

    Energy Technology Data Exchange (ETDEWEB)

    Kőrösi, László, E-mail: ltkorosi@gmail.com [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scarpellini, Alice [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Petrik, Péter [Institute for Technical Physics and Materials Science, Konkoly-Thege út 29-33, H-1121 Budapest (Hungary); Papp, Szilvia [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Dékány, Imre [MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged (Hungary)

    2014-11-30

    Graphical abstract: - Highlights: • Nanocrystalline ITO thin films and powders were prepared by a sol–gel method. • The nature of the compounds used for hydrolysis plays a key role in the morphology. • Hydrolysis of In{sup 3+}/Sn{sup 4+} with EA led to a rod-like morphology. • Monodisperse spherical ITO nanoparticles were obtained on the use of AC. • ITO{sub E}A was highly porous, while ITO{sub A}C contained densely packed nanocrystals. - Abstract: Nanostructured indium tin oxide (ITO) powders and thin films differing in morphology and porosity were prepared by a sol–gel method. In{sup 3+} and Sn{sup 4+} were hydrolyzed in aqueous medium through the use of ethanolamine (EA) or sodium acetate (AC). X-ray diffraction measurements demonstrated that both EA and AC furnished indium tin hydroxide, which became nanocrystalline after aging for one day. The indium tin hydroxide samples calcined at 550 °C afforded ITO with a cubic crystal structure, but the morphology differed significantly, depending on the agent used for hydrolysis. Electron microscopy revealed the formation of round monodisperse nanoparticles when AC was used, whereas the application of EA led to rod-like ITO nanoparticles. Both types of nanoparticles were suitable for the preparation of transparent and conductive ITO thin films. The influence of the morphology and porosity on the optical properties is discussed.

  8. Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries

    International Nuclear Information System (INIS)

    Li Hao; Ma Xiaoting; Shi Junli; Yao Zhikan; Zhu Baoku; Zhu Liping

    2011-01-01

    Poly(ethylene oxide) (PEO) filled polypropylene separators (GFPSs) are designed by means of thermal cross-linking of entrapped poly(ethylene glycol) methyl ether acrylate (PEGMEA) and poly(ethylene glycol) diacrylate (PEGDA) as gel constituents. The intrinsic properties of GFPS and their corresponding gel polymer electrolytes (GPE) are characterized by DSC, SEM, contact angle and electrochemical methods. It is found the stability of liquid electrolyte uptake in GPE could be improved obviously. For the GPE prepared from GFPS with filled polyether content of 14.3 wt%, the ionic conductivity could reach 1.12 x 10 -3 S cm -1 while the electrochemically stable window reach 5.0 V (vs. Li/Li + ). These primary results show great promise of this simple method to prepare GPE for practical application in lithium ion batteries.

  9. Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao; Ma Xiaoting; Shi Junli; Yao Zhikan [Department of Polymer Science and Engineering, Engineering Center of Membrane and Water Treatment, Key Laboratory of Macromolecule Synthesis and Functionalization (EMC), Zhejiang University, Hangzhou 310027 (China); Zhu Baoku, E-mail: zhubk@zju.edu.c [Department of Polymer Science and Engineering, Engineering Center of Membrane and Water Treatment, Key Laboratory of Macromolecule Synthesis and Functionalization (EMC), Zhejiang University, Hangzhou 310027 (China); Zhu Liping [Department of Polymer Science and Engineering, Engineering Center of Membrane and Water Treatment, Key Laboratory of Macromolecule Synthesis and Functionalization (EMC), Zhejiang University, Hangzhou 310027 (China)

    2011-02-15

    Poly(ethylene oxide) (PEO) filled polypropylene separators (GFPSs) are designed by means of thermal cross-linking of entrapped poly(ethylene glycol) methyl ether acrylate (PEGMEA) and poly(ethylene glycol) diacrylate (PEGDA) as gel constituents. The intrinsic properties of GFPS and their corresponding gel polymer electrolytes (GPE) are characterized by DSC, SEM, contact angle and electrochemical methods. It is found the stability of liquid electrolyte uptake in GPE could be improved obviously. For the GPE prepared from GFPS with filled polyether content of 14.3 wt%, the ionic conductivity could reach 1.12 x 10{sup -3} S cm{sup -1} while the electrochemically stable window reach 5.0 V (vs. Li/Li{sup +}). These primary results show great promise of this simple method to prepare GPE for practical application in lithium ion batteries.

  10. Surface functionalization of carbon nanofibers by sol-gel coating of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao Dongfeng [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Changzhou Textile Garment Institute, Changzhou 213164 (China); Wei Qufu [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)], E-mail: qfwei@jiangnan.edu.cn; Zhang Liwei; Cai Yibing; Jiang Shudong [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)

    2008-08-15

    In this paper the functional carbon nanofibers were prepared by the carbonization of ZnO coated PAN nanofibers to expand the potential applications of carbon nanofibers. Polyacrylonitrile (PAN) nanofibers were obtained by electrospinning. The electrospun PAN nanofibers were then used as substrates for depositing the functional layer of zinc oxide (ZnO) on the PAN nanofiber surfaces by sol-gel technique. The effects of coating, pre-oxidation and carbonization on the surface morphology and structures of the nanofibers were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM), respectively. The results of SEM showed a significant increase of the size of ZnO nanograins on the surface of nanofibers after the treatments of coating, pre-oxidation and carbonization. The observations by SEM also revealed that ZnO nanoclusters were firmly and clearly distributed on the surface of the carbon nanofibers. FTIR examination also confirmed the deposition of ZnO on the surface of carbon nanofibers. The XRD analysis indicated that the crystal structure of ZnO nanograins on the surface of carbon nanofibers.

  11. Cross-linking by protein oxidation in the rapidly setting gel-based glues of slugs

    Science.gov (United States)

    Bradshaw, Andrew; Salt, Michael; Bell, Ashley; Zeitler, Matt; Litra, Noelle; Smith, Andrew M.

    2011-01-01

    SUMMARY The terrestrial slug Arion subfuscus secretes a glue that is a dilute gel with remarkable adhesive and cohesive strength. The function of this glue depends on metals, raising the possibility that metal-catalyzed oxidation plays a role. The extent and time course of protein oxidation was measured by immunoblotting to detect the resulting carbonyl groups. Several proteins, particularly one with a relative molecular mass (Mr) of 165×103, were heavily oxidized. Of the proteins known to distinguish the glue from non-adhesive mucus, only specific size variants were oxidized. The oxidation appears to occur within the first few seconds of secretion. Although carbonyls were detected by 2,4-dinitrophenylhydrazine (DNPH) in denatured proteins, they were not easily detected in the native state. The presence of reversible cross-links derived from carbonyls was tested for by treatment with sodium borohydride, which would reduce uncross-linked carbonyls to alcohols, but stabilize imine bonds formed by carbonyls and thus lead to less soluble complexes. Consistent with imine bond formation, sodium borohydride led to a 20–35% decrease in the amount of soluble protein with a Mr of 40–165 (×103) without changing the carbonyl content per protein. In contrast, the nucleophile hydroxylamine, which would competitively disrupt imine bonds, increased protein solubility in the glue. Finally, the primary amine groups on a protein with a Mr of 15×103 were not accessible to acid anhydrides. The results suggest that cross-links between aldehydes and primary amines contribute to the cohesive strength of the glue. PMID:21525316

  12. Magnetic properties of rare earth oxides with perovskite structure

    International Nuclear Information System (INIS)

    Hinatsu, Yukio

    2008-01-01

    A perovskite composite oxide is represented by the general formula of ABO 3 . Cations at the B site characterize magnetic properties of the oxide. Many studies have been accumulated for transition metal elements at the B sites. In this report the studies of rare earth elements at the B sites are reviewed. In rare elements, tetravalent ions such as Ce 4+ , Pr 4+ and Tb 4+ can occupy the B sites with Ba and Sr ions at the A sites. Both the SrTbO 3 and BaTbO 3 have an orthorhombic structure and show the antiferromagnetic transition at about 33 K, which is originated from terbium ions coupled antiferromagnetically with the six neighboring terbium ions. A tetravalent praseodymium perovskite SrPrO 3 shows no existence of the magnetic ordering down to 2.0 K. This is in contrast to the result of isomorphous BaPrO 3 , which shows an antiferromagnetic transition at 11.5 K. A double perovskite structure is represented by the formula A 2 LnMO 6 (A=Ba, Sr, Ca; M=Ru, Ir). In a double perovskite compound Ba 2 PrRuO 6 , the Pr 3+ and Ru 5+ ions are arranged with regularity over the six-coordinate B sites. This compound transforms to an antiferromagnetic state below 117 K. Antiferromagnetic transition temperatures T N for isomorphous Sr and Ca show a clear tendency, T N (A=Ba)>T N (Sr)>T N (Ca), in the compounds with the same rare earth elements (Ln). The 6H-perovskite structure Ba 3 LnRu 2 O 9 consists of linkages between LnO 6 octahedra and Ru 2 O 9 dimers made from face-shared RuO 6 octahedra. The 6H-perovskite structure Ba 3 MRu 2 O 9 (M=Sc, Y, La, Nd-Gd, Dy-Lu) have the valence state of Ba 3 M 3+ Ru 2 4.5+ O 9 . The magnetic susceptibilities show a broad maximum at 135-370 K. This magnetic behavior is ascribed to the antiferromagnetic coupling between two Ru ions in a Ru 2 O 9 dimer and to the magnetic interaction between the Ru 2 O 9 dimers. (author)

  13. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite

    Science.gov (United States)

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H.

    2016-01-01

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298

  14. Impact of temperature on zinc oxide particle size by using sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keanchuan, E-mail: lee.kc@petronas.com.my; Ching, Dennis Ling Chuan, E-mail: dennis.ling@petronas.com.my [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Saipolbahri, Zulhilmi Akmal bin, E-mail: zulhilmiakmal@gmail.com [Geoscience and Petroleum Engineering Department, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Guan, Beh Hoe, E-mail: beh.hoeguan@petronas.com.my, E-mail: hassan.soleimani@petronas.com.my; Soleimani, Hassan, E-mail: beh.hoeguan@petronas.com.my, E-mail: hassan.soleimani@petronas.com.my

    2014-10-24

    Zinc oxide (ZnO) nanoparticles were prepared and synthesized via sol-gel method, by using citric acid as a precursor. The impact of annealing on the particle size was investigated. Based on the results from the Thermogravimetric Analysis (TGA), three different annealing temperature which is 500, 600 and 700 °C were chosen followed by the characterization of the ZnO nanoparticle by using Powder X-Ray Diffraction (PXRD), Transmission Electron Microscopy (TEM) and Field Emission Scanning Electron Microscopy (FESEM). Results showed that the crystallite size estimated from PXRD increased with the annealing temperature which was hexagonal structure for ZnO. TEM further revealed the same tendency which the Zn NPs size also increased with the annealing temperature.

  15. Impact of temperature on zinc oxide particle size by using sol-gel process

    International Nuclear Information System (INIS)

    Lee, Keanchuan; Ching, Dennis Ling Chuan; Saipolbahri, Zulhilmi Akmal bin; Guan, Beh Hoe; Soleimani, Hassan

    2014-01-01

    Zinc oxide (ZnO) nanoparticles were prepared and synthesized via sol-gel method, by using citric acid as a precursor. The impact of annealing on the particle size was investigated. Based on the results from the Thermogravimetric Analysis (TGA), three different annealing temperature which is 500, 600 and 700 °C were chosen followed by the characterization of the ZnO nanoparticle by using Powder X-Ray Diffraction (PXRD), Transmission Electron Microscopy (TEM) and Field Emission Scanning Electron Microscopy (FESEM). Results showed that the crystallite size estimated from PXRD increased with the annealing temperature which was hexagonal structure for ZnO. TEM further revealed the same tendency which the Zn NPs size also increased with the annealing temperature

  16. Far from the equilibrium crystallization of oxide quantum dots in dried inorganic gels

    Science.gov (United States)

    Costille, B.; Dumoulin, M.; Ntsame Abagha, A. M.; Thune, E.; Guinebretière, R.

    2018-06-01

    We synthesized, through the sol-gel process, far from the equilibrium amorphous materials in which heterogeneous crystallization allowed the formation of oxide quantum dots. The isothermal evolutions of the mean size of the nanocrystals and the crystallinity of the materials were determined through x-ray diffraction experiments. The heterogeneous crystallization is characterized by a kinetic behavior that is far from that expected, according to the classical nucleation theory. We demonstrate that the evolution of the crystallinity is characterized by an Avrami exponent largely smaller than 1. Finally, nanocrystals exhibiting a size significantly below their Bohr radius are obtained and the number of these nanocrystals increases during isothermal treatment, whereas their mean size remains quasi-constant.

  17. Sol-Gel Deposition of Iridium Oxide for Biomedical Micro-Devices

    Directory of Open Access Journals (Sweden)

    Cuong M. Nguyen

    2015-02-01

    Full Text Available Flexible iridium oxide (IrOx-based micro-electrodes were fabricated on flexible polyimide substrates using a sol-gel deposition process for utilization as integrated pseudo-reference electrodes for bio-electrochemical sensing applications. The fabrication method yields reliable miniature on-probe IrOx electrodes with long lifetime, high stability and repeatability. Such sensors can be used for long-term measurements. Various dimensions of sol-gel iridium oxide electrodes including 1 mm × 1 mm, 500 µm × 500 µm, and 100 µm × 100 µm were fabricated. Sensor longevity and pH dependence were investigated by immersing the electrodes in hydrochloric acid, fetal bovine serum (FBS, and sodium hydroxide solutions for 30 days. Less pH dependent responses, compared to IrOx electrodes fabricated by electrochemical deposition processes, were measured at 58.8 ± 0.4 mV/pH, 53.8 ± 1.3 mV/pH and 48 ± 0.6 mV/pH, respectively. The on-probe IrOx pseudo-reference electrodes were utilized for dopamine sensing. The baseline responses of the sensors were higher than the one using an external Ag/AgCl reference electrode. Using IrOx reference electrodes integrated on the same probe with working electrodes eliminated the use of cytotoxic Ag/AgCl reference electrode without loss in sensitivity. This enables employing such sensors in long-term recording of concentrations of neurotransmitters in central nervous systems of animals and humans.

  18. Sol-Gel Deposition of Iridium Oxide for Biomedical Micro-Devices

    Science.gov (United States)

    Nguyen, Cuong M.; Rao, Smitha; Yang, Xuesong; Dubey, Souvik; Mays, Jeffrey; Cao, Hung; Chiao, Jung-Chih

    2015-01-01

    Flexible iridium oxide (IrOx)-based micro-electrodes were fabricated on flexible polyimide substrates using a sol-gel deposition process for utilization as integrated pseudo-reference electrodes for bio-electrochemical sensing applications. The fabrication method yields reliable miniature on-probe IrOx electrodes with long lifetime, high stability and repeatability. Such sensors can be used for long-term measurements. Various dimensions of sol-gel iridium oxide electrodes including 1 mm × 1 mm, 500 μm × 500 μm, and 100 μm × 100 μm were fabricated. Sensor longevity and pH dependence were investigated by immersing the electrodes in hydrochloric acid, fetal bovine serum (FBS), and sodium hydroxide solutions for 30 days. Less pH dependent responses, compared to IrOx electrodes fabricated by electrochemical deposition processes, were measured at 58.8 ± 0.4 mV/pH, 53.8 ± 1.3 mV/pH and 48 ± 0.6 mV/pH, respectively. The on-probe IrOx pseudo-reference electrodes were utilized for dopamine sensing. The baseline responses of the sensors were higher than the one using an external Ag/AgCl reference electrode. Using IrOx reference electrodes integrated on the same probe with working electrodes eliminated the use of cytotoxic Ag/AgCl reference electrode without loss in sensitivity. This enables employing such sensors in long-term recording of concentrations of neurotransmitters in central nervous systems of animals and humans. PMID:25686309

  19. Microstructural and electrical characteristics of rare earth oxides doped ZnO varistor films

    Science.gov (United States)

    Jiao, Lei; Mei, Yunzhu; Xu, Dong; Zhong, Sujuan; Ma, Jia; Zhang, Lei; Bao, Li

    2018-02-01

    ZnO-Bi2O3 varistor films doped with two kinds of rare earth element oxides (Lu2O3 and Yb2O3) were prepared by the sol-gel method. The effects of Lu2O3/Yb2O3 doping on the microstructure and electrical characteristics of ZnO-Bi2O3 varistor films were investigated. All samples show a homogenized morphology and an improved nonlinear relationship between the electric field (E) and current density (I). Both Yb2O3 and Lu2O3 doping can decrease the grain size of ZnO-Bi2O3 varistor films and improve the electrical properties, which have a positive effect on the development of ZnO varistor ceramics. Yb2O3 doping significantly increases the dielectric constant at low frequency. 0.2 mol. % Yb2O3 doped ZnO-Bi2O3 varistor films exhibit the highest nonlinear coefficient (2.5) and the lowest leakage current (328 μA) among Lu2O3/Yb2O3 doped ZnO-Bi2O3 varistor films. Similarly, 0.1 mol. % Lu2O3 doping increases the nonlinear coefficient to 1.9 and decrease the leakage current to 462 μA.

  20. Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via Nonaqueous Sol−Gel Procedure

    Czech Academy of Sciences Publication Activity Database

    Müller, V.; Rasp, M.; Štefanić, G.; Ba, J.; Günther, S.; Rathouský, Jiří; Niederberger, M.; Fattakhova Rohlfing, D.

    2009-01-01

    Roč. 21, č. 21 (2009), s. 5229-5236 ISSN 0897-4756 Institutional research plan: CEZ:AV0Z40400503 Keywords : nanoparticles * nonaqueous Ssl -gel procedure * oxide materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.368, year: 2009

  1. Afterglow luminescence in sol-gel/Pechini grown oxide materials: persistence or phosphorescence process? (Conference Presentation)

    Science.gov (United States)

    Sontakke, Atul; Ferrier, Alban; Viana, Bruno

    2017-03-01

    Persistent luminescence and phosphorescence, both yields afterglow luminescence, but are completely different mechanisms. Persistent luminescence involves a slow thermal release of trapped electrons stored in defect states, whereas the phosphorescence is caused due to triplet to singlet transition [1,2]. Many persistent luminescence phosphors are based on oxide inorganic hosts, and exhibit long afterglow luminescence after ceasing the excitation. We observed intense and long afterglow luminescence in sol-gel/pechini grown inorganic oxides, and as a first interpretation thought to be due to persistence mechanism. However, some of these materials do not exhibit defect trap centers, and a detailed investigation suggested it is due to phosphorescence, but not the persistence. Phosphorescence is not common in inorganic solids, and that too at room temperature, and therefore usually misinterpreted as persistence luminescence [3]. Here we present a detailed methodology to distinguish phosphorescence from persistence luminescence in inorganic solids, and the process to harvest highly efficient long phosphorescence afterglow at room temperature. 1. Jian Xu, Setsuhisa Tanabe, Atul D. Sontakke, Jumpei Ueda, Appl. Phys. Lett. 107, 081903 (2015) 2. Sebastian Reineke, Marc A. Baldo, Scientific Reports, 4, 3797 (2014) 3. Pengchong Xue, Panpan Wang, Peng Chen, Boqi Yao, Peng Gong, Jiabao Sun, Zhenqi Zhang, Ran Lu, Chem. Sci. (2016) DOI: 10.1039/C5SC03739E

  2. Fabrication and Optical Characterization of Zinc Oxide Nanoparticles Prepared via a Simple Sol-gel Method

    Directory of Open Access Journals (Sweden)

    K. Hedayati

    2015-10-01

    Full Text Available In this research zinc oxide (ZnO nano-crystalline powders were prepared by sol-gel method using zinc acetate. The ZnO nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, ultraviolet-visible (UV-Vis, Fourier transform infra-red (FT-IR and energy dispersive X-ray (EDX spectroscopy. The structure of nanoparticles was studied using XRD pattern. The crystallite size of ZnO nanoparticles was calculated by Debye–Scherrer formula. Morphology of nano-crystals was observed and investigated using the SEM. The grain size of zinc oxide nanoparticles were in suitable agreement with the crystalline size calculated by XRD results. The optical properties of particles were studied with UV-Vis an FTIR absorption spectrum. The Raman spectrum measurements were carried out using a micro-laser Raman spectrometer forms the ZnO nanoparticles. At the end studied the effect of calcined temperature on the photoluminescence (PL emission of ZnO nanoparticles.

  3. Fabrication and characterization of Zinc Oxide (ZnO) nanoparticle by sol-gel method

    International Nuclear Information System (INIS)

    Siswanto; Akwalia, Putri Riski; Rochman, Nurul T.

    2017-01-01

    Currently, nanomaterial is an interestingfield of study. This is due to its chemical and physical properties that are superior to that of large-sized materials. One nanomaterial widely studied is zinc oxide (ZnO). In this study, a synthesis of ZnO nanoparticles made by Sol-Gel method was conducted. The process parameters used are variations in pH, in increasing order, of 7; 8; 9; 10; 11; and 12. There are two principal reactions to produce a compound oxide, namely hydrolysis and condensation. NaOH is an agent for the hydrolysis of (CH 3 COO) 2 Zn resultingin Zn (OH) 2 . Subsequently, condensation produces ZnO. Calcination was carried out at a temperature of 80 ° C for 1 hour. The ccharacterization of the samples showed that the condition of pH 12 produced the best sample with a size of 73.8 nm and ZnO percentage of 100%. Although pH 7 produced a particle size of 1.3 nm, the percentage of ZnO formed was only 42.9%. The calcination process was performed to remove CH 3 COONa. However, the process can lead to aggregation of ZnO particles to each other, which increases the particle size. (paper)

  4. Oxidative dehydrogenation of ethane on rare-earth oxide-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Buyevskaya, O.; Baerns, M. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany)

    1998-12-31

    Results on the oxidative dehydrogenation of ethane on rare-earth oxide (REO) based catalysts (Na-P-Sm-O, Sm-Sr(Ca)-O, La-Sr-O and Nd-Sr-O) are described. Oxygen adsorption was found to be a key factor which determines the activity of this type of catalysts. Continuous flow experiments in the presence of catalysts which reveal strong oxygen adsorption showed that the reaction mixture is ignited resulting in an enhanced heat generation at the reactor inlet. The heat produced by the oxidative reactions was sufficient under the conditions chosen for the endothermic thermal pyrolysis which takes place preferentially in the gas phase. Ignition of the reaction mixture is an important catalyst function. Contrary to non-catalytic oxidative dehydrogenation, reaction temperatures above 700 C could be achieved without significant external heat input. Ethylene yields of up to 34-45% (S=66-73%) were obtained on REO-based catalysts under non-isothermal conditions (T{sub max}=810-865 C) at contact times in the order of 30 to 40 ms. (orig.)

  5. The Influence of Uranium Content and PVA/U Ratio on Physical Propertiesof PVA-U Gel and Its Oxide

    International Nuclear Information System (INIS)

    Damunir; W, Bangun; Indra-Suryawan; Endang-Nawangsih

    2000-01-01

    The influence of uranium content and PVA/U ratio on physical propertiesof PVA-U gel and its oxide has been investigated. Fifty milliliters of uranylnitrate solution containing 100 g U/l was neutralized using 1M NH 4 0H. Thesolution was converted into PVA-U sol by adding 9.18 % PVA while mixed andheated at 80 o C for 20 minutes. In order to find spherical gel, the solsolution was dropped into a 5 M NH 4 0H solution at room temperature. Theshape formed of the gels small spherical, shape of the formed gels werefiltered, washed and heated at 120 o C. After that the gels were calcined at800 o C for 4 hours. The formed U 3 O 8 particles. Under a similar method, theinfluence of uranium content from 150-400 g/l and the influence of PVA/Uratio of 6.5-12.5 % in 100 g U/l were studied. Characterization of the resultwas obtained from physical properties of the gel and its oxide in the form ofdensity using pycnometer, surface area using surface areameter with N 2 asabsorbent and particle size/ shape using a loop and optical microscope. Theexperimental results showed that both uranium content and PVA/U ratioaffected the physical properties of the kernel properties. The best resultoccurred at uranium content of 100 g/l and PVA/U 9.18 %. The resulted gelwith solid content of 89.17 %, density of 3.36 g/l and size of 124 μm. Theresulted oxide U 3 0 8 had density of 7.98 g U/l, surface area of specific of0.449 m 2 /g and grain size of 810 μm. (author)

  6. Development of reduction technology for oxide fuel. Behaviour of rare-earth in lithium reduction process

    International Nuclear Information System (INIS)

    Kato, Tetsuya; Usami, Tsuyoshi; Yuda, Ryoichi; Kurata, Masateru; Moriyama, Hirotake

    2000-01-01

    Solubility measurements of rare-earth oxides in molten LiCl-Li 2 O salt and reduction tests of UO 2 doped with rare-earth oxides were carried out to determine the behavior of rare-earths in lithium reduction process. The solubility of rare-earth oxides increases in the order of Gd 2 O concentration. In multi-element systems including 6 rare-earth oxides, the solubility of each element is smaller than that in the individual systems. In the reduction tests, more than 90% of UO 2 was reduced within 1 hour after starting reduction and about 7% of rare-earths eluded into the LiCl molten salt bath containing Li 2 O which is formed by the reduction of UO 2 . The rare-earth concentrations in the bath were evaluated using the solubility data, assuming that rare-earth oxides in multi-element systems form solid solution as the equilibrium solid phase and that the activity coefficients in the solid phase are independent of the compositions. The calculated concentrations are consistent with the experimental ones obtained in the reduction tests. (author)

  7. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide

    International Nuclear Information System (INIS)

    Li Jinhuan; Yang Xia; Yu Xiaodan; Xu, Leilei; Kang Wanli; Yan Wenhua; Gao Hongfeng; Liu Zhonghe; Guo Yihang

    2009-01-01

    Rare-earth oxide-doped titania nanocomposites (RE 3+ /TiO 2 , where RE = Eu 3+ , Pr 3+ , Gd 3+ , Nd 3+ , and Y 3+ ) were prepared by a one-step sol-gel-solvothermal method. The products exhibited anatase phase structure, mesoporosity, and interesting surface compositions with three oxygen species and two titanium species. The products were used as the photocatalysts to degrade a partially hydrolysis polyacrylamide (HPAM) under UV-light irradiation, a very useful polymer in oil recovery. For comparison, Degussa P25 and as-prepared pure TiO 2 were also tested under the same conditions. The enhanced photocatalytic activity was obtained on as-prepared Eu 3+ (Gd 3+ , Pr 3+ )/TiO 2 composites, and the reasons were explained. Finally, the degradation pathway of HPAM over the RE 3+ /TiO 2 composite was put forward based on the intermediates produced during the photocatalysis procedure.

  8. Desorption of acetone from alkaline-earth exchanged Y zeolite after propane selective oxidation

    NARCIS (Netherlands)

    Xu, J.; Mojet, Barbara; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    The desorption of products from a series of alkaline-earth exchanged Y zeolites after room-temperature propane selective oxidation was investigated by in situ infrared and mass spectroscopy. The intermediate product, isopropylhydroperoxide (IHP), did not desorb during

  9. Deposition of tin oxide doped with fluorine produced by sol-gel method and deposited by spray-pyrolysis

    International Nuclear Information System (INIS)

    Maia, Paulo Herbert Franca; Lima, Francisco Marcone; Sena, Aline Cosmo de; Silva, Alvaro Neuton; Almeida, Ana Fabiola Leite de; Freire, Francisco Nivaldo Aguiar

    2014-01-01

    Solar energy is one of the most important sources of renewable energy today, but its production is based on silicon cells, expensive and difficult to produce, so the research seek new materials to replace them. This work aims to deposit tin oxide doped with fluorine on the glass substrate using the sol-gel method to provide a working solution and spray pyrolysis technique to perform the deposition. F-SnO2 (FTO) were synthesized by sol-gel method, employing NH_4F and SnCl_2 precursor in an ethanol solution. Before the formation of the gel phase, the entire solution was sprayed, with the aid of a pistol aerographic substrate under heated at 600 °C divided by 50 applications and cooled in the furnace. The substrates had resistances between 10 and 30 S.cm. The energy dispersive x-ray (EDS) revealed the presence of fluorine in the SnO_2 network. (author)

  10. Zinc oxide films impurified with Ti and prepared by the Sol-gel method

    International Nuclear Information System (INIS)

    Tirado G, S.; Cazares R, J.M.; Maldonado, A.

    2006-01-01

    Titanium-doped zinc oxide thin films have been prepared on silicon substrate using the Sol-Gel technique. The structural, morphology, electrical and optical properties of such thin films were studied as a function of titanium concentration (0.5, 1 and 1.5 %) and the thin films thickness. Zinc acetate dihydrate and titanium (VI)-oxy acetylacetonate were used as precursor materials, using 2-methoxyethanol and monoethanolamine as via. The X-ray diffraction spectra show polycrystalline films in all the cases. It can see for all the thin films a preferential growth along the (002) planes where the titanium concentration and also the thin films thickness play an important rule. No structural changes are observed at all. The surface morphology studied shows as the grain size decreases when thin thickness is increases. For titanium concentration of 0.5, 1 and 1.5 % values the grains size increase also. The thin films thickness for titanium concentration of 1.5 % was 500 nm (4v), 400 nm (3v), 180 nm (2v) and 130 nm (1v), values obtained from cross-section micrographs. Highly resistive samples are obtained for substrate soda-lime even showing high transmittance. Better physical properties are required for gas sensors or semitransparent electrodes and other possible applications. (Author)

  11. Effect of various lanthanum sol-gel coatings on the 330Cb (Fe-35Ni-18Cr-1Nb-2Si) oxidation at 900 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Buscail, H., E-mail: buscail@iut.u-clermont1.fr [Clermont Universite- LVEEM, 8 rue J.B. Fabre, BP 219, 43006 Le Puy en Velay (France); Issartel, C.; Riffard, F.; Rolland, R.; Perrier, S. [Clermont Universite- LVEEM, 8 rue J.B. Fabre, BP 219, 43006 Le Puy en Velay (France); Fleurentin, A. [CETIM, 52 av Felix Louat, BP 80067, 60304 Senlis (France); Josse, C. [L' ICB UMR5209 CNRS, BP 47870, 21078 Dijon (France)

    2011-11-01

    The influence of a lanthanum sol-gel coating on the oxide scale adherence has been studied during the 330Cb (Fe-35Ni-18Cr-1Nb-2Si) oxidation at 900 deg. C, in air. The alloy oxidation is performed in order to generate a protective chromia scale acting as a good barrier against carburization. Argon annealing of lanthanum sol-gel coatings have been performed at various temperatures in order to find the best conditions to insure the scale adherence. Kinetic results show that lanthanum sol-gel coatings lead to a lower oxidation rate compared to blank specimens. Thermal cycling tests on lanthanum the sol-gel coated specimen show that the oxide scale formed at 900 deg. C, in air, is adherent.

  12. Inhibition of interaction between epigallocatechin-3-gallate and myofibrillar protein by cyclodextrin derivatives improves gel quality under oxidative stress.

    Science.gov (United States)

    Zhang, Yumeng; Chen, Lin; Lv, Yuanqi; Wang, Shuangxi; Suo, Zhiyao; Cheng, Xingguang; Xu, Xinglian; Zhou, Guanghong; Li, Zhixi; Feng, Xianchao

    2018-06-01

    High levels of polyphenols can interact with myofibrillar proteins (MPs), causing damage to a MP emulsion gel. In this study, β-cyclodextrins were used to reduce covalent and non-covalent interaction between epigallocatechin-3-gallate (EGCG) and MPs under oxidative stress. The loss of both thiol and free amine groups and the unfolding of MPs caused by EGCG (80 μM/g protein) were significantly prevented by β-cyclodextrins, and the structural stability and solubility were improved. MP emulsion gel treated with EGCG (80 μM/g protein) had the highest cooking loss (68.64%) and gel strength (0.51 N). Addition of β-cyclodextrins significantly reduced cooking loss (26.24-58.20%) and improved gel strength (0.31-0.41 N) of MP emulsion gel jeopardized by EGCG under oxidative stress. Damage to the emulsifying properties of MPs caused by EGCG was significantly prevented by addition of β-cyclodextrins. β-cyclodextrins reduced interaction between EGCG and MPs in the order Methyl-β-cyclodextrin > (2-Hydroxypropyl)-β-cyclodextrin > β-cyclodextrin. In absence of EGCG, addition of β-cyclodextrins partly protected MPs from oxidative attack and improved its solubility. It is concluded that β-cyclodextrins does not markedly reduce the antioxidant ability of EGCG according to carbonyl analysis, and can effectively increase EGCG loading to potentially provide more durable antioxidant effect for meat products during processing, transportation and storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Research and development of tungsten electrodes added with rare earth oxides

    International Nuclear Information System (INIS)

    Zuoren Nie; Ying Chen; Meiling Zhou; Tieyong Zuo

    2001-01-01

    The recent research and development of tungsten electrodes used in TIG and Plasma technologies are introduced, and the tungsten materials as well as the effects of rare earth oxides are specially discussed. in W-La 2 O 3 , W-CeO 2 , W-Y 2 O 3 and W-ThO 2 electrode materials, the W-2.2mass%La 2 O 3 electrode exhibited the best properties when the current is of little or middle volume, and when the electrodes are used in large current, the W-Y 2 O 3 electrode is the best. By a comparative study between the tungsten electrodes activated with single metal oxides, as above-mentioned, and those containing two or three rare earth oxides, namely La 2 O 3 , CeO 2 and Y 2 O 3 , it was indicated that the welding arc properties of the tungsten electrodes activated with combined rare earth oxides additions is superior than that of the electrodes containing single oxides as above mentioned. It was also shown that the operating properties of tungsten electrodes depend intensively on the rare earth oxides contained in the electrodes, and the actions of rare earth oxides during arcing are the most important factors to the electrodes' operating properties, temperature, work function as well as the arc stability. (author)

  14. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions

    Science.gov (United States)

    Bansal, Narottam P.

    1988-01-01

    MgO-SiO2 glasses containing up to 15 mol pct MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol pct MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol pct MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol pct) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  15. Silica-gel modified with zirconium oxide as a novel 99Mo adsorbent 99mTc generators

    International Nuclear Information System (INIS)

    Salehi, H.; Mollarazi, E.; Abbasi, H.

    2010-01-01

    A new 99 Mo adsorbent has been prepared with modified silica gel with zirconium oxide (SiO 2 /ZrO 2 :Na 2 MoO 4 ) and used in technetium-99m generator. The adsorption behaviors of 99 Mo in the form of molybdate and 99m Tc in the form of pertechnetate on the new adsorbent was investigated showed that the adsorption capacity of molybdate on this generator was considerably higher than the usual generator with alumina column. Coating zirconium oxide on the surface of silica gel resulted in higher 99 Mo adsorption of this compound. 99m Tc is eluted with 0.9% NaCl, and the radionuclidic, radiochemical and chemical purities of the eluate were checked. This generator has a great potential as compared to the traditional alumina generators.

  16. Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors.

    Science.gov (United States)

    Jo, Jeong-Wan; Kim, Jaekyun; Kim, Kyung-Tae; Kang, Jin-Gu; Kim, Myung-Gil; Kim, Kwang-Ho; Ko, Hyungduk; Kim, Jiwan; Kim, Yong-Hoon; Park, Sung Kyu

    2015-02-18

    Incorporation of Zr into an AlOx matrix generates an intrinsically activated ZAO surface enabling the formation of a stable semiconducting IGZO film and good interfacial properties. Photochemically annealed metal-oxide devices and circuits with the optimized sol-gel ZAO dielectric and IGZO semiconductor layers demonstrate the high performance and electrically/mechanically stable operation of flexible electronics fabricated via a low-temperature solution process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Some major aspects of the chemical behavior of rare earth oxides: An overview

    International Nuclear Information System (INIS)

    Bernal, S.; Blanco, G.; Calvino, J.J.; Omil, J.A. Perez; Pintado, J.M.

    2006-01-01

    The chemical behavior of sesquioxides and higher rare earth oxides is briefly reviewed. In the first case processes implying no change in the lanthanoid oxidation state are considered, whereas in the second one the analysis is focused on their redox behavior

  18. Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy.

    Science.gov (United States)

    Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping

    2010-09-07

    Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y(2)O(3) and Yb(2)O(3) could cause massive vacuolization. Y(2)O(3) and Yb(2)O(3) treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects.

  19. Optimization of leaching process for sum of rare earth and calcium oxides

    International Nuclear Information System (INIS)

    Troyanier, L.S.; Elunkina, Z.A.; Nikonov, V.N.; Lobov, V.I.

    1978-01-01

    Presented are the results of investigation of leaching process for rare earth and calcium oxides by sulfuric acid. The method of planning experiment has been used for this investigation. Mixtures of cerium, yttrium and neodyum oxides, taken in the relation of 1:1:0.5, have been used as rare earth elements. Received are adequate models characterizing dependence of solubility of rare earth and calcium oxides on some factors (H 2 SO 4 concentration, CaO:R 2 O 3 relation, liquid to solid ratio, solution temperature, mixing time). Dependences of solubility of rare earth elements and calcium on the process parameters are received and presented in a form of regression equations. Dependences received can be used for choice of optimum regime of the process as well as for its control

  20. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal Gelation Sol-Gel Methods

    Energy Technology Data Exchange (ETDEWEB)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    2018-05-01

    Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slides for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.

  1. Sol-gel zinc oxide humidity sensors integrated with a ring oscillator circuit on-a-chip.

    Science.gov (United States)

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2014-10-28

    The study develops an integrated humidity microsensor fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor changes when the sensitive film adsorbs water vapor. The circuit is used to convert the capacitance of the humidity sensor into the oscillation frequency output. Experimental results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at 30 °C as the humidity increases 40 to 90%RH.

  2. Sol-Gel Zinc Oxide Humidity Sensors Integrated with a Ring Oscillator Circuit On-a-Chip

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    2014-10-01

    Full Text Available The study develops an integrated humidity microsensor fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS process. The integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor changes when the sensitive film adsorbs water vapor. The circuit is used to convert the capacitance of the humidity sensor into the oscillation frequency output. Experimental results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at 30 °C as the humidity increases 40 to 90%RH.

  3. Blade-coated sol-gel indium-gallium-zinc-oxide for inverted polymer solar cell

    Directory of Open Access Journals (Sweden)

    Yan-Huei Lee

    2016-11-01

    Full Text Available The inverted organic solar cell was fabricated by using sol-gel indium-gallium-zinc-oxide (IGZO as the electron-transport layer. The IGZO precursor solution was deposited by blade coating with simultaneous substrate heating at 120 °C from the bottom and hot wind from above. Uniform IGZO film of around 30 nm was formed after annealing at 400 °C. Using the blend of low band-gap polymer poly[(4,8-bis-(2-ethylhexyloxy-benzo(1,2-b:4,5-b’dithiophene-2,6-diyl-alt- (4-(2-ethylhexanoyl-thieno [3,4-b]thiophene--2-6-diyl] (PBDTTT-C-T and [6,6]-Phenyl C71 butyric acid methyl ester ([70]PCBM as the active layer for the inverted organic solar cell, an efficiency of 6.2% was achieved with a blade speed of 180 mm/s for the IGZO. The efficiency of the inverted organic solar cells was found to depend on the coating speed of the IGZO films, which was attributed to the change in the concentration of surface OH groups. Compared to organic solar cells of conventional structure using PBDTTT-C-T: [70]PCBM as active layer, the inverted organic solar cells showed significant improvement in thermal stability. In addition, the chemical composition, as well as the work function of the IGZO film at the surface and inside can be tuned by the blade speed, which may find applications in other areas like thin-film transistors.

  4. Effect of rare earth oxide additives on the performance of NiMH batteries

    International Nuclear Information System (INIS)

    Tanaka, Toshiki; Kuzuhara, Minoru; Watada, Masaharu; Oshitani, Masahiko

    2006-01-01

    To date, we have performed research on nickel-metal hydride (NiMH) batteries used in many applications and have found that addition of rare earth oxides to the nickel electrode and the hydrogen-storage alloy (MH) electrode improves battery performance significantly. Because heavy rare earth oxides of such as Er, Tm, Yb and Lu have remarkable properties that shift the oxygen evolution overpotentials of nickel electrodes to more noble potentials, it is possible to improve high-temperature charge efficiency of nickel-metal hydride secondary batteries by adding them to nickel electrodes. Furthermore, addition of heavy rare earth oxides to MH electrodes depresses an acceleration of the alloy corrosion and improves service life of the battery at high temperatures. Accordingly, addition of heavy rare earth oxides is effective for NiMH batteries used in high-temperature applications such as electric vehicles (EVs), hybrid vehicles (HEVs) and rapid charge devices. In this study, we discussed how the addition of heavy rare earth oxides affects NiMH battery characteristics

  5. Obtainment of zirconium oxide and partially stabilized zirconium oxide with yttrium and rare earth oxides, from Brazilian zirconite, for ceramic aim

    International Nuclear Information System (INIS)

    Ribeiro, S.

    1991-05-01

    This work presents experimental results for processing of brazilian zirconite in order to obtain zirconium oxide with Yttrium and Rare Earth oxide by mutual coprecipitation for ceramics purposes. Due to analysis of experimental results was possible to obtain the optimum conditions for each one of technological route stage, such as: alkaline fusion; acid leaching; sulfactation and coprecipitation. (author)

  6. Evaluation of sol–gel based magnetic 45S5 bioglass and bioglass–ceramics containing iron oxide

    International Nuclear Information System (INIS)

    Shankhwar, Nisha; Srinivasan, A.

    2016-01-01

    Multicomponent oxide powders with nominal compositions of (45 − x)·SiO_2·24.5CaO·24.5Na_2O·6P_2O_5xFe_2O_3 (in wt.%) were prepared by a modified sol–gel procedure. X-ray diffraction (XRD) patterns and high resolution transmission electron microscope images of the sol–gel products show fully amorphous structure for Fe_2O_3 substitutions up to 2 wt.%. Sol–gel derived 43SiO_2·24.5CaO·24.5Na_2O·6P_2O_5·2Fe_2O_3 glass (or bioglass 45S5 with SiO_2 substituted with 2 wt.% Fe_2O_3), exhibited magnetic behavior with a coercive field of 21 Oe, hysteresis loop area of 33.25 erg/g and saturation magnetization of 0.66 emu/g at an applied field of 15 kOe at room temperature. XRD pattern of this glass annealed at 850 °C for 1 h revealed the formation of a glass–ceramic containing sodium calcium silicate and magnetite phases in nanocrystalline form. Temperature dependent magnetization and room temperature electron spin resonance data have been used to obtain information on the magnetic phase and distribution of iron ions in the sol–gel glass and glass–ceramic samples. Sol–gel derived glass and glass–ceramic exhibit in-vitro bioactivity by forming a hydroxyapatite surface layer under simulated physiological conditions and their bio-response is superior to their melt quenched bulk counterparts. This new form of magnetic bioglass and bioglass ceramics opens up new and more effective biomedical applications. - Highlights: • Bioglass 45S5 containing 2 wt.% Fe_2O_3 is prepared by sol–gel route. • Fully amorphous bioglass exhibits spontaneous magnetization. • Gel powders with more than 2 wt.% Fe_2O_3 formed glass–ceramics. • γ-Fe_2O_3 in bioglass transformed irreversibly to magnetite upon heat treatment. • In vitro bioactivity of sol–gel samples is superior to their bulk counterparts.

  7. Magnetic nanosized rare earth iron garnets R_3Fe_5O_1_2: Sol–gel fabrication, characterization and reinspection

    International Nuclear Information System (INIS)

    Opuchovic, Olga; Kareiva, Aivaras; Mazeika, Kestutis; Baltrunas, Dalis

    2017-01-01

    The magnetic nanosized rare earth iron garnets (R_3Fe_5O_1_2, where R=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were prepared by an aqueous sol–gel method. Herein we present, that all these garnets can be obtained by this effective synthesis method simply by changing the temperature of the final annealing. It was also demonstrated, that a different annealing temperature leads to a different particle size distribution of the final product. The SEM analysis results revealed that the smallest particles were formed in the range of 75–130 nm. The phase purity and structure of the rare earth iron garnets were estimated using XRD analysis and Mössbauer spectroscopy. Magnetic properties were determined by magnetization measurements. The relation between the particle size, composition and magnetic properties of the sol-gel derived garnets were also discussed in this study. - Highlights: • First time series of R_3Fe_5O_1_2 (R=from Sm to Lu) are prepared by sol–gel process. • Different sintering temperature leads to the different particle size distribution. • Correlation between microstructure, composition and magnetic properties is shown.

  8. Synthesis and characterization of mixtures of cobalt and titanium oxides by mechanical alloyed and Sol-Gel

    International Nuclear Information System (INIS)

    Basurto S, R.; Bonifacio M, J.; Fernandez V, S. M.

    2009-01-01

    The mechanical alloyed techniques continued by combustion and Sol-Gel method, were used for the synthesis of CoTiO 3 . With the first technique was used Co 3 O 4 obtained in a balls mill SPEX in argon atmosphere, using cobalt nitrate and urea, the combustion is realized at 400 and 500 C, the characterization by X-ray diffraction showed the obtaining of the valence oxide mixed of cobalt with crystallite size from 10 to 12.5 nm and the particle size of 60 to 75 nm was obtained by scanning electron microscopy. To prepare the CoTiO 3 , the obtained Co 3 O 4 was mixed with TiO 2 on a relationship in weight (1:1) and with a milling time of 2.5 h and the combustion at 800 C. the mixed oxide of titanium cobalt was also obtained by the Sol-Gel technique starting from cobalt chloride and titanium propoxide in acetic-water acid, the gel is burned to temperature of 300, 500, 700 and 900 C, finding that this last temperature it is that provides the compound with crystalline size from 50 to 75 nm. (Author)

  9. The influence of the matrix structure on the oxidation of aniline in a silica sol-gel composite

    International Nuclear Information System (INIS)

    Widera, J.; Kijak, A.M.; Ca, D.V.; Pacey, G.E.; Taylor, R.T.; Perfect, H.; Cox, J.A.

    2005-01-01

    Mesoporous and microporous silica matrices were formed on indium tin oxide electrodes for liquid-phase voltammetry and as monoliths for solid-state voltammetry of aniline. The pore structure, which was verified by scanning probe microscopy and by surface area measurement, was directed by either control of pH during sol-gel processing or by inclusion of a templating agent. Whether aniline was included as a dopant in the sol-gel or as a component of the contacting liquid, the pore size influenced the coupling of the product of its electrochemical oxidation. With microporous silica, the dominant products were dimers and related short-chain products whereas with mesoporous silica, polymerization was suggested. As a step toward the formation of polyaniline (PANI) that is covalently anchored to the sol-gel, the electrochemistry of aniline was investigated using composites prepared from sols comprising tetraethyl orthosilicate (TEOS), 3-aminophenyl-[3-triethoxylsilyl)-propyl] urea (ormosil), and aniline in various ratios. Combinatorial chemistry identified that the optimum combination of silica precursors in terms of obtaining PANI was a 1:12 mole ratio of ormosil:TEOS

  10. Effect of oxidizer on grain size and low temperature DC electrical conductivity of tin oxide nanomaterial synthesized by gel combustion method

    International Nuclear Information System (INIS)

    Rajeeva, M. P.; Jayanna, H. S.; Ashok, R. L.; Naveen, C. S.; Bothla, V. Prasad

    2014-01-01

    Nanocrystalline Tin oxide material with different grain size was synthesized using gel combustion method by varying the fuel (C 6 H 8 O 7 ) to oxidizer (HNO 3 ) molar ratio by keeping the amount of fuel as constant. The prepared samples were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscopy (EDAX). The effect of fuel to oxidizer molar ratio in the gel combustion method was investigated by inspecting the grain size of nano SnO 2 powder. The grain size was found to be reduced with the amount of oxidizer increases from 0 to 6 moles in the step of 2. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the grain size in the range of 12 to 31 nm which was calculated by Scherer's formula. Molar ratio and temperature dependence of DC electrical conductivity of SnO 2 nanomaterial was studied using Keithley source meter. DC electrical conductivity of SnO 2 nanomaterial increases with the temperature from 80K to 300K. From the study it was observed that the DC electrical conductivity of SnO 2 nanomaterial decreases with the grain size at constant temperature

  11. Biochemical assessment of oxidative stress by the use of açai (Euterpe oleracea Martius gel in physically active individuals

    Directory of Open Access Journals (Sweden)

    Daniela Soares VIANA

    2016-01-01

    Full Text Available Abstract The relation between oxidative stress and inflammation induced by diseases and exercise has increased the interest in the benefits of antioxidant supplements in the improvement of health and physical and mental performance. The aim of this study was to evaluate the effectiveness of açai gel in reducing oxidative stress in individuals engaged in physical activities as well as their acceptance. Sensory evaluation was performed to determine its acceptability and the biochemical parameters related to immune profile and biomarkers of muscle, liver and oxidative stress, with and without the use of gel were evaluated. The appearance, sweetness and overall impression of the açai gel were considered good. It was observed a significant increase in CK enzyme, without the gel as well as the oxidative stress biomarkers, it was observed that the MDA (with and without gel a significant increase (p < 0.05. Through biochemical evaluation, it is concluded that the gel provided protection for some of parameters studied, since it modulated the immunological parameter reducing the lymphocyte activity and muscular stress. However, more studies must be carried out with a larger number of individuals to confirm the gel functionality.

  12. Biochemical assessment of oxidative stress by the use of açai (Euterpe oleracea Martius gel in physically active individuals

    Directory of Open Access Journals (Sweden)

    Daniela Soares VIANA

    Full Text Available Abstract The relation between oxidative stress and inflammation induced by diseases and exercise has increased the interest in the benefits of antioxidant supplements in the improvement of health and physical and mental performance. The aim of this study was to evaluate the effectiveness of açai gel in reducing oxidative stress in individuals engaged in physical activities as well as their acceptance. Sensory evaluation was performed to determine its acceptability and the biochemical parameters related to immune profile and biomarkers of muscle, liver and oxidative stress, with and without the use of gel were evaluated. The appearance, sweetness and overall impression of the açai gel were considered good. It was observed a significant increase in CK enzyme, without the gel as well as the oxidative stress biomarkers, it was observed that the MDA (with and without gel a significant increase (p < 0.05. Through biochemical evaluation, it is concluded that the gel provided protection for some of parameters studied, since it modulated the immunological parameter reducing the lymphocyte activity and muscular stress. However, more studies must be carried out with a larger number of individuals to confirm the gel functionality.

  13. Alcohol sensing of tin oxide thin film prepared by sol–gel process

    Indian Academy of Sciences (India)

    Unknown

    variation of sensitivity and ethanol concentration has shown a linear relationship up to 1150 ppm and after ... The results obtained favour the sol–gel process as a low cost method for the preparation ... It was cleaned ultrasonically in methanol.

  14. Strong poly(ethylene oxide) based gel adhesives via oxime cross-linking.

    Science.gov (United States)

    Ghosh, Smita; Cabral, Jaydee D; Hanton, Lyall R; Moratti, Stephen C

    2016-01-01

    There is a demand for materials to replace or augment the use of sutures and staples in surgical procedures. Currently available commercial surgical adhesives provide either high bond strength with biological toxicity or polymer and protein-based products that are biologically acceptable (though with potential sensitizing potential) but have much reduced bond strength. It is desirable to provide novel biocompatible and biodegradable surgical adhesives/sealants capable of high strength with minimal immune or inflammatory response. In this work, we report the end group derivatization of 8-arm star PEOs with aldehyde and amine end groups. Gels were prepared employing the Schiff-base chemistry between the aldehydes and the amines. Gel setting times, swelling behavior and rheological characterization were carried out for these gels. The mechanical-viscoelastic properties were found to be directly proportional to the crosslinking density of the gels, the 10K PEO gel was stiffer in comparison to the 20K PEO gel. The adhesive properties of these gels were tested using porcine skin and showed excellent adhesion properties. Cytotoxicity studies were carried out for the individual gel components using two different methods: (a) Crystal Violet Staining assay (CVS assay) and (b) impedance and cell index measurement by the xCELLigence system at concentrations >5%. Gels prepared by mixing 20% w/w solutions were also tested for cytotoxicity. The results revealed that the individual gel components as well as the prepared gels and their leachables were non-cytotoxic at these concentrations. This work presents a new type of glue that is aimed at surgery applications using a water soluble star shaped polymer. It show excellent adhesion to skin and is tough and easy to use. We show that it is very biocompatible based on tests on live human cells, and could therefore in principle be used for internal surgery. Comparison with other reported and commercial glues shows that it is stronger

  15. Rare earth elements and oxides in liquid phase epitaxy

    Czech Academy of Sciences Publication Activity Database

    Procházková, Olga; Grym, Jan; Zavadil, Jiří; Kopecká, M.

    2006-01-01

    Roč. 100, č. 8 (2006), s. 640-- ISSN 0009-2770. [Sjezd chemických společností /58./. Ústí nad Labem, 04.09.2006-08.09.2006] R&D Projects: GA ČR(CZ) GA102/06/0153 Institutional research plan: CEZ:AV0Z20670512 Keywords : semiconductor technology * rare earth metals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.431, year: 2006

  16. Microstructure and mechanical properties of multi-components rare earth oxide-doped molybdenum alloys

    International Nuclear Information System (INIS)

    Zhang Guojun; Sun Yuanjun; Zuo Chao; Wei Jianfeng; Sun Jun

    2008-01-01

    Pure molybdenum and molybdenum alloys doped with two- or three-components rare earth oxide particles were prepared by powder metallurgy. Both the tensile property and fracture toughness of the pure molybdenum and multi-components rare earth oxide-doped molybdenum alloys were determined at room temperature. The multi-components rare earth oxide-doped molybdenum alloys are fine grained and contain a homogeneous distribution of fine particles in the submicron and nanometer size ranges, which is why the molybdenum alloys have higher strength and fracture toughness than pure molybdenum. Quantitative analysis is used to explain the increase in yield strength with respect to grain size and second phase strengthening. Furthermore, the relationship between the tensile properties and microstructural parameters is quantitatively established

  17. Sol-gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells

    International Nuclear Information System (INIS)

    Lavela, P.; Tirado, J.L.; Vidal-Abarca, C.

    2007-01-01

    An ethanol dehydration procedure has been used to precipitate gel-like citrate precursors containing cobalt and manganese transition metal ions. Further annealing led to the Mn x Co 3-x O 4 spinel oxide series (x: 1, 1.5, 2, 3). Annealing temperature and treatment time were also evaluated to optimize the performance of the oxides as active electrode materials in lithium cells. The manganese-cobalt mixed oxides obtained by this procedure were cubic or tetragonal phases depending on the cobalt content. SEM images showed spherical macroporous aggregates for MnCo 2 O 4 and hollow spheres for manganese oxides. The galvanostatic cycling of lithium cells assembled with these materials demonstrated a simultaneous reduction of cobalt and manganese during the first discharge and separation of cobalt- and manganese-based products on further cycling. As compared with binary manganese oxides, a notorious electrochemical improvement was observed in the mixed oxides. This behavior is a consequence of the synergistic effect of both transition metal elements, associated with the in-situ formation of a nanocomposite electrode material when cobalt is introduced in the manganese oxide composition. Values higher than 400 mAh/g were sustained after 50 cycles for MnCo 2 O 4

  18. Evaluation of sol-gel based magnetic 45S5 bioglass and bioglass-ceramics containing iron oxide.

    Science.gov (United States)

    Shankhwar, Nisha; Srinivasan, A

    2016-05-01

    Multicomponent oxide powders with nominal compositions of (45-x)·SiO2·24.5CaO·24.5Na2O·6P2O5xFe2O3 (in wt.%) were prepared by a modified sol-gel procedure. X-ray diffraction (XRD) patterns and high resolution transmission electron microscope images of the sol-gel products show fully amorphous structure for Fe2O3 substitutions up to 2 wt.%. Sol-gel derived 43SiO2·24.5CaO·24.5Na2O·6P2O5·2Fe2O3 glass (or bioglass 45S5 with SiO2 substituted with 2 wt.% Fe2O3), exhibited magnetic behavior with a coercive field of 21 Oe, hysteresis loop area of 33.25 erg/g and saturation magnetization of 0.66 emu/g at an applied field of 15 kOe at room temperature. XRD pattern of this glass annealed at 850 °C for 1h revealed the formation of a glass-ceramic containing sodium calcium silicate and magnetite phases in nanocrystalline form. Temperature dependent magnetization and room temperature electron spin resonance data have been used to obtain information on the magnetic phase and distribution of iron ions in the sol-gel glass and glass-ceramic samples. Sol-gel derived glass and glass-ceramic exhibit in-vitro bioactivity by forming a hydroxyapatite surface layer under simulated physiological conditions and their bio-response is superior to their melt quenched bulk counterparts. This new form of magnetic bioglass and bioglass ceramics opens up new and more effective biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Recycling of the rare earth oxides from spent rechargeable batteries using waste metallurgical slags

    Directory of Open Access Journals (Sweden)

    Tang K.

    2013-01-01

    Full Text Available A high temperature process for recycling spent nickel-metal hydride rechargeable batteries has been recently developed at SINTEF/NTNU. The spent battery modules were first frozen with liquid nitrogen for the de-activation and brittle fracture treatment. The broken steel scraps and plastics were then separated by the mechanical classification and magnetic separation. The remaining positive and negative electrodes, together with the polymer separator, were heated to 600-800oC in order to remove the organic components and further separate the Ni-based negative electrode. XRF analyses indicate that the heat-treated materials consist mainly of nickel, rare earth and cobalt oxides. The valuable rare earth oxides were further recovered by the high-temperature slagging treatment. The waste metallurgical slags, consist mainly of SiO2 and CaO, were used as the rare earth oxide absorbent. After the high temperature slagging treatment, over 98% of nickel and cobalt oxides were reduced to the metal phase; meanwhile almost all rare earth oxides remain in the molten slags. Furthermore, EPMA and XRF analyses of the slag samples indicate that the rare earth oxides selectively precipitate in the forms of solid xSiO2•yCaO•zRe2O3. The matrix of slag phase is Re2O3 deficient, typically being less than 5 wt%. This provides a sound basis to further develop the high-temperature process of concentrating the Re2O3 oxides in slags.

  20. Rare earth zirconium oxide buffer layers on metal substrates

    Science.gov (United States)

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  1. Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments.

    Science.gov (United States)

    dos Santos, A C F; Marques, E L S; Gross, E; Souza, S S; Dias, J C T; Brendel, M; Rezende, R P

    2012-01-27

    Currently, the effect of crude oil on ammonia-oxidizing bacterium communities from mangrove sediments is little understood. We studied the diversity of ammonia-oxidizing bacteria in mangrove microcosm experiments using mangrove sediments contaminated with 0.1, 0.5, 1, 2, and 5% crude oil as well as non-contaminated control and landfarm soil from near an oil refinery in Camamu Bay in Bahia, Brazil. The evolution of CO(2) production in all crude oil-contaminated microcosms showed potential for mineralization. Cluster analysis of denaturing gradient gel electrophoresis-derived samples generated with primers for gene amoA, which encodes the functional enzyme ammonia monooxygenase, showed differences in the sample contaminated with 5% compared to the other samples. Principal component analysis showed divergence of the non-contaminated samples from the 5% crude oil-contaminated sediment. A Venn diagram generated from the banding pattern of PCR-denaturing gradient gel electrophoresis was used to look for operational taxonomic units (OTUs) in common. Eight OTUs were found in non-contaminated sediments and in samples contaminated with 0.5, 1, or 2% crude oil. A Jaccard similarity index of 50% was found for samples contaminated with 0.1, 0.5, 1, and 2% crude oil. This is the first study that focuses on the impact of crude oil on the ammonia-oxidizing bacterium community in mangrove sediments from Camamu Bay.

  2. Synthesis of complex plutonium oxides with alkaline-earth metals

    International Nuclear Information System (INIS)

    Suzuki, Yasufumi; Nakajima, Kunihisa; Iwai, Takashi; Ohmichi, Toshihiko; Yamawaki, Michio.

    1995-03-01

    Complex plutonium(IV) oxides with strontium and barium, SuPuO 3 and BaPuO 3 , were synthesized and their crystal structure was analyzed. Compacted mixture of plutonium dioxide powder and the carbonate of strontium or barium was heated in a stream of argon gas using a cell with a small orifice. The products obtained were found to be composed of a nearly single phase showing the structure of orthorhombic slightly distorted from cubic. (author)

  3. Preliminary study on the existence characteristics of rare earth elements in the interstratified oxidized zone

    International Nuclear Information System (INIS)

    Wang Jinping

    2006-10-01

    There were few of studies on rare earth elements (REE) in sandstone hosted uranium deposits, except the study of sediments source tracing and REE distribution modalities. Based on the study of existence characteristics of REE in subzones of interstratified oxidized zone in Shihongtan uranium deposit, Tuha basin, the possible migration features of REE was traced, and the significance of ΣREE, LREE/HREE ratios and δEu, δCe value during the interstratified oxidation were illustrated. (authors)

  4. Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Arifin, Eric; Lee, Jiukyu [Interdisciplinary Program in Nanoscience and Technology, Virginia (United States); Cha, Jinmyung [Seoul National Univ., Seoul (Korea, Republic of)

    2013-08-15

    Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite (AsO{sup 2-}) and arsenate (AsO{sub 4}{sup -3}), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of 10 μg/L without adjusting pH and temperature, which would be highly advantageous for practical field application.

  5. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-Gonzá lez, R.; Garcí a-Cerda, L. A.; Alshareef, Husam N.; Gnade, Bruce E.; Quevedo-Ló pez, Manuel Angel Quevedo

    2010-01-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  6. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-González, R.

    2010-03-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  7. Integrating nanohybrid membranes of reduced graphene oxide: chitosan: silica sol gel with fiber optic SPR for caffeine detection

    Science.gov (United States)

    Kant, Ravi; Tabassum, Rana; Gupta, Banshi D.

    2017-05-01

    Caffeine is the most popular psychoactive drug consumed in the world for improving alertness and enhancing wakefulness. However, caffeine consumption beyond limits can result in lot of physiological complications in human beings. In this work, we report a novel detection scheme for caffeine integrating nanohybrid membranes of reduced graphene oxide (rGO) in chitosan modified silica sol gel (rGO: chitosan: silica sol gel) with fiber optic surface plasmon resonance. The chemically synthesized nanohybrid membrane forming the sensing route has been dip coated over silver coated unclad central portion of an optical fiber. The sensor works on the mechanism of modification of dielectric function of sensing layer on exposure to analyte solution which is manifested in terms of red shift in resonance wavelength. The concentration of rGO in polymer network of chitosan and silica sol gel and dipping time of the silver coated probe in the solution of nanohybrid membrane have been optimized to extricate the supreme performance of the sensor. The optimized sensing probe possesses a reasonably good sensitivity and follows an exponentially declining trend within the entire investigating range of caffeine concentration. The sensor boasts of an unparalleled limit of detection value of 1.994 nM and works well in concentration range of 0-500 nM with a response time of 16 s. The impeccable sensor methodology adopted in this work combining fiber optic SPR with nanotechnology furnishes a novel perspective for caffeine determination in commercial foodstuffs and biological fluids.

  8. A study on the separation method of total rare earth oxides in Xenotime

    International Nuclear Information System (INIS)

    Shim, Sang Kwon; Park, Hea Kyung; Kim, Kyung Lim

    1990-01-01

    This study is concerned with the separation method of total rare earth oxides in Xenotime by acid digest method. Thioacetamide was used as a carrier, tartaric acid was used as a masking agent and oxalic acid was used as a precipitant. So the effects of three acid digest methods, pH of the solution, digesting time,tartaric acid, oxalic acid and aging time were oberved. The results showed that the best acid digest method was sulfuric acid leaching and mixed acid digest method, and that pH of the solution was 2, digesting time was 4 hours, tartaric acid was 100 ml of 2% solution, oxalic acid was 8 gr. and aging time was 1 hour. Through this experiment, it was confirmed by X-ray diffractometer that the separated total rare earth oxides consisted of the Yttrium and the other rare earth elements : Gadolinium, Dysprosium, Erbium, Ytterbium and trace rare earth elements. The pure rare earth oxides being separated by this method were dried and ignited at 900 deg C (Author)

  9. Retention of actinides and rare earth in the alteration gels of R7T7 nuclear glass

    International Nuclear Information System (INIS)

    Advocat, Th.; Menard, O.; Chouchan, J.L.; Jollivet, P.

    1997-01-01

    Under oxic conditions, over 98.5% of the lanthanides and thorium released from the glass were retained in the alteration products on the glass surface, probably by coprecipitation with a siliceous gel. Uranium and Neptunium retention varied from 40% in carbonated medium to more than 95% in phosphate medium. With carbonate ions, Np and U formed stable complexes, which tend to limit actinide incorporation in the gel layer. Plutonium retention is larger than 90%. This element exhibited atypical behaviour to the extend that it was strongly bonded to colloidal particles in solution. (authors)

  10. Preparation of ammonium sulfate, calcium oxide and rare earth concentrate from phospho-gypsum

    International Nuclear Information System (INIS)

    Andrianov, A.M.; Rusin, N.F.; Dejneka, G.F.; Zinchenko, T.A.; Burova, T.I.

    1978-01-01

    A technological scheme is proposed which gives ammonium sulfate, purified (from admixtures of silicon, iron, titanium, aluminium) calcium oxide with direct yield of calcium 91% and rare-earth concentrate, containing 5.6% of Ln 2 O 3 with direct yield of 99.5%

  11. A simple enrichment correction factor for improving erosion estimation by rare earth oxide tracers

    Science.gov (United States)

    Spatially distributed soil erosion data are needed to better understanding soil erosion processes and validating distributed erosion models. Rare earth element (REE) oxides were used to generate spatial erosion data. However, a general concern on the accuracy of the technique arose due to selective ...

  12. The determination of minor amounts of rare earth elements in high purity earth oxides by HPLC/IDMS

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1991-05-01

    Since the early seventies isotopic dilution mass spectrometry (IDMS) has been used at Institutt for energiteknikk, Kjeller, Norway for determination and certification of rare earth elements in high purity Y 2 O 3 . These lanthanides have, during the last few decades, become more widely used in highly specialized technology. High purity, quality 4 N (99.99%) or even 5 N materials are needed for phosphors, lasers, optical fibers, X-ray films, and in contrast fluids for magnetic resonance imaging (MRI). However, in a matrix constisting primarily of a single lanthanide, IDMS alone will not be effective due to isobaric interferences from the main elements or the mono-oxides formed in the ion source. On the other hand, high performance liquid chromatography (HPLC) may be used, but the detection limit will be in the order of 5 to 10 ppm/W. In this work a combination of HPLC and IDMS has been used to lower the detection limit to 1 ppm/W, where the sample is spiked before separation by HPLC, followed by IDMS analysis of the HPLC- fractions. In some cases the HPLC-process has to be repeated to remove the main element completly. Results are presented for Dy 2 O 3 and Nd 2 O 3 , but similar separating procedures can be applied for other rare earth oxides. 3 refs., 2 figs. 2 tabs

  13. Aging of trivalent metal hydroxide/oxide gels in divalent metal salt ...

    Indian Academy of Sciences (India)

    Unknown

    3' gels do not form LDHs on aging in any of the divalent metal salts. In general, conditions .... values of I pH and II pH for all the systems investigated in this paper are given in ... spectra were obtained using a Nicolet Model Impact. 400D FTIR ...

  14. Physicochemical properties of manganese oxides obtained via the sol-gel method: The reduction of potassium permanganate by polyvinyl alcohol

    Science.gov (United States)

    Ivanets, A. I.; Prozorovich, V. G.; Krivoshapkina, E. F.; Kuznetsova, T. F.; Krivoshapkin, P. V.; Katsoshvili, L. L.

    2017-08-01

    Experimental data on the sol-gel synthesis of manganese oxides formed during the reduction of potassium permanganate by polyvinyl alcohol in an aqueous medium are presented. The physicochemical properties of the obtained manganese oxide systems that depend on the conditions of the synthesis are studied by means of DTA, XRD, SEM, and the low temperature adsorption-desorption of nitrogen. It is found that the obtained samples have a mesoporous structure and predominantly consist of double potassium-manganese oxide K2Mn4O8 with a tunnel structure and impurities of oxides such as α-MnO2, MnO, α-Mn2O3, and Mn5O8. It is shown that the proposed method of synthesis allows us to regulate the size and volume of mesopores and, to a lesser extent, the texture of the obtained oxides, which can be considered promising sorbents for the selective extraction of strontium and cesium ions from multicomponent aqueous solutions.

  15. Evaluation of tetraethoxysilane (TEOS) sol–gel coatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, A. Nithya Deva; Vimala, R., E-mail: vimala.r@vit.ac.in

    2016-04-01

    Green synthesis of zinc oxide nanoparticles (ZnO-NPs) is gaining importance as an eco-friendly alternative to conventional methods due to its enormous applications. The present work reports the synthesis of ZnO-NPs using the endosperm of Cocos nucifera (coconut water) and the bio-molecules responsible for nanoparticle formation have been identified. The synthesized nanoparticles were characterized using UV–Visible spectroscopy (UV–Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Zeta potential measurement. The results obtained reveal that the synthesized nanoparticles are moderately stable with the size ranging from 20 to 80 nm. The bactericidal effect of the nanoparticles was proved by well diffusion assay and determination of minimum inhibitory concentration (MIC) against marine biofilm forming bacteria. Further the green synthesized ZnO-NPs were doped with TEOS sol–gels (TESGs) in order to assess their antimicrofouling capability. Different volumes of liquid sol–gels were coated on to 96-well microtitre plate and cured under various conditions. The optimum curing conditions were found to be temperature 60 °C, time 72 h and volume 200 μl. Antiadhesion test of the undoped (SG) and ZnO-NP doped TEOS sol–gel (ZNSG) coatings were evaluated using marine biofilm forming bacteria. ZNSG coatings exhibited highest biofilm inhibition (89.2%) represented by lowest OD value against Pseudomonasotitidis strain NV1. - Highlights: • The study reports low cost, and simple procedure for the synthesis of ZnO-NPs using coconut water. • XRD result shows the high crystalline nature of the synthesized ZnO-NPs. • TEM and zeta potential distribution confirms the nanostructure, stability of the synthesized ZnO-NPs. • ZnO-NPs doped with TEOS sol¬-gels (TESGs) exhibited excellent antimicrofouling activity.

  16. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.

    Science.gov (United States)

    Balcha, Abebe; Yadav, Om Prakash; Dey, Tania

    2016-12-01

    Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10 -3 and 12.4 × 10 -3  min -1 , respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).

  17. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric.

    Science.gov (United States)

    Fujii, Mami N; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-18

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  18. Fabrication of ceramic oxide-coated SWNT composites by sol-gel process with a polymer glue

    Science.gov (United States)

    Zhang, Cheng; Gao, Lei; Chen, Yongming

    2011-09-01

    The functional copolymer bearing alkoxysilyl and pyrene groups, poly[3-(triethoxysilyl)propyl methacrylate]- co-[(1-pyrene-methyl) methacrylate] (TEPM13- co-PyMMA3), was synthesized via atom transfer radical polymerization. Attributing the π-π interaction of pyrene units with the walls of single-walled carbon nanotubes (SWNTs), this polymer could disperse and exfoliate SWNTs in different solvents through physical interaction as demonstrated by TEM, UV/Vis absorption, and FT-IR analysis. The alkoxysilyl groups functionalized SWNTs were reacted with different inorganic precursors via sol-gel reaction, and, as a results, silica, titania, and alumina were coated onto the surface of SWNTs, respectively via copolymers as a molecular glue. The nanocomposites of ceramic oxides/SWNTs were characterized by SEM analysis. Dependent upon the feed, the thickness of inorganic coating can be tuned easily. This study supplies a facile and general way to coat SWNTs with ceramic oxides without deteriorating the properties of pristine SWNTs.

  19. Research on manufacturing aluminum - rare earth alloy with a high content of rare earth (> 20% RE) from total rare earth oxides by thermit reduction

    International Nuclear Information System (INIS)

    Ngo Trong Hiep; Dam Van Tien; Tran Duy Hai; Ngo Xuan Hung and Ly Thanh Vu

    2004-01-01

    In this report, several theoretical principles of thermit reduction method used for metal oxides to obtain metals, ferroalloys and ligatua with technical purity are presented. Manufacture of aluminum-rare earth alloys by thermit reduction is also described in the report. Data that are generalized based on thermo-kinetic calculation of the thermit reduction and selection of technological flow-sheet based on thermal effect will partly clarify research results in investigating typical features of the process and identify measures to reduce metal loss in discharged slags. (author)

  20. Selectivities of rare earth oxide catalysts for dehydration of butanols

    International Nuclear Information System (INIS)

    Bernal, S.; Trillo, J.M.

    1980-01-01

    The catalytic dehydration of 2-propanol, 1-butanol, and 2-butanol over La 2 O 3 , CeO 2 , Pr 6 O 11 , Sm 2 O 3 , Eu 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , and Yb 2 O 3 is studied. Because of the gradual variation of the general properties of 4f oxides, the former group has been considered a likely series to analyze the existence of definite correlations between alkene distribution and catalyst properties, often reported in the literature. According to our study, the effect of temperature on product distribution may strongly restrict the validity of such correlations. This point is discussed on the basis of the linear relationships found here between the activation energy (E/sub a/) and the log of the preexponential factor

  1. Nanoencapsulation of Rose-Hip Oil Prevents Oil Oxidation and Allows Obtainment of Gel and Film Topical Formulations.

    Science.gov (United States)

    Contri, Renata V; Kulkamp-Guerreiro, Irene C; da Silva, Sheila Janine; Frank, Luiza A; Pohlmann, Adriana R; Guterres, Silvia S

    2016-08-01

    The rose-hip oil holds skin regenerating properties with applications in the dermatological and cosmetic area. Its nanoencapsulation might favor the oil stability and its incorporation into hydrophilic formulations, besides increasing the contact with the skin and prolonging its effect. The aim of the present investigation was to develop suitable rose-hip-oil-loaded nanocapsules, to verify the nanocapsule effect on the UV-induced oxidation of the oil and to obtain topical formulations by the incorporation of the nanocapsules into chitosan gel and film. The rose-hip oil (500 or 600 μL), polymer (Eudragit RS100®, 100 or 200 mg), and acetone (50 or 100 mL) contents were separately varied aiming to obtain an adequate size distribution. The results led to a combination of the factors acetone and oil. The developed formulation showed average diameter of 158 ± 6 nm with low polydispersity, pH of 5.8 ± 0.9, zeta potential of +9.8 ± 1.5 mV, rose-hip oil content of 54 ± 1 μL/mL and tendency to reversible creaming. No differences were observed in the nanocapsules properties after storage. The nanoencapsulation of rose-hip oil decreased the UVA and UVC oxidation of the oil. The chitosan gel and film containing rose-hip-oil-loaded nanocapsules showed suitable properties for cutaneous use. In conclusion, it was possible to successfully obtain rose-hip-oil-loaded nanocapsules and to confirm the nanocapsules effect in protecting the oil from the UV rays. The chitosan gel and film were considered interesting alternatives for incorporating the nanoencapsulated rose-hip oil, combining the advantages of the nanoparticles to the advantages of chitosan.

  2. Evaluation of the photocatalytic ability of a sol-gel-derived MgO-ZrO2 oxide material

    Directory of Open Access Journals (Sweden)

    Ciesielczyk Filip

    2017-02-01

    Full Text Available This paper deals with the synthesis and characterization of a novel group of potential photocatalysts, based on sol-gel-derived MgO-ZrO2 oxide material. The material was synthesized in a typical sol-gel system using organic precursors of magnesia and zirconia, ammonia as a promoter of hydrolysis and methanol as a solvent. All materials were thoroughly analyzed, including morphology and particle sizes, chemical composition, identification of characteristic functional groups, porous structure parameters and crystalline structure. The proposed methodology of synthesis resulted in obtaining pure MgO-ZrO2 oxide material with micrometric-sized particles and a relatively high surface area. The samples underwent an additional calcination process which led to the crystalline phase of zirconia being formed. The key element of the study was the evaluation of the effectiveness of decomposition of C.I. Basic Blue 9 dye. It was shown that the calcined materials exhibit both satisfactory adsorption and photocatalytic activity with respect to the decomposition of a selected model organic impurity. Total dye removal varied in the range of 50-70%, and was strongly dependent on process parameters such as quantity of photocatalyst, time of irradiation, and the addition of promoters.

  3. Rare earth impurities in high purity lanthanum oxide determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Desai, H.B.; Parthasarathy, R.; Gangadharan, S.

    1992-01-01

    Individual rare earth impurities in high purity La 2 O 3 (≥99.9%) have been determined by NAA after pre-separation of the matrix (La). The separation is carried out on an anion exchanger (Dowex 1x8) using different mixtures of methanol/nitric acid as eluants. The rare earth elements from Dy to Lu are eluted quantitatively using a 10% 1M HNO 3 - 90% methanol mixture, while the light rare earths from Ce to Gd are eluted quantitatively using a 10% 0.05M HNO 3 - 90% methanol mixture. La, which is retained on the column, is eluted using 0.1M HNO 3 . The recoveries of the various rare earth elements have been checked using radiotracers and also by spiking the sample with known amount of elements, and the recoveries are found to be quantitative. Results obtained on a typical high purity lanthanum oxide are reported here. (author) 5 refs.; 1 fig

  4. Transition metal-free oxidation of benzylic alcohols to carbonyl compounds by hydrogen peroxide in the presence of acidic silica gel

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2015-01-01

    Full Text Available Oxidation of alcohols to carbonyl compounds has become an important issue in the process industry as well as many other applications. In this method, various benzylic alcohols were successfully converted to corresponding aldehydes and ketones under transition metal-free condition using hydrogen peroxide in the presence of some amount of catalytic acidic silica gel. Silica gel is inexpensive and available. One of the most important features of this method is its short reaction time.

  5. Process for obtaining sintered conglomerates with a high density of rare earth oxides and actinides

    International Nuclear Information System (INIS)

    Pasto, A.E.

    1974-01-01

    The invention concerns a method to produce agglomerates of actinide and rare earth oxides possessing a cubic-monoclinic transformation in order to obtain high densities close to the theoretical density, and the articles produced by the method. The process is based on the use of a rare earth or actinide oxide, in particular Eu 2 O 3 , with a cubic-monoclinic phase transformation, the oxide being sintered by hot compression at a temperature 50 deg C to 100 deg C above the transformation temperature. The sintered agglomerates obtained can have a purity of at least 99.9% and a density of practically 100%. These agglomerates are suitable in particular for the formation of nuclear reactor control rods [fr

  6. Light olefins from synthesis gas using ruthenium on rare earth oxide catalysts

    International Nuclear Information System (INIS)

    Bruce, L.; Hardin, S.; Hoang, M.; Turney, T.

    1988-01-01

    The interaction of ruthenium carbonyl, Ru/sub 3/(CO)/sub 12/ with rare earth oxides of high surface area, >50m/sup 2/g/sup -1/, has been studied. [Ru/sub 3/(μ H)(CO)/sub 10/(μ-OM=)] is formed on holmia, but on lanthana only [Ru(CO)/sub 2/]/sub n/ species are observed. Reduction of the carbonyl ligands takes place at <573K to give catalysts for the hydrogenation of carbon monoxide with activity and selectivity dependent on the particular rare earth oxide and pretreatment. Over ceria, the product is up to 55 wt% C2-5 olefins. A similar selectivity is obtained over lanthana only after redispersion through a reduction-oxidation-reduction cycle

  7. Correlation of the oxidation state of cerium in sol-gel glasses as a function of thermal treatment via optical spectroscopy and XANES studies.

    Science.gov (United States)

    Assefa, Zerihun; Haire, R G; Caulder, D L; Shuh, D K

    2004-07-01

    Sol-gel glass matrices containing lanthanides have numerous technological applications and their formation involves several chemical facets. In the case of cerium, its ability to exist in two different oxidation states or in mixed valence state provides additional complexities for the sol-gel process. The oxidation state of cerium present during different facets of preparation of sol-gel glasses, and also as a function of the starting oxidation state of cerium added, were studied both by optical spectroscopy and X-ray absorption near-edge structures (XANES). The findings acquired by each approach were compared. The primary focus was on the redox chemistries associated with sample preparation, gelation, and thermal treatment. When Ce3+ is introduced into the starting sols, the trivalent state normally prevails in the wet and room temperature-dried gels. Heating in air at >100 degrees C can generate a light yellow coloration with partial oxidation to the tetravalent state. Above 200 degrees C and up to approximately 1000 degrees C, cerium is oxidized to its tetravalent state. In contrast, when tetravalent cerium is introduced into the sol, both the wet and room temperature-dried gels lose the yellow-brown color of the initial ceric ammonium nitrate solution. When the sol-gel is heated to 110 degrees C it turns yellowish as the cerium tends to be re-oxidized. The yellow color is believed to represent the effect of oxidation and oligomerization of the cerium-silanol units in the matrix. The luminescence properties are also affected by these changes, the details of which are reported herein.

  8. Oxides for sustainable photovoltaics with earth-abundant materials

    Science.gov (United States)

    Wagner, Alexander; Stahl, Mathieu; Ehrhardt, Nikolai; Fahl, Andreas; Ledig, Johannes; Waag, Andreas; Bakin, Andrey

    2014-03-01

    Energy conversion technologies are aiming to extremely high power capacities per year. Nontoxicity and abundance of the materials are the key requirements to a sustainable photovoltaic technology. Oxides are among the key materials to reach these goals. We investigate the influence of thin buffer layers on the performance of an ZnO:Al/buffer/Cu2O solar cells. Introduction of a thin ZnO or Al2O3 buffer layer, grown by thermal ALD, between ZnO:Al and Cu2O resulted in 45% increase of the solar cell efficiency. VPE growth of Cu2O employing elemental copper and pure oxygen as precursor materials is presented. The growth is performed on MgO substrates with the (001) orientation. On- and off- oriented substrates have been employed and the growth results are compared. XRD investigations show the growth of the (110) oriented Cu2O for all temperatures, whereas at a high substrate temperature additional (001) Cu2O growth occurs. An increase of the oxygen partial pressure leads to a more pronounced 2D growth mode, whereby pores between the islands still remain. The implementation of off-axis substrates with 3.5° and 5° does not lead to an improvement of the layer quality. The (110) orientation remains predominant, the grain size decreases and the FWHM of the (220) peak increases. From the AFM images it is concluded, that the (110) surface grows with a tilt angle to the substrate surface.

  9. Processing of non-oxide ceramics from sol-gel methods

    Science.gov (United States)

    Landingham, Richard; Reibold, Robert A.; Satcher, Joe

    2014-12-12

    A general procedure applied to a variety of sol-gel precursors and solvent systems for preparing and controlling homogeneous dispersions of very small particles within each other. Fine homogenous dispersions processed at elevated temperatures and controlled atmospheres make a ceramic powder to be consolidated into a component by standard commercial means: sinter, hot press, hot isostatic pressing (HIP), hot/cold extrusion, spark plasma sinter (SPS), etc.

  10. Colloidal sol-gel synthesis of oxides: application to the precursors of nuclear fuels

    International Nuclear Information System (INIS)

    Gossard, Alban

    2014-01-01

    One of the main objectives for the future nuclear fuel cycle is the recycling of the minor actinides. Different options are considered: their integration into a new fuel for a prospect of a closed fuel cycle or their transmutation in order to significantly decrease the long-term radiotoxicity of ultimate wastes. In both cases, the synthesis of new advanced materials integrating the actinides jointly is required. Sol-gel processes allow the organization of the material at the colloidal scale or the insertion of controlled porosity using 'templates'. Furthermore, the possibility to work in a 'wet environment' prevents the formation of pulverulent powders which are contaminant in the case of materials incorporating radioactive elements. The main purpose of this work is to demonstrate the adaptability of this route to the nuclear field. Firstly, a methodology of synthesis from a colloidal sol-gel route was set up on a non-radioactive zirconium-based system in order to characterize and understand of the different mechanisms of this synthesis. Then, studies on shaping, including insertion of porosity, were performed. Zirconia monoliths have been obtained thanks to a coupling between a colloidal sol-gel process and the formation of an emulsion stabilized by clusters of solid particles. Finally, a transposition of this work to an uranium-based system was introduced, pointing out different promising perspectives specially concerning the possibilities of shaping of the final material. (author) [fr

  11. Gelatin Template Synthesis of Aluminum Oxide and/or Silicon Oxide Containing Micro/Mesopores Using the Proteic Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Amanda Sayure Kasuya de Oliveira

    2017-01-01

    Full Text Available Aluminum oxide and/or silicon oxide-based supports were synthesized by proteic sol-gel method. The characterization was performed through the analysis of TG, XRD, FTIR, SEM, and N2 physisorption. The XRD diffractograms showed an amorphous material profile. TG results indicate the total liberation of the organic and inorganic material in the calcination temperature used, occurring in different mass loss range. This piece of information was reaffirmed by the FTIR spectra, which presented characteristic bands of gelatin structure before calcinations which disappear in the spectrum of the solid after calcinations, indicating the loss of organic matter from gelatin after heat treatment. The spectra exhibited M-O stretching vibration at low wavenumbers after calcinations related to metal oxides. The acquired images by SEM suggest the obtaining of a highly porous material with very different characteristics depending on the composition of the support. The N2 isotherms indicate the presence of a micro/mesoporous oxide with interesting textural properties, particularly for the supports containing aluminum and silicon oxide. The ethanol dehydration results showed greater selectivity to diethyl ether compared to ethylene. From the reaction data, the following order of acid strength was obtained: 2Si-Al > Si-2Al > Si-Al > Al, which is related to the Si-Al ratio.

  12. Data-driven exploration of copper mineralogy and its application to Earth's near-surface oxidation

    Science.gov (United States)

    Morrison, S. M.; Eleish, A.; Runyon, S.; Prabhu, A.; Fox, P. A.; Ralph, J.; Golden, J. J.; Downs, R. T.; Liu, C.; Meyer, M.; Hazen, R. M.

    2017-12-01

    Earth's atmospheric composition has changed radically throughout geologic history.1,2 The oxidation of our atmosphere, driven by biology, began with the Great Oxidation Event (GOE) 2.5 Ga and has heavily influenced Earth's near surface mineralogy. Therefore, temporal trends in mineral occurrence elucidate large and small scale geologic and biologic processes. Cu, and other first-row transition elements, are of particular interest due to their variation in valance state and sensitivity to ƒO2. Widespread formation of oxidized Cu mineral species (Cu2+) would not have been possible prior to the GOE and we have found that the proportion of oxidized Cu minerals increased steadily with the increase in atmospheric O2 on Earth's surface (see Fig. 1). To better characterize the changes in Cu mineralogy through time, we have employed advanced analytical and visualization methods. These techniques rely on large and growing mineral databases (e.g., rruff.info, mindat.org, earthchem.org, usgs.gov) and allow us to quantify and visualize multi-dimensional trends.5

  13. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, R.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P is less than 4 GPa, Fe3+/TotFe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3+/TotFe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after, but both resulted in a finer grained polyphase texture. Experiments are currently underway to test different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and this technique will be

  14. X-ray fluorescence analysis of high purity rare earth oxides for common trace rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Dixit, R.M.; Khanna, P.P.; Deshpande, S.S.; Machado, I.J.; Kapoor, S.K.

    1990-01-01

    Methods for the determination of individual trace common rare earth (RE) elements have been developed for fifteen RE oxide matrices viz. La 2 O 3 to Lu 2 O 3 and Y 2 O 3 . In general, for each matrix, two or three neighbouring elements on both sides of the matrix element are determined. The minimum determination limit (MDL) achieved is 0.002% for most of the elements. Special efforts were made to use a small amount of sample (as low as 400 mg) for the analysis by the use of double layer pellet technique and critical thickness studies. Practical experiences with 15 RE matrices, most of which are investigated for the first time, are discussed. Details of selection of instrumental parameters and analysis lines, precision and accuracy and preparation of samples and synthetic standards are given. Theoretical minimum detection limit (TMDL) for each analyte element is calculated in all the 15 matrices. (author). 50 tabs., 2 figs

  15. in vivo EFFECTS OF RARE-EARTH BASED NANOPARTICLES ON OXIDATIVE BALANCE IN RATS

    Directory of Open Access Journals (Sweden)

    V. K. Klochkov

    2016-12-01

    Full Text Available The purpose of the research was to find the influence of rare-earth based nanoparticles (CeO2, GdVO2: Eu3+ on the oxidative balance in rats. We analyzed biochemical markers of oxidative stress (lipid peroxidation level, nitric oxide metabolites, sulfhydryl groups content and enzyme activities (superoxide dismutase, catalase in tissues of rats. It has been found that administration of both types of the nanoparticles increased nitric oxide metabolites and products of lipid peroxidation in liver and spleen within 5 days. At injections of GdVO2: Eu3+ lipid peroxidation products, nitric oxide metabolites in serum at 5, 10 and 15 days of the experiment was also increased whereas the level of sulfhydryl groups decreased compared to the intact state and the control. In contrast, under the influence of nanoparticle CeO2 level diene conjugates were not significantly changed and the level of nitric oxide metabolites within 15 day even decreased. During this period, under the influence of both types of nanoparticles the activity of superoxide dismutase was increased, catalase activity was not changed. Oxidative stress coefficient showed the less pronounced CeO2 prooxidant effect (2.04 in comparison to GdVO2: Eu3+ (6.89. However, after-effect of both types of nanoparticles showed complete restoration of oxidative balance values.

  16. Interstitial pressure dependence of the thermal conductivity of some rare earth oxide powders

    International Nuclear Information System (INIS)

    Pradeep, P.

    1997-01-01

    Thermal transport properties of powdered materials depend upon interstitial gas pressure. The present study reports the experimental results for the effective thermal conductivity of three rare earth oxide powders viz. yttrium oxide, samarium oxide, and gadolinium oxide, at various interstitial pressures by using transient plane source (TPS) method. A theoretical model is also proposed for the interpretation of the variation of the effective thermal conductivity with interstitial gas pressure. Its validity is found to be good in low pressure range of 45 mm Hg to normal pressure when compared with the experimental results. Also an attempt has been made to calculate the variation of thermal conductivity with interstitial pressure in the high pressure range up to 2 kbar using the proposed model. (author)

  17. Synthesis of uranium and thorium dioxides by Complex Sol-Gel Processes (CSGP). Synthesis of uranium oxides by Complex Sol-Gel Processes (CSGP)

    International Nuclear Information System (INIS)

    Deptula, A.; Brykala, M.; Lada, W.; Olczak, T.; Wawszczak, D.; Chmielewski, A.G.; Modolo, G.; Daniels, H.

    2010-01-01

    In the Institute of Nuclear Chemistry and Technology (INCT), a new method of synthesis of uranium and thorium dioxides by original variant of sol-gel method - Complex Sol-Gel Process (CSGP), has been elaborated. The main modification step is the formation of nitrate-ascorbate sols from components alkalized by aqueous ammonia. Those sols were gelled into: - irregularly agglomerates by evaporation of water; - medium sized microspheres (diameter <150) by IChTJ variant of sol-gel processes by water extraction from drops of emulsion sols in 2-ethylhexanol-1 by this solvent. Uranium dioxide was obtained by a reduction of gels with hydrogen at temperatures >700 deg. C, while thorium dioxide by a simple calcination in the air atmosphere. (authors)

  18. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    International Nuclear Information System (INIS)

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-01-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH) 2 ). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum/carbon nanotube

  19. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maho, Anthony [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Fonds pour la Formation à la Recherche dans l' Industrie et dans l' Agriculture (FRIA), Rue d' Egmont 5, B-1000 Bruxelles (Belgium); Detriche, Simon; Delhalle, Joseph [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Zineb, E-mail: zineb.mekhalif@fundp.ac.be [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH){sub 2}). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum

  20. Template-directed formation of functional complex metal-oxide nanostructures by combination of sol-gel processing and spin coating

    International Nuclear Information System (INIS)

    Choi, Y.C.; Kim, J.; Bu, S.D.

    2006-01-01

    We report the template-based formation of functional complex metal-oxide nanostructures by a combination of sol-gel processing and spin coating. This method employs the spin-coating of a sol-gel solution into an anodic aluminum oxide membrane (SSAM). Various metal-oxide nanowires and nanotubes with a high aspect-ratio were prepared. The aspect-ratios of the PbO 2 nanowires and Pb(Zr 0.52 Ti 0.48 )O 3 nanowires were about 300 and 400, respectively, and their diameters were about 50 nm. The fabricated PbTiO 3 nanotubes have a relatively constant wall thickness of about 20 nm with an outer diameter of about 60 nm. The deposition time for all of the fabricated metal-oxide nanowires and nanotubes is less than 120 s, which is far shorter than those required in both the sol-gel dipping and sol-gel electrophoretic methods. These results indicate that the SSAM method can be a versatile pathway to prepare functional complex metal-oxide nanowires and nanotubes with a high aspect-ratio. The possible formation process for the one-dimensional nanostructures by SSAM is discussed

  1. The role of rare earth oxide nanoparticles in suppressing the photobleaching of fluorescent organic dyes

    Science.gov (United States)

    Guha, Anubhav; Basu, Anindita

    2013-03-01

    Organic dyes are widely used for both industrial as well as in scientific applications such as the fluorescent tagging of materials. However the process of photobleaching can rapidly degrade dye fluorescence rendering the material non-functional. Thus exploring novel methods for preventing photobleaching can have widespread benefits. In this work we show that the addition of minute quantities of rare earth (RE) oxide nanoparticles can significantly suppress the photobleaching of dyes. The fluorescence of Rhodamine and AlexaFluor dyes was measured as a function of time with and without the addition of CeO2 and La2O3 nanoparticle additives (two RE oxides that contain an oxygen vacancy based defect structure), as well as with FeO nanoparticles (which has an oxygen excess stoichiometry). We find that the rare earth oxides significantly prolonged the lifetimes of the dyes. The results allow us to develop a model based upon the presence of oxygen vacancies defects that allow the RE oxides to act as oxygen scavengers. This enables the RE oxide particles to effectively remove reactive oxygen free radicals generated in the dye solutions during the photoabsorption process. Current affiliation: Harvard University

  2. Study of NiO cathode modified by rare earth oxide additive for MCFC by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Huang Bo; Chen Gang; Li Fei; Yu Qingchun; Hu Keao

    2004-01-01

    The preparation and subsequent oxidation of nickel cathodes modified by impregnation with rare earth oxide were evaluated by surface and bulk analysis. The electrochemical behaviors of rare earth oxide impregnated nickel oxide cathodes were also evaluated in a molten 62 mol% Li 2 CO 3 +38 mol% K 2 CO 3 eutectic at 650 deg. C by electrochemical impedance spectroscopy (EIS) as a function of rare earth oxide content and immersion time. The rare earth oxide-impregnated nickel cathodes show almost the similar porosity, pore size, and morphology to the reference nickel cathode. The stability tests of rare earth oxide-impregnated nickel oxide cathodes show that the rare earth oxide additive can dramatically reduce the solubility of nickel oxide in a eutectic carbonate mixture under the standard cathode gas condition. The impedance response of all cathode materials at different immersion time is characterized by the presence of depressed semicircles in the high frequency range changing over into the lines with the angles of which observed with the real axis differing 45 deg. or 90 deg. in the low frequency range. The experimental Nyquist plots can be well analyzed theoretically with a modified model based on the well-known Randles-Ershler equivalent circuit model. In the new model, the double layer capacity (C d ) is replaced by the parallel combination of C d and b/ω; therefore, this circuit is modified to be the parallel combination of (C d ), b/ω, and the charge transfer resistance (R ct ) based on the Randles-Ershler equivalent circuit, to take into consideration both the non-uniformity of electric field at the electrode/electrolyte interface owing to the roughness of electrode surface, and the variety of relaxation times with adsorbed species on the electrode surface. The impedance spectra for all cathode materials show important variations during the 200 h of immersion. The incorporation of lithium in its structure and the low dissolution of nickel oxide and rare

  3. Recent developments in the MOCVD and ALD of rare earth oxides and silicates

    International Nuclear Information System (INIS)

    Jones, Anthony C.; Aspinall, Helen C.; Chalker, Paul R.; Potter, Richard J.; Kukli, Kaupo; Rahtu, Antti; Ritala, Mikko; Leskelae, Markku

    2005-01-01

    Lanthanide, or rare-earth oxides are currently being investigated as alternatives to SiO 2 as the dielectric insulating layer in sub-0.1 μm CMOS technology. Metalorganic chemical vapour deposition (MOCVD) and atomic layer deposition (ALD) are promising techniques for the deposition of these high-κ dielectric oxides and in this paper some of our recent research into the MOCVD and ALD of PrO x , La 2 O 3 , Gd 2 O 3 , Nd 2 O 3 and their related silicates are reviewed

  4. Titrimetric determination of Zr, Hf, Sn, Ta and rare earths in binary oxide systems

    International Nuclear Information System (INIS)

    Flyantikova, G.V.; Chekirda, T.N.; Lasovskaya, O.N.; Migun, N.P.

    1989-01-01

    Proximate method of titrimetric determination of oxides of Zr(4), Hf(4), Sn(4), Ta(5) and rare earths (La, Lu, Nd, Eu, Yb, Y) in binary systems (BS) with high accuracy was developed. A study was made on conditions of decomposition and dissolution of BS by means of their treatment by the mixture of solutions of concentrated sulfuric acid and ammonium sulfate during 2h boiling eith successive complexonometric determination of their components by direct EDTA titration in the presence of xylenol orange. The relative standard deviation when titrating 0.3-9.7mg oxides in BS does not exceed 0.02

  5. Giant magnetic anisotropy of rare-earth adatoms and dimers adsorbed by graphene oxide.

    Science.gov (United States)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Yong; Zhu, Yan; Shi, Li-Bin

    2017-05-24

    Nowadays, transition-metal adatoms and dimers with giant magnetic anisotropy have attracted much attention due to their potential applications in data storage, spintronics and quantum computations. Using density-functional calculations, we investigated the magnetic anisotropy of the rare-earth adatoms and dimers adsorbed by graphene oxide. Our calculations reveal that the adatoms of Tm, Er and Sm possess giant magnetic anisotropy, typically larger than 40 meV. When the dimers of (Tm,Er,Sm)-Ir are adsorbed onto graphene oxide, the magnetic anisotropy even exceeds 200 meV. The magnetic anisotropy can be tuned by the external electric field as well as the environment.

  6. Copper oxide thin films anchored on glass substrate by sol gel spin coating technique

    Science.gov (United States)

    Krishnaprabha, M.; Venu, M. Parvathy; Pattabi, Manjunatha

    2018-05-01

    Owing to the excellent optical, thermal, electrical and photocatalytic properties, copper oxide nanoparticles/films have found applications in optoelectronic devices like solar/photovoltaic cells, lithium ion batteries, gas sensors, catalysts, magnetic storage media etc. Copper oxide is a p-type semiconductor material having a band gap energy varying from 1.2 eV-2.1 eV. Syzygium Samarangense fruit extract was used as reducing agent to synthesize copper oxide nanostructures at room temperature from 10 mM copper sulphate pentahydrate solution. The synthesized nanostructures are deposited onto glass substrate by spin coating followed by annealing the film at 200 °C. Both the copper oxide colloid and films are characterized using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques. Presence of 2 peaks at 500 nm and a broad peak centered around 800 nm in the UV-Vis absorbance spectra of copper oxide colloid/films is indicative of the formation of anisotropic copper oxide nanostructures is confirmed by the FESEM images which showed the presence of triangular shaped and rod shaped particles. The rod shaped particles inside island like structures were found in unannealed films whereas the annealed films contained different shaped particles with reduced sizes. The elemental analysis using EDS spectra of copper oxide nanoparticles/films showed the presence of both copper and oxygen. Electrical properties of copper oxide nanoparticles are affected due to quantum size effect. The electrical studies carried out on both unannealed and annealed copper oxide films revealed an increase in resistivity with annealing of the films.

  7. Composite coating prepared by micro-arc oxidation followed by sol-gel process and in vitro degradation properties

    International Nuclear Information System (INIS)

    Zhang Yi; Bai Kuifeng; Fu Zhenya; Zhang Caili; Zhou Huan; Wang Liguo; Zhu Shijie; Guan Shaokang; Li Dongsheng; Hu Junhua

    2012-01-01

    A Mg phosphate coating was prepared on home-developed Mg-Zn-Ca alloy to improve its anticorrosion performance in simulated body fluid (SBF, Kokubo solution). The coating was prepared by micro-arc oxidation (MAO) method at the working voltage of 120-140 V. Evident improvement of anticorrosion was obtained even through the surface was porous. To further diminish the contact with SBF, a TiO 2 layer was coated on the porous MAO layer by sol-gel dip coating followed by an annealing treatment. The coatings were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The electrochemical performance of the MAO and TiO 2 /MAO coated alloys was evaluated by anodic polarization measurements. The pores on Mg phosphate layer provided accommodation sites for the subsequent TiO 2 sol-gel coating which sealed the pores and hence significantly enhanced the anticorrosion while single MAO coating only improve anticorrosion within a limited range. The present result indicates that fabrication of composite coatings is a significant strategy to improve the corrosion resistance of Mg-Zn-Ca alloy and other alloys, thus enhancing the potential of using Mg alloys as bio-implants.

  8. Electroluminescence of zinc oxide thin-films prepared via polymeric precursor and via sol-gel methods

    International Nuclear Information System (INIS)

    Lima, S.A.M.; Cremona, M.; Davolos, M.R.; Legnani, C.; Quirino, W.G.

    2007-01-01

    Zinc oxide (ZnO) is an electroluminescent (EL) material that can emit light in different regions of electromagnetic spectrum when electrically excited. Since ZnO is chemically stable, inexpensive and environmentally friendly material, its EL property can be useful to construct solid-state lamps for illumination or as UV emitter. We present here two wet chemical methods to prepare ZnO thin-films: the Pechini method and the sol-gel method, with both methods resulting in crystalline and transparent films with transmittance >85% at 550 nm. These films were used to make thin-film electroluminescent devices (TFELD) using two different insulator layers: lithium fluoride (LiF) or silica (SiO 2 ). All the devices exhibit at least two wide emission bands in the visible range centered at 420 nm and at 380 nm attributed to the electronic defects in the ZnO optical band gap. Besides these two bands, the device using SiO 2 and ZnO film obtained via sol-gel exhibits an additional band in the UV range centered at 350 nm which can be attributed to excitonic emission. These emission bands of ZnO can transfer their energy when a proper dopant is present. For the devices produced the voltage-current characteristics were measured in a specific range of applied voltage

  9. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Brito, Hermi F.

    2011-01-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  10. Quantum dot based on tin/titanium mixed oxide doped with europium synthesized by protein sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Paula P.; Felinto, Maria Claudia F.C., E-mail: paulapaganini@usp.b, E-mail: mfelinto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (IQ/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f

    2011-07-01

    Special luminescence biomarkers have been developed to find more sensitive fluoroimmunoassay methods. A new generation of these biomarkers is the semiconductors nanocrystals, known as quantum dots, doped with lanthanides. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. The protein sol-gel is a modification of conventional method, in which the coconut water replacing the alkoxides normally used. The advantage is that, the proteins present in coconut water bind chemically with metal salts forming a polymer chain. This work presents nanoparticles based on tin/titanium mixed oxide doped with 3% of europium synthesized by protein sol-gel method. The nanoparticles were burned at 300 deg C, 500 deg C, 800 deg C and 1100 deg C. The samples were analyzed and characterized by thermal analysis, X-ray powder diffraction (XRD), infrared spectroscopy (IR) and scanning electron microscopy (SEM). The synthesis was effective and the nanoparticles showed nanometric size and structural differences with the annealing. To be used in the fluoroimmunoassays tests, these particles need to be functionalized before be connect with biological molecules and after this process, these nanoparticles going to be submitted at gamma radiation for sterilization. (author)

  11. Solid state chemistry of rare earth oxides. Final report, September 1, 1950--July 31, 1977

    International Nuclear Information System (INIS)

    Eyring, L.

    1977-07-01

    Work under Contract E(11-1)-1109 and its antecedents has been primarily for the purpose of obtaining detailed thermodynamic, kinetic and structural information on the complex rare earth oxides of praseodymium and terbium. These systems exhibit homologous series of ordered phases, order-disorder transformations, wide-range nonstoichiometric phases, chemical hysteresis in two-phase regions and many other solid state reaction phenomena. Fluorite-related materials of importance to ERDA occur as nuclear fuels, radiation power sources, insulators and solid electrolytes. The rare earth oxides serve directly as model systems for such similar materials and, in a more general sense, they serve as models of solids in general since they exhibit nearly the full range of solid state properties

  12. Influence of Rare Earth Doping on the Structural and Catalytic Properties of Nanostructured Tin Oxide

    Directory of Open Access Journals (Sweden)

    Maciel Adeilton

    2008-01-01

    Full Text Available AbstractNanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.

  13. Microstructure-property relationships of rare-earth--zinc-oxide varistors

    International Nuclear Information System (INIS)

    Williams, P.; Krivanek, O.L.; Thomas, G.; Yodogawa, M.

    1980-01-01

    The microstructure and properties of ZnO varistors containing Ba, Co, and rare-earth--metal oxides, which give values of α [α=d(log I)/d(log V)] as high as 29, are examined. Mean ZnO grain size is 11 μm, and the grains are uniformly doped with Co. The barium and rare earth metals concentrate into 1.5-μm-wide particles embedded in a matrix of ZnO grains. Within the grains and at grain boundaries, the barium and rare-earth--metal concentration is below the detection limit of the energy-dispersive spectrometer technique (about 0.5%). No intergranular films, amorphous or crystalline, are detected, to within 10 A resolution. These results are shown to be consistent with the grain boundary charge depletion model for the voltage barrier formation and breakdown

  14. Sol-gel derived zinc oxide films alloyed with cobalt and aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021 (India); Mehra, R.M., E-mail: rammehra2003@yahoo.co [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021 (India)

    2010-05-03

    ZnO films codoped with 5 at.% Co and 1 at.% Al were prepared by sol-gel technique on corning glass and silicon substrates with precursor sols of different pH values. The pH was varied from 5.4 to 11 by adding varying amounts of monoethanolamine to the sol. Since pH plays an important role in controlling the properties of films, we discuss in detail the effect of pH value on the structural, morphological and optical properties of the grown films. X-ray diffraction and atomic force microscopy images reveal that the size of crystallites increases with pH of the sol. The variation of pH in the reaction system influences the density of homogeneous nucleation and the crystal growth along the c-axis. High quality Co and Al codoped ZnO films annealed at 600 {sup o}C have been obtained using a sol with pH = 9. These sol-gel derived films find their suitability to be used as dilute magnetic semiconductors.

  15. Sol-gel derived zinc oxide films alloyed with cobalt and aluminium

    International Nuclear Information System (INIS)

    Sharma, Mamta; Mehra, R.M.

    2010-01-01

    ZnO films codoped with 5 at.% Co and 1 at.% Al were prepared by sol-gel technique on corning glass and silicon substrates with precursor sols of different pH values. The pH was varied from 5.4 to 11 by adding varying amounts of monoethanolamine to the sol. Since pH plays an important role in controlling the properties of films, we discuss in detail the effect of pH value on the structural, morphological and optical properties of the grown films. X-ray diffraction and atomic force microscopy images reveal that the size of crystallites increases with pH of the sol. The variation of pH in the reaction system influences the density of homogeneous nucleation and the crystal growth along the c-axis. High quality Co and Al codoped ZnO films annealed at 600 o C have been obtained using a sol with pH = 9. These sol-gel derived films find their suitability to be used as dilute magnetic semiconductors.

  16. Rheological Enhancement of Pork Myofibrillar Protein-Lipid Emulsion Composite Gels via Glucose Oxidase Oxidation/Transglutaminase Cross-Linking Pathway.

    Science.gov (United States)

    Wang, Xu; Xiong, Youling L; Sato, Hiroaki

    2017-09-27

    Porcine myofibrillar protein (MP) was modified with glucose oxidase (GluOx)-iron that produces hydroxyl radicals then subjected to microbial transglutaminase (TGase) cross-linking in 0.6 M NaCl at 4 °C. The resulting aggregation and gel formation of MP were examined. The GluOx-mediated oxidation promoted the formation of both soluble and insoluble protein aggregates via disulfide bonds and occlusions of hydrophobic groups. The subsequent TGase treatment converted protein aggregates into highly cross-linked polymers. MP-lipid emulsion composite gels formed with such polymers exhibited markedly enhanced gelling capacity: up to 4.4-fold increases in gel firmness and 3.5-fold increases in gel elasticity over nontreated protein. Microstructural examination showed small oil droplets dispersed in a densely packed gel matrix when MP was oxidatively modified, and the TGase treatment further contributed to such packing. The enzymatic GluOx oxidation/TGase treatment shows promise to improve the textural properties of emulsified meat products.

  17. A process for the recovery of mixed rare-earth oxides from monazite

    International Nuclear Information System (INIS)

    Te Riele, W.A.M.

    1982-01-01

    A simple process has been demonstrated in the laboratory for the production of mixed rare-earth oxides from monazite concentrate. The product is substantially free from radioactive materials and has a purity of more than 98 per cent. The process involves leaching, filtration, ion exchange by use of a cation resin, precipitation, and calcination. The design, materials, consumption and cost of chemicals, and labor requirements are discussed, and a recommendation is made for pilot-plant tests

  18. Dependence of electrical and optical properties of sol-gel prepared undoped cadmium oxide thin films on annealing temperature

    International Nuclear Information System (INIS)

    Santos-Cruz, J.; Torres-Delgado, G.; Castanedo-Perez, R.; Jimenez-Sandoval, S.; Jimenez-Sandoval, O.; Zuniga-Romero, C.I.; Marquez Marin, J.; Zelaya-Angel, O.

    2005-01-01

    The effect of the annealing temperature (T a ) on the optical, electrical and structural properties of the undoped cadmium oxide (CdO) thin films obtained by the sol-gel method, using a simple precursor solution, was studied. All the CdO films annealed in the range from 200 to 450 deg. C are polycrystalline with (111) preferential orientation and present high optical transmission > 85% for wavelengths above 500 nm. The resistivity decreases as T a increases until it reaches a value of 6 x 10 -4 Ω cm for T a 350 deg. C. For higher temperatures the resistivity experiences a slight increase. Images obtained by atomic force microscopy show an evident incremental change of the aggregate size (clusters of grains) as T a increases. The grain size also increases when T a increases as observed in data calculated from X-ray measurements

  19. Trimetallic oxide nanocomposites of transition metals titanium and vanadium by sol-gel technique: synthesis, characterization and electronic properties

    Science.gov (United States)

    Kumar, Amit; Mishra, Neeraj Kumar; Sachan, Komal; Ali, Md Asif; Soaham Gupta, Sachchidanand; Singh, Rajeev

    2018-04-01

    Novel titanium and vanadium based trimetallic oxide nanocomposites (TMONCs) have been synthesized using metal salts of titanium-vanadium along with three others metals viz. tin, aluminium and zinc as precursors by the sol-gel method. Aqueous ammonia and hydrazine hydrate were used as the reducing agents. The preparations of nanocomposites were monitored by observing the visual changes during each step of synthesis. The synthesized TMONCs were characterized using UV–vis, SEM, EDX, TEM and DLS. Band gap of the synthesized TMONCs ranges from 3–4.5 eV determined using tauc plot. FTIR study revealed the molecular stretching and bending peaks of corresponding M–O/M–O–M bonds thus confirming their formation. Molecular composition and particle size were determined using EDX and DLS respectively. Molecular shape, size and surface morphology have been examined by SEM and TEM.

  20. Surface characterization of sol–gel derived indium tin oxide films on ...

    Indian Academy of Sciences (India)

    Unknown

    , India ... 1. Introduction. Indium tin oxide (ITO) coating on glass is an important item in the field ..... In addition, contamination of carbon from environment cannot be ruled ..... processing of ceramics, glasses and composites (eds) L L. Hench and ...

  1. Effects of concentration of reduced graphene oxide on properties of sol–gel prepared Al-doped zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ching-Tian; Wang, Fang-Hsing, E-mail: fansen@dragon.nchu.edu.tw; Chen, Wei-Chun

    2016-04-30

    Reduced-graphene-oxide-incorporated aluminum-doped zinc oxide (AZO:rGO) composite thin films were synthesized on glass substrates by using the sol–gel method. The effect of the rGO concentration (0–3 wt%) on structural, electrical, and optical properties of the composite film was investigated by X-ray diffraction, scanning electron microscopy, atomic force microscopy, Hall-effect measurement, and ultraviolet–visible spectrometry. All of the composite films showed a typical hexagonal wurtzite structure, and the films incorporated with 1 wt% rGO showed the highest (0 0 2) peak intensity. The sheet resistance of the films was effectively reduced by a factor of more than two as the rGO ratio increased from 0 to 1 wt%. However, the sheet resistance increased with a further increase in the rGO ratio. The optical transmittance of the composite film monotonically decreased with increasing the rGO ratio from 0 to 3 wt%. The average optical transmittance (400–700 nm) of the AZO:rGO thin film within 1 wt% rGO was above 81%. - Highlights: • Reduced-graphene-oxide-doped ZnO:Al composite films are synthesized by sol–gel. • All AZO:rGO thin films show a typical hexagonal wurtzite structure. • Sheet resistance of AZO:rGO(1 wt%) film decreases by a factor of more than two. • The average visible transmittance of the AZO:rGO(1 wt%) film was 81%.

  2. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  3. Synergetic effect of alkaline earth metal oxides and iron oxides on the degradation of hexachlorobenzene and its degradation pathway.

    Science.gov (United States)

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Shi, Yali; Zhang, Aiqian; Zhang, Lixia; Liu, Wenbin; Gao, Lirong; Zheng, Minghui

    2013-01-01

    The degradation of hexachlorobenzene (HCB) was carried out over physical mixtures of a series of alkaline earth metal oxides (MO: M=Mg, Ca, Sr, Ba) and iron oxides with different crystal types (Fe(x)O(y):Fe(2)O(3) or Fe(3)O(4)) at 300°C. These physical mixtures all showed a synergetic effect toward the degradation of HCB. A range of degradation products were identified by various methods, including tri- to penta-chlorobenzenes by gas chromatography/mass spectrometry (GC-MS), tri- to penta-chlorophenols, tetrachlorocatechol (TCC) and tetrachlorohydroquinone (TCHQ) by GC-MS after derivatization, and formic and acetic acids by ion chromatography. Two degradation pathways, hydrodechlorination and oxidative degradation, appear to occur competitively. However, more sequential chlorinated benzene and phenol congeners were formed over mixed MO/Fe(3)O(4) than over mixed MO/Fe(2)O(3) under the same conditions. The oxidative reaction dominated over mixed MO/Fe(2)O(3) and was promoted as the major reaction by the synergetic effect, while both the oxidative and hydrodechlorination reactions were important over mixed MO/Fe(3)O(4), and both pathways are remarkably promoted by the synergetic effect. The enhanced hydrodechlorination may be attributed to free electrons generated by the transformation of Fe(3)O(4) into Fe(2)O(3), and hydrogen provided by water adsorbed on the MO. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  5. Structural properties and gas sensing behavior of sol-gel grown nanostructured zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rajyaguru, Bhargav; Gadani, Keval; Kansara, S. B.; Pandya, D. D.; Shah, N. A.; Solanki, P. S., E-mail: piyush.physics@gmail.com [Department of Physics, Saurashtra University, Rajkot – 360 005 (India); Rathod, K. N.; Solanki, Sapana [Department of Physics, Saurashtra University, Rajkot – 360 005 (India); V.V.P. Engineering College, Gujarat Technological University, Rajkot – 360 005 (India)

    2016-05-06

    In this communication, we report the results of the studies on structural properties and gas sensing behavior of nanostructured ZnO grown using acetone precursor based modified sol-gel technique. Final product of ZnO was sintered at different temperatures to vary the crystallite size while their structural properties have been studied using X-ray diffraction (XRD) measurement performed at room temperature. XRD results suggest the single phasic nature of all the samples and crystallite size increases from 11.53 to 20.96 nm with increase in sintering temperature. Gas sensing behavior has been studied for acetone gas which indicates that lower sintered samples are more capable to sense the acetone gas and related mechanism has been discussed in the light of crystallite size, crystal boundary density, defect mechanism and possible chemical reaction between gas traces and various oxygen species.

  6. Solar absorption and thermal emission properties of multiwall carbon nanotube/nickel oxide nanocomposite thin films synthesized by sol-gel process

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2012-05-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs)/nickel oxide (NiO) nanocomposites were successfully prepared by a sol–gel process and coated on an aluminium substrate. The MWCNTs were chemically functionalized and then added into NiO alcogels, and magnetic...

  7. Investigation of catalytic oxidation of diamond by water vapor and carbon dioxide in the presence of alkali melts of some rare earth oxides

    International Nuclear Information System (INIS)

    Kulakova, I.I.; Rudenko, A.P.; Sulejmenova, A.S.; Tolstopyatova, A.A.

    1978-01-01

    The results of an investigation of the catalytic oxydation of diamond by carbon dioxide and water vapors at 906 deg C in the presence of melts of some rare earth oxides in potassium hydroxide are given. The ion La 3+ was shown to possess the most catalytic activity. The earlier proposed mechanisms of the diamond oxidation by CO 2 and H 2 O were corroborated. The ions of rare earth elements were found to accelerate the different stages of the process

  8. Structure changes in the sol-gel systems of hydrated oxides

    International Nuclear Information System (INIS)

    Gaponov, Y.A.; Karakchiev, L.G.; Lyakhov, N.Z.; Tolochko, B.P.; Ito, K.; Amemiya, Y.

    1998-01-01

    Sols of hydrated aluminium oxide, hydrated zirconium oxide and their mixtures were investigated during the xerogel-amorphous-product-crystalline-product transition by SAXS using synchrotron radiation. In the different temperature regions certain changes in structure and morphology were observed. Some correlation between the characteristics of the initial sols and their mixtures (the size and shape of the pores) was observed. In the temperature region 298-1173 K the characteristics of the mixed sol are defined by the characteristics of the initial sols

  9. Oxidation performance of a Fe-13Cr alloy with additions of rare earth elements

    International Nuclear Information System (INIS)

    Martinez-Villafane, A.; Chacon-Nava, J.G.; Gaona-Tiburcio, C.; Almeraya-Calderon, F.; Dominguez-Patino, G.; Gonzalez-Rodriguez, J.G.

    2003-01-01

    The influence of rare earth elements (REE's) i.e. Neodymium (Nd) and Praseodymium (Pr) on the oxidation behavior of a Fe-13Cr alloy has been studied, and its role on the oxidation rate and oxide morphology and formation is discussed. Specimens were isothermally oxidized in oxygen at 800 deg. C for 24 h. It was found that a small addition (≤0.03 wt.%) of either Nd or Pr, reduced the oxidation rate of the Fe-13Cr base alloy. Moreover, the simultaneous addition of both elements to the alloy produced a dramatic reduction in the oxidation kinetics. Analysis by scanning electronic microscope (SEM) revealed that the morphology of oxides formed on Fe-13Cr specimens with and without REE's specimens was very different. In fact, a fine-grained oxide morphology was observed for alloys with REE's addition. For these alloys only, chromium enrichment at the metal/scale interface was observed. From transmission electronic microscope (TEM) analysis, it was found the following: at the early stages of oxide formation, after 0.25 h, Cr 2 O 3 , Fe 3 O 4 , α-Fe 2 O 3 and γ-Fe 2 O 3 were formed; at 6 h, Cr 2 O 3 , FeCr 2 O 4 and α-Fe 2 O 3 were identified and, for exposure times greater than 6 h, Cr 2 O 3 , α-Fe 2 O 3 and a spinel which was presumably transformed into a solid solution (Fe 2 O 3 ·Cr 2 O 3 ) were found

  10. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  11. Compacting and crystallisation of transparent conductive oxidic sol-gel layers as illustrated by the example of zinc oxide; Verdichtung und Kristallisation von transparenten leitfaehigen oxidischen Sol-gel-Schichten am Beispiel des Zinkoxids

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, T.

    2003-07-01

    It is shown that doped zinc oxide films on glass can be obtained by a low-cost sol-gel dip coating process. The lowest possible specific resistance is 1.1x10{sup -3}ohmcm for multiple layers of aluminium-doped zinc oxide. It was shown that for thick layers the crystallite size depends on the doping of the sol, the temperature and the sintering time while the film thickness is largely defined by the concentration (viscosity) of the solution and the drawing time. On this basis, a model of the observed structures was obtained which is also applicable to other sol-gel layers. Using the process parameter p of the equation ESD = p x IKG, the morphology of multiple layers can thus be defined. The structural change from a grain structure to a layered structure was at p = 2.4 to 3 and the transition from layer structure to columnar structure at p = 1. A comparison with spray pyrolysis showed that the suggested model is also suitable as a prototype model for film growth and may possibly applied to physical coating technologies as well. The observed morphology affects the electric and optical properties of the layers, as a result of grain boundaries and compacting. With increasing compacting, the specific resistance of the layer will get lower. It was demonstrated that the coating temperature can be reduced from 550 deg C to 450 deg C without impairing conductivity by reducing the thickness of individual films. Further, possibilities were shown of improving film characteristics or reducing process time by means of other sinter technologies, e.g. pyrolytic gas flame sintering and laser sintering. The biggest problem of sol-gel coating was the segregation of dopands. For all systems, it is assumed that the dopands not converted into (optical) charge carriers will segregate on the surfaces of the crystallites and may even agglomerate into X-ray amorphous oxidic phases if dopand concentrations are high enough. In any case, potential barriers will result which slow down current

  12. Fabrication of ceramic oxide-coated SWNT composites by sol–gel process with a polymer glue

    International Nuclear Information System (INIS)

    Zhang Cheng; Gao Lei; Chen Yongming

    2011-01-01

    The functional copolymer bearing alkoxysilyl and pyrene groups, poly[3-(triethoxysilyl)propyl methacrylate]-co-[(1-pyrene-methyl) methacrylate] (TEPM 13 -co-PyMMA 3 ), was synthesized via atom transfer radical polymerization. Attributing the π–π interaction of pyrene units with the walls of single-walled carbon nanotubes (SWNTs), this polymer could disperse and exfoliate SWNTs in different solvents through physical interaction as demonstrated by TEM, UV/Vis absorption, and FT-IR analysis. The alkoxysilyl groups functionalized SWNTs were reacted with different inorganic precursors via sol–gel reaction, and, as a results, silica, titania, and alumina were coated onto the surface of SWNTs, respectively via copolymers as a molecular glue. The nanocomposites of ceramic oxides/SWNTs were characterized by SEM analysis. Dependent upon the feed, the thickness of inorganic coating can be tuned easily. This study supplies a facile and general way to coat SWNTs with ceramic oxides without deteriorating the properties of pristine SWNTs.

  13. Preparation of titanium oxide and metal titanates as powders, thin films, and microspheres by complex sol-gel process

    International Nuclear Information System (INIS)

    Deptula, A.; Olczak, T.; Lada, W.; Chmielewski, A.G.; Jakubaszek, U.; Sartowska, B.; Goretta, K.C.; Alvani, C.; Casadio, S.; Contini, V.

    2006-01-01

    Titanium oxide, for many years an important pigment, has recently been applied widely as a photocatalyst or as supports for metallic catalysts, gas sensors, photovoltaic solar cells, and water and air purification devices. Titanium oxide (TiO 2 ) and titanates based on Ba, Sr and Ca were prepared from commercial solutions of TiCl 4 and HNO 3 . The main preparation steps for the sols consisted of elimination of Cl - by distillation with HNO 3 and addition of metal hydroxides for the titanates. Resulting sols were gelled and used to: (a) prepare irregularly shaped powders by evaporation; (b) produce by a dipping technique thin films on glass, Ag or Ti supports; (c) produce spherical powders (diameters <100 μm) by solvent extraction. Results of thermal and X-ray-diffraction analyses indicated that the temperatures required to form the various compounds were lower than those necessary to form the compounds by conventional solid-state reactions and comparable to those required with use of organometallic based sol-gel methods. Temperatures of formation could be further reduced by addition of ascorbic acid (ASC) to the sols

  14. Magnetic iron oxide nanoparticles (MIONs) cross-linked natural polymer-based hybrid gel beads: Controlled nano anti-TB drug delivery application.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Vijayakumar, Vijayaparthasarathi; Dhaveethu Raja, Jeyaraj; Annaraj, Jamespandi; Sakthipandi, Kathiresan; Rajesh, Jegathalaprathaban

    2018-04-01

    The nanosized rifampicin (RIF) has been prepared to increase the solubility in aqueous solution, which leads to remarkable enhancement of its bioavailability and their convenient delivery system studied by newly produced nontoxic, biodegradable magnetic iron oxide nanoparticles (MIONs) cross-linked polyethylene glycol hybrid chitosan (mCS-PEG) gel beads. The functionalization of both nano RIF and mCS-PEG gel beads were studied using various spectroscopic and microscopic techniques. The size of prepared nano RIF was found to be 70.20 ± 3.50 nm. The mechanical stability and swelling ratio of the magnetic gel beads increased by the addition of PEG with a maximum swelling ratio of 38.67 ± 0.29 g/g. Interestingly, this magnetic gel bead has dual responsive assets in the nano drug delivery application (pH and the magnetic field). As we expected, magnetic gel beads show higher nano drug releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 71.00 ± 0.87%. This efficacy may also be tuned by altering the external magnetic field and the weight percentage (wt%) of PEG. These results suggest that such a dual responsive magnetic gel beads can be used as a potential system in the nano drug delivery applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1039-1050, 2018. © 2017 Wiley Periodicals, Inc.

  15. Physicochemical, nutritional, and sensory analyses of a nitrate-enriched beetroot gel and its effects on plasmatic nitric oxide and blood pressure

    Directory of Open Access Journals (Sweden)

    Davi Vieira Teixeira da Silva

    2016-01-01

    Full Text Available Background: Beetroot (Beta vulgaris L. is a dietary source of natural antioxidants and inorganic nitrate (NO3–. It is well known that the content of antioxidant compounds and inorganic nitrate in beetroot can reduce blood pressure (BP and the risk of adverse cardiovascular effects. Objective: The aim of the present study was to formulate a beetroot gel to supplement dietary nitrate and antioxidant compounds able to cause beneficial health effects following acute administration. Design and subjects: A beetroot juice produced from Beta vulgaris L., without any chemical additives, was used. The juice was evaluated by physicochemical and microbiological parameters. The sample was tested in five healthy subjects (four males and one female, ingesting 100 g of beetroot gel. Results: The formulated gel was nitrate enriched and contained carbohydrates, fibers, saponins, and phenolic compounds. The formulated gels possess high total antioxidant activity and showed adequate rheological properties, such as high viscosity and pleasant texture. The consumer acceptance test for flavor, texture, and overall acceptability of beetroot gel flavorized with synthetic orange flavor had a sensory quality score >6.6. The effects of acute inorganic nitrate supplementation on nitric oxide production and BP of five healthy subjects were evaluated. The consumption of beetroot gel increased plasma nitrite threefold after 60 min of ingestion and decreased systolic BP (−6.2 mm Hg, diastolic BP (−5.2 mm Hg, and heart rate (−7 bpm.

  16. Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, Syed Mohd. Adnan, E-mail: adiaks2004@yahoo.co.in [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, Perak (Malaysia); Irshad, Kashif, E-mail: alig.kashif@gmail.com [Department of Mechanical Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar, Perak (Malaysia); Soleimani, Hassan, E-mail: hassan.soleimani@petronas.com.my, E-mail: noorhana-yahya@petronas.com.my; Yahya, Noorhana, E-mail: hassan.soleimani@petronas.com.my, E-mail: noorhana-yahya@petronas.com.my

    2014-10-24

    Nanosized Cr-doped ZnO nano particles were synthesized by facile sol-gel auto combustion method. The structural and optical properties of Cr-doped ZnO nanoparticles have been investigated by XRD and UV-Vis spectroscopy at room temperature for 0% to 8% concentration. X-ray diffraction analysis reveals that the Cr-doped ZnO crystallizes in a single phase polycrystalline nature with wurtzite lattice. With every % of doping, the peaks are shifting scarcely and doping of Cr is possible up to 7%. After that, the last peak vanishes, that signifies its structure is transmuted from 8% doping. The average crystallite size decreases with increase in Cr concentration (i.e. 28.9 nm for 0% to 25.8 nm for 8%). The UV-Vis spectra of the nanoparticles betoken an incrementation in the band gap energy from 3.401, 3.415, 3.431, 3.437,3.453, 3.514,3.521, 3.530 and 3.538 eV respectively, for 0,1, 2, 3, 4, 5, 6, 7 and 8 % doping concentration.

  17. Structural and optical properties of chromium doped zinc oxide nanoparticles synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Naqvi, Syed Mohd. Adnan; Irshad, Kashif; Soleimani, Hassan; Yahya, Noorhana

    2014-01-01

    Nanosized Cr-doped ZnO nano particles were synthesized by facile sol-gel auto combustion method. The structural and optical properties of Cr-doped ZnO nanoparticles have been investigated by XRD and UV-Vis spectroscopy at room temperature for 0% to 8% concentration. X-ray diffraction analysis reveals that the Cr-doped ZnO crystallizes in a single phase polycrystalline nature with wurtzite lattice. With every % of doping, the peaks are shifting scarcely and doping of Cr is possible up to 7%. After that, the last peak vanishes, that signifies its structure is transmuted from 8% doping. The average crystallite size decreases with increase in Cr concentration (i.e. 28.9 nm for 0% to 25.8 nm for 8%). The UV-Vis spectra of the nanoparticles betoken an incrementation in the band gap energy from 3.401, 3.415, 3.431, 3.437,3.453, 3.514,3.521, 3.530 and 3.538 eV respectively, for 0,1, 2, 3, 4, 5, 6, 7 and 8 % doping concentration

  18. Nanostructured aluminium oxide powders obtained by aspartic acid-nitrate gel-combustion routes

    Energy Technology Data Exchange (ETDEWEB)

    Gardey Merino, Maria Celeste, E-mail: mcgardey@frm.utn.edu.a [Laboratorio de Investigaciones y Servicios Ambientales Mendoza (LISAMEN) - CCT - CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martin, (M5502IRA) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Grupo CLIOPE, Universidad Tecnologica Nacional - Facultad Regional Mendoza, Rodriguez 273, (M5502AJE) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Lascalea, Gustavo E. [Laboratorio de Investigaciones y Servicios Ambientales Mendoza (LISAMEN) - CCT - CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martin, (M5502IRA) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Sanchez, Laura M. [CINSO (Centro de Investigaciones en Solidos), CITEFA - CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Prov. de Buenos Aires (Argentina); Vazquez, Patricia G. [Centro de Investigacion y Desarrollo en Ciencias Aplicadas ' Dr. Jorge J. Ronco' (CINDECA), CONICET, Universidad Nacional de La Plata, Calle 47 nro. 257, (B1900AJK) La Plata, Prov. de Buenos Aires (Argentina); Cabanillas, Edgardo D. [CONICET and Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Gral. Paz 1499, (1650) San Martin, Prov. de Buenos Aires (Argentina); Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA - CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Prov. de Buenos Aires (Argentina)

    2010-04-16

    In this work, two new gel-combustion routes for the synthesis of Al{sub 2}O{sub 3} nanopowders with aspartic acid as fuel are presented. The first route is a conventional stoichiometric process, while the second one is a non-stoichiometric, pH-controlled process. These routes were compared with similar synthesis procedures using glycine as fuel, which are well-known in the literature. The samples were calcined in air at different temperatures, in a range of 600-1200 {sup o}C. They were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and BET specific surface area. Different phases were obtained depending on the calcination temperature: amorphous, {gamma} (metastable) or {alpha} (stable). The amorphous-to-{gamma} transition was found for calcination temperatures in the range of 700-900 {sup o}C, while the {gamma}-to-{alpha} one was observed for calcination temperatures of 1100-1200 {sup o}C. The retention of the metastable {gamma} phase is probably due to a crystallite size effect. It transforms to the {alpha} phase after the crystallite size increases over a critical size during the calcination process at 1200 {sup o}C. The highest BET specific surface areas were obtained for both nitrate-aspartic acid routes proposed in this work, reaching values of about 50 m{sup 2}/g.

  19. Microstructure and emission ability of rare earth oxides doped molybdenum cathodes

    International Nuclear Information System (INIS)

    Yang Jiancan; Nie Zuoren; Wang Yiman

    2003-01-01

    We adopted high-resolution transmission electron microscopy (TEM) and scanning electron microscopy (SAM) to observe and analyze the microstructure of rare earth oxide (La 2 O 3 , Sc 2 O 3 ) doped molybdenum cathodes. The results show that there are many nanometer particles in the molybdenum matrix besides some sub-micrometer particles in the crystal interfaces. All these particles are rare earth oxides as determined through calculating the electron diffraction pattern. Then we determined the electron work function and the zero-field emission current of molybdenum cathodes by the electron emission measurement. To correlate the emission data with surface composition, we use Auger electron spectroscopy (AES) to analyze the elements on the activated cathode surface and their depth profiles. We found that there were about 20 nm thick layers on an activated cathode surface, which have a high content of rare earth elements. We also use AES to analyze the elements diffusion to the cathode surface from cathode body during heating up to its operating temperature to find out which element positively affects the electron emission

  20. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fadzil, Syazwani, E-mail: mfsyazwani86@postech.ac.kr [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 790784 Pohang, Gyeongbuk (Korea, Republic of); School of Applied Physics, Faculty of Science and Technology, The National University of Malaysia, 43650 Bandar Baru Bangi, Selangor (Malaysia); Hrma, Pavel [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 790784 Pohang, Gyeongbuk (Korea, Republic of); Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States); Schweiger, Michael J.; Riley, Brian J. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA (United States)

    2015-10-15

    Pyroprocessing is are processing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl–KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the glass matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (T{sub L}): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE{sub 2}O{sub 3}) while possessing an acceptable chemical durability. - Highlights: • We investigated crystallization in borosilicate glasses containing rare earth oxides. • New crystallinity and durability data are shown for glasses proposed in the literature. • Both liquidus temperature and chemical durability increased as the waste loading increased.

  1. Titania and Zinc Oxide Nanoparticles: Coating with Polydopamine and Encapsulation within Lecithin Liposomes—Water Treatment Analysis by Gel Filtration Chromatography with Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Xuhao Zhao

    2018-02-01

    Full Text Available The interplay of metal oxide nanoparticles, environmental pollution, and health risks is key to all industrial and drinking water treatment processes. In this work we present a study using gel filtration chromatography for the analytical investigation of metal oxide nanoparticles in water, their coating with polydopamine, and their encapsulation within lecithin liposomes. Polydopamine prevents TiO2 and ZnO nanoparticles from aggregation during chromatographic separation. Lecithin forms liposomes that encapsulate the nanoparticles and carry them through the gel filtration column, producing an increase of peak area for quantitative analysis without any change in retention time to affect qualitative identification. To the best of our knowledge, this is the first report that demonstrates the potential application of lecithin liposomes for cleaning up metal oxide nanoparticles in water treatment. Encapsulation of graphene quantum dots by liposomes would allow for monitoring of nanoparticle-loaded liposomes to ensure their complete removal by membrane ultrafiltration from treated water.

  2. Atomic layer deposition of metal oxide by non-aqueous sol-gel chemistry =

    Science.gov (United States)

    Marichy, Catherine

    O trabalho apresentado neste manuscrito foi desenvolvido no ambito do programa doutoral intitulado “Deposicao de Camadas Atomicas (ALD) de oxido de metais por sol-gel nao-aquoso”. O objectivo deste trabalho foi a preparacao de hetero-estruturas funcionais por ALD e a sua caracterizacao. Foi desenvolvido um novo processo de deposicao de oxido de estanho a temperatura baixa-moderada, utilizando um metodo ALD nao-aquoso, o qual foi aplicado com sucesso ao revestimento controlado das paredes internas e externas de nanotubos de carbono. Uma vez que a preparacao de nanomateriais funcionais requer uma elevada exatidao do processo de deposicao, foi demonstrada a deposicao precisa de filmes que se adaptem a forma do substrato ou de filmes nano-estruturados constituidos por particulas em varios substratos. Alem disso, foram depositados com grande exatidao varios oxidos de metal em nanotubos de carbono e demonstrou-se a possibilidade de ajustar o revestimento feito por ALD atraves do controlo da funcionalizacao da superficie do substrato nano-estruturado de carbono. As hetero-estruturas obtidas foram posteriormente aplicadas como sensores de gases. O melhoramento verificado na sensibilidade foi atribuido a formacao de heterojuncoes p-n entre o filme de oxido de metais e o suporte. O trabalho desenvolvido tendo como objetivo o controlo do revestimento por ALD atraves da funcionalizacao da superficie do suporte e certamente de interesse para o design de hetero-estruturas funcionais baseadas em substratos de carbono. De facto, durante o ultimo periodo do programa de doutoramento, este conceito foi alargado a funcionalizacao e revestimento com oxidos de metal de fibras de carbono preparadas por “electrospinning”, de forma a melhorar a estabilidade e a atividade eletrocatalitica de catalisadores a base de Pt. Este trabalho foi realizado maioritariamente na Universidade de Aveiro mas tambem na Universidade Nacional de Seul e beneficiou de varias colaboracoes internacionais

  3. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media

    Science.gov (United States)

    Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.

    2018-01-01

    Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

  4. Synthesis and characterization of mixtures of cobalt and titanium oxides by mechanical alloyed and Sol-Gel;Sintesis y caracterizacion de mezclas de oxidos de cobalto y titanio por aleado mecanico y Sol-Gel

    Energy Technology Data Exchange (ETDEWEB)

    Basurto S, R.; Bonifacio M, J.; Fernandez V, S. M., E-mail: rafael.basurto@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2009-07-01

    The mechanical alloyed techniques continued by combustion and Sol-Gel method, were used for the synthesis of CoTiO{sub 3}. With the first technique was used Co{sub 3}O{sub 4} obtained in a balls mill SPEX in argon atmosphere, using cobalt nitrate and urea, the combustion is realized at 400 and 500 C, the characterization by X-ray diffraction showed the obtaining of the valence oxide mixed of cobalt with crystallite size from 10 to 12.5 nm and the particle size of 60 to 75 nm was obtained by scanning electron microscopy. To prepare the CoTiO{sub 3}, the obtained Co{sub 3}O{sub 4} was mixed with TiO{sub 2} on a relationship in weight (1:1) and with a milling time of 2.5 h and the combustion at 800 C. the mixed oxide of titanium cobalt was also obtained by the Sol-Gel technique starting from cobalt chloride and titanium propoxide in acetic-water acid, the gel is burned to temperature of 300, 500, 700 and 900 C, finding that this last temperature it is that provides the compound with crystalline size from 50 to 75 nm. (Author)

  5. A gravimetric method for the determination of oxygen in uranium oxides and ternary uranium oxides by addition of alkaline earth compounds

    International Nuclear Information System (INIS)

    Fujino, Takeo; Tagawa, Hiroaki; Adachi, Takeo; Hashitani, Hiroshi

    1978-01-01

    A simple gravimetric determination of oxygen in uranium oxides and ternary uranium oxides is described. In alkaline earth uranates which are formed by heating in air at 800-1100 0 C, uranium is in the hexavalent state over certain continuous ranges of alkaline earth-to-uranium ratios. Thus, if an alkaline earth uranate or a compound containing an alkaline earth element, e.g. MgO, is mixed with the oxide sample and heated in air under suitable conditions, oxygen can be determined from the weight change before and after the reaction. The standard deviation of the O:U ratio for a UOsub(2+x) test sample is +-0.0008-0.001, if a correction is applied for atmospheric moisture absorbed during mixing. (Auth.)

  6. Separation of pure Cerium oxides from rare earth compounds. Homogeneous precipitation using Urea-Hydrogen Peroxide

    International Nuclear Information System (INIS)

    Umeda, K.; Abrao, E.

    1975-01-01

    The obtainment of ceric oxide (CeO 2 ) of purity higher than 97% by application of homogeneous precipitation technique is described. The selective separation of cerium was reached by hydrolysis of urea in the presence of hydrogen peroxide, using a rare earths concentrate named rare earths chloride, a natural mixture of all lanthanides provenient from the industrialization of monazite. The best conditions for the preparation of CeO 2 of 94% purity are: 35-70g R 2 O 3 /1 and pH2,0 hydrolysis temperature: 88-90 0 C, urea/R 2 O 3 ratio: 4, H 2 O 2 /Ce 2 O 3 ratio: 1,5-5,0 and hydrolysis duration: 4 hours. A leaching procedure of the precipitate with 0,25-0,75M NHO 3 leads to a product of 97-99,5% CeO 2

  7. Simultaneous determination of dysprosium, holmium and erbium in high purity rare earth oxides by second order derivative spectrophotometry

    International Nuclear Information System (INIS)

    Anbu, M.; Prasada Rao, T.; Iyer, C. S. P.; Damodaran, A. D.

    1996-01-01

    High purity individual rare earth oxides are increasingly used as major components in lasers (Y 2 O 3 ), phosphors (YVO 3 , Eu 2 O 3 ), magnetic bubble memory films (Gd 2 O 3 ) and refractive-index lenses and fibre optics (La 2 O 3 ). The determination of individual lanthanides in high purity rare earth oxides is a more important and difficult task. This paper reports the utilization of higher order derivative spectrophotometry for the simultaneous determination of dysprosium, holmium and erbium in high purity rare earth oxides. The developed procedure is simple, reliable and allows the determination of 0.001 to 0.2% of dysprosium, holmium and erbium in several rare earth. (author). 9 refs, 2 figs, 2 tabs

  8. Antimony (V) oxide adsorbed on a silica-zirconia mixed oxide obtained by the sol-gel processing method: preparation and acid properties

    International Nuclear Information System (INIS)

    Zaitseva, Galina; Gushikem, Yoshitaka

    2002-01-01

    The preparation, degree of dispersion, thermal stability and Lewis and Broensted acidity of antimony (V) oxide adsorbed on Si O 2 /Zr O 2 mixed oxide, previously prepared by the sol-gel processing method, are described herein. The samples Si O 2 /Zr O 2 /Sb 2 O 5 , with compositions (in wt %): (a) Zr= 8.1 and Sb= 6.3; (b) Zr= 14.9 and Sb= 11.4, were prepared. Scanning electron microscopy images connected to a X-ray energy dispersive spectrometer showed that both metals, Zr and Sb, were highly dispersed in the matrices. The X-ray diffraction patterns of Si O 2 /Zr O 2 /Sb 2 O 5 heated at different temperatures showed that, up to 1023 K, the matrix was amorphous. At 1273 K a crystalline phase of Zr O 2 (baddeleyite) was observed and raising the temperature to 1573 K, crystalline phases of Si O 2 (cristobalite) and presumably of Zr O 2 /Sb 2 O 5 were observed. Using pyridine as a molecular probe, Broensted acid sites on the Si O 2 /Zr O 2 /Sb 2 O 5 matrix, heat treated up to 523 K, were shown to be very stable. (author)

  9. Antimony (V Oxide Adsorbed on a Silica-Zirconia Mixed Oxide Obtained by the Sol-Gel Processing Method: Preparation and Acid Properties

    Directory of Open Access Journals (Sweden)

    Zaitseva Galina

    2002-01-01

    Full Text Available The preparation, degree of dispersion, thermal stability and Lewis and Brphinsted acidity of antimony (V oxide adsorbed on SiO2/ZrO2 mixed oxide, previously prepared by the sol-gel processing method, are described herein. The samples SiO2/ZrO2/Sb2O5, with compositions (in wt %: (a Zr= 8.1 and Sb= 6.3; (b Zr= 14.9 and Sb= 11.4, were prepared. Scanning electron microscopy images connected to a X-ray energy dispersive spectrometer showed that both metals, Zr and Sb, were highly dispersed in the matrices. The X-ray diffraction patterns of SiO2/ZrO2/Sb2O5 heated at different temperatures showed that, up to 1023 K, the matrix was amorphous. At 1273 K a crystalline phase of ZrO2 (baddeleyite was observed and raising the temperature to 1573 K, crystalline phases of SiO2 (cristobalite and presumably of ZrO2/Sb2O5 were observed. Using pyridine as a molecular probe, Brphinsted acid sites on the SiO2/ZrO2/Sb2O5 matrix, heat treated up to 523 K, were shown to be very stable.

  10. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    Stress corrosion cracking (SCC)can cause failures of CANDU Zircaloy-4 fuel sheathing. The process occurs when a corrosive element (i.e.,iodine) interacts with a susceptible material that is under sufficient strain at a high temperature. Currently, there is an ongoing effort to improve SCC mitigation strategies for future iterations of CANDU reactors. A potential mechanism for SCC mitigation involves utilizing alkali metal oxides and alkaline earth metal oxides that will sequester corrosive iodine while actively repairing a protective oxide layer on the sheath. SCC tests performed with sodium oxide (Na{sub 2}O) and calcium oxide (CaO) have shown to decrease significantly the sheath degradation. (author)

  11. Optical emission spectrographic analysis of thulium oxide for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.; Dixit, V.C.

    1988-01-01

    An optical emission spectrographic method has been developed for the analysis of high purity thulium oxide to determine rare earth elements Er, Yb, Lu and Y. A 1200 groove/mm grating blazed at 3300 A is used to record the spectrum on Kodak SA-1 photographic plates after the excitation of the graphite-sample (1:1) mixture in DC arc. The determination range is 0.008 per cent to 0.1 per cent and the relative standard deviation is 17.6 per cent. (author). 15 refs., 5 tables, 5 figs

  12. The structural basis of the fluorite-related rare earth higher oxides

    International Nuclear Information System (INIS)

    Kang, Z.C.; Eyring, LeRoy

    1996-01-01

    In this paper phenomenological structural principles, and rules for their application are advanced for predicting the ideal structures of the higher oxides of the rare earths. These principles allow to establish a generic formula incorporating all known phases, guide the correct modelling of the established structures and demonstrate that structures previously proposed but proven incorrect do not follow the structural principles. They also can be used to predict the structures not yet established for known phases, including polymorphs, and provide rationalization for phases fitting the generic formula that have not yet been found. The structural principles flow naturally from the fluorite substructure characteristic of all established phases. 39 refs., 5 tabs., 16 figs

  13. Scintillation property of rare earth-free SnO-doped oxide glass

    OpenAIRE

    Masai, Hirokazu; Yanagida, Takayuki; Fujimoto, Yutaka; Koshimizu, Masanori; Yoko, Toshinobu

    2012-01-01

    The authors have demonstrated scintillation of rare earth (RE)-free Sn-doped oxide glass by excitation of ionizing radiation. It is notable that light emission is attained for RE-free transparent glass due to s[2]-sp transition of Sn[2+] centre and the emission correlates with the excitation band at 20 eV. We have also demonstrated that excitation band of emission centre can be tuned by the chemical composition of the host glass. The present result is valuable not only for design of RE-free i...

  14. X-ray fluorescence analysis of terbium oxide for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Machado, I.J.; Mohile, A.N.

    1975-01-01

    A method for the determination of Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Dy 2 O 3 , Ho 2 O 3 and Y 2 O 3 in terbium oxide is described. The sample is converted to terbium oxalate, mixed with boric acid binder in the ratio 2:1, pelleted at a pressure of 20 tons over a boric acid backing pellet and irradiated with x-rays from a tungsten tube operated by Philips PW 1140 generator. The secondary x-rays thus generated are analysed by a LiF (200) crystal in Philips PW 1220 x-ray fluorescence spectrometer using suitable detectors. The minimum determination limit (MDL) is 0.01% for all rare earth oxides determined except for Y 2 O 3 for which it is 0.005%. (author)

  15. X-ray fluorescence analysis of neodymium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Mohile, A.N.

    1977-01-01

    An X-ray fluorescence method for the determination of cesium, praseodymium, samarium, europium and gadolinium in pure neodymium oxide and oxalate is described. The oxide sample is converted to oxalate and mixed with a binder (boric acid) to obtain a pressed circular pellet. The amount of sample needed for analysis is reduced by making use of the double layer pellet technique. A tungsten target X-ray tube is employed to irradiate the sample and a Philips PW 1220 semiautomatic X-ray spectrometer with a LiF (200) crystal is used to analyse the fluorescent X-rays. The minimum determination limit is 0.01 percent for all rare earths determined except for europium for which the limit is 0.005 percent. Three sigma detection limits have been calculated. (author)

  16. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng; Deng, Rui; Lin, Weinan; Tian, Yufeng; Peng, Haiyang; Yi, Jiabao; Yao, Bin; Wu, Tao

    2013-01-01

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  17. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng

    2013-04-29

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  18. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Avazpour, L.; Toroghinejad, M.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 13876-71557 (Iran, Islamic Republic of)

    2016-11-30

    Highlights: • The nanostructured rare earth doped Co-ferrite thin film was synthesized by the sol–gel method. • The coercivity of as high as 1.8 kOe is achieved for 20% substituted cobalt ferrite. • The average particle diameter of particulate film is decreasing by increasing substitute content. • Kerr spectra of films shifted to higher energies. • Kerr rotation angle increased to 1.65° for 0.1 Eu doped thin film. - Abstract: A series of rare-earth (RE)-doped nanocrystalline Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol–gel process, and the influences of different RE{sup 3+} ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300–850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2–3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Co{sub x} RE{sub (1−x)} Fe{sub 2}O{sub 4} films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced

  19. Study of the oxides nature effect of rare and rare earth elements on the aluminium-chromium catalyst properties

    International Nuclear Information System (INIS)

    Dadashev, B.A.; Abbasov, S.G.; Sarydzhanov, A.A.; AN Azerbajdzhanskoj SSR, Baku. Inst. Neftekhimicheskikh Protsessov)

    1975-01-01

    Adsorption studies have shown that oxides of rare and rare earth elements REE appreciably influence the structure of aluminium-chrome catalyst. Alkaline promotors, unlike REE, contribute to the formation of developed contact surface. Electrophysical investigations show that oxides of rare elements introduced into the catalyst increase its conductivity and activation energy. As for REE oxides, they decrease the conductivity and increase the activation energy. Catalysts with developed surface and high conductivity are also more active in the reaction of isopentane dehydration

  20. Determination of the composition of surface optical layers prepared with the use of rare earth and zirconium oxides

    International Nuclear Information System (INIS)

    Mishchenko, V.T.; Shilova, L.P.; Shkol'nikova, T.M.

    1991-01-01

    Simple titrimetric and gravimetric methods for determination of optical oxide layers (rare earth and zirconium oxides), sputtered on glass or quartz sublayer, have been developed. The minimal determined oxide mass in surface layers is equal to 0.01 mg in titrimetric determination and 0.1 mg - in gravimetric one. It is shown that composition of films and pellets, used for film sputtering, is identical

  1. The Development of HfO2-Rare Earth Based Oxide Materials and Barrier Coatings for Thermal Protection Systems

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan James

    2014-01-01

    Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.

  2. The effect of reaction temperature on the room temperature ferromagnetic property of sol-gel derived tin oxide nanocrystal

    Science.gov (United States)

    Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.

    2018-06-01

    In the present study, nanocrystalline tin oxide materials were prepared using sol-gel method with different reaction temperatures (25 °C, 50 °C, 75 °C & 90 °C) and the relation between the room temperature ferromagnetic property of the sample with processing temperature has been analysed. The X-ray diffraction pattern and infrared absorption spectra of the as-prepared samples confirm the purity of the samples. Transmission electron microscopy images visualize the particle size variation with respect to reaction temperature. The photoluminescence spectra of the samples demonstrate that luminescence process in materials is originated due to the electron transition mediated by defect centres. The room temperature ferromagnetic property is observed in all the samples with different amount, which was confirmed using vibrating sample magnetometer measurements. The saturation magnetization value of the as-prepared samples is increased with increasing the reaction temperature. From the photoluminescence & magnetic measurements we accomplished that, more amount of surface defects like oxygen vacancy and tin interstitial are created due to the increase in reaction temperature and it controls the ferromagnetic property of the samples.

  3. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    International Nuclear Information System (INIS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-01-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO. (paper)

  4. Minimization of Ion-Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Yen-Ming; Hsu, Shih-Ting; Tseng, Yu-Hsien; Yeh, Te-Fu; Hou, Sheng-Shu; Jan, Jeng-Shiung; Lee, Yuh-Lang; Teng, Hsisheng

    2018-03-01

    This study uses graphene oxide quantum dots (GOQDs) to enhance the Li + -ion mobility of a gel polymer electrolyte (GPE) for lithium-ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile-co-vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF 6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3-11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion-solvent clusters and immobilize PF6- anions, affording the GPE a high ionic conductivity and a high Li + -ion transference number (0.77). When assembled into Li|electrolyte|LiFePO 4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge-discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion-solvent clusters and degree of Li + -ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li-metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion-solvent coordination in GPEs and thus improve the performance and lifespan of LIBs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Influence of annealing temperature on microstructure and optical properties of sol-gel derived tungsten oxide films

    International Nuclear Information System (INIS)

    Sun Xilian; Cao Hongtao; Liu Zhimin; Li Jianzhong

    2009-01-01

    Tungsten oxide (WO 3 ) thin films have been extensively studied for their interesting physical properties and a variety of potential applications in electrochromic devices. In order to explore the possibility of using these in electrochromic devices, a preliminary and thorough study of the optical properties of the host materials is an important step. Based on this, the influence of annealing temperature on the structural, surface morphological, optical and electrochromic properties has been investigated in the present work. The host material, WO 3 films, has been prepared from an ethanolic acetylated peroxotungstic acid sol containing 5 wt.% oxalic acid dehydrate (OAD) by sol-gel technique. The monoclinic structure and textured nature change of the films with the temperature increasing have been investigated by X-ray diffraction analysis. The surface morphology evolution of the films has been characterized by SEM. The shift in absorption edge towards the higher wavelength region observed from optical studies may be due to the electron scattering effects and the optical band filling effect that reveals the crystallization of the film. The amorphous film shows better optical modulation (ΔT = 76.9% at λ = 610 nm), fast color-bleach kinetics (t c ∼ 4 s and t b ∼ 9 s) and good reversibility (Q b /Q c = 90%), thereby rendering it suitable for smart window applications.

  6. Synthesis and Application of Iron Oxide/Silica Gel Nanocomposite for Removal of Sulfur Dyes from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Naser Tavassoli

    2017-03-01

    Full Text Available Background & Aims of the Study: water pollution by synthetic organic dyes is mainly regarded as environmental and ecological critical issues worldwide. In this research, magnetite iron oxide/silica gel nanocomposite (termed as Fe3O4/SG was synthesized chemically and then used as an effective adsorbent for removal of sulfur dyes from aqueous solution. Materials and Methods: The various parameters such as pH, sorbent dosage, initial dye concentration, contact time and dye solution temperature were investigated in a batch system. The equilibrium data were analyzed by Langmuir and Freundlich isotherm models. Results: The experimental data fit well with pseudo-second-order kinetic model (R2≥0.998 and conformed better to Langmuir isotherm model (R2≥0.997. The maximum adsorption capacity for Fe3O4/SG obtained from the Langmuir model was 11.1mg/g. Evaluation of thermodynamic parameters proved that the adsorption process was normally feasible, spontaneous and exothermic. Conclusion: It can be concluded that the Fe3O4/SG can be considered as a cost-effective and an environmental friendly adsorbent for efficient removal of sulfur dyes from aqueous solutions.

  7. Effects of synthetic parameters on structure and electrochemical performance of spinel lithium manganese oxide by citric acid-assisted sol-gel method

    International Nuclear Information System (INIS)

    Yi Tingfeng; Dai Changsong; Gao Kun; Hu Xinguo

    2006-01-01

    The spinel lithium manganese oxide cathode materials were prepared by citric acid-assisted sol-gel method at 623-1073 K in air. The effects of pH value, raw material, synthesis temperature and time on structure and electrochemical performance of spinel lithium manganese oxide are investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM) and cyclic voltammetry (CV). XRD data results strongly suggest that the synthesis temperature is the dominating factors of the formation of spinel phase, and spinel lithium manganese oxide powder with various crystallites size can be obtained by controlling the sintering time. CV shows that spinel lithium manganese oxide powder formed about 973 K presents the best electrochemical performance with well separated two peaks and the highest peak current. Charge-discharge test indicates that spinel lithium manganese oxide powders calcined at higher temperatures have high discharge capacity and capacity loss, and sintered at lower temperatures has low discharge capacity and high capacity retention

  8. Effects of synthetic parameters on structure and electrochemical performance of spinel lithium manganese oxide by citric acid-assisted sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Yi Tingfeng [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: tfyihit@hit.edu.cn; Dai Changsong [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Gao Kun [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Hu Xinguo [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-11-30

    The spinel lithium manganese oxide cathode materials were prepared by citric acid-assisted sol-gel method at 623-1073 K in air. The effects of pH value, raw material, synthesis temperature and time on structure and electrochemical performance of spinel lithium manganese oxide are investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM) and cyclic voltammetry (CV). XRD data results strongly suggest that the synthesis temperature is the dominating factors of the formation of spinel phase, and spinel lithium manganese oxide powder with various crystallites size can be obtained by controlling the sintering time. CV shows that spinel lithium manganese oxide powder formed about 973 K presents the best electrochemical performance with well separated two peaks and the highest peak current. Charge-discharge test indicates that spinel lithium manganese oxide powders calcined at higher temperatures have high discharge capacity and capacity loss, and sintered at lower temperatures has low discharge capacity and high capacity retention.

  9. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    International Nuclear Information System (INIS)

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    Highlights: • Gel electrolyte is prepared and used in electric double layer capacitor. • Insertion of boron crosslinks into GO agglomerates opens channels for ion migration. • Solid supercapacitors show excellent specific capacitance and cycle stability. • Nanocomposite electrolyte shows better thermal stability and mechanical properties. - Abstract: A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs

  10. Luminescent features of sol–gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application

    International Nuclear Information System (INIS)

    Gouveia-Neto, A.S.; Silva, A.F. da; Bueno, L.A.; Costa, E.B. da

    2012-01-01

    Rare-earth doped oxyfluoride 75SiO 2 :25PbF 2 nano-structured phosphors for white-light-emitting diodes were synthesized by thermal treatment of precursor sol–gel derived glasses. Room temperature luminescence features of Eu 3+ , Sm 3+ , Tb 3+ , Eu 3+ /Tb 3+ , and Sm 3+ /Tb 3+ ions incorporated into low-phonon-energy PbF 2 nanocrystals dispersed in the aluminosilicate glass matrix and excited with UV light emitting diode were investigated. The luminescence spectra exhibited strong emission signals in the red (600, 610, 625, and 646 nm), green (548 and 560 nm), and blue (485 nm) wavelength regions. White-light emission was observed in Sm/Tb and Eu/Tb double-doped activated phosphors employing UV-LED excitation at 395 nm. The dependence of the luminescence emission intensities upon annealing temperature and rare-earth concentration was also examined. The results indicated that there exist optimum annealing temperature and activator ion concentration in order to obtain intense visible emission light with high color rendering index. The study suggests that the nanocomposite phosphor based upon 75SiO 2 :25PbF 2 host herein reported is a promising contender for white-light LED applications. - Highlights: ► White-light emission in double-doped activated phosphors employing UV-LED excitation. ► Luminescent features of europium, samarium, and terbium in nanocrystals dispersed in aluminosilicate glass. ► New nanocomposite phosphor host for white-light LED applications.

  11. Rare-earth hafnium oxide materials for magnetohydrodynamic (MHD) generator application

    Energy Technology Data Exchange (ETDEWEB)

    Marchant, D. D; Bates, J. L.

    1979-01-01

    Several ceramic materials based on rare-earth hafnium oxides have been identified as potential high-temperature electrodes and low-temperature current leadouts for open cycle coal-fired MHD generator channels. The electrode-current leadouts combination must operate at temperatures between 400 and 2000K with an electrical conductivity greater than 10/sup -2/ ohm/sup -1/ cm/sup -1/. The electrodes will be exposed to flowing (linear flow rates up to 100 m/s) potassium seeded coal combustion gases (plasma core temperatures between 2400 to 3200/sup 0/K) and coal slag. During operation the electrodes must conduct direct electric current at densities near 1.5 amp/cm/sup 2/. Consequently, the electrodes must be resistant to electrochemical decompositions and interactions with both the coal slag and potassium salts (e.g., K/sub 2/SO/sub 4/, K/sub 2/CO/sub 3/). The current leadout materials are placed between the hot electrodes and the water-cooled copper structural members and must have electrical conductivities greater than 10/sup -2/ ohm/sup -1/ cm/sup -1/ between 1400 and 400/sup 0/K. The current leadouts must be thermally and electrochemically compatible with the electrode, copper, and potassium salts. Ideally, the electrodes and current leadouts should exhibit minimal ionic conductivity. The fabrication, electrical conductivity, and electrochemical corrosion of rare-earth hafnium oxide materials are discussed. (WHK)

  12. Solar furnace experiments for thermophysical properties studies of rare-earth oxide MHD materials

    International Nuclear Information System (INIS)

    Coutures, J.P.

    1978-01-01

    Some high temperature work performed with solar furnaces on rare earth oxides is reviewed. Emphasis is on the thermophysical properties (refractoriness, vaporization behavior) and the nature of solid solution on materials which could be used as electrodes for the MHD process. As new sources of energy are being developed due to the world energy crisis, MHD conversion could be useful. The development of MHD systems requires new efforts to develop and optimize materials properties. These materials must have good mechanical and electrical properties (if possible, pure electronic conduction with good emission). Because of the high temperature in MHD generators, the materials for electrodes must have good refractoriness and also must resist vaporization and corrosion at high temperature (T approx. 2000 0 C). Rare-earth oxides are the basic components for most of the MHD electrode materials and it is important to know their thermophysical properties (solidification point phase transitions, heat of fusion and of phase transition, vapor pressure). Because of the high temperature range and the nature of the atmosphere in which these experiments must be performed, special equipment adapted to solar furnaces was developed

  13. Yttrium aluminum garnet (YAG) obtained by rare-earth mixed oxide (RE2O3)

    International Nuclear Information System (INIS)

    Castro, D.F.; Daguano, J.K.M.F.; Rodrigues Junior, D.; Suzuki, P.A.; Silva, O.M.M.

    2010-01-01

    In this work, the substitution of commercial Y 2 O 3 by a rare earth mixed oxide, RE 2 O 3 , to form Yttrium aluminum Garnet-Y 3 Al 5 O 12 , was investigated. Al 2 O 3 :Y 2 O 3 and Al 2 O 3 :RE 2 O 3 powder-mixtures, in a molar ratio of 60:40, were milled and subsequently cold uniaxially-pressed. Compacts were sintered at 1000, 1400 or 1600 deg C, for 120 minutes. RE 2 O 3 oxide was characterized by high-resolution synchrotron X-ray diffraction (HRXRD) and compared to Y 2 O 3 . X-ray diffraction pattern of the RE 2 O 3 indicates a true solid solution formation. Rietveld refinement of the sintered YAG and (RE)AG reveled a similar crystal structure to the YAGs obtained by the use of Al 2 O 3 -Y 2 O 3 or Al 2 O 3 -RE 2 O 3 respectively. Microstructural analysis of both, YAG or (RE)AG, revealed similar grain sizes of about 2.5 μm besides mechanical properties, with hardness of 400HV and fracture toughness of 3.8MPa.m1/2. It could be, thus, demonstrated that pure Y 2 O 3 can be substituted by the rare-earth solid solution, RE 2 O 3 , in the formation YAGs, presenting similar microstructural and mechanical properties. (author)

  14. A Study on Electrochemical Reduction of Rare Earth Oxides in Molten LiCl-Li{sub 2}O Salt

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Woo; Jeong, Sang Mun; Lee, See Hoon [Chungbook National University, Chungju (Korea, Republic of); Sohn, Jung Min [Chonbuk National University, Jeonju (Korea, Republic of)

    2016-05-15

    In this study, the electrochemical reduction of RE{sub 2}O{sub 3} (RE = Nd or Ce) has been conducted via co-reduction NiO to increase the reduction degree of the rare earth oxides in molten molten LiCl containing 1wt% Li{sub 2}O. The electrochemical reduction behavior of the mixed RE{sub 2}O{sub 3}-NiO oxide has been investigated and the reduction path of RE{sub 2}O{sub 3} has been proposed. An electorchemical spent fuel processing technology, pyroprocessing, has been developed for recycling of spent fuel to be applied to a sodium-cooled fast reactor. The spent fuel is reduced in the oxide reduction process. It is well known that the rare earth oxides are hardly reduced due to their electrochemical and thermodynamic stability. The rare earth oxides unreduced in the reduction process can cause problems via reaction with UCl{sub 3} in the electrorefiner. To tackle those problems, the electrochemical reduction of rare earth oxide has been conducted via co-reduction of NiO in LiCl molten salt containing 1 wt% Li{sub 2}O. The reduction of the oxide mixture starts from the reduction of NiO to Ni, followed by that of RE{sub 2}O{sub 3} on the produced Ni to form intermetallic RENi{sub 5}. The mixed oxide pellets were successfully reduced to the RENi5 alloy by constant electrolysis at 3.0 V at 650 .deg. C. The crucial aspect to these results is that the thermodynamically stable rare-earth oxide, Nd{sub 2}O{sub 3} was successfully converted to the metal in the presence of NiO.

  15. A Study on Electrochemical Reduction of Rare Earth Oxides in Molten LiCl-Li2O Salt

    International Nuclear Information System (INIS)

    Lee, Min Woo; Jeong, Sang Mun; Lee, See Hoon; Sohn, Jung Min

    2016-01-01

    In this study, the electrochemical reduction of RE 2 O 3 (RE = Nd or Ce) has been conducted via co-reduction NiO to increase the reduction degree of the rare earth oxides in molten molten LiCl containing 1wt% Li 2 O. The electrochemical reduction behavior of the mixed RE 2 O 3 -NiO oxide has been investigated and the reduction path of RE 2 O 3 has been proposed. An electorchemical spent fuel processing technology, pyroprocessing, has been developed for recycling of spent fuel to be applied to a sodium-cooled fast reactor. The spent fuel is reduced in the oxide reduction process. It is well known that the rare earth oxides are hardly reduced due to their electrochemical and thermodynamic stability. The rare earth oxides unreduced in the reduction process can cause problems via reaction with UCl 3 in the electrorefiner. To tackle those problems, the electrochemical reduction of rare earth oxide has been conducted via co-reduction of NiO in LiCl molten salt containing 1 wt% Li 2 O. The reduction of the oxide mixture starts from the reduction of NiO to Ni, followed by that of RE 2 O 3 on the produced Ni to form intermetallic RENi 5 . The mixed oxide pellets were successfully reduced to the RENi5 alloy by constant electrolysis at 3.0 V at 650 .deg. C. The crucial aspect to these results is that the thermodynamically stable rare-earth oxide, Nd 2 O 3 was successfully converted to the metal in the presence of NiO.

  16. LABORATORY TESTS ON INSECTICIDAL EFFECTIVENESS OF DISODIUM OCTABORATE TETRAHYDRATE, DIATOMACEOUS EARTH AND AMORPHOUS SILICA GEL AGAINST Sitophilus oryzae (L. AND THEIR EFFECT ON WHEAT BULK DENSITY

    Directory of Open Access Journals (Sweden)

    Zlatko Korunić

    2017-01-01

    Full Text Available We examined insecticide effectiveness of three different inert dusts: disodium octaborate tetrahydrate (DOT and diatomaceous earth (DE Celatom® Mn 51 applied as powder and suspension, and silica gel Sipernat® 50 S applied as powder against Sitophilus oryzae (L. and their reduction of grain bulk density. Sipernat® 50 S was the most effective dust with a very fast initial effectiveness. DE and DOT generated similar effectiveness against S. oryzae. DOT generated low initial effectiveness but after prolonged exposure time of 8 and especially after 21 days, the mortality was very high (100%, similar to the effectiveness of DE. The similar order of dusts was obtained in the reduction of wheat bulk density. Applied at dose of 200 and 500 ppm, the lowest bulk density difference in regard to bulk density of untreated wheat had DOT (-1.1 and -1.9 kg hl-1, respectively, followed by Celatom® Mn 51 (-3.5 and -4.3 kg hl-1, respectively and Sipernat® 50 S (-5.2 and -5.5 kg hl-1, respectively. Due to the effect on wheat bulk density DOT belongs to the group with the least negative effect on bulk density and therefore, it is a promising dust to control stored grain insect pests.

  17. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sacanell, Joaquin [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina); Leyva, A. Gabriela [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM. Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bellino, Martin G.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)

    2010-04-02

    In this work we studied the electrochemical properties of cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) prepared with nanotubes of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} (LSCO). Their nanostructures consist of agglomerated nanoparticles in tubular structures of sub-micrometric diameter. The resulting cathodes are highly porous both at the micro- and the nanoscale. This fact increases significantly the access to active sites for the oxygen reduction. We investigated the influence of the diameter of the precursor nanotubes on the polarization resistance of the LSCO cathodes on CeO{sub 2}-10 mol.% Sm{sub 2}O{sub 3} (SDC) electrolytes under air atmosphere, evaluated in symmetrical [LSCO/SDC/LSCO] cells. Our results indicate an optimized performance when the diameter of precursor nanotubes is sufficiently small to become dense nanorods after cathode sintering. We present a phenomenological model that successfully explains the behavior observed and considers that a small starting diameter acts as a barrier that prevents grains growth. This is directly related with the lack of contact points between nanotubes in the precursor, which are the only path for the growth of ceramic grains. We also observed that a conventional sintering process (of 1 h at 1000 C with heating and cooling rates of 10 C min{sup -1}) has to be preferred against a fast firing one (1 or 2 min at 1100 C with heating and cooling rates of 100 C min{sup -1}) in order to reach a higher performance. However, a good adhesion of the cathode can be achieved with both methods. Our results suggest that oxygen vacancy diffusion is enhanced while decreasing LSCO particle size. This indicates that the high performance of our nanostructured cathodes is not only related with the increase of the number of active sites for oxygen reduction but also to the fact that the nanotubes are formed by nanoparticles. (author)

  18. A problem in gravimetric method for the determination of rare earth elements as oxide after the fluoride separation

    International Nuclear Information System (INIS)

    Takada, Kunio

    1979-01-01

    For the gravimetric determination of lanthanum, it was precipitated as fluoride and converted to oxide by igniting (ca. 930 0 C) in a town gas flame. However, the oxidation of lanthanum fluoride by ignition was incomplete, the major part of the precipitate being converted to oxyfluoride (LaOF) and a mixture of oxide and oxyfluoride resulted. Therefore, analytical results were generally (5 -- 7)% higher than theoretically expected. The lanthanum fluoride became converted into the oxide by repeating ignition (ca. 1070 0 C) three times, each for (30 -- 40)min. However, the weight was lower than that of the corresponding sesquioxide, La 2 O 3 . Except for ytterbium and lutetium, gravimetric results as oxides for the other rare earth elements (Y, Pr, Nd, Sm, Eu and Gd) were higher than theoretical values. Therefore, the precipitation of the rare earth elements as fluoride and the subsequent determination as oxide by ignition of the fluoride could not be recommended as the gravimetric method for the rare earths. In order to obtain accurate results for major to minor amounts of the rare earth elements, an EDTA titration at pH 6 should be used after the dissolution of fluoride in acid, if the fluoride precipitation separation is involved. (author)

  19. Determination of oxygen in ternary uranium oxides by a gravimetric alkaline earth addition method

    International Nuclear Information System (INIS)

    Fujino, T.; Tagawa, H.

    1979-01-01

    The applicability of a gravimetric method based on alkaline earth metal addition for the determination of oxygen in ternary uranium oxides of the tupe M-U-O (M=La, Ce and Th) is described. The oxide sample is mixed with MgO or Basub(2.8)UOsub(5.8) and heated in air under suitable conditions. Because uranium is completely oxidized to the hexavalent state during the reaction, oxygen can be determined from the weight change. Oxygen in Lasub(y)Usub(1-y)Osub(2+x) is determined up to y = 0.8 with a standard deviation for x of +- 0.006 with MgO. For Thsub(y)Usub(1-y)Osub(2+x) the value of x is determined with Basub(2.8)UOsub(5.8) with a standard deviation of +- 0.01 at y = 0.8. For Cesub(y)Usub(1-y)Osub(2+x), the method can be applied only for low cerium concentrations where y = 0-0.2; the value for x with Basub(2.8)UOsub(5.8) at y = 0.2 showed a standard deviation of +- 0.002. (Auth.)

  20. Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}): Peroxovanadate sol gel synthesis and structural study

    Energy Technology Data Exchange (ETDEWEB)

    Langie da Silva, Douglas, E-mail: douglas.langie@ufpel.edu.br [Departamento de Física, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas 96010-900 (Brazil); Moreira, Eduardo Ceretta [Laboratório de Espectroscopia, Universidade Federal do Pampa, Campus Bagé, Bagé 96400-970 (Brazil); Dias, Fábio Teixeira; Neves Vieira, Valdemar das [Departamento de Física, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas 96010-900 (Brazil); Brandt, Iuri Stefani; Cas Viegas, Alexandre da; Pasa, André Avelino [Laboratório de Filmes Finos e Superfícies, Universidade Federal de Santa Catarina, Caixa Postal 476, Florianópolis 88.040-900 (Brazil)

    2015-01-15

    Nanostructured cobalt vanadium oxide (V{sub 2}O{sub 5}) xerogels spread onto crystalline Si substrates were synthesized via peroxovanadate sol gel route. The resulting products were characterized by distinct experimental techniques. The surface morphology and the nanostructure of xerogels correlate with Co concentration. The decrease of the structural coherence length is followed by the formation of a loose network of nanopores when the concentration of intercalated species was greater than 4 at% of Co. The efficiency of the synthesis route also drops with the increase of Co concentration. The interaction between the Co(OH{sub 2}){sub 6}{sup 2+} cations and the (H{sub 2}V{sub 10}O{sub 28}){sup 4−} anions during the synthesis was suggested as a possible explanation for the incomplete condensation of the V{sub 2}O{sub 5} gel. Finally the experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5}. In this scenario two possible preferential occupation sites for the metallic atoms in the framework of the xerogel were proposed. - Graphical abstract: Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}) nanoribbons synthesized by peroxovanadate sol gel route. - Highlights: • Nanostructured cobalt V{sub 2}O{sub 5} gel spread onto c{sub S}i were synthesized via peroxovanadate sol gel route. • The micro and nanostructure correlates with the cobalt content. • The efficiency of the synthesis route shows to be also dependent of Co content. • The experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5} xerogel.

  1. Study of interaction of uranium, plutonium and rare earth fluorides with some metal oxides in fluoric salt melts

    International Nuclear Information System (INIS)

    Gorbunov, V.F.; Novoselov, G.P.; Ulanov, S.A.

    1976-01-01

    Interaction of plutonium, uranium, and rare-earth elements (REE) fluorides with aluminium and calcium oxides in melts of eutectic mixture LiF-NaF has been studied at 800 deg C by X-ray diffraction method. It has been shown that tetravalent uranium and plutonium are coprecipitated by oxides as a solid solution UO 2 -PuO 2 . Trivalent plutonium in fluorides melts in not precipitated in the presence of tetravalent uranium which can be used for their separation. REE are precipitated from a salt melt by calcium oxide and are not precipitated by aluminium oxide. Thus, aluminium oxide in a selective precipitator for uranium and plutonium in presence of REE. Addition of aluminium fluoride retains trivalent plutonium and REE in a salt melt in presence of Ca and Al oxides. The mechanism of interacting plutonium and REE trifluorides with metal oxides in fluoride melts has been considered

  2. Preparation of anti-oxidative SiC/SiO2 coating on carbon fibers from vinyltriethoxysilane by sol–gel method

    International Nuclear Information System (INIS)

    Xia Kedong; Lu Chunxiang; Yang Yu

    2013-01-01

    Highlights: ► The SiC/SiO 2 coating was prepared on carbon fibers by the sol–gel method. ► Nano-crystallites with an average diameter of 130 nm were aligned along the fiber axis uniformly. ► The oxidation resistant property of coated carbon fiber was increased with the increase of sol concentration and the heat treatment temperature. ► The oxidation activation energy of the coated carbon fiber was increased by 23% in comparison with uncoated carbon fiber. - Abstract: The anti-oxidative SiC/SiO 2 coating was prepared on carbon fibers by a sol–gel process using vinyltriethoxysilane (VTES) as the single source precursor. The derived coating was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The oxidation resistant properties of the carbon fiber with and without coating were studied by isothermal oxidation. The results indicated that the carbothermal reduction reaction led to the decrease of SiO 2 phase and the increase of SiC phase at 1500 °C. The uniform SiC/SiO 2 coating prepared from a sol concentration of 4 wt% and heat treated at 1500 °C showed the optimal oxidation resistant property. The oxidation resistance of the carbon fiber was improved by the SiC/SiO 2 coating, and the oxidation activation energy was increased by about 23% as compared with uncoated carbon fiber.

  3. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1993-01-01

    A high-performance liquid chromatographic (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2 O 3 , Gd 2 O 3 and Dy 2 O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS is presented. (Author)

  4. Determination of the thermodynamic properties of titanium sponge, rare earth oxides and carbonates

    International Nuclear Information System (INIS)

    Russo, V.L.; Ivanov, E.N.

    1977-01-01

    The procedure is described of determining heat physical properties of titanium sponge in media controlled at temperatures up to approximately 1100 deg C obtained in an industrial apparatus. The study has been conducted with a sample located into a glass made from stainless steel; the temperature has been measured in the center and near the surface of the sample. The relationships are given between the relative heat conductivity of the titanium sponge, argon pressure and temperature, as well as between a change in heat physical constants of the titanium sponge and temperature. An artificial reaction mass has been created, and the effect of magnesium and magnesium chloride on heat physical properties has been studied. It has been established that heat conductivity for the reaction mass with magnesium chloride is much lower than that of the sponge with magnesium. Heat physical constants of oxides and carbonates of rare-earth elements are given determined with the use of the method developed

  5. Determination of the thermodynamic properties of titanium sponge, rare earth oxides and carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Russo, V L; Ivanov, E N

    1977-03-01

    The procedure is described of determining heat physical properties of titanium sponge in media controlled at temperatures up to approximately 1100/sup 0/C obtained in an industrial apparatus. The study has been conducted with a sample located into a glass made from stainless steel; the temperature has been measured in the center and near the surface of the sample. The relationships are given between the relative heat conductivity of the titanium sponge, argon pressure and temperature, as well as between a change in heat physical constants of the titanium sponge and temperature. An artificial reaction mass has been created, and the effect of magnesium and magnesium chloride on heat physical properties has been studied. It has been established that heat conductivity for the reaction mass with magnesium chloride is much lower than that of the sponge with magnesium. Heat physical constants of oxides and carbonates of rare-earth elements are given determined with the use of the method developed.

  6. Optical emission spectrographic analysis of lutetium oxide for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Dixit, V.S.

    1986-01-01

    An optical emission spectrographic (OES) method has been developed for the analysis of high purity lutetium oxide to determine rare earths Er, Tm, Yb and Y. The spectra are excited by a d.c. arc run at 10 A current after mixing the sample with graphite buffer in the weight ratio 1:1. A 1200 grooves/mm grating blazed at 3300 A is used for dispersion and a Kodak SA-1 plate for recording the spectrum. The detection limit is 0.001 per cent for Tm, Yb and Y while it is 0.005 per cent for Er. The relative standard deviation of the method is ± 13.4 per cent. (author)

  7. The structural priciples that underlie the higher oxides of the rare earths

    International Nuclear Information System (INIS)

    Kang, Z.C.; Zhang, J.; Eyring, L.

    1996-01-01

    The structural principle that accounts for the anion-deficient, fluorite-related homologous series of higher rare earth oxides has awaited the determination of a sufficient number of their structures to test hypotheses. Recent structure refinement of five additional members has permitted extraction of a number of generalizations concerning their crystallization behavior. These general principles are outlined. Furthermore, based on the fluorite structure itself, a phenomenological structural principle is outlined that (1) unifies all known and possible phases in these fluorite-related systems under one generic formula, (2) models all known structures correctly and (3) enables modeling of any unknown structure or polymorph in the series. All that is required are electron diffraction patterns adequate to determine the supercell and a knowledge of its composition. (orig.)

  8. Theoretical and experimental investigations into rare earth oxides behaviour during out of furnace treatment

    International Nuclear Information System (INIS)

    Vishkarev, A.F.; Smirnov, B.V.; Krup, Yu.M.

    1987-01-01

    Theoretical model is developed and technology of metal desulfuration and modification by rear earth metals is tested during out of furnace vacuum treatment, the testing of which has demonstrated its high efficiency. 16KhN3MA steel was melted in 120-t open-hearth furnaces under tapping with treatment by synthetic lime-aluminous slag and subsequent ladle degassing by circulation technique. At the early stage of degassing process cerium oxides together with aluminium were introduced into the vacuum chamber in the quantities of 2.0 and 0.2 kg/t respectively. Two meltings ere performed. Sulfur content in steel reduced from 0.017 and 0.018 up to 0.007 and 0.006%

  9. Rare earth metal oxides as BH4-tolerance cathode electrocatalysts for direct borohydride fuel cells

    Institute of Scientific and Technical Information of China (English)

    NI Xuemin; WANG Yadong; GUO Feng; YAO Pei; PAN Mu

    2012-01-01

    Rare earth metal oxides (REMO) as cathode electrocatalysts in direct borohydride fuel cell (DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH4- in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm2.The DBFC using Sm2O3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm2 was obtained at the cell voltage of 0.52 V.

  10. Anomalous positive flatband voltage shifts in metal gate stacks containing rare-earth oxide capping layers

    KAUST Repository

    Caraveo-Frescas, J. A.

    2012-03-09

    It is shown that the well-known negative flatband voltage (VFB) shift, induced by rare-earth oxide capping in metal gate stacks, can be completely reversed in the absence of the silicon overlayer. Using TaN metal gates and Gd2O3-doped dielectric, we measure a ∼350 mV negative shift with the Si overlayer present and a ∼110 mV positive shift with the Si overlayer removed. This effect is correlated to a positive change in the average electrostatic potential at the TaN/dielectric interface which originates from an interfacial dipole. The dipole is created by the replacement of interfacial oxygen atoms in the HfO2 lattice with nitrogen atoms from TaN.

  11. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  12. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu

    2014-06-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  13. Effects of rare earth oxide nanoparticles on root elongation of plants.

    Science.gov (United States)

    Ma, Yuhui; Kuang, Linglin; He, Xiao; Bai, Wei; Ding, Yayun; Zhang, Zhiyong; Zhao, Yuliang; Chai, Zhifang

    2010-01-01

    The phytotoxicity of four rare earth oxide nanoparticles, nano-CeO(2), nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) on seven higher plant species (radish, rape, tomato, lettuce, wheat, cabbage, and cucumber) were investigated in the present study by means of root elongation experiments. Their effects on root growth varied greatly between different nanoparticles and plant species. A suspension of 2000 mg L(-1) nano-CeO(2) had no effect on the root elongation of six plants, except lettuce. On the contrary, 2000 mg L(-1) suspensions of nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) severely inhibited the root elongation of all the seven species. Inhibitory effects of nano-La(2)O(3), nano-Gd(2)O(3), and nano-Yb(2)O(3) also differed in the different growth process of plants. For wheat, the inhibition mainly took place during the seed incubation process, while lettuce and rape were inhibited on both seed soaking and incubation process. The fifty percent inhibitory concentrations (IC(50)) for rape were about 40 mg L(-1) of nano-La(2)O(3), 20mg L(-1) of nano-Gd(2)O(3), and 70 mg L(-1) of nano-Yb(2)O(3), respectively. In the concentration ranges used in this study, the RE(3+) ion released from the nanoparticles had negligible effects on the root elongation. These results are helpful in understanding phytotoxicity of rare earth oxide nanoparticles. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Changes of fluorescent spectral features after successive rare earth doping of gadolinium oxide powders

    Energy Technology Data Exchange (ETDEWEB)

    Kuznik, W. [Chemical Department, Silesian University of Technology, Gliwice (Poland); Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Brik, M.G. [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Cieslik, I.; Majchrowski, A.; Jaroszewicz, L. [Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); AlZayed, N.S. [Physics and Astronomy Dept., College of Science, P.O. Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia); El-Naggar, A.M. [Physics and Astronomy Dept., College of Science, P.O. Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia); Permanent address: Physics department, Faculty of Science, Ain Shams University, Abassia, Cairo 11566 (Egypt); Sildos, I.; Lange, S.; Kiisk, V. [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Kityk, I.V., E-mail: ikityk@el.pcz.czest.pl [Electrical Engineering Department, Czestochowa University of Technology, Armii Krajowej 17, Czestochowa (Poland); Physics and Astronomy Dept., College of Science, P.O. Box 2455, King Saud University, Riyadh 11451 (Saudi Arabia)

    2012-01-15

    Highlights: > Principally new phosphors based on rare earth moped Gd{sub 2}O{sub 3} are obtained. > The time-resolved fluorescent spectra show drastic changes with the doping. > Temperature measurements were done. - Abstract: We present a complex fluorescence study of a series of gadolinium oxide polycrystalline powders singly, doubly and triply doped with trivalent rare earth ions (Er{sup 3+}, Tb{sup 3+}, and Dy{sup 3+}), to explore a possibility of their use as materials for white light emitting diodes. The excitation and luminescence spectra along with the decay kinetics were measured in the temperature range from 6 to 300 K. The luminescence efficiency was studied within the visible spectral range, i.e. -400 nm to 750 nm under excitation by 355 nm third harmonic Nd:YAG laser pulses. Singly doped Er{sup 3+} sample gave stronger luminescence signals, but others showed significantly larger decay lifetimes. The successive rare earths doping leads to substantial changes of the spectral positions due to the up-conversion processes. In the singly (Er{sup 3+}) doped sample, following the time resolved spectrum and decay curves, there are two different types of emissions: at 660 nm and at shorter wavelengths (below 640 nm) the red emission's lifetime is ten times longer than at shorter wavelengths. The singly doped sample shows unclear temperature-dependence of luminescence with lifetime at 550 nm (the longest at 100 K, similarly at 6 K and 300 K) and achieved luminous efficacy 73.5 lm/W.

  15. Use of rare earth oxides as tracers to identify sediment source areas for agricultural hillslopes

    Directory of Open Access Journals (Sweden)

    C. Deasy

    2010-11-01

    Full Text Available Understanding sediment sources is essential to enable more effective targeting of in-field mitigation approaches to reduce diffuse pollution from agricultural land. In this paper we report on the application of rare earth element oxides to arable soils at hillslope scale in order to determine sediment source areas and their relative importance, using a non-intrusive method of surface spraying. Runoff, sediments and rare earth elements lost from four arable hillslope lengths at a site in the UK with clay soils were monitored from three rainfall events after tracer application. Measured erosion rates were low, reflecting the typical event conditions occurring at the site, and less than 1% of the applied REO tracers were recovered, which is consistent with the results of comparable studies. Tracer recovery at the base of the hillslope was able to indicate the relative importance of different hillslope sediment source areas, which were found to be consistent between events. The principal source of eroded sediments was the upslope area, implying that the wheel tracks were principally conduits for sediment transport, and not highly active sites of erosion. Mitigation treatments for sediment losses from arable hillslopes should therefore focus on methodologies for trapping mobile sediments within wheel track areas through increasing surface roughness or reducing the connectivity of sediment transport processes.

  16. Synthesis of NiO–Al{sub 2}O{sub 3} nanocomposites by sol–gel process and their use as catalyst for the oxidation of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Sudheer Kumar; Jeevanandam, P., E-mail: jeevafcy@iitr.ac.in

    2014-10-15

    Highlights: • NiO–Al{sub 2}O{sub 3} nanocomposites have been synthesized by sol–gel method. • The synthesis takes shorter time (∼48 h) compared to reported methods. • The nanocomposites show high catalytic activity for the oxidation of styrene compared to NiO. - Abstract: NiO–Al{sub 2}O{sub 3} nanocomposites were prepared by sol–gel method. The synthesized nanocomposites were characterized by X-ray diffraction, FT-IR spectroscopy, Raman spectroscopy, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy, diffuse reflectance spectroscopy and magnetic measurements. XRD results indicate that the NiO–Al{sub 2}O{sub 3} nanocomposites consist of small NiO crystallites (mean size ∼2.6 nm). TEM results indicate uniform distribution of NiO nanoparticles in the Al{sub 2}O{sub 3} matrix. Increase in the band gap of NiO in the nanocomposites compared to pure NiO nanoparticles is observed and the nanocomposites show superparamagnetic behaviour. The NiO–Al{sub 2}O{sub 3} nanocomposites show high catalytic activity for the oxidation of styrene using tert-butyl hydroperoxide as the oxidant and also show higher selectivity for styrene oxide with higher total conversion compared to pure NiO nanoparticles.

  17. Studies of gel metal-oxide composite samples as filling materials for W-188/Re-188 generator column

    Czech Academy of Sciences Publication Activity Database

    Iller, E.; Polkowska-Motrenko, H.; Lada, W.; Wawszczak, D.; Sypula, M.; Doner, K.; Konior, M.; Milczarek, J.; Zoladek, J.; Ráliš, Jan

    2009-01-01

    Roč. 281, č. 1 (2009), s. 83-86 ISSN 0236-5731. [9th International Conference on Nuclear Analytical Methods in the Life Sciences. Lisbon, 07.09.2008-12.09.2008] Institutional research plan: CEZ:AV0Z10480505 Keywords : W-188/Re-188 generator * W-Zr gels * W-Zr composites * Sol-gel process Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.631, year: 2009

  18. Thin film transistor performance of amorphous indium–zinc oxide semiconductor thin film prepared by ultraviolet photoassisted sol–gel processing

    Science.gov (United States)

    Kodzasa, Takehito; Nobeshima, Taiki; Kuribara, Kazunori; Yoshida, Manabu

    2018-05-01

    We have fabricated an amorphous indium–zinc oxide (IZO, In/Zn = 3/1) semiconductor thin-film transistor (AOS-TFT) by the sol–gel technique using ultraviolet (UV) photoirradiation and post-treatment in high-pressure O2 at 200 °C. The obtained TFT showed a hole carrier mobility of 0.02 cm2 V‑1 s‑1 and an on/off current ratio of 106. UV photoirradiation leads to the decomposition of the organic agents and hydroxide group in the IZO gel film. Furthermore, the post-treatment annealing at a high O2 pressure of more than 0.6 MPa leads to the filling of the oxygen vacancies in a poor metal–oxygen network in the IZO film.

  19. Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid: a coating for hydroxyapatite growth.

    Science.gov (United States)

    Arnould, C; Volcke, C; Lamarque, C; Thiry, P A; Delhalle, J; Mekhalif, Z

    2009-08-15

    Titanium and its alloys are widely used in surgical implants due to their appropriate properties like corrosion resistance, biocompatibility, and load bearing. Unfortunately when metals are used for orthopedic and dental implants there is the possibility of loosening over a long period of time. Surface modification is a good way to counter this problem. A thin tantalum oxide layer obtained by layer-by-layer (LBL) sol-gel deposition on top of a titanium surface is expected to improve biocorrosion resistance in the body fluid, biocompatibility, and radio-opacity. This elaboration step is followed by a modification of the tantalum oxide surface with an organodiphosphonic acid self-assembled monolayer, capable of chemically binding to the oxide surface, and also improving hydroxyapatite growth. The different steps of this proposed process are characterized by surfaces techniques like contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM).

  20. Cerium concentrate and mixed rare earth chloride by the oxidative decomposition of bastnaesite in molten sodium hydroxide

    International Nuclear Information System (INIS)

    Iijima, Toshio; Kato, Kazuhiro; Kuno, Toyohiko; Okuwaki, Akitsugu; Umetsu, Yoshiaki; Okabe, Taijiro

    1993-01-01

    Bastnaesite was treated in molten NaOH at 623-777 K for 10-60 min under atmosphere. Cerium-(III) in the ore was easily oxidized 95% or more within 30 min to give an oxidation product composed of solid solutions of CeO 2 -rich and CeO 2 -lean phases and Ce-free rare earth oxide phase. Simultaneously fluoride ion was removed 97% or more. Cerium concentrate was prepared from the oxidation product by leaching with 0.1-3 M HCl solution. The yield of cerium concentrate and the CeO 2 content reached 55-57% and 70-72%, respectively. Mixed rare earth chloride is composed of about 90% rare earth chloride and 10% alkaline earth chloride, and the contents of CeCl 3 , LaCl 3 , NdCl 3 , and PrCl 3 are 11.5, 58.5, 14.4, and 5.4%, respectively. The particle size of resulting cerium concentrate was fairly uniform and about 0.1 μm

  1. Study on recovering directly the commercial cerium oxide and total of residue rare earths from Dongpao bastnasite concentrate

    International Nuclear Information System (INIS)

    Nguyen Trong Hung; Nguyen Thanh Chung; Luu Xuan Dinh

    2003-01-01

    A technology for decomposition roasting and sequential leaching processes of Dong Pao bastnasite concentrate to recover directly commercial cerium oxide and total of residue rare earth elements from the leaching solution of the roasted product have been investigated. The bastnasite concentrate is initially roasted at temperature range of 600 - 650 degC and for time of 4 hrs in order to decompose and convert the hardly soluble carbonate forms of ore into easily soluble oxide. The roasted solid is then leached with sulfuric acid solution of 6N at 60 degC for 4 hrs to convert rare earths in oxide and fluoride form into rare earth sulfate. The recovery yield of rare earths of these stages is more than 95%. The attention has especially been paid on recovering directly the commercial cerium oxide and total of residue rare earth element from the above leaching solution. Complex ions of CeSO 4 2+ , Ce(SO 4 ) 2 , Ce(SO 4 ) 3 2- and Ce(SO 4 ) 4 4- exist in aqueous solution of cerium (IV) sulfate. Based on the property, the method of ion - sieve with DOWEX cation resin column has been applied to estimating separation of the ceric complex anions from Ln(III). The survey showed that most of the ceric complex anions are separated from total of residue rare earths. The latter which are absorbed in the cation column are recovered by elution of HCl of 4N. The recovery yield of cerium can only be reached 20% but the purity of that is very high, can be reached 99.6%. About 5 kg of CeO 2 of high grade and 5 kg of TREO of commercial specification have been produced. (author)

  2. Photo catalytic Degradation of Organic Dye by Sol-Gel-Derived Gallium-Doped Anatase Titanium Oxide Nanoparticles for Environmental Remediation

    International Nuclear Information System (INIS)

    Arghya, N.B.; Sang, W.J.; Bong-Ki, M.

    2012-01-01

    Photo catalytic degradation of toxic organic chemicals is considered to be the most efficient green method for surface water treatment. We have reported the sol-gel synthesis of Gadoped anatase TiO 2 nanoparticles and the photo catalytic oxidation of organic dye into nontoxic inorganic products under UV irradiation. Photodegradation experiments show very good photo catalytic activity of Ga-doped TiO 2 nanoparticles with almost 90% degradation efficiency within 3 hrs of UV irradiation, which is faster than the undoped samples. Doping levels created within the bandgap of TiO 2 act as trapping centers to suppress the photo generated electron-hole recombination for proper and timely utilization of charge carriers for the generation of strong oxidizing radicals to degrade the organic dye. Photo catalytic degradation is found to follow the pseudo-first-order kinetics with the apparent 1 st-order rate constant around 1.3 x 10 -2 min -1 . The cost-effective, sol-gel-derived TiO 2 : Ga nanoparticles can be used efficiently for light-assisted oxidation of toxic organic molecules in the surface water for environmental remediation.

  3. Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor

    Science.gov (United States)

    Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.

    2017-02-01

    In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.

  4. Physical and spectroscopic studies of Cr{sup 3+} doped mixed alkaline earth oxide borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Samdani, E-mail: samdanimohd82@gmail.com [Department of Engineering, Salalah College of Technology, Salalah (Oman); Ramadevudu, G. [Department of Physics, Vasavi College of Engineering, Ibrahimbagh, Hyderabad 500031, Telangana (India); Chary, M. Narasimha; Shareefuddin, Md. [Department of Physics, Osmania University, Hyderabad 500007, Telangana (India)

    2017-01-15

    A series of mixed alkaline earth oxide glasses xMgO-(30-x)BaO-69.8B{sub 2}O{sub 3}-0.2Cr{sub 2}O{sub 3} were prepared and studied using electron paramagnetic resonance (EPR), optical absorption, Raman spectroscopy and photoluminescence experimental techniques. The optical absorption spectra revealed the characteristic octahedral symmetry of Cr{sup 3+}ions through three broad band transitions {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 1g}(F), and {sup 4}A{sub 2g}(F)→ {sup 2}T{sub 1g}(P). The crystal field (Dq) and Racah parameters (B and C), the optical band gap and Urbach energies of the glass samples were also reported along with the physical properties like density and molar volume. In the EPR spectra three resonance signals corresponding to Cr3+ ions were observed. A broad signal with g = 5.110 was observed which belongs to the isolated Cr3+ centers localized in the strongly distorted octahedral (rhombic) sites of the glass network, a narrow signal (g = 1.960) corresponding to the Cr{sup 3+} centers in the weekly distorted (cubic) sites of the glass network, and a third very broad signal (g = 2.210) was also observed corresponding to Cr{sup 3+}- Cr{sup 3+} paired centers coupled by magnetic dipolar interaction. Another resonance signal with effective value g ≈ 4.220 was attributed to Fe{sup 3+} ions impurity. The number of spins (N) participating in the resonance and susceptibility (χ) values at room temperature were reported and their values varied in a non-linear manner with the composition exhibiting mixed oxide effect. The estimated molecular bonding coefficients (α) values indicated stronger ionic contribution. The Raman spectral investigations were carried out. The Photoluminescence spectra bands near 690 and 750 nm correspond to the Cr{sup 3+} centers in high and low field sites respectively. - Highlights: • Spectroscopic studies were made on alkaline earth borate glasses. • Three resonance signals

  5. Preparation and characterization of Pt Sn / C-rare earth and PtRu / C-rare earth using an alcohol reduction process for ethanol electron-oxidation

    International Nuclear Information System (INIS)

    Rodrigues, Rita Maria de Sousa

    2011-01-01

    The electro catalyst PtRu / C-rare earth and PtSn/C-rare earth (20 wt%) were prepared by alcohol reduction method using H 2 PtCl 6 .6H 2 O Ru Cl xH 2 O, SnCl 2 .2H 2 O as a source of metals 85 % Vulcan - 15 % rare earth as a support and, finally, ethylene glycol as reducing agent. The electrocatalysts were characterized physically by X-ray diffraction (XRD), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). Analyses by EDX showed that the atomic ratios of different electrocatalysts, prepared by alcohol reduction method are similar to the nominal starting compositions indicating that this methodology is promising for the preparation of electrocatalysts. In all the XRD patterns for the prepared electrocatalysts there is a broad peak at about 2θ = 25 o , which is associated with the carbon support and four additional diffraction peaks at approximately 2θ = 40 o , 47 o , 67 o e 82 o , which in turn are associated with the plans (111), (200), (220) e (311), respectively, of face-centered cubic structure (FCC) platinum. The results of X-ray diffraction also showed average crystallite sizes between 2.0 and 4.0 nm for PtSn e 2,0 a 3,0 para PtRu. The studies for the electrochemical oxidation of ethanol in acid medium were carried out using the technique of chronoamperometry in a solution 0,5 mol.L-1 H 2 SO 4 , + 1,0 mol.L-1 de C 2 H 5 OH. The polarization curves obtained in the fuel cell unit, powered directly by ethanol, are in agreement with the results of voltammetry and chronoamperometry noting the beneficial effect of rare earths in the preparation of electrocatalysts and attesting that the electrocatalysts PtSn/C are more effective than PtRu/C for the oxidation of ethanol.

  6. Oxidizing gel formulation for nuclear decontamination: rheological and acidic properties of the organic matrix and its ozonolysis; Formulation d'un gel oxydant a matrice organique applicable a la decontamination nucleaire: proprietes rheologiques, acido-basiques et ozonolyse de la matrice

    Energy Technology Data Exchange (ETDEWEB)

    Rouy, E

    2003-10-15

    An acidic and oxidizing gel was formulated with a purely organic matrix, xanthan gum, at low concentrations (1 to 2 wt %). This polymer gel was investigated in various media (aqueous, acidic and ceric) by means of rheology: shear thinning behaviour, thixotropy, yield stress... Evidences of unexpected rheological properties in highly concentrated media show that xanthan is quite convenient for industrial projection of this type of gel on metallic walls in nuclear plants, notwithstanding its time-limited resistance to oxidation (about a few hours). Complexation mechanisms between ceric species and polar sites of the polymer led us to characterise acidic properties of our xanthan sample by potentiometric titration and {sup 1}H NMR techniques. The matrix was finally treated by ozonolysis to suppress organic residues, as required to handle nuclear wastes. In acidic medium, ozonolysis of the gel was achieved successfully while in acidic and ceric medium this process showed limited efficiency, needing further investigation to be clarified. (author)

  7. Oxidizing gel formulation for nuclear decontamination: rheological and acidic properties of the organic matrix and its ozonolysis; Formulation d'un gel oxydant a matrice organique applicable a la decontamination nucleaire: proprietes rheologiques, acido-basiques et ozonolyse de la matrice

    Energy Technology Data Exchange (ETDEWEB)

    Rouy, E

    2003-10-15

    An acidic and oxidizing gel was formulated with a purely organic matrix, xanthan gum, at low concentrations (1 to 2 wt %). This polymer gel was investigated in various media (aqueous, acidic and ceric) by means of rheology: shear thinning behaviour, thixotropy, yield stress... Evidences of unexpected rheological properties in highly concentrated media show that xanthan is quite convenient for industrial projection of this type of gel on metallic walls in nuclear plants, notwithstanding its time-limited resistance to oxidation (about a few hours). Complexation mechanisms between ceric species and polar sites of the polymer led us to characterise acidic properties of our xanthan sample by potentiometric titration and {sup 1}H NMR techniques. The matrix was finally treated by ozonolysis to suppress organic residues, as required to handle nuclear wastes. In acidic medium, ozonolysis of the gel was achieved successfully while in acidic and ceric medium this process showed limited efficiency, needing further investigation to be clarified. (author)

  8. Preparation of aluminum doped zinc oxide films with low resistivity and outstanding transparency by a sol–gel method for potential applications in perovskite solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xingyue; Shen, Heping; Zhou, Chen [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China); Lin, Shiwei [Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228 (China); Li, Xin [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China); Zhao, Xiaochong [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China); Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907 (China); Deng, Xiangyun [Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228 (China); College of Physics and Electronic Information, Tianjin, Normal University, Tianjin 300387 (China); Li, Jianbao [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China); Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228 (China); Lin, Hong [State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 10084 (China)

    2016-04-30

    Highly transparent and conductive aluminum doped zinc oxide (AZO) films were prepared by sol–gel method on the glass substrates. The effects of doping concentration, annealing temperature and facing direction during annealing on the structural, electrical and optical properties of AZO films were studied by performing a series of characterizations including X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis spectrophotometry, four-point probe method and Hall effect measurement system. The results showed that the AZO films were wurtzite crystallized with c-axis preferred orientation. A minimum resistivity of 1.8 × 10{sup −3} Ω cm and a transmittance above 90% were obtained for the film doped with 1.5 at.% aluminum, annealed at 510 °C and faced-down in the oven, which was among the best performance of the currently reported works based on sol–gel process. Moreover, energy level analysis revealed that the AZO film has a work function of 4.3 eV, exhibiting great potential in perovskite solar cell applications. - Highlights: • Highly transparent and conductive AZO films were prepared by sol–gel based process. • Different facing directions during annealing had effects on the carrier mobility. • Less aluminum ions at the grain boundary would favor the carrier transport. • The potential of AZO film in the perovskite solar cell application was discussed.

  9. Contribution towards ALD and MOCVD of rare earth oxides and hafnium oxide. From precursor evaluation to process development and thin film characterization

    International Nuclear Information System (INIS)

    Xu, Ke

    2013-01-01

    This PhD thesis is consisted of two major parts: precursor development for ALD and MOCVD applications as well as thin film deposition using ALD and MOCVD with self developed precursors. The first part of this work presents the synthesis, characterization and detailed thermal property investigations of different novel group IV and rare earth precursor classes (guandinate, guanidine and ketoiminate). The second part of this work presents the ALD and MOCVD depositions using various guanidinate precursors for forming corresponding metal oxide thin films. The overall motivation of this work is to fulfill the lack of precursors of rare earth and group IV elements for ALD and MOCVD applications that satisfy the stringent requirements for the modern microelectronic and optoelectronic technologies. The aspect of the precursor engineering part is focusing on influence of ligand sphere on precursors' chemical and thermal properties. In this way, we successfully introduced guanidine and ketoiminate as potential ligands for the precursor design. The thin film deposition part of this work is ALD of rare earth oxides and group IV oxides employing literature known compounds which were previously developed in our research group. The main focus was dedicated to the process optimization, the characterization of the structural, morphological, compositional and functional properties of the deposited thin films. Certain film properties were discussed comparatively with the corresponding thin films deposited with literature known precursors. It was already shortly demonstrated in Chapter 6 that the guanidine ligand showed potential interest as suitable ligand for precursor engineering. This titan guanidine precursor [Ti(NC(NMe 2 ) 2 ) 4 ] (GD1) possesses higher thermal stability compared to its parent amide, [Ti(NMe 2 ) 4 ], while reactivity against water is not significantly affected. It could be very interesting to transfer this ligand for the precursor development of rare earth

  10. Nanocomposites of graphene oxide and upconversion rare-earth nanocrystals with superior optical limiting performance

    KAUST Repository

    Wei, Wei

    2012-04-20

    Upconversion rare-earth nanomaterials (URENs) possess highly efficient near-infrared (NIR), e.g., 980 nm, laser absorption and unique energy upconversion capabilities. On the other hand, graphene and its derivatives, such as graphene oxide (GO), show excellent performance in optical limiting (OL); however, the wavelengths of currently used lasers for OL studies mainly focus on either 532 or 1064 nm. To design new-generation OL materials working at other optical regions, such as the NIR, a novel nanocomposites, GO-URENs, which combines the advantages of both its components, is synthesized by a one-step chemical reaction. Transmission electron microscopy, X-ray diffraction, infrared spectroscopy, and fluorescence studies prove that the α-phase URENs uniformly attach on the GO surface via covalent chemical bonding, which assures highly efficient energy transfer between URENs and GO, and also accounts for the significantly improved OL performance compared to either GO or URENs. The superior OL effect is also observed in the proof-of-concept thin-film product, suggesting immediate applications in making high-performance laser-protecting products and optoelectronic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of rare earth oxide additive on surface and tribological properties of polyimide composites

    Science.gov (United States)

    Pan, Zihe; Wang, Tianchang; Chen, Li; Idziak, Stefan; Huang, Zhaohui; Zhao, Boxin

    2017-09-01

    Rare earth oxide La2O3 microparticles-reinforced polyimide (PI) composites (La-PI-Cs) were fabricated, aiming to improve the tribological property of PI. Surface roughness, surface composition, bulk structure, friction force (Ff) and coefficient of friction (COF) at macro/micro preload, and anti-wear performances of La-PI-Cs were studied and compared with neat PI. With La2O3 microparticles, La-PI-Cs showed larger surface roughness, lower surface energy, and higher hydrophobicity than neat PI, and displayed beneficial layered structure different from the compact structure of PI. Owing to these advantages, La-PI-Cs were found to show a 70% reduction in Ff and COF, and a 30% reduction in wear rate, indicating significantly lowered friction and enhanced anti-wear properties after adding La2O3 microparticles. Our research findings demonstrated an easy and low cost method to fabricate polymer composites with low friction and high wear resistance, and help meet the demanding of polymer composites with high tribological performances in broaden applications.

  12. OXIDATIVE DEHYDROGENATION OF PROPANE BY RARE EARTH PHOSPHATES SUPPORTED ON AL-PILC

    Directory of Open Access Journals (Sweden)

    Carolina De Los Santos

    2012-12-01

    Full Text Available Catalytic activity in propane oxidative dehydrogenation of rare earth phosphates LnPO4 (where Ln = La, Ce, Pr, Nd, Sm and of the same supported by an aluminum pillared clay, of high specific surface area, is presented. The solids were characterized by TGA, XRD, nitrogen adsorption and immediate analysis after reaction in order to determine eventual carbon formation. Catalytic assays were performed at temperatures in the range 400oC-600oC, the reaction mixture was C3H8/O2/Ar = 10/10/80. All the catalysts were active. The reaction products were H2, CO, CO2, CH4, C2H4 and C3H6 and there were no organic oxygenated compounds detected. Although all the investigated systems were active, the Al-PILC supported catalysts presented a higher activity than the bulk materials. In this context, the samarium supported catalyst showed a propene yield increase from 4% to 10% compared with bulk samarium phosphate at 600°C. This effect was attributed to the increase in the specific surface area.

  13. Effects of rare earth oxide addition on NdFeB magnets

    International Nuclear Information System (INIS)

    Ohashi, K.; Yokoyama, T.; Tawara, Y.

    1988-01-01

    The effects of addition of rare-earth oxides on the magnetic properties of Nd-Fe-B sintered magnets are studied. The addition of Dy 2 O 3 and Tb 4 O 7 leads to an increase in intrinsic coercivity. For addition of Dy 2 O 3 , the optimum conditions for powder mixing and the optimum Dy 2 O 3 particle size were determined. A mixing time of more than 10 minutes, and a Dy 2 O 3 particle size of less than 3 μm, are required to obtain a high intrinsic coercivity. EPMA measurements of NdFeBAl magnets with Dy 2 O 3 added reveal an inhomogeneous distribution of Dy in the Nd 2 Fe 14 B matrix: the material is Dy-rich near grain boundaries, but Dy-poor within the matrix. The appearance of such an inhomogeneous distribution of Dy is attributed to the reduction of Dy 2 O 3 in the Nd-rich phases, followed by diffusion of the resulting Dy atoms into the matrix

  14. Diffusion of Oxygen in Alginate Gels Related to the Kinetics of Methanol Oxidation by Immobilized Hansenula polymorpha Cells

    NARCIS (Netherlands)

    Hiemstra, Harry; Dijkhuizen, Lubbert; Harder, Willem

    1983-01-01

    In the yeast Hansenula polymorpha an oxygen-requiring enzyme, alcohol oxidase, catalyzes the conversion of methanol into formaldehyde. After growth on methanol cells of the organism were harvested and entrapped in barium-alginate gels. The diffusion of oxygen towards these cells is seriously

  15. Effect of nano-particulate sol-gel coatings on the oxidation resistance of high-strength steel alloys during the press-hardening process

    Energy Technology Data Exchange (ETDEWEB)

    Yekehtaz, M.; Benfer, S.; Fuerbeth, W. [DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany); Klesen, C.; Bleck, W. [Institut fuer Eisenhuettenkunde der RWTH Aachen, Intzestrasse 1, D-52072 Aachen (Germany)

    2012-10-15

    The need for lighter constructional materials in automotive industries has increased the use of high-strength steel alloys. To enhance passenger's safety press hardening may be applied to steel parts. However, as the steel parts are heated up to 950 C during this process they have to be protected by some kind of coating against the intense oxide formation usually taking place. As the coating systems used so far all have certain disadvantages in this work the ability of nano-particulate thin coatings obtained by the sol-gel process to improve the oxidation resistance of 22MnB5 steel is investigated. The coatings obtained from three sols containing lithium aluminum silicate and potassium aluminum silicate showed the best performance against oxidation. The structural properties of the coating materials were characterized using different methods like XRD and differential thermal analysis. Comparison of the oxidation rate constants proved the ability of the coatings to protect against oxidation at temperatures up to 800 C. Press-hardening experiments in combination with investigations on the thermal shock resistance of the coated samples also showed the ability of the coatings to stay intact during press hardening with only slight spalling of the coatings in the bending areas. The absence of any secondary intermetallic phases and layer residues during laser beam welding experiments on coated samples proves the suitability of the nano-particulate coatings for further industrial processing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. One step aqueous solution preparation of nanosize iron-doped tin oxide from SnO{sub 2}.xH{sub 2}O gel

    Energy Technology Data Exchange (ETDEWEB)

    Melghit, Khaled [Chemistry Department, College of Science, P.O. Box 36, Al-Khodh 123, Sultan Qaboos University (Oman)]. E-mail: melghit@squ.edu.om; Bouziane, Khalid [Physics Department, College of Science, P.O. Box 36, Al-Khodh 123, Sultan Qaboos University (Oman)

    2006-03-15

    Nanosized iron-doped tin oxide solid solution was prepared by mixing tin oxide gel SnO{sub 2}.xH{sub 2}O with a boiling solution of iron nitrate. The XRD data of the as-prepared and annealed sample at 773 K show that the patterns are indexed to the rutile phase without any trace of an extra phase. SEM and TEM results performed on different selected area of the samples reveal a homogeneous composition of 8 at.% of Fe content and a size of about 2 nm of the particles. The particles size was found to increase slightly with temperature; about 7 nm after 24 h at 773 K. Structural and magnetic results seem to indicate that Fe{sup 3+} substitute for Sn{sup 4+} on the as-prepared sample. The system presents some weak ferromagnetic character at room temperature.

  17. Pulsed ultrasound associated with gold nanoparticle gel reduces oxidative stress parameters and expression of pro-inflammatory molecules in an animal model of muscle injury

    Directory of Open Access Journals (Sweden)

    Victor Eduardo G

    2012-03-01

    Full Text Available Abstract Background Nanogold has been investigated in a wide variety of biomedical applications because of the anti-inflammatory properties. The purpose of this study was to evaluate the effects of TPU (Therapeutic Pulsed Ultrasound with gold nanoparticles (GNP on oxidative stress parameters and the expression of pro-inflammatory molecules after traumatic muscle injury. Materials and methods Animals were divided in nine groups: sham (uninjured muscle; muscle injury without treatment; muscle injury + DMSO; muscle injury + GNP; muscle injury + DMSO + GNP; muscle injury + TPU; muscle injury + TPU + DMSO; muscle injury + TPU + GNP; muscle injury + TPU + DMSO + GNP. The ROS production was determined by concentration of superoxide anion, modulation of antioxidant defenses was determined by the activity of superoxide dismutase, catalase and glutathione peroxidase enzymes, oxidative damage determined by formation of thiobarbituric acid-reactive substance and protein carbonyls. The levels of interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α were measured as inflammatory parameters. Results Compared to muscle injury without treatment group, the muscle injury + TPU + DMSO + GNP gel group promoted a significant decrease in superoxide anion production and lipid peroxidation levels (p Conclusions Our results suggest that TPU + DMSO + GNP gel presents beneficial effects on the muscular healing process, inducing a reduction in the production of ROS and also the expression of pro-inflammatory molecules.

  18. One-pot synthesis of a graphene oxide coated with an imprinted sol–gel for use in electrochemical sensing of paracetamole

    International Nuclear Information System (INIS)

    Luo, Jing; Cong, Jiaojiao; Fang, Ruixue; Fei, Xiaoma; Liu, Xiaoya

    2014-01-01

    A route is described for the preparation of a composite consisting of graphene oxide and a molecularly imprinted sol–gel polymer (GO/MIPs) through one-pot room temperature polymerization in aqueous solution. The material was obtained by mixing graphene oxide with the monomers (phenyltriethoxysilane and tetramethoxysilane) and the template paracetamole, followed by sol–gel copolymerization and extraction. The monomer and template concentrations and the incubation time were optimized. The composite was characterized by FTIR, TGA, XRD, Raman spectroscopy and SEM. It was then deposited as a thin film acting as a molecular recognition element on a glassy carbon electrode to obtain an electrochemical sensor for paracetamole. The electrode displayed an excellent recognition capacity toward paracetamole compared to its analogs. The peak current is linearly proportional to the concentration of paracetamole in the 0.1 μM to 80 μM range, and the detection limit is 20 nM (at an SNR of 3). Hence, this electrode possesses a wider response range and lower detection limit compared to most previously reported electrochemical sensors for paracetamole. It also exhibits excellent stability and has been successfully used to determine paracetamole in tablets and spiked human urine samples. (author)

  19. Characteristics of the behavior of rare-earth oxides and composites on their base by charged particles and neutrons irradiated

    International Nuclear Information System (INIS)

    Tuseev, T.; Aksenova, T.I.; Berdauletov, A.K.

    2000-01-01

    In this work the results of comparative investigation of adsorption curves versus REM order number (La, Ce, Nd, Pr, Gd) and dose neutron irradiation are presented. It is discovered that the original REM oxides have high adsorption capacity both for donor gases and for acceptor ones. The adsorption capacity for oxygen and hydrogen becomes lower when the REM order number is higher, but it is contrary for water molecules. The obtained results showed that adsorption properties of REM oxides were changing on identical laws. But oxides of metals, having anomalous properties (variable valency, high cross-section capture) revealed especial adsorption properties under irradiation. In the time of consideration of possible mechanism of radiation - stimulated gas adsorption on oxide surface it is necessary to take in attention both the formation of radiation defects in crystal lattice and the characteristics of electron structure and presence of 4 f - cover in rare-earth metals

  20. Chlorination of UO2, PuO2, and rare-earth oxides using ZrCl4

    International Nuclear Information System (INIS)

    Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake

    2001-01-01

    A new chlorination method using ZrCl 4 , which has a high reactivity with oxygen, has been investigated for more efficient oxide treatment. After actinide oxides are chlorinated and dissolved in a molten salt bath, actinide metals can be selectively collected using the electrorefining process. This process is well suited for pyrochemical reprocessing of metallic fuels. In LiCl-KCI eutectic melts, rare-earth oxides (Y 2 O 3 , La 2 O 3 , CeO 2 , and Nd 2 O 3 ) and actinide oxides (UO 2 and PuO 2 ) were chlorinated by adding ZrCl 4 . As a result, rare-earth and actinide elements were dissolved into the salt as trivalent ions and ZrO 2 was precipitated. When an excess of ZrCI 4 was added, oxides in powder form were completely chlorinated in five hours. It was demonstrated that the ZrCI 4 chlorination method, free from corrosive gas such as chlorine, was very simple and useful. (author)

  1. Synthesis and characterization of rare-earth oxide transition-metal arsenides and selenides

    International Nuclear Information System (INIS)

    Peschke, Simon Friedrich

    2017-01-01

    The present thesis includes two different quaternary systems that have been studied extensively. On the one hand, several samples of the REFeAsO_1_-_xF_x family of iron-based superconductors were prepared using a novel solid state metathesis reaction, which also provided a possibility to prepare late rare-earth compounds of this family at ambient pressure. Comparison of structural and physical properties of those samples with samples from conventional solid state and high pressure syntheses revealed both, commonalities as well as striking differences. The observations gave reason to the conclusion that superconducting properties strongly depend, beside electronic infl uence, on the structural parameters. On the other hand, the quaternary system RE-T-Se-O with T = Ti-Mn was investigated using a NaI/KI flux mediated synthesis route. It has been shown that oC -La_2O_2MnSe_2 is exclusively accessible in su fficient purity by the use of a fl ux material. Therefore, further syntheses in this quaternary system were performed by a flux mediated synthesis route leading to a large amount of new materials. Among them, a new polymorph mC-La_2O_2MnSe_2 which forms, together with La_4MnSe_3O_4 and La_6MnSe_4O_6, the series La_2_n_+_2MnSe_n_+_2O_2_n_+_2. In addition, the alternative preparation method also enabled a large scale synthesis of the first examples of rare-earth chromium oxyselenides with chromium in the oxidation state +II, namely RE_2CrSe_2O_2 (RE = La-Nd), which opened the door to study their magnetism in detail by powder neutron diffraction and muon spin rotation techniques. Research into the La-V-Se-O system revealed the first fi ve quaternary compounds of this family with interesting magnetic properties including ferromagnetism, antiferromagnetism, metamagnetism and more complex behaviour. In addition, the crystal structure of two new quaternary titanium containing oxyselenides were identifi ed and revealed unique structural building blocks that have not been

  2. Effects of rare-earths additions on the breakdown of protective oxide scales in the presence of sulfur

    International Nuclear Information System (INIS)

    Srinivasan, V.; Goodman, D.E.

    1989-01-01

    Minor additions of rare-earths improve oxide scale adhesion in simple oxidation at high temperatures. The efficacy of such improvements and the role of such additions are not well understood in the presence of sulfur at 500-700 degrees C. Therefore, mixed gas corrosion tests were performed on model Fe-based alloys, with minor additions of rare-earths in an H 2 /H 2 S/H 2 O/Ar gas mixture at 700 degrees C up to 192 hours. The scale breakdown mechanisms were studied on preoxidized samples. The scales and the substrates were characterized by SEM/EDS, and scanning Auger microscopy (AES). The results are discussed

  3. Fish proteins as targets of ferrous-catalyzed oxidation: identification of protein carbonyls by fluorescent labeling on two-dimensional gels and MALDI-TOF/TOF mass spectrometry.

    Science.gov (United States)

    Pazos, Manuel; da Rocha, Angela Pereira; Roepstorff, Peter; Rogowska-Wrzesinska, Adelina

    2011-07-27

    Protein oxidation in fish meat is considered to affect negatively the muscle texture. An important source of free radicals taking part in this process is Fenton's reaction dependent on ferrous ions present in the tissue. The aim of this study was to investigate the susceptibility of cod muscle proteins in sarcoplasmic and myofibril fractions to in vitro metal-catalyzed oxidation and to point out protein candidates that might play a major role in the deterioration of fish quality. Extracted control proteins and proteins subjected to free radicals generated by Fe(II)/ascorbate mixture were labeled with fluorescein-5-thiosemicarbazide (FTSC) to tag carbonyl groups and separated by two-dimensional gel electrophoresis. Consecutive visualization of protein carbonyl levels by capturing the FTSC signal and total protein levels by capturing the SyproRuby staining signal allowed us to quantify the relative change in protein carbonyl levels corrected for changes in protein content. Proteins were identified using MALDI-TOF/TOF mass spectrometry and homology-based searches. The results show that freshly extracted cod muscle proteins exhibit a detectable carbonylation background and that the incubation with Fe(II)/ascorbate triggers a further oxidation of both sarcoplasmic and myofibril proteins. Different proteins exhibited various degrees of sensitivity to oxidation processes. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), nucleoside diphosphate kinase B (NDK), triosephosphate isomerase, phosphoglycerate mutase, lactate dehydrogenase, creatine kinase, and enolase were the sarcoplasmic proteins most vulnerable to ferrous-catalyzed oxidation. Moreover, NDK, phosphoglycerate mutase, and GAPDH were identified in several spots differing by their pI, and those forms showed different susceptibilities to metal-catalyzed oxidation, indicating that post-translational modifications may change the resistance of proteins to oxidative damage. The Fe(II)/ascorbate treatment significantly

  4. Design of Higher-k and More Stable Rare Earth Oxides as Gate Dielectrics for Advanced CMOS Devices

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2012-08-01

    Full Text Available High permittivity (k gate dielectric films are widely studied to substitute SiO2 as gate oxides to suppress the unacceptable gate leakage current when the traditional SiO2 gate oxide becomes ultrathin. For high-k gate oxides, several material properties are dominantly important. The first one, undoubtedly, is permittivity. It has been well studied by many groups in terms of how to obtain a higher permittivity for popular high-k oxides, like HfO2 and La2O3. The second one is crystallization behavior. Although it’s still under the debate whether an amorphous film is definitely better than ploy-crystallized oxide film as a gate oxide upon considering the crystal boundaries induced leakage current, the crystallization behavior should be well understood for a high-k gate oxide because it could also, to some degree, determine the permittivity of the high-k oxide. Finally, some high-k gate oxides, especially rare earth oxides (like La2O3, are not stable in air and very hygroscopic, forming hydroxide. This topic has been well investigated in over the years and significant progresses have been achieved. In this paper, I will intensively review the most recent progresses of the experimental and theoretical studies for preparing higher-k and more stable, in terms of hygroscopic tolerance and crystallization behavior, Hf- and La-based ternary high-k gate oxides.

  5. Radiochemical studies in chemical separation and spectrographic determination of rare earths in thorium oxide matrix (Preprint No. RA.06)

    International Nuclear Information System (INIS)

    Adya, V.C.; Dhawale, B.A.; Rajeshwari, B.; Bangia, T.R.; Sastry, M.D.

    1989-01-01

    A chemical separation procedure was standardised for the separation of traces of rare earths from ThO 2 matrix using HDEHP (Di 2-ethyl hexyl phosphoric acid). The studies were carried out using both nitric acid and hydrochloric acid medium in different concentrations. The extraction studies were also carried out using radioactive isotopes of rare earths viz. 141 Ce, 152-154 Eu, 153 Gd, 170 Tm etc. The extraction was effective in both media. In 0.1 M HDEHP/xylene and 3 M HNO 3 , Ce was partially extracted into organic phase. So HCl/xylene medium was chosen for extraction purposes. The recovery was confirmed by both gamma counting and emission spectropgraphic method. It was found to be quantitative within experimental error. The separation procedure development here was used for determination of rare earths in thorium oxide matrix by emission spectrographic method. (author)

  6. Zinc oxide for spintronic applications. Sol-gel processes and characterization; Zinkoxid fuer spintronische Anwendungen. Sol-Gel-Prozesse und Charakterisierung

    Energy Technology Data Exchange (ETDEWEB)

    Knies, Christoph

    2009-06-15

    Since the year 1999 published theoretical models predict for systems on the base of cobalt-doped zinc oxide the formation of a ferromagnetic order with Curie temperatures above room temperature. Essential condition for the occurrence of the ferromagnetic interaction is the presence of additional charge carriers, which interact with the states of the cobalt. The aim of this thesis represents the fabrication of cobalt-doped thin layers by means of the dip-coating procedure, the characterization of the properties of the matter, as well as the study of the effects arising by additional doping with flat dopants on the magnetic properties and the charge-carrier transport. The structural characterization by means of X-ray diffractometry hints on a one-phase nanocrystalline growth of the ZnO in wurtzite structure at a mean particle size between 20 and 30 nm. Cobalt-based heterophases can be observed for doping concentrations above 20%. Optical and magnetic-resonance studies let no doubt on the insertion of the Co in the 2+ charge state in the lattice place of the zinc in 3d{sup 7} configuration. In measurements of the optical absorption and the magnetic circular dichroism (MCD) the internal crystal-field transitions of the Co{sup 2+} in the visible and additionally in the near-infrared range are to be observed. Abroad absorption transition observed above 2.8 eV was assigned to a Co{sup 2+/+} charge-carrier transition. Both MCD and ESR measurements let to be concluded on a purely paramagnetic behaviour of the matter. By annealing of the samples in zinc vapor an interstitial insection of the zinc could be reached. The formation of a corresponding flat donor state can be controlled by observation of the absorption by free charge carriers in the near-infrared range. By this the essential conditions of the theoretical model named above can be considered as fulfilled. Actually in SQUID magnetization measurements characteristic hysteresis curves up to 300 K can be observed. The

  7. Characterization of Novel Gel Casting System to Make Complex Shaped Aluminum Oxide (Al2O3) Parts

    Science.gov (United States)

    2016-03-01

    iii Contents List of Figures iv List of Tables iv Acknowledgments v 1. Introduction 1 2. Methods and Materials 2 2.1 Materials 2 2.2 Gel...Anit Giri for their assistance with the differential scanning calorimetry and thermal gravimetric analysis and mass spectroscopy measurements...achieve reasonable casting behavior. 2. Methods and Materials 2.1 Materials Commercial samples of a co-polymer (1:1) of isobutylene and maleic

  8. Influence of structure of carrier (silica gel) on texture and catalytic properties of vanadium catalysts for sulfur dioxide oxidation

    International Nuclear Information System (INIS)

    Simonova, L.G.; Fenelonov, V.B.; Dzis'ko, V.A.; Noskova, S.P.; Kryukova, G.N.; Litvak, G.S.

    1982-01-01

    The influence of initial porous structure of a carrier-silica gel on texture and catalytic properties of vanadium catalysts is considered. It is shown that low thermal stability of the carrier results not only in considerable decrease of the catalyst surface during heat treatment but also in blocking part of active component in locked pores which accounts for the activity decrease in kinetic region and formation of active component forms that can not be extracted by acid

  9. Electrocatalytic Oxidation of Venlafaxine at a Multiwall Carbon Nanotubes-Ionic Liquid Gel Modified Glassy Carbon Electrode and Its Electrochemical Determination

    Directory of Open Access Journals (Sweden)

    Ling Ding

    2015-03-01

    Full Text Available The electrocatalytic oxidation of venlafaxine (VEN was investigated at a glassy carbon electrode (GCE, the modified electrode by a gel containing multiwall carbon nanotubes (MWCNTs and a room-temperature ionic liquid (RTIL, 1-butyl-3-methylimidazolium hexafluorophate (BMIMPF6 in 0.10 mol L−1 phosphate buffer solution (PBS, pH 6.8. It was found that an irreversible anodic oxidation peak of VEN with the peak potential (Epa as 0.780 V appeared at MWCNTs-RTIL/GCE. The electrode reaction process was a diffusion-controlled one and the electrochemical oxidation involved two electrons transferring and two protons participation. Furthermore, the charge-transfer coefficient (α, and the electrode reaction rate constant (kf of VEN were found to be 0.91 and 3.04×10−2 s−1, respectively. Under the optimized conditions, the electrocatalytic oxidation peak currents were linearly dependent on the concentration of VEN in the concentration range from 2.0×10−6 mol L−1 ~ 2.0×10−3 mol L−1 with the limit of detection (S / N = 3 as 1.69×10−6 mol L−1. The proposed method has been successfully applied in the electrochemical quantitative determination of VEN content in commercial venlafaxine hydrochloride capsules and the determination results could meet the requirement of the quantitative determination.

  10. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-01-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  11. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-05-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  12. UV induced thermoluminescence in rare earth oxide doped phosphors: possible use for UV dosimetry

    International Nuclear Information System (INIS)

    Yeh, S.-M.; Su, C.-S.

    1996-01-01

    UV induced thermoluminescent (TL) phenomena in some phosphors doped with rare earth oxides (Gd 2 O 3 :Eu, Gd 2 O 3 :Tb, Gd 2 O 3 :Dy and Y 2 O 3 :EU) have been investigated. Gd 2 O 3 :Eu and Y 2 O 3 :Eu have been found to possess prominent TL phenomena. A stable high temperature glow peak has been found at 345 o C in the cubic (C type) crystalline structure of Gd 2 O 3 :Eu. A more stable high temperature glow peak has also been found at about 380 o C in Y 2 O 3 :Eu. The sensitivity is high enough to be used as UV sensors. TL phenomena in Gd 2 O 3 :Tb and Gd 2 O 3 :Dy have also been investigated, but their TL intensities are much weaker than that of Gd 2 O 3 :Eu or Y 2 O 3 :Eu. On the other hand, all glow peaks of Gd 2 O 3 :Tb and Gd 2 O 3 :Dy are unstable at room temperature, therefore, Gd 2 O 3 :Tb and Gd 2 O 3 :Dy are not suitable for use as UV detectors. According to the above properties, the C type (cubic) crystalline structure of the Gd 2 O 3 :Eu phosphor seems to possess the potential of being the TL material for UV measurement. The position of the high temperature glow peak depends on the total UV exposure. It locates at about 380 o C when this phosphor was irradiated by 302 nm UV at 2.4 mJ.cm -2 exposure, but it shifts to 345 o C at 19.2 mJ.cm -2 or higher exposure. The response curves of this phosphor for various wavelengths, e.g. 253.7 nm, 302 nm, and 365 nm, were also measured. This phosphor is sensitive enough to measure background UV radiations, such as sunlight, bulb light etc. (author)

  13. Sol-gel processed thin-layer ruthenium oxide/carbon black supercapacitors: A revelation of the energy storage issues

    Energy Technology Data Exchange (ETDEWEB)

    Panic, V.V.; Dekanski, A.B.; Stevanovic, R.M. [Institute of Chemistry, Technology and Metallurgy, Department of Electrochemistry, University of Belgrade, Njegoseva 12, Belgrade 125213 (RS)

    2010-07-01

    Hydrous ruthenium oxide/carbon black nanocomposites were prepared by impregnation of the carbon blacks by differently aged inorganic RuO{sub 2} sols, i.e. of different particle size. Commercial Black Pearls 2000 {sup registered} (BP) and Vulcan {sup registered} XC-72 R (XC) carbon blacks were used. Capacitive properties of BP/RuO{sub 2} and XC/RuO{sub 2} composites were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in H{sub 2}SO{sub 4} solution. Capacitance values and capacitance distribution through the composite porous layer were found different if high- (BP) and low- (XC) surface-area carbons are used as supports. The aging time (particle size) of Ru oxide sol as well as the concentration of the oxide solid phase in the impregnating medium influenced the capacitive performance of prepared composites. While the capacitance of BP-supported oxide decreases with the aging time, the capacitive ability of XC-supported oxide is promoted with increasing oxide particle size. The increase in concentration of the oxide solid phase in the impregnating medium caused an improvement of charging/discharging characteristics due to pronounced pseudocapacitance contribution of the increasing amount of inserted oxide. The effects of these variables in the impregnation process on the energy storage capabilities of prepared nanocomposites are envisaged as a result of intrinsic way of population of the pores of carbon material by hydrous Ru oxide particle. (author)

  14. Influence of a sol–gel alumina coating on oxidation of X20CrMoV12-1 in air up to 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W., E-mail: wencke.schulz@bam.de [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany); Feigl, M. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany); Fügetechnik Berlin-Brandenburg GmbH, Kupferhammerweg 14-18, 16227 Eberswalde (Germany); Dörfel, I.; Nofz, M.; Kranzmann, A. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany)

    2013-07-31

    The need for a more efficient coal power plant generation (e.g. oxyfuel technology) results in modified process parameters and enhanced corrosion. To reach the necessary service life of high temperature parts protective coatings may be a sufficient technical solution. A modified Yoldas sol (Al{sub 2}O{sub 3} based) was used to coat X20CrMoV12-1 by spin coating. After appropriate heat treatments transition alumina coatings being about 400 nm thick were obtained. Oxidation studies were carried out in laboratory air at temperatures up to 650 °C for up to 500 h exposure time. In case of the uncoated sample a rough oxide layer formed on the surface and a remarkable weight gain (2.62 mg/cm{sup 2}) were detected. The sol–gel alumina layer (mainly δ-Al{sub 2}O{sub 3}) demonstrated a high protection, i.e. a very low weight gain (0.05 mg/cm{sup 2}). Diffusion of alloying elements into the coating was observed. No indication of spallation of the coating occurred. Local defects (2 μm–30 μm) in the coating led to the formation of iron-oxide islands. - Highlights: • Power plant steel X20 was coated with alumina by sol–gel method. • A 400 nm alumina layer provides good protection up to 650 °C. • Cr and Mn diffusion into Al{sub 2}O{sub 3} supports coating adhesion and protective ability. • Improvement of the coating process must be directed to avoidance of local defects.

  15. Influence of a sol–gel alumina coating on oxidation of X20CrMoV12-1 in air up to 650 °C

    International Nuclear Information System (INIS)

    Schulz, W.; Feigl, M.; Dörfel, I.; Nofz, M.; Kranzmann, A.

    2013-01-01

    The need for a more efficient coal power plant generation (e.g. oxyfuel technology) results in modified process parameters and enhanced corrosion. To reach the necessary service life of high temperature parts protective coatings may be a sufficient technical solution. A modified Yoldas sol (Al 2 O 3 based) was used to coat X20CrMoV12-1 by spin coating. After appropriate heat treatments transition alumina coatings being about 400 nm thick were obtained. Oxidation studies were carried out in laboratory air at temperatures up to 650 °C for up to 500 h exposure time. In case of the uncoated sample a rough oxide layer formed on the surface and a remarkable weight gain (2.62 mg/cm 2 ) were detected. The sol–gel alumina layer (mainly δ-Al 2 O 3 ) demonstrated a high protection, i.e. a very low weight gain (0.05 mg/cm 2 ). Diffusion of alloying elements into the coating was observed. No indication of spallation of the coating occurred. Local defects (2 μm–30 μm) in the coating led to the formation of iron-oxide islands. - Highlights: • Power plant steel X20 was coated with alumina by sol–gel method. • A 400 nm alumina layer provides good protection up to 650 °C. • Cr and Mn diffusion into Al 2 O 3 supports coating adhesion and protective ability. • Improvement of the coating process must be directed to avoidance of local defects

  16. A Glass-Ceramic Waste Forms for the Immobilization of Rare Earth Oxides from the Pyroprocessing Waste salt

    International Nuclear Information System (INIS)

    Ahn, Byung-Gil; Park, Hwan-Seo; Kim, Hwan-Young; Kim, In-Tae

    2008-01-01

    The fission product of rare earth (RE) oxide wastes are generates during the pyroprocess . Borosilicate glass or some ceramic materials such as monazite, apatite or sodium zirconium phosphate (NZP) have been a prospective host matrix through lots of experimental results. Silicate glasses have long been the preferred waste form for the immobilization of HLW. In immobilization of the RE oxides, the developed process on an industrial scale involves their incorporation into a glass matrix, by melting under 1200 ∼ 1300 .deg. C. Instead of the melting process, glass powder sintering is lower temperature (∼ 900 .deg. C) required for the process which implies less demanding conditions for the equipment and a less evaporation of volatile radionuclides. This study reports the behaviors, direct vitrification of RE oxides with glass frit, glass powder sintering of REceramic with glass frit, formation of RE-apatite (or REmonazite) ceramic according to reaction temperature, and the leach resistance of the solidified waste forms

  17. Sol-gel chemistry applied to the synthesis of polymetallic oxides including actinides reactivity and structure from solution to solid state

    International Nuclear Information System (INIS)

    Lemonnier, St.

    2006-02-01

    Minor actinides transmutation is studied at present in order to reduce the radiotoxicity of nuclear waste and the assessment of its technical feasibility requires specific designed materials. When considering americium, yttria stabilized zirconia (Am III YII Zriv)Or x is among the ceramic phases that one which presents the required physico-chemical properties. An innovative synthesis of this mixed oxide by sol-gel process is reported in this manuscript. The main aim of this work is to adjust the reactivity of the different metallic cations in aqueous media using complexing agent, in order to initiate a favourable interaction for a homogeneous elements repartition in the forming solid phase. The originality of the settled synthesis lies on an in-situ formation of a stable and monodisperse nano-particles dispersion in the presence of acetylacetone. The main reaction mechanisms have been identified: the sol stabilisation results from an original interaction between the three compounds (Zrly, trivalent cations and acetylacetone). The sol corresponds to a structured system at the nanometer scale for which zirconium and trivalent cations are homogeneously dispersed, preliminary to the sol-gel transition. Furthermore, preliminary studies were carried out with a view to developing materials. They have demonstrated that numerous innovative and potential applications can be developed by taking advantage of the direct and controlled formation of the sol and by adapting the sol-gel transition. The most illustrating result is the preparation of a sintered pellet with the composition Am0,13Zro,73Yo,0901,89 using this approach. (author)

  18. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Malek, M. F., E-mail: firz-solarzelle@yahoo.com [NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Alrokayan, Salman A. H., E-mail: dr.salman@alrokayan.com; Khan, Haseeb A., E-mail: khan-haseeb@yahoo.com [Chair of Targeting and Treatment of Cancer Using Nanoparticles, Deanship of Scientific Research, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M., E-mail: rusop@salam.uitm.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  19. Preparation of nickel oxide thin films at different annealing temperature by sol-gel spin coating method

    International Nuclear Information System (INIS)

    Abdullah, M. A. R.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-01-01

    Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.

  20. Synthesis by sol-gel and characterization of catalysts Ag/Al2O3- CeO2 for the elimination of nitric oxide

    International Nuclear Information System (INIS)

    Zayas R, M.L.

    2005-01-01

    The environmental pollution is one from the big problems to solve at the present time, because the quality of the alive beings life is affected. For such reason, more clean and economic technologies are required, that it conduces to develop new catalytic alternatives to diminish the nitrogen oxides that due to its chemical processes in the environment contribute considerably in the air pollution. The main objective of the present work, is the preparation and characterization of catalytic materials with base of silver supported in simple and mixed aluminium oxides (Al 2 O 3 ) and Cerium oxide (CeO 2 ), and its catalytic evaluation that through of the reduction of nitric oxide (NO) using hydrogen (H 2 ) as reducer agent. It was synthesized alumina (Al 2 O 3 ) and Cerium oxide (CeO 2 ) and mixed oxides (Al 2 O 3 - CeO 2 ), by the sol-gel method and the cerium oxide (CeO 2 ) by precipitation of the cerium nitrate (III) hexa hydrated. The oxides were stabilized thermally at 900 C by 5 hr. The catalysts were prepared by impregnation using silver nitrate (AgNO 3 ), the nominal concentration of Ag was of 5% in weight. The catalysts were reduced at 400 C by 2 hr, in hydrogen flow of 60 cc/min. The characterization of the catalytic materials was carried out through different techniques as: nitrogen adsorption to determine the surface area BET, scanning electron microscopy (SEM) to observe the final morphology of the catalysts, X-ray diffraction (XRD) to identify the crystalline phases of the catalytic materials, Infrared spectroscopy (DRIFT) to know the structural characterization of the catalysts, reduction to programmed temperature (TPR) to evidence the interaction metal-support. The catalytic properties of the catalysts were evaluated in the model reaction NO + H 2 , to determine the activity and selectivity. The results indicate that the preparation technique, the precursors and the thermal treatments that underwent these materials influence in the catalyst and by

  1. Zinc oxide films impurified with Ti and prepared by the Sol-gel method; Peliculas de oxido de zinc impurificadas con Ti y preparadas por el metodo Sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S. [ESFM-IPN, 07738 Mexico D.F. (Mexico); Cazares R, J.M.; Maldonado, A. [CINVESTAV-IPN, A.P. 14-740, 07000 Mexico D.F. (Mexico)

    2006-07-01

    Titanium-doped zinc oxide thin films have been prepared on silicon substrate using the Sol-Gel technique. The structural, morphology, electrical and optical properties of such thin films were studied as a function of titanium concentration (0.5, 1 and 1.5 %) and the thin films thickness. Zinc acetate dihydrate and titanium (VI)-oxy acetylacetonate were used as precursor materials, using 2-methoxyethanol and monoethanolamine as via. The X-ray diffraction spectra show polycrystalline films in all the cases. It can see for all the thin films a preferential growth along the (002) planes where the titanium concentration and also the thin films thickness play an important rule. No structural changes are observed at all. The surface morphology studied shows as the grain size decreases when thin thickness is increases. For titanium concentration of 0.5, 1 and 1.5 % values the grains size increase also. The thin films thickness for titanium concentration of 1.5 % was 500 nm (4v), 400 nm (3v), 180 nm (2v) and 130 nm (1v), values obtained from cross-section micrographs. Highly resistive samples are obtained for substrate soda-lime even showing high transmittance. Better physical properties are required for gas sensors or semitransparent electrodes and other possible applications. (Author)

  2. Feasibility study on the sol-gel deposition of nanostructured materials based on oxides and fluorides for coatings on solar collector glazing

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, A.; Chambrier, E. De

    2005-10-15

    This illustrated annual report reviews work done at the Federal Institute of Technology (EPFL) in Lausanne, Switzerland, on the architectural integration of thermal solar collectors into buildings. This is often limited by their black colour and the visibility of the tubes and corrugations of the absorber sheets. Although a certain freedom in the choice of colour would be desirable, the coloured appearance should not cause excessive performance degradation. Multi-layered thin film interference filters on the collector glazing can produce a coloured reflection while transmitting the non-reflected radiation entirely to the absorber. The paper describes suitable optical interference filters which have been designed and optimised by numerical simulation and that will be manufactured by the sol-gel dip-coating process. Light scattering has to be avoided, which implies a need for particle sizes much smaller than the wavelengths of the incoming light. The paper proposes that corresponding thin films should therefore consist of nano-structured materials. The sol-gel deposition of all proposed materials has been demonstrated successfully. The paper presents the results of the work using various materials including titanium-silicon mixed oxides, gold-silicon dioxide, porous silicon dioxide, magnesium fluoride and quaternary films.

  3. Synthesis of ZrO2-TiO2 mixed oxide spheres by sol-gel method and investigation of Sr adsorption behaviours by experimental design approach

    International Nuclear Information System (INIS)

    Cetinkaya, B.; Tel, H.; Altas, Y.; Eral, M.; Sert, S.; Inan, S.; Talip, Z.

    2009-01-01

    ZrO 2 -TiO 2 gel spheres were synthesized by sol-gel method. Zr-Ti sol solution was prepared from ZrCl 4 and TiCl 4 (1:1 mol ratio) via partial neutralization by ammonia to obtain 0.5M final metal concentration. ZrO 2 -TiO 2 sol was transferred to vibrating nozzle system by peristaltic pump. Vibrating nozzle system was designed and produced in Institute of Nuclear Sciences. Sol drops formed by nozzle were gelled in gelation column. Synthesized ZrO 2 -TiO 2 spheres were aged for 24h then washed with deionized water and dried in oven. Sr + 2 adsorption behaviors of ZrO 2 -TiO 2 mixed oxides were investigated with central composite design (CCD). Four independent parameters (pH, initial Sr + 2 concentration, temperature and contact time) were investigated with 7 replicates at central points. Sorption data have been interpreted in terms of Langmuir, Freundlich and Dubinin Radushkevich equations. Thermodynamic parameters for the sorption system have been determined.

  4. Synthesis and characterization of rare-earth oxide transition-metal arsenides and selenides

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, Simon Friedrich

    2017-04-06

    The present thesis includes two different quaternary systems that have been studied extensively. On the one hand, several samples of the REFeAsO{sub 1-x}F{sub x} family of iron-based superconductors were prepared using a novel solid state metathesis reaction, which also provided a possibility to prepare late rare-earth compounds of this family at ambient pressure. Comparison of structural and physical properties of those samples with samples from conventional solid state and high pressure syntheses revealed both, commonalities as well as striking differences. The observations gave reason to the conclusion that superconducting properties strongly depend, beside electronic infl uence, on the structural parameters. On the other hand, the quaternary system RE-T-Se-O with T = Ti-Mn was investigated using a NaI/KI flux mediated synthesis route. It has been shown that oC -La{sub 2}O{sub 2}MnSe{sub 2} is exclusively accessible in su fficient purity by the use of a fl ux material. Therefore, further syntheses in this quaternary system were performed by a flux mediated synthesis route leading to a large amount of new materials. Among them, a new polymorph mC-La{sub 2}O{sub 2}MnSe{sub 2} which forms, together with La{sub 4}MnSe{sub 3}O{sub 4} and La{sub 6}MnSe{sub 4}O{sub 6}, the series La{sub 2n+2}MnSe{sub n+2}O{sub 2n+2}. In addition, the alternative preparation method also enabled a large scale synthesis of the first examples of rare-earth chromium oxyselenides with chromium in the oxidation state +II, namely RE{sub 2}CrSe{sub 2}O{sub 2} (RE = La-Nd), which opened the door to study their magnetism in detail by powder neutron diffraction and muon spin rotation techniques. Research into the La-V-Se-O system revealed the first fi ve quaternary compounds of this family with interesting magnetic properties including ferromagnetism, antiferromagnetism, metamagnetism and more complex behaviour. In addition, the crystal structure of two new quaternary titanium containing

  5. Structure of mineral gels

    International Nuclear Information System (INIS)

    Miranda Salvado, I.M.; Margaca, F.M.A.; Teixeira, J.

    1999-01-01

    Small Angle Neutron Scattering (SANS) measurements have been performed to investigate the nanoscale structure of materials of the systems xTiO 2 -(1-x)SiO 2 and xZrO 2 -(1-x)SiO 2 with x ≤ 10 mol % at different processing stages. The materials were prepared by sol-gel using the alkoxides method, in strong acidic conditions. Samples were studied as xerogels heat-treated at 120 and 850 deg. C and as wet gels at gel point and after aging. All samples showed identical microstructure at gel point, extended linear chains ∼10 nm long. The aged gel has a mass fractal structure with fractal dimension of 1.7 - 1.9. The 120 deg. C heat-treated xerogels show homogeneous oxide regions with mass fractal structure. For the 850 deg. C heat-treated xerogel the oxide regions average size has reduced and it has densified as compared to 120 deg. C heat-treated sample. (author)

  6. Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process

    Directory of Open Access Journals (Sweden)

    Hiromitsu Kozuka

    2016-09-01

    Full Text Available Si(100 substrates were coated with a polyimide (PI–polyvinylpyrrolidone (PVP mixture film, and an alkoxide-derived TiO2 gel film was deposited on it by spin-coating. The gel films were fired under various conditions with final annealing at 600–1000 °C. The PI–PVP layer was completely decomposed at such high temperatures while the TiO2 films survived on Si(100 substrates without any damages. When the final annealing temperature was raised, the crystalline phase changed from anatase to rutile, and the crystallite size and the refractive index of the films tended to increase. The TiO2 films thus fired on Si(100 substrates were transferred to polycarbonate (PC substrates by melting the surface of the plastic substrate either in a near-infrared image furnace or on a hot plate under a load. Cycles of deposition and firing were found to be effective in achieving successful transfer even for the films finally annealed at 1000 °C. X-ray photoelectron spectroscopic analyses on the film/Si(100 interface suggested that the residual carbon or carbides at the interface could be a possible factor, but not a necessary and decisive factor that allows the film transfer.

  7. Application of sol gel spin coated yttria-stabilized zirconia layers for the improvement of solid oxide fuel cell electrolytes produced by atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Lars [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, British Columbia, V6T 1Z4 (Canada); National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); Kesler, Olivera [National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); University of British Columbia, Department of Mechanical Engineering, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4 (Canada); Tang, Zhaolin; Burgess, Alan [Northwest Mettech Corp., 467 Mountain Hwy, North Vancouver, British Columbia, V7J 2L3 (Canada)

    2007-05-15

    Due to its high thermal stability and purely oxide ionic conductivity, yttria-stabilized zirconia (YSZ) is the most commonly used electrolyte material for solid oxide fuel cells (SOFCs). Standard electrolyte fabrication techniques for planar SOFCs involve wet ceramic techniques such as tape-casting or screen printing, requiring sintering steps at temperatures above 1300 C. Plasma spraying (PS) may provide a more rapid and cost efficient method to produce SOFCs without sintering. High-temperature sintering requires long processing times and can lead to oxidation of metal alloys used as mechanical supports, or to detrimental interreactions between the electrolyte and adjacent electrode layers. This study investigates the use of spin coated sol gel derived YSZ precursor solutions to fill the pores present in plasma sprayed YSZ layers, and to enhance the surface area for reaction at the electrolyte-cathode interface, without the use of high-temperature firing steps. The effects of different plasma conditions and sol concentrations and solid loadings on the gas permeability and fuel cell performance have been investigated. (author)

  8. Direct imprinting of indium-tin-oxide precursor gel and simultaneous formation of channel and source/drain in thin-film transistor

    Science.gov (United States)

    Haga, Ken-ichi; Kamiya, Yuusuke; Tokumitsu, Eisuke

    2018-02-01

    We report on a new fabrication process for thin-film transistors (TFTs) with a new structure and a new operation principle. In this process, both the channel and electrode (source/drain) are formed simultaneously, using the same oxide material, using a single nano-rheology printing (n-RP) process, without any conventional lithography process. N-RP is a direct thermal imprint technique and deforms oxide precursor gel. To reduce the source/drain resistance, the material common to the channel and electrode is conductive indium-tin-oxide (ITO). The gate insulator is made of a ferroelectric material, whose high charge density can deplete the channel of the thin ITO film, which realizes the proposed operation principle. First, we have examined the n-RP conditions required for the channel and source/drain patterning, and found that the patterning properties are strongly affected by the cooling rate before separating the mold. Second, we have fabricated the TFTs as proposed and confirmed their TFT operation.

  9. Pyro-Electrochemical Reduction of a Mixture of Rare Earth Oxides and NiO in LiCl molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Woo; Jeong, Sang Mun [Department of Chemical Engineering, Chungbuk National University, Cheongju (Korea, Republic of)

    2017-06-15

    An electrochemical reduction of a mixture of NiO and rare earth oxides has been conducted to increase the reduction degree of rare earth oxides. Cyclic voltammetry (CV) measurement was carried out to determine the electrochemical reduction behavior of the mixed oxide in molten LiCl medium. Constant voltage electrolysis was performed with various supplied charges to understand the mechanism of electrochemical reduction of the mixed oxide as a working electrode. After completion of the electrochemical reduction, crystal structure of the reaction intermediates was characterized by using an X-ray diffraction method. The results clearly demonstrate that the rare earth oxide was converted to RE-Ni intermetallics via co-reduction with NiO.

  10. Coating of Zircaloy sheaths with silica glass using the Sol-Gel technique for protection against oxidation

    International Nuclear Information System (INIS)

    De Sanctis, O.; Pellegri, N.; Gomez, L.

    1990-01-01

    With the aim of improving corrosion resistance of Zircaloy, a few Zircaloy sheaths were covered with vitreous silica. Deposition was made by dip coating in tetraetilortosilicate (TEOS) solutions and later densification treatment at 500 degrees C. Oxidation tests were performed and compared with sheaths not covered with silica. As a result, an effective increase in the resistance to dry oxidation was found in sheaths which had been protected. The coating-Zircaloy interface was studied using XPS (scanner). (Author). 6 refs., 3 figs

  11. Comparative study on sorption/desorption of radioeuropium on alumina, bentonite and red earth: effects of pH, ionic strength, fulvic acid, and iron oxides in red earth

    International Nuclear Information System (INIS)

    Dong Wenming; Wang Xiangke; Bian Xiaoyan; Wang Aixia; Du Jingzhou; Tao, Z.Y.

    2001-01-01

    The sorption and desorption of Eu(III) as a representative of trivalent lanthanides and actinides on bentonite, alumina, red earth and red earth treated to remove free iron oxides were comparatively investigated by using batch technique and radiotracer 152+154 Eu. The effects of pH, ionic strength, fulvic acid, iron oxides in red earth and the sorption mechanism were also discussed. As compared to alumina and red earth, Eu(III) presents a considerable distribution coefficient (K d ) onto bentonite. It was found that the pH and the presence of clay minerals are the main factors dominating the sorption/desorption characteristic of Eu 3+ in the soil, and that a sorption-desorption hysteresis on bentonite and red earth actually occurs. Furthermore, the main sorption mechanism of lanthanides onto bentonite, alumina and red earth is the formation of bridged hydroxo complexes with the surface, and there are negative effects of fulvic acid and free iron oxides in red earth on the sorption of Eu(III). The results of this paper indicate that the additivity rule on the sorption characteristic of a soil from the individual component's characteristics is not general

  12. La0.6Sr0.4Co0.2Fe0.8O3-δ nanofiber cathode for intermediate-temperature solid oxide fuel cells by water-based sol-gel electrospinning: Synthesis and electrochemical behaviour

    DEFF Research Database (Denmark)

    Enrico, Anna; Zhang, Wenjing (Angela); Traulsen, Marie Lund

    2018-01-01

    Water-based sol-gel electrospinning is employed to manufacture perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber cathodes for intermediate-temperature solid oxide fuel cells. LSCF fibrous scaffolds are synthesized through electrospinning of a sol-gel solution employing water as the only...

  13. The magnetic characterization of Fe doped TiO{sub 2} semiconducting oxide nanoparticles synthesized by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Yeganeh, M., E-mail: mahboubeh.yeganeh@yahoo.co.uk [Department of Physics, Kosar University of Bojnord, P.O. Box 94104455 (Iran, Islamic Republic of); Shahtahmasebi, N.; Kompany, A. [Department of Physics, Ferdowsi University of Mashhad (Iran, Islamic Republic of); Karimipour, M. [Department of Physics, Vali-e-Asr University of Rafsanjan (Iran, Islamic Republic of); Razavi, F. [Department of Physics, Brock University (Canada); Nasralla, N.H.S. [Electron Microscope and Thin Film Department, Physics Division, 33 El Buhouth st., Dokki, 12622 Giza (Egypt); Šiller, L. [School of Chemical Engineering and Advanced Materials, Newcastle University, NE1 7RU (United Kingdom)

    2017-04-15

    In this work Fe doped TiO{sub 2} nanoparticles were synthesized at different Fe/Ti molar ratio from 1% to 5% by sol-gel technique. The post annealing of the samples was carried out at T=400, 600, and 800 °C. HRTEM of the samples revealed that the mean size of the nanoparticles increases from about 8 nm to about 100 nm as the annealing temperature increased. SQUID magnetometry of 1% and 5% Fe doped TiO{sub 2} has shown mixed ferromagnetic and paramagnetic phases within the crystal while ferromagnetic order with T{sub c} about 350 K was only observed in 5% Fe:TiO{sub 2} sample annealed at T=800 °C. The oxygen vacancy mediated ferromagnetic (FM) interaction could be responsible for the observed FM.

  14. Effect of rare earth elements yttrium and lanthanum on high temperature oxidation resistance of Mo-Si-B alloys

    International Nuclear Information System (INIS)

    Majumdar, Sanjib

    2014-01-01

    In the present investigation, 0.2 to 2 at% Y and La alloyed Mo-9Si-8B were consolidated using mechanical alloying followed by spark plasma sintering. Isothermal oxidation studies were conducted in a wide temperature range from 650 to 1300℃. Detailed characterization studies of the oxide scale using SEM, EDS, FIB, TEM reveal the formation of Y x Mo 18 O 32 and 3La 2 O 3 ·MoO 3 oxide phases, respectively, for Y and La-containing alloys reduce the evaporation of MoO 3 . The growth rate of protective silica scale is also enhanced due to faster formation of Y and La rich oxide particles which probably act as nucleation sites for silica. At higher temperatures (at 1100℃), the oxidation behavior of unalloyed and RE-alloyed Mo-9Si-8B are comparable. A transient weight loss followed by a steady state is reached due to protective amorphous silica-rich scale formation beyond 1100℃. Therefore, alloying with rare earth elements provides a broader application temperature window for silicide based materials starting from 750℃ to 1300℃

  15. Emission Properties, Solubility, Thermodynamic Analysis and NMR Studies of Rare-Earth Complexes with Two Different Phosphine Oxides

    Directory of Open Access Journals (Sweden)

    Hiroki Iwanaga

    2010-07-01

    Full Text Available The paper proposes novel molecular designs for rare-earth complexes involving the introduction of two different phosphine oxide structures into one rare-earth ion. These designs are effective for improving solubility and emission intensity. Additionally, the complexes are indispensable for realizing high performances in LEDs and security media. The thermodynamic properties of Eu(III complexes are correlated with the solubility. Correlations between coordination structures and emission intensity were explained by NMR analysis. The luminous flux of red LED devices with Eu(III complexes is very high (20 mA, 870 m lumen. A new white LED has its largest spectra intensity in the red region and a human look much more vividly under this light.

  16. Structural, magnetic and electronic properties of rare earth ternary oxides Li Ln(II) 2 Ln(III)O4

    International Nuclear Information System (INIS)

    Malki, M.

    1987-06-01

    Properties of a new class of rare earth ternary oxides Li Ln(II) 2 Ln(III)O 4 where Ln(II) is a divalent metal (Sr, Eu) and Ln(III) a trivalent rare earth (Eu, Gd, Dy, Er and Y). These orthorhombic compounds (type Li Eu 3 O 4 ) allow the study of many magnetic phenomena and their evolution in function of the nature of Ln(II) and Ln(III): diamagnetic ions Sr 2+ , Y 3+ ; isotrope magnetic ions: Eu 2+ , Gd 3+ and anisotrope magnetic ions Dy 3+ , Er 3+ . Magnetic and electric properties are obtained by classical techniques and from hyperfine interaction by Moessbauer spectroscopy. The possibility to use several Moessbauer resonance (nuclei Eu 151, Gd 155, Dy 161 and Er 166) completes informations obtained by the macroscopic study [fr

  17. Determination of rare earth elements, hafnium and cadmium in sintered pellets of mixed thorium and uranium oxides by neutron activation

    International Nuclear Information System (INIS)

    Cardoso, S.N.M.

    1987-01-01

    This work shows the development of a method for determination of the rare-earth elements (Eu, Sm, Dy and Gd), Hf and Cd contents in sinterized U and Th mixed oxides by neutron activation analysis. The sample is dissolved in nitric/fluoridric (0,1% HF) medium, to dryness and redissolved in 6N HCl solution. The Hf is extracted into organic phase (0,5 M TTA/benzene), irradiated and analysed through 181 Hf isotope energy peak. The aqueous phase is treated with NH 4 OH for the precipitation of hidroxides. Then, these are dissolved in 6N HNO 3 solution. The extraction of U and Th is made in two steps, one with TBP/CCl 4 and another with 0,5 M TTA/C 6 H 6 . Then the rare-earth elements and Cd are irradiated and determined by gamma spectrometry. (author) [pt

  18. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    Science.gov (United States)

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  19. Ultrapure glass optical waveguide development in microgravity by the sol-gel process

    Science.gov (United States)

    1982-01-01

    Containerless melting of glasses in space for the preparation of ultrapure homogeneous glass for optical waveguides is discussed. The homogenization of the glass using conventional raw materials is normally achieved on Earth either by the gravity induced convection currents or by the mechanical stirring of the melt. Because of the absence of gravity induced convection currents, the homogenization of glass using convectional raw materials is difficult in the space environment. Multicomponent, homogeneous, noncrystalline oxide gels can be prepared by the sol-gel process and these gels are promising starting materials for melting glasses in the space environment. The sol-gel process is based on the polymerization reaction of alkoxysilane with other metal alkoxy compounds or suitable metal salts. Many of the alkoxysilanes or other metal alkoxides are liquids and thus can be purified by distillation.

  20. A study of emission property and microstructure of rare earth oxide-molybdenum cermet cathode materials made by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang Jinshu; Li Hongyi; Yang Sa; Cui Ying; Zhou Meiling

    2004-01-01

    A fast sintering method, spark plasma sintering (SPS) was used for the synthesis of rare earth oxide-molybdenum cathode material. The secondary emission property, microstructure, and phase constitution of materials have been studied in this paper. The experimental results show that the maximum secondary emission coefficient of this material can be high to 3.84, much higher than that of rare earth oxide-molybdenum cathode made by traditional sintering method. The grain size is less than 1 μm and rare earth distributed evenly in the material. After the material was activated at 1600 deg. C, a 4 μm layer of rare earth oxide which leads to the high secondary emission coefficient of the material, is formed on the surface of the cathode

  1. Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition

    Institute of Scientific and Technical Information of China (English)

    吴朝锋; 马明星; 刘文今; 钟敏霖; 张红军; 张伟明

    2009-01-01

    Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into t...

  2. XAS study of V2O5/Al2O3 catalysts doped with rare earth oxides

    International Nuclear Information System (INIS)

    Centeno, M.A.; Malet, P.; Capitan, M.J.; Benitez, J.J.; Carrizosa, I.; Odriozola, J.A.

    1995-01-01

    This paper reports on XAS studies of well dispersed V 2 O 5 /Al 2 O 3 and V 2 O 5 /Sm 2 O 3 /Al 2 O 3 samples. XAS spectra at V-K and Sm-L III edges show that the rare earth oxide favours the formation of regular tetrahedral units, [VO 4 ], over the surface of the support. Positions of the preedge peak at the V-K edge, and intensities of the white line at the Sm-L III edge also suggest modifications in the electronic density around V and Sm atoms when they are simultaneously supported over Al 2 O 3 . ((orig.))

  3. Application of neutron actication analysis to the determination of impurities in rare earth oxides produced at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Saiki, M.; Oliveira Lellis, L. de.

    1988-07-01

    This paper describes a method for trace analysis in high purity rare earth oxides. This method is an application of instrumental neutron activation analysis. The results of analysis obtained in La 2 O 3 , CeO 2 , Pr 6 O 11 Nd 2 O 3 , Sm 2 O 3 and Gd 2 O 3 produced at IPEN-CNEN/SP are presented. A detailed study of the possible interference found in the neutron activation of these materials is also made. The sensitivity of the method is determined for impurities not detected in each sample. (author) [pt

  4. Investigations on fabricating strategies and utilization of rare earth based multicomponent oxide powders in radiation detection

    International Nuclear Information System (INIS)

    Shinde, Seema; Pitale, S.S.; Banthia, S.; Ghosh, M.; Tyagi, M.; Sen, S.; Gadkari, S.C.

    2014-01-01

    Materials containing rare earths demonstrate a broad field of applications as high energy radiation detectors, mainly due to their fascinating optical properties. Currently, Ce 3+ -doped rare earth silicates and garnets dominate the scintillator market because they show a high light yield, fast decay time, and high chemical stability. Moreover, the emission wavelength of silicates (410-440 nm) matches the wavelength sensitivity of conventional PMTs while, Si-photo-detector readouts are possible with garnets (emission near 550 nm). The composition, structure and phase of rare earth silicates are rather complex. For example, there are many phases like oxyorthosilicate R 2 SiO 5 , disilicate R 2 Si 2 O 7 , hexagonal R x (SiO 4 ) 6 O 2 oxyapatite etc (where R= Rare earth element). The controlled synthesis of single phase rare earth silicates and garnets nanomaterials is not easy and can only be reached with precisely controlled experimental conditions. In this work, we provide a broad overview of our recent scientific developments linked to a few aspects of synthesizing cerium activated rare earth based silicates and garnet materials, namely Gd 2 SiO 5 :Ce 3+ , Gd 4.67 (SiO 4 ) 3 O, Gd 2 Si 2 O 7 :Ce 3+ and Gd 3 Al x Ga 1-x O 12 :Ce 3+ (where 0≤x≤5) exploiting the advantages of solution combustion, chemical co-precipitation and hydrothermal techniques. A brief summary of results based on synthesis strategy adopted, composition, size shape and corresponding luminescence features of Gd based compounds are tabulated. The room temperature photoluminescence (PL) features of compounds listed. Efforts towards finding new properties and new materials will be continued and several applications, in particular energy-conversion and scintillator detectors, will benefit from these rare earth materials

  5. Metal Oxide Thin Films Grafted on Silica Gel Surfaces: Recent Advances on the Analytical Application of these Materials

    Directory of Open Access Journals (Sweden)

    Gushikem Yoshitaka

    2001-01-01

    Full Text Available In the highly dispersed MxOy monolayer film on a porous SiO2 surface, denoted as SiO2/MxOy, the Si-O-M covalent bond formed on the SiO2 surface restricts the mobility of the attached oxide resulting in coordinatively unsaturated metal oxides (LAS in addition to the Brønsted acid sites (BAS. The BAS arise from the MOH and SiOH groups, the latter due to the unreacted silanol groups. As the attached oxides are strongly immobilized on the surface, they are also thermally very stable. The amphoteric character of most of the attached oxides allows the immobilization of various chemical species, acid or bases, resulting in a wide application of these surface modified materials. In this work many of the recent applications of these MxOy coated silica surfaces are described, such as selective adsorbents, in preconcentration processes, as new packing material for use in HPLC, support for immobilization of enzymes, amperometric electrodes, sensors and biosensors

  6. Rare-Earth Oxide Ion (Tm3+, Ho3+, and U3+) Doped Glasses and Fibres for 1.8 to 4 Micrometer Coherent and Broadband Sources

    Science.gov (United States)

    2006-07-24

    oxide ( TeO2 ) , fluorine- containing silicate (SiOF2) and germanate (GeOF2) glass hosts for each dopant by characterising the spectroscopic properties...Earth Oxide Ion (Tm3+, Ho3+, And U3+) Doped Glasses And Fibres For 1.8 To 4 Micrometer Coherent And Broadband Sources 5c. PROGRAM ELEMENT NUMBER 5d...Rare-earth oxide ion (Tm3+, Ho3+, and U3+) doped glasses and fibres for 1.8 to 4 micrometer coherent and broadband sources Report prepared

  7. Easy and General Synthesis of Large-Sized Mesoporous Rare-Earth Oxide Thin Films by 'Micelle Assembly'.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Dai, Pengcheng; Yamauchi, Yusuke

    2015-12-01

    Large-sized (ca. 40 nm) mesoporous Er2O3 thin films are synthesized by using a triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) as a pore directing agent. Each block makes different contributions and the molar ratio of PVP/Er(3+) is crucial to guide the resultant mesoporous structure. An easy and general method is proposed and used to prepare a series of mesoporous rare-earth oxide (Sm2O3, Dy2O3, Tb2O3, Ho2O3, Yb2O3, and Lu2O3) thin films with potential uses in electronics and optical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The role of Ar plasma treatment in generating oxygen vacancies in indium tin oxide thin films prepared by the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Deuk-Kyu [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Misra, Mirnmoy; Lee, Ye-Eun [Department of BioNano Technology, Gachon University, 1342 Seong-nam dae-ro, Seong-nam si, Gyeonggi-do, 13120 (Korea, Republic of); Baek, Sung-Doo [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Lee, Tae Il, E-mail: t2.lee77@gachon.ac.kr [Department of BioNano Technology, Gachon University, 1342 Seong-nam dae-ro, Seong-nam si, Gyeonggi-do, 13120 (Korea, Republic of)

    2017-05-31

    Highlights: • Indium tin oxide thin film with about 41 nm thickness was obtained by the sol-gel process. • Thin film exhibited low resistivity. • Sheet resistance of thin film decreases with Ar plasma treatment time. • Ar plasma treatment on thin film does not alter the crystal structure and optical properties of the ITO thin-film. • There is no significant change in oxygen vacancies after 20 min of plasma treatment. - Abstract: Argon (Ar) plasma treatment was carried out to reduce the sheet resistance of indium tin oxide (ITO) thin films. The Ar plasma treatment did not cause any significant changes to the crystal structure, surface morphology, or optical properties of the ITO thin films. However, an X-ray photoelectron spectroscopy study confirmed that the concentration of oxygen vacancies in the film dramatically increased with the plasma treatment time. Thus, we concluded that the decrease in the sheet resistance was caused by the increase in the oxygen vacancy concentration in the film. Furthermore, to verify how the concentration of oxygen vacancies in the film increased with the Ar plasma treatment time, cumulative and continuous plasma treatments were conducted. The oxygen vacancies were found to be created by surface heating via the outward thermal diffusion of oxygen atoms from inside the film.

  9. Electrochemical properties of the hexacyanoferrate(II)–ruthenium(III) complex immobilized on silica gel surface chemically modified with zirconium(IV) oxide

    International Nuclear Information System (INIS)

    Panice, Lucimara B.; Oliveira, Elisangela A. de; Filho, Ricardo A.D. Molin; Oliveira, Daniela P. de; Lazarin, Angélica M.; Andreotti, Elza I.S.; Sernaglia, Rosana L.; Gushikem, Yoshitaka

    2014-01-01

    Highlights: • The cyano-bridged mixed valence ruthenium composite material was synthesized. • This newly synthesized compound was incorporated into a carbon paste electrode. • The electrode did not show significant changes in response after six months of use. • The modified electrode is very stable and reproducible. • The electrode sensor was successfully applied for ascorbic acid determination. - Abstract: The chemically modified silica gel with zirconium(IV) oxide was used to immobilize the [Fe(CN) 6 ] 4− complex ion initially. The reaction of this material with [Ru(edta)H 2 O] − complex ion formed the immobilized cyano-bridged mixed valence ruthenium complex, (≡Zr) 5 [(edta)RuNCFe(CN) 5 ]. This material was incorporated into a carbon paste electrode and, its electrochemical properties were investigated. However, for an ascorbic acid solution, an enhancement of the anodic peak current was detected due to electrocatalytic oxidation. The electrode presented the same response for at least 150 successive measurements, with a good repeatability. The modified electrode is very stable and reproducible. The sensor was applied for ascorbic acid determination in pharmaceutical preparation with success

  10. Investigation of stability, consistency, and oil oxidation of emulsion filled gel prepared by inulin and rice bran oil using ultrasonic radiation.

    Science.gov (United States)

    Nourbehesht, Newsha; Shekarchizadeh, Hajar; Soltanizadeh, Nafiseh

    2018-04-01

    Inulin, rice bran oil and rosemary essential oil were used to produce high quality emulsion filled gel (EFG) using ultrasonic radiation. Response surface methodology was used to investigate the effects of oil content, inulin content and power of ultrasound on the stability and consistency of prepared EFG. The process conditions were optimized by conducting experiments at five different levels. Second order polynomial response surface equations were developed indicating the effect of variables on EFG stability and consistency. The oil content of 18%; inulin content of 44.6%; and power of ultrasound of 256 W were found to be the optimum conditions to achieve the best EFG stability and consistency. Microstructure and rheological properties of prepared EFG were investigated. Oil oxidation as a result of using ultrasonic radiation was also investigated. The increase of oxidation products and the decrease of total phenolic compounds as well as radical scavenging activity of antioxidant compounds showed the damaging effect of ultrasound on the oil quality of EFG. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Preparation of layered oxide Li(Co1/3Ni1/3Mn1/3)O2 via the sol-gel process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen; LIU Hanxing; HU Chen; ZHU Xianjun; LI Yanxi

    2008-01-01

    To obtain homogenous layered oxide Li(Co1/3Ni1/3Ni1/3Mn1/3)O2 as a lithium insertion positive electrode material,the sol-gel process using citric acid as a chelating agent was applied.The material Li(Co1/3,Ni1/3Mn1/3)O2 was synthesized at different calcination temperatures.XRD experiment indicated that the hyered Li(Co1/3Ni1/3Mn1/3)O2material could he synthesized at a lower temperature of 800℃,and the oxidation state of Co,Ni,and Mn in the cathode confirmed by XPS were +3,+2,and +4,respectively.SEM observations showed that the synthesized material could form homogenous particle morphology with the particle size of about 200nm In spite of different calcination temperatures,the charge-discharge curves of all the samples for the initial cycle were similar,and the cathode synthesized at 900℃ showed a small irreversible capacity loss of 11.24% and a high discharge capacity of 212.2 mAh.g-1 in the voltage range of 2.9-4.6 V.

  12. Preparation and characterization of hybrid materials of epoxy resin type bisphenol a with silicon and titanium oxides by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo C, A.; Osuna A, J. G., E-mail: acc.carrillo@gmail.com [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza y Jose Cardenas Valdes, 25000 Saltillo, Coahuila (Mexico)

    2011-07-01

    Hybrid materials were synthesized from epoxy resins as a result bisphenol type A-silicon oxide and epoxy resin bisphenol type A-titanium oxide were obtained. The synthesis was done by sol-gel process using tetraethyl orthosilicate (Teos) and titanium isopropoxide (I Ti) as inorganic precursors. The molar ratio of bisphenol A to the inorganic precursors was the studied variable. The materials were characterized by thermal analysis, infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The hybrid nature of the materials was demonstrated through thermal analysis and infrared spectroscopy. In both systems, as the amount of alkoxide increased, the bands described above were more defined. This behavior indicates the interactions between the resin and the alkoxides. Hybrids with Teos showed a smoother and homogeneous surface in its entirety, without irregularities. Hybrids with titanium isopropoxide had low roughness. Both Teos and I Ti hybrids showed a decrease on the atomic weight percentage of carbon due to a slight reduction of the organic part on the surface. (Author)

  13. Preparation and characterization of hybrid materials of epoxy resin type bisphenol a with silicon and titanium oxides by sol-gel process

    International Nuclear Information System (INIS)

    Carrillo C, A.; Osuna A, J. G.

    2011-01-01

    Hybrid materials were synthesized from epoxy resins as a result bisphenol type A-silicon oxide and epoxy resin bisphenol type A-titanium oxide were obtained. The synthesis was done by sol-gel process using tetraethyl orthosilicate (Teos) and titanium isopropoxide (I Ti) as inorganic precursors. The molar ratio of bisphenol A to the inorganic precursors was the studied variable. The materials were characterized by thermal analysis, infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The hybrid nature of the materials was demonstrated through thermal analysis and infrared spectroscopy. In both systems, as the amount of alkoxide increased, the bands described above were more defined. This behavior indicates the interactions between the resin and the alkoxides. Hybrids with Teos showed a smoother and homogeneous surface in its entirety, without irregularities. Hybrids with titanium isopropoxide had low roughness. Both Teos and I Ti hybrids showed a decrease on the atomic weight percentage of carbon due to a slight reduction of the organic part on the surface. (Author)

  14. Rare earth [beta]-diketonate and carboxylate metal complexes as precursors for MOCVD of oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmina, N.P. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Martynenko, L.I. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Tu, Z.A. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Kaul, A.R. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Girichev, G.V. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Giricheva, N.I. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Rykov, A.N. (Dept. of Chemistry, Moscow State Univ. (Russian Federation)); Korenev, Y.M. (Dept. of Chemistry, Moscow State Univ. (Russian Federation))

    1993-08-01

    Volatile and thermostable complexes of lanthanide acetylacetonates and pivalates were obtained and investigated by different methods. These compounds were used for lanthanide oxide containing film producing and for fabrication of silica optical fibers doped by lanthanide oxide. The properties of these and already known volatile precursors are compared. (orig.).

  15. Rare earth β-diketonate and carboxylate metal complexes as precursors for MOCVD of oxide films

    International Nuclear Information System (INIS)

    Kuzmina, N.P.; Martynenko, L.I.; Tu, Z.A.; Kaul, A.R.; Girichev, G.V.; Giricheva, N.I.; Rykov, A.N.; Korenev, Y.M.

    1993-01-01

    Volatile and thermostable complexes of lanthanide acetylacetonates and pivalates were obtained and investigated by different methods. These compounds were used for lanthanide oxide containing film producing and for fabrication of silica optical fibers doped by lanthanide oxide. The properties of these and already known volatile precursors are compared. (orig.)

  16. Occlusion of chromophore oxides by Sol-Gel methods: Application to the synthesis of hematite-silica red pigments

    Directory of Open Access Journals (Sweden)

    Vicent, J. B.

    2000-02-01

    Full Text Available Heteromorphic pigments present the chromophore particle occluded in an encapsulating matrix which is thermally stable and insoluble in glazes. The occluded chromophore compound is also insoluble in the host matrix. In this work the mechanisms of formation of this type of pigments are analyzed and the occlusion of hematite into silica matrix is discussed. The formation of this hematite-silica red pigment follows a sintering-coarsening mechanism, and, consequently, the control of both hematite particles nucleation and their crystal growth results to be decisive to obtain a good coloring effectiveness.

    En los pigmentos heteromórficos la partícula de cromóforo es ocluida en una matriz encapsuladora estable tanto termicamente como frente a los vidriados. El compuesto cromóforo ocluido y la matriz no coloreada son insolubles. En este trabajo se analiza los diferentes mecanismos de formación de estos pigmentos heteromórficos y se estudia la oclusión de hematita en sílice mediante métodos sol-gel acuoso. El pigmento sigue un mecanismo de sinterización-crecimiento cristalino por lo que es muy importante controlar el momento de nucleación y la velocidad de crecimiento de las partículas de hematita en el seno de la matriz.

  17. Stabilisation of ZrO/sub 2/ with rare-earth oxides with atomic numbers from 58 to 71

    Energy Technology Data Exchange (ETDEWEB)

    Tcheivili, L; Passarino de Marques, M N [Instituto Nacional de Tecnologia Industrial, Buenos Aires (Argentina)

    1978-01-01

    In the present work, the stabilisation of ZrO/sub 2/ with 14 rare earths (58 to 71) was investigated. The aim was to carry out the experiments at a temperature of 1550/sup 0/C, at which many oxides do not exist in the cubic form and the others, such as PrO/sub 2/ and Lu/sub 2/O/sub 3/, have not yet been studied. All the experiments of the series were carried out under constant conditions, in order to determine if there was any difference in principle between them. All the oxides stabilise ZrO/sub 2/, but those with the lower atomic numbers (58, 59, 60) show some deviation. The minimum and maximum mol% limits were ascertained, between which ZrO/sub 2/ is fully stabilised, and the phases are given which occur with the various mol% proportions. In conclusion, an experiment was carried out with all oxides having di- tri- and quadri-valent cations, which belong to the cubic system. In view of their difference in ionic radius to the Zr/sup 4 +/ ion, the conclusion can be drawn that all oxides which can stabilise ZrO/sub 2/ have larger cation radii than that of the Zr/sup 4 +/ ion.

  18. Novel precursors for the deposition of rare earth oxides; Neuartige Precursor zur Abscheidung von Selten-Erd-Oxiden

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Mareike

    2010-02-22

    During this work rare earth solvates with nitrate and perchlorate anions have been investigated. All compounds have been structurally characterized and analyzed using thermal gravimetric analysis. The decomposition residues were analyzed using powder diffraction methods. Almost all compounds showed a characteristically intense exothermic decomposition step during the thermal decomposition, most likely caused by an intramolecular redox reaction between the nitrate or perchlorate anion respectively and the organic solvent molecules. The nitrates RE(NO{sub 3}){sub 3}(CH(OCH{sub 3}){sub 3}){sub 2} (RE = Sm, Eu) were isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. The known compound group of dimethoxyethane solvates was then expanded with RE(NO{sub 3}){sub 3}(O{sub 2}C{sub 4}H{sub 10}) (RE = La, Sm, Eu). Considering the possible use as precursor material the already described neodymium compound is also discussed. The thermal decomposition of these compounds yields the respective cubic rare earth oxide and shows the typical intense exothermic decomposition reaction. A variety of different precursor system based on nitrate solvates for the deposition of rare earth oxide layers on a silicon surface was developed and investigated in collaboration with the group of Prof. Dr. Al-Shamery (Univ. Oldenburg). Ultra thin films on a H-Si(111) surface were obtained via the deposition of the precursor, which was dissolved in organic solvents. An oxide layer was detected after the heating of the sample. The film thickness was measured as < 10 nm, whereas the thickness of the film was controlled by the concentration of the precursor solution. Sm(ClO{sub 4}){sub 3}(CH(OCH{sub 3}){sub 3}){sub 3} was isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. Eu(ClO{sub 4}){sub 3}(CH(OCH{sub 3}){sub 3}){sub 2}(MeOH){sub 2} was obtained without

  19. Structure and characterization of Sn, Al co-doped zinc oxide thin films prepared by sol–gel dip-coating process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min-I [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Legrand, David [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Lerondel, Gilles [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Lin, Jing-Chie, E-mail: jclin4046@gmail.com [Institute of Materials Science and Engineering, National Central University, Taiwan (China)

    2014-11-03

    Transparent conductive zinc oxide co-doped with tin and aluminum (TAZO) thin films were prepared via sol–gel dip-coating process. Non-toxic ethanol was used in this study instead of 2-methoxyethanol used in conventional work. Dip-coating was repeated several times to obtain relatively thick films consisting of six layers. The films were then annealed at 500 °C for 1 h in air or in vacuum and not subsequently as employed in other studies. The X-ray diffraction patterns indicated that all the samples revealed a single phase of hexagonal ZnO polycrystalline structure with a main peak of (002). The optical band gap and resistivity of the TAZO films were in the ranges of 3.28 to 3.32 eV and 0.52 to 575.25 Ω cm, respectively. The 1.0 at.% Sn, 1.0 at.% Al co-doped ZnO thin film annealed in vacuum was found to have a better photoelectrochemical performance with photocurrent density of about 0.28 mA/cm{sup 2} at a bias of 0.5 V vs. SCE under a 300 W Xe lamp illumination with the intensity of 100 mW/cm{sup 2}. Compared to the same dopant concentration but annealed in air (∼ 0.05 mA/cm{sup 2} bias 0.5 V vs. SCE), the photocurrent density of the film annealed in vacuum was 5 times higher than the film annealed in air. Through electrochemical measurements, we found that the dopant concentration of Sn plays an important role in TAZO that affected photocurrent density, stability of water splitting and anti-corrosion. - Highlights: • Al, Sn co-doped ZnO (TAZO) films was synthesized by sol–gel process. • The parameters of TAZO films were dopant concentration and annealed ambient. • The photoelectrochemical characteristics of TAZO films were investigated.

  20. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis

    DEFF Research Database (Denmark)

    Jones, C.; Nomosatryo, S.; Crowe, S.A.

    2015-01-01

    As a nutrient required for growth, phosphorus regulates the activity of life in the oceans. Iron oxides sorb phosphorus from seawater, and through the Archean and early Proterozoic Eons, massive quantities of iron oxides precipitated from the oceans, producing a record of seawater chemistry...... that is preserved as banded iron formations (BIFs) today. Here we show that Ca2+, Mg2+, and silica in seawater control phosphorus sorption onto iron oxides, influencing the record of seawater phosphorus preserved in BIFs. Using a model for seawater cation chemistry through time, combined with the phosphorus...... waters shifted from phosphorus to iron limiting....

  1. Differences in the electrochemical behavior of ruthenium and iridium oxide in electrocatalytic coatings of activated titanium anodes prepared by the sol–gel procedure

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIĆ

    2010-10-01

    Full Text Available The electrochemical characteristics of Ti0.6Ir0.4O2/Ti and Ti0.6Ru0.4O2/Ti anodes prepared by the sol–gel procedure from the corresponding oxide sols, obtained by force hydrolysis of the corresponding metal chlorides, were compared. The voltammetric properties in H2SO4 solution indicate that Ti0.6Ir0.4O2/Ti has more pronounced pseudocapacitive characteristics, caused by proton-assisted, solid state surface redox transitions of the oxide. At potentials negative to 0.0 VSCE, this electrode is of poor conductivity and activity, while the voltammetric behavior of the Ti0.6Ru0.4O2/Ti electrode is governed by proton injection/ejection into the oxide structure. The Ti0.6Ir0.4O2/Ti electrode had a higher electrocatalytical activity for oxygen evolution, while the investigated anodes were of similar activity for chlorine evolution. The potential dependence of the impedance characteristics showed that the Ti0.6Ru0.4O2/Ti electrode behaved like a capacitor over a wider potential range than the Ti0.6Ir0.4O2/Ti electrode, with fully-developed pseudocapacitive properties at potentials positive to 0.60 VSCE. However, the impedance characteristics of the Ti0.6Ir0.4O2/Ti electrode changed with increasing potential from resistor-like to capacitor-like behavior.

  2. Meso-porous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation

    International Nuclear Information System (INIS)

    Hamd, Wael; Laberty-Robert, Christel; Sanchez, Clement; Cobo, Saioa; Fize, Jennifer; Artero, Vincent; Baldinozzi, Gianguido; Schwartz, Wilfrid; Reymermier, Maryse; Pereira, Alexandre; Fontecave, Marc

    2012-01-01

    This work reports a facile and cost-effective method for synthesizing photoactive α-Fe 2 O 3 films as well as their performances when used as photoanodes for water oxidation. Transparent α-Fe 2 O 3 meso-porous films were fabricated by template-directed sol-gel chemistry coupled with the dip-coating approach, followed by annealing at various temperatures from 350 degrees C to 750 degrees C in air. α-Fe 2 O 3 films were characterized by X-ray diffraction, XPS, FE-SEM and electrochemical measurements. The photoelectrochemical performance of α-Fe 2 O 3 photoanodes was characterized and optimized through the deposition of Co-based co-catalysts via different methods (impregnation, electro-deposition and photo-electro-deposition). Interestingly, the resulting hematite films heat-treated at relatively low temperature (500 degrees C), and therefore devoid of any extrinsic dopant, achieve light-driven water oxidation under near-to-neutral (pH = 8) aqueous conditions after decoration with a Co catalyst. The onset potential is 0.75 V vs. the reversible hydrogen electrode (RHE), thus corresponding to 450 mV light-induced under potential, although modest photocurrent density values (40 μAcm -2 ) are obtained below 1.23 V vs. RHE. These new materials with a very large interfacial area in contact with the electrolyte and allowing for a high loading of water oxidation catalysts open new avenues for the optimization of photo-electrochemical water splitting. (authors)

  3. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.

    Science.gov (United States)

    Robatjazi, Hossein; Zhao, Hangqi; Swearer, Dayne F; Hogan, Nathaniel J; Zhou, Linan; Alabastri, Alessandro; McClain, Michael J; Nordlander, Peter; Halas, Naomi J

    2017-06-21

    The rational combination of plasmonic nanoantennas with active transition metal-based catalysts, known as 'antenna-reactor' nanostructures, holds promise to expand the scope of chemical reactions possible with plasmonic photocatalysis. Here, we report earth-abundant embedded aluminum in cuprous oxide antenna-reactor heterostructures that operate more effectively and selectively for the reverse water-gas shift reaction under milder illumination than in conventional thermal conditions. Through rigorous comparison of the spatial temperature profile, optical absorption, and integrated electric field enhancement of the catalyst, we have been able to distinguish between competing photothermal and hot-carrier driven mechanistic pathways. The antenna-reactor geometry efficiently harnesses the plasmon resonance of aluminum to supply energetic hot-carriers and increases optical absorption in cuprous oxide for selective carbon dioxide conversion to carbon monoxide with visible light. The transition from noble metals to aluminum based antenna-reactor heterostructures in plasmonic photocatalysis provides a sustainable route to high-value chemicals and reaffirms the practical potential of plasmon-mediated chemical transformations.Plasmon-enhanced photocatalysis holds promise for the control of chemical reactions. Here the authors report an Al@Cu 2 O heterostructure based on earth abundant materials to transform CO 2 into CO at significantly milder conditions.

  4. Development of novel rare earth doped fluoride and oxide scintillators for two-dimensional imaging

    Czech Academy of Sciences Publication Activity Database

    Yoshikawa, A.; Yanagida, T.; Yokota, Y.; Kamada, K.; Kawaguchi, N.; Fukuda, K.; Yamazaki, A.; Watanabe, K.; Uritani, A.; Iguchi, T.; Boulon, G.; Nikl, Martin

    2011-01-01

    Roč. 29, č. 12 (2011), s. 1178-1182 ISSN 1002-0721 Grant - others:AV ČR(CZ) M100100910 Institutional research plan: CEZ:AV0Z10100521 Keywords : scintillator * gamma-ray detection * neutron detection * fluoride * Ce * Eu * rare earth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.901, year: 2011

  5. Thermochemistry of rare earth doped uranium oxides LnxU1-xO2-0.5x+y (Ln = La, Y, Nd)

    Science.gov (United States)

    Zhang, Lei; Navrotsky, Alexandra

    2015-10-01

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10-50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.

  6. Variable valence of praseodymium in rare-earth oxide solid solutions

    International Nuclear Information System (INIS)

    Kravchinskaya, M.V.; Merezhinskii, K.Y.; Tikhonov, P.A.

    1986-01-01

    Solid solutions of elevated praseodymium oxide content have interesting electrical properties, making them the basis for the manufacture of high-temperature electrically conducting materials. Establishment of the composition-structure-valence state relationships enables control of the material properties. The authors performed investigations using a thermogravimetric apparatus with an electronic microbalance of type EM-5-3M, and using x-ray phase analysis of powders (DRON-1 diffractometer, CuK /SUB alpha/ -radiation). The authors also studied the kinetics of praseodymium oxidation with a thermogravimetric apparatus under isothermal conditions. Evaluation of the results with the equation of Kolmogorov, Erofeev, and Avraam indicates that the process is limited by the chemical oxidation of praseodymium and not by diffusion

  7. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    Science.gov (United States)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  8. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Tea; Chu, Daping, E-mail: dpc31@cam.ac.uk [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Neeves, Matthew; Placido, Frank [Thin Film Centre, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Smithwick, Quinn [Disney Research, 521 Circle Seven Drive, Glendale, Los Angeles, California 91201 (United States)

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  9. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    International Nuclear Information System (INIS)

    Chun, Young Tea; Chu, Daping; Neeves, Matthew; Placido, Frank; Smithwick, Quinn

    2014-01-01

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO x thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm 2 , exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively

  10. Study on silicon oxide coated on silver nanocrystal to enhance fluorescence intensity of rare earth complexes

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yan-rong; Lin, Xue-mei; Wang, Ai-ling; Wang, Zhong-xia; Kang, Jie; Chu, Hai-bin, E-mail: binghai99@gmail.com; Zhao, Yong-liang, E-mail: hxzhaoyl@163.com

    2014-10-15

    Twelve kinds of rare earth complexes were synthesized using halo-benzoic acid as anion ligand and Sm{sup 3+} and Dy{sup 3+} as central ions, respectively. The complexes were characterized by elemental analysis, rare earth coordination titration and electrospray ionization mass spectra, from which the compositions of the complexes were confirmed to be RE(p-FBA){sub 3}·H{sub 2}O, RE(p-ClBA){sub 3}·2H{sub 2}O, RE(p-BrBA){sub 3}·H{sub 2}O, RE(o-FBA){sub 3}·2H{sub 2}O, RE(o-ClBA){sub 3}·H{sub 2}O, RE(o-BrBA){sub 3}·H{sub 2}O (RE=Sm{sup 3+}, Dy{sup 3+}). Besides, IR spectra and UV–visible absorption spectroscopy indicated that the carboxyl oxygen atoms of ligands coordinated to the rare earth ions. Moreover, Ag@SiO{sub 2} core–shell nanoparticles (NPs) were prepared via a modified Stöber method. The average diameters of silver cores were typically between 60 nm and 70 nm, and the thicknesses of the SiO{sub 2} shells were around 10 nm, 15 nm and 25 nm, respectively. The influence of Ag@SiO{sub 2} NPs on the luminescence properties of the rare earth complexes showed that the luminescence intensities of rare earth complexes were enhanced remarkably. As the thickness of SiO{sub 2} shell increases in the range of 10–25 nm, the effect of metal-enhanced fluorescence become obvious. The mechanism of the changes of the fluorescence intensity is also discussed. - Highlights: • Among 10–25 nm, the thicker the shell thickness, the better the fluorescence effect. • The strong the intensity of the pure complexes, the smaller the multiple enhanced. • The intensity of Sm(p-BrBA){sub 3}·H{sub 2}O is the strongest among Sm(p-XBA){sub 3}·nH{sub 2}O complexes. • The intensity of Dy(p-ClBA){sub 3}·2H{sub 2}O is the strongest among Dy(p-XBA){sub 3}·nH{sub 2}O complexes. • When halogen is in o-position, the intensity of RE(o-ClBA){sub 3}·H{sub 2}O is the strongest.

  11. X-ray fluorescence analysis of praseodymium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Mohile, A.N.

    1976-01-01

    A method for the determination of lanthanum, cerium, neodymium and samarium oxides in praseodymium oxide is described. The sample in the oxalate form is mixed with boric acid binder in the weight ratio of 1:1 and pressed into a pellet. The pellet is irradiated by X-rays from a tungsten tube and fluorescent X-rays are dispersed by a LiF (200) crystal in a Philips semiautomatic X-ray fluorescence spectrometer. The intensity of the characteristic X-rays of the impurity elements is measured by a flow proportional counter at selected 20 angles. The minium determination limit is 0.01% for all impurities. (author)

  12. Solvent-Directed Sol-Gel Assembly of 3-Dimensional Graphene-Tented Metal Oxides and Strong Synergistic Disparities in Lithium Storage

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jianchao; An, Yonghao; Montalvo, Elizabeth; Campbell, Patrick G.; Worsley, Marcus A.; Tran, Ich C.; Liu, Yuanyue; Wood, Brandon C.; Biener, Juergen; Jiang, Hanqing; Tang, Ming; Wang, Y. Morris

    2016-03-21

    Graphene/metal oxide (GMO) nanocomposites promise a broad range of utilities for lithium ion batteries (LIBs), pseudocapacitors, catalysts, and sensors. When applied as anodes for LIBs, GMOs often exhibit high capacity, improved rate capability and cycling performance. Numerous studies have attributed these favorable properties to a passive role played by the exceptional electronic and mechanical properties of graphene in enabling metal oxides (MOs) to achieve near-theoretical capacities. In contrast, the effects of MOs on the active lithium storage mechanisms of graphene remain enigmatic. Via a unique two-step solvent-directed sol-gel process, we have synthesized and directly compared the electrochemical performance of several representative GMOs, namely Fe2O3/graphene, SnO2/graphene, and TiO2/graphene. We observe that MOs can play an equally important role in empowering graphene to achieve large reversible lithium storage capacity. The magnitude of capacity improvement is found to scale roughly with the surface coverage of MOs, and depend sensitively on the type of MOs. We define a synergistic factor based on the capacity contributions. Our quantitative assessments indicate that the synergistic effect is most achievable in conversion-reaction GMOs (Fe2O3/graphene and SnO2/graphene) but not in intercalation-based TiO2/graphene. However, a long cycle stability up to 2000 cycles was observed in TiO2/graphene nanocomposites. We propose a surface coverage model to qualitatively rationalize the beneficial roles of MOs to graphene. Our first-principles calculations further suggest that the extra lithium storage sites could result from the formation of Li2O at the interface with graphene during the conversion-reaction. These results suggest an effective pathway for reversible lithium storage in graphene and shift design paradigms for graphene-based electrodes.

  13. Scan-Mode Atmospheric-Pressure Plasma Jet Processed Reduced Graphene Oxides for Quasi-Solid-State Gel-Electrolyte Supercapacitors

    Directory of Open Access Journals (Sweden)

    Aliyah R. Hsu

    2018-01-01

    Full Text Available A scanning atmospheric-pressure plasma jet (APPJ is essential for high-throughput large-area and roll-to-roll processes. In this study, we evaluate scan-mode APPJ for processing reduced graphene oxides (rGOs that are used as the electrodes of quasi-solid-state gel-electrolyte supercapacitors. rGO nanoflakes are mixed with ethyl cellulose (EC and terpineol to form pastes for screen-printing. After screen-printing the pastes on carbon cloth, a DC-pulse nitrogen APPJ is used to process the pastes in the scan mode. The maximal temperature attained is ~550 °C with a thermal influence duration of ~10 s per scan. The pastes are scanned by APPJ for 0, 1, 3 and 5 times. X-ray photoelectron spectroscopy (XPS indicates the reduction of C-O binding content as the number of scan increases, suggesting the oxidation/decomposition of EC. The areal capacitance increases and then decreases as the number of scan increases; the best achieved areal capacitance is 15.93 mF/cm2 with one APPJ scan, in comparison to 4.38 mF/cm2 without APPJ processing. The capacitance retention rate of the supercapacitor with the best performance is ~93% after a 1000-cycle cyclic voltammetry (CV test. The optimal number of APPJ scans should enable the proper removal of inactive EC and improved wettability while minimizing the damage caused to rGOs by nitrogen APPJ processing.

  14. Synthesis of LaCoO{sub 3} nano-powders by aqueous gel-casting for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chia Siang; Zhang, Lan; Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Zhang, Yu.Jun [Key Lab for Liquid Structure and Heredity of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan (China)

    2008-04-15

    LaCoO{sub 3} (LC) perovskite powders for intermediate temperature solid oxide fuel cells (IT-SOFCs) are synthesized by a simple and cost-effective aqueous gel-casting technique using metal nitrates as raw materials. Effect of the ratio of organic precursors (acrylamide (AM) monomer and N,N'-Methylenebisacrylamide (MBAM) crosslinker) to metal nitrates (lanthanum nitrate, cobalt nitrate) and the ratio of AM to MBAM on the particle size are investigated in detail. TEM results indicate that the particle size of LC nano-powders is in the range of 31-60 nm and decreases with increasing ratio of organic precursor to metal nitrates but is not affected by the ratio of AM to MBAM. Preliminary results show that the nano-structured electrode approach based on wet impregnation is effective to combine the high electrocatalytic activity of LC nano-powders and the structural stability of La{sub 0.72}Sr{sub 0.18}MnO{sub 3} {sub -} {sub {delta}} (LSM) electrodes for the development of IT-SOFC cathodes. (author)

  15. Gas chromatography of adducts of rare earth dipivaloylmethanates with triphenylphosphine oxide

    International Nuclear Information System (INIS)

    Magazeeva, N.V.; Martynenko, L.I.; Murav'eva, I.A.; Spitsyn, V.I.

    1987-01-01

    A gas chromatographic method for determination of stability provisional constants of dipivaloylmethanates of REE with triphenylphosphine oxide is suggested, and ML 3 xTPPO adduct stability is shown to decrease in Ho-Lu series. ML 3 chromatographing at the presence of TPPO is stated to increase the coefficients of REE separation

  16. Ion bombardment effects on surface states in selected oxide systems: rutile and alkaline earth titanates

    International Nuclear Information System (INIS)

    Gruen, D.M.

    1978-01-01

    In this paper, the nature of the surface states of n-type TiO 2 and SrTiO 3 is discussed and the role of ion bombardment in modifying the properties of these states is elucidated. Insofar as possible, the interrelationships between oxide nonstoichiometry, surface states, ion bombardment effects and photoelectrolysis are explored

  17. effects of mixed of mixed of mixed alkaline earth oxides in potash

    African Journals Online (AJOL)

    eobe

    Si, P) are network formers, and that materials whose. Nigerian ... made by mixing sand (SiO2), potassium carbonates. (K2Co3) .... The edges of the glass were grounded using ..... surface energies of minerals; theoritical estimate for oxides ...

  18. Pseudopotential description of rare earths in oxides: The case of Er2Si2O7

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Stokbro, Kurt

    2001-01-01

    The applicability of ultrasoft pseudopotentials to the problem of rare-earth incorporation in silicates is investigated using the compound Er2Si2O7 as a test case. It is found that density-functional theory within the generalized gradient approximation provides a good description of the structural...... parameters, when treating the Er 4f states as a partially occupied core shell. The density of states and the distribution of electronic charge are analyzed, and it is concluded that the presence of Er tends to increase the covalency of neighboring Si-O bonds....

  19. Electrochemical and electrocatalytic studies of toluidine blue immobilized on a silica gel surface coated with niobium oxide

    Directory of Open Access Journals (Sweden)

    Santos Antonio S.

    2002-01-01

    Full Text Available The electrochemical behavior of toluidine blue (TB adsorbed on a silica surface modified with niobium oxide (SN was investigated using a modified carbon paste electrode. The presence of SN gave the electrode high stability, avoiding the leaching out of the mediator from the electrode surface. The formal potential (E0' of the adsorbed TB was --113 mV vs. SCE, indicating a shift of almost 100 mV towards more positive potential values, compared to TB dissolved in aqueous solution or adsorbed on carbon paste. The stability and formal potential remained constant upon changing the solution pH in the range 5 to 8. In these solution pH values the electrocatalytic activity remained almost constant with a sensitivity of 1.2 10-4 A L mol-1 cm-2 and a K Mapp of 4.9 10-5 mol L-1. A linear response range for NADH concentration between 2.0 10-4 and 4.0 10-3 mol L-1 at pH 7.0, with a detection limit of 3.4 10-5 mol L-1 was observed for the sensor. A response time of 2 s and a precision of 1.0 %, expressed as relative standard deviation for 10 replicates, were observed for the sensor developed.

  20. Analysis of electrical and microstructural characteristics of a ZnO-based varistor doped with rare earth oxide

    International Nuclear Information System (INIS)

    Andrade, J.M. de; Dias, R.; Furtado, J.G. de M.; Assuncao, F.C.R.

    2010-01-01

    Varistor is a semiconductor device, used in the protection of electrical systems, characterized to have a high no-linear electric resistance. Its properties are directly dependents of its chemical composition and microstructural characteristics. In this work were analyzed microstructural and electrical characteristics of a ZnO-based varistor doped with rare earth oxide, with chemical composition (mol%) 98,5.ZnO - 0,3.Pr 6 O 11 - 0,2.Dy 2 O 3 - 0,9.Co 2 O 3 - 0,1.Cr 2 O 3 . X-ray diffraction for phase characterization, scanning electron microscopy and energy dispersive X-ray spectroscopy were used for microstructural analysis. Measurement of average grain size and electrical and dielectric characteristics complete the characterization. The results show the formation of biphasic microstructure and with high densification, presenting relevant varistors characteristics but that would need improvements.(author)

  1. Inductively coupled plasma optical emission spectrometry analysis of lanthanum, samarium and gadolinium oxides for rare earths impurities

    International Nuclear Information System (INIS)

    Reino, L.C.P.; Lordello, A.R.

    1990-09-01

    An inductively coupled plasma optical emission spectrometry method is described for the determination of Sm, Eu, La, Gd, Dy, Pr, Ho, Nd, Tb and Y in purified oxides of lanthanum, samarium and gadolinium. The method enables a simple, precise and readily available determination. Dissolution of the samples is achieved with diluted hydrochloric acid (1:1). The solutions are diluted to volume for a concentration of 1mg/ml. The lowest determination limit is 0,01% for most elements and 0,05 or 0,1% for a few rare earths in samarium and gadolinium matrices. Lanthanum, Samarium and Gadolinium concentrates with purity grade of 99,9%, 99,6% and 99,8%, respectively, can be analysed by this procedure. (author)

  2. Investigations on the determination of traces of some rare earths (Eu, Sm, Gd, Y) in oxides of rare earths (Y2O3, Sm2O3, Gd2O3) by emission spectrography in d.c. arc

    International Nuclear Information System (INIS)

    Dittrich, K.; Gajek, M.; Luan, P.

    1978-01-01

    The evaporation of traces and matrices of rare earth elements was investigated in different atmospheres. It was found, that low-boiling rare earths elements, because of their extended formation of carbides evaporate more slowly than high-boiling rare earths elements. The evaporation of the traces depends on the matrices. 3 cases for the determination of traces of rare earths elements in oxides of other rare earths elements are derived from the results of the evaporation: Low- to high-boiling traces of rare earths elements in low-boiling matrices of rare earths elements, low-boiling traces in medium- to high-boiling matrices, and medium- to high-boiling traces in medium- to high-boiling matrices. The results of the determination are: in Y 2 O 3 : 14 ppm Sm, 2 ppm Eu; in Gd 2 O 3 : 18 ppm Y, 3 ppm Sm, 2 ppm Eu; in Sm 2 O 3 : 70 ppm Y, 370 ppm Gd, 16 ppm Eu. (author)

  3. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies.

    Science.gov (United States)

    Yamasaki, Hideo; Cohen, Michael F

    2016-05-01

    Hydrogen sulfide (H2S) is produced in the mammalian body through the enzymatic activities of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). A growing number of studies have revealed that biogenic H2S produced in tissues is involved in a variety of physiological responses in mammals including vasorelaxation and neurotransmission. It is now evident that mammals utilize H2S to regulate multiple signaling systems, echoing the research history of the gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO) that had previously only been recognized for their cytotoxicity. In the human diet, meats (mammals, birds and fishes) and vegetables (plants) containing cysteine and other sulfur compounds are the major dietary sources for endogenous production of H2S. Plants are primary producers in ecosystems on the earth and they synthesize organic sulfur compounds through the activity of sulfur assimilation. Although plant H2S-producing activities have been known for a long time, our knowledge of H2S biology in plant systems has not been updated to the extent of mammalian studies. Here we review recent progress on H2S studies, highlighting plants and bacteria. Scoping the future integration of H2S, NO and O2 biology, we discuss a possible linkage between physiology, ecology and evolutional biology of gas metabolisms that may reflect the historical changes of the Earth's atmospheric composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Nuclear analysis of a rare earth containing protective oxide on aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, J.D.; Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Hughes, A.E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, VIC (Australia). Div. of Materials Science

    1996-12-31

    The aim is study was to examine the thickness of the conversion coating as well as the elemental depth distribution of cerium and molybdenum using Rutherford Backscattering Spectroscopy (RBS), Scanning Electron Microscopy (SEM), Scanning Auger Electron Spectroscopy and Forward Recoil Spectroscopy (FRS). In addition, RBS has been used to examine how changes in processing conditions, particularly the treatment temperatures, influences the coating thickness and Ce distribution at each process step. SEM established that a crazed oxide structure was developed over the matrix of the alloy using the above process steps. RBS was chosen to provide elemental concentration versus depth information on these samples since it is largely insensitive to surface topography when the detector is set to high scattering angles. A other advantage of using RBS for this particular system is that the heavy elements incorporated into the coating such as Ce and Mo because of their high atomic number compared to the aluminium oxide, are well separated from aluminium and oxygen at their higher recoil energies. Forward Recoil Spectroscopy is capable of detecting hydrogen and it has been used to confirm that the coating is hydrated and to establish the hydrogen distribution within the final oxide coating on each alloy. 7 refs., 1 tab., 4 figs.

  5. Nuclear analysis of a rare earth containing protective oxide on aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, J D; Paterson, P J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Hughes, A E [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, VIC (Australia). Div. of Materials Science

    1997-12-31

    The aim is study was to examine the thickness of the conversion coating as well as the elemental depth distribution of cerium and molybdenum using Rutherford Backscattering Spectroscopy (RBS), Scanning Electron Microscopy (SEM), Scanning Auger Electron Spectroscopy and Forward Recoil Spectroscopy (FRS). In addition, RBS has been used to examine how changes in processing conditions, particularly the treatment temperatures, influences the coating thickness and Ce distribution at each process step. SEM established that a crazed oxide structure was developed over the matrix of the alloy using the above process steps. RBS was chosen to provide elemental concentration versus depth information on these samples since it is largely insensitive to surface topography when the detector is set to high scattering angles. A other advantage of using RBS for this particular system is that the heavy elements incorporated into the coating such as Ce and Mo because of their high atomic number compared to the aluminium oxide, are well separated from aluminium and oxygen at their higher recoil energies. Forward Recoil Spectroscopy is capable of detecting hydrogen and it has been used to confirm that the coating is hydrated and to establish the hydrogen distribution within the final oxide coating on each alloy. 7 refs., 1 tab., 4 figs.

  6. THEORETICAL-ANALYSIS OF THE O(1S) BINDING-ENERGY SHIFTS IN ALKALINE-EARTH OXIDES - CHEMICAL OR ELECTROSTATIC CONTRIBUTIONS

    NARCIS (Netherlands)

    PACCHIONI, G; BAGUS, PS

    1994-01-01

    We report results from ab initio cluster-model calculations on the O(1s) binding energy (BE) in the alkaline-earth oxides, MgO, CaO, SrO, and BaO; all these oxides have a cubic lattice structure. We have obtained values for both the initial- and final-state BE's. A simple point-charge model, where

  7. Influence of rare earth additions on the oxidation resistance of chromia forming alloys; Influencia da adicao de terras raras sobre a resistencia a oxidacao de ligas formadoras de cromia

    Energy Technology Data Exchange (ETDEWEB)

    Pillis, Marina Fuser

    1995-12-31

    The addition of rare earths to alloys, either in elemental form or as surface coatings reduces the oxidation rate of chromia forming alloys. The rare earths either act as nucleation sites for surface oxides or get incorporates into the surface oxide and diffuse to oxide grain boundaries. If the latter occurs, a change in the defect structure close to the grain boundaries, probably takes place. In this manner, the rare earths inhibits the movement of chromium ions to the oxide/gas interface. The influence of rare earth additions to AISI 316, AISI 316L and Ni-20 Cr on their oxidation behavior has been studied., AISI 316+Ce, AISI 316+Y, Ni-20 Cr and Ni-20 Cr-2 Al-1 Ce were prepared by melting and AISI 316L, AISI 316L+Ce O{sub 2} and AISI 316L+Y{sub 2} O{sub 3} by powder compaction. The effect of superficial deposits of rare earth oxides was also studied. The alloys were coated with rare earth oxides by high temperature conversion of the respective rare earth nitrates. Isothermal oxidation tests were carried out at 900-1100 deg C and the cyclic oxidation tests consisted of 6 cycles of 2 hours each at 900 deg C, followed by cooling to room temperature. All the tests were carried out in air. Oxidation behavior was evaluated gravimetrically. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis and X-ray diffraction techniques were used to identify oxide constituents. Overall, it has been observed that with the addition of rare earths, oxidation resistance increases by decreasing oxidation rates and increasing oxide adhesion. Addition of rare earths to AISI 316 prepared by melting resulted in rapid formation of a chromium rich oxide layered near the metal/oxide interface which reduced overall oxidation rate. The addition of Ce O{sub 2} to AISI 316L was found to improve oxidation behavior after 10 hours at 1100 deg C and also inhibit the formation of volatile Cr O{sub 3}. The isothermal oxidation behavior of rare earth oxide covered

  8. Influence of alkali metal oxides and alkaline earth metal oxides on the mitigation of stress corrosion cracking in CANDU fuel sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, J.; Ferrier, G.A.; Farahani, M.; Chan, P.K.; Corcoran, E.C., E-mail: Joseph.Metzler@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2015-07-01

    This work investigates strategies to mitigate stress corrosion cracking (SCC) in Zircaloy-4 sheathing materials. The CANLUB coatings currently used in CANDU reactors contain both alkali metal and alkaline earth metal impurities, which can exist as oxides (e.g., Na{sub 2}O and CaO). It is believed that when the corrosive fission product iodine reacts with these oxides, the iodine can be sequestered through the formation of an iodide (e.g.,NaI and CaI{sub 2}). The subsequent O{sub 2} release may repair cracks in the protective ZrO{sub 2} layer on the sheathing, shielding the Zircaloy-4 sheathing from further corrosive fission product attack. For this investigation, O{sub 2} gas, Na{sub 2}O, and CaO were separately introduced into an environment wherein slotted Zircaloy-4 rings endure mechanical stresses in iodine vapour at high temperatures. Controlled additions of O{sub 2} gas created a slight reduction in the corrosive attack on Zircaloy-4 sheathing, while the inclusion of Na{sub 2}O and CaO lead to greater reductions. (author)

  9. Energy Transfer between Post-Transition Elements & Rare Earths in Oxide & Chalcogenide Glasses.

    Science.gov (United States)

    1979-08-27

    Caird [13]. A calculation of reduced matrix elements of Pr3 in 20 Na O • 80 TeO2 glass [14] showed that they differ slightly from data of ref. [121... glasses Transition (lass 35 ZnO 65 TeO2 20 Na2 O 80 TeO 2 fX 106 fX 106 l.,eas 3a, a) Ia’l. faI f.me.s f al f+ I fal 3 H4 - 3 H6 1.56 1.65 1.12...Rare-Earth Doped Glasses 20. jIST HAEV CCnFn~m ,i cn,on ra e sideit If c."*Ar’ -- ~ 14-r by t?-h.c .: r Intensity parameters, radiative transition

  10. Preparation and characterization of PbTi03 ceramics modified by a natural mixture of rare earth oxides of xenotime

    International Nuclear Information System (INIS)

    Baltazar-Rodrigues, Jair; Rodrigues Junior, Pedro; Cruz, Gerson K. da; Lente, Manuel H.; Eiras, Jose A.

    2014-01-01

    Lead titanate ceramics modified by xenotime (Xm) with nominal composition (Pb, Xm)TiO 3 , Xm 10 or 15 mol %, were prepared by the conventional oxide mixture technique. Xenotime is a natural mineral consisting of a mixture of rare earth oxides. Thermal, structural and electric properties were investigated through differential and gravimetric thermal analysis, X-ray diffraction and dielectric measurements as a function of temperature. The results of both compositions revealed a higher density and free of cracks ceramic body, compared to pure PbTiO 3 prepared by the same procedure. On the other hand, the structural characteristics and Curie temperature are nearly the same as those of pure PbTiO 3 . The hysteresis loop measured at room temperature revealed a hard ferroelectric material with coercive field of 10.7 kV/cm and a remanent polarization of 0.2 μC/cm 2 . These finding reveal a material with properties that highlight potential to be used as electronic devices that operate at high temperature and high frequencies. (author)

  11. Formation and decomposition of some rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation

    International Nuclear Information System (INIS)

    Ozawa, Masakuni; Onoe, Ryota; Kato, Hajime

    2006-01-01

    Formation and thermal decomposition of rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation using hexamethylenetetramine. The precipitatates were examined using thermal gravimetry and differential thermal analysis, infrared spectrometry and X-ray diffraction. The as-precipitated powders from the present process were La(OH) 3 , CeO 2 , Pr(OH) 3 . In the case of Ce, a cubic fluorite phase of cerium dioxide was directly obtained. The lanthanum trihydroxide decomposed to oxides via three steps. Two-step dehydration decomposition behavior at 340 and 500 o C was observed as La(OH) 3 → LaOOH + H 2 O and 2LaOOH → La 2 O 3 + H 2 O. The activation energy (ΔH) for dehydration was 240 and 244 kJ/mol, respectively. The additional decomposition of carbonate-containing species was observed at 670 o C with ΔH of 390 kJ/mol. Pr(OH) 3 did not show additional TGA profile of carbonate decomposition. Since no carbonate species form in solution during the HMT precipitation (hydrolysis of this molecule), the difference between La and Pr depends on the strength of basicity in the reaction with CO 2 after precipitation

  12. Formation and decomposition of some rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Masakuni [Ceramics Research Laboratory, Nagoya Institute of Technology, Tajimi, 507-0071 Gifu (Japan)]. E-mail: ozawa@crl.nitech.ac.jp; Onoe, Ryota [Ceramics Research Laboratory, Nagoya Institute of Technology, Tajimi, 507-0071 Gifu (Japan); Kato, Hajime [Ceramics Research Laboratory, Nagoya Institute of Technology, Tajimi, 507-0071 Gifu (Japan)

    2006-02-09

    Formation and thermal decomposition of rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation using hexamethylenetetramine. The precipitatates were examined using thermal gravimetry and differential thermal analysis, infrared spectrometry and X-ray diffraction. The as-precipitated powders from the present process were La(OH){sub 3}, CeO{sub 2}, Pr(OH){sub 3}. In the case of Ce, a cubic fluorite phase of cerium dioxide was directly obtained. The lanthanum trihydroxide decomposed to oxides via three steps. Two-step dehydration decomposition behavior at 340 and 500 {sup o}C was observed as La(OH){sub 3} {sup {yields}} LaOOH + H{sub 2}O and 2LaOOH {sup {yields}} La{sub 2}O{sub 3} + H{sub 2}O. The activation energy ({delta}H) for dehydration was 240 and 244 kJ/mol, respectively. The additional decomposition of carbonate-containing species was observed at 670 {sup o}C with {delta}H of 390 kJ/mol. Pr(OH){sub 3} did not show additional TGA profile of carbonate decomposition. Since no carbonate species form in solution during the HMT precipitation (hydrolysis of this molecule), the difference between La and Pr depends on the strength of basicity in the reaction with CO{sub 2} after precipitation.

  13. X-ray fluorescence analysis of thulium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.

    1986-01-01

    An X-ray fluorescence spectrometric method for the analysis of thulium oxide is described. For the analysis, the sample in oxalate form is mixed with boric acid binding material and pressed into a pellet over a supporting pellet of boric acid. A wavelength dispersive Philips PW 1220 X-ray fluorescence spectrometer is used for the experiments; the minimum determination limits are 0.002per cent for Ho, Lu and Y, 0.005per cent for Dy and Er and 0.01per cent for Yb. Calculations for theoretical minimum detection limits and percent standard deviation at each concentration of the standard are carried out. (author)

  14. X-ray fluorescence analysis of lutetium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.

    1985-01-01

    An X-ray fluorescence spectrometric method for the analysis of lutetium oxide is described. The sample in the oxalate form is mixed with boric acid binding material and pressed into a pellet over supporting pellet of boric acid. A Philips PW 1220 wavelength dispersive semiautomatic X-ray fluorescence spectrometer is used for the analysis. The minimum determination limit is 0.002 percent for Y, Er and Yb and 0.005 percent for Tm. Calculations for theoretical minimum detection limits and percent standard deviations at each concentration of the standard are carried out. (author)

  15. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Miae [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Heo, Jong, E-mail: jheo@postech.ac.kr [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Department of Materials Engineering, Adama Science and Technology University (ASTU), PO Box 1888, Adama (Ethiopia)

    2015-12-15

    Glass-ceramics containing calcium neodymium(cerium) oxide silicate [Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2}] crystals were fabricated for the immobilization of radioactive wastes that contain large portions of rare-earth ions. Controlled crystallization of alkali borosilicate glasses by heating at T ≥ 750 °C for 3 h formed hexagonal Ca–silicate crystals. Maximum lanthanide oxide waste loading was >26.8 wt.%. Ce and Nd ions were highly partitioned inside Ca–silicate crystals compared to the glass matrix; the rare-earth wastes are efficiently immobilized inside the crystalline phases. The concentrations of Ce and Nd ions released in a material characterization center-type 1 test were below the detection limit (0.1 ppb) of inductively coupled plasma mass spectroscopy. Normalized release values performed by a product consistency test were 2.64·10{sup −6} g m{sup −2} for Ce ion and 2.19·10{sup −6} g m{sup −2} for Nd ion. Results suggest that glass-ceramics containing calcium neodymium(cerium) silicate crystals are good candidate wasteforms for immobilization of lanthanide wastes generated by pyro-processing. - Highlights: • Glass-ceramic wasteforms containing Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2} crystals were synthesized to immobilize lanthanide wastes. • Maximum lanthanide oxide waste loading was >26.8 wt.%. • Ce and Nd ions were highly partitioned inside Ca–Nd–silicate crystals compared to glass matrix. • Amounts of Ce and Nd ions released in the material characterization center-type 1 were below the detection limit (0.1 ppb). • Normalized release values performed by a PCT were 2.64• 10{sup −6} g m{sup −2} for Ce ions and 2.19• 10{sup −6} g m{sup −2} for Nd ions.

  16. A Comparative Study of Mn/Co Binary Metal Catalysts Supported on Two Commercial Diatomaceous Earths for Oxidation of Benzene

    Directory of Open Access Journals (Sweden)

    Marco Tomatis

    2018-03-01

    Full Text Available Two commercial diatomaceous earths were used as supports for the preparation of Mn/Co binary metal catalysts at different metal loads (5 to 10 wt % Mn and 5 to 15 wt % Co by incipient wetness deposition. The activity of the prepared catalysts towards the complete oxidation of benzene to CO2 and water was investigated between 100 and 400 °C. Raw supports and synthesized catalysts were characterized by XRD, N2 physisorption, SEM-EDS, H2-TPR, and TPD. The purification treatment of food-grade diatomite significantly affected the crystallinity of this support while reducing its specific surface area (SSA. A loss of SSA, associated with the increase in the metal load, was observed on samples prepared on natural diatomite, while the opposite trend occurred with food-grade diatomite-supported catalysts. Metal nanoparticles of around 50 nm diameter were observed on the catalysts’ surface by SEM analysis. EDS analysis confirmed the uniform deposition of the active phases on the support’s surface. A larger H2 consumption was found by TPR analysis of natural diatomite-based samples in comparison to those prepared at the same metal load on food-grade diatomite. During the catalytic oxidation experiment, over 90% conversion of benzene were achieved at a reaction temperature of 225 °C by all of the prepared samples. In addition, the formation of coke during the oxidation tests was demonstrated by TGA analysis and the soluble fraction of the produced coke was characterized by GC-MS.

  17. Review- Magnetic orientation and magnetic anisotropy in paramagnetic layered oxides containing rare-earth ions

    Directory of Open Access Journals (Sweden)

    Shigeru Horii, Atsushi Ishihara, Takayuki Fukushima, Tetsuo Uchikoshi, Hiraku Ogino, Tohru S Suzuki, Yoshio Sakka, Jun-ichi Shimoyama and Kohji Kishio

    2009-01-01

    Full Text Available The magnetic anisotropies and easy axes of magnetization at room temperature were determined, and the effects of rare-earth (RE ions were clarified for RE-based cuprates, RE-doped bismuth-based cuprates and RE-doped Bi-based cobaltite regarding the grain orientation by magnetic field. The easy axis, determined from the powder orientation in a static field of 10 T, depended qualitatively on the type of RE ion for all three systems. On the other hand, the magnetization measurement of the c-axis oriented powders, aligned in static or rotating fields, revealed that the type of RE ion strongly affected not only the directions of the easy axis but also the absolute value of magnetic anisotropy, and an appropriate choice of RE ion is required to minimize the magnetic field used for grain orientation. We also studied the possibility of triaxial grain orientation in high-critical-temperature superconductors by a modulated oval magnetic field. In particular, triaxial orientation was attempted in a high-oxygen-pressure phase of orthorhombic RE-based cuprates Y2Ba4Cu7Oy. Although the experiment was performed in epoxy resin, which is not practical, in-plane alignment within 3° was achieved.

  18. X-ray fluorescence analysis of erbium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.; Thomas, A.

    1981-01-01

    A method for the determination of Tb, Dy, Ho, Tm, Yb, Lu and Y oxides in Er 2 O 3 is described. 450 mg sample in the oxalate form is mixed with 150 mg boric acid binding material and pressed into a 1.25 inch diameter pellet over a supporting pellet of boric acid. The sample is then irradiated by X-rays from a tungsten tube and the fluorescent X-rays are dispersed by a LiF (200) crystal in a Philips PW 1220 semiautomatic X-ray fluorescence spectrometer. The intensities of characteristic X-rays of the impurity elements are measured by a flow proportional counter for all elements except yttrium for which the intensities are measured by a scintillation counter. The lowest determination limit is 0.005% for all impurities except for Yb for which it is 0.01%. Calculations for theoretical detection limit are given. (author)

  19. X-ray fluorescence analysis of ytterbium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.; Thomas, A.

    1982-01-01

    An XRF method for the determination of Ho, Er, Tm, Lu and Y oxides in Yb 2 O 3 is described. 450 mg sample in the oxalate form is mixed with 150 mg boric acid binding material and pressed into 1.25 inch diameter pellet over a supporting pellet of boric acid. The sample is irradiated by X-rays from a tungsten tube and the fluorescent X-rays are dispersed by a LiF(200) crystal in a Philips PW 1220 semiautomatic X-ray fluorescence spectrometer. The intensities of characteristic X-rays of the impurity elements are measured by a flow proportional counter or a scintillation counter. The lowest determination limit is 0.005% for Ho, Er, Tm and Y and 0.01% for Lu. Calculations for theoretical detection limit, standard deviation and uncertainty are done and presented. (author)

  20. An XRF method for determination of common rare earth impurities in high purity yttrium oxide

    International Nuclear Information System (INIS)

    Dixit, R.M.; Deshpande, S.S.

    1975-01-01

    An XRF method for the estimation of Eu, Gd, Tb, Dy, Ho, Er and Yb in yttrium oxide has been developed. Samples are converted to yttrium oxalate and presented to the spectrometer in the form of pressed pellets. Philips PW-1220, a semi-automatic x-ray spectrometer, is used for the analysis. Line interference problems are studied for selecting analysis lines. For the elements except that of Yb, the lower estimation limit is 0.005% and for Yb, it is 0.01%. The average standard deviation is approximately 5% for various elements in the concentration range of 0.005% to 1.0%. The method has been tested for its accuracy by analysing synthesized samples with known composition at three different concentrations. (author)

  1. Dosimetry Evolution in Teletherapy: Polimer Gel

    Science.gov (United States)

    Hamann, J. H.; Peixoto, J. G. P.

    2018-03-01

    Polymer gels evolution and chemical composition used in dosimetry. Type Composition First gels Folin’s Phenol or Gallic Acid Polymer Gel Agarose and N,N’-methylene-bis-acrylamide BANANA Bis, acrylamide, nitrous oxide and agarose BANG-1TM Bis, acrylamide, nitrogen and gelatin BANG-2TM Bis, acrylic acid, sodium hydroxide, nitrogen and gelatin BANG-3TM Bis, methacrylate acid, sodium hydroxide, nitrogen and gelatin MAGIC Methacrylate acid, ascorbic acid, gelatin and copper sulphate

  2. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  3. Synthesis of rare-earth selenate and selenite materials under 'sol-gel' hydrothermal conditions: crystal structures and characterizations of La(HSeO3)(SeO4) and KNd(SeO4)2

    International Nuclear Information System (INIS)

    Liu Wei; Chen Haohong; Yang Xinxin; Li Mangrong; Zhao Jingtai

    2004-01-01

    Two rare-earth compounds containing selenium atoms, La(HSeO 3 )(SeO 4 ) with a new open framework structure and KNd(SeO 4 ) 2 with a layered structure, have been synthesized under ''sol-gel'' hydrothermal conditions for the first time. Single-crystals of La(HSeO 3 )(SeO 4 ) crystallize in the monoclinic system (P2 1 , a=8.5905(17)A, b=7.2459(14)A, c=9.5691(19)A, β=104.91(3) o , Z=2, RAll=0.032). The structure contains puckered polyhedral layers made of LaO x (x=9,10) and SeO 4 groups, which are connected via SeO 3 -uints to the 3D structure. The crytal structure of KNd(SeO 4 ) 2 (monoclinc, P2 1 /c, a=8.7182(17)A, b=7.3225(15)A, c=11.045(2)A, β=91.38(3) o , Z=4, RAll=0.051) contains honeycomb-like six-ring NdO 9 polyhedra forming layers which are further decorated with SeO 4 tetrahedra. The K + ions occupy the interspaces of these layers and provide the charge balance

  4. Solid-state supercapacitors with ionic liquid gel polymer electrolyte based on poly (3, 4-ethylenedioxythiophene), carbon nanotubes, and metal oxides nanocomposites for electrical energy storage

    Science.gov (United States)

    Obeidat, Amr M.

    Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also

  5. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  6. Chiromagnetic nanoparticles and gels

    Science.gov (United States)

    Yeom, Jihyeon; Santos, Uallisson S.; Chekini, Mahshid; Cha, Minjeong; de Moura, André F.; Kotov, Nicholas A.

    2018-01-01

    Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.

  7. Thermal properties of rare earth cobalt oxides and of La1- x Gd x CoO3 solid solutions

    Science.gov (United States)

    Orlov, Yu. S.; Dudnikov, V. A.; Gorev, M. V.; Vereshchagin, S. N.; Solov'ev, L. A.; Ovchinnikov, S. G.

    2016-05-01

    Powder X-ray diffraction data for the crystal structure, phase composition, and molar specific heat for La1‒ x Gd x CoO3 cobaltites in the temperature range of 300-1000 K have been analyzed. The behavior of the volume thermal expansion coefficient in cobaltites with isovalent doping in the temperature range of 100-1000 K is studied. It is found that the β( T) curve exhibits two peaks at some doping levels. The rate of the change in the occupation number for the high-spin state of cobalt ions is calculated for the compounds under study taking into account the spin-orbit interaction. With the Birch-Murnaghan equation of state, it is demonstrated that the low-temperature peak in the thermal expansion shifts with the growth of the pressure toward higher temperatures and at pressure P ˜ 7 GPa coincides with the second peak. The similarity in the behavior of the thermal expansion coefficient in the La1- x Gd x CoO3 compounds with the isovalent substitution and the undoped LnCoO3 compound (Ln is a lanthanide) is considered. For the whole series of rare earth cobalt oxides, the nature of two specific features in the temperature dependence of the specific heat and thermal expansion is revealed and their relation to the occupation number for the high-spin state of cobalt ions and to the insulator-metal transition is established.

  8. Effect of a ZrO{sub 2} coating deposited by the sol–gel method on the resistance of FeCrAl alloy in high-temperature oxidation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chęcmanowski, Jacek Grzegorz, E-mail: jacek.checmanowski@pwr.wroc.pl [Wrocław University of Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Szczygieł, Bogdan, E-mail: bogdan.szczygiel@pwr.wroc.pl [Wrocław University of Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland)

    2013-05-15

    One-, three- and five-layer protective ZrO{sub 2} coatings were deposited on a FeCrAl alloy base by the sol–gel method. A zirconium(IV) isopropoxide isopropanol complex was used as the zirconium precursor. It has been shown that zirconium in the amount of 0.3–0.5 wt.% improves the resistance of FeCrAl alloy in high-temperature oxidation conditions (in air at T = 1060 °C for t = 2400 h). Even a very low Zr content affects the morphology, porosity and composition of the forming scale (SEM, EDS). An analysis of the chemical composition of the material after oxidation indicated to-core Zr diffusion. The presence of zirconium prevents catastrophic corrosion of the FeCrAl alloy during oxidation. In the case of the alloy without the reactive element (Zr) this type of corrosion occurred after about 1800 h. The oxidation of the FeCrAl alloy covered with ZrO{sub 2} coatings proceeds in three stages. In the first stage, lasting about 50 h, the mass of the sample grows rapidly, then for 700 h the mass changes minimally and in the third stage the oxidation proceeds according to a parabolic dependence. The presence of Zr on the surface of the FeCrAl alloy significantly contributes to the protective effect of the coatings. - Highlights: ► Multilayer ZrO{sub 2} coatings were deposited on FeCrAl alloy by sol–gel method. ► Study of alloy composition indicates to-core Zr diffusion in high temperature. ► Even very low content affects morphology and porosity of forming scale. ► Zirconium improves the resistance of FeCrAl alloy in high temperature conditions. ► Presence of ZrO{sub 2} prevents catastrophic corrosion of FeCrAl alloy during oxidation.

  9. Assessment for the role of rare earth oxide in the R2O3 - RuO2 - Pt composite electrode

    International Nuclear Information System (INIS)

    Do Ngoc Lien; Nguyen Van Sinh

    2004-01-01

    Our work has showed several results related to assessment for the role of rare earth oxide in the R 2 O 3 - RuO 2 - Pt composite electrode. The precursor method was used for preparing composite electrode in the following forms: a- RuO 2 - Pt electrode b- La 2 O 3 (55%) - RuO 2 (45%) - Pt electrode c- CeO 2 (60%) - RuO 2 (40%) - Pt electrode By measurements of anodic polarization and cyclic potential for the types of a, b, c electrodes we can see that the La 2 O 3 (55%) - 45% RuO 2 - Pt electrode will be the best anodic electrode. It means that the partial replacement of ruthenium oxide by lanthanum oxide in composite oxide electrode will be an effective one. (author)

  10. Regional framework and geology of iron oxide-apatite-rare earth element and iron oxide-copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.

    2016-01-01

    This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow

  11. Work function tuning and fluorescence enhancement of hydrogen annealed Ag-doped Al-rich zinc oxide nanostructures using a sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Firoz; Baek, Seong-Ho [Energy Research Division, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 50-1 Sang-Ri, Hyeonpung-Myeon, Dalseong-Gun, Daegu 711-873 (Korea, Republic of); Lee, Jae Young [School of Mechanical and Control Engineering, Handong Global University, 558 Handong-Ro, Heunghae-Eub, Buk-Ku, Pohang, Gyung-Buk 791-708 (Korea, Republic of); Kim, Jae Hyun, E-mail: jaehyun@dgist.ac.kr [Energy Research Division, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 50-1 Sang-Ri, Hyeonpung-Myeon, Dalseong-Gun, Daegu 711-873 (Korea, Republic of)

    2015-10-25

    Effect of incorporation of Ag on the structural, optical, electrical, and fluorescence properties of sol–gel derived Al-rich zinc oxide (ZnO:Al:Ag) nanostructured films was studied. The E{sub g} of the film slightly decreased to a minimal value with Ag doping, and was found to be about 3.65 eV for R{sub Ag/Zn} = 1% from its initial value of 3.72 eV (R{sub Ag/Zn} = 0%). The WF sudden increased to a maximal value of 5.12 eV with Ag doping (for R{sub Ag/Zn} = 1%) from its initial value of 4.73 eV for R{sub Ag/Zn} = 0% due to substitution of Ag into Zn sites until saturation was achieved (R{sub Ag/Zn} = 1%). After more Ag doping, WF started to decrease and finally, reached a value of 4.81 eV for R{sub Ag/Zn} = 3% because of the formation of an impurity-defect energy level below the intrinsic Fermi level of ZnO. With Ag-doping, the current increased up to R{sub Ag/Zn} = 1% due to the increase in carrier density. For R{sub Ag/Zn} = 3% doping, the current density started to increase due to the influence of metallic Ag. The defective peak position was blue shifted, with increased Ag-doping, from 536 nm (R{sub Ag/Zn} = 1%) to 527 nm for R{sub Ag/Zn} = 2% due to the sizes of the Ag{sup +} and Zn{sup 2+} ions. The FL defective peak intensity (I{sub D}) in the green region increased with the concentration of Ag used for doping, up to R{sub Ag/Zn} = 2%. The enhancement in the I{sub D} may be due to charge difference between the Zn{sup 2+} ions, caused by Ag{sup +} ions. - Graphical abstract: The effect of incorporation of Ag doping on the structural, optical, electrical, and fluorescence properties of sol–gel derived Al-rich zinc oxide (ZnO:Al:Ag) nanostructured films was studied. By Ag-doping, the lowest R{sub λ} is blue shifted to R{sub Ag/Zn} = 2% and finally red shifted for R{sub Ag/Zn} = 3% due to variation of optical thickness of the film. The E{sub g} of the film slightly decreased to a minimal value with Ag doping, and was found to be about 3.65 eV for R{sub Ag

  12. Preparation of Pt Ru/C + rare earths by the method of reduction by alcohol for the electro-oxidation of ethanol

    International Nuclear Information System (INIS)

    Tusi, M.M.; Rodrigues, R.M.S.; Spinace, E.V.; Oliveira Neto, A.

    2010-01-01

    PtRu/C electrocatalyst was prepared in a single step, while that PtRu/85%C-15%Ce, PtRu/85%C-15%La, PtRu/85%C-15%Nd and PtRu/85%C-15%Er electrocatalyst were prepared in a two step. In the first step a Carbon Vulcan XC72 + rare earth supports were prepared. In the second step PtRu electrocatalyst were prepared by an alcohol-reduction process using ethylene glycol as solvent and reducing agent and supported on Vulcan XC72 + earth rare. The obtained electrocatalysts were characterized by EDAX, XRD and chronoamperometry. The electro-oxidation of ethanol was studied by chronoamperometry at room temperature. PtRu/85%C- 15%Ce electrocatalyst showed a significant increase of performance for ethanol oxidation compared to PtRu/C electrocatalyst. (author)

  13. Electric and magnetic properties of oxidic titanium bronzes of rare earths Lnsub(2/3+x)TiOsub(3+-y) with perovskite structure

    International Nuclear Information System (INIS)

    Bazuev, G.V.; Makarova, O.V.; Shvejkin, G.P.

    1983-01-01

    A study was made on electric and magnetic properties of oxidic titanium bronzes of rare earths and their dependence on rare earth nature and the degree of rare earth sublattice filling was followed. Data on Lnsub(2/3)TiOsub(3-y) (Ln-Ce, Nd) anion-deficient perovskites are given as well. Investigated Cesub(2/3)TiOsub(2.985) and Ndsub(2/3)TiOsub(2.875) phases as well as defectless with respect to oxygen Lnsub(2/3)TiOsub(3) phases have rhombic structure of perovskite type with ordered position of Ln 3 + cations and vacancies. Specific electric resistance and thermoelectromotive force factor were determined in vacuum at 290-1173 K for samples in the form of parallelepiped of 3x5x25 mm 3 size. Magnetic susceptibility chi was determined at 77-300 K by Faraday method using a device based on magnetic balancewith electromagnetic compensation. Relative error during chi measuring didn't exceed +-2%. Collectivized behaviour of d-electrons of Ti 3 + cations in oxidic titanium bronzes of rare earths: Lnsub(2/3+x)TiOsub(3+-y) (Ln-La, Ce, Nd; 0 < x < 1/3), conditioned by formation of narrow, partly filled π*-zone, was established on the basis of measuring specific electric resistance and magnetic susceptibility

  14. Electric and magnetic properties of oxidic titanium bronzes of rare earths Lnsub(2/3+x)TiOsub(3+-y) with perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Bazuev, G V; Makarova, O V; Shvejkin, G P [AN SSSR, Sverdlovsk. Inst. Khimii

    1983-01-01

    A study was made on electric and magnetic properties of oxidic titanium bronzes of rare earths and their dependence on rare earth nature and the degree of rare earth sublattice filling was followed. Data on Lnsub(2/3)TiOsub(3-y) (Ln-Ce, Nd) anion-deficient perovskites are given as well. Investigated Cesub(2/3)TiOsub(2.985) and Ndsub(2/3)TiOsub(2.875) phases as well as defectless with respect to oxygen Lnsub(2/3)TiOsub(3) phases have rhombic structure of perovskite type with ordered position of Ln/sup 3 +/ cations and vacancies. Specific electric resistance and thermoelectromotive force factor were determined in vacuum at 290-1173 K for samples in the form of parallelepiped of 3x5x25 mm/sup 3/ size. Magnetic susceptibility chi was determined at 77-300 K by Faraday method using a device based on magnetic balance with electromagnetic compensation. Relative error during chi measuring didn't exceed +-2%. Collectivized behaviour of d-electrons of Ti/sup 3 +/ cations in oxidic titanium bronzes of rare earths: Lnsub(2/3+x)TiOsub(3+-y) (Ln-La, Ce, Nd; 0 < x < 1/3), conditioned by formation of narrow, partly filled ..pi..*-zone, was established on the basis of measuring specific electric resistance and magnetic susceptibility.

  15. Low-temperature SCR of NO with NH{sub 3} over activated semi-coke composite-supported rare earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinping; Yan, Zheng; Liu, Lili; Zhang, Yingyi; Zhang, Zuotai; Wang, Xidong, E-mail: xidong@pku.edu.cn

    2014-08-01

    The catalysts with different rare earth oxides (La, Ce, Pr and Nd) loaded onto activated semi-coke (ASC) via hydrothermal method are prepared for the selective catalytic reduction (SCR) of NO with NH{sub 3} at low temperature (150–300 °C). It is evidenced that CeO{sub 2} loaded catalysts present the best performance, and the optimum loading amount of CeO{sub 2} is about 10 wt%. Composite catalysts by doping La, Pr and Nd into CeO{sub 2} are prepared to obtain further improved catalytic properties. The SCR mechanism is investigated through various characterizations, including XRD, Raman, XPS and FT-IR, the results of which indicate that the oxygen defect plays an important role in SCR process and the doped rare earth elements effectively serve as promoters to increase the concentration of oxygen vacancies. It is also found that the oxygen vacancies in high concentration are favored for the adsorption of O{sub 2} and further oxidation of NO, which facilitates a rapid progressing of the following reduction reactions. The SCR process of NO with NH{sub 3} at low temperature over the catalysts of ASC composite-supported rare earth oxides mainly follows the Langmuir–Hinshlwood mechanism.

  16. Sol-Gel Synthesis of La(0.6)Sr(0.4)CoO(3-x) and Sm(0.5)Sr(0.5)CoO(3-x) Cathode Nanopowders for Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Wise, Brent

    2011-01-01

    Nanopowders of La(0.6)Sr(0.4)CoO(3-x) (LSC) and Sm(0.5)Sr(0.5)CoO(3-x) (SSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC) with La(Sr)Ga(Mg)O(3-x) (LSGM) as the electrolyte, were synthesized by low-temperature sol-gel method using metal nitrates and citric acid. Thermal decomposition of the citrate gels was followed by simultaneous DSC/TGA methods. Development of phases in the gels, on heat treatments at various temperatures, was monitored by x-ray diffraction. Solgel powders calcined at 550 to 1000 C consisted of a number of phases. Single perovskite phase La(0.6)Sr(0.4)CoO(3-x) or Sm(0.5)Sr(0.5)CoO(3-x) powders were obtained at 1200 and 1300 C, respectively. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy. The average particle size of the powders was approx.15 nm after 700 C calcinations and slowly increased to 70 to 100 nm after heat treatments at 1300 to 1400 C.

  17. Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol-gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigations.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Enhancing photovoltaic performance of dye-sensitized solar cell by rare-earth doped oxide of Lu2O3:(Tm3+, Yb3+)

    International Nuclear Information System (INIS)

    Li Qingbei; Lin Jianming; Wu Jihuai; Lan Zhang; Wang Yue; Peng Fuguo; Huang Miaoliang

    2011-01-01

    Highlights: → Tm 3+ /Yb 3+ codoped oxide is introduced into the TiO 2 film in dye-sensitized solar cell. → The RE improves light harvest via conversion luminescence and increases photocurrent. → The RE elevates the oxide film energy level and increases the cell photovoltage. → The cell efficiency is increased by 11.1% compared to the cell lacking of RE doping. - Abstract: In order to increase of the photocurrent, photovoltage and energy conversion efficiency of dye-sensitized solar cell (DSSC), rare-earth doped oxide of Lu 2 O 3 :(Tm 3+ , Yb 3+ ) is prepared and introduced into the TiO 2 film in the DSSC. As a luminescence medium, Lu 2 O 3 :(Tm 3+ , Yb 3+ ) improves incident light harvest via a conversion luminescence process and increases photocurrent; as a p-type dopant, the rare-earth ions elevate the energy level of the oxide film and increase the photovoltage. Under a simulated solar light irradiation of 100 mW cm -2 , the light-to-electric energy conversion efficiency of the DSSC with Lu 2 O 3 :(Tm 3+ , Yb 3+ ) doping reaches 6.63%, which is increased by 11.1% compared to the DSSC without Lu 2 O 3 :(Tm 3+ , Yb 3+ ) doping.

  19. The Janus face of iron on anoxic worlds: iron oxides are both protective and destructive to life on the early Earth and present-day Mars.

    Science.gov (United States)

    Wadsworth, Jennifer; Cockell, Charles S

    2017-05-01

    The surface of the early Earth was probably subjected to a higher flux of ultraviolet (UV) radiation than today. UV radiation is known to severely damage DNA and other key molecules of life. Using a liquid culture and a rock analogue system, we investigated the interplay of protective and deleterious effects of iron oxides under UV radiation on the viability of the model organism, Bacillus subtilis. In the presence of hydrogen peroxide, there exists a fine balance between iron oxide's protective effects against this radiation and its deleterious effects caused by Photo-Fenton reactions. The maximum damage was caused by a concentration of hematite of ∼1 mg/mL. Concentrations above this confer increasing protection by physical blockage of the UV radiation, concentrations below this cause less effective UV radiation blockage, but also a correspondingly less effective Photo-Fenton reaction, providing an overall advantage. These results show that on anoxic worlds, surface habitability under a high UV flux leaves life precariously poised between the beneficial and deleterious effects of iron oxides. These results have relevance to the Archean Earth, but also the habitability of the Martian surface, where high levels of UV radiation in combination with iron oxides and hydrogen peroxide can be found. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Synthesis and characterization of sodium vanadium oxide gels: the effects of water (n) and sodium (x) content on the electrochemistry of Na(x)V2O5·nH2O.

    Science.gov (United States)

    Lee, Chia-Ying; Marschilok, Amy C; Subramanian, Aditya; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-10-28

    Sodium vanadium oxide gels, Na(x)V(2)O(5)·nH(2)O, of varying sodium content (0.12 n > 0.01) and interlayer spacing were found to be inversely proportional to the sodium level (x), thus control of sodium (x) content provided a direct, chimie douce approach for control of hydration level (n) and interlayer spacing, without the need for high temperature treatment to affect dehydration. Notably, the use of high temperatures to modify hydration levels can result in crystallization and collapse of the interlayer structure, highlighting the distinct advantage of our novel chimie douce synthesis strategy. Subsequent to synthesis and characterization, results from an electrochemical study of a series of Na(x)V(2)O(5)·nH(2)O samples highlight the significant impact of interlayer water on delivered capacity of the layered materials. Specifically, the sodium vanadium oxide gels with higher sodium content and lower water content provided higher capacities in lithium based cells, where capacity delivered to 2.0 V under C/20 discharge ranged from 170 mAh/g for Na(0.12)V(2)O(5)·0.23H(2)O to 300 mAh/g for Na(0.32)V(2)O(5)·0.01H(2)O. The capacity differences were maintained as the cells were cycled. This journal is © the Owner Societies 2011

  1. Fabrication of silica optical fibers doped in the core with aluminium oxide and rare-earth elements by using xerogels

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Kašík, Ivan; Hayer, Miloš; Berková, Daniela; Chomát, Miroslav; Skokánková, Jana

    2002-01-01

    Roč. 47, č. 12 (2002), s. 1233-1239 ISSN 0035-3930 R&D Projects: GA AV ČR KSK2067107 Projekt 07/01:4074 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibres * lasers * sol-gel processing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.192, year: 2002

  2. The effect of rare earth dopants on the structure, surface texture and photocatalytic properties of TiO2-SiO2 prepared by sol-gel method

    International Nuclear Information System (INIS)

    Mohamed, R.M.; Mkhalid, I.A.

    2010-01-01

    The sol-gel method was successfully used to prepare a series of TiO 2 -SiO 2 and rare earth (RE) (La 3+ , Nd 3+ , Sm 3+ , Gd 3+ )-doped TiO 2 -SiO 2 nanoparticles at a doping level of 3 atomic percent. The structural features of parent TiO 2 -SiO 2 and RE-TiO 2 -SiO 2 fired at 550 o C have been investigated by XRD, UV-diffuse reflection, SEM and nitrogen adsorption measurements at -196 o C. XRD data verified the formation of typical characteristic anatase form in all the prepared RE-doped TiO 2 -SiO 2 samples. In comparison with the pure TiO 2 -SiO 2 samples (ca. 35 nm in diameter), the RE-TiO 2 -SiO 2 samples have relatively small particle size indicating that the doping with RE metal ions can improve the particle morphology, and retard the grain growth of TiO 2 -SiO 2 during heat treatment. The results indicated that Gd 3+ doped TiO 2 -SiO 2 has the lowest bandgap and particle size compared with pure TiO 2 -SiO 2 and other nanoparticles of RE-doped TiO 2 -SiO 2 . The highest surface area (S BET ) and pore volume (V p ) values were recorded for Gd-TiO 2 -SiO 2 as well. The effect of doping on the photoactivity was evaluated by the photocatalytic degradation of EDTA as a probe reaction. Among all the pure and RE-doped TiO 2 -SiO 2 , Gd 3+ -TiO 2 -SiO 2 performed the highest catalytic activity towards the tested reaction. That might be due to its special characteristics of particle size, surface texture and bandgap properties. Details of the synthesis procedure and results of the characterization studies of the produced RE-TiO 2 -SiO 2 are presented in this paper.

  3. Quantification of trace amounts of rare earth elements in high purity gadolinium oxide by sector field inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Silva Queiroz, C.A. da; Abrao, A.; Pimentel, M.M.

    2004-01-01

    In recent years, rare earth elements (REEs) have received much attention in the fields of geochemistry and industry. Gadolinium oxide is used for many different high technology applications such as infrared absorbing automotive glass, petroleum cracking catalyst, gadolinium-yttrium garnets, microwave applications, and color TV tube phosphors. It can also be used in optical glass manufacturing and in the electronic industry. Rapid and accurate determinations of the rare earth elements are increasingly required as industrial demands expand. In general, the inductively coupled plasma mass spectrometry (ICP-MS) presents some advantages for trace element analysis, due to high sensitivity and resolution, when compared with other analytical techniques. In this work, sector field inductively coupled plasma mass spectrometry was used. Sixteen elements (Sc, Y, and 14 lanthanides) were determined selectively with the ICP-MS system using a concentration gradient method. The detection limits with the ICP-MS system were about 0.2-8 pg ml -1 . The recovery percentage ranged from 95 to 100% for different rare earth elements. The %R.S.D. of the methods varying between 1.5 and 2.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two high pure gadolinium oxides samples (IPEN and JMC) was performed. IPEN's material is highly pure (>99.99%) and was successfully analyzed without spectral interference

  4. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  5. From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid

    OpenAIRE

    Vander Hoogerstraete, Tom; Blanpain, Bart; Van Gerven, Tom; Binnemans, Koen

    2014-01-01

    A chemical process which consumes a minimum amount of chemicals to recover rare-earth metals from NdFeB magnets was developed. The recovery of rare-earth elements from end-of-life consumer products has gained increasing interest during the last few years. Examples of valuable rare earths are neodymium and dysprosium because they are important constituents of strong permanent magnets used in several large or growing application fields (e.g. hard disk drives, wind turbines, electric vehicles, m...

  6. Synthesis by sol-gel and characterization of catalysts Ag/Al{sub 2}O{sub 3}- CeO{sub 2} for the elimination of nitric oxide; Sintesis por sol-gel y caracterizacion de catalizadores Ag/Al{sub 2}O{sub 3}- CeO{sub 2} para la eliminacion del oxido nitrico

    Energy Technology Data Exchange (ETDEWEB)

    Zayas R, M.L

    2005-07-01

    The environmental pollution is one from the big problems to solve at the present time, because the quality of the alive beings life is affected. For such reason, more clean and economic technologies are required, that it conduces to develop new catalytic alternatives to diminish the nitrogen oxides that due to its chemical processes in the environment contribute considerably in the air pollution. The main objective of the present work, is the preparation and characterization of catalytic materials with base of silver supported in simple and mixed aluminium oxides (Al{sub 2}O{sub 3}) and Cerium oxide (CeO{sub 2}), and its catalytic evaluation that through of the reduction of nitric oxide (NO) using hydrogen (H{sub 2}) as reducer agent. It was synthesized alumina (Al{sub 2}O{sub 3}) and Cerium oxide (CeO{sub 2}) and mixed oxides (Al{sub 2}O{sub 3}- CeO{sub 2}), by the sol-gel method and the cerium oxide (CeO{sub 2}) by precipitation of the cerium nitrate (III) hexa hydrated. The oxides were stabilized thermally at 900 C by 5 hr. The catalysts were prepared by impregnation using silver nitrate (AgNO{sub 3}), the nominal concentration of Ag was of 5% in weight. The catalysts were reduced at 400 C by 2 hr, in hydrogen flow of 60 cc/min. The characterization of the catalytic materials was carried out through different techniques as: nitrogen adsorption to determine the surface area BET, scanning electron microscopy (SEM) to observe the final morphology of the catalysts, X-ray diffraction (XRD) to identify the crystalline phases of the catalytic materials, Infrared spectroscopy (DRIFT) to know the structural characterization of the catalysts, reduction to programmed temperature (TPR) to evidence the interaction metal-support. The catalytic properties of the catalysts were evaluated in the model reaction NO + H{sub 2}, to determine the activity and selectivity. The results indicate that the preparation technique, the precursors and the thermal treatments that underwent

  7. Manufacture of amorphous and poly-crystalline materials with the sol-gel process; Fabricacion de materiales amorfos y policristalinos con la ruta sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda-Contreras, J. [Centro Universitario de Los Lagos, Universidad de Guadalajara, Guadalajara, Jalisco (Mexico)

    2006-01-15

    The sun-gel process is a chemical route that allows the manufacture of amorphous and poly-crystalline materials in a relatively simple way. New materials can be obtained, materials that through the traditional manufacture methods, are very difficult to obtain, such as oxide combinations (SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, etc.), and that, when being produced by traditional methods, they run the risk of being contaminated with rare earth ions or organic dyes. The unique structures, micro- structures and compounds that can be made with the sun-gel process open many possibilities for practical applications, to name a few: the manufacture of optical components, preforms for optical fibers, dielectric coatings, superconductors, waveguides, nanoparticles, solar cells, etc. [Spanish] El proceso sol-gel es una ruta quimica que permite fabricar materiales amorfos y policristalinos de forma relativamente sencilla. Se pueden obtener nuevos materiales que a traves de los metodos tradicionales de fabricacion son muy dificiles de obtener, tales como combinaciones de oxidos (SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, etc.), y que, de ser producidos por metodos tradicionales corren el riesgo de contaminarse con iones de tierras raras o colorantes organicos. Las estructuras unicas, micro estructuras y compuestos que pueden hacerse con el proceso sol-gel abren muchas posibilidades para aplicaciones practicas, por nombrar algunas, la fabricacion de componentes opticos, preformas para fibras opticas, recubrimientos dielectricos, superconductores, guias de onda, nanoparticulas, celdas solares, etc.

  8. Layered rare-earth hydroxide nanocones with facile host composition modification and anion-exchange feature: topotactic transformation into oxide nanocones for upconversion.

    Science.gov (United States)

    Zhong, Yishun; Chen, Gen; Liu, Xiaohe; Zhang, Dan; Zhang, Ning; Li, Junhui; Liang, Shuquan; Ma, Renzhi; Qiu, Guanzhou

    2017-06-22

    Conical structures with hollow interiors, namely, nanocones (NCs), may exhibit better carrier transport properties than nanorods or nanotubes, which make them promising candidates for potential applications in optical/display devices, electronics and optoelectronics. Generally, conical structures belong to a metastable state between lamellar and tubular forms due to the extreme curvature causing the increase of internal strain energy. Therefore, it is very difficult to prepare NCs in high yield and purity under mild conditions. Here we firstly demonstrate a general strategy for the synthesis of layered rare-earth hydroxide (LRH) NCs intercalating dodecyl sulfate anions (C 12 H 25 SO 4 - , DS - ) using hexamethylenetetramine (C 6 H 12 N 4 , HMT) hydrolysis. The rare-earth cations (RE 3+ ) in the host layer can be conveniently modified and/or doped, resulting in a large family of monometallic (Y, Tb, Er), bi- (Y-Tb, Y-Er) and even tri-metallic (Y-Yb-Er) LRH NCs with adjustable ratios. Moreover, the DS - -intercalated LRH NCs can be readily modified with various inorganic or organic anions (e.g., NO 3 - , Cl - , and CH 3 COO - , etc.) through a conventional anion-exchange procedure, and the original conical morphology can be perfectly maintained. The anion-exchanged product, for example, NO 3 - -intercalated NCs, can be more easily and topotactically transformed into oxide NCs than the original DS - -intercalated form, exempt from the formation of rare-earth oxysulfates induced by the combustion of interlayer DS anions. Taking advantage of this protocol, tri-metallic (Y-Yb-Er) LRH NCs were anion-exchanged into the NO 3 - -intercalated form and subsequently calcined into Y 2 O 3 :Yb,Er oxide NCs, which showed efficient upconversion photoluminescence properties. The current strategy may become a general method for the designed synthesis of other related hydroxide and oxide NCs for a wide range of potential applications.

  9. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    Science.gov (United States)

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani; Manivannan, Venkatesan

    2004-07-13

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  10. Sol-gel chemistry applied to the synthesis of polymetallic oxides including actinides reactivity and structure from solution to solid state; Synthese par voie douce d'oxydes polymetalliques incluant des actinides: reactivite et structure de la solution au solide

    Energy Technology Data Exchange (ETDEWEB)

    Lemonnier, St

    2006-02-15

    Minor actinides transmutation is studied at present in order to reduce the radiotoxicity of nuclear waste and the assessment of its technical feasibility requires specific designed materials. When considering americium, yttria stabilized zirconia (Am{sup III} YII Zriv)Or{sub x} is among the ceramic phases that one which presents the required physico-chemical properties. An innovative synthesis of this mixed oxide by sol-gel process is reported in this manuscript. The main aim of this work is to adjust the reactivity of the different metallic cations in aqueous media using complexing agent, in order to initiate a favourable interaction for a homogeneous elements repartition in the forming solid phase. The originality of the settled synthesis lies on an in-situ formation of a stable and monodisperse nano-particles dispersion in the presence of acetylacetone. The main reaction mechanisms have been identified: the sol stabilisation results from an original interaction between the three compounds (Zrly, trivalent cations and acetylacetone). The sol corresponds to a structured system at the nanometer scale for which zirconium and trivalent cations are homogeneously dispersed, preliminary to the sol-gel transition. Furthermore, preliminary studies were carried out with a view to developing materials. They have demonstrated that numerous innovative and potential applications can be developed by taking advantage of the direct and controlled formation of the sol and by adapting the sol-gel transition. The most illustrating result is the preparation of a sintered pellet with the composition Am0,13Zro,73Yo,0901,89 using this approach. (author)

  11. Determining hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests.

    Science.gov (United States)

    Masselink, Rens; Temme, Arnaud; Giménez, Rafael; Casalí, Javier; Keesstra, Saskia

    2017-04-01

    Soil erosion from agricultural areas is a large problem, because of off-site effects like the rapid filling of reservoirs. To mitigate the problem of sediments from agricultural areas reaching the channel, reservoirs and other surface waters, it is important to understand hillslope-channel connectivity and catchment connectivity. To determine the functioning of hillslope-channel connectivity and the continuation of transport of these sediments in the channel, it is necessary to obtain data on sediment transport from the hillslopes to the channels. Simultaneously, the factors that influence sediment export out of the catchment need to be studied. For measuring hillslope-channel sediment connectivity, Rare-Earth Oxide (REO) tracers were applied to a hillslope in an agricultural catchment in Navarre, Spain, preceding the winter of 2014-2015. The results showed that during the winter there was no sediment transport from the hillslope to the channel. Analysis of precipitation data showed that total precipitation quantities did not differ much from the mean. However, precipitation intensities were low, causing little sediment mobilisation. To test the implication of the REO results at the catchment scale, two conceptual models for sediment connectivity were assessed using a Random Forest (RF) machine learning method. One model proposes that small events provide sediment for large events, while the other proposes that only large events cause sediment detachment and small events subsequently remove these sediments from near and in the channel. The RF method was applied to a daily dataset of sediment yield from the catchment (N=2451 days), and two subsets of the whole dataset: small events (N=2319) and large events (N=132). For sediment yield prediction of small events, variables related to large preceding events were the most important. The model for large events underperformed and, therefore, we could not draw any immediate conclusions whether small events influence the

  12. Synthesis, characterization, and thermal properties of homoleptic rare-earth guanidinates: promising precursors for MOCVD and ALD of rare-earth oxide thin films.

    Science.gov (United States)

    Milanov, Andrian P; Fischer, Roland A; Devi, Anjana

    2008-12-01

    Eight novel homoleptic tris-guanidinato complexes M[(N(i)Pr)(2)CNR(2)](3) [M = Y (a), Gd (b), Dy (c) and R = Me (1), Et (2), (i)Pr (3)] have been synthesized and characterized by NMR, CHN-analysis, mass spectrometry and infrared spectroscopy. Single crystal structure analysis revealed that all the compounds are monomers with the rare-earth metal center coordinated to six nitrogen atoms of the three chelating guanidinato ligands in a distorted trigonal prism geometry. With the use of TGA/DTA and isothermal TGA analysis, the thermal characteristics of all the complexes were studied in detail to evaluate their suitability as precursors for thin film deposition by MOCVD and ALD. The (i)Pr-Me(2)N-guanidinates of Y, Gd and Dy (1a-c) showed excellent thermal characteristics in terms of thermal stability and volatility. Additionally, the thermal stability of the (i)Pr-Me(2)N-guanidinates of Y and Dy (1a, c) in solution was investigated by carrying out NMR decomposition experiments and both the compounds were found to be remarkably stable. All these studies indicate that (i)Pr-Me(2)N-guanidinates of Y, Gd and Dy (1a-c) have the prerequisites for MOCVD and ALD applications which were confirmed by the successful deposition of Gd(2)O(3) and Dy(2)O(3) thin films on Si(100) substrates. The MOCVD grown films of Gd(2)O(3) and Dy(2)O(3) were highly oriented in the cubic phase, while the ALD grown films were amorphous.

  13. Morphological changes in bone tissue around titanium implants subjected to micro-arc oxidation in alkaline electrolytes with and without the use of «CollapAn-gel»

    Directory of Open Access Journals (Sweden)

    Kalmin O.V.

    2013-12-01

    Full Text Available The purpose of the article is to conduct comparative study of the features of reparative processes in the bone during installation of titanium implants with sandblasted exposed microarc subsequent oxidation in alkaline electrolyte using osteoinductive formulation without the use of this preparation. Material and Methods. Histologically examined tissue samples from 24 adult rabbits in the region of titanium implant with osteoinductive formulation and without after 7, 14, 28, 56 and 112 days postoperatively. Results. It has been revealed that the installation of titanium implants subjected to micro-arc oxidation in alkaline electrolytes without the use of osteoinductive preparation leads to a moderate inflammatory response and the processes of bone formation take more time. When using identical implants with osteoinductive preparation «CollapAn-gel» led to a less expressed inflammatory response and a more active process of bone formation. Conclusion. The use of titanium implants subjected to sandblasting followed microarc oxidation in alkaline electrolytes is optimally combined with osteoinductive agents as it provides the best clinical results and highlights shorter time of bone regeneration.

  14. Removing water from gels

    International Nuclear Information System (INIS)

    Lane, E.S.; Winter, J.A.

    1982-01-01

    Water is removed from a gel material by contacting the gel material with an organic liquid and contacting the organic liquid with a gas such that water is taken up by the gas. The invention, in one embodiment, may be used to dry gel materials whilst maintaining an open porous network therein. In one example, the invention is applied to gel precipitated spheres containing uranium and plutonium. (author)

  15. Polymer gels and networks

    National Research Council Canada - National Science Library

    Osada, Yoshihito; Khokhlov, A. R

    2002-01-01

    ... or magnetic field, etc.). It was realized that not only can polymer gels absorb and hold a considerable volume of liquids, but they can also be forced to expel the absorbed liquid in a controlled manner. Of particular interest are hydrogels, i.e., polymer gels, which swell extensively in water. The most common hydrogels are polyelectrolyte gels: ...

  16. Organic Aerosols in the Presence of CO{sub 2} in the Early Earth and Exoplanets: UV–Vis Refractive Indices of Oxidized Tholins

    Energy Technology Data Exchange (ETDEWEB)

    Gavilan, Lisseth; Carrasco, Nathalie; Vettier, Ludovic [LATMOS, Université Versailles St Quentin, UPMC Université Paris 06, CNRS, 11 blvd d’Alembert, F-78280 Guyancourt (France); Broch, Laurent [LCP-A2MC, Institut Jean Barriol, Université de Lorraine, Metz (France); Fleury, Benjamin, E-mail: lisseth.gavilan@latmos.ipsl.fr [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2017-10-10

    In this experimental study we investigate the role of atmospheric CO{sub 2} on the optical properties of organic photochemical aerosols. To this end, we add CO{sub 2} to a N{sub 2}:CH{sub 4} gas mixture used in a plasma typically used for Titan studies. We produce organic thin films (tholins) in plasmas where the CO{sub 2}/CH{sub 4} ratio is increased from 0 to 4. We measure these films via spectrometric ellipsometry and apply a Tauc–Lorentz model, used for optically transparent materials, to obtain the thickness of the thin film, its optical band gap, and the refractive indices in the UV–visible (270–600 nm). All samples present a significant absorption band in the UV. According to the Tauc–Lorentz model, as the CO{sub 2}/CH{sub 4} ratio is quadrupled, the position of the UV band is shifted from ∼177 nm to 264 nm while its strength is quadrupled. Consequently, we infer that oxidized organic aerosols absorb more efficiently at longer UV wavelengths than reduced aerosols. Our laboratory wavelength-tabulated UV–vis refractive indices provide new constraints to atmospheric models of the early Earth and Earth-like exoplanets including photochemical hazes formed under increasingly oxidizing conditions.

  17. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  18. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  19. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  20. Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production.

    Science.gov (United States)

    Uddin, Md T; Nicolas, Y; Olivier, C; Jaegermann, W; Rockstroh, N; Junge, H; Toupance, T

    2017-07-26

    Earth-abundant NiO/anatase TiO 2 heteronanostructures were prepared by a straightforward one-pot sol-gel synthetic route followed by a suitable thermal post-treatment. The resulting 0.1-4 wt% NiO-decorated anatase TiO 2 nanoparticles were characterized by X-ray diffraction, electron microscopy, Raman and UV-visible spectroscopy and N 2 sorption analysis, and showed both nanocrystallinity and mesoporosity. The careful determination of the energy band alignment diagram by a suitable combination of XPS/UPS and absorption spectroscopy data revealed significant band bending at the interface of the p-n NiO/anatase TiO 2 heterojunction nanoparticles. Furthermore, these heterojunction photocatalysts exhibited an improved photocatalytic activity in H 2 production by methanol photoreforming compared to pure anatase TiO 2 and commercial P25. Thus, an average H 2 production rate of 2693 μmol h -1 g -1 was obtained for the heterojunction of a 1 wt% NiO/anatase photocatalyst, which is one of the most efficient NiO/anatase TiO 2 systems ever reported. An enhanced dissociation efficiency of the photogenerated electron-hole pairs resulting from an internal electric field developed at the interface of the NiO/anatase TiO 2 p-n heterojunctions is suggested to be the reason of this enhanced photocatalytic activity.

  1. Fish Proteins as Targets of Ferrous-Catalyzed Oxidation: Identification of Protein Carbonyls by Fluorescent Labeling on Two-Dimensional Gels and MALDI-TOF/TOF Mass Spectrometry

    DEFF Research Database (Denmark)

    Pazos, Manuel; da Rocha, Angela Pereira; Roepstorff, Peter

    2011-01-01

    Protein oxidation in fish meat is considered to affect negatively the muscle texture. An important source of free radicals taking part in this process is Fenton's reaction dependent on ferrous ions present in the tissue. The aim of this study was to investigate the susceptibility of cod muscle pr...

  2. Imprinted Oxide and MIP/Oxide Hybrid Nanomaterials for Chemical Sensors †.

    Science.gov (United States)

    Afzal, Adeel; Dickert, Franz L

    2018-04-20

    The oxides of transition, post-transition and rare-earth metals have a long history of robust and fast responsive recognition elements for electronic, optical, and gravimetric devices. A wide range of applications successfully utilized pristine or doped metal oxides and polymer-oxide hybrids as nanostructured recognition elements for the detection of biologically relevant molecules, harmful organic substances, and drugs as well as for the investigative process control applications. An overview of the selected recognition applications of molecularly imprinted sol-gel phases, metal oxides and hybrid nanomaterials composed of molecularly imprinted polymers (MIP) and metal oxides is presented herein. The formation and fabrication processes for imprinted sol-gel layers, metal oxides, MIP-coated oxide nanoparticles and other MIP/oxide nanohybrids are discussed along with their applications in monitoring bioorganic analytes and processes. The sensor characteristics such as dynamic detection range and limit of detection are compared as the performance criterion and the miniaturization and commercialization possibilities are critically discussed.

  3. Improvement of the thermal and thermo-oxidative stability of high-density polyethylene by free radical trapping of rare earth compound

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Shiya; Zhao, Li; Han, Ligang [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China); Guo, Zhenghong, E-mail: guozhenghong@nit.zju.edu.cn [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); Fang, Zhengping [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China)

    2015-07-20

    Highlights: • Polyethylene filled with ytterbium trifluoromethanesulfonate was prepared. • A low Yb loading improved thermal stability of PE obviously by radical trapping. • Yb(OTf){sub 3} is expected to be an efficient thermal stabilizer for the polymer. - Abstract: A kind of rare earth compound, ytterbium trifluoromethanesulfonate (Yb(OTf){sub 3}), was introduced into high-density polyethylene (HDPE) by melt compounding to investigate the effect of Yb(OTf){sub 3} on the thermal and thermo-oxidative stability of HDPE. The results of thermogravimetric (TG) and differential scanning calorimetry (DSC) showed that the addition of Yb(OTf){sub 3} made the thermal degradation temperatures dramatically increased, the oxidative induction time (OIT) extended, and the enthalpy (ΔH{sub d}) reduced. Very low Yb(OTf){sub 3} loading (0.5 wt%) in HDPE could increase the onset degradation temperature in air from 334 to 407 °C, delay the OIT from 11.0 to 24.3 min, and decrease the ΔH{sub d} from 61.0 to 13.0 J/g remarkably. Electron spin resonance spectra (ESR), thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TGA-FTIR), rheological investigation and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) indicated that the free radicals-trapping ability of Yb(OTf){sub 3} was responsible for the improved thermal and thermo-oxidative stability.

  4. Thixotropic corrosive gels for nuclear decontamination

    International Nuclear Information System (INIS)

    Bargues, St.

    1998-01-01

    The aim of this thesis was the development of corrosive gels for metallic surface decontamination. These gels formulation, based on a powerful oxidant (the cerium IV), the nitric acid, a mineral charge (silica) and a non ionic surface-active, has been developed according to the specific constraints of the nuclear industry. The objective was to prepare thixotropic gels becoming liquid after shacking to allow an easy pulverization and coming again solid to permit a perfect adhesion on the metallic surface. This rheological study of the gels has been completed by an evaluation of their corrosive properties. The last part of the work presents an industrial utilization during two years. (A.L.B.)

  5. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  6. Sol-gel process for thermal reactor fuel fabrication

    International Nuclear Information System (INIS)

    Mukerjee, S.K.

    2008-01-01

    Full text: Sol-gel processes have revolutionized conventional ceramic technology by providing extremely fine and uniform powders for the fabrication of ceramics. The use of this technology for nuclear fuel fabrication has also been explored in many countries. Unlike the conventional sol-gel process, sol-gel process for nuclear fuels tries to eliminate the preparation of powders in view of the toxic nature of the powders particularly those of plutonium and 233 U. The elimination of powder handling thus makes this process more readily amenable for use in glove boxes or for remote handling. In this process, the first step is the preparation of microspheres of the fuel material from a solution which is then followed by vibro-compaction of these microspheres of different sizes to obtain the required smear density of fuel inside a pin. The maximum achievable packing density of 92 % makes it suitable for fast reactors only. With a view to extend the applicability of sol-gel process for thermal reactor fuel fabrication the concept of converting the gel microspheres derived from sol-gel process, to the pellets, has been under investigation for several years. The unique feature of this process is that it combines the advantages of sol-gel process for the preparation of fuel oxide gel microspheres of reproducible quality with proven irradiation behavior of the pellet fuel. One of the important pre-requisite for the success of this process is the preparation of soft oxide gel microspheres suitable for conversion to dense pellets free from berry structure. Studies on the internal gelation process, one of the many variants of sol-gel process, for obtaining soft oxide gel microspheres suitable for gel pelletisation is now under investigation at BARC. Some of the recent findings related to Sol-Gel Microsphere Pelletisation (SGMP) in urania-plutonia and thoria-urania systems will be presented

  7. Dye Sensitized Solar Cell with Conventionally Annealed and Post-Hydrothermally Treated Nanocrystalline Semiconductor Oxide TiO2 Derived from Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Akhmad Yuwono

    2011-05-01

    Full Text Available Dye-sensitized solar cell (DSSC is one of the very promising alternative renewable energy sources to anticipate the declination in the fossil fuel reserves in the next few decades and to make use of the abundance of intensive sunlight energy in tropical countries like Indonesia. In the present study, TiO2 nanoparticles of different nanocrystallinity was synthesized via sol−gel process with various water to inorganic precursor ratio (Rw of 0.85, 2.00 and 3.50 upon sol preparation, followed with subsequent drying, conventional annealing and post-hydrothermal treatments. The resulting nanoparticles were integrated into the DSSC prototype and sensitized with an organic dye made of the extract of red onion. The basic performance of the fabricated DSSC has been examined and correlated to the crystallite size and band gap energy of TiO2 nanoparticles. It was found that post-hydrothermally treated TiO2 nanoparticles derived from sol of 2.00 Rw, with the most enhanced nanocrystalline size of 12.46 nm and the lowest band gap energy of 3.48 eV, showed the highest open circuit voltage (Voc of 69.33 mV.

  8. A poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application

    International Nuclear Information System (INIS)

    Lu, Jinlin; Song, Hua; Li, Suning; Wang, Lin; Han, Lu; Ling, Han; Lu, Xuehong

    2015-01-01

    In this article, we report the facile synthesis of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium dioxide (PEDOT:PSS/TiO 2 ) nanocomposite film by sol–gel assisted electropolymerization. The structure, morphology and composition of the films were investigated by different techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscope and X-ray photoelectron spectroscopy. The PEDOT:PSS/TiO 2 nanocomposite film was applied for electrochromic application. The results indicate that the PEDOT:PSS/TiO 2 nanocomposite film exhibits a higher optical contrast and a much better stability as compared to PEDOT:PSS film. The significant performance enhancement can be attributed to the nanoscale particle size and uniform size distribution of PEDOT:PSS/TiO 2 and the synergistic effect between the inorganic nano-TiO 2 and organic PEDOT:PSS material. - Highlights: • Facile synthesis of PEDOT:PSS/TiO 2 nanocomposite film by electropolymerization • PEDOT:PSS/TiO 2 film shows nano-scaled particle sizes and uniform size distribution. • PEDOT:PSS/TiO 2 film shows higher optical contrasts and faster switching speed. • PEDOT:PSS/TiO 2 film displays a good stability for electrochromic application

  9. Characteristics and optical properties of iron ion (Fe{sup 3+})-doped titanium oxide thin films prepared by a sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Lin, H.J. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)], E-mail: hjlin@nuu.edu.tw; Yang, T.S. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China)

    2009-04-03

    Titanium dioxide (TiO{sub 2}) thin films doping of various iron ion (Fe{sup 3+}) concentrations have been prepared on a glass substrate by the sol-gel spin coating process. Characteristics and optical properties of TiO{sub 2} thin films doping of various Fe content were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis) and spectroscopic ellipsometry. The crystalline phase of TiO{sub 2} thin films comprised only the anatase TiO{sub 2}, but the crystallinity decreased when the Fe{sup 3+} content increased from 0 to 25.0 wt%. During the Fe{sup 3+} addition to 25.0 wt%, the phase of TiO{sub 2} thin film still maintained the amorphous state. The absorption edge of TiO{sub 2} thin films shifted towards longer wavelengths (i.e. red shifted) from 355 to 415 nm when the Fe{sup 3+}-doped concentration increased from 0 to 25.0 wt%. The values of the refractive index (n), and extinction coefficient (k), decreased with an increasing Fe{sup 3+} content. Moreover, the band-gap energy of TiO{sub 2} thin films also decreased from 3.29 to 2.83 eV with an increase in the Fe{sup 3+} content from 0 to 25.0 wt%.

  10. A poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinlin, E-mail: jinlinlu@hotmail.com [School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051 (China); Song, Hua [School of Mechanical Engineering and Automation, University of Science and Technology, Liaoning, Anshan 114051 (China); Li, Suning; Wang, Lin; Han, Lu [School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051 (China); Ling, Han; Lu, Xuehong [School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-06-01

    In this article, we report the facile synthesis of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium dioxide (PEDOT:PSS/TiO{sub 2}) nanocomposite film by sol–gel assisted electropolymerization. The structure, morphology and composition of the films were investigated by different techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscope and X-ray photoelectron spectroscopy. The PEDOT:PSS/TiO{sub 2} nanocomposite film was applied for electrochromic application. The results indicate that the PEDOT:PSS/TiO{sub 2} nanocomposite film exhibits a higher optical contrast and a much better stability as compared to PEDOT:PSS film. The significant performance enhancement can be attributed to the nanoscale particle size and uniform size distribution of PEDOT:PSS/TiO{sub 2} and the synergistic effect between the inorganic nano-TiO{sub 2} and organic PEDOT:PSS material. - Highlights: • Facile synthesis of PEDOT:PSS/TiO{sub 2} nanocomposite film by electropolymerization • PEDOT:PSS/TiO{sub 2} film shows nano-scaled particle sizes and uniform size distribution. • PEDOT:PSS/TiO{sub 2} film shows higher optical contrasts and faster switching speed. • PEDOT:PSS/TiO{sub 2} film displays a good stability for electrochromic application.

  11. Thermochemistry of rare earth doped uranium oxides Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} (Ln = La, Y, Nd)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Navrotsky, Alexandra, E-mail: anavrotsky@ucdavis.edu

    2015-10-15

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10–50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO{sub 1.5}, UO{sub 2} and UO{sub 3} in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} is similar to that of UO{sub 2} to UO{sub 3} for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U{sup 5+}, U{sup 6+}, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements. - Highlights: • We synthesize, characterize Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} solid solutions (Ln = La, Y, Nd). • Formation enthalpies become more exothermic with increasing rare earth content. • Oxidation enthalpy of Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} is similar to that of UO{sub 2} to UO{sub 3}. • Direct calorimetric measurements are in good agreement with free energy data.

  12. Sol-gel route to synthesis of microporous ceramic membranes: Thermal stability of TiO2-ZrO2 mixed oxides

    International Nuclear Information System (INIS)

    Qunyin Xu; Anderson, M.A.

    1993-01-01

    In this paper concerning the synthesis of microporous ceramic membranes, the authors focus on the preparation and thermal stability of unsupported microporous TiO 2 -ZrO 2 mixed-oxide membranes. It has been observed that, by adding up to 20% ZrO 2 into TiO 2 or up to 10% TiO 2 into ZrO 2 , these microporous membranes display improved thermal stability. They can be fired up to 500 C for 0.5 h without closing micropores. However, membranes containing almost equal percentages of each component have lost microporous features and have low surface areas and low porosities. A phase diagram of a two-component TiO 2 -ZrO 2 mixed-oxide membrane has been prepared based on DTA and X-ray diffraction data in order to better understand the microstructure changes upon firing

  13. Thermal synthesis of oxide molecular sieve and Mn (K-OMS-2) from K-birnessite obtained from Sol-gel method

    International Nuclear Information System (INIS)

    Rezende, D.S.; Figueira, B.A.M.; Moraes, M.C. de; Silva, L.N. da; Mercury, J.M.R.; Figueiredo, G.P. de

    2016-01-01

    This study presents the thermal synthesis of molecular sieve with K-OMS2 structure from K-birnessite tunneling process, one Mn oxide with structure in layer. According X-Ray diffraction data it was possible to monitoring the conversion of the layered structure around 550 deg C for (K-OMS-2) tunnel with tetragonal system and I2/m space group. The FTIR main spectrum bands of K-OMS-2 was observed in 700, 525 e 470 cm-1 region and are related to elongation Mn 3+ -O e Mn 4+ -O in the tunnel structure. The product morphology identified by Scanning Electron Microscopy it was verified as pseudo tetragonal, reflecting externally the crystallographic system of cryptomelane structure. The results reveal one simple route for the Mn oxide molecular sieve with K-OMS-2 structure

  14. Resistividade do filme depositado via sol-gel e estado de oxidação do dopante Ce na matriz SnO2 Resistivity of the film deposited via sol-gel and oxidation state of Ce doping in SnO2 matrix

    Directory of Open Access Journals (Sweden)

    L. V. A. Scalvi

    2011-06-01

    Full Text Available Incorporação de Ce3+ ou Ce4+ em filmes finos de SnO2 depositados via sol-gel-dip-coating aumenta drasticamente a resistividade elétrica. No primeiro caso, temos comportamento aceitador do dopante, levando a matriz à alta compensação de carga. Por outro lado, para Ce4+, verifica-se aumento na largura da região de depleção do contorno de grão, resultando em maior espalhamento de elétrons. Medidas de caracterização elétrica sob pressão ambiente levam à barreiras de potencial mais altas do que as medidas sob vácuo, devido a adsorção de oxigênio na superfície das partículas. A presença de Ce3+ aumenta a transmitância no infravermelho, o que significa menor quantidade de elétrons livres. Dados de XANES confirmam que o tratamento térmico a 550 ºC dos filmes, ainda que promova oxidação parcial para Ce4+, preserva uma quantidade significativa (em torno de 60% no estado Ce3+. Espectroscopia Raman mostra a evolução dos modos de vibração intra-grãos de SnO2 com o aumento da temperatura de tratamento térmico.Incorporation of Ce3+ or Ce4+ in sol-gel dip-coating SnO2 thin films increases drastically its electrical resistivity. In the first case, it is due the acceptor-like nature of the doping ion, leading the matrix to high charge compensation. On the other hand, for Ce+4 doped samples, it is verified a broadening of the grain boundary depletion layer. Measurements under room pressure leads to higher intergrain potential barriers when compared to measurements carried out under vacuum conditions, due to oxygen adsorption at particles surface. The presence of Ce3+ increases the infrared transmittance, which means a lower free electron concentration. XANES data confirms that the thermal annealing at 550 ºC of thin films, although promotes oxidation to Ce4+, still keeps a significantly amount (about 60% of ions in the oxidation state Ce3+. Raman spectroscopy data show the evolution of the SnO2 bulk vibration modes with

  15. Morphological evolution of the poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester, oxidation of the silver electrode, and their influences on the performance of inverted polymer solar cells with a sol-gel derived zinc oxide electron selective layer

    International Nuclear Information System (INIS)

    Liu, Meng-Yueh; Chang, Chin-Hsiang; Chang, Chih-Hua; Tsai, Kao-Hua; Huang, Jing-Shun; Chou, Chen-Yu; Wang, Ing-Jye; Wang, Po-Sheng; Lee, Chun-Yu; Chao, Cha-Hsin; Yeh, Chin-Liang; Wu, Chih-I; Lin, Ching-Fuh

    2010-01-01

    The inverted polymer solar cell (PSC) based on a sol-gel derived zinc oxide (ZnO) thin film as an electron selective layer is investigated. The device performance is improved after the fabricated device is placed in air for a few days. The improvement is attributed to the self-organization of the poly(3-hexylthiophene)/[6,6]-phenyl-C 61 -butyric acid methyl ester layer and oxidation of the silver electrode with time, resulting in a significant enhancement in the short circuit current, fill factor and open circuit voltage. The investigation shows that the inverted PSC based on ZnO thin film exhibits a high efficiency of 3.8% on the 6th day after fabrication without the use of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) and encapsulation.

  16. Electroluminescence color tuning between green and red from metal-oxide-semiconductor devices fabricated by spin-coating of rare-earth (terbium + europium) organic compounds on silicon

    Science.gov (United States)

    Matsuda, Toshihiro; Hattori, Fumihiro; Iwata, Hideyuki; Ohzone, Takashi

    2018-04-01

    Color tunable electroluminescence (EL) from metal-oxide-semiconductor devices with the rare-earth elements Tb and Eu is reported. Organic compound liquid sources of (Tb + Ba) and Eu with various Eu/Tb ratios from 0.001 to 0.4 were spin-coated on an n+-Si substrate and annealed to form an oxide insulator layer. The EL spectra had only peaks corresponding to the intrashell Tb3+/Eu3+ transitions in the spectral range from green to red, and the intensity ratio of the peaks was appropriately tuned using the appropriate Eu/Tb ratios in liquid sources. Consequently, the EL emission colors linearly changed from yellowish green to yellowish orange and eventually to reddish orange on the CIE chromaticity diagram. The gate current +I G current also affected the EL colors for the medium-Eu/Tb-ratio device. The structure of the surface insulator films analyzed by cross-sectional transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS) has four layers, namely, (Tb4O7 + Eu2O3), [Tb4O7 + Eu2O3 + (Tb/Eu/Ba)SiO x ], (Tb/Eu/Ba)SiO x , and SiO x -rich oxide. The EL mechanism proposed is that electrons injected from the Si substrate into the SiO x -rich oxide and Tb/Eu/Ba-silicate layers become hot electrons accelerated in a high electric field, and then these hot electrons excite Tb3+ and Eu3+ ions in the Tb4O7/Eu2O3 layers resulting in EL emission from Tb3+ and Eu3+ intrashell transitions.

  17. GelTouch

    DEFF Research Database (Denmark)

    Miruchna, Viktor; Walter, Robert; Lindlbauer, David

    2015-01-01

    We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin...... touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different...

  18. Thorium inorganic gels

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.

    1988-01-01

    The optimum pH and concentration values of thorium salts and oxoacids or oxoacid salts which lead to transparent and stable inorganic gels have been determined. The isotherm drying process of the gel at 50 0 C leads successively to a partly dehydrated gel, then, to the formation of an unusual liquid phase and, finally to a dry amorphous solid phase which is still transparent. This kind of transparent inorganic gels and amorphous phase can be used as matrices for spectroscopic studies [fr

  19. Abiotic production of nitrous oxide by lightning. Implications for a false positive identification of life on Earth-Like Planets around quiescent M Dwarfs

    Science.gov (United States)

    Navarro, Karina F.; Navarro-Gonzalez, Rafael; McKay, Christopher P.

    Nitrous oxide (N _{2}O) is uniformly mixed in the troposphere with a concentration of about 310 ppb but disappears in the stratosphere (Prinn et al., 1990); N _{2}O is mostly emitted at a rate of 1x10 (13) g yr (-1) as a byproduct of microbial activity in soils and in the ocean by two processes: a) denitrification (reduction of nitrate and nitrite), and b) nitrification (oxidation of ammonia) (Maag and Vinther, 1996). The abiotic emission of N _{2}O in the contemporaneous Earth is small, mostly arising from lightning activity (2x10 (9) g yr (-1) , Hill et al., 1984) and by reduction of nitrite by Fe(II)-minerals in soils in Antarctica (Samarkin et al., 2010). Since N _{2}O has absorption bands in the mid-IR (7.8, 8.5, and 17 mumm) that makes it detectable by remote sensing (Topfer et al., 1997; Des Marais et al., 2002), it has been suggested as a potential biosignature in the search for life in extrasolar planets (Churchill and Kasting, 2000). However, the minimum required concentration for positive identification is 10,000 ppb with missions like Terrestrial Planet Finder and Darwin (Churchill and Kasting, 2000). Therefore, it is not a suitable biomarker for extrasolar Earth-like planets orbiting stars similar to the Sun. Because N _{2}O is protected in the troposphere from UV photolysis by the stratospheric ozone layer, its concentration would decrease with decreasing oxygen (O _{2}) concentrations, if the biological source strength remains constant (Kasting and Donahue, 1980). For a primitive Earth-like (Hadean) atmosphere dominated by CO _{2}, and no free O _{2}, the expected N _{2}O concentration would be about 3 ppb with the current microbial N _{2}O flux (Churchill and Kasting, 2000). The resulting N _{2}O spectral signature of this atmosphere would be undetectable unless the N _{2}O microbial flux would be 10 (4) greater than its present value (Churchill and Kasting, 2000). Since this flux is unlikely, it is impossible to use it as a biomarker in anoxic CO

  20. Separation of cerium from other lanthanides by leaching with nitric acid rare earth(III) hydroxide-cerium(IV) oxide mixtures

    International Nuclear Information System (INIS)

    Mioduski, T.; Dong Anh Hao; Hoang Hong Luan

    1989-01-01

    The objective of the present work is a method for separating Ce from other Ln in the raw natural mixtures of rare earth hydroxides obtained from Vietnamese and Mongolian fluorocarbonate ores. The method, a simple acid digestion, should combine a maximum Ln(III) concentration of the effluent solution with a nitrate counter-ion environment and high selectivity vs. leaching yield parameters. Under optimum conditions Ce (and Th, if present) virtually does not pass into solution while the yield of leaching and the sum of REE oxides concentration in the after-leach solution reach the maximum values of 97% (mass) and 0.18 kg x dm -3 , respectively. (author) 9 refs.; 8 tabs

  1. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  2. Fabrication and sealing performance of rare-earth containing glass–ceramic seals for intermediate temperature solid oxide fuel cell applications

    DEFF Research Database (Denmark)

    Abdoli, H.; Alizadeh, P.; Agersted, Karsten

    2014-01-01

    The opportunity of using two rare-earth metal oxides in an aluminosilicate glass for seal applications was investigated in this work. Substitution of La2O3 with Y2O3 in the system changed thermal and physical properties such as transition temperature, flowing behavior, and thermal expansion....... The strongly bound structural unit in the network affected glass healing capability with a slower healing response. Higher activation energy (≥20%) was required for Y2O3 containing glass, consistent with in-situ XRD results which revealed its amorphous nature is maintained ~75°C above the other glass. Despite...... containing strontium in the composition, well bonded interface was obtained in contact with 8YSZ and SS430 ferritic stainless steel. The hermeticity of the glass seals was maintained after 100h isothermal aging at 800°C. Also the OCV showed insignificant fluctuations with stable average values after 24...

  3. Detection of nanocrystallinity by X-ray absorption spectroscopy in thin film transition metal/rare-earth atom, elemental and complex oxides

    International Nuclear Information System (INIS)

    Edge, L.F.; Schlom, D.G.; Stemmer, S.; Lucovsky, G.; Luning, J.

    2006-01-01

    Nanocrystallinity has been detected in the X-ray absorption spectra of transition metal and rare-earth oxides by (i) removal of d-state degeneracies in the (a) Ti and Sc L 3 spectra of TiO 2 and LaScO 3 , respectively, and (b) O K 1 spectra of Zr(Hf)O 2 , Y 2 O 3 , LaScO 3 and LaAlO 3 , and by the (ii) detection of the O-atom vacancy in the O K 1 edge ZrO 2 -Y 2 O 3 alloys. Spectroscopic detection is more sensitive than X-ray diffraction with a limit of ∼2 nm as compared to >5 mm. Other example includes detection of ZrO 2 nanocrystallinity in phase-separated Zr(Hf) silicate alloys

  4. Cathodoluminescent characteristics and light technical parameters of thin-film screens based on oxides and oxysulfides of rare-earth elements

    Science.gov (United States)

    Bondar, Vyacheslav D.; Grytsiv, Myroslav; Groodzinsky, Arkady; Vasyliv, Mykhailo

    1995-11-01

    Results on creation of thin-film single-crystal high-resolution screens with energy control of luminescence color are presented. In order to create phosphor films ion-plasma technology for deposition of yttrium and lanthanum oxides and oxysulfides activated by rare earth elements has been developed. The screen consists of phosphor film on phosphor substrate with different colors of luminescence (e.g. Y2O3-Eu film with red color on Y3Al5O12- Tb, Ce substrate with green color of luminescence). Electron irradiation causes luminescence with color that depends on energy of the electron beam. The physical reason for color change is that electron beam energy defines electron penetration depth. If the energy is weak, only the film is excited. More powerful beam penetrates into the substrate and thus changes the color of luminescence.

  5. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu; Zhao Long; Xiao Jun; Wu Peng; Zhu Yongbing

    2007-01-01

    This paper presents a detailed investigation into the influence of the rare earth (RE) oxide (La 2 O 3 ) addition upon the densification and the resultant microstructural characteristics of the submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. It is found that the relative density of the laser sintered sample with 1 wt.% La 2 O 3 addition increased by 11.5% as compared with the sample without RE addition. The addition of RE element favored the microstructural refinement and improved the particulate dispersion homogeneity and the particulate/matrix interfacial coherence. The metallurgical functions of the RE element in improving the sinterability were also addressed. It shows that due to the unique properties of RE element such as high surface activity and large atomic radius, the addition of trace RE element can decrease the surface tension of the melt, resist the grain growth coarsening and increase the heterogeneous nucleation rate during laser sintering

  6. Practical limitations of single particle ICP-MS in the determination of nanoparticle size distributions and dissolution: case of rare earth oxides.

    Science.gov (United States)

    Fréchette-Viens, Laurie; Hadioui, Madjid; Wilkinson, Kevin J

    2017-01-15

    The applicability of single particle ICP-MS (SP-ICP-MS) for the analysis of nanoparticle size distributions and the determination of particle numbers was evaluated using the rare earth oxide, La 2 O 3 , as a model particle. The composition of the storage containers, as well as the ICP-MS sample introduction system were found to significantly impact SP-ICP-MS analysis. While La 2 O 3 nanoparticles (La 2 O 3 NP) did not appear to interact strongly with sample containers, adsorptive losses of La 3+ (over 24h) were substantial (>72%) for fluorinated ethylene propylene bottles as opposed to polypropylene (size distributions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Sol-Gel Derived Hafnia Coatings

    Science.gov (United States)

    Feldman, Jay D.; Stackpoole, Mairead; Blum, Yigal; Sacks, Michael; Ellerby, Don; Johnson, Sylvia M.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Sol-gel derived hafnia coatings are being developed to provide an oxidation protection layer on ultra-high temperature ceramics for potential use in turbine engines (ultra-efficient engine technology being developed by NASA). Coatings using hafnia sol hafnia filler particles will be discussed along with sol synthesis and characterization.

  8. Development of a methodology for the separation of europium and samarium from a mixture of rare earth oxides by electroreduction/ precipitation

    International Nuclear Information System (INIS)

    Chepcanoff, Vera

    2006-01-01

    The rare earths (RE) were first used in 1903, when Welsbach developed a lighter that is still used today. Nowadays, the RE are employed in many different fields, as in the production of super-alloys , as catalysts for petroleum industry, in the manufacture of non-ferrous alloys, color television tubes, x-ray screens, special glasses, ceramics, computer industries, nuclear medicine, lasers, pigments, etc., moving, in the last decade , a market of US$ 2 billions per year. Due to their similar properties, the RE elements are very difficult to separate, requiring complex processes, what make the products very expensive. Elements like Eu and Sm, which contents in the minerals are low (0.05% and 2.0%, respectively, in monazite) are extremely expensive, but their field of application justifies the research for looking for other processes, more simple and/or more effective. Trivalent state is a characteristic of all RE, but some of them presents oxidation state +2, like Ce, Eu, Sm and Yb. In the case of Eu and Sm, the focus of the present work, the divalent state is achieved by electro-reduction in the potentials -0.65 and -1.55 (SCE), respectively. This makes possible the separation of these elements from the other rare earths and from each other. Thus, making use of this characteristic, a process for the individual separation of Eu and Sm in (NH 4 ) 2 SO 4 solution by electro-reduction/precipitation is proposed, where Sm is first separated from the solution as sulfate, and Eu, that remains in the solution, is precipitated after the decrease of temperature and potential applied. The process developed from a synthetic Eu and Sm solution was applied to a mixture of semi-heavy RE oxide, produced at IPEN-CNEN/SP, obtaining the separation of Sm. This product was analyzed by spectrophotometry, showing high purity. (author)

  9. The synthesis of higher oxides of alkali and alkaline earth metals in an electric discharge: Theoretical and experimental studies

    Science.gov (United States)

    Bell, A. T.; Sadhukhan, P.

    1974-01-01

    Potassium hydroxide was subjected to the products of an electrical discharge sustained in oxygen and produced both potassium peroxide and superoxide. The conversion to higher oxides was shown to strongly depend upon the particle size of KOH, the position of KOH in the discharge zone, and the operating conditions of the discharge. Similar experiments were performed with hydroxides of lithium and calcium which do not form superoxides, but are converted to peroxides. The yields of peroxides were shown to strongly depend upon the operating conditions of the discharge. The absence of superoxides and the presence of peroxides of lithium and calcium was explained from the consideration of relative thermodynamic stability of the oxides of lithium and calcium. Thermogravimetric analysis was shown to provide a more accurate means for determining the amount of KO2 than previous methods.

  10. Structures and heats of formation of simple alkaline earth metal compounds: fluorides, chlorides, oxides, and hydroxides for Be, Mg, and Ca.

    Science.gov (United States)

    Vasiliu, Monica; Feller, David; Gole, James L; Dixon, David A

    2010-09-02

    Geometry parameters, frequencies, heats of formation, and bond dissociation energies are predicted for the simple alkaline earth (Be, Mg and Ca) fluorides, chlorides, oxides, and hydroxides at the coupled cluster theory [CCSD(T)] level including core-valence correlation with the aug-cc-pwCVnZ basis sets up to n = 5 in some cases. Additional corrections (scalar relativistic effects, vibrational zero-point energies, and atomic spin-orbit effects) were necessary to accurately calculate the total atomization energies and heats of formation. The calculated geometry parameters, frequencies, heats of formation, and bond dissociation energies are compared with the available experimental data. For a number of these alkaline earth compounds, the experimental geometries and energies are not reliable. MgF(2) and BeF(2) are predicted to be linear and CaF(2) is predicted to be bent. BeOH is predicted to be bent, whereas MgOH and CaOH are linear. The OBeO angle in Be(OH)(2) is not linear, and the molecule has C(2) symmetry. The heat of formation at 298 K for MgO is calculated to be 32.3 kcal/mol, and the bond dissociation energy at 0 K is predicted to be 61.5 kcal/mol.

  11. Rare earth element geochemistry of feldspars: examples from Fe-oxide Cu-Au systems in the Olympic Cu-Au Province, South Australia

    Science.gov (United States)

    Kontonikas-Charos, Alkis; Ciobanu, Cristiana L.; Cook, Nigel J.; Ehrig, Kathy; Krneta, Sasha; Kamenetsky, Vadim S.

    2018-04-01

    Rare earth element (REE) fractionation trends in feldspars are reported from Olympic Dam (including Wirrda Well and Phillip's Ridge) and Cape Donington (Port Lincoln), for comparison with two other igneous-hydrothermal terranes within the eastern Gawler Craton: Moonta-Wallaroo and Hillside. The case studies were selected as they represent 1590 Ma Hiltaba Suite and/or 1845 - 1810 Ma Donington Suite granites, and, aside from Cape Donington, are associated with Mesoproterozoic iron-oxide copper gold (IOCG)-type mineralization. Both plagioclase and alkali feldspar were analyzed within selected samples with the purpose of constraining and linking changes in REE concentrations and fractionation trends in feldspars to local and whole-rock textures and geochemistry. Two unique, reproducible fractionation trends were obtained for igneous plagioclase and alkali feldspars, distinguished from one another by light rare earth element enrichment, Eu-anomalies and degrees of fractionation (e.g. La/Lu slopes). Results for hydrothermal albite and K-feldspar indicate that REE concentrations and fractionation trends are generally inherited from igneous predecessors, however in some instances, significant amounts of REE appear to have been lost to the fluid. These results may have critical implications for the formation of world-class IOCG systems, in which widespread alkali metasomatism plays a key role by altering the physical and chemical properties of the host rocks during early stages of IOCG formation, as well as trapping trace elements (including REE).

  12. Safe and Environmentally Acceptable Sol-Gel-Derived Pyrophoric Pyrotechnics

    National Research Council Canada - National Science Library

    Simpson, Randall L; Hubble, William; Stevenson, Bradley; Gash, Alexander; Satcher, Joe; Metcalf, Patricia

    2004-01-01

    It was demonstrated that highly porous sol-gel derived iron (III) oxide materials could be reduced to sub-micron-sized metallic iron by heating the materials to intermediate temperatures in a hydrogen atmosphere...

  13. Cyanocobalamin Nasal Gel

    Science.gov (United States)

    ... to supply extra vitamin B12 to people who need unusually large amounts of this vitamin because they are pregnant or have certain diseases. ... Cyanocobalamin nasal gel will supply you with enough vitamin B12 only as ... it regularly. You may need to use cyanocobalamin nasal gel every week for ...

  14. Synthesis, structuring and characterization of rare earth oxide thin films: Modeling of the effects of stress and defects on the phase stability

    International Nuclear Information System (INIS)

    Gaboriaud, R.J.; Paumier, F.; Lacroix, B.

    2014-01-01

    This work studies the effects of the deposition parameters on the microstructure and the related residual stress in a rare earth oxide thin film. This study is focused on the yttrium sesquioxide (Y 2 O 3 ) thin films deposited on Si (100) substrates using the ion beam sputtering technique. This technique allows the control of the microstructure and the related residual stress in the thin films by monitoring the energy of the argon beam used in the deposition process. Measurements of the stresses within the oxide layer were performed by the X-ray diffraction-sin 2 Ψ method. The results show that the classic model of a pure biaxial in-plane model of stress, generally proposed in thin films, is not satisfying. A model that includes a hydrostatic stress due to the crystalline defects generated during the deposition process and a biaxial stress called a fixation stress, gives a good agreement with the experimental results. This modeling of the residual stress, based on nanometer-scale inclusions (point, extended defects) inducing a hydrostatic stress field, leads to a quantitative analysis of the nature and the concentration of the defects. This work shows results that establish a relationship between residual stress, defects and non-equilibrium phase stabilization during growth. - Highlights: • Microstructure of Y 2 O 3 thin films • Measurements of residual stresses in the thin films • Modeling of a triaxial residual stress state • Stress-induced stabilization of non-equilibrium phase

  15. Preparation and characterization of PbTi0{sub 3} ceramics modified by a natural mixture of rare earth oxides of xenotime

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar-Rodrigues, Jair; Rodrigues Junior, Pedro; Cruz, Gerson K. da, E-mail: jbr@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Departamento de Fisica; Lente, Manuel H.; Eiras, Jose A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Fisica

    2014-01-15

    Lead titanate ceramics modified by xenotime (Xm) with nominal composition (Pb, Xm)TiO{sub 3}, Xm 10 or 15 mol %, were prepared by the conventional oxide mixture technique. Xenotime is a natural mineral consisting of a mixture of rare earth oxides. Thermal, structural and electric properties were investigated through differential and gravimetric thermal analysis, X-ray diffraction and dielectric measurements as a function of temperature. The results of both compositions revealed a higher density and free of cracks ceramic body, compared to pure PbTiO{sub 3} prepared by the same procedure. On the other hand, the structural characteristics and Curie temperature are nearly the same as those of pure PbTiO{sub 3}. The hysteresis loop measured at room temperature revealed a hard ferroelectric material with coercive field of 10.7 kV/cm and a remanent polarization of 0.2 μC/cm{sup 2}. These finding reveal a material with properties that highlight potential to be used as electronic devices that operate at high temperature and high frequencies. (author)

  16. Temperature Dependent Electrical Transport in Al/Poly(4-vinyl phenol/p-GaAs Metal-Oxide-Semiconductor by Sol-Gel Spin Coating Method

    Directory of Open Access Journals (Sweden)

    Şadan Özden

    2016-01-01

    Full Text Available Deposition of poly(4-vinyl phenol insulator layer is carried out by applying the spin coating technique onto p-type GaAs substrate so as to create Al/poly(4-vinyl phenol/p-GaAs metal-oxide-semiconductor (MOS structure. Temperature was set to 80–320 K while the current-voltage (I-V characteristics of the structure were examined in the study. Ideality factor (n and barrier height (ϕb values found in the experiment ranged from 3.13 and 0.616 eV (320 K to 11.56 and 0.147 eV (80 K. Comparing the thermionic field emission theory and thermionic emission theory, the temperature dependent ideality factor behavior displayed that thermionic field emission theory is more valid than the latter. The calculated tunneling energy was 96 meV.

  17. Sealing wells with gel

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, E C

    1967-10-01

    A new system is being used in Mexico to temporarily plug producing wells. The temporary seal is a gel with a catalyst. The use of this temporary plug allows gas-lift wells to be taken off production in order to carry out emergency repairs. The gel solidifies by the action of the catalyst to a high temperature (70 - 150/sup 0/C). By locating the bottom of the tubing at the top of the production interval, the gel material will go into the permeable formation, and immediately set. When the gel has solidified, it seals off the horizon that must not be stimulated, and leaves the others exposed to the acid action. When the treatment is finished, the gel, by action of the catalyst, is liquefied and removed from the formation, being produced with the oil.

  18. Actuator device utilizing a conductive polymer gel

    Science.gov (United States)

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  19. Nanocrystalline Mn-Mo-Ce Oxide Anode Doped Rare Earth Ce and Its Selective Electro-catalytic Performance

    Directory of Open Access Journals (Sweden)

    SHI Yan-hua

    2017-09-01

    Full Text Available The anode oxide of nanocrystalline Mn-Mo-Ce was prepared by anode electro-deposition technology, and its nanostructure and selective electro-catalytic performance were investigated using the SEM, EDS, XRD, HRTEM, electrochemical technology and oxygen evolution efficiency testing. Furthermore, the selective electro-catalytic mechanism of oxygen evolution and chlorine depression was discussed. The results show that the mesh-like nanostructure Mn-Mo-Ce oxide anode with little cerium doped is obtained, and the oxygen evolution efficiency for the anode in the seawater is 99.51%, which means a high efficiency for the selective electro-catalytic for the oxygen evolution. Due to the structural characteristics of γ-MnO2, the OH- ion is preferentially absorbed, while Cl- absorption is depressed. OH- accomplishes the oxygen evolution process during the valence transition electrocatalysis of Mn4+/Mn3+, completing the selective electro-catalysis process. Ce doping greatly increases the reaction activity, and promotes the absorption and discharge; the rising interplanar spacing between active (100 crystalline plane promotes OH- motion and the escape of newborn O2, so that the selective electro-catalytic property with high efficient oxygen evolution and chlorine depression is achieved from the nano morphology effect.

  20. Oxidation of Commercial Petronas Diesel with Tert-Butyl Hydroperoxide Over Poly molybdate Alumina Supported Catalyst Modified With Alkaline Earth Metals

    International Nuclear Information System (INIS)

    Wan Nazwanie Wan Abdullah; Rusmidah Ali; Wan Azlee Wan Abu Bakar

    2016-01-01

    Due to strict environmental legislation for ultra-low sulfur diesel fuels, increasing technical and operational challenges are imposed to conventional hydrodesulfurization (HDS) technology. Therefore, catalytic oxidative desulfurization (Cat-ODS) has been suggested to be an alternative method to replace a conventional method which is hydrodesulfurization. In this study, catalytic oxidation of commercial diesel was performed using an oil-soluble oxidant, tert-butyl hydroperoxide (TBHP), over poly molybdate supported on alumina MoO_3-PO_4/ Al_2O_3 catalyst. A commercial Petronas diesel with 440 ppm of total sulfur was employed to evaluate the elimination of sulfur compounds. Besides, the percentage of sulfur removal was measured by (GC-FPD). Alkaline earth metals, such as Calcium (Ca), Barium (Ba) and Strontium (Sr) were introduced on the surface of MoO_3-PO_4/ Al_2O_3. The results showed that the catalytic activity decreased in the order, Ca/ MoO_3-PO_4/ Al_2O_3>Sr/ MoO_3-PO_4/ Al_2O_3> Ba/ MoO_3-PO_4/ Al_2O_3. The Ca/ MoO_3-PO_4/ Al_2O_3 catalyst was characterized by XRD and FESEM. XRD results showed that the best catalyst was highly amorphous while FESEM micrograph illustrated an aggregation and agglomeration of various particle sizes. The catalytic activity of Ca/ MoO_3-PO_4/ Al_2O_3 catalyst with various Ca/ Mo ratios were also studied. When the Ca/ Mo ratio was 15:85, the sulfur removal was the highest (79 %) at 45 degree Celsius, 30 min and O/ S molar ratio 3.0 with solvent = dimethylformamide (DMF), diesel/ solvent ratio = 1.0. (author)

  1. Determination of trace elements in high pure rare earth oxide by double focusing inductively coupled plasma mass spectrometry (HR ICP-MS) and high performance liquid chromatography (HPLC) techniques

    International Nuclear Information System (INIS)

    Pedreira Filho, Walter dos Reis

    2000-01-01

    Rare earth oxides are used in several technological fields whose applications can be observed in several areas of modern technology, among which are included: lasers, semiconductors semi, high purity materials and metallic alloys. The field of applications of the rare earth elements is quite wide. Several important industrial applications are ceramics, catalysts and metallurgical as well as research areas and high technology sectors. Such applications have been presenting an accentuated growth in the last years. Chemical characterization of rare earth oxides of high purity has been constituting one of the major challenges of analytical chemistry. Several analytical techniques were used for chemical characterization of high purity rare earth the oxides. Even so, those techniques present limitations when one needs to characterize materials of a high level of purity, as in the case of rare earth oxides. Some of those limitations are associated, for example, to spectral interference. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a powerful analytical tool for quantitative analysis of metal impurities in high purity materials. The Instituto de Pesquisas Energeticas e Nucleares (IPEN) has an unit of production and purification of rare earth oxides, with above 99,9% level of purity. In this work, the rare earth impurities were characterized in samples (La 2 O 3 ; CeO 2 ; Pr 6 O 11 ; Nd 2 O 3 ; Sm 2 O 3 ; Gd 2 O 3 ; Y 2 O 3 ) produced at the IPEN and certified standard materials produced by Johnson Matthey Chemical (JMC). The technique of high performance liquid chromatography (HPLC) was used in the separation of the impurities. Quantification of metallic impurities was carried out as inductively coupled plasma mass spectrometer (HR-ICP MS). In this work it is presented a new analytical methodology in the chemical characterization of metallic impurities in rare earth oxides of high purity (> 99,9%) with and without separation of the matrix. Analyses of standard

  2. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets

    Science.gov (United States)

    Parhizkar, Nafise; Ramezanzadeh, Bahram; Shahrabi, Taghi

    2018-05-01

    This research has focused on the effect of graphene oxide (GO) nano-fillers embedded in the sol-gel based silane coating on the corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by silane coatings. For this purpose, a mixture of Methyltriethoxysilane (MTES) and Tetraethylorthosilicate (TEOS) silane precursors was used for preparation of composite matrix and the GO nanosheets, which are covalently functionalized with 3-(Triethoxysilyl)propyl isocyanate (TEPI, IGO nano-fillers) and 3-aminopropyltriethoxysilane (APTES, AGO nano-fillers), were used as filler. The GO, AGO and IGO nanosheets were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible analysis and field emission-scanning electron microscopy techniques. The performance of the silane/epoxy coatings was investigated by pull-off adhesion, cathodic delamination, salt spray and electrochemical impedance spectroscopy (EIS) tests. Results revealed that AGO and IGO nano-fillers significantly improved the corrosion resistance and adhesion properties of the top epoxy coating due to better compatibility with silane matrix, excellent barrier properties and the formation of covalent bonds with the top epoxy coating.

  3. Gel Fabrication of Molybdenum “Beads”

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cooley, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-11-01

    Spherical molybdenum particles or “beads” of various diameters are of interest as feedstock materials for the additive manufacture of targets and assemblies used in the production of 99Mo medical isotopes using accelerator technology. Small metallic beads or ball bearings are typically fabricated from wire; however, small molybdenum spheres cannot readily be produced in this manner. Sol-gel processes are often employed to produce small dense microspheres of metal oxides across a broad diameter range that in the case of molybdenum could be reduced and sintered to produce metallic spheres. These Sol-gel type processes were examined for forming molybdenum oxide beads; however, the molybdenum trioxide was chemically incompatible with commonly used gelation materials. As an alternative, an aqueous alginate process being assessed for the fabrication of oxide spheres for catalyst applications was employed to form molybdenum trioxide beads that were successfully reduced and sintered to produce small molybdenum spheres.

  4. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.

  5. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu, E-mail: lis@atm.neu.edu.cn

    2014-10-30

    Graphical abstract: - Highlights: • A uniform MnO{sub 2} layer was anchored onto diatomite surface. • Kinetics and isotherms over MnO{sub 2} modified diatomite were studied. • The Pb(II) adsorption is based on ion-exchange mechanism. - Abstract: A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO{sub 2} is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO{sub 2} was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO{sub 2} modification increased more than six times. And the adsorption of Pb{sup 2+} on the MnO{sub 2} surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  6. Bioactive materials for biomedical applications using sol-gel technology

    International Nuclear Information System (INIS)

    Gupta, Radha; Kumar, Ashok

    2008-01-01

    This review paper focuses on the sol-gel technology that has been applied in many of the potential research areas and highlights the importance of sol-gel technology for preparing bioactive materials for biomedical applications. The versatility of sol-gel chemistry enables us to manipulate the characteristics of material required for particular applications. Sol-gel derived materials have proved to be good biomaterials for coating films and for the construction of super-paramagnetic nanoparticles, bioactive glasses and fiberoptic applicators for various biomedical applications. The introduction of the sol-gel route in a conventional method of preparing implants improves the mechanical strength, biocompatibility and bioactivity of scaffolds and prevents corrosion of metallic implants. The use of organically modified silanes (ORMOSILS) yields flexible and bioactive materials for soft and hard tissue replacement. A novel approach of nitric-oxide-releasing sol-gels as antibacterial coatings for reducing the infection around orthopedic implants has also been discussed

  7. TEMPERATURE TRENDS OF THE PERMITTIVITY IN COMPLEX OXIDES OF RARE-EARTH ELEMENTS WITH PEROVSKITE-TYPE STRUCTURE

    Directory of Open Access Journals (Sweden)

    A.G.Belous

    2003-01-01

    Full Text Available Ceramic materials based on complex oxides with both the perovskite structure (Ln2/3Nb2O6 and the structure of tetragonal tungsten bronze (Ba6-xLn8+2x/3Ti18O54 have been investigated over a wide frequency and temperature ranges. The results obtained for certain structures denote the presence of the temperature anomalies of dielectric parameters (ε, tanδ. These anomalies occur over the wide frequency range including submilimeter (SMM wavelength range, and are related neither with the processing peculiarities nor with the presence of the phase transitions. Temperature behavior of the permittivity has been considered in terms of the polarization mechanism based on the elastic-strain lattice oscillations. It has been assumed that the observed anomalies could be ascribed to a superposition of harmonic and anharmonic contribution to lattice oscillations that determines τε sign and magnitude.

  8. Sol-gel synthesis of Bi2WO6/graphene thin films with enhanced photocatalytic performance for nitric monoxide oxidation under visible light irradiation

    Science.gov (United States)

    Sun, Chufeng; Wang, Yanbin; Su, Qiong

    2018-06-01

    Bi2WO6 and Bi2WO6/graphene thin films were fabricated by spin coating and post annealing at 600 °C for 2 h. In four different thin film samples, the graphene concentration was controlled as 0, 2, 4 and 6 wt%, respectively. The morphology, grain size and elemental distribution of the thin films were characterized by SEM and TEM. The crystallization and crystal phases were determined by XRD patterns, and the existence of graphene in Bi2WO6/graphene composite thin films were confirmed by Raman spectra. The photocatalytic performance of Bi2WO6 and Bi2WO6/graphene thin films was investigated by oxidizing NO under visible light irradiation. The results showed that Bi2WO6/graphene with 4 wt% of graphene showed the highest photocatalytic performance among all samples. This could be attributed to the increased electron conductivity with the presence of graphene. However, a further increased graphene concentration resulted in a decreased photocatalytic performance.

  9. Formation of a vitreous phase at the surface of some commercial diatomaceous earth prevents the onset of oxidative stress effects.

    Science.gov (United States)

    Ghiazza, Mara; Gazzano, Elena; Bonelli, Barbara; Fenoglio, Ivana; Polimeni, Manuela; Ghigo, Dario; Garrone, Edoardo; Fubini, Bice

    2009-01-01

    To understand the effect of the commercial processing of diatomaceous earths (DEs) on their ultimate surface structure and potential toxicity, we investigated the influence of the industrial processing and the nature of the deposit. Two flux calcined specimens from different deposits, DE/1-FC and DE/2-FC, and the simply calcined sample DE/1-C, from the same deposit as DE/1-FC, were compared in both their bulk and their surface properties. X-ray diffraction (XRD) analysis in a heating chamber revealed the presence of cristobalite in all samples, more abundant on the flux calcined ones. The crystal lattice is probably imperfect, as the alpha-beta transition, visible by XRD in DE/1-FC and DE/2-FC, is not detected by differential scanning calorimetry. Progressive etching with HF solutions suggests that most of the crystalline phase is at the core and not at the outer region of the samples. The combined use of spectroscopic (UV-vis and IR) and calorimetric techniques (heat of adsorption of water as a measure of hydrophilicity) reveals that DE/1-FC and DE/2-FC particles have an external layer of glass, absent in DE/1-C, where iron impurities act as network-forming and sodium ions as modifier species, with few patches of a hydrophobic phase, the latter relatable to a heated pure silica phase. When tested on a macrophage cell line (MH-S) in comparison with appropriate positive and negative controls (an active and an inactive quartz dust, respectively), only DE/1-C exhibited a cell damage and activation similar to that of active quartz (measured by lactate dehydrogenase release, peroxidation of membrane lipids and synthesis of NO). It is likely that the presence of a vitreous phase mitigates or even eliminates the cellular responses of silica in DE.

  10. Soft chemistry routes for synthesis of rare earth oxide nanoparticles with well defined morphological and structural characteristics

    Science.gov (United States)

    Mancic, L.; Marinkovic, B. A.; Marinkovic, K.; Dramicanin, M.; Milosevic, O.

    2011-11-01

    Phosphors of (Y0.75Gd0.25)2O3:Eu3+ (5 at.%) have been prepared through soft chemistry routes. Conversion of the starting nitrates mixture into oxide is performed through two approaches: (a) hydrothermal treatment (HT) at 200 °C/3 h of an ammonium hydrogen carbonate precipitated mixture and (b) by thermally decomposition of pure nitrate precursor solution at 900 °C in dispersed phase (aerosol) within a tubular flow reactor by spray pyrolysis process (SP). The powders are additionally thermally treated at different temperatures: 600, 1000, and 1100 °C for either 3 or 12 h. HT—derived particles present exclusively one-dimensional morphology (nanorods) up to the temperatures of 600 °C, while the leaf-like particles start to grow afterward. SP—derived particles maintain their spherical shape up to the temperatures of 1100 °C. These submicron sized spheres were actually composed of randomly aggregated nanoparticles. All powders exhibits cubic Ia- 3 structure (Y0.75Gd0.25)2O3:Eu and have improved optical characteristics due to their nanocrystalline nature. The detailed study of the influence of structural and morphological powder characteristics on their emission properties is performed based on the results of X-ray powder diffractometry, scanning electron microscopy, X-ray energy dispersive spectroscopy, transmission electron microscopy, and photoluminescence measurements.

  11. Rare earth oxide reinforced Al{sub 2}O{sub 3}-TiO{sub 2} ceramics for inert coating of metallic parts for petroleum extraction

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Yoggendra Prasad; Rego, Sheila Alves Bezerra da Costa; Ferreira, Ricardo Artur Sanguinetti [Universidade Federal de Pernambuco (UFPE), Recife (Brazil)

    2012-07-01

    Recent findings of largest known pre-salt petroleum reservoir in Brazil have created an intense demand for new materials capable of withstanding direct contact with the crude petroleum as it is a highly corrosive and chemically reactive fluid. Petroleum drilling equipment, storage tanks and transportation systems suffer from constant physical stress caused by chemical attack of crude petroleum on its structure. Ceramics are materials with high chemical stability in hostile environment and therefore can be used as an inert coating material to resolve such problems. To date, ceramics based on alumina are most widely used in practice where there is demand for high mechanical strength and high fracture toughness. However intrinsic fragility of ceramics is still a fatal factor for their use in mechanical structures. To improve these characteristics, usually ceramics are reinforced with one or more ceramic additives. Mechanical properties of alumina based ceramics improve considerably with the addition of TiO{sub 2}, TiN, ZrO{sub 2} etc. ceramic additives. Nucleation and propagation of cracks is a major problem for ceramic coating applications. Initial studies show that addition of small percentages of rare earth oxides can increase the toughness of the alumina based ceramics. In the present work, we have produced rare-earth oxide (CeO{sub 2}) reinforced Al{sub 2}O{sub 3}-TiO{sub 2} ceramics in proportions of 5-20 wt% TiO{sub 2} and 2%wt% CeO{sub 2} through thermomechanical processing and sintering techniques and studied there microstructural characteristics and mechanical properties. To evaluate the potential of these ceramics as inert coatings for crude petroleum extraction, storage and transportation systems, we have studied the physic-chemical and mechanical stability of these ceramics in crude petroleum environment. Our studies presented satisfactory results in terms of physic-chemical and mechanical stability of these materials for the use of 2wt% of CeO{sub 2

  12. Making MgO/SiO2 Glasses By The Sol-Gel Process

    Science.gov (United States)

    Bansal, Narottam P.

    1989-01-01

    Silicon dioxide glasses containing 15 mole percent magnesium oxide prepared by sol-gel process. Not made by conventional melting because ingredients immiscible liquids. Synthesis of MgO/SiO2 glass starts with mixing of magnesium nitrate hexahydrate with silicon tetraethoxide, both in alcohol. Water added, and transparent gel forms. Subsequent processing converts gel into glass. Besides producing glasses of new composition at lower processing temperatures, sol-gel method leads to improved homogeneity and higher purity.

  13. Adsorbate-modified growth of ultrathin rare-earth oxide films on silicon and complementary studies of cerium oxide on ruthenium; Adsorbat-modifiziertes Wachstum ultraduenner Seltenerdoxid-Filme auf Silizium und komplementaere Studien von Ceroxid auf Ruthenium

    Energy Technology Data Exchange (ETDEWEB)

    Kaemena, Bjoern

    2013-11-27

    Rare-earth oxides (REOx) are extensively investigated due to their extraordinary physical and chemical properties, which essentially arise from the unfilled 4f electron shell, in order to reveal the nature of these exceptional properties and ultimately to utilize them for multiple technological applications. To maintain the exponential increase in integration density in CMOS technology, which is also known as Moore s law, there is a strong desire for ultrathin, well-ordered, epitaxial REOx layers with a precisely engineered interface, which is essential for reliable, ultrahigh-performance devices. So far this has been considerably impeded by RE-promoted silicon oxidation, leading to amorphous silicon oxide and RE silicon formation. By using complementary synchrotron radiation methods such as X-ray standing waves (XSW), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), structural and spectroscopic information are inferred simultaneously from ultrathin ceria and lanthana films grown on chlorine, silver and gallium passivated silicon(111). In general, it is revealed that the chemical and structural composition of the interface and the crystallinity of ultrathin REOx layers on silicon can be precisely controlled by adsorbate-mediated growth. This might represent a crucial step towards a perfectly engineered interface, eventually allowing for the integration of REOx as high-k gate oxides in microelectronics. In catalysis inverse model catalysts are studied with the aim of getting an in-depth understanding of the basic principles of catalysis. These model systems are employed to study, e. g., the nature of active sites and the reaction pathways in complex catalytic converters. However, a lot remains unknown about the chemical activity and selectivity as a function of the growth mechanism, structure and morphology of these model systems. The powerful spectroscopic photoemission and low-energy electron microscope, which is able to reveal the surface

  14. Expanding rare-earth oxidation state chemistry to molecular complexes of holmium(II) and erbium(II).

    Science.gov (United States)

    MacDonald, Matthew R; Bates, Jefferson E; Fieser, Megan E; Ziller, Joseph W; Furche, Filipp; Evans, William J

    2012-05-23

    The first molecular complexes of holmium and erbium in the +2 oxidation state have been generated by reducing Cp'(3)Ln [Cp' = C(5)H(4)SiMe(3); Ln = Ho (1), Er (2)] with KC(8) in the presence of 18-crown-6 in Et(2)O at -35 °C under argon. Purification and crystallization below -35 °C gave isomorphous [(18-crown-6)K][Cp'(3)Ln] [Ln = Ho (3), Er (4)]. The three Cp' ring centroids define a trigonal-planar geometry around each metal ion that is not perturbed by the location of the potassium crown cation near one ring with K-C(Cp') distances of 3.053(8)-3.078(2) Å. The metrical parameters of the three rings are indistinguishable within the error limits. In contrast to Ln(2+) complexes of Eu, Yb, Sm, Tm, Dy, and Nd, 3 and 4 have average Ln-(Cp' ring centroid) distances only 0.029 and 0.021 Å longer than those of the Ln(3+) analogues 1 and 2, a result similar to that previously reported for the 4d(1) Y(2+) complex [(18-crown-6)K][Cp'(3)Y] (5) and the 5d(1) La(2+) complex [K(18-crown-6)(Et(2)O)][Cp″(3)La] [Cp″ = 1,3-(Me(3)Si)(2)C(5)H(3)]. Surprisingly, the UV-vis spectra of 3 and 4 are also very similar to that of 5 with two broad absorptions in the visible region, suggesting that 3-5 have similar electron configurations. Density functional theory calculations on the Ho(2+) and Er(2+) species yielded HOMOs that are largely 5d(z(2)) in character and supportive of 4f(10)5d(1) and 4f(11)5d(1) ground-state configurations, respectively.

  15. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  16. Photoelectrochemical enhancement of ZnO/BiVO4/ZnFe2O4/rare earth oxide hetero-nanostructures

    Science.gov (United States)

    She, Xuefeng; Zhang, Zhuo; Baek, Minki; Yong, Kijung

    2018-01-01

    Over the decades, researchers have made great efforts to turn the world into a cleaner place through efficient recycling of industrial waste and developing of green energy. Here we demonstrate a prototype heterostructure photoelectrochemical (PEC) cell fabricated using recycled industrial waste. ZnFe2O4 (ZFO) nanorod (NR) clusters were synthesized on the BiVO4@ZnO hetero-nanostructures using recycled rare earth oxide (REO) slags as Fe source. The NR-based PEC cell exhibited a significantly enhanced photon to hydrogen conversion efficiency over the entire UV and visible spectrum. Further study demonstrates that the photo-carrier separation and migration processes can be facilitated by the cascade band alignment of the heterostructure and the clustered nanostructure network. In addition, the life-time of the photo-carriers can be enhanced by the REO passivation layer, leading to a further increased PEC performance. Our results present a novel approach for high efficiency PEC cells, and offer great promises to the efficient recycling of industrial waste for clean renewable energy applications.

  17. CO(2) capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study.

    Science.gov (United States)

    Duan, Yuhua; Sorescu, Dan C

    2010-08-21

    By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO(2) absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)(2) (where M=Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO(2) capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)(2) systems were found to be better candidates for CO(2) sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H(2)O, MgCO(3) can be regenerated into Mg(OH)(2) at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO(2) pressure but also on the H(2)O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO(2) sorbents.

  18. Theoretical study for the reduction of N2O with CO Mediated by alkaline-earth metal oxide cations 2MO+(M=Ca, Sr, Ba)

    International Nuclear Information System (INIS)

    Zhang Jianhui; Leng Yanli; Wang Yongcheng

    2013-01-01

    The reaction mechanism of the reaction N 2 O( 0 Σ + ) + CO ( 1 Σ + )→N 2 ( 1 Σ g + ) + CO 2 ( 1 Σ g + ) mediated by alkaline-earth metal oxide cations 2 MO + (m=Ca, Sr, Ba) have been investigated by using the UB3LYP and CCSD (T) levels of theory. The O-atom affinities (OA) testified that only the 2 CaO + can capture O from N 2 O and transfer O to CO is thermodynamically allowed in three ions. The processes can be expressed as channels l and 2 for the reaction of N 2 O and CO mediated by 2 MO + (M=Ca, Sr, Ba). For the former, the main reaction processes in a two-step manner to products, the 2 MO + , as a catalyzer, transports an oxygen atom from N 2 O to CO. For the latter, firstly, the N 2 O interact with the 2 MO + to form IM1, then IM1 interact with the CO to form IM2', along the reaction pathway the intermediate species convert into products 2 1MO + , N 2 and CO 2 . From above results, the following conclusion was drawn. The channel 2 is kinetically and thermodynamically feasible. Our calculated results show the title reactions are accord with the experiment. (authors)

  19. Structures and Heats of Formation of Simple Alkaline Earth Metal Compounds II: Fluorides, Chlorides, Oxides, and Hydroxides for Ba, Sr, and Ra.

    Science.gov (United States)

    Vasiliu, Monica; Hill, J Grant; Peterson, Kirk A; Dixon, David A

    2018-01-11

    Geometry parameters, vibrational frequencies, heats of formation, bond dissociation energies, cohesive energies, and selected fluoride affinities (difluorides) are predicted for the late alkaline earth (Sr, Ba, and Ra) oxides, fluorides, chlorides, and hydroxides at the coupled cluster theory CCSD(T) level. Additional corrections (scalar relativistic and pseudopotential corrections, vibrational zero-point energies, and atomic spin-orbit effects) were included to accurately calculate the total atomization energies and heats of formation following the Feller-Peterson-Dixon methodology. The calculated values are compared to the experimental data where available. In some cases, especially for Ra compounds, there are no experimental results, or the experimental energetics and geometries are not reliable or have very large error bars. All of the Sr, Ba, and Ra difluorides, dichlorides, and dihydroxides are bent structures with the OMO bond angles decreasing going down the group. The cohesive energies of bulk Be dihalides are predicted to be quite low, while those of Ra are relatively large. The fluoride affinities show that the difluorides are moderately strong Lewis acids and that such trifluorides may form under the appropriate experimental conditions.

  20. Commercial alkaline earth boroaluminosilicate glasses for sealing solid oxide cell stacks. Part I: Development of glass-ceramic microstructure and thermomechanical properties

    DEFF Research Database (Denmark)

    Agersted, Karsten; Balic-Zunic, Tonci

    2018-01-01

    Sealing performance in solid oxide cell (SOC) stacks and the devitrification process of commercially available alkaline earth boroaluminosilicate glasses containing 48‐61 mol% SiO2, 18‐28 mol% CaO, 1‐7 mol% MgO, 7‐10 mol% Al2O3, 1‐11 mol% B2O3 plus minor amounts of Na2O, K2O, FeO, and TiO2 were...... investigated and quantified through analysis of phase assemblages as function of heat treatments above the glass transition temperatures using the electron microprobe and powder X‐ray diffraction. For two of these glasses devitrification behavior was compared to the devitrification behavior of similar glasses...... produced in the laboratory. Glasses were characterized after annealing in air at 800°C and 850°C for up to 6 weeks. Even though the glasses lie within a relatively narrow compositional range, sealing performance and the resulting microstructures differed significantly. Best thermomechanical properties...