WorldWideScience

Sample records for earth movements geophysics

  1. Geophysics of an Oceanic Ice Shell on Snowball Earth

    Science.gov (United States)

    Gaidos, E. J.

    2000-01-01

    Kirschvink proposed Precambrian low-latitude glaciation could result in an albedo-driven catastrophic runaway to a "Snowball Earth" state in which pack ice up to 1 km thick covered the world ocean. The geophysical state of an ice crust on a Snowball Earth is examined.

  2. PREFACE: Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI

    Science.gov (United States)

    Rosandi, Y.; Urbassek, H. M.; Yamanaka, H.

    2016-01-01

    This issue of IOP Conference Series: Earth and Environmental Science contains selected papers presented at the Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI. The meeting was held from June 8 to 10, 2015, at the Bale-Sawala of Universitas Padjadjaran in Jatinangor, Indonesia. The PEDISGI is a symposium to accommodate communication between researchers, in particular geophysicists and related scientists, and to enable sharing of knowledge and research findings concerning local and global geophysical issues. The symposium was attended by 126 participants and 64 contributors from Indonesian universities and the neighbouring countries in four categories, viz. Theoretical and Computational Geophysics, Environmental Geophysics, Geophysical Explorations, and Geophysical Instrumentations and Methods. The symposium was accompanied by a dialog, discussing a chosen topic regarding environmental and geological problems of relevance for the Indonesian archipelago and the surrounding regions. For this first event the topic was ''The formation of Bandung-Basin between myths and facts: Exemplary cultural, geological and geophysical study on the evolution of the earth surface'', presented by invited speakers and local experts. This activity was aimed at extending our knowledge on this particular subject, which may have global impact. This topic was augmented by theoretical background lectures on the earth's surface formation, presented by the invited speakers of the symposium. The meeting would not have been successful without the assistance of the local organizing committee. We want to specially thank Irwan A. Dharmawan for managing the programme, Anggie Susilawati and Mia U. Hasanah for the conference administration, and Dini Fitriani for financial management. We also thank the National Geographic Indonesia for its support via the Business to Business Collaboration Program. The conference photograph can be viewed in the PDF.

  3. GEOPHYSICS

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20152233 An Zhenchang(Key Laboratory of Earth and Planetary Physics,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China);Peng Fenglin Inspection and Study on the Geomagnetic Survey,Charts and Models during 1683~1949in China(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,57(11),2014,p.3795-3803,60refs.)

  4. Geophysics-based method of locating a stationary earth object

    Science.gov (United States)

    Daily, Michael R.; Rohde, Steven B.; Novak, James L.

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  5. Geophysics

    CERN Document Server

    Bolt, Bruce

    1973-01-01

    Methods in Computational Physics, Volume 13: Geophysics is a 10-chapter text that focuses with the theoretical solid-earth geophysics. This volume specifically covers the general topics of terrestrial magnetism and electricity, the Earth's gravity field, tidal deformations, dynamics of global spin, spin processing, and convective models for the deep interior. This volume surveys first the construction of mathematical models, such as the representation of the geomagnetic field by assuming arrangements of multipole sources in the core and the fast computer evaluation of two- and three-dimensiona

  6. Exploring the geophysical signatures of microbial processes in the earth

    Energy Technology Data Exchange (ETDEWEB)

    Slater, L.; Atekwana, E.; Brantley, S.; Gorby, Y.; Hubbard, S. S.; Knight, R.; Morgan, D.; Revil, A.; Rossbach, S.; Yee, N.

    2009-05-15

    AGU Chapman Conference on Biogeophysics; Portland, Maine, 13-16 October 2008; Geophysical methods have the potential to detect and characterize microbial growth and activity in subsurface environments over different spatial and temporal scales. Recognition of this potential has resulted in the development of a new subdiscipline in geophysics called 'biogeophysics,' a rapidly evolving Earth science discipline that integrates environmental microbiology, geomicrobiology, biogeochemistry, and geophysics to investigate interactions that occur between the biosphere (microorganisms and their products) and the geosphere. Biogeophysics research performed over the past decade has confirmed the potential for geophysical techniques to detect microbes, microbial growth/biofilm formation, and microbe-mineral interactions. The unique characteristics of geophysical data sets (e.g., noninvasive data acquisition, spatially continuous properties retrieved) present opportunities to explore geomicrobial processes outside of the laboratory, at unique spatial scales unachievable with microbiological techniques, and possibly in remote environments such as the deep ocean. In response to this opportunity, AGU hosted a Chapman Conference with a mission to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community, and generate a road map for establishing biogeophysics as a critical subdiscipline of Earth science research. For more information on the conference, see http://www.agu.org/meetings/chapman/2008/fcall/.

  7. Exploring the geophysical signatures of microbial processes in the earth

    Energy Technology Data Exchange (ETDEWEB)

    Slater, L.; Atekwana, E.; Brantley, S.; Gorby, Y.; Hubbard, S. S.; Knight, R.; Morgan, D.; Revil, A.; Rossbach, S.; Yee, N.

    2009-05-15

    AGU Chapman Conference on Biogeophysics; Portland, Maine, 13-16 October 2008; Geophysical methods have the potential to detect and characterize microbial growth and activity in subsurface environments over different spatial and temporal scales. Recognition of this potential has resulted in the development of a new subdiscipline in geophysics called 'biogeophysics,' a rapidly evolving Earth science discipline that integrates environmental microbiology, geomicrobiology, biogeochemistry, and geophysics to investigate interactions that occur between the biosphere (microorganisms and their products) and the geosphere. Biogeophysics research performed over the past decade has confirmed the potential for geophysical techniques to detect microbes, microbial growth/biofilm formation, and microbe-mineral interactions. The unique characteristics of geophysical data sets (e.g., noninvasive data acquisition, spatially continuous properties retrieved) present opportunities to explore geomicrobial processes outside of the laboratory, at unique spatial scales unachievable with microbiological techniques, and possibly in remote environments such as the deep ocean. In response to this opportunity, AGU hosted a Chapman Conference with a mission to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community, and generate a road map for establishing biogeophysics as a critical subdiscipline of Earth science research. For more information on the conference, see http://www.agu.org/meetings/chapman/2008/fcall/.

  8. Protoplanetary Earth Formation: Further Evidence and Geophysical Implications

    CERN Document Server

    Herndon, J M

    2004-01-01

    Recently, I showed that the "standard model" of solar system formation is wrong,yielding the contradiction of terrestrial planets having insufficiently massive cores, and showed instead the consistency of Eucken's 1944 concept of planets raining out in the central regions of hot, gaseous protoplanets. Planets generally consist of concentric shells of matter, but there has been no adequate geophysical explanation to account for the Earth's non-contiguous crustal continental rock layer, except by assuming that the Earth in the distant past was smaller and subsequently expanded. Here, I show that formation of Earth, from within a Jupiter-like protoplanet, will account for the compression of the rocky Earth to about 64 percent of its current radius, yielding a closed, contiguous continental shell with concomitant Earth expansion commencing upon the subsequent removal of its protoplanetary gaseous shell. I now propose that Earth expansion progresses, not from spreading at mid-oceanic ridges as usually assumed, but...

  9. Studies in geophysics: The Earth's electrical environment

    Science.gov (United States)

    1986-01-01

    The Earth is electrified. Between the surface and the outer reaches of the atmosphere, there is a global circuit that is maintained by worldwide thunderstorm activity and by upper atmospheric dynamo processes. The highest voltages approach a billion volts and are generated within thunderclouds, where lightning is a visual display of the cloud's electrical nature. The largest currents in the circuit, approaching a million amperes, are associated with the aurora. Because there have been significant advances in understanding many of the component parts of the global electric circuit (lightning, cloud electrification, electrical processes in specific atmospheric regions, and telluric currents), a principal research challenge is to understand how these components interact to shape the global circuit. Increased basic understanding in this field has many potential practical applications, including lightning protection, the design of advanced aircraft and spacecraft, and improvements in weather prediction.

  10. GEOPHYSICS

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150056 Gao Yanguang(School of Earth and Space Sciences,Peking University,Beijing 100087,China);Li Yonghua Crustal Thickness and Vp/Vsin the Northeast China-North China Region and Its Geological Implication(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,57(3),2014,p.847-857,7illus.,58 refs.,with English abstract)Key words:crust,Poisson’s ration,Northeast China,North China20150057 He Lijuan(State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sci-

  11. Geophysical constraints on mirror matter within the Earth

    CERN Document Server

    Ignatiev, A Yu

    2000-01-01

    We have performed a detailed investigation of geophysical constraints on the possible admixture of mirror matter inside the Earth. On the basis of the Preliminary Reference Earth Model (PREM) -- the `Standard Model' of the Earth's interior -- we have developed a method which allows one to compute changes in various quantities characterising the Earth (mass, moment of inertia, normal mode frequencies etc.)due to the presence of mirror matter. As a result we have been able to obtain for the first time the direct upper bounds on the possible concentration of the mirror matter in the Earth. In terms of the ratio of the mirror mass to the Earth mass a conservative upper bound is $3.8\\times 10^{-3}$. We then analysed possible mechanisms (such as lunar and solar tidal forces, meteorite impacts and earthquakes) of exciting mirror matter oscillations around the Earth centre. Such oscillations could manifest themselves through global variations of the gravitational acceleration at the Earth's surface. We conclude that ...

  12. The Earth surface slide movement at Soledad

    Science.gov (United States)

    Moreno, A.

    1986-11-01

    The Earth surface slide movement at Soledad is a mountain-slide type of movement. Estimations of the thickness of the layer which is moving range between 10 and 100 m. There is no proof that the movement is water induced, but it could be influenced by the water household. The slope of the slide area is H: D = 1: 2. The height difference in the moving area studied, according to this paper, is 1 km. The actual rate of movement is about 12 cm/yr.

  13. The Earth's heterogeneous mantle a geophysical, geodynamical, and geochemical perspective

    CERN Document Server

    Khan, Amir

    2015-01-01

    This book highlights and discusses recent developments that have contributed to an improved understanding of observed mantle heterogeneities and their relation to the thermo-chemical state of Earth's mantle, which ultimately holds the key to unlocking the secrets of the evolution of our planet. This series of topical reviews and original contributions address 4 themes. Theme 1 covers topics in geophysics, including global and regional seismic tomography, electrical conductivity and seismic imaging of mantle discontinuities and heterogeneities in the upper mantle, transition zone and lower mantle. Theme 2 addresses geochemical views of the mantle including lithospheric evolution from analysis of mantle xenoliths, composition of the deep Earth and the effect of water on subduction-zone processes. Theme 3 discusses geodynamical perspectives on the global thermo-chemical structure of the deep mantle. Theme 4 covers application of mineral physics data and phase equilibrium computations to infer the regional-scale ...

  14. Geophysical, petrological and mineral physics constraints on Earth's surface topography

    Science.gov (United States)

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.

    2015-04-01

    Earth's surface topography is controlled by isostatically compensated density variations within the lithosphere, but dynamic topography - i.e. the topography due to adjustment of surface to mantle convection - is an important component, specially at a global scale. In order to separate these two components it is fundamental to estimate crustal and mantle density structure and rheological properties. Usually, crustal density is constrained from interpretation of available seismic data (mostly VP profiles) based on empirical relationships such those in Brocher [2005]. Mantle density structure is inferred from seismic tomography models. Constant coefficients are used to interpret seismic velocity anomalies in density anomalies. These simplified methods are unable to model the effects that pressure and temperature variations have on mineralogical assemblage and physical properties. Our approach is based on a multidisciplinary method that involves geophysical observables, mineral physics constraints, and petrological data. Mantle density is based on the thermal interpretation of global seismic tomography models assuming various compositional structures, as in Cammarano et al. [2011]. We further constrain the top 150 km by including heat-flow data and considering the thermal evolution of the oceanic lithosphere. Crustal density is calculated as in Guerri and Cammarano [2015] performing thermodynamic modeling of various average chemical compositions proposed for the crust. The modeling, performed with the code PerpleX [Connolly, 2005], relies on the thermodynamic dataset from Holland and Powell [1998]. Compressional waves velocity and crustal layers thickness from the model CRUST 1.0 [Laske et al., 2013] offer additional constrains. The resulting lithospheric density models are tested against gravity (GOCE) data. Various crustal and mantle density models have been tested in order to ascertain the effects that uncertainties in the estimate of those features have on the

  15. Geophysics: The Earth in Space. A Guide for High School Students.

    Science.gov (United States)

    American Geophysical Union, Washington, DC.

    Geophysics is the application of physics, chemistry, and mathematics to the problems and processes of the earth, from its innermost core to its outermost environs in space. Fields within geophysics include the atmospheric sciences; geodesy; geomagnetism and paleomagnetism; hydrology; oceanography; planetology; seismology; solar-planetary…

  16. GEOPHYSICS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091452 Cai Xuelin(School of Earth Science,Chengdu University of Technology,Chengdu 610059,China);Cao Jiaming Lithospheric and Asthenospheric Structures of the Koktokay of Xinjiang to Jianyang of Sichuan Geoscience Transect(Geology in China,ISSN1000-3657,CN11-1167/P,35(3),2008,p.375-391,8 illus.,2 tables,64 refs.)Key words:lithosphere,asthenosphere,Xinjiang,SichuanBy using the theory and method of modern structural analysis,this paper analyzes the explosion seismic sounding profiling and natural seismic surface wave tomographic imaging in the Koktokay of Xinjiang to Jianyang of Sichuan geoscience transect and integrates the results of research on geology,geochemistry,structural petrology of deep-seated xenoliths and geophysical signs.The studies indicate that the geometric structure pattern of high-speed blocks or mantle block tectonics is one of the basic conditions for controlling the lithospheric tectonic pattern and tectonic deformation of the lithospheric surface.

  17. Geophysical Techniques for Monitoring CO2 Movement During Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Erika Gasperikova; G. Michael Hoversten

    2005-11-15

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of carbon dioxide (CO{sub 2}). This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques for two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  18. GEOPHYSICS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102191 Du Letian(Beijing Uranium Geology Research Institute,Beijing 100029,China)Mantle Ichor(HACONS Fluids):The Interior Crucial Factor of Geodynamics(Acta Geoscientica Sinica,ISSN1006-3021,CN11-3474/P,30(6),2009,p.739-748,7 illus.,2 tables,36 refs.)Key words:mantle convection,ore-forming fluidsThis paper attempts to summarize the achievements in geodynamic studies as a whole.Five dynamic principles of the Earth are put forward in this paper:1)the introduction of Na and K to any kind of rocks is the key to magma genesis;2)Na-and K-metasomatism is the most fundamental mechanism in whole hydrothermalism;3)geotectonic movement results from mantle-crust asthenospherization,which is stimulated by Na-and K-metasomatism;4)the evolution of the Earth is represented;and 5)Na-and K-fluids(namely,mantle ichors-HACONS)are derived from deep hydrogen(H+,H,H2)flow extraction from the mantle.20102192 Gao Rui(Lithosphere Research Center,Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China)

  19. GEOPHYSICS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20080091 Cheng Luying(Institute of Geodesy and Geophysics,Chinese Academy of Sciences,Wuhan 430077,China);Xu Houze Rotation of the Gravity Potential on the Earth’s Gravity Field Recovery(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,49(1),2006,p.93-98,3 illus.,24 refs.,with English abstract)

  20. GEOPHYSICS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111476 Chen Bin(Institute of Geophysics,China Earthquake Administration,Beijing 100081,China);Gu Zuowen Study of Geomagnetic Secular Variation in China(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,53(9),2010,p.2144-2154,6 illus.,4 tables,38 refs.)Key words:secular variations of geomagnetic field,China

  1. GEOPHYSICS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122208 Chen Shi ( Institute of Geophysics,China Earthquake Administration,Beijing 100081,China );Wang Qianshen Thermal Isostasy of North China and Its Gravity Isostasy and Deep Structure ( Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074 / P,54 ( 11 ), 2011,p.2864-2875,8illus.,1 table,37refs. ) Key words:gravity field,Bouguer anomaly,isostasy theory,North China In this paper,based on the up to date global free-air gravity anomaly dataset ( TopexV18.1 ),

  2. Geophysical tomography for imaging water movement in welded tuff

    Energy Technology Data Exchange (ETDEWEB)

    Daily, W.D.; Ramirez, A.L.

    1986-09-01

    Alterant tomography has been evaluated for its ability to delineate in-situ water flow paths in a fractured welded-tuff rock mass. The evaluation involved a field experiment in which tomographs of electromagnetic attenuation factor (or attenuation rate) at 300 MHz were made before, during, and after the introduction to the rock of two different water-based tracers: a plain water and dye solution, and salt water and dye. Alterant tomographs were constructed by subtracting, cell by cell, the attenuation factors derived from measurements before each tracer was added to the rock mass from the attenuation factors derived after each tracer was added. The alterant tomographs were compared with other evidence of water movement in the rock: borescope logs of fractures, and post experiment cores used to locate the dye tracer on the fractured surfaces. These comparisons indicate that alterant tomography is suitable for mapping water flow through fractures and that it may be useful in inferring which of the fractures are hydrologically connected in the image plane. The technique appears to be sensitive enough to delineate flow through a single fracture and to define fractures with a spatial resolution of about 10 cm on an imaging scale of a few meters. 9 refs., 3 figs.

  3. Geophysics

    Science.gov (United States)

    Carr, M. H.; Cassen, P.

    1976-01-01

    Four areas of investigation, each dealing with the measurement of a particular geophysical property, are discussed. These properties are the gravity field, seismicity, magnetism, and heat flow. All are strongly affected by conditions, past or present, in the planetary interior; their measurement is the primary source of information about planetary interiors.

  4. GEOPHYSICS

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140634 Cao Lingmin(Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China);Xu Yi Finite Difference Tomography of the Crustal Velocity Structure in Tengchong,Yunnan Province(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,56(4),2013,p.1159-1167,6illus.,35refs.,with English abstract)

  5. Emergent Models for Teaching Geology and Geophysics Using Google Earth

    Science.gov (United States)

    de Paor, D. G.; Whitmeyer, S. J.; Gobert, J.

    2008-12-01

    A significant limitation of Google Earth is that, whereas maps draped over the terrain may be made semi- transparent, the terrain itself is always opaque. It is not possible to see into the earth's interior - a region of particular interest to geologists and geophysicists. Furthermore, learning difficulties undoubtedly result for students because internal features of the Earth are not visible to them. At Fall AGU 2007, we showed how blocks of the earth's sub-surface could be made to emerge from the Google Earth terrain model so as to reveal crustal cross sections using either hand-drawn sketches or real data from geoseismic transects. We have refined these models to include surface topography on the tops of blocks and have produced a set of emergent cross sections representing various tectonic settings, including divergent and convergent margins, deep mantle plumes, and paleo-tectonic reconstructions. Comparing our models with typical sketches from textbooks reveals large disparities between cartoon representations of plate tectonics and real geometries from present plate configurations. Key discrepancies include substantial vertical exaggeration in cartoon models and mostly non-orthogonal collisional plate boundaries in the real world. These differences likely hinder understanding and lead to persistent misconceptions for students. With the support of the NSF CCLI program, we plan to recruit a cohort of instructors at 2- and 4-year colleges to participate in workshops in which sub-surface sketchup models will be generated in hands-on demonstrations. Participants will test the effectiveness of emergent models as learning objects in real classroom settings and compare the relative merits of Google Earth illustrations based on spatially-accurate research data versus cartoon representations of geological structures.

  6. THE LONG TIME BEHAVIORS OF NON-AUTONOMOUS EVOLUTION SYSTEM DESCRIBING GEOPHYSICAL FLOW WITHIN THE EARTH

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chunshan; LI Kaitai; HUANG Aixiang

    2002-01-01

    In this paper, the long time behaviors of non-autonomous evolution system describing geophysical flow within the earth are studied. The uniqueness and existence of the solution to the evolution system and the existence of uniform attractor are proven.Moreover, the upper bounds of the uniform attractor's Hausdorff and Fractal dimensions are obtained.

  7. Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle

    CERN Document Server

    Šrámek, Ondřej; Kite, Edwin S; Lekić, Vedran; Dye, Steve; Zhong, Shijie

    2012-01-01

    Knowledge of the amount and distribution of radiogenic heating in the mantle is crucial for understanding the dynamics of the Earth, including its thermal evolution, the style and planform of mantle convection, and the energetics of the core. Although the flux of heat from the surface of the planet is robustly estimated, the contributions of radiogenic heating and secular cooling remain poorly defined. Constraining the amount of heat-producing elements in the Earth will provide clues to understanding nebula condensation and planetary formation processes in early Solar System. Mantle radioactivity supplies power for mantle convection and plate tectonics, but estimates of mantle radiogenic heat production vary by a factor of up to 30. Recent experimental results demonstrate the potential for direct assessment of mantle radioactivity through observations of geoneutrinos, which are emitted by naturally occurring radionuclides. Predictions of the geoneutrino signal from the mantle exist for several established est...

  8. Investigation of novel geophysical techniques for monitoring CO2 movement during sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Hoversten, G. Michael; Gasperikova, Erika

    2003-10-31

    Cost effective monitoring of reservoir fluid movement during CO{sub 2} sequestration is a necessary part of a practical geologic sequestration strategy. Current petroleum industry seismic techniques are well developed for monitoring production in petroleum reservoirs. The cost of time-lapse seismic monitoring can be born because the cost to benefit ratio is small in the production of profit making hydrocarbon. However, the cost of seismic monitoring techniques is more difficult to justify in an environment of sequestration where the process produces no direct profit. For this reasons other geophysical techniques, which might provide sufficient monitoring resolution at a significantly lower cost, need to be considered. In order to evaluate alternative geophysical monitoring techniques we have undertaken a series of numerical simulations of CO{sub 2} sequestration scenarios. These scenarios have included existing projects (Sleipner in the North Sea), future planned projects (GeoSeq Liberty test in South Texas and Schrader Bluff in Alaska) as well as hypothetical models based on generic geologic settings potentially attractive for CO{sub 2} sequestration. In addition, we have done considerable work on geophysical monitoring of CO{sub 2} injection into existing oil and gas fields, including a model study of the Weyburn CO{sub 2} project in Canada and the Chevron Lost Hills CO{sub 2} pilot in Southern California (Hoversten et al. 2003). Although we are specifically interested in considering ''novel'' geophysical techniques for monitoring we have chosen to include more traditional seismic techniques as a bench mark so that any quantitative results derived for non-seismic techniques can be directly compared to the industry standard seismic results. This approach will put all of our finding for ''novel'' techniques in the context of the seismic method and allow a quantitative analysis of the cost/benefit ratios of the newly

  9. Application of the Earth's Natural Electromagnetic Noise to Geophysical Prospecting and Seraching for Oil

    CERN Document Server

    Malyshkov, Sergey Yu; Gordeev, Vasily F; Shtalin, Sergey G; Polivach, Vitaly I; Bazhanov, Yury Yu; Hauan, Terje

    2011-01-01

    When applying the Earth's natural pulse electromagnetic fields to geophysical prospecting one should take into account characteristics of their spatial and temporal variations. ENPEMF is known to include both pulses attributed to atmospheric thunderstorms and pulses generated in the lithosphere by mechanic-to-electric energy conversion in rocks. It is evident that the most valuable information on the geophysical structure of a certain area is obviously contained in pulses originated from this area. This article covers a method of recording spatial variations of the Earth's natural pulse electromagnetic fields which is able to take due account of spatial and temporal variations of EM fields and suits to reveal crustal structural and lithologic heterogeneities including hydrocarbon pools. We use a system of several stations recording the ENPEMF concurrently to erase the temporal variations from ENPEMF records and to sort out the pulses of local and remote origin. Some stations are fixed (reference) and record o...

  10. Movement of earth rotation and activities of atmosphere and ocean

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The rotation of the earth, including the variation of the rotational rate and polar motion, represents the statement of the earth's overall movement and interactions among the solid earth, atmosphere and ocean on a variety of space-time scales. They make the earth's complex dynamical system under the conservation of angular momentum. The application and development of recent space geodetic tech-niques greatly promote the researches on the interactions between the earth rotation and the activities of atmosphere and ocean. This review will mainly report the progress in researches on the earth rotation and the activities of atmos-phere and ocean as well as the air-sea interaction in the tropics, and prospect the direction for future theoretical investigations.

  11. Expanding Earth and declining gravity: a chapter in the recent history of geophysics

    Science.gov (United States)

    Kragh, H.

    2015-05-01

    Although speculative ideas of an expanding Earth can be found before World War II, it was only in the 1950s and 1960s that the theory attracted serious attention among a minority of earth scientists. While some of the proponents of the expanding Earth adopted an empiricist attitude by disregarding the physical cause of the assumed expansion, others argued that the cause, either fully or in part, was of cosmological origin. They referred to the possibility that the gravitational constant was slowly decreasing in time, as first suggested by P. Dirac in 1937. As a result of a stronger gravitation in the past, the ancient Earth would have been smaller than today. The gravitational argument for an expanding Earth was proposed by P. Jordan and L. Egyed in the 1950s and during the next 2 decades it was discussed by several physicists, astronomers and earth scientists. Among those who for a period felt attracted by "gravitational expansionism" were A. Holmes, J. Tuzo Wilson and F. Hoyle. The paper examines the idea of a varying gravitational constant and its impact on geophysics in the period from about 1955 to the mid-1970s.

  12. Geophysical investigation of earth dam using the electrical tomography resistivity technique

    Directory of Open Access Journals (Sweden)

    Pedro Lemos Camarero

    Full Text Available Abstract Dams are structures that dam rivers and streams for a variety of purposes. These structures often need to be sturdy to withstand the force of the impoundment and the high values of accumulated water load. The constant maintenance of these structures is essential, since a possible accident can lead to damage of catastrophic proportions. This research presents an alternative cheap and quick application for investigating water seepage in earth dams, through the application of the DC resistivity geophysical method from the electrical resistivity tomography (ERT technique in Wenner array. Three ERT lines were placed parallel to the longitudinal axis of a dam formed by clay soil from the decomposition of diabase. The data are presented in 2D and pseudo-3D geophysical images with electrical resistivity values modeled. Based on the physical principle of electrolytic conduction, that is, decrease in electrical resistance in materials or siliceous minerals in moisture conditions as compared to the material in the dry state, the results revealed low-resistivity zones restricted to some points, associated with water infiltration in the transverse direction of the dam. The absence of evidence as water upwelling on the front of the dam together with geophysical evidence indicate saturation restricted to some points and low probability at the present time, for installation of piping processes.

  13. Geoethics and philosophy of Earth sciences: the role of geophysical factors in human evolution

    Directory of Open Access Journals (Sweden)

    Telmo Pievani

    2012-07-01

    Full Text Available This article explores the role of philosophy of the Earth sciences in the foundation of the principles of ‘geoethics’. In particular, the focus is on two different examples of philosophical analysis in the field of geosciences: the first is the trial against the Italian National Commission for Forecasting and Predicting Great Risks, which was charged with negligence in communication and prediction on the occasion of the earthquake that almost destroyed the city of L’Aquila on the night of April 6, 2009; the second is related to the scientific and theoretical consequences of the updated geographical scenario of the human global populating of the Earth, based on archeological, paleontological and genetic data. Our concept of ‘scientific prediction’ in the case of geophysical phenomena and the new ways to see human evolution that depend on geophysical factors have ethical and philosophical implications that are crucial for the foundations of geoethics. The tentative conclusion is that we need an evolutionary sense of belonging to our Planet, and a concept of ‘natural’ phenomena and ‘natural’ disasters that should not be an alibi for the underestimation of our political and ethical responsibilities.

  14. Discover Our Earth: Web-Based Geophysical Data in the Classroom

    Science.gov (United States)

    Moore, A.; Seber, D.; Danowski, D.; Brindisi, C.

    2002-12-01

    Discover Our Earth is a web-based system designed for classroom use, allowing access and display of geospatial data sets . It is an education and outreach module built as part of Cornell University's Geoscience Information System, originally constructed as a tool for geophysical research (http://atlas.geo.cornell.edu). Discover Our Earth has been used in university, high school and middle school classrooms. Working with real data is a powerful tool for helping students learn scientific principles, content, and the processes of scientific inquiry. In order to give students access to data that is otherwise difficult to work with, Discover Our Earth is comprised of several elements. The central component is a Java applet called QUEST (Quick Use Earth Study Tool). QUEST allows students to query and display data from three data sets selected from the 100+ housed within the Information System. Any attribute of earthquake, volcano, or topographic data can be selected and displayed, and multiple data sets can be overlain on each other, or on assorted background images (such as a geographic base map, age of the sea floor etc). Each image is saved in the QUEST history window, allowing students to compare multiple selections, or to animate a series of images as a "filmstrip." In order to help students better understand their results, the QUEST applet is supported by several other components. There are guides for both teacher and student. The student guide gives step-by-step instructions for a series of problems, and suggests others that will help students answer questions of local and global interest. The teacher guide provides background material, context, and answers to the student exercises. There are animations and 3-D visualizations that allow students to better interpret their maps. Additionally, there are interactive experiments on topics such as continental drift, isostasy, viscosity, that allow students to explore the physics that underlie the processes they are

  15. Observation of the Earth's nutation by the VLBI: how accurate is the geophysical signal

    Science.gov (United States)

    Gattano, César; Lambert, Sébastien B.; Bizouard, Christian

    2016-09-01

    We compare nutation time series determined by several International VLBI Service for geodesy and astrometry (IVS) analysis centers. These series were made available through the International Earth Rotation and Reference Systems Service (IERS). We adjust the amplitudes of the main nutations, including the free motion associated with the free core nutation (FCN). Then, we discuss the results in terms of physics of the Earth's interior. We find consistent FCN signals in all of the time series, and we provide corrections to IAU 2000A series for a number of nutation terms with realistic errors. It appears that the analysis configuration or the software packages used by each analysis center introduce an error comparable to the amplitude of the prominent corrections. We show that the inconsistencies between series have significant consequences on our understanding of the Earth's deep interior, especially for the free inner core resonance: they induce an uncertainty on the FCN period of about 0.5 day, and on the free inner core nutation (FICN) period of more than 1000 days, comparable to the estimated period itself. Though the FCN parameters are not so much affected, a 100 % error shows up for the FICN parameters and prevents from geophysical conclusions.

  16. Observation of the Earth's nutation by the VLBI: how accurate is the geophysical signal

    Science.gov (United States)

    Gattano, César; Lambert, Sébastien B.; Bizouard, Christian

    2017-07-01

    We compare nutation time series determined by several International VLBI Service for geodesy and astrometry (IVS) analysis centers. These series were made available through the International Earth Rotation and Reference Systems Service (IERS). We adjust the amplitudes of the main nutations, including the free motion associated with the free core nutation (FCN). Then, we discuss the results in terms of physics of the Earth's interior. We find consistent FCN signals in all of the time series, and we provide corrections to IAU 2000A series for a number of nutation terms with realistic errors. It appears that the analysis configuration or the software packages used by each analysis center introduce an error comparable to the amplitude of the prominent corrections. We show that the inconsistencies between series have significant consequences on our understanding of the Earth's deep interior, especially for the free inner core resonance: they induce an uncertainty on the FCN period of about 0.5 day, and on the free inner core nutation (FICN) period of more than 1000 days, comparable to the estimated period itself. Though the FCN parameters are not so much affected, a 100 % error shows up for the FICN parameters and prevents from geophysical conclusions.

  17. Using earthquakes to uncover the Earth's inner secrets: interactive exhibits for geophysical education

    Directory of Open Access Journals (Sweden)

    C. Nostro

    2005-01-01

    Full Text Available The Educational & Outreach Group (E&O Group of the Istituto Nazionale di Geofisica e Vulcanologia (INGV designed a portable museum to bring on the road educational activities focused on seismology, seismic hazard and Earth science. This project was developed for the first edition of the Science Festival organized in Genoa, Italy, in 2003. The museum has been mainly focused to school students of all ages and explains the main topics of geophysics through posters, movie and slide presentations, and exciting interactive experiments. This new INGV museum has been remarkably successful, being visited by more than 8000 children and adults during the 10 days of the Science Festival. It is now installed at the INGV headquarters in Rome and represents the main attraction during the visits of the schools all year round.

  18. Study on movement inertia in the Earth multi-body system

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xiaofei; BI; Siwen; GONG; Huili

    2006-01-01

    This paper summarizes the first movement and mass centre of stratum-block movement inertia in the Earth multi-body system and introduces its application. It also elaborates the moment of inertia and the products of inertia: the inertia dyadic transformation of reference system and the parallel axis theorem of stratum-block movement inertia of the Earth multi-body system. It provides an academic foundation for research on the dynamic model of Earth multi-body system.

  19. Multidisciplinary projects and investigations on the solid earth geophysics; Metodi e prospettive per una maggiore conoscenza della crosta terrestre

    Energy Technology Data Exchange (ETDEWEB)

    Slejko, D. [Consiglio Nazionale delle Ricerche, Gruppo Nazionale di Geofisica della Terra Solida, Trieste (Italy)

    2001-07-01

    Physical phenomena that occur in the solid part of the Earth are investigated by Solid Earth Geophysics together with problems related to the shape, location, and characteristics of the different parts that constitute the Earth. Repeated measurements lead the scientists to model the past evolution of the various processes as well as to forecast the future ones. Various disciplines refer to Solid Earth Geophysics, they are: Seismology, Gravimetry, Magnetometry, Geothermics, Geodesy, Geo electromagnetism, and Seismic Exploration. A special citation is due to Applied Geophysics, which are devoted to the identification of minerals, energetic and natural resources. The National Group of Solid Earth Geophysics was constituted in 1978 by CNR for promoting, developing, and coordinating researches related to Solid Earth Geophysics. The limited annual financial budget has conditioned the realisation of relevant multi-disciplinary projects. Nevertheless, important results were obtained in all different fields of Geophysics and were disseminated during the annual conference of the Group. A summary review of the main topics treated during the last conference is given here and some ideas for future research projects are presented. [Italian] La Geofisica della Terra Solida e' quella branca delle scienze e delle tecnologie che prende in considerazione dei fenomeni connessi con le caratteristiche fisiche della parte solida della Terra. La complessita' della costituzione della Terra e della sua evoluzione nel tempo implica che vengano prese in considerazione tutte le fenomenologie che si riescono a misurare e che costituiscono branche diverse della Geofisica: la Sismologia, la Gravimetria, la Magnetometria, la Geotermia, la Geodesia, il Geoelettromagnetismo, la Geofisica applicata. Ognuna di queste branche della Geofisica ha avuto in passato uno sviluppo quasi del tutto indipendente con collaborazioni o integrazioni dirtte ad obiettivi specifici, limitati anche nel tempo

  20. Development, Deployment, and Assessment of Dynamic Geological and Geophysical Models Using the Google Earth APP and API: Implications for Undergraduate Education in the Earth and Planetary Sciences

    Science.gov (United States)

    de Paor, D. G.; Whitmeyer, S. J.; Gobert, J.

    2009-12-01

    We previously reported on innovative techniques for presenting data on virtual globes such as Google Earth using emergent Collada models that reveal subsurface geology and geophysics. We here present several new and enhanced models and linked lesson plans to aid deployment in undergraduate geoscience courses, along with preliminary results from our assessment of their effectiveness. The new Collada models are created with Google SketchUp, Bonzai3D, and MeshLab software, and are grouped to cover (i) small scale field mapping areas; (ii) regional scale studies of the North Atlantic Ocean Basin, the Appalachian Orogen, and the Pacific Ring of Fire; and (iii) global scale studies of terrestrial planets, moons, and asteroids. Enhancements include emergent block models with three-dimensional surface topography; models that conserve structural orientation data; interactive virtual specimens; models that animate plate movements on the virtual globe; exploded 3-D views of planetary mantles and cores; and server-generated dynamic KML. We tested volunteer students and professors using Silverback monitoring software, think-aloud verbalizations, and questionnaires designed to assess their understanding of the underlying geo-scientific phenomena. With the aid of a cohort of instructors across the U.S., we are continuing to assess areas in which users encounter difficulties with both the software and geoscientific concepts. Preliminary results suggest that it is easy to overestimate the computer expertise of novice users even when they are content knowledge experts (i.e., instructors), and that a detailed introduction to virtual globe manipulation is essential before moving on to geoscience applications. Tasks that seem trivial to developers may present barriers to non-technical users and technicalities that challenge instructors may block adoption in the classroom. We have developed new models using the Google Earth API which permits enhanced interaction and dynamic feedback and

  1. GEOPHYSICAL EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20160511An Yulin(School of Geophysics and Information Technology,China University of Geosciences,Beijing100083,China);Guo Lianghui High Precision Computation and Numerical Value Characteristics of Gravity Emendation Values Arising from Mass of the Earth

  2. Integrating Diverse Geophysical and Geological Data to Construct Multi-Dimensional Earth Models: The Open Earth Framework

    Science.gov (United States)

    Baru, C.; Keller, R.; Wallet, B.; Crosby, C.; Moreland, J.; Nadeau, D.

    2008-12-01

    Currently, many large geoscientific efforts (e.g., EarthScope, Continental Dynamics, and GeoSwath) have emphasized that a crucial need in advancing our understanding of the structure and evolution of the continents is high-resolution, 3-D models of lithospheric structure. In addition, the geoscience community recognizes that our ultimate goal is the addition of the dimension of time to make the problem 4-D. Adding the dimension of time is a complex problem that is strongly dependent on the integration of a variety of geological data into our analyses (e.g., geochronology, paleontology, stratigraphy, pressure-time histories, structural geology, paleogeography, etc.). The geoscience community also recognizes that solutions to the scientific and societal questions that they seek to answer require innovative integration of many types of data so that many physical properties (x, y, z, P-wave velocity, S-wave velocity, density, electrical conductivity, etc.) are measured and included in 3-D models. The problem is, therefore, truly multidimensional in nature. We are developing an Open Earth Framework (OEF) as an open data model for integration of such multidimensional Earth Sciences data. In our work and interactions with the community on building and visualizing complex earth models, several issues have emerged on which there is consensus. First of all, integration efforts should work from the surface down because we have the most data there (e.g., geologic maps, remote sensing data such as LIDAR and ASTER, digital elevation models, gravity and magnetic measurements, etc.) and because the complex conditions near surface always have a potential to mask deeper features. Secondly since we cannot expect uniform coverage of a variety of high-resolution data in anything but special circumstances, a data integration effort should first establish a regional context using lower resolution (and usually wide coverage) data and then proceed to modeling the data sets with the highest

  3. Whole earth modeling: developing and disseminating scientific software for computational geophysics.

    Science.gov (United States)

    Kellogg, L. H.

    2016-12-01

    Historically, a great deal of specialized scientific software for modeling and data analysis has been developed by individual researchers or small groups of scientists working on their own specific research problems. As the magnitude of available data and computer power has increased, so has the complexity of scientific problems addressed by computational methods, creating both a need to sustain existing scientific software, and expand its development to take advantage of new algorithms, new software approaches, and new computational hardware. To that end, communities like the Computational Infrastructure for Geodynamics (CIG) have been established to support the use of best practices in scientific computing for solid earth geophysics research and teaching. Working as a scientific community enables computational geophysicists to take advantage of technological developments, improve the accuracy and performance of software, build on prior software development, and collaborate more readily. The CIG community, and others, have adopted an open-source development model, in which code is developed and disseminated by the community in an open fashion, using version control and software repositories like Git. One emerging issue is how to adequately identify and credit the intellectual contributions involved in creating open source scientific software. The traditional method of disseminating scientific ideas, peer reviewed publication, was not designed for review or crediting scientific software, although emerging publication strategies such software journals are attempting to address the need. We are piloting an integrated approach in which authors are identified and credited as scientific software is developed and run. Successful software citation requires integration with the scholarly publication and indexing mechanisms as well, to assign credit, ensure discoverability, and provide provenance for software.

  4. Assessing vulnerability to vegetation growth on earth dikes using geophysical investigation

    Science.gov (United States)

    Mary, Benjamin; Saracco, Ginette; Peyras, Laurent; Vennetier, Michel; Mériaux, Patrice

    2015-04-01

    The Mediterranean Basin is prone to a plethora of natural hazards including floods. Vegetation growth in hydraulic earth structures, such as flood protections or channel levees and dams, may induce several degradation mechanisms leading to a risk of failure. Typically, trees' rooting generates two types of risks: internal erosion from root development in earth embankments, and external erosion (slopes and crest) which is often related to trees uprooting. To better assess how woody vegetation can compromise levee integrity, we designed a methodology using acoustical and complex electrical tomography as non destructives methods to spot dangerous roots in the embankment. Our work has been first initiated during laboratory experiments; we performed soundings in controlled conditions to determine both acoustical and electrical intrinsic behavior of our root samples. By comparison with soil samples we expected to point out specific signatures that would be useful for the roots anomaly identification in real conditions. Measurements were repeated on several samples to ensure statistical interpretation. With help of an ultrasonic transmission device, we identified significant relative velocity differences of compressional waves propagation between soil and root samples. We also studied spectral properties using wavelet processing method as an additional parameter of root distinction with the surrounding soil. In the case of electrical soundings, complex resistivity was measured and we computed resistivity spectra. Amplitude of resistivity term showed us that root material behaves as an insulator compared to the soil. With the phase resistivity term information, root can also be seen as an electric power capacitance and reveals maximum polarization effect located around 1Hz. Then, as experimental device for the field measurements, we selected a 320 cm high poplar (Populus) planted in a homogeneous loamy-clayed soil, which is the same soil used in laboratory experiment to

  5. Geophysical disturbance environment during the NASA/MPE barium release at 5 earth radii on September 21, 1971.

    Science.gov (United States)

    Davis, T. N.; Stanley, G. M.; Boyd, J. S.

    1973-01-01

    The geophysical disturbance environment was quiet during the NASA/MPE barium release at 5 earth radii on September 21, 1971. At the time of the release, the magnetosphere was in the late recovery phase of a principal magnetic storm, the provisional Dst value was -13 gammas, and the local horizontal disturbance at Great Whale River was near zero. Riometer and other observations indicated low-level widespread precipitation of high-energy electrons at Great Whale River before, during, and after the release. Cloudy sky at this station prevented optical observation of aurora. No magnetic or ionospheric effects attributable to the barium release were detected at Great Whale River.

  6. DISTRIBUTION OF ACTIVE EARTH PRESSURE OF RETAINING WALL WITH WALL MOVEMENT OF ROTATION ABOUT TOP

    Institute of Scientific and Technical Information of China (English)

    王元战; 唐照评; 郑斌

    2004-01-01

    Based on the Coulomb' s theory that the earth pressure against the back of a retaining wall is due to the thrust exerted by the sliding wedge of soil from the back of the wall to a plane which passes through the bottom edge of the wall and has an inclination equal to the angle of θ, the theoretical answers to the unit earth pressure, the resultant earth pressure and the point of application of the resultant earth pressure on a retaining wall were obtained for the wall movement mode of rotation about top. The comparisons were made among the formula presented here, the formula for the wall movement mode of translation,the Coulomb' s formula and some experimental observations. It is demonstrated that the magnitudes of the resultant earth pressures for the wall movement mode of rotation about top is equal to that determined by the formula for the wall movement mode of translation and the Coulomb' s theory. But the distribution of the earth pressure and the points of application of the resultant earth pressures have significant difference.

  7. Geophysical interpretation of satellite laser ranging measurements of crustal movement in California

    Science.gov (United States)

    Cohen, Steven C.

    1985-12-01

    As determined by satellite laser ranging the rate of contraction of a 900 km baseline between sites located near Quincy in northern California and San Diego in southern California is about 61-65 mm/yr with a formal uncertainty of about 10 mm/yr (Christodoulidis et al., 1985). The measured changes in baseline length are a manifestation of the relative motion between the North America and Pacific tectonic plates. This long baseline result is compared to measurements made by more conventional means on shorter baselines. Additional information based on seismiscity, geology, and theoretical modelling is also analyzed. Deformation lying within a few tens of kilometers about the major faults in southern California accounts for most, but not all, of the observed motion. Further motion is attributable to a broader-scale deformation in southern California. Data suggesting crustal movements north of the Garlock fault, in and near the southern Sierra Nevada and local motion at an observatory are also critically reviewed. The best estimates of overall motion indicated by ground observations lie between 40 and 60 mm/yr. This lies within one or two standard deviations of that deduced from satellite ranging but the possibility of some unresolved deficit cannot be entirely dismissed. The long time scale RM2 plate tectonic model of Minster and Jordan (1978) predicts a contraction between 47 and 53 mm/yr depending on the extension rate of the Basin and Range. Thus the ground based observations, SLR results, and RM2 rates differ at about the 10 mm/yr level but are not inconsistent with one another within the data and model uncertainties.

  8. Geophysics education on the Internet: Course production and assessment of our MOOC, "Deep Earth Science"

    Science.gov (United States)

    Okuda, Y.; Tazawa, K.; Sugie, K.; Sakuraba, H.; Hideki, M.; Tagawa, S.; Cross, S. J.

    2016-12-01

    Recently, massive open online courses (MOOC or MOOCs) have gained wide-spread attention as a new educational platform delivered via the internet. Many leading institutions all over the world have provided many fascinating MOOC courses in various fields. Students enrolled in MOOCs study their interested topic in a course not only by watching video lectures, reading texts, and answering questions, but also by utilizing interactive online tools such as discussion boards, Q&A sessions and peer assessments. MOOC is also gaining popularity as a way to do outreach activity and diffuse research results. Tokyo Institute of Technology provided its 1st MOOC, "Introduction to Deep Earth Science Part1" on edX, which is one of the largest MOOC providers. This four-week-long course was designed for 1st year college students and with two learning goals in this course; 1) to introduce students to the fascinating knowledge of solid Earth, 2) to provide an opportunity to use scientific thinking as well as to show how interesting and exciting science can be. This course contained materials such as 1) structure of inside of the Earth 2) internal temperature of the earth and how it is estimated and 3) chemical compositions and dynamics inside the earth. After the end of the provision of Part1, this course was re-made as "Introduction to Deep Earth Science"(so to speak, Part2) on the basis of opinions obtained from students who have attended our course and student teaching assistants (TA) who have run and produced this course. In this presentation, we will explain our MOOC making model, which is a team based course creation effort between the course instructor, Tokyo Tech Online Education Development Office (OEDO) staff and TA students. Moreover, we will share details and feedback of Part1 received from some of the 5000 enrolled students from 150 counties and regions, and report the implementation of Part2 in the light of challenges resulted from Part1.

  9. ON THE UNIQUENESS OF THE UNBOUNDED CLASSICAL SOULTION OF THE EVOLUTION SYSTEM DESCRIBING GEOPHYSICAL FLOW WITHIN THE EARTH AND ITS ASSOCIATED SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    李开泰; 赵春山

    2001-01-01

    The uniqueness for unbounded classical solutions of the evolution system describing geophysical flow within the earth and its associated systems is investigated. Under suitable growth conditions,it is shown that the solution to the initial value problem is unique. Moreover,a counterexample is given if the growth conditions are not satisfied.

  10. Dynamics of the earth's radiation belts and inner magnetosphere (geophysical monograph series)

    CERN Document Server

    2013-01-01

    Dynamics of the Earth's Radiation Belts and Inner Magnetosphere draws together current knowledge of the radiation belts prior to the launch of Radiation Belt Storm Probes (RPSP) and other imminent space missions, making this volume timely and unique. The volume will serve as a useful benchmark at this exciting and pivotal period in radiation belt research in advance of the new discoveries that the RPSP mission will surely bring. Highlights include the following: a review of the current state of the art of radiation belt science; a complete and up-to-date account of the wave-particle interactions that control the dynamical acceleration and loss processes of particles in the Earth's radiation belts and inner magnetosphere; a discussion emphasizing the importance of the cross-energy coupling of the particle populations of the radiation belts, ring current, and plasmasphere in controlling the dynamics of the inner magnetosphe...

  11. Rare earth mineral potential in the southeastern U.S. Coastal Plain from integrated geophysical, geochemical, and geological approaches

    Science.gov (United States)

    Shah, Anjana K.; Bern, Carleton; Van Gosen, Bradley S.; Daniels, David L.; Benzel, William M.; Budahn, James R.; Ellefsen, Karl J.; Karst, Adam; Davis, Richard

    2017-01-01

    We combined geophysical, geochemical, mineralogical, and geological data to evaluate the regional presence of rare earth element (REE)−bearing minerals in heavy mineral sand deposits of the southeastern U.S. Coastal Plain. We also analyzed regional differences in these data to determine probable sedimentary provenance. Analyses of heavy mineral separates covering the region show strong correlations between thorium, monazite, and xenotime, suggesting that radiometric equivalent thorium (eTh) can be used as a geophysical proxy for those REE-bearing minerals. Airborne radiometric data collected during the National Uranium Resource Evaluation (NURE) program cover the southeastern United States with line spacing varying from ∼2 to 10 km. These data show eTh highs over Cretaceous and Tertiary Coastal Plain sediments from the Cape Fear arch in North Carolina to eastern Alabama; these highs decrease with distance from the Piedmont. Quaternary sediments along the modern coasts show weaker eTh anomalies, except near coast-parallel ridges from South Carolina to northern Florida. Prominent eTh anomalies are also observed over large riverbeds and their floodplains, even north of the Cape Fear arch where surrounding areas are relatively low. These variations were verified using ground geophysical measurements and sample analyses, indicating that radiometric methods are a useful exploration tool at varying scales. Further analyses of heavy mineral separates showed regional differences, not only in concentrations of monazite, but also of rutile and staurolite, and in magnetic susceptibility. The combined properties suggest the presence of subregions where heavy mineral sediments are primarily sourced from high-grade metamorphic, low-grade metamorphic, or igneous terrains, or where they represent a mixing of these sources. Comparisons between interpreted sources of heavy mineral sands near the Fall Line and igneous and metamorphic Piedmont and Blue Ridge units showed a strong

  12. Infrasound as a Geophysical Probe Using Earth as a Venus Analog

    Science.gov (United States)

    Komjathy, Attila; Cutts, James; Pauken, Michael; Kedar, Sharon; Smrekar, Suzanne

    2016-10-01

    JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude ~3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise.In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere.We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.

  13. Tracing sediment movement on semi-arid watershed using Rare Earth Elements 1988

    Science.gov (United States)

    A multi-tracer method employing rare earth elements (REE) was used to determine sediment yield and to track sediment movement in a small semiarid watershed. A 0.33 ha watershed near Tombstone, AZ was divided into five morphological units, each tagged with one of five REE oxides. Relative contributi...

  14. Observed changes in the Earth's dynamic oblateness from GRACE data and geophysical models.

    Science.gov (United States)

    Sun, Y; Ditmar, P; Riva, R

    A new methodology is proposed to estimate changes in the Earth's dynamic oblateness ([Formula: see text] or equivalently, [Formula: see text]) on a monthly basis. The algorithm uses monthly Gravity Recovery and Climate Experiment (GRACE) gravity solutions, an ocean bottom pressure model and a glacial isostatic adjustment (GIA) model. The resulting time series agree remarkably well with a solution based on satellite laser ranging (SLR) data. Seasonal variations of the obtained time series show little sensitivity to the choice of GRACE solutions. Reducing signal leakage in coastal areas when dealing with GRACE data and accounting for self-attraction and loading effects when dealing with water redistribution in the ocean is crucial in achieving close agreement with the SLR-based solution in terms of de-trended solutions. The obtained trend estimates, on the other hand, may be less accurate due to their dependence on the GIA models, which still carry large uncertainties.

  15. A New Global Theory of the Earth's Dynamics a Single Cause Can Explain All the Geophysical and Geological Phenomena

    CERN Document Server

    Rousseau, A

    2005-01-01

    After describing all the contradictions associated with the current Plate Tectonics theory, this paper proposes a model where a single cause can explain all geophysical and geological phenomena. The source of the Earth's activity lies in the difference of the angular velocities of the mantle and of the solid inner core. The friction between both spheres infers heat, which is the cause of the melted iron which constitutes most of the liquid outer core, as well as the source of the global heat flow. The solid inner core angular velocity is supposed to remain steady, while the mantle angular velocity depends on gyroscopic forces (involving acceleration) and slowing down due to external attractions and, principally the motions of mantle plates 2900 km thick. The variations of the geomagnetic field are therefore the direct consequence of the variations of the angular velocity of the mantle relative to that of the inner core. As a result, the biological and tectonic evolutions during geological times are due to tho...

  16. Movement of the Earth pole and the seismic activity in 2001-2012

    Science.gov (United States)

    Andreev, Aleksey; Zabbarova, Regina; Lapaeva, Valentina; Nefedyev, Yuri

    2014-05-01

    The relationship between the parameters which characterize the movement of the Earth pole and seismic activity are considered. The correlation of the considered parameters is studied. The discussions about the relationship of poles movement and irregularity in speed of Earth rotation with seismic activity were actively performed in 60- 70th years of last century. Mainly, the influence of seismicity on pole movement was considered in this works. In particular, the question about excitation of a pole by earthquakes chandler's fluctuations was studied. An interest in the similar researches continues till now. The chandler's movements investigations and their relation with rotation of the Earth and seismicity were proceeded. The correlation between appearance of earthquakes and abnormal evasion of time and latitude for the observatories located near an epicenter was also discussed. What changes in position of the Earth pole do occur as a result of the strongest earthquakes? To answer on this question it is necessary to study variations of "an average pole", where the basic periodic components in movement of a pole having amplitude 0.1"-0.3" are accepted. To perform the analysis of the pole co-ordinates (X and Y) the International service of the Earth rotation for 1995-2012 have been considered. Linear Orlov-Saharov transformation has been applied to an exception of the periodic movement. On the basis of this positions changes of an average pole (aperiodicity displacement and long periodical variations of an axis of rotation in a Earth body) have been calculated with an interval of 0.1 years. Was found the changes of position of an average pole of the Earth was preceded the most considerable seismic events of the beginning of 21 century. As a whole, the increase of seismic activity has begun after 2002 only. For example, there were 2 strong earthquakes with magnitude 7 and more (Salvador, India) in 2001 , 2 earthquakes (Tajikistan, Taiwan) occurred in 2002, and 5

  17. The importance of a multidisciplinary approach for solid earth geophysics in Seafloor Observatories data analysis

    Science.gov (United States)

    Embriaco, Davide; De Caro, Mariagrazia; De Santis, Angelo; Etiope, Giuseppe; Frugoni, Francesco; Giovanetti, Gabriele; Lo Bue, Nadia; Marinaro, Giuditta; Monna, Stephen; Montuori, Caterina; Sgroi, Tiziana; Beranzoli, Laura; Favali, Paolo

    2016-04-01

    Continuous time-series in deep ocean waters are the basis for an original approach in ocean exploration. The observation of phenomena variability over time is key to understanding many Earth processes, among which: hydrothermal systems, active tectonics, and ecosystem life cycles. Geo-hazards at sea have often been studied with a single-parameter approach on a short time-scale, but it is now becoming clear that to understand these phenomena and, specifically, to identify precursors to very energetic events, such as mega-earthquakes, tsunamis and volcanic eruptions, continuous long-term multiparameter monitoring is strongly needed. In fact, given a signal of interest, by using several sensors recording simultaneously it is possible to identify the contribution of different sources to this signal, and to be less prone to false associations. In Europe, large cabled systems with marine sensors are being developed for near real-time and real-time long-term monitoring of ocean processes within the EMSO (European Multidisciplinary Seafloor and water column Observatory www.emso-eu.org) Research Infrastructure. Obtaining good quality long-term multiparameter data from sensors on-board seafloor observatories, which are the base of a multidisciplinary approach, is a challenging task. We describe the main steps we have taken to retrieve good quality multiparametric data acquired by GEOSTAR class seafloor observatories, both standalone and cabled, deployed at various sites offshore European coast during the last decade. Starting from this data we show the application of a multidisciplinary approach with some examples coming from experiments in EMSO sites.

  18. Changes in the manner of tectonic movements under the Earth's evolution

    Science.gov (United States)

    Kuzmin, M. I.; Yarmolyuk, V. V.

    2016-08-01

    Variations in the O, Sr, Nd, and Hf isotopic compositions in rocks of various ages, minerals, and mantle temperature in the geological history are considered. Two periods in the Earth's history are studied: the beginning of the formation of the planet until the turn of (3.4) 2.7-2.5 Ga and the tectonic movement period in the last 2 Ga, and also the transitional period within 2.7-2.0 Ga.

  19. Earth sciences within the project Ev-K2-CNR: Geodesy and geophysics; Le scienze della Terra nel progetto Ev-K2-CNR: Geodesia e geofisica

    Energy Technology Data Exchange (ETDEWEB)

    Poretti, Giorgio [Trieste, Univ. (Italy). Dipt. di Scienze Matematiche

    1997-05-01

    Earth Sciences started the Ev-K2-CNR project in 1987 with the comparison between the heights of Mt. Everest and K2. Several gravimetric campaigns followed in the most difficult areas of the Himalayas. In 1991 a GPS network was established in Nepal for the determination of the Earth crust movements in the area. In 1992 a precise measurement of mount Everest was performed with classical and satellite technologies. Mount K2 was remeasured in Summer 1996.

  20. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP - REPORT ON GEOPHYSICAL TECHNIQUES FOR MONITORING CO2 MOVEMENT DURING SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Gasperikova, Erika; Gasperikova, Erika; Hoversten, G. Michael

    2005-10-01

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of CO{sub 2}. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  1. Crisp clustering of airborne geophysical data from the Alto Ligonha pegmatite field, northeastern Mozambique, to predict zones of increased rare earth element potential

    Science.gov (United States)

    Eberle, Detlef G.; Daudi, Elias X. F.; Muiuane, Elônio A.; Nyabeze, Peter; Pontavida, Alfredo M.

    2012-01-01

    The National Geology Directorate of Mozambique (DNG) and Maputo-based Eduardo-Mondlane University (UEM) entered a joint venture with the South African Council for Geoscience (CGS) to conduct a case study over the meso-Proterozoic Alto Ligonha pegmatite field in the Zambézia Province of northeastern Mozambique to support the local exploration and mining sectors. Rare-metal minerals, i.e. tantalum and niobium, as well as rare-earth minerals have been mined in the Alto Ligonha pegmatite field since decades, but due to the civil war (1977-1992) production nearly ceased. The Government now strives to promote mining in the region as contribution to poverty alleviation. This study was undertaken to facilitate the extraction of geological information from the high resolution airborne magnetic and radiometric data sets recently acquired through a World Bank funded survey and mapping project. The aim was to generate a value-added map from the airborne geophysical data that is easier to read and use by the exploration and mining industries than mere airborne geophysical grid data or maps. As a first step towards clustering, thorium (Th) and potassium (K) concentrations were determined from the airborne geophysical data as well as apparent magnetic susceptibility and first vertical magnetic gradient data. These four datasets were projected onto a 100 m spaced regular grid to assemble 850,000 four-element (multivariate) sample vectors over the study area. Classification of the sample vectors using crisp clustering based upon the Euclidian distance between sample and class centre provided a (pseudo-) geology map or value-added map, respectively, displaying the spatial distribution of six different classes in the study area. To learn the quality of sample allocation, the degree of membership of each sample vector was determined using a-posterior discriminant analysis. Geophysical ground truth control was essential to allocate geology/geophysical attributes to the six classes

  2. "Green earth, women's power, human liberation": women in peasant movements in India.

    Science.gov (United States)

    Omvedt, G

    1992-01-01

    The experience of 2 peasant women's movements in India's state of Maharashtra--Stri Mukti Sangharsh and Shetkari Mahila Aghadi--highlights the potential power of women in resisting capitalist exploitation of peasant and forest-dwelling communities. The former organization is the women's branch of a movement that is resisting the ecological destruction and displacement of peasants and tribal people resulting from development projects such as dam construction; the latter addresses the demand for fair prices for agricultural produce and inequities created by a market economy. Both are mass-based, self-financed people's movements unconnected with any political party. Although women are under-represented in the formal decision-making bodies of the parent organizations, they are struggling to become a central force in the development of alternative technology and agriculture. In 1990, Stri Mukti Sangharsh activists devised a new slogan--green earth, women's power, human liberation--summarizing this process. Similarly, Shetkari Mahila Aghadi calls upon women to monopolize political power and runs all-women panels in district council elections. These campaigns have challenged women's exclusion from ownership of land in spite of laws granting property rights and placed the issues of women's health and nutrition on the political agenda. Moreover, peasant women have played a leading role in the current experimentation with energy-recycling, regenerative, low-input agricultural development. Together, these developments may provide Indian women with the power to recover their former centrality in agricultural decision-making and production.

  3. Studies on different geophysical and extra-terrestrial events within the Earth-ionosphere cavity in terms of ULF/ELF/VLF radio waves

    Science.gov (United States)

    Sanfui, Minu; Haldar, D. K.; Biswas, Debasish

    2016-10-01

    The space between the two spherical conducting shells, Earth surface and the lower boundary of the ionosphere, behaves as a spherical cavity in which some electromagnetic signals can propagate a long distance and is called Earth-ionosphere waveguide. Through this waveguide ultra low frequency (ULF), extremely low frequency (ELF) and very low frequency (VLF) signals can propagate efficiently with low attenuation. Resonances which occur for ELF waves due to round-the-world propagation interfering with 2n π phase difference are called Schumann resonances. Lightnings are the main sources of energy continuously producing these electromagnetic radiations from the troposphere. Some fixed frequency signals are also transmitted through the waveguide from different stations for navigation purposes. The intensity and phase of these signals at a particular position depend on the waveguide characteristics which are highly influenced by different natural events. Thus the signatures of different geophysical and extra-terrestrial events may be investigated by studying these signals through proper monitoring of the time series data using suitable techniques. In this article, we provide a review on ULF, ELF and VLF signals within the waveguide in terms of different geophysical and extra-terrestrial events like lightning, earthquakes, Leonid meteor shower, solar flares, solar eclipse, geomagnetic storms, and TLEs etc.

  4. Integration of geotechnical and geophysical techniques for the characterization of a small earth-filled canal dyke and the localization of water leakage

    Science.gov (United States)

    Bièvre, Grégory; Lacroix, Pascal; Oxarango, Laurent; Goutaland, David; Monnot, Guy; Fargier, Yannick

    2017-04-01

    This paper investigates the combined use of extensive geotechnical, hydrogeological and geophysical techniques to assess a small earth dyke with a permanent hydraulic head, namely a canal embankment. The experimental site was chosen because of known issues regarding internal erosion and piping phenomena. Two leakages were visually located following the emptying of the canal prior to remediation works. The results showed a good agreement between the geophysical imaging techniques (Electrical Resistivity Tomography, P- and SH-waves Tomography) and the geotechnical data to detect the depth to the bedrock and its lateral variations. It appeared that surface waves might not be fully adapted for dyke investigation because of the particular geometry of the studied dyke, non-respectful of the 1D assumption, and which induced depth and velocity discrepancies retrieved from Rayleigh and Love waves inversion. The use of these classical prospecting techniques however did not allow to directly locate the two leakages within the studied earth dyke. The analysis of ambient vibration time series with a modified beam-forming algorithm allowed to localize the most energetic water flow prior to remediation works. It was not possible to detect the leakage after remediation works, suggesting that they efficiently contributed to significantly reduce the water flow. The second leakage was not detected probably because of a non-turbulent water flow, generating few energetic vibrations.

  5. International Symposium on Airborne Geophysics

    Science.gov (United States)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  6. Gravity and perceptual stability during translational head movement on earth and in microgravity.

    Science.gov (United States)

    Jaekl, P; Zikovitz, D C; Jenkin, M R; Jenkin, H L; Zacher, J E; Harris, L R

    2005-01-01

    We measured the amount of visual movement judged consistent with translational head movement under normal and microgravity conditions. Subjects wore a virtual reality helmet in which the ratio of the movement of the world to the movement of the head (visual gain) was variable. Using the method of adjustment under normal gravity 10 subjects adjusted the visual gain until the visual world appeared stable during head movements that were either parallel or orthogonal to gravity. Using the method of constant stimuli under normal gravity, seven subjects moved their heads and judged whether the virtual world appeared to move "with" or "against" their movement for several visual gains. One subject repeated the constant stimuli judgements in microgravity during parabolic flight. The accuracy of judgements appeared unaffected by the direction or absence of gravity. Only the variability appeared affected by the absence of gravity. These results are discussed in relation to discomfort during head movements in microgravity.

  7. GEOPHYSICAL EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131193 Bing Pingping (Key Lab.of Geophysical Exploration of CNPC , China University of Petroleum , Beijing 102249 , China); Cao Siyuan Non-Linear AVO Inversion Based on Support Vector Machine (Chinese Journal of Geophysics , ISSN0001-5733 , CN11-2074/P , 55 (3), 2012 , p.1025-1032 , 4illus. , 26 tables , 2refs.)

  8. Core Angular Momentum and the IERS Sub-Centers Activity for Monitoring Global Geophysical Fluids. Part 1; Core Angular Momentum and Earth Rotation

    Science.gov (United States)

    Song, Xia-Dong; Chao, Benjamin (Technical Monitor)

    1999-01-01

    The part of the grant was to use recordings of seismic waves travelling through the earth's core (PKP waves) to study the inner core rotation and constraints on possible density anomalies in the fluid core. The shapes and relative arrival times of such waves associated with a common source were used to reduce the uncertainties in source location and excitation and the effect of unknown mantle structure. The major effort of the project is to assemble historical seismograms with long observing base lines. We have found original paper records of SSI earthquakes at COL between 1951 and 1966 in a warehouse of the U.S. Geological Survey office in Golden, Colorado, extending the previous measurements at COL by Song and Richards [1996] further back 15 years. Also in Alaska, the University of Alaska, Fairbanks Geophysical Institute (UAFGI) has been operating the Alaskan Seismic Network with over 100 stations since the late 1960s. Virtually complete archives of seismograms are still available at UAFGI. Unfortunately, most of the archives are in microchip form (develocorders), for which the use of waveforms is impossible. Paper seismograms (helicorders) are available for a limited number of stations, and digital recordings of analog signals started around 1989. Of the paper records obtained, stations at Gilmore Dome (GLM, very close to COL), Yukon (FYU), McKinley (MCK), and Sheep Creek Mountain (SCM) have the most complete continuous recordings.

  9. Modeling Checkpoint-Based Movement with the Earth Mover’s Distance

    NARCIS (Netherlands)

    Duckham, Matt; van Kreveld, Marc; Purves, Ross; Speckmann, Bettina; Tao, Yaguang; Verbeek, Kevin; Wood, Jo

    2016-01-01

    Movement data comes in various forms, including trajectory data and checkpoint data. While trajectories give detailed information about the movement of individual entities, checkpoint data in its simplest form does not give identities, just counts at checkpoints. However, checkpoint data is of incre

  10. Exploration Geophysics

    Science.gov (United States)

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  11. Agricultural Geophysics

    Science.gov (United States)

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  12. EXPLORATION GEOPHYSICS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072109 An Yong(Key Lab of Geophysics Exploration under CNPC,China University of Petroleum,Beijing 102249,China);Wei Lichun Most Homogeneous Dip-Scanning Method Using Edge Preserving Smoothing for Seismic Noise Attenuation(Applied Geophysics,ISSN1672-7975,CN11-5212/O,3(4),2006,p.210-217,17 illus.,3 refs.)Key words:seismic exploration,denoising

  13. Developments in geophysical exploration methods

    CERN Document Server

    1982-01-01

    One of the themes in current geophysical development is the bringing together of the results of observations made on the surface and those made in the subsurface. Several benefits result from this association. The detailed geological knowledge obtained in the subsurface can be extrapolated for short distances with more confidence when the geologi­ cal detail has been related to well-integrated subsurface and surface geophysical data. This is of value when assessing the characteristics of a partially developed petroleum reservoir. Interpretation of geophysical data is generally improved by the experience of seeing the surface and subsurface geophysical expression of a known geological configuration. On the theoretical side, the understanding of the geophysical processes themselves is furthered by the study of the phenomena in depth. As an example, the study of the progress of seismic wave trains downwards and upwards within the earth has proved most instructive. This set of original papers deals with some of ...

  14. ANNALS OF GEOPHYSICS: AD MAJORA

    Directory of Open Access Journals (Sweden)

    Fabio Florindo

    2014-03-01

    Full Text Available Annals of Geophysics is a bimonthly international journal, which publishes scientific papers in the field of geophysics sensu lato. It derives from Annali di Geofisica, which commenced publication in January 1948 as a quarterly periodical devoted to general geophysics, seismology, earth magnetism, and atmospheric studies. The journal was published regularly for a quarter of a century until 1982 when it merged with the French journal Annales de Géophysique to become Annales Geophysicae under the aegis of the European Geophysical Society. In 1981, this journal ceased publication of the section on solid earth geophysics, ending the legacy of Annali di Geofisica. In 1993, the Istituto Nazionale di Geofisica (ING, founder of the journal, decided to resume publication of its own journal under the same name, Annali di Geofisica. To ensure continuity, the first volume of the new series was assigned the volume number XXXVI (following the last issue published in 1982. In 2002, with volume XLV, the name of the journal was translated into English to become Annals of Geophysics and in consequence the journal impact factor counter was restarted. Starting in 2010, in order to improve its status and better serve the science community, Annals of Geophysics has instituted a number of editorial changes including full electronic open access, freely accessible online, the possibility to comment on and discuss papers online, and a board of editors representing Asia and the Americas as well as Europe. [...

  15. GEOPHYSICAL EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20161263Ao Ruide(State Key Laboratory of Marine Geology,Tongji University,Shanghai200092,China);Dong Liangguo Source-Independent Envelope-Based FWI to Build an Initial Model(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,58(6),2015,p.1998-2010,15illus.,18refs.,

  16. GEOPHYSICAL EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20151907 Bai Yang(Key Laboratory of Petroleum Resources Research,Institute of Geology a nd Geophysics,Chinese Academy of Sci-ences,Beijing100029,China);Song Haibin Structural Characteristics and Genesis of Pockmarks in the Northwest of the South China Sea Derived from Reflective Seismic and Multibeam

  17. From Geophysical Data to Geophysical Informatics

    Directory of Open Access Journals (Sweden)

    Fenglin Peng

    2015-05-01

    Full Text Available Geophysics is based on massive data work including data observation, data gathering/collecting, data management, and data analysis. Over the years, in China and other countries, geophysicists and geophysical institutions have accumulated a huge amount of geophysical data, built up many geophysical data banks and data centers, constructed/established many monitoring and transferring systems and infrastructures of geophysical data, and developed many advanced data analysis methods about data on land, ocean, and space. Based on this work, a new discipline of geophysics, geophysical informatics, has been gradually developing over the past 20 years. The recent advances of geophysical informatics in China are introduced and reviewed in this paper.

  18. Optimization and geophysical inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Berryman, J.G.; Borcea, L.; Dennis, J.; de Groot-Hedlin, C.; Gilbert, F.; Gill, P.; Heinkenschloss, M.; Johnson, L.; McEvilly, T.; More, J.; Newman, G.; Oldenburg, D.; Parker, P.; Porto, B.; Sen, M.; Torczon, V.; Vasco, D.; Woodward, N.B.

    2000-10-01

    A fundamental part of geophysics is to make inferences about the interior of the earth on the basis of data collected at or near the surface of the earth. In almost all cases these measured data are only indirectly related to the properties of the earth that are of interest, so an inverse problem must be solved in order to obtain estimates of the physical properties within the earth. In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended to examine the methods currently being used to solve geophysical inverse problems and to consider what new approaches should be explored in the future. The interdisciplinary area between inverse problems in geophysics and optimization methods in mathematics was specifically targeted as one where an interchange of ideas was likely to be fruitful. Thus about half of the participants were actively involved in solving geophysical inverse problems and about half were actively involved in research on general optimization methods. This report presents some of the topics that were explored at the workshop and the conclusions that were reached. In general, the objective of a geophysical inverse problem is to find an earth model, described by a set of physical parameters, that is consistent with the observational data. It is usually assumed that the forward problem, that of calculating simulated data for an earth model, is well enough understood so that reasonably accurate synthetic data can be generated for an arbitrary model. The inverse problem is then posed as an optimization problem, where the function to be optimized is variously called the objective function, misfit function, or fitness function. The objective function is typically some measure of the difference between observational data and synthetic data calculated for a trial model. However, because of incomplete and inaccurate data, the objective function often incorporates some additional form of regularization, such as a measure of smoothness

  19. GEOPHYSICAL EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132654Bi Xiaojia(Chengdu University of Technology,Chengdu 610059,China);Miao Fang Lithology Identification and Mapping by Hyperion Hyperspectral Remote Sensing(Computing Techniques for Geophysical and Geochemical Exploration,ISSN1001-1749,CN51-1242/P,34(5),2012,p.599-603,2illus.,14refs.)Key words:geologic mapping,hyperspectral remote sensing,Qinghai Province

  20. EXPLORATION GEOPHYSICS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072798 Chen Fengyun(China University of Mining and Technology,Xuzhou 221008,China);Hang Yuan Algorithm and Application of the Coherency/Variance Cube Technique(Geophysical and Geochemical Exploration,ISSN1000-8918,CN11-1906/P,30(3),2006,p.250-253,257,7 illus.,7 refs.)Key words:seismic exploration The coherency/variance cube technique has been developed in recent years as a new technique of seismic data interpretation.

  1. Reports on crustal movements and deformations. [bibliography

    Science.gov (United States)

    Cohen, S. C.; Peck, T.

    1983-01-01

    This Catalog of Reports on Crustal Movements and Deformation is a structured bibliography of scientific papers on the movements of the Earth crust. The catalog summarizes by various subjects papers containing data on the movement of the Earth's surface due to tectonic processes. In preparing the catalog we have included studies of tectonic plate motions, spreading and convergence, microplate rotation, regional crustal deformation strain accumulation and deformations associated with the earthquake cycle, and fault motion. We have also included several papers dealing with models of tectonic plate motion and with crustal stress. Papers which discuss tectonic and geologic history but which do not present rates of movements or deformations and papers which are primarily theoretical analyses have been excluded from the catalog. An index of authors cross-referenced to their publications also appears in the catalog. The catalog covers articles appearing in reviewed technical journals during the years 1970-1981. Although there are citations from about twenty journals most of the items come from the following publications: Journal of Geophysical Research, Tectonophysics, Geological Society of America Bulletin of the Seismological Society of America, Nature, Science, Geophysical Journal of the Royal Astronomical Society, Earth and Planetary Science Letters, and Geology.

  2. From Geophysical Data to Geophysical Informatics

    OpenAIRE

    Peng, Fenglin; Peng, Le; Zhang, Jian; Xue, Guoqiang; Ma, Maining; Zhang, Yunfei

    2015-01-01

    Geophysics is based on massive data work including data observation, data gathering/collecting, data management, and data analysis. Over the years, in China and other countries, geophysicists and geophysical institutions have accumulated a huge amount of geophysical data, built up many geophysical data banks and data centers, constructed/established many monitoring and transferring systems and infrastructures of geophysical data, and developed many advanced data analysis methods about data on...

  3. GEOPHYSICAL EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110471 Cai Shaokun(Mechatronics and Automation College,National University of Defense Technology,Changsha 410073,China);Wu Meiping A Comparison of Digital Lowpass FIR-Filters in Airborne Gravimetry(Geophysical and Geochemical Exploration,ISSN1000-8918,CN11-1906/P,34(1),2010,p.74-78,8 illus.,3 tables,14 refs.)Key words:aerogravity surveys,filtersThere is a lot of noise in the data observed by airborne gravimeter.Digital lowpass FIR-filter i

  4. A systematic review of the health impacts of mass Earth movements (landslides).

    Science.gov (United States)

    Kennedy, Iain T R; Petley, Dave N; Williams, Richard; Murray, Virginia

    2015-04-30

    Background. Mass ground movements (commonly referred to as 'landslides') are common natural hazards that can have significant economic, social and health impacts. They occur as single events, or as clusters, and are often part of 'disaster' chains, occurring secondary to, or acting as the precursor of other disaster events. Whilst there is a large body of literature on the engineering and geological aspects of landslides, the mortality and morbidity caused by landslides is less well documented. As far as we are aware, this is the first systematic review to examine the health impacts of landslides. Methods. The MEDLINE, EMBASE, CINAHL, SCOPUS databases and the Cochrane library were systematically searched to identify articles which considered the health impacts of landslides. Case studies, case series, primary research and systematic reviews were included. News reports, editorials and non-systematic reviews were excluded. Only articles in English were considered. The references of retrieved papers were searched to identify additional articles. Findings. 913 abstracts were reviewed and 143 full text articles selected for review. A total of 27 papers reporting research studies were included in the review (25 from initial search, 1 from review of references and 1 from personal correspondence). We found a limited number of studies on the physical health consequences of landslides. Only one study provided detail of the causes of mortality and morbidity in relation a landslide event. Landslides cause significant mental health impacts, in particular the prevalence of PTSD may be higher after landslides than other types of disaster, though these studies tend to be older with only 3 papers published in the last 5 years, with 2 being published 20 years ago, and diagnostic criteria have changed since they were produced. Discussion. We were disappointed at the small number of relevant studies, and the generally poor documentation of the health impacts of landslides. Mental

  5. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  6. Strategies for improving the resolution of electrical and electromagnetic geophysical measurements for three-dimensional inverse modeling of CO2 movement

    Science.gov (United States)

    Commer, M.; Kowalsky, M. B.; Dafflon, B.; Wu, Y.; Hubbard, S. S.

    2013-12-01

    Geologic carbon sequestration is being evaluated as a means to mitigate the effects of greenhouse gas emissions. Efforts are underway to identify adequate reservoirs and to evaluate the behavior of injected CO2 over time; time-lapse geophysical methods are considered effective tools for these purposes. Pilot studies have shown that the invasion of CO2 into a background pore fluid can alter the electrical resistivity, with increases from CO2 in the super-critical or gaseous phase, and decreases from CO2 dissolved in groundwater (especially when calcite dissolution is occurring). Because of their sensitivity to resistivity changes, electrical and electromagnetic (EM) methods have been used in such studies for indirectly assessing CO2 saturation changes. While the electrical resistance tomography (ERT) method is a well-established technique for both crosswell and surface applications, its usefulness is limited by the relatively low-resolution information it provides. Controlled-source EM methods, including both frequency-domain and time-domain (transient EM) methods, can offer improved resolution. We report on three studies that aim to maximize the information content of electrical and electromagnetic measurements in inverse modeling applications that target the monitoring of resistivity changes due to CO2 migration and/or leakage. The first study considers a three-dimensional crosswell data set collected at an analogue site used for investigating CO2 distribution and geochemical reactivity within a shallow formation. We invert both resistance and phase data using a gradient-weighting method for descent-based inversion algorithms. This method essentially steers the search direction in the model space using low-cost non-linear conjugate gradient methods towards the more computationally expensive Gauss-Newton direction. The second study involves ERT data that were collected at the SECARB Cranfield site near Natchez, Mississippi, at depths exceeding 3000 m. We employ a

  7. Petroleum geophysics

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    The book is compiled from a series of e-learning modules. GeoCLASS is an e-learning system with contents from petroleum geophysics. It is the result of collaboration between professors at the University of Bergen and the University of Oslo, and its material has been used as curriculum in master program courses at these universities for several years. Using a unique feature to GeoCLASS, these advanced scientific topics are presented on multiple levels. The introductions open the door to this vast pool of knowledge, accessible even for high school students. Enter the door, and you enter the modules. Various levels of content are presented, and the more advanced levels can be shielded from the regular user, and only accessed by those with particular interest. The chapters in the book are: Elastic waves; Survey planning; Seismic acquisition; Basic seismic signal theory and processing; Seismic imaging; Seismic attributes; Rock physics; Reservoir monitoring. (AG)

  8. [Comments on “Solid earth geophysics” and “More on South American geophysics”] More on S.A. geophysics

    Science.gov (United States)

    Verma, Surendra P.

    I would like to add to the analyses of J. Urrutia Fucugauchi (Eos, 63, June 8, 1982, p. 529) and C. Lomnitz (Eos, 63, September 21, 1982, p. 786) on South American geophysics. I believe that the lack of a proper infrastructure and of funds on a medium- to long-term basis and the existence of a highly bureaucratic setup constitute further causes of the slow progress of geophysics in Latin America. Although it is true, as C. Lomnitz correctly points out, that in Mexico there has been an increase in funding over the past decade, it has not been applied on carefully planned long-term projects. Instead, the individual projects have received ‘short quantum’ of money input. Thus, all of a sudden, there is a ‘big’ investment for purchasing costly equipment, but no adequate follow-up efforts are made to be able to use it efficiently. Further, the research projects are bound to fail because the excessive bureaucratic set-up makes it difficult to obtain parts or accessories in a reasonable time. The ‘outside’ companies are very eager to sell costly equipment to Latin America, but they do very little to provide adequate technical support to see that such equipment is properly calibrated and kept operational for any reasonable time. In most cases their job is over when the equipment is sold.

  9. Serious games for Geophysics

    Science.gov (United States)

    Lombardo, Valerio; Rubbia, Giuliana

    2015-04-01

    Childhood stage is indispensable in the education of human beings and especially critical to arise scientific interest in children. We discuss the participatory design of a didactic videogame, i.e. a "serious" game to teach geophysics and Earth sciences to high and low-school students. Geophysics is the application of the laws and techniques of physics to uncover knowledge about the earth's dynamic processes and subsurface structure. It explores phenomena such as earthquakes, volcanoes, tsunamis to improve our understanding of the earth's physical processes and our ability to predict reoccurrences. Effective mitigation of risks from catastrophic geologic hazards requires knowledge and understanding of local geology and geologic processes. Scientific outreach can be defined as discourse activity, whose main objective is to communicate some knowledge previously produced in scientific contexts to a non-expert massive audience. One of the difficulties science educators need to overcome is to explain specific concepts from a given discipline in a language simple and understandable for their audience. Digital games today play a large role in young people's lives. Games are directly connected to the life of today's adolescents. Therefore, digital games should be included and broached as a subject in the classroom. The ardor and enthusiasm that digital games evoke in teenagers has indeed brought many researchers, school leaders and teachers to the question "how video games" can be used to engage young people and support their learning inside the classroom. Additionally, studies have shown that digital games can enhance various skills such as the ability to concentrate, stamina, tactical aptness, anticipatory thinking, orientation in virtual spaces, and deductive reasoning. Thus, videogames become an effective didactic mechanism and should have a place in the classroom. The project aims to explore the potentials of entertainment technologies in educational processes

  10. The Teach for America RockCorps, Year 2: Using Authentic Research Experiences in Geophysics for STEM Teachers to Inspire Earth Science-Themed Lessons in High School Classrooms

    Science.gov (United States)

    Parsons, B.; Kassimu, R.; Borjas, C. N.; Griffith, W. A.

    2016-12-01

    Brooke Parsons1, Rahmatu Kassimu2, Christopher Borjas3, and W. Ashley Griffith31Uplift Hampton Preparatory High School, Dallas, TX, 75232 2H. Grady Spruce High School, Dallas, TX, 75217 3Department of Earth and Environmental Sciences, University of Texas Arlington, Arlington, TX, 76019 As Earth Science courses appear in fewer high school curricula, we seek to find creative ways to integrate Earth Science themes as contextual examples into other K-12 STEM courses in order to develop (A) Earth Science literacy, and (B) a pipeline of young talent into our field. This presentation details the efforts of the 2nd year Teach for America (TFA) Rock Corps, a five year NSF-sponsored partnership between TFA and the University of Texas at Arlington designed to provide STEM teachers with genuine research opportunities using components that can be extrapolated to develop dynamic Geophysics-themed lesson plans and materials for their classrooms. Two teachers were selected from the Dallas-Fort Worth region of TFA to participate in original research modeling off-fault damage that occurs during earthquakes in a lab setting using a Split-Hopkinson-Pressure Bar (SHPB). In particular, we simulate a coseismic transient stress perturbation in a fault damage zone by combining traditional SHPB with a traveling harmonic oscillator: Two striker bars attached by an elastic spring are launched with a gas gun allowing us to create the double stress pulse expected during an earthquake rupture. This research affords teachers inspiration to implement Geophysics-themed lesson plans for their courses, Physics/Pre-AP Physics and Chemistry. The physics course will adopt principles of seismic wave propagation to teach concepts of impulse, momentum, conservation of energy, harmonic motion, wave velocity, wave propagation, and real world applications of waves. The chemistry course will implement geochemistry themed techniques into applying the scientific method, density, isotopic composition, p

  11. Studies in geophysics: Active tectonics

    Science.gov (United States)

    1986-01-01

    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.

  12. Geophysics of Mars

    Science.gov (United States)

    Wells, R. A.

    1979-01-01

    A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.

  13. GEOPHYSICAL EXPLORATION

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091853 An Jinzhen(School of Earth and Space Sciences,Peking University,Beijing 100871,China);Zhou Pinggen Experiments on Exploring and Monitoring Landslip-Mass Using Geoelectric Resistivity Observations(Acta Seismologica Sinica,ISSN0253-3782,CN11-2021/P,30(3),2008,p.254-261,6 illus.,1 table,19 refs.)Key words:resistivity methods,landslidesIn the experiments,a high-density resistivity method is used to explore the electric structure of landslip mass,and a resistivity-changing anisotropy method is used to monitor the orientation and speed of main fracture extending of landslip mass.The results are as follows:1)the exploring experiments have verified a part of creep deformation borderline,the depth and thickness of groundwater horizon,and the property of super strata in the landslip mass investigated formerly,which have proved that the landslip belts contain rich groundwater

  14. Sustainable urban development and geophysics

    Science.gov (United States)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be

  15. Handbook of Agricultural Geophysics

    Science.gov (United States)

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  16. Developing a curricular module for introductory geophysics or structural geology courses to quantify crustal strain using EarthScope PBO GPS velocities

    Science.gov (United States)

    Cronin, V. S.; Resor, P. G.; Hammond, W. C.; Kreemer, C. W.; Olds, S. E.; Pratt-Sitaula, B.; West, N. W.

    2012-12-01

    A group from several UNAVCO-member institutions that are engaged in EarthScope research is developing resources that introduce geoscience majors to one important use of GPS geodesy: measuring the current infinitesimal strain rate of the crust. These resources will be tested during the 2012-13 academic year, and will be accessible from the Science Education Resource Center (SERC), UNAVCO and EarthScope websites. Location and velocity data (and their associated uncertainties) from the EarthScope Plate Boundary Observatory (PBO) website are used to solve a perfectly constrained problem involving the infinitesimal strain of a triangle defined by three PBO GPS sites. Simple physical models made of inexpensive materials are used to build student intuition about homogeneous strain of a continuum. Introductory exercises with vector-field maps are used to help students understand reference frames and visualize how GPS velocity vectors can indicate crustal strain. The meanings of "extension" and "stretch" are developed through illustrations showing the simultaneous deformation of a triangle with a circle inscribed within it. A strain primer, intended to supplement textbook material, is provided for students to develop needed background. Supplemental material about vectors, vector dot products, matrix mathematics, determinants, and computation of the eigensystem of a symmetric square matrix help support students who have gaps in their mathematical background. Students compute site velocities and uncertainties from PBO data, insert data into one of three strain calculators (open-source code in MatLab, Mathematica, and an Excel spreadsheet), and learn to interpret the output. A complete algorithm and worked example are also provided so that capable students can develop their own code to solve the problem. Strain calculator output includes the mean translation velocity vector, the rotational velocity, the relative magnitudes and directions of the horizontal infinitesimal strain

  17. Near-surface applied geophysics

    CERN Document Server

    Everett, Mark E.

    2013-01-01

    Just a few meters below the Earth's surface lie features of great importance, from geological faults which can produce devastating earthquakes, to lost archaeological treasures! This refreshing, up-to-date book explores the foundations of interpretation theory and the latest developments in near-surface techniques, used to complement traditional geophysical methods for deep-exploration targets. Clear but rigorous, the book explains theory and practice in simple physical terms, supported by intermediate-level mathematics. Techniques covered include magnetics, resistivity, seismic reflection and refraction, surface waves, induced polarization, self-potential, electromagnetic induction, ground-penetrating radar, magnetic resonance, interferometry, seismoelectric and more. Sections on data analysis and inverse theory are provided and chapters are illustrated by case studies, giving students and professionals the tools to plan, conduct and analyze a near-surface geophysical survey. This is an important textbook fo...

  18. Artificial intelligence and dynamic systems for geophysical applications

    CERN Document Server

    Gvishiani, Alexei

    2002-01-01

    The book presents new clustering schemes, dynamical systems and pattern recognition algorithms in geophysical, geodynamical and natural hazard applications. The original mathematical technique is based on both classical and fuzzy sets models. Geophysical and natural hazard applications are mostly original. However, the artificial intelligence technique described in the book can be applied far beyond the limits of Earth science applications. The book is intended for research scientists, tutors, graduate students, scientists in geophysics and engineers

  19. Geophysical interpretation of U, Th, and rare earth element mineralization of the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeast Alaska

    Science.gov (United States)

    McCafferty, Anne E.; Stoeser, Douglas B.; Van Gosen, Bradley S.

    2014-01-01

    A prospectivity map for rare earth element (REE) mineralization at the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeastern Alaska, was calculated from high-resolution airborne gamma-ray data. The map displays areas with similar radioelement concentrations as those over the Dotson REE-vein-dike system, which is characterized by moderately high %K, eU, and eTh (%K, percent potassium; eU, equivalent parts per million uranium; and eTh, equivalent parts per million thorium). Gamma-ray concentrations of rocks that share a similar range as those over the Dotson zone are inferred to locate high concentrations of REE-bearing minerals. An approximately 1300-m-long prospective tract corresponds to shallowly exposed locations of the Dotson zone. Prospective areas of REE mineralization also occur in continuous swaths along the outer edge of the pluton, over known but undeveloped REE occurrences, and within discrete regions in the older Paleozoic country rocks. Detailed mineralogical examinations of samples from the Dotson zone provide a means to understand the possible causes of the airborne Th and U anomalies and their relation to REE minerals. Thorium is sited primarily in thorite. Uranium also occurs in thorite and in a complex suite of ±Ti±Nb±Y oxide minerals, which include fergusonite, polycrase, and aeschynite. These oxides, along with Y-silicates, are the chief heavy REE (HREE)-bearing minerals. Hence, the eU anomalies, in particular, may indicate other occurrences of similar HREE-enrichment. Uranium and Th chemistry along the Dotson zone showed elevated U and total REEs east of the Camp Creek fault, which suggested the potential for increased HREEs based on their association with U-oxide minerals. A uranium prospectivity map, based on signatures present over the Ross-Adams mine area, was characterized by extremely high radioelement values. Known uranium deposits were identified in the U-prospectivity map, but the largest tract occurs

  20. Geophysical modelling of 3D electromagnetic diffusion with multigrid

    NARCIS (Netherlands)

    Mulder, W.A.

    2008-01-01

    The performance of a multigrid solver for time-harmonic electromagnetic problems in geophysical settings was investigated. With the low frequencies used in geophysical surveys for deeper targets, the light-speed waves in the earth can be neglected. Diffusion of induced currents is the dominant physi

  1. Lectures on Geophysical Fluid Dynamics

    Science.gov (United States)

    Samelson, Roger M.

    The fluid kaleidoscope of the Earth's ocean and atmosphere churns and sparkles with jets, gyres, eddies, waves, streams, and cyclones. These vast circulations, essential elements of the physical environment that support human life, are given a special character by the Earth's rotation and by their confinement to a shallow surficial layer, thin relative to the solid Earth in roughly the same proportion as an apple skin is to an apple. Geophysical fluid dynamics exploits this special character to develop a unified theoretical approach to the physics of the ocean and atmosphere.With Lectures on Geophysical Fluid Dynamics, Rick Salmon has added an insightful and provocative volume to the handful of authoritative texts currently available on the subject. The book is intended for first-year graduate students, but advanced students and researchers also will find it useful. It is divided into seven chapters, the first four of these adapted from course lectures. The book is well written and presents a fresh and stimulating perspective that complements existing texts. It would serve equally well either as the main text for a core graduate curriculum or as a supplementary resource for students and teachers seeking new approaches to both classical and contemporary problems. A lively set of footnotes contains many references to very recent work. The printing is attractive, the binding is of high quality, and typographical errors are few.

  2. EDITORIAL: The interface between geophysics and engineering

    Science.gov (United States)

    2004-03-01

    Journal of Geophysics and Engineering (JGE) aims to publicize and promote research and developments in geophysics and in related areas of engineering. As stated in the journal scope, JGE is positioned to bridge the gap between earth physics and geo-engineering, where it reflects a growing trend in both industry and academia. JGE covers those aspects of engineering that bear closely on geophysics or on the targets and problems that geophysics addresses. Typically this will be engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design. There is a trend, visible throughout academia, for rapid expansion in cross-disciplinary, multi-disciplinary and inter-disciplinary working. Many of the most important and exciting problems and advances are being made at the boundaries between traditional subject areas and, increasingly, techniques from one discipline are finding applications in others. There is a corresponding increasing requirement for researchers to be aware of developments in adjacent areas and for papers published in one area to be readily accessible, both in terms of location and language, to those in others. One such area that is expanding rapidly is that at the interface between geophysics and engineering. There are three principal developments. Geophysics, and especially applied geophysics, is increasingly constrained by the limits of technology, particularly computing technology. Consequently, major advances in geophysics are often predicated upon major developments in engineering and many research geophysicists are working in multi-disciplinary teams with engineers. Engineering problems relevant to the sub-surface are increasingly looking to advances in geophysics to provide part of the solution. Engineering systems, for example, for tunnel boring or petroleum reservoir management, are using high-resolution geophysical

  3. Mass Transport in Global Geophysical Fluids

    Science.gov (United States)

    Chao, B. F.

    1999-01-01

    Mass transports occurring in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, tides, hydrological water redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. With only a few exceptions on the Earth surface, the temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have the capability of monitoring certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. These techniques include the very-long-baseline interferometry, satellite laser ranging and Doppler tracking, and the Global Positioning System, all entail global observational networks. While considerable advances have been made in observing and understanding of the dynamics of Earth's rotation, only the lowest-degree gravitational variations have been observed and limited knowledge of geocenter motion obtained. New space missions, projects and initiatives promise to further improve the measurements and hence our knowledge about the global mass transports. The latter contributes to our understanding and modeling capability of the geophysical processes that produce and regulate the mass transports, as well as the solid Earth's response to such changes in constraining the modeling of Earth's mechanical properties.

  4. Advances in geophysics

    CERN Document Server

    Sato, Haruo

    2013-01-01

    The critically acclaimed serialized review journal for over 50 years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 54th volume, it contains much material still relevant today--truly an essential publication for researchers in all fields of geophysics.Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field

  5. Fiber optic geophysical sensors

    Science.gov (United States)

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  6. Advances in geophysics

    CERN Document Server

    Sato, Haruo

    2012-01-01

    The critically acclaimed serialized review journal for over 50 years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 52nd volume, it contains much material still relevant today--truly an essential publication for researchers in all fields of geophysics.Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field

  7. Waterberg coalfield airborne geophysics

    CSIR Research Space (South Africa)

    Fourie, S

    2009-07-01

    Full Text Available Airborne Geophysics Project Number: 1.5.5 Sub Committee: Geology and Geophysics Presenter: Dr. Stoffel Fourie Co-Workers: Dr. George Henry & Me. Leonie Marè Collaborators: Coaltech & CSIR Project Objectives Major Objectives: circle5 Initiate Semi...-Regional Exploration of the Waterberg Coalfield to the benefit of the Industry. circle5 Generate a good quality Airborne Geophysical Dataset. circle5 Generate a basic lineament and surface geology interpretation of the Ellisras Basin. circle5 Generate a basic...

  8. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long qaodmasdkwaspemas5ajkqlsmdqpakldnzsdfls 22 ft wide qaodmasdkwaspemas4ajkqlsmdqpakldnzsdfls 7 ft deep concrete...

  9. Non-Seismic Geophysical Approaches to Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hoversten, G.M.; Gasperikova, Erika

    2004-09-01

    This chapter considers the application of a number of different geophysical techniques for monitoring geologic sequestration of CO2. The relative merits of the seismic, gravity, electromagnetic (EM) and streaming potential (SP) geophysical techniques as monitoring tools are examined. An example of tilt measurements illustrates another potential monitoring technique, although it has not been studied to the extent of other techniques in this chapter. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO2 enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. The second scenario is of a pilot DOE CO2 sequestration experiment scheduled for summer 2004 in the Frio Brine Formation in South Texas, USA. Numerical flow simulations of the CO2 injection process for each case were converted to geophysical models using petrophysical models developed from well log data. These coupled flow simulation geophysical models allow comparrison of the performance of monitoring techniques over time on realistic 3D models by generating simulated responses at different times during the CO2 injection process. These time-lapse measurements are used to produce time-lapse changes in geophysical measurements that can be related to the movement of CO2 within the injection interval.

  10. Multiscale geophysical imaging of the critical zone

    Science.gov (United States)

    Parsekian, A. D.; Singha, K.; Minsley, B. J.; Holbrook, W. S.; Slater, L.

    2015-03-01

    Details of Earth's shallow subsurface—a key component of the critical zone (CZ)—are largely obscured because making direct observations with sufficient density to capture natural characteristic spatial variability in physical properties is difficult. Yet this inaccessible region of the CZ is fundamental to processes that support ecosystems, society, and the environment. Geophysical methods provide a means for remotely examining CZ form and function over length scales that span centimeters to kilometers. Here we present a review highlighting the application of geophysical methods to CZ science research questions. In particular, we consider the application of geophysical methods to map the geometry of structural features such as regolith thickness, lithological boundaries, permafrost extent, snow thickness, or shallow root zones. Combined with knowledge of structure, we discuss how geophysical observations are used to understand CZ processes. Fluxes between snow, surface water, and groundwater affect weathering, groundwater resources, and chemical and nutrient exports to rivers. The exchange of gas between soil and the atmosphere have been studied using geophysical methods in wetland areas. Indirect geophysical methods are a natural and necessary complement to direct observations obtained by drilling or field mapping. Direct measurements should be used to calibrate geophysical estimates, which can then be used to extrapolate interpretations over larger areas or to monitor changing processes over time. Advances in geophysical instrumentation and computational approaches for integrating different types of data have great potential to fill gaps in our understanding of the shallow subsurface portion of the CZ and should be integrated where possible in future CZ research.

  11. Geophysics in INSPIRE

    Science.gov (United States)

    Sőrés, László

    2013-04-01

    INSPIRE is a European directive to harmonize spatial data in Europe. Its' aim is to establish a transparent, multidisciplinary network of environmental information by using international standards and OGC web services. Spatial data themes defined in the annex of the directive cover 34 domains that are closely bundled to environment and spatial information. According to the INSPIRE roadmap all data providers must setup discovery, viewing and download services and restructure data stores to provide spatial data as defined by the underlying specifications by 2014 December 1. More than 3000 institutions are going to be involved in the progress. During the data specification process geophysics as an inevitable source of geo information was introduced to Annex II Geology. Within the Geology theme Geophysics is divided into core and extended model. The core model contains specifications for legally binding data provisioning and is going to be part of the Implementation Rules of the INSPIRE directives. To minimize the work load of obligatory data transformations the scope of the core model is very limited and simple. It covers the most essential geophysical feature types that are relevant in economic and environmental context. To fully support the use cases identified by the stake holders the extended model was developed. It contains a wide range of spatial object types for geophysical measurements, processed and interpreted results, and wrapper classes to help data providers in using the Observation and Measurements (O&M) standard for geophysical data exchange. Instead of introducing the traditional concept of "geophysical methods" at a high structural level the data model classifies measurements and geophysical models based on their spatial characteristics. Measurements are classified as geophysical station (point), geophysical profile (curve) and geophysical swath (surface). Generic classes for processing results and interpretation models are curve model (1D), surface

  12. The Physics of Heavy Oils: Implications for Recovery and Geophysical Monitoring

    Science.gov (United States)

    Schmitt, Douglas

    2007-03-01

    Our capacity to find and produce conventional light petroleum oils are unable to keep pace with the growth in the growing global demand for energy. With the breakpoint between petroleum production and consumption imminent, a good deal of recent efforts have focused on developing the `heavy' hydrocarbon reserves. Such resources include the extensive heavy oil deposits of Venezuela, the bitumen resources of Canada, and even the solid kerogens (oil shale) of the United States. Capital investments, in particular, have been large in Canada's oil sands due in part to the extensive nature of the resource and already in excess of 30% of Canada's production comes from heavier hydrocarbon deposits. The larger input costs associated with such projects, however, requires that the production be monitored more fully; and this necessitates that both the oils and the porous media which hold them be understood. Geophysical `time-lapse' monitoring seeks to better constrain the areal distribution and movements of fluids in the subsurface by examining the changes in a geophysical response such as seismic reflectivity, micro-gravity variations, or electrical conductivity that arise during production. For example, a changed geophysical seismic character directly depends on relies on variations in the longitudinal and transverse wave speeds and attenuation and mass densities of the materials in the earth. These are controlled by a number of extrinsic conditions such as temperature, fluid pressure, confining stress, and fluid phase and saturation state. Understanding the geophysical signature over a given reservoir requires that the behavior of the porous rock physical properties be well understood and a variety of measurements are being made in laboratories. In current practice, the interpretation of the geophysical field responses is assisted by combined modeling of fluid flow and seismic wave fields. The least understood link in this process, however, is the lack of knowledge on rock

  13. Use of the radon gas as a natural geophysical tracer; Utilizacion del gas radon como un trazador geofisico natural

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Balcazar, M.; Flores R, J.H.; Lopez M, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    In this work it is denoted the applications of the radon gas like a natural geophysical radiotracer in the different branches of the Earth Sciences (Geology, geophysics and geochemistry). It importance resides in its employment like one additional tool to register the possible occurrence of seismic events by means of radon anomalies that are presented in land movements (volcanic eruptions and presence of geothermal areas), as well as its potential in environmental works whose purpose is the evaluation of the feather of contamination in the underground water and the porous media for spills of hydrocarbons. The measurement techniques to determine the concentration of radon was carried out by means of Solid Detectors of Nuclear tracks, as well as by Liquid scintillation, Clipperton, Honeywell, AlphaGUARD. The towns where these techniques its were applied were: Mexico City, Estado de Mexico (Toluca, ININ), Jalisco (The Spring), Guerrero coast. (Author)

  14. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  15. Sensitivity analysis and application in exploration geophysics

    Science.gov (United States)

    Tang, R.

    2013-12-01

    In exploration geophysics, the usual way of dealing with geophysical data is to form an Earth model describing underground structure in the area of investigation. The resolved model, however, is based on the inversion of survey data which is unavoidable contaminated by various noises and is sampled in a limited number of observation sites. Furthermore, due to the inherent non-unique weakness of inverse geophysical problem, the result is ambiguous. And it is not clear that which part of model features is well-resolved by the data. Therefore the interpretation of the result is intractable. We applied a sensitivity analysis to address this problem in magnetotelluric(MT). The sensitivity, also named Jacobian matrix or the sensitivity matrix, is comprised of the partial derivatives of the data with respect to the model parameters. In practical inversion, the matrix can be calculated by direct modeling of the theoretical response for the given model perturbation, or by the application of perturbation approach and reciprocity theory. We now acquired visualized sensitivity plot by calculating the sensitivity matrix and the solution is therefore under investigation that the less-resolved part is indicated and should not be considered in interpretation, while the well-resolved parameters can relatively be convincing. The sensitivity analysis is hereby a necessary and helpful tool for increasing the reliability of inverse models. Another main problem of exploration geophysics is about the design strategies of joint geophysical survey, i.e. gravity, magnetic & electromagnetic method. Since geophysical methods are based on the linear or nonlinear relationship between observed data and subsurface parameters, an appropriate design scheme which provides maximum information content within a restricted budget is quite difficult. Here we firstly studied sensitivity of different geophysical methods by mapping the spatial distribution of different survey sensitivity with respect to the

  16. Geophysical and atmospheric evolution of habitable planets.

    Science.gov (United States)

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  17. Open Access to Geophysical Data

    Science.gov (United States)

    Sergeyeva, Nataliya A.; Zabarinskaya, Ludmila P.

    2017-04-01

    Russian World Data Centers for Solar-Terrestrial Physics & Solid Earth Physics hosted by the Geophysical Center of the Russian Academy of Sciences are the Regular Members of the ICSU-World Data System. Guided by the principles of the WDS Constitution and WDS Data Sharing Principles, the WDCs provide full and open access to data, long-term data stewardship, compliance with agreed-upon data standards and conventions, and mechanisms to facilitate and improve access to data. Historical and current geophysical data on different media, in the form of digital data sets, analog records, collections of maps, descriptions are stored and collected in the Centers. The WDCs regularly fill up repositories and database with new data, support them up to date. Now the WDCs focus on four new projects, aimed at increase of data available in network by retrospective data collection and digital preservation of data; creation of a modern system of registration and publication of data with digital object identifier (DOI) assignment, and promotion of data citation culture; creation of databases instead of file system for more convenient access to data; participation in the WDS Metadata Catalogue and Data Portal by creating of metadata for information resources of WDCs.

  18. GIPP: Geophysical Instrument Pool Potsdam

    Directory of Open Access Journals (Sweden)

    Christian Haberland

    2016-04-01

    Full Text Available The Geophysical Instrument Pool Potsdam (GIPP consists of field instruments, sensors and equipment for temporary seismological studies (both controlled source and earthquake seismology as well as for magnetotelluric (electromagnetic experiments. These instruments are mainly mobile digital recorders, broadband seis­mometers and short period sensors, and they are used to reveal the subsurface structure and to investigate earth­quakes. Sensors for magnetotellurics include induction coil and fluxgate magnetometers and non-polarizing silver / silver-chloride electrodes. It is operated by the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. The instru­ment facility is open to all academic applicants, both national and international. Instrument applications are evalu­ated and ranked by an external steering board. Currently, for seismological applications >850 geophysical recorders, >170 broadband seis­mo­meters and >1300 short period geophones are available (among others. Available for magnetotelluric experiments are > 50 real-time data-loggers, >150 induction coils, and >500 electrodes. User guidelines and data policy are in force and data archives are provided (standard exchange formats.

  19. Fractals in geology and geophysics

    Science.gov (United States)

    Turcotte, Donald L.

    1989-01-01

    The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.

  20. Strainmeters and tiltmeters in geophysics

    Science.gov (United States)

    Goulty, N. R.

    1976-01-01

    Several types of sensitive strainmeters and tiltmeters have been developed, and it is now becoming clear which geophysical applications are most suitable for these instruments. In general, strainmeters and tiltmeters are used for observing ground deformation at periods of minutes to days. Small-scale lateral inhomogeneities at the instrument sites distort signals by a few percent, although the effects of large structures can be calculated. In earth tide work these lateral inhomogeneities and unknown ocean loading signals prevent accurate values of the regional tide from being obtained. This limits tidal investigations to looking for temporal variations, possibly associated with pre-earthquake dilatancy, and spatial variations caused by gross elasticity contrasts in the local geological structure. Strainmeters and tiltmeters are well suited for observing long-period seismic waves, seismic slip events on faults and volcano tumescence, where small site-induced distortions in the measured signals are seldom important.

  1. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  2. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  3. Geophysical Methods: an Overview

    Science.gov (United States)

    Becker, A.; Goldstein, N. E.; Lee, K. H.; Majer, E. L.; Morrison, H. F.; Myer, L.

    1992-01-01

    Geophysics is expected to have a major role in lunar resource assessment when manned systems return to the Moon. Geophysical measurements made from a lunar rover will contribute to a number of key studies: estimating regolith thickness, detection of possible large-diameter lava tubes within maria basalts, detection of possible subsurface ice in polar regions, detection of conductive minerals that formed directly from a melt (orthomagmatic sulfides of Cu, Ni, Co), and mapping lunar geology beneath the regolith. The techniques that can be used are dictated both by objectives and by our abilities to adapt current technology to lunar conditions. Instrument size, weight, power requirements, and freedom from orientation errors are factors we have considered. Among the geophysical methods we believe to be appropriate for a lunar resource assessment are magnetics, including gradiometry, time-domain magnetic induction, ground-penetrating radar, seismic reflection, and gravimetry.

  4. Asteroid Surface Geophysics

    CERN Document Server

    Murdoch, Naomi; Schwartz, Stephen R; Miyamoto, Hideaki

    2015-01-01

    The regolith-covered surfaces of asteroids preserve records of geophysical processes that have occurred both at their surfaces and sometimes also in their interiors. As a result of the unique micro-gravity environment that these bodies posses, a complex and varied geophysics has given birth to fascinating features that we are just now beginning to understand. The processes that formed such features were first hypothesised through detailed spacecraft observations and have been further studied using theoretical, numerical and experimental methods that often combine several scientific disciplines. These multiple approaches are now merging towards a further understanding of the geophysical states of the surfaces of asteroids. In this chapter we provide a concise summary of what the scientific community has learned so far about the surfaces of these small planetary bodies and the processes that have shaped them. We also discuss the state of the art in terms of experimental techniques and numerical simulations that...

  5. SICHUAN GEOPHYSICAL COMPANY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Sichuan Geophysical Company (abbreviated as SCGC below), originally named Sichuan Geophysical Company of CNPC Sichuan Petroleum, was founded in 1956 and is a subsidiary of CNPC Chuanqing Drilling Engineering Company Limited. With more than 50 years' development, SCGC now owns almost 3800 employees and has become a big oil & gas seismic exploration engineering service enterprise with the characteristic mountain seismic exploration techniques, and its annual business turnover reaches nearly 2 billion RMB. It can provide the integrated seismic exploration engineering service including seismic data acquisition, processing, interpretation, and geological comprehensive evaluation in various complex regions for clients at home and abroad.

  6. Fundamentals of Geophysical Fluid Dynamics

    Science.gov (United States)

    McWilliams, James C.

    2006-07-01

    Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org

  7. Arizona Geophysical Data Base

    OpenAIRE

    McLeod, Ronald G.

    1981-01-01

    A series of digital data sets were compiled for input into a geophysical data base for a one degree quadrangle in Arizona. Using a Landsat digital mosaic as a base, information on topography, geology, gravity as well as Seasat radar imagery were registered. Example overlays and tabulations are performed.

  8. Geophysical limits to global wind power

    Science.gov (United States)

    Marvel, Kate; Kravitz, Ben; Caldeira, Ken

    2013-02-01

    There is enough power in Earth's winds to be a primary source of near-zero-emission electric power as the global economy continues to grow through the twenty-first century. Historically, wind turbines are placed on Earth's surface, but high-altitude winds are usually steadier and faster than near-surface winds, resulting in higher average power densities. Here, we use a climate model to estimate the amount of power that can be extracted from both surface and high-altitude winds, considering only geophysical limits. We find wind turbines placed on Earth's surface could extract kinetic energy at a rate of at least 400TW, whereas high-altitude wind power could extract more than 1,800TW. At these high rates of extraction, there are pronounced climatic consequences. However, we find that at the level of present global primary power demand (~ 18TW ref. ), uniformly distributed wind turbines are unlikely to substantially affect the Earth's climate. It is likely that wind power growth will be limited by economic or environmental factors, not global geophysical limits.

  9. WAVE TECTONICS OF THE EARTH

    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova

    2015-09-01

    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes

  10. Online Polar Oceans Geophysical Databases

    Science.gov (United States)

    Goodwillie, A. M.; O'Hara, S.; Arko, R. A.; Carbotte, S. M.

    2006-12-01

    With funding from the Office of Polar Programs of the U.S. National Science Foundation, the Antarctic Multibeam Bathymetry Synthesis (AMBS, http://www.marine-geo.org/antarctic/) is an integrated web-accessible bathymetry and geophysical database for the Southern Ocean and Antarctica, serving data from the US research vessels Nathaniel B. Palmer and Laurence M. Gould, amongst others. Interdisciplinary polar data can be downloaded for free through Data Link (http://www.marine-geo.org/link/index.php) which enables keyword searches by data and instrument type, geographical bounds, scientist, expedition name and dates. The data visualisation tool GeoMapApp (http://www.marine-geo.org/geomapapp/) supports dynamic exploration of a multi-resolutional digital elevation model (DEM) of the global oceans, including the polar regions, allowing users to generate custom grids and maps and import their own data sets and grids. A specialised polar stereographic map projection incorporating multibeam swath bathymetry and the BEDMAP under-ice seaflooor topography is available for the Southern Ocean. To promote inter-operability, we are working with research partners including the Marine Metadata Interoperability (MMI) project and the National Geophysical Data Center to develop standardised metadata and best practices that comply with existing FGDC and ISO standards. For example, the global DEM is served freely as an OGC-compliant Web Map Service map layer and is available for viewing with Google Earth. We are working towards full indexing of the AMBS database holdings at the Antarctic Master Directory. geo.org/antarctic/

  11. Ninety Years of International Cooperation in Geophysics

    Science.gov (United States)

    Ismail-Zadeh, A.; Beer, T.

    2009-05-01

    Because applicable physical, chemical, and mathematical studies of the Earth system must be both interdisciplinary and international, the International Union of Geodesy and Geophysics (IUGG) was formed in 1919 as an non-governmental, non-profit organization dedicated to advancing, promoting, and communicating knowledge of the Earth system, its space environment, and the dynamical processes causing change. The Union brings together eight International Associations that address different disciplines of Earth sciences. Through these Associations, IUGG promotes and enables studies in the geosciences by providing a framework for collaborative research and information exchange, by organizing international scientific assemblies worldwide, and via research publications. Resolutions passed by assemblies of IUGG and its International Associations set geophysical standards and promote issues of science policy on which national members agree. IUGG has initiated and/or vigorously supported collaborative international efforts that have led to highly productive worldwide interdisciplinary research programs, such as the International Geophysical Year and subsequent International Years (IPY, IYPE, eGY, and IHY), International Lithosphere Programme, World Climate Research Programme, Geosphere-Biosphere Programme, and Integrated Research on Risk Disaster. IUGG is inherently involved in the projects and programs related to climate change, global warming, and related environmental impacts. One major contribution has been the creation, through the International Council for Science (ICSU), of the World Data Centers and the Federation of Astronomical and Geophysical Data Analysis Services. These are being transformed to the ICSU World Data System, from which the data gathered during the major programs and data products will be available to researchers everywhere. IUGG cooperates with UNESCO, WMO, and some other U.N. and non-governmental organizations in the study of natural catastrophes

  12. Information Theory and the Earth's Density Distribution

    Science.gov (United States)

    Rubincam, D. P.

    1979-01-01

    An argument for using the information theory approach as an inference technique in solid earth geophysics. A spherically symmetric density distribution is derived as an example of the method. A simple model of the earth plus knowledge of its mass and moment of inertia lead to a density distribution which was surprisingly close to the optimum distribution. Future directions for the information theory approach in solid earth geophysics as well as its strengths and weaknesses are discussed.

  13. The teaching of geophysics in Latin America: An updated assessment

    Science.gov (United States)

    Valencio, Daniel A.; Schneider, Otto

    The situation of geophysics in developing countries has been the subject of discussions and analysis by diverse international organizations. It was also discussed in some articles in Eos [e.g., Lomnitz, 1982; Urrutia Fucugauchi, 1982; Bolt, 1982]. We have been requested to contribute a current evaluation of the problem, with particular reference to geophysical education in Latin America.In the following report on specialized training of geophysicists in Latin American countries, we consider the “exact earth sciences” in the broader sense, i.e., the mathematical and physical (and, to a certain extent, chemical) aspects of the planet earth as a whole, including its fluid portions, as opposed to the more restricted concept of just solid earth geophysics. In other words, our inquiry follows the scope of both AGU and the International Union of Geodesy and Geophysics (IUGG), so geodesy, although not explicitly covered, will still be mentioned occasionally. We will also consider the applied branches, especially exploration geophysics, since these areas furnish powerful motivation for fostering our sciences, both in the governmental circles of developing countries and among the young people looking for a promising professional future.

  14. Common interests bind AGU and geophysical groups around the globe

    Science.gov (United States)

    McEntee, Christine

    2012-02-01

    In continuation of our work to strengthen alliances with key organizations in the Earth and space science community, AGU president Michael McPhaden, president-elect Carol Finn, and I held a series of meetings with leaders from other science societies during the 2011 Fall Meeting. Over the course of 2 days we met with leaders from the Geophysical Society of America, European Geosciences Union, Japan Geosciences Union, Ethiopian Geophysical Union, Asia Oceania Geosciences Society, Chinese Geophysical Society, and Asociación Latinoamericana de Geofísica Espacial. This gave us a valued opportunity to discuss the common interests and challenges we all face and to learn from each other's experience. The meetings allowed AGU to strengthen existing cooperative agreements and reach new levels of understanding between us and other societies. Additionally, we met with representatives from the Korean Ocean Research and Development Institute to discuss their intention to establish a geophysical union modeled after AGU.

  15. 15 CFR 950.5 - National Geophysical and Solar-Terrestrial Data Center (NGSDC).

    Science.gov (United States)

    2010-01-01

    ... COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.5...-A (Solid-Earth Geophysics, Solar Terrestrial Physics, and Glaciology). (a) Geophysical and solar... geological data, including data on heat flow, cores, samples, and sediments. (2) Solar-Terrestrial physics...

  16. Distinct Element modeling of geophysical signatures during sinkhole collapse

    Science.gov (United States)

    Al-Halbouni, Djamil; Holohan, Eoghan P.; Taheri, Abbas; Dahm, Torsten

    2017-04-01

    A sinkhole forms due to the collapse of rocks or soil near the Earth's surface into an underground cavity. Such cavities represent large secondary pore spaces derived by dissolution and subrosion in the underground. By changing the stress field in the surrounding material, the growth of cavities can lead to a positive feedback, in which expansion and mechanical instability in the surrounding material increases or generates new secondary pore space (e.g. by fracturing), which in turn increases the cavity size, etc. A sinkhole forms due to the eventual subsidence or collapse of the overburden that becomes destabilized and fails all the way to the Earth's surface. Both natural processes like (sub)surface water movement and earthquakes, and human activities, such as mining, construction and groundwater extraction, intensify such feedbacks. The development of models for the mechanical interaction of a growing cavity and fracturing of its surrounding material, thus capturing related precursory geophysical signatures, has been limited, however. Here we report on the advances of a general, simplified approach to simulating cavity growth and sinkhole formation by using 2D Distinct Element Modeling (DEM) PFC5.0 software and thereby constraining pre-, syn- and post-collapse geophysical and geodetic signatures. This physically realistic approach allows for spontaneous cavity development and dislocation of rock mass to be simulated by bonded particle formulation of DEM. First, we present calibration and validation of our model. Surface subsidence above an instantaneously excavated circular cavity is tracked and compared with an incrementally increasing dissolution zone both for purely elastic and non-elastic material.This validation is important for the optimal choice of model dimensions and particles size with respect to simulation time. Second, a cavity growth approach is presented and compared to a well-documented case study, the deliberately intensified sinkhole collapse at

  17. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  18. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  19. Large natural geophysical events: planetary planning

    Energy Technology Data Exchange (ETDEWEB)

    Knox, J.B.; Smith, J.V.

    1984-09-01

    Geological and geophysical data suggest that during the evolution of the earth and its species, that there have been many mass extinctions due to large impacts from comets and large asteroids, and major volcanic events. Today, technology has developed to the stage where we can begin to consider protective measures for the planet. Evidence of the ecological disruption and frequency of these major events is presented. Surveillance and warning systems are most critical to develop wherein sufficient lead times for warnings exist so that appropriate interventions could be designed. The long term research undergirding these warning systems, implementation, and proof testing is rich in opportunities for collaboration for peace.

  20. Learning to Map the Earth and Planets using a Google Earth - based Multi-student Game

    Science.gov (United States)

    De Paor, D. G.; Wild, S. C.; Dordevic, M.

    2011-12-01

    We report on progress in developing an interactive geological and geophysical mapping game employing the Google Earth, Google Moon, and Goole Mars virtual globes. Working in groups of four, students represent themselves on the Google Earth surface by selecting an avatar. One of the group drives to each field stop in a model vehicle using game-like controls. When they arrive at a field stop and get out of their field vehicle, students can control their own avatars' movements independently and can communicate with one another by text message. They are geo-fenced and receive automatic messages if they wander off target. Individual movements are logged and stored in a MySQL database for later analysis. Students collaborate on mapping decisions and submit a report to their instructor through a Javascript interface to the Google Earth API. Unlike real mapping, students are not restricted by geographic access and can engage in comparative mapping on different planets. Using newly developed techniques, they can also explore and map the sub-surface down to the core-mantle boundary. Virtual specimens created with a 3D scanner, Gigapan images of outcrops, and COLLADA models of mantle structures such as subducted lithospheric slabs all contribute to an engaging learning experience.

  1. Interactive Geophysical Mapping on the Web

    Science.gov (United States)

    Meertens, C.; Hamburger, M.; Estey, L.; Weingroff, M.; Deardorff, R.; Holt, W.

    2002-12-01

    We have developed a set of interactive, web-based map utilities that make geophysical results accessible to a large number and variety of users. These tools provide access to pre-determined map regions via a simple Html/JavaScript interface or to user-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Users can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Developed initially by UNAVCO for study of global-scale geodynamic processes, users can choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays for example coastlines, political boundaries, rivers and lakes, NEIC earthquake and volcano locations, stress axes, and observed and model plate motion and deformation velocity vectors representing a compilation of 2933 geodetic measurements from around the world. The software design is flexible allowing for construction of special editions for different target audiences. Custom maps been implemented for UNAVCO as the "Jules Verne Voyager" and "Voyager Junior", for the International Lithosphere Project's "Global Strain Rate Map", and for EarthScope Education and Outreach as "EarthScope Voyager Jr.". For the later, a number of EarthScope-specific features have been added, including locations of proposed USArray (seismic), Plate Boundary Observatory (geodetic), and San Andreas Fault Observatory at Depth sites plus detailed maps and geographically referenced examples of EarthScope-related scientific investigations. In addition, we are developing a website that incorporates background materials and curricular activities that encourage users to explore Earth processes. A cluster of map processing computers and nearly a terabyte of disk storage has been assembled to power the generation of

  2. Rapid geophysical surveyor

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  3. Rapid geophysical surveyor

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-07-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  4. Geophysical wave tomography

    Science.gov (United States)

    Zhou, Chaoguang

    2000-11-01

    This study is concerned with geophysical wave tomography techniques that include advanced diffraction tomography, traveltime calculation techniques and simultaneous attenuation and velocity tomography approaches. We propose the source independent approximation, the Modified Quasi-Linear approximation and develop a fast and accurate diffraction tomography algorithm that uses this approximation. Since the Modified Quasi-Linear approximation accounts for the scattering fields within scatterers, this tomography algorithm produces better image quality than conventional Born approximation tomography algorithm does with or without the presence of multiple scatterers and can be used to reconstruct images of high contrast objects. Since iteration is not required, this algorithm is efficient. We improve the finite difference traveltime calculation algorithm proposed by Vidale (1990). The bucket theory is utilized in order to enhance the sorting efficiency, which accounts for about ten percent computing time improvement for large velocity models. Snell's law is employed to solve the causality problem analytically, which enables the modified algorithm to compute traveltimes accurately and rapidly for high velocity contrast media. We also develop two simultaneous attenuation and velocity tomography approaches, which use traveltimes and amplitude spectra of the observed data, and discuss some of their applications. One approach is processing geophysical data that come from one single survey and the other deals with the repeated survey cases. These approaches are nonlinear and therefore more accurate than linear tomography. A linear system for wave propagation and constant-Q media are assumed in order to develop the tomography algorithms. These approaches not only produce attenuation and velocity images at the same time but also can be used to infer the physical rock properties, such as the dielectric permittivity, the electric conductivity, and the porosity. A crosshole radar

  5. Geophysics publications honored

    Science.gov (United States)

    Geophysics and geology publications by the U.S. Geological Survey were awarded one first- and two third-place prizes at the ‘Blue Pencil’ ceremony last month, sponsored by the National Association of Government Communicators.First place in the news release category went to Frank Forrester, an AGU member and recently retired USGS information officer. Editors and artists of the bimonthly USGS Earthquake Information Bulletin were awarded third place in the category for technical magazines using at least two colors.

  6. Geophysical fluid dynamics: whence, whither and why?

    Science.gov (United States)

    Vallis, Geoffrey K.

    2016-08-01

    This article discusses the role of geophysical fluid dynamics (GFD) in understanding the natural environment, and in particular the dynamics of atmospheres and oceans on Earth and elsewhere. GFD, as usually understood, is a branch of the geosciences that deals with fluid dynamics and that, by tradition, seeks to extract the bare essence of a phenomenon, omitting detail where possible. The geosciences in general deal with complex interacting systems and in some ways resemble condensed matter physics or aspects of biology, where we seek explanations of phenomena at a higher level than simply directly calculating the interactions of all the constituent parts. That is, we try to develop theories or make simple models of the behaviour of the system as a whole. However, these days in many geophysical systems of interest, we can also obtain information for how the system behaves by almost direct numerical simulation from the governing equations. The numerical model itself then explicitly predicts the emergent phenomena-the Gulf Stream, for example-something that is still usually impossible in biology or condensed matter physics. Such simulations, as manifested, for example, in complicated general circulation models, have in some ways been extremely successful and one may reasonably now ask whether understanding a complex geophysical system is necessary for predicting it. In what follows we discuss such issues and the roles that GFD has played in the past and will play in the future.

  7. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1979-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  8. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1982-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  9. Movement Disorders

    Science.gov (United States)

    ... t want them to. If you have a movement disorder, you experience these kinds of impaired movement. Dyskinesia ... movement and is a common symptom of many movement disorders. Tremors are a type of dyskinesia. Nerve diseases ...

  10. Sampling functions for geophysics

    Science.gov (United States)

    Giacaglia, G. E. O.; Lunquist, C. A.

    1972-01-01

    A set of spherical sampling functions is defined such that they are related to spherical-harmonic functions in the same way that the sampling functions of information theory are related to sine and cosine functions. An orderly distribution of (N + 1) squared sampling points on a sphere is given, for which the (N + 1) squared spherical sampling functions span the same linear manifold as do the spherical-harmonic functions through degree N. The transformations between the spherical sampling functions and the spherical-harmonic functions are given by recurrence relations. The spherical sampling functions of two arguments are extended to three arguments and to nonspherical reference surfaces. Typical applications of this formalism to geophysical topics are sketched.

  11. Development of Geophysical Ideas and Institutions in Ottoman Empire

    Science.gov (United States)

    Ozcep, Ferhat; Ozcep, Tazegul

    2015-04-01

    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  12. Notes on the history of geophysics in the Ottoman Empire

    Science.gov (United States)

    Ozcep, F.; Ozcep, T.

    2014-09-01

    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  13. 3D stochastic geophysical inversion for contact surface geometry

    Science.gov (United States)

    Lelièvre, Peter; Farquharson, Colin; Bijani, Rodrigo

    2015-04-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. As such, 3D geological Earth models typically comprise wireframe contact surfaces of tessellated triangles or other polygonal planar facets. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy is to consider a fundamentally different type of inversion that works directly with models that comprise surfaces representing contacts between rock units. We are researching such an approach, our goal being to perform geophysical forward and inverse modelling directly with 3D geological models of any complexity. Geological and geophysical models should be specified using the same parameterization such that they are, in essence, the same Earth model. We parameterize the wireframe contact surfaces in a 3D model as the coordinates of the nodes (facet vertices). The physical properties of each rock unit in a model remain fixed while the geophysical inversion controls the position of the contact surfaces via the control nodes, perturbing the surfaces as required to fit the geophysical data responses. This is essentially a "geometry inversion", which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. We apply global optimization strategies to solve the inverse problem, including stochastic sampling to obtain statistical information regarding the likelihood of particular features in the model, helping to assess the viability of a proposed model. Jointly inverting multiple types of geophysical data is simple

  14. Sustainable Geophysical Observatory Networks

    Science.gov (United States)

    Willemann, R. J.; Lerner-Lam, A.; Aster, R.; Beck, S.; Ekstrom, G.; Nyblade, A.; Sandvol, E.

    2007-05-01

    Geophysical networks are defined not only by their technical specifications, but also by the characteristics and needs of the communities that use them. Growing populations supported by more elaborate urban infrastructure with its fine-grained socio-economic interdependencies and relying on global and regional connections for sustainability make new demands for natural hazard risk management. Taking advantage of advances in the underlying science to provide society with accurate risk assessments often requires higher fidelity measurements, entirely new types of observations, and an evolutionary sense of data products and information management. Engineering a high-tech system to address stakeholder needs is difficult, and designing for unpredictable developments requires an emphasis on adaptation. Thus, it is essential to promote formation of organizations or communities that can support evolution of a technological system, imagine new uses, and develop the societal relationships that sustain operations and provide capital for improvement. The owners must have a deep understanding of why the system works in particular ways and how to manage data products for the benefits of stakeholders. To be effective, community promotion must be sustained over a longer period of time than required to build a network and should be aimed at integrating the community into worldwide partnerships. Practices that can promote community formation if they are sustained include repeated training and scientific exchange workshops, extended visits by experts and staff at all levels to and from countries where networks are installed, mechanisms that make timely upgrades realistically possible, and routine exchange and wide dissemination of data in all directions. The combination of international research and educational collaborations, supported by open data exchange, with regionalized and specific assessments of local stakeholder needs and concerns, provides a sustainable model for

  15. 3D geophysical inversion for contact surfaces

    Science.gov (United States)

    Lelièvre, Peter; Farquharson, Colin

    2014-05-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure volumetric inversions (performed on meshes of space-filling cells) recover smooth models inconsistent with such interpretations. There are several approaches through which geophysical inversion can help recover models with the desired characteristics. Some authors have developed iterative strategies in which several volumetric inversions are performed with regularization parameters changing to achieve sharper interfaces at automatically determined locations. Another approach is to redesign the regularization to be consistent with the desired model characteristics, e.g. L1-like norms or compactness measures. A few researchers have taken approaches that limit the recovered values to lie within particular ranges, resulting in sharp discontinuities; these include binary inversion, level set methods and clustering strategies. In most of the approaches mentioned above, the model parameterization considers the physical properties in each of the many space-filling cells within the volume of interest. The exception are level set methods, in which a higher dimensional function is parameterized and the contact surface is determined from the zero-level of that function. However, even level-set methods rely on an underlying volumetric mesh. We are researching a fundamentally different type of inversion that parameterizes the Earth in terms of the contact surfaces between rock units. 3D geological Earth models typically comprise wireframe surfaces of tessellated triangles or other polygonal planar facets. This wireframe representation allows for flexible and efficient generation of complicated geological structures. Therefore, a natural approach for representing a geophysical model in an inversion is to parameterize the wireframe contact surfaces as the coordinates of the nodes (facet vertices). The geological and

  16. The Simulation Study of Earth's Surface Movement during the Process of Pillar Extraction in Chamber Mining%房式开采煤柱回收时地表移动模拟研究

    Institute of Scientific and Technical Information of China (English)

    江东海

    2016-01-01

    许村煤矿即将布置的工作面是为回收旧房式开采所遗留的煤柱,条件比较复杂。运用有限差分软件FLAC3D模拟分析了在回收煤柱时所引起的地表移动过程,通过提取和分析数据,得出最大下沉点位于采空区中心上方的地表处,最大下沉量为120mm,煤柱全部回收时所引起的地表移动范围为736m×610m,因此,在修建地面构筑物时,应尽量避免在此地表移动范围之内。%One of the Xucun mine's working face which is about to set is to recycle coal pillars that is left over in the old chamber mining.The condition is very complicated. This article analyzes the process of surface movement during the process of pillar extraction in chamber mining by the finite difference software. By extracting and analyzing the data, it is concluded that the largest subsidence point is located in the center of the earth's surface above thegoaf,and the largest subsidence is 120mm. When all of coal pillars are recycled,the range of earth's surface movement is 736m×610m. Therefore, building the abovegroundstructures should avoid as far as possible in the range of surface movement.

  17. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  18. ROMY: A 4-component large ring laser for geophysics

    Science.gov (United States)

    Igel, H.; Schreiber, K. U.; Gebauer, A.; Wassermann, J. M.; Lin, C. J.; Bernauer, F.; Simonelli, A.; Wells, J. P. R.

    2016-12-01

    Observatory-based ring lasers are currently the most sensitive technology for measurements of rotational ground motions (seismology) and variations of Earth's rotation rate. Ring laser have so far been limited to single components only (e.g., the horizontal G-ring in Wettzell, Germany, measuring the rotation around a vertical axis). Within the ROMY project (www.romy-erc.eu) funded by the European Research Council we designed and constructed the first multi-component ring laser system for geophysics. The 4-component, tetrahedral-shaped, top-down ring laser sits on a connected concrete structure embedded underground 2m below the surface at the Geophysical Observatory Fürstenfeldbruck, Germany. The 4 independent equilateral triangular-shaped He-Ne ring lasers with 12 m side length are expected to resolve rotational motions below 12 prad/s/sqrt(Hz). We will report on the design and construction process of this first-of-its-kind ring laser system, with completion expected in August 2016 by which time the optical systems are beginning to be assembled. The four rotational components are combined to the complete 3-component vector of Earth's rotation, perturbed by other geophysical signals such as earthquake induced ground motions, ocean-generated noise, Earth's free oscillations, interactions between atmosphere and solid Earth and other signals. First applications are expected in the field of seismology. We report on future plans to stabilize the ring geometry providing long-term stability for geodetic applications.

  19. Jesuit Geophysical Observatories

    Science.gov (United States)

    Udias, Agustin; Stauder, William

    Jesuits have had ah interest in observing and explaining geophysical phenomena since this religious order, the Society of Jesus, was founded by Ignatius of Loyola in 1540. Three principal factors contributed to this interest: their educational work in colleges and universities, their missionary endeavors to remote lands where they observed interesting and often as yet undocumented natural phenomena, and a network of communication that brought research of other Jesuits readily to their awareness.One of the first and most important Jesuit colleges was the Roman College (today the Gregorian University) founded in 1551 in Rome, which served as a model for many other universities throughout the world. By 1572, Christopher Clavius (1537-1612), professor of mathematics at the Roman College, had already initiated an important tradition of Jesuit research by emphasizing applied mathematics and insisting on the need of serious study of mathematics in the program of studies in the humanities. In 1547 he directed a publication of Euclid's work with commentaries, and published several treatises on mathematics, including Arithmetica Practica [1585], Gnomonicae [1581], and Geometrica Practica [1606]. Clavius was also a Copernican and supported his friend Galileo when he announced the discovery of the satellites of Jupiter.

  20. Geophysical lineaments of Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Lepley, L.K.

    1979-08-01

    Photolineaments seen on satellite images are usually expressions of deep crustal ruptures. However, photolineaments are omnipresent and an independent expression of regional discontinuities is needed to help rank the photolineaments. Published gravity and magnetic contour maps of Arizona were analyzed to produce a single geophysical lineament map to indicate trends of regional basement structures. This map shows that the southwestern quarter of Arizona is dominated by a NNW-ENE orthogonal system whereas the remainder of the state is gridded by a NW-NE system. North-south systems are present throughout the state, as are EW lineaments. Arizona is transected by the WNW Texas Strand, but other shorter systems trending in the Texas direction are found throughout the state south of the Strand. The major lineament systems as seen on Landsat, gravity, and magnetic maps correlate reasonably well with known geothermal manifestations. Many other systems are Precambrian, Paleozoic, and/or Mesozoic in age but appear to control the location of Quaternary volcanic systems.

  1. GEOTECHNICAL EXAMINATION OF THE GEOPHYSICAL ...

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... olokoro lateritic soil, particle size distribution, compaction test, geophysical properties, california bearing ratio. 1. ... e.g. alluvial soil, aeolin soil, glacial soil etc. [2]. .... Garg, S.K. Soil Mechanics and Foundation Engineer- ing.

  2. Spatial and temporal distribution of geophysical disasters

    Directory of Open Access Journals (Sweden)

    Cvetković Vladimir

    2013-01-01

    Full Text Available Natural disasters of all kinds (meteorological, hydrological, geophysical, climatological and biological are increasingly becoming part of everyday life of modern human. The consequences are often devastating, to the life, health and property of people, as well to the security of states and the entire international regions. In this regard, we noted the need for a comprehensive investigation of the phenomenology of natural disasters. In addition, it is particularly important to pay attention to the different factors that might correlate with each other to indicate more dubious and more original facts about their characteristics. However, as the issue of natural disasters is very wide, the subject of this paper will be forms, consequences, temporal and spatial distribution of geophysical natural disasters, while analysis of other disasters will be the subject of our future research. Using an international database on natural disasters of the centre for research on the epidemiology of disasters (CRED based in Brussels, with the support of the statistical analysis (SPSS, we tried to point out the number, trends, consequences, the spatial and temporal distribution of earthquakes, volcanic eruptions and dry mass movements in the world, from 1900 to 2013.

  3. 不同变位模式刚性挡土墙的动被动土压力%Dynamic passive earth pressure on retaining wall under various modes of movement

    Institute of Scientific and Technical Information of China (English)

    彭润民; 纪秋林

    2009-01-01

    Based on Mononobe-Okabe's postulation, the first-order differential equation for passive earth pressure on the retaining wall was set up for the translation(T)mode, movement modes of rotation around base(RB)and rotation around top (RT) by analyzing slice elements extracted from sliding soil wedge; and the formulas for calculating of the unit earth pressure, the resultant earth pressure and the action point of resultant pressure were given. The comparison between calculated results by the present formulas and Coulomb's theory shows that the unit earth pressure is nonlinearly distributed; and that the distance from the action point of resultant pressure to the base of wall increases with the order of (RB)mode, (T)mode, and (RT) mode.%基于Mononobe-Okabe假定,通过对滑动土体中水平薄层单元的分析,建立了墙体平动(T)模式、墙体绕基础转动(RB)模式和墙体绕墙顶转动(RT)模式下的被动土压力的一阶微分方程,给出了土压力强度、土压力合力、土压力作用点的理论计算公式,并将该理论计算公式与库仑理论结果进行了比较.结果表明:土压力强度分布呈曲线分布,合力作用点到墙底的距离依(RB)模式、(T)模式和(RT)模式次序增大.

  4. Why Earth aurorae shine?

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ By using the data obtained from three satellites of the Cluster mission launched by the European Space Agency (ESA), CAO Jinbin from the CAS Center for Space Science and Applied Research (CSSAR) and his US and European co-workers have clarified why Earth's aurorae shine.Their work entitled Joint Observations by Cluster Satellites of Bursty Bulk Flows in the Magnetotail was published in a recent issue of Journal of Geophysical Research.

  5. Planetary Geophysics and Tectonics

    Science.gov (United States)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  6. Unleashing Geophysics Data with Modern Formats and Services

    Science.gov (United States)

    Ip, Alex; Brodie, Ross C.; Druken, Kelsey; Bastrakova, Irina; Evans, Ben; Kemp, Carina; Richardson, Murray; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    Geoscience Australia (GA) is the national steward of large volumes of geophysical data extending over the entire Australasian region and spanning many decades. The volume and variety of data which must be managed, coupled with the increasing need to support machine-to-machine data access, mean that the old "click-and-ship" model delivering data as downloadable files for local analysis is rapidly becoming unviable - a "big data" problem not unique to geophysics. The Australian Government, through the Research Data Services (RDS) Project, recently funded the Australian National Computational Infrastructure (NCI) to organize a wide range of Earth Systems data from diverse collections including geoscience, geophysics, environment, climate, weather, and water resources onto a single High Performance Data (HPD) Node. This platform, which now contains over 10 petabytes of data, is called the National Environmental Research Data Interoperability Platform (NERDIP), and is designed to facilitate broad user access, maximise reuse, and enable integration. GA has contributed several hundred terabytes of geophysical data to the NERDIP. Historically, geophysical datasets have been stored in a range of formats, with metadata of varying quality and accessibility, and without standardised vocabularies. This has made it extremely difficult to aggregate original data from multiple surveys (particularly un-gridded geophysics point/line data) into standard formats suited to High Performance Computing (HPC) environments. To address this, it was decided to use the NERDIP-preferred Hierarchical Data Format (HDF) 5, which is a proven, standard, open, self-describing and high-performance format supported by extensive software tools, libraries and data services. The Network Common Data Form (NetCDF) 4 API facilitates the use of data in HDF5, whilst the NetCDF Climate & Forecasting conventions (NetCDF-CF) further constrain NetCDF4/HDF5 data so as to provide greater inherent interoperability

  7. SIAM conference on inverse problems: Geophysical applications. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.

  8. Dunlop receives European Geophysical Society's Néel Medal

    Science.gov (United States)

    Tauxe, Lisa

    David J. Dunlop of the Physics Department and Erindale College at the University of Toronto has been awarded the 1999 Louis Néel Medal of the European Geophysical Society (EGS) for “authoritative contributions to rock magnetism, setting the standards for future decades.” The medal will be presented to Dunlop in April in a special ceremony at the Nederlands Congresbebouw in The Hague, The Netherlands, during the 24th General Assembly of the EGS.The Néel Medal is awarded by the Solid Earth Geophysics section of EGS in recognition of the scientific achievements of Louis Néel, who shared the 1970 Nobel Prize in Physics for his fundamental discoveries in magnetism.The medal is awarded “for outstanding achievements in the fertilization of the Earth Sciences by the transfer and application of fundamental theory and/or experimental techniques of solid state physics, defined in its broadest sense.”

  9. Dynamic Active Earth Pressure on Retaining Wall under Various Modes of Movement%不同变位模式下刚性挡土墙的动主动土压力

    Institute of Scientific and Technical Information of China (English)

    李刚; 张凤涛

    2011-01-01

    On the basis of the Assumption of Mononobe-Okabe theory,the first-order differential equation for active earth pressure on the retaining wall was set up for the translation (T) mode, movement modes of rotation around base (RB) and rotation around top (RT) by analyzing slice elements extracted from the sliding soil wedge. And the formulas for calculating the unit earth pressure, the resultant earth pressure and the action point of the result pressure were given. The comparison between calculated results with the present formulas and Mononobe-Okabe theory has shown that the unit earth pressure is nonlinear-ly distributed;and that the distance from the action point of resultant pressure to the base of wall increases with the order of(RB)mode,(T) mode,and (RT) mode. It has also indicated that the calculated results of the resultant pressure under various modes of movement are in accordance with those of Mononobe-Okabe theory for q0 = 0 .%基于Mononobe-Okabe理论的基本假设,通过对滑动土体中水平薄层单元的分析,建立了墙体平动(T)模式、墙体绕基础转动(RB)模式和墙体绕墙顶转动(RT)模式下的主动土压力的一阶微分方程式,给出了土压力强度、土压力合力、土压力作用点的理论计算公式,并将该理论计算公式与Mononobe-Okabe理论结果进行了比较.结果表明:土压力强度分布呈非线性分布,合力作用点到墙底的距离依(RB)模式、(T)模式和(RT)模式次序增大.当地面荷载q0=0时,各种墙体变位模式下的动土压力合力与Mononobe-Okabe理论相同.

  10. Integrated Geophysical Methods Applied to Geotechnical and Geohazard Engineering: From Qualitative to Quantitative Analysis and Interpretation

    Science.gov (United States)

    Hayashi, K.

    2014-12-01

    The Near-Surface is a region of day-to-day human activity on the earth. It is exposed to the natural phenomena which sometimes cause disasters. This presentation covers a broad spectrum of the geotechnical and geohazard ways of mitigating disaster and conserving the natural environment using geophysical methods and emphasizes the contribution of geophysics to such issues. The presentation focusses on the usefulness of geophysical surveys in providing information to mitigate disasters, rather than the theoretical details of a particular technique. Several techniques are introduced at the level of concept and application. Topics include various geohazard and geoenvironmental applications, such as for earthquake disaster mitigation, preventing floods triggered by tremendous rain, for environmental conservation and studying the effect of global warming. Among the geophysical techniques, the active and passive surface wave, refraction and resistivity methods are mainly highlighted. Together with the geophysical techniques, several related issues, such as performance-based design, standardization or regularization, internet access and databases are also discussed. The presentation discusses the application of geophysical methods to engineering investigations from non-uniqueness point of view and introduces the concepts of integrated and quantitative. Most geophysical analyses are essentially non-unique and it is very difficult to obtain unique and reliable engineering solutions from only one geophysical method (Fig. 1). The only practical way to improve the reliability of investigation is the joint use of several geophysical and geotechnical investigation methods, an integrated approach to geophysics. The result of a geophysical method is generally vague, here is a high-velocity layer, it may be bed rock, this low resistivity section may contain clayey soils. Such vague, qualitative and subjective interpretation is not worthwhile on general engineering design works

  11. Avalanches in functional materials and geophysics

    CERN Document Server

    Saxena, Avadh; Planes, Antoni

    2017-01-01

    This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.

  12. Online Geophysical Databases for the Southern Ocean

    Science.gov (United States)

    Goodwillie, A.; O'Hara, S.; Arko, R.; Carbotte, S.; Ryan, W.; Melkonian, A.; Ferrini, V.; Weissel, R.; Bonczkowski, J.

    2007-12-01

    With funding from the U.S. National Science Foundation Office of Polar Programs, the Antarctic Multibeam Bathymetry Synthesis (AMBS, http://www.marine-geo.org/antarctic/) is an integrated web-accessible bathymetry and geophysical database for the Southern Ocean and Antarctica, serving data from the US research vessels Nathaniel B. Palmer and Laurence M. Gould, amongst others. Interdisciplinary polar data can be downloaded for free through the Data Link web browser interface (http://www.marine-geo.org/link/) which enables keyword searches by data and instrument type, geographical bounds, scientist, expedition name and dates. The free, platform-independent data visualization tool GeoMapApp (http://www.geomapapp.org/) supports dynamic exploration of a wide range of data sets on a Global Multi-Resolution Topography (GMRT) synthesis, including the polar regions, allowing users to generate custom grids and maps and import their own data sets and grids. A specialised polar stereographic map projection incorporating multibeam swath bathymetry and the BEDMAP under-ice seafloor topography is available for the Southern Ocean. The GMRT global digital elevation model is served freely as a Web Map Service layer and is available for viewing with OGC-compliant clients including Google Earth (http://www.marine-geo.org/Data4GoogleEarth.html). To promote interoperability and data sharing, we are working with research partners including the Marine Metadata Interoperability (MMI) project and the National Geophysical Data Center to develop standardised metadata and best practices that comply with existing FGDC and ISO standards. We are also taking on the US Antarctic Data Coordination Center function, assisting NSF-funded investigators in documenting and archiving their data in accordance with the IPY Data Policy.

  13. A New Social Contract for Geophysics

    Science.gov (United States)

    Malone, T. F.

    2002-12-01

    The Golden Age for geophysical research that followed the IGY set the stage for a new era of interaction among science, technology, and society. World population and the average economic productivity of individuals have both continued to grow exponentially during the past 50 years with the result that by the 1980s the demands of the human economy on the finite renewable resources of planet Earth were approximately equal to the natural regenerative capacities of planetary ecosystems. These demands are now "overshooting" those regenerative powers by about 20 per cent (1). The result could be a collapse in the life-supporting capacity of global ecosystems during coming decades, with tragic implications for civilized society. Novel modes of collaboration among all disciplines and all sectors of society are urgently needed to transform a potential catastrophe into the attractive vision that is now within reach as a result of rapidly expanding human knowledge, emerging technologies for sharing that knowledge (2), and the set of ethical principles for sustainable development contained in the Earth Charter (3). This prospect challenges geophysicists and scholars in all disciplines to forge a new and broadly based contract with society (4). 1. Wackernagel M. et al. 2002. "Tracking the ecological overshoot of the human economy." Proc. Natl. Acad. Sci. USA, Vol. 99, Issue 14, 9266-9271, July 9. 2. Malone T. and Yohe G. 2002. "Knowledge partnerships for a sustainable, equitable, and stable society." J. of Knowledge Management, Vol. 6, No. 4, October (in press). 3. www.earthcharter.org 4. Malone T. 1997. "Building on the legacies of the Intenational Geophysical Year." Transactions, AGU, Vol.78, No. 15, pp. 185-191.

  14. The Expanding Marketplace for Applied Geophysics

    Science.gov (United States)

    Carlson, N.; Sirles, P.

    2012-12-01

    While the image of geophysics for the proverbial "layman" often seems limited to volcanoes and earthquakes, and to the geoscientist this image enlarges to include oil or minerals exploration and whole earth studies, there has been a steady increase in the application of geophysics into the realm of "daily life", such as real estate deals, highway infrastructure, and flood protection. This expansion of applications can be attributed to the improved economics from advances in equipment and interpretation. Traditional geophysical methods that at one time often only fit within the budgets of oil, gas, and minerals exploration programs can now be economically applied to much smaller scale needs like contaminant mapping, landfill delineation, and levee investigations. A real-world, economic example of this expanding marketplace is our company, which began very small and was aimed almost exclusively at the minerals exploration market. Most of our growth has been in the last 10 years, when we have expanded to five offices and a staff with almost 40 geoscientist degrees (21 in geophysics); much of this growth has been in the non-oil, non-minerals arenas. While much of our work still includes minerals exploration, other projects this year include wind-farm foundation studies, cavity detection above underground nuclear tests, landfill studies, acid mine drainage problems, and leaks in evaporation ponds. A methodology example of this expanding market is the induced polarization (IP) survey, once primarily used for minerals exploration, particularly large porphyry copper deposits, but now efficient enough to also use in environmental studies. The IP method has been particularly useful in delineating and characterizing old, poorly documented landfills, and recent research suggests it may also be useful in monitoring the accelerated biodegradation processes used in some cases to rehabilitate the sites. Compared to temperature monitoring systems, IP may be more useful in providing

  15. Geophysical weight loss diet

    Science.gov (United States)

    Schatten, Kenneth

    1984-04-01

    Having for numerous reasons acquired a three digit kilogram mass, the author is experienced at the painful struggles that the gourmand must suffer to reduce weight, particularly if he/she enjoys reasonably large amounts of good food. To the avant-garde geophysicist, utilizing the following approach could be pleasurable, rewarding, and may even enable the accomplishment of what Ghengis Khan, Alexander the Great, Napolean, and Hitler could not!The basic approach is the full utilization of Newton's formula for the attraction of two massive bodies: F=GM1M2/r2, where G, is the gravitational constant; r, the distance between the two bodies; and M1 and M2, the masses of the two bodies. Although one usually chooses M1 to be the earth's mass ME and M2 to be the mass of a small object, this unnecessarily restricts the realm of phenomena. The less restrictive assumption is M1 + M2 = ME.

  16. Geophysical subsurface imaging and interface identification.

    Energy Technology Data Exchange (ETDEWEB)

    Pendley, Kevin; Bochev, Pavel Blagoveston; Day, David Minot; Robinson, Allen Conrad; Weiss, Chester Joseph

    2005-09-01

    Electromagnetic induction is a classic geophysical exploration method designed for subsurface characterization--in particular, sensing the presence of geologic heterogeneities and fluids such as groundwater and hydrocarbons. Several approaches to the computational problems associated with predicting and interpreting electromagnetic phenomena in and around the earth are addressed herein. Publications resulting from the project include [31]. To obtain accurate and physically meaningful numerical simulations of natural phenomena, computational algorithms should operate in discrete settings that reflect the structure of governing mathematical models. In section 2, the extension of algebraic multigrid methods for the time domain eddy current equations to the frequency domain problem is discussed. Software was developed and is available in Trilinos ML package. In section 3 we consider finite element approximations of De Rham's complex. We describe how to develop a family of finite element spaces that forms an exact sequence on hexahedral grids. The ensuing family of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij who first proposed a general method for developing tangentially and normally continuous vector fields on hexahedral elements. The use of this complex is illustrated for the eddy current equations and a conservation law problem. Software was developed and is available in the Ptenos finite element package. The more popular methods of geophysical inversion seek solutions to an unconstrained optimization problem by imposing stabilizing constraints in the form of smoothing operators on some enormous set of model parameters (i.e. ''over-parametrize and regularize''). In contrast we investigate an alternative approach whereby sharp jumps in material properties are preserved in the solution by choosing as model parameters a modest set of variables which describe an interface between adjacent regions in

  17. Educational Geophysics at INGV, Rome (Italy)

    Science.gov (United States)

    Dida Working Group Ingv,.

    2002-12-01

    Italy is a country prone to Earth phenomena such as earthquakes, volcanic eruptions, floods and landslides that left a trace in the memory of people. About 60% of the Italian territory is classified in the current seismic hazard maps, and large cities as Neaples and Catania are located close to the two largest active volcanoes of Europe (Mt. Vesuvius and Mt. Etna, respectively). Nevertheless, school programs are often inadequate about the natural hazards of the country. For this reason there are many requests from schoolteachers to visit with their classes the academic Institutions and to attend geophysical talks. The working group for educational activities of the Istituto Nazionale di Geofisica and Vulcanologia promotes and realizes Earth science outreach programs devoted to increase the knowledge of geophysical topics. The educational activity is one of the most important tasks of our Institution together with the research activities and the 24-hours survey of the Italian Seismic Network. The INGV hosts in its headquarter of Rome many visits of primary, secondary and high schools with an increasing demand year by year. Every year about 3,000 students visit our Institute over more than 60 open-days, and we participate to exhibitions and outreach projects organized by several Institutions. We show here what has been done at INGV for the geophysical education, underlining the problems and the successes of these activities. We describe also an educational project developed together with a teacher's team of secondary-school. Aim of this experience was to stimulate the interest of 12-year-old kids to unfamiliar arguments like seismology. The class was introduced to physical topics as waves and wave propagation by means of simple experiments. Then they visited the INGV were the research activities were shown, with emphasis on seismological studies; they were also thought how the Italian Seismic Network monitors earthquakes and how to use the P and S waves for their

  18. Learning about hydrothermal volcanic activity by modeling induced geophysical changes

    Science.gov (United States)

    Currenti, Gilda M.; Napoli, Rosalba

    2017-05-01

    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  19. Fiber Optic Geophysics Sensor Array

    Science.gov (United States)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  20. Magnetoseismology ground-based remote sensing of Earth's magnetosphere

    CERN Document Server

    Menk, Frederick W

    2013-01-01

    Written by a researcher at the forefront of the field, this first comprehensive account of magnetoseismology conveys the physics behind these movements and waves, and explains how to detect and investigate them. Along the way, it describes the principles as applied to remote sensing of near-Earth space and related remote sensing techniques, while also comparing and intercalibrating magnetoseismology with other techniques. The example applications include advanced data analysis techniques that may find wider used in areas ranging from geophysics to medical imaging, and remote sensing using radar systems that are of relevance to defense surveillance systems. As a result, the book not only reviews the status quo, but also anticipates new developments. With many figures and illustrations, some in full color, plus additional computational codes for analysis and evaluation. Aimed at graduate readers, the text assumes knowledge of electromagnetism and physical processes at degree level, but introductory chapters wil...

  1. About well-posed definition of geophysical fields'

    Science.gov (United States)

    Ermokhine, Konstantin; Zhdanova, Ludmila; Litvinova, Tamara

    2013-04-01

    We introduce a new approach to the downward continuation of geophysical fields based on approximation of observed data by continued fractions. Key Words: downward continuation, continued fraction, Viskovatov's algorithm. Many papers in geophysics are devoted to the downward continuation of geophysical fields from the earth surface to the lower halfspace. Known obstacle for the method practical use is a field's breaking-down phenomenon near the pole closest to the earth surface. It is explained by the discrepancy of the studied fields' mathematical description: linear presentation of the field in the polynomial form, Taylor or Fourier series, leads to essential and unremovable instability of the inverse problem since the field with specific features in the form of poles in the lower halfspace principally can't be adequately described by the linear construction. Field description by the rational fractions is closer to reality. In this case the presence of function's poles in the lower halfspace corresponds adequately to the denominator zeros. Method proposed below is based on the continued fractions. Let's consider the function measured along the profile and represented it in the form of the Tchebishev series (preliminary reducing the argument to the interval [-1, 1]): There are many variants of power series' presentation by continued fractions. The areas of series and corresponding continued fraction's convergence may differ essentially. As investigations have shown, the most suitable mathematical construction for geophysical fields' continuation is so called general C-fraction: where ( , z designates the depth) For construction of C-fraction corresponding to power series exists a rather effective and stable Viskovatov's algorithm (Viskovatov B. "De la methode generale pour reduire toutes sortes des quantitees en fraction continues". Memoires de l' Academie Imperiale des Sciences de St. Petersburg, 1, 1805). A fundamentally new algorithm for Downward Continuation

  2. Satellite gravity gradient grids for geophysics.

    Science.gov (United States)

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-02-11

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.

  3. A GEOPHYSICAL COMPANY FOR TODAY AND TOMORROW

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ BGP is one of the world leading onshore geophysical service contractors with a registered capital of 5,100 million Yuan. In 2002, BGP became a liability-limited company after merging other six Chinese geophysical companies.

  4. News and Views: CSR: the devil will be in the detail; MPs invite researchers to show off success; Earthquake movies reveal ground movements

    Science.gov (United States)

    2010-12-01

    The UK Government's Comprehensive Spending Review set out a distinctly tighter budget all round in October, but science funding as a whole was not as badly cut as some had feared. What this means for astronomy, planetary science and geophysics remains to be seen, as individual research council allocations have yet to be agreed. Early-career researchers with results to shout about have the opportunity to display and discuss their work at the House of Commons next year, as part of the SET for Britain event on 14 March. Seismology took a great step forward when international cooperation at the time of International Geophysical Year 1957/8 meant that earth movements resulting from quakes could be compared worldwide.

  5. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  6. The Geophysical Revolution in Geology.

    Science.gov (United States)

    Smith, Peter J.

    1980-01-01

    Discussed is the physicists' impact on the revolution in the earth sciences particularly involving the overthrow of the fixist notions in geology. Topics discussed include the mobile earth, the route to plate tectonics, radiometric dating, the earth's magnetic field, ocean floor spreading plate boundaries, infiltration of physics into geology and…

  7. Earth Sciences annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J. (eds.)

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

  8. Geophysical Institute. Biennial report, 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  9. Earth Sciences Division annual report 1981. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  10. Relations of PC indices to further geophysical activity parameters.

    Science.gov (United States)

    Stauning, P.

    2012-04-01

    The Polar Cap (PC) indices, PCN for the index values derived from Thule magnetic data and PCS derived from Vostok data, relate to the polar cap ionospheric plasma convection driven mainly by the interaction of the solar wind with the magnetosphere. Thus, the PC indices serve to monitor the input power from the solar wind which drives a range of geophysical disturbances such as magnetic storms and substorms, energization of the plasma trapped in the Earth's near space, auroral activity, and heating of the upper atmosphere. The presentation will demonstrate the relations between the PC indices and further parameters and indices used to describe geophysical activity such as polar cap potentials, auroral electrojet activity, Joule and particle heating of the upper atmosphere, mid-latitude magnetic variations, and ring current indices Dst, SYM-H and ASY-H.

  11. A spectral-geophysical approach for detecting pipeline leakage

    Science.gov (United States)

    van der Meijde, M.; van der Werff, H. M. A.; Jansma, P. F.; van der Meer, F. D.; Groothuis, G. J.

    2009-02-01

    Leakage of hydrocarbon has a large economic and environmental impact. Traditional methods for investigating leakage and resulting pollution, such as drilling, are destructive, time consuming and expensive. Remote sensing is an alternative that is non-destructive and has been been tested extensively for exploration of onshore hydrocarbon reservoirs and detection of hydrocarbons at the Earth's surface. In this research, a leaking pipeline is investigated through field reflectance spectrometry and the findings are validated with traditional drilling and geophysical measurements. The measurements show a significant increase of vegetation anomalies on the pipeline with respect to areas further away. The observed anomalies are positively related to hydrocarbon pollution through chemical analysis of drillings. Subsurface geophysical measurements show a large correlation with observed surface vegetation stress, enhancing the identification of hydrocarbon-related vegetation stress through spectroscopy.

  12. Marine geophysical methods for archaeological investigation of volcanic and bradyseismic areas

    Directory of Open Access Journals (Sweden)

    F. Giordano

    1995-06-01

    Full Text Available The aim of this work was to test several geophysical methods for the identification and study of submerged prehistorical coastlines and archaeological sites. This research program was carried out in collaboration with the <> in the Gulf of Pozzuoli and dealt in particular with the bathymetric strips extending from - 5 m to - 50 m Within these strips we identified the coastline dating from the Rornan period. former beach boundaries associated with the vertical movements of the earth's surface caused by seismic-volcanic activity, and the variations in sea level following the climactic changes throughout the last 15000 years. The UNIBOOM system was used for this part of the programme, perinittiilg the identification of several coastlines and submerged beaches lying at different levels. The use of a modern Side Scan Sonar - for the morphological invesdgation of the sea bed - in a zone which had been the object of numerous archaeological surveys in the past, permitted previously unknown structures near the Lacuus Baianus to be identified. Other features worth pointing out include the operating speed of the system (15000 m'lfirst minute approx and its observation capacity in cloudy waters compared to visible radiation, as well as its ability to penetrate thin layers of mud which generally impede direct underwater observation.

  13. A review of integrated geophysical investigations from archaeological and cultural sites under encroaching urbanisation in İzmir, Turkey

    Science.gov (United States)

    Drahor, Mahmut Göktuğ

    In the new millennium, globalisation, and with it urbanisation, has been expanding as a consequence of economic development throughout the world. Urbanisation is a major social problem, not only for developing countries but also for developed countries. Urbanisation also has a major impact on archaeological sites and cultural heritages in urbanised zones. Non-destructive investigation techniques, such as geophysics, which uses remote sensing, and is non-invasive, are of great importance in urban areas. We are now capable of solving urbanisation-related problems, and these techniques reduce the cost of projects at urbanised sites. Geophysics has increased the possibilities of new applications in determining intensive urbanisation effects in earth science. Geophysics deals with numerous physical variations such as electricity, electromagnetism, magnetics, acoustics, gravity and radioactivity. There are numerous ways geophysics can be applied in archaeological and cultural heritage studies. In addition the hazard mitigation, infrastructure investigation, waste management, water supply, urban gateways and other factors are documented by geophysics. In recent years, archaeological sites under the encroachment of urbanisation have been investigated on numerous occasions using non-invasive geophysical techniques, allowing parameters such as the depth, dimension and extension of targets to be clearly determined. The term “urban geophysics” has recently been seen in various references related to geophysics and other earth science studies. This study reviews the results of geophysical investigations carried out at important archaeological sites under encroaching urbanisation in the city of İzmir, Turkey.

  14. New Geophysical Observatory in Uruguay

    Science.gov (United States)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.

    2013-05-01

    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  15. Geophysical fields of a megalopolis

    Science.gov (United States)

    Spivak, A. A.; Loktev, D. N.; Rybnov, Yu. S.; Soloviev, S. P.; Kharlamov, V. A.

    2016-12-01

    A description of the Center of Geophysical Monitoring for Systematic Investigation of Negative Consequences for the Human Environment and Infrastructure of the City of Moscow Resulting from Natural and Technogenic Factors, which is part of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (IGD RAS), is presented. The results of synchronous observations of the seismic vibrations, electric and acoustic fields, and atmospheric meteoparameters performed at the Center and in the Mikhnevo Geophysical observatory of IGD RAS situated outside of the zone of the Moscow influence are examined. It is shown that the megalopolis influence consists of an increase in the amplitudes of the physical fields, a change in their spectral composition, and the violation of natural periodicities. A technogenic component that has a considerable impact on the natural physical processes in the surface atmosphere is an important factor that characterizes a megalopolis.

  16. Geophysical interpretation using integral equations

    CERN Document Server

    Eskola, L

    1992-01-01

    Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu­ med to have a back...

  17. Geophysical monitoring technology for CO2 sequestration

    Science.gov (United States)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  18. [Stereotypic movements].

    Science.gov (United States)

    Fernández-Alvarez, E

    2003-02-01

    Stereotypic movements are repetitive patterns of movement with certain peculiar features that make them especially interesting. Their physiopathology and their relationship with the neurobehavioural disorders they are frequently associated with are unknown. In this paper our aim is to offer a simple analysis of their dominant characteristics, their differentiation from other processes and a hypothesis of the properties of stereotypic movements, which could all set the foundations for research work into their physiopathology.

  19. Geophysical examination of coal deposits

    Science.gov (United States)

    Jackson, L. J.

    1981-04-01

    Geophysical techniques for the solution of mining problems and as an aid to mine planning are reviewed. Techniques of geophysical borehole logging are discussed. The responses of the coal seams to logging tools are easily recognized on the logging records. Cores for laboratory analysis are cut from selected sections of the borehole. In addition, information about the density and chemical composition of the coal may be obtained. Surface seismic reflection surveys using two dimensional arrays of seismic sources and detectors detect faults with throws as small as 3 m depths of 800 m. In geologically disturbed areas, good results have been obtained from three dimensional surveys. Smaller faults as far as 500 m in advance of the working face may be detected using in seam seismic surveying conducted from a roadway or working face. Small disturbances are detected by pulse radar and continuous wave electromagnetic methods either from within boreholes or from underground. Other geophysical techniques which explicit the electrical, magnetic, gravitational, and geothermal properties of rocks are described.

  20. Rapid Geophysical Surveyor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2{1/2} in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques.

  1. SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics

    Science.gov (United States)

    Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.

    2005-12-01

    SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including

  2. GEOPHYSICS

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132231 Chen Li(State Key Laboratory of Marine Geology,Tongji University,Shanghai200092,China);Xue Mei Group Velocity Tomography of Rayleigh Waves in South China Sea and Its Geodynamic Implications(Acta Seismologica Sinica,ISSN0253-3782,CN11-2021/P,34(6),2012,p.754-772,9illus.,46refs.,with English abstract)Key words:Rayleigh waves,velocity structure,South China Sea

  3. Magnetotellurics as a multiscale geophysical exploration method

    Science.gov (United States)

    Carbonari, Rolando; D'Auria, Luca; Di Maio, Rosa; Petrillo, Zaccaria

    2016-04-01

    Magnetotellurics (MT) is a geophysical method based on the use of natural electromagnetic signals to define subsurface electrical resistivity structure through electromagnetic induction. MT waves are generated in the Earth's atmosphere and magnetosphere by a range of physical processes, such as magnetic storms, micropulsations, lightning activity. Since the underground MT wave propagation is of diffusive type, the longer is the wavelength (i.e. the lower the wave frequency) the deeper will be the propagation depth. Considering the frequency band commonly used in MT prospecting (10-4 Hz to 104 Hz), the investigation depth ranges from few hundred meters to hundreds of kilometers. This means that magnetotellurics is inherently a multiscale method and, thus, appropriate for applications at different scale ranging from aquifer system characterization to petroleum and geothermal research. In this perspective, the application of the Wavelet transform to the MT data analysis could represent an excellent tool to emphasize characteristics of the MT signal at different scales. In this note, the potentiality of such an approach is studied. In particular, we show that the use of a Discrete Wavelet (DW) decomposition of measured MT time-series data allows to retrieve robust information about the subsoil resistivity over a wide range of spatial (depth) scales, spanning up to 5 orders of magnitude. Furthermore, the application of DWs to MT data analysis has proven to be a flexible tool for advanced data processing (e.g. non-linear filtering, denoising and clustering).

  4. A short note on the pressure-depth conversion for geophysical interpretation

    DEFF Research Database (Denmark)

    Cammarano, Fabio

    2013-01-01

    Databases of material properties based on mineral physics are rapidly becoming an essential tool for interpreting geophysical observations. The conversion of physical properties from pressure to depth is usually based on preliminary reference Earth model. We quantify the error that is introduced...

  5. THE LONG TIME BEHAVIORS OF NON-AUTONOMOUS EVOLUTION SYSTEM DESCRIBING GEOPHYSICAL FLOW WITHIN THE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper,the long time behaviors of non-autonomous evolution system describing geophysical flow within the earth are studied.The uniqueness and existence of the solution to the evolution system and the existence of uniform attractor are proven.Moreover,the upper bounds of the uniform attractor's hausdorff and Fractal dimensions are obtained.

  6. Polar Misunderstandings: Earth's Dynamic Dynamo

    Science.gov (United States)

    DiSpezio, Michael A.

    2011-01-01

    This article discusses the movement of Earth's north and south poles. The Earth's poles may be a bit more complex and dynamic than what many students and teachers believe. With better understanding, offer them up as a rich landscape for higher-level critical analysis and subject integration. Possible curriculum tie-ins include magnets, Earth…

  7. ``An Earth-Shaking Experience''

    Science.gov (United States)

    Achenbach, Joel

    2005-03-01

    Last month's annual meeting of the American Geophysical Union in San Francisco drew an estimated 11,000 scientists, teachers, journalists and geophysics groupies. The schedule of talks could be found in a bound volume as thick as a phone book. You never see a geophysicist in ordinary life, but apparently the world is crawling with them. They came to talk about everything from the ozone layer to the big wad of iron at the center of the Earth. Also about other planets. And magnetic fields. Solar wind. Water on Mars. To be at this convention was to be immersed to the eyebrows in scientific knowledge. It is intellectually fashionable to fetishize the unknown, but at AGU, a person will get the opposite feeling-that science is a voracious, relentless and tireless enterprise, and that soon there may not remain on this Earth an unturned stone.

  8. Reports on crustal movements and deformations

    Science.gov (United States)

    Cohen, S. C.; Peck, T.

    1981-01-01

    Studies of tectonic plate motions, regional crustal deformations, strain accumulation and release, deformations associated with earthquakes and fault motion, and micro-plate motion, were collected and are summarized. To a limited extent, papers dealing with global models of current plate motions and crustal stress are included. The data base is restricted to articles appearing in reveiwed technical journals during the years 1970-1980. The major journals searched include: Journal of Geophysical Research (solid earth), Tectonophysics, Bulletin of the Seismological Society of America, Geological Society of America Bulletin, Geophysical Journal of the Royal Astronomical Society, and the Journal of Geology.

  9. MANIFESTATION OF FAULT ZONES IN GEOPHYSICAL FIELDS

    Directory of Open Access Journals (Sweden)

    A. A. Spivak

    2015-09-01

    Full Text Available Geophysical fields influenced by tectonics faults were observed, and instrumental observation results are analysed in the article. It is shown that fault zones are characterized by geophysical fields that are more variable than those in midmost segments of crustal blocks, more intense responses to weak external impacts such as lunar and solar tides and atmospheric pressure variations, and intensive relaxation. Transformation of energy between geophysical fields varying in origin takes place mainly in the fault zones.

  10. Bringing 3D Printing to Geophysical Science Education

    Science.gov (United States)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  11. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  12. SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    RUCKER DF; MYERS DA

    2011-10-04

    This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

  13. Geophysical characterization of subsurface barriers

    Energy Technology Data Exchange (ETDEWEB)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier.

  14. Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones

    Energy Technology Data Exchange (ETDEWEB)

    Haase, C.S.; King, H.L.

    1986-01-01

    Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs.

  15. Press conference bring excitement of geophysical research to the public

    Science.gov (United States)

    Leifert, Harvey

    “A Flare to Remember.” “Starbucks for Starfish.” “Earth's Rotation Slows for El Niño.” What do these catchy headlines have in common? They all resulted from presentations at AGU's Spring Meeting in Boston, Mass. Yes, geophysical science can be big news when presented in a way that is interesting to general audiences.Proof? Well, the “Flare to Remember” headline (in the Dallas Morning News) reported the discovery, via the SOHO spacecraft, that a solar flare had produced, deep inside the Sun, seismic disturbances of a magnitude never experienced on Earth. Researchers Valentina Zharkova of Glasgow University and Alexander Kosovichev of Stanford gave media representatives a preview of their session, supported by visual aids, in the AGU press briefing room.

  16. Role of the Earth's rotation in global geodynamics

    Science.gov (United States)

    Pavlenkova, N.

    2009-04-01

    Role of the Earth's rotation in the global geodynamics. Pavlenkova N.I., Institute of Physics of the Earth of Russian Academy of Science, B.Grusinskaja 10, 123995, Moscow, ninapav@ifz.ru Geophysical studies show several regularities in Earth's structures which are not explained by the traditional global tectonics conceptions. (1) The surface of the Earth, as well as a surface of other planets, precisely shares on two hemispheres with a different relief and structure of an earth's crust: on the Pacific (oceanic) hemisphere with the lowered relief and a thin oceanic crust, and a continental hemisphere with prevalence of the raised relief and a thick continental crust. (2) There is a regular system of global lineaments and ring structures which are stretched on thousand kilometers, covering continents and oceans. As one of examples it is possible to result system of rift zones (mid-oceanic ridges), forming a ring around of the Antarctica with rift branches from it through everyone of 90 degrees. (3) Asymmetry with a relief of a day time surface when to each raised structure there corresponds the lowered surface on the opposite side of globe is observed. (4) The continental and oceanic mantles have different compositions and deep roots (>300 km) beneath the continents are prominent as regions with relatively high seismic velocities. There are regular connections between geological structures and deep mantle roots. (5) The classical lithosphere-asthenosphere model is not confirmed by seismic data. The asthenosphere can not be traced as a continuous layer, there are disconnected lenses (asthenolenses) even beneath mid-oceanic ridges. Significant horizontal movements of the lithosphere, as proposed by the global plate tectonics, would destroy all these regularities and crust-mantle interaction. To make an agreement between all observed data, the fluids-rotation hypothesis is proposed. The hypothesis supposes two main energy sources of the global tectonics: the

  17. Earth Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  18. Thermal Energy Generation in the Earth

    CERN Document Server

    Mayer, Frederick J

    2014-01-01

    We show that a recently introduced class of electromagnetic composite particles can explain some discrepancies in observations involving heat and helium released from the earth. Energy release during the formation of the composites and subsequent nuclear reactions involving the composites are described that can quantitatively account for the discrepancies and are expected to have implications in other areas of geophysics, for example, a new picture of heat production and volcanism in the earth is presented.

  19. Agricultural Geophysics: Past, present, and future

    Science.gov (United States)

    Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...

  20. Numerical simulation in applied geophysics

    CERN Document Server

    Santos, Juan Enrique

    2016-01-01

    This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the applications. The partial differential equations describing the propagation of waves in Biot media are solved using the Finite Element Method (FEM). Waves propagating in a Biot medium suffer attenuation and dispersion effects. In particular the fast compressional and shear waves are converted to slow diffusion-type waves at mesoscopic-scale heterogeneities (on the order of centimeters), effect usually occurring in the seismic range of frequencies. In some cases, a Biot medium presents a dense set of fractures oriented in preference directions. When the average distance between fractures is much smaller than the wavelengths of the travelling fast compressional and shear waves, the medium behaves as an effective viscoelastic an...

  1. Goddard Geophysical and Astronomical Observatory

    Science.gov (United States)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  2. Exotic geophysical phenomena observed in an environmental neutron flux study using EAS PRISMA detectors

    Directory of Open Access Journals (Sweden)

    Alekseenko Victor

    2017-01-01

    Full Text Available Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.

  3. Energy and Movement

    CERN Document Server

    90, Sol

    2011-01-01

    Updated for 2011, Energy and Movement, is one book in the Britannica Illustrated Science Library Series that covers today's most popular science topics, from digital TV to microchips to touchscreens and beyond. Perennial subjects in earth science, life science, and physical science are all explored in detail. Amazing graphics-more than 1,000 per title-combined with concise summaries help students understand complex subjects. Correlated to the science curriculum in grades 5-9, each title also contains a glossary with full definitions for vocabulary.

  4. Agricultural geophysics: Past/present accomplishments and future advancements

    Science.gov (United States)

    Geophysical methods have become an increasingly valuable tool for application within a variety of agroecosystems. Agricultural geophysics measurements are obtained at a wide range of scales and often exhibit significant variability both temporally and spatially. The three geophysical methods predomi...

  5. Mixed Movements

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2010-01-01

    Mixed Movements is a research project engaged in performance-based architectural drawing. Architectonic implementation questions relations between the human body and a body of architecture by the different ways we handle drawing materials. A drawing may explore architectonic problems at other...... levels than those related to building, and this exploration is a special challenge and competence implicit artistic development work. The project Mixed Movements generates drawing-material, not primary as representation, but as a performance-based media, making the body being-in-the-media felt and appear...... as possible operational moves....

  6. Geophysics and Seismic Hazard Reduction

    Institute of Scientific and Technical Information of China (English)

    YuGuihua; ZhouYuanze; YuSheng

    2003-01-01

    The earthquake is a natural phenomenon, which often brings serious hazard to the human life and material possession. It is a physical process of releasing interior energy of the earth, which is caused by interior and outer forces in special tectonic environment in the earth, especially within the lithosphere. The earthquake only causes casualty and loss in the place where people inhabit. Seismic hazard reduction is composed of four parts as seismic prediction, hazard prevention and seismic engineering, seismic response and seismic rescuing, and rebuilding.

  7. Striking movements

    DEFF Research Database (Denmark)

    Dahl, Sofia

    2011-01-01

    Like all music performance, percussion playing requires high control over timing and sound properties. Specific to percussionists, however, is the need to adjust the movement to different instruments with varying physical properties and tactile feedback to the player. Furthermore, the well define...

  8. Chloroplast movement.

    Science.gov (United States)

    Wada, Masamitsu

    2013-09-01

    Chloroplast movement is important for plant survival under high light and for efficient photosynthesis under low light. This review introduces recent knowledge on chloroplast movement and shows how to analyze the responses and the moving mechanisms, potentially inspiring research in this field. Avoidance from the strong light is mediated by blue light receptor phototropin 2 (phot2) plausibly localized on the chloroplast envelop and accumulation at the week light-irradiated area is mediated by phot1 and phot2 localized on the plasma membrane. Chloroplasts move by chloroplast actin (cp-actin) filaments that must be polymerized by Chloroplast Unusual Positioning1 (CHUP1) at the front side of moving chloroplast. To understand the signal transduction pathways and the mechanism of chloroplast movement, that is, from light capture to motive force-generating mechanism, various methods should be employed based on the various aspects. Observation of chloroplast distribution pattern under different light condition by fixed cell sectioning is somewhat an old-fashioned technique but the most basic and important way. However, most importantly, precise chloroplast behavior during and just after the induction of chloroplast movement by partial cell irradiation using an irradiator with either low light or strong light microbeam should be recorded by time lapse photographs under infrared light and analyzed. Recently various factors involved in chloroplast movement, such as cp-actin filaments and CHUP1, could be traced in Arabidopsis transgenic lines with fluorescent protein tags under a confocal laser scanning microscope (CLSM) and/or a total internal reflection fluorescence microscope (TIRFM). These methods are listed and their advantages and disadvantages are evaluated.

  9. Critical zone architecture and processes: a geophysical perspective

    Science.gov (United States)

    Holbrook, W. S.

    2016-12-01

    The "critical zone (CZ)," Earth's near-surface layer that reaches from treetop to bedrock, sustains terrestrial life by storing water and producing nutrients. Despite is central importance, however, the CZ remains poorly understood, due in part to the complexity of interacting biogeochemical and physical processes that take place there, and in part due to the difficulty of measuring CZ properties and processes at depth. Major outstanding questions include: What is the architecture of the CZ? How does that architecture vary across scales and across gradients in climate, lithology, topography, biology and regional states of stress? What processes control the architecture of the CZ? At what depth does weathering initiate, and what controls the rates at which it proceeds? Based on recent geophysical campaigns at seven Critical Zone Observatory (CZO) sites and several other locations, a geophysical perspective on CZ architecture and processes is emerging. CZ architecture can be usefully divided into four layers, each of which has distinct geophysical properties: soil, saprolite, weathered bedrock and protolith. The distribution of those layers across landscapes varies depending on protolith composition and internal structure, topography, climate (P/T) and the regional state of stress. Combined observations from deep CZ drilling, geophysics and geochemistry demonstrate that chemical weathering initiates deep in the CZ, in concert with mechanical weathering (fracturing), as chemical weathering appears concentrated along fractures in borehole walls. At the Calhoun CZO, the plagioclase weathering front occurs at nearly 40 m depth, at the base of a 25-m-thick layer of weathered bedrock. The principal boundary in porosity, however, occurs at the saprolite/weathered bedrock boundary: porosity decreases over an order of magnitude, from 50% to 5% over an 8-m-thick zone at the base of saprolite. Porosity in weathered bedrock is between 2-5%. Future progress will depend on (1

  10. Cross-disciplinary education: The use of interactive case studies to teach geophysical exploration

    Science.gov (United States)

    Boyd, Thomas M.; Romig, Phillip R.

    1997-06-01

    Cross-disciplinary training in the earth sciences is a difficult issue that has elicited concerns in academia and industry. Many problems associated with cross-disciplinary training stem from the fact that the earth sciences have evolved as a collection of loosely related, poorly coordinated specialties with little communication or interaction between them. As a result, when asked to teach across disciplinary boundaries, our instinctive reaction is to provide a watered-down version of the details that we teach our own students rather than the conceptual understanding that will help others work with us. This makes it difficult for earth scientists to provide the public with a coherent education in the fundamentals of earth science, and it has impeded the development of a common foundation for interaction between earth-science specialists. We have designed a computer-based learning environment for use in cross-disciplinary, earth-science education. This environment entails more than simply providing traditional course materials in an electronic form. Rather, the relevant material is conveyed through the use of a generalization of the case-study approach we refer to as the interactive case study approach. Through the use of computer simulations, students are allowed to interact with all aspects of the case, thereby helping them to become comfortable with the thought processes employed by a specialist and develop an intuitive understanding of the underlying physics. This educational model has been applied to the development of an introductory course in geophysical exploration geared toward upper-level undergraduate students not majoring in geophysics. The cases used in the course are couched in terms of a request for bid (RFB) requiring the use of a specific geophysical technique to solve a specific geologic or engineering problem. In responding to this RFB, students must write proposals, design geophysical surveys, interpret data derived from these surveys, and report

  11. Geotechnical applications of geophysics in coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Hatherly, P. [CMTE/CSIRO Exploration and Mining, North Ryde, NSW (Australia)

    2002-07-01

    In coal mining, geophysical techniques have an established application in determining the location of seam boundaries ahead of the face so that underground mines can be planned to avoid any geological structures that might disrupt production. Geophysics can also be used in geotechnical studies to determine the in situ properties of the rock mass and the response of the rock mass to the mining. The use of geophysical logs and microseismic monitoring in these geotechnical applications are discussed in this paper. 16 refs., 4 figs.

  12. Nonlinear regularization with applications in geophysics

    DEFF Research Database (Denmark)

    Berglund, Eva Ann-Charlotte

    2002-01-01

    integral equation, as well as for solving the two geophysical inverse problems considered in this thesis. We compare the IRGN method, the Levenberg-Marquardt method, the trust-region method and the inexact Gauss-Newton method for solving the nonlinear Hammerstein integral equation, and for solving two...... geophysical inverse problems: a seismic tomography problem, and a geoelectrical sounding problem. We found that all four methods gave reasonable solutions for the two geophysical problem. However, the inexact Gauss-Newton method converged faster than the others for the seismic tomography problem...

  13. Nonlinear regularization with applications in geophysics

    DEFF Research Database (Denmark)

    Berglund, Eva Ann-Charlotte

    2002-01-01

    integral equation, as well as for solving the two geophysical inverse problems considered in this thesis. We compare the IRGN method, the Levenberg-Marquardt method, the trust-region method and the inexact Gauss-Newton method for solving the nonlinear Hammerstein integral equation, and for solving two...... geophysical inverse problems: a seismic tomography problem, and a geoelectrical sounding problem. We found that all four methods gave reasonable solutions for the two geophysical problem. However, the inexact Gauss-Newton method converged faster than the others for the seismic tomography problem...

  14. Expanding earth

    Energy Technology Data Exchange (ETDEWEB)

    Carey, S.W.

    1976-01-01

    Arguments in favor of an expanding earth are presented. The author believes that the theory of plate tectonics is a classic error in the history of geology. The case for the expanding earth is organized in the following way: introductory review - face of the earth, development of expanding earth concept, necessity for expansion, the subduction myth, and definitions; some principles - scale of tectonic phenomena, non-uniformitarianism, tectonic profile, paleomagnetism, asymmetry of the earth, rotation of the earth, and modes of crustal extension; regional studies - western North America, Central America, South-East Asia, and the rift oceans; tests and cause of expansion. 824 references, 197 figures, 11 tables. (RWR)

  15. Practices to enable the geophysical research spectrum: from fundamentals to applications

    Science.gov (United States)

    Kang, S.; Cockett, R.; Heagy, L. J.; Oldenburg, D.

    2016-12-01

    In a geophysical survey, a source injects energy into the earth and a response is measured. These physical systems are governed by partial differential equations and their numerical solutions are obtained by discretizing the earth. Geophysical simulations and inversions are tools for understanding physical responses and constructing models of the subsurface given a finite amount of data. SimPEG (http://simpeg.xyz) is our effort to synthesize geophysical forward and inverse methodologies into a consistent framework. The primary focus of our initial development has been on the electromagnetics (EM) package, with recent extensions to magnetotelluric, direct current (DC), and induced polarization. Across these methods, and applied geophysics in general, we require tools to explore and build an understanding of the physics (behaviour of fields, fluxes), and work with data to produce models through reproducible inversions. If we consider DC or EM experiments, with the aim of understanding responses from subsurface conductors, we require resources that provide multiple "entry points" into the geophysical problem. To understand the physical responses and measured data, we must simulate the physical system and visualize electric fields, currents, and charges. Performing an inversion requires that many moving pieces be brought together: simulation, physics, linear algebra, data processing, optimization, etc. Each component must be trusted, accessible to interrogation and manipulation, and readily combined in order to enable investigation into inversion methodologies. To support such research, we not only require "entry points" into the software, but also extensibility to new situations. In our development of SimPEG, we have sought to use leading practices in software development with the aim of supporting and promoting collaborations across a spectrum of geophysical research: from fundamentals to applications. Designing software to enable this spectrum puts unique

  16. Gracious Movement

    Directory of Open Access Journals (Sweden)

    Lev Kreft

    2012-07-01

    Full Text Available In 1984 Christopher Cordner offered a critical view on theories of graceful movement in sport developed by Ng. G. Wulk, David Best and Joseph Kupfer. In 2001 Paul Davis criticized his view. Cordner responded, rejecting all the criticism. More than a century before, Herbert Spencer and Jean-Marie Guyau had a similar controversy over grace. Both exchanges of opinion involve three positions: that grace is the most efficient movement and therefore something quantitative and measurable; that grace is expression of the wholeness of person and the world; and that grace is something which neither science nor philosophy can explain. To clarify these conflicting issues, this article proposes to examine the history of the notion which goes back to the Latin gratia and has root in the Ancient Greek charis, and to apply the concepts of cultural anchor and thin coherence, following John R. Searle’s explanation that we produce epistemically objective accounts of ontologically subjective reality.

  17. Antinuclear movement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Hee; Im, Jaeg Yeong

    1988-08-15

    This book is for antinuclear movement. So, this book introduces many articles on nuclear issues of Asia and the pacific area. The titles of articles are the crusades of Reagan by Werner Plaha, contending between super powers in Europe by Alva Reimer Myrdal, claims of resistance by Daniel Ellsberg, nuclear and the Korean Peninsula by Go, Seung Woo, Liberation but of belief of nuclear weapon by Lee, Young Hee and nuclear weapon in Korea by peter Haze.

  18. COLLADA Computing for Geophysical Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The COLLADATM open industry XML standard for 3D Graphics Exchange is applied for representation, combination and analysis of geophysical information from disparate...

  19. A geological and geophysical data collection system

    Digital Repository Service at National Institute of Oceanography (India)

    Sudhakar, T.; Afzulpurkar, S.

    A geological and geophysical data collection system using a Personal Computer is described below. The system stores data obtained from various survey systems typically installed in a charter vessel and can be used for similar applications on any...

  20. Exploring the oceans- The geophysical way

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.

    The evolution of the eastern continental margin of India (ECMI), the Bengal Fan and the Central Indian Basin (CIB) is a consequence of the breakup of India from the eastern Gondwanaland in Late Jurassic to Early Cretaceous. Recent marine geophysical...

  1. The Geophysical Database Management System in Taiwan

    Directory of Open Access Journals (Sweden)

    Tzay-Chyn Shin

    2013-01-01

    Full Text Available The Geophysical Database Management System (GDMS is an integrated and web-based open data service which has been developed by the Central Weather Bureau (CWB, Taiwan, ROC since 2005. This service went online on August 1, 2008. The GDMS provides six types of geophysical data acquired from the Short-period Seismographic System, Broadband Seismographic System, Free-field Strong-motion Station, Strong-motion Building Array, Global Positioning System, and Groundwater Observation System. When utilizing the GDMS website, users can download seismic event data and continuous geophysical data. At present, many researchers have accessed this public platform to obtain geophysical data. Clearly, the establishment of GDMS is a significant improvement in data sorting for interested researchers.

  2. Physicist + Geologist points to Geophysics Course

    Science.gov (United States)

    Julian, Glenn M.; Stueber, Alan M.

    1974-01-01

    A two-quarter introductory course in geophysics at the advanced undergraduate/beginning graduate level is described. An outline of course content is provided, and mechanics of instruction are discussed. (DT)

  3. Air Force Geophysics Laboratory Magnetometer Network

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This file is comprised of the variation one minute values of the geomagnetic components X, Y and Z. These data were calculated by the Air Force Geophysics Laboratory...

  4. A field guide to geophysics in archaeology

    CERN Document Server

    Oswin, John

    2009-01-01

    Geophysics operations in archaeology have become well known through exposure on television. However, the technique is presented as the action of specialists and something of a mystery, where people walk about with strange contraptions, and results appear from a computer. This is not the case, however. Some scientific knowledge is needed in order to understand how the machines work and what they detect but otherwise it is only necessary to know how to handle the instruments, how to survey a field and how to interpret the computer results. This book provides all the relevant information. It explains geophysics operations in archaeology, describes the science that gives the soil properties to measure and the means by which the instruments make their measurements. Dr John Oswin is in charge of the geophysics operation of the Bath and Camerton Archaeological Society and his work has recently been the subject of a television programme. He has taught many students how to use geophysical equipment.

  5. Tabletop Models for Electrical and Electromagnetic Geophysics.

    Science.gov (United States)

    Young, Charles T.

    2002-01-01

    Details the use of tabletop models that demonstrate concepts in direct current electrical resistivity, self-potential, and electromagnetic geophysical models. Explains how data profiles of the models are obtained. (DDR)

  6. Marine geophysical data management and presentation system

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.

    The Geophysical Data Management and Presentation System (GPDMPS) constitutes an integral part of the large Geological Oceanographic Database (GODBASE) which is under development at the Indian National Oceanographic Data Centre (INODC...

  7. Magma genesis, plate tectonics, and chemical differentiation of the Earth

    OpenAIRE

    Wyllie, Peter J.

    1988-01-01

    Magma genesis, migration, and eruption have played prominent roles in the chemical differentiation of the Earth. Plate tectonics has provided the framework of tectonic environments for different suites of igneous rocks and the dynamic mechanisms for moving masses of rock into melting regions. Petrology is rooted in geophysics. Petrological and geophysical processes are calibrated by the phase equilibria of the materials. The geochemistry of basalts and mantle xenoliths demonstrates that the m...

  8. The remote sensing needs of Arctic geophysics

    Science.gov (United States)

    Campbell, W. J.

    1970-01-01

    The application of remote sensors for obtaining geophysical information of the Arctic regions is discussed. Two significant requirements are to acquire sequential, synoptic imagery of the Arctic Ocean during all weather and seasons and to measure the strains in the sea ice canopy and the heterogeneous character of the air and water stresses acting on the canopy. The acquisition of geophysical data by side looking radar and microwave sensors in military aircraft is described.

  9. Brief Introduction of Sichuan Geophysical Company

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Founded in 1956,Sichuan Geophysicai Company (SCGC) is the largest engineering technological service enterprise for petroleum and natural gas seismic exploration in the westem part of China,which is integrated in acquisition,processing and interpretation of seismic data as well as technological deyelopment. Iris also a member of International Asociation of Geophysical Contractors, a member of Association of CNPC Geophysical Contractors and a survey unit with qualification of A level authenticated by China National Survey & Mapping Bureau.

  10. Dictionary of geophysics, astrophysics, and astronomy

    CERN Document Server

    Matzner, Richard A

    2001-01-01

    The Dictionary of Geophysics, Astrophysics, and Astronomy provides a lexicon of terminology covering fields such as astronomy, astrophysics, cosmology, relativity, geophysics, meteorology, Newtonian physics, and oceanography. Authors and editors often assume - incorrectly - that readers are familiar with all the terms in professional literature. With over 4,000 definitions and 50 contributing authors, this unique comprehensive dictionary helps scientists to use terminology correctly and to understand papers, articles, and books in which physics-related terms appear.

  11. Integrated geophysical surveys on railroads in permafrost areas

    Institute of Scientific and Technical Information of China (English)

    A Ivanov; S Klepikova; M Shirobokov; A Urusova; A Savin

    2013-01-01

    The zones of thawed ground in the permafrost area are most dangerous from engineer-geologist effect point of view. Detection of such zones, as making forecast of their movement is the main task of engineer-geologist survey been held in railway industry. This paper presents general issues concerning railway construction and operation in permafrost areas. Comprehensive geophysical methods to monitor the development of thawed soils are considered in detail. The main physical parameters which help define permafrost and thawed soil patches are described. Author of current paper pointed out main factors, allowing predicting potential areas of development of thawed grounds. They offered set non-destructive methods:GPR investigations, seismic survey and elec-tric exploration. Whole sets of geophysical data:electric resistivity, velocity of S-wave and P-wave (and their correlation), allow us with high confidence specify characteristics and state of soil either under the line of road, or near it. At the same time the meth-od allows to predict direction of further development of thawed ground area.

  12. Computational movement analysis

    CERN Document Server

    Laube, Patrick

    2014-01-01

    This SpringerBrief discusses the characteristics of spatiotemporal movement data, including uncertainty and scale. It investigates three core aspects of Computational Movement Analysis: Conceptual modeling of movement and movement spaces, spatiotemporal analysis methods aiming at a better understanding of movement processes (with a focus on data mining for movement patterns), and using decentralized spatial computing methods in movement analysis. The author presents Computational Movement Analysis as an interdisciplinary umbrella for analyzing movement processes with methods from a range of fi

  13. Geophysical applications for levee assessment

    Science.gov (United States)

    Chlaib, Hussein Khalefa

    Levees are important engineering structures that build along the rivers to protect the human lives and shield the communities as well as agriculture lands from the high water level events. Animal burrows, subsurface cavities, and low density (high permeability) zones are weakness features within the levee body that increase its risk of failure. To prevent such failure, continuous monitoring of the structure integrity and early detection of the weakness features must be conducted. Application of Ground Penetrating Radar (GPR) and Capacitively Coupled Resistivity (CCR) methods were found to be very effective in assessing the levees and detect zones of weakness within the levee body. GPR was implemented using multi-frequency antennas (200, 400, and 900 MHz) with survey cart/wheel and survey vehicle. The (CCR) method was applied by using a single transmitter and three receivers. Studying the capability and the effectiveness of these methods in levee monitoring, subsurface weakness feature detection, and studying the structure integrity of levees were the main tasks of this dissertation. A set of laboratory experiments was conducted at the Geophysics Laboratory of the University of Arkansas at Little Rock (UALR) to analyze the polarity change in GPR signals in the presence of subsurface voids and water-filled cavities. Also three full scale field expeditions at the Big Dam Bridge (BDB) Levee, Lollie Levee, and Helena Levee in Arkansas were conducted using the GPR technique. This technique was effective in detecting empty, water, and clay filled cavities as well as small scale animal burrows (small rodents). The geophysical work at BDB and Lollie Levees expressed intensive subsurface anomalies which might decrease their integrity while the Helena Levee shows less subsurface anomalies. The compaction of levee material is a key factor affecting piping phenomenon. The structural integrity of the levee partially depends on the density/compaction of the soil layers. A

  14. Geophysical observations at cavity collapse

    Science.gov (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  15. Geophysics of Small Planetary Bodies

    Science.gov (United States)

    Asphaug, Erik I.

    1998-01-01

    As a SETI Institute PI from 1996-1998, Erik Asphaug studied impact and tidal physics and other geophysical processes associated with small (low-gravity) planetary bodies. This work included: a numerical impact simulation linking basaltic achondrite meteorites to asteroid 4 Vesta (Asphaug 1997), which laid the groundwork for an ongoing study of Martian meteorite ejection; cratering and catastrophic evolution of small bodies (with implications for their internal structure; Asphaug et al. 1996); genesis of grooved and degraded terrains in response to impact; maturation of regolith (Asphaug et al. 1997a); and the variation of crater outcome with impact angle, speed, and target structure. Research of impacts into porous, layered and prefractured targets (Asphaug et al. 1997b, 1998a) showed how shape, rheology and structure dramatically affects sizes and velocities of ejecta, and the survivability and impact-modification of comets and asteroids (Asphaug et al. 1998a). As an affiliate of the Galileo SSI Team, the PI studied problems related to cratering, tectonics, and regolith evolution, including an estimate of the impactor flux around Jupiter and the effect of impact on local and regional tectonics (Asphaug et al. 1998b). Other research included tidal breakup modeling (Asphaug and Benz 1996; Schenk et al. 1996), which is leading to a general understanding of the role of tides in planetesimal evolution. As a Guest Computational Investigator for NASA's BPCC/ESS supercomputer testbed, helped graft SPH3D onto an existing tree code tuned for the massively parallel Cray T3E (Olson and Asphaug, in preparation), obtaining a factor xIO00 speedup in code execution time (on 512 cpus). Runs which once took months are now completed in hours.

  16. Early planetary differentiation: Geophysical consequences

    Science.gov (United States)

    Schubert, G.

    1992-01-01

    Differentiation of a planet can have profound consequences for its structure and thermal evolution, including core formation and crystal growth. Recent theories for the origin and evolution of the terrestrial planets and the Moon have all these bodies forming hot and cooling thereafter. Early core formation, and in the cases of Earth and Moon, a deep magma ocean possibly encompassing the entire mantle are characteristic features of these models. Secular cooling of Mars from a hot origin and cooling of Moon from a hot initial state with a deep magma ocean have been criticized on the basis of their tectonic implications. The cases of Mars and the Moon are discussed.

  17. Data on the Earth's Magnetic Field and its Secular Change since 1800

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information on the past and present orientation of the Earth's magnetic field is available from the National Geophysical Data Center (NGDC) which serves as the...

  18. Exoplanetary Geophysics -- An Emerging Discipline

    CERN Document Server

    Laughlin, Gregory

    2015-01-01

    Thousands of extrasolar planets have been discovered, and it is clear that the galactic planetary census draws on a diversity greatly exceeding that exhibited by the solar system's planets. We review significant landmarks in the chronology of extrasolar planet detection, and we give an overview of the varied observational techniques that are brought to bear. We then discuss the properties of the currently known distribution, using the mass-period diagram as a guide to delineating hot Jupiters, eccentric giant planets, and a third, highly populous, category that we term "ungiants", planets having masses less than 30 Earth masses and orbital periods less than 100 days. We then move to a discussion of the bulk compositions of the extrasolar planets. We discuss the long-standing problem of radius anomalies among giant planets, as well as issues posed by the unexpectedly large range in sizes observed for planets with masses somewhat greater than Earth's. We discuss the use of transit observations to probe the atmo...

  19. Wavelet correlations to reveal multiscale coupling in geophysical systems

    CERN Document Server

    Casagrande, Erik; Miralles, Diego; Entekhabi, Dara; Molini, Annalisa

    2015-01-01

    The interactions between climate and the environment are highly complex. Due to this complexity, process-based models are often preferred to estimate the net magnitude and directionality of interactions in the Earth System. However, these models are based on simplifications of our understanding of nature, thus are unavoidably imperfect. Conversely, observation-based data of climatic and environmental variables are becoming increasingly accessible over large scales due to the progress of space-borne sensing technologies and data-assimilation techniques. Albeit uncertain, these data enable the possibility to start unraveling complex multivariable, multiscale relationships if the appropriate statistical methods are applied. Here, we investigate the potential of the wavelet cross-correlation method as a tool for identifying multiscale interactions, feedback and regime shifts in geophysical systems. The ability of wavelet cross-correlation to resolve the fast and slow components of coupled systems is tested on syn...

  20. Summer Study Program in Geophysical Fluid Dynamics; Order and Disorder Planetary Dynamos

    Science.gov (United States)

    1988-05-01

    PARTICIPANTS Fast Dynamos in Chaotic Flow Bruce Bayly 109 Observational Constraints on Theories of the Geodynamo Jeremy BloxhamIl i I Nonlinear...1986. Phys. Rev. Lett., 57, No. 22, 2800. 4’ %.’ I- 111 , OBSERVATIONAL CONSTRAINTS ON THEORIES OF THE GEODYNAMO Jeremy Bloxham Department of Earth... geodynamo ", 1987 Summer Program in Geophysical Fluid Dynamics, Woods Hole Oceanographic Institu- tion, this volume. Bolton, E.W., 1985. "Problems in

  1. Geochemical and geophysical monitoring of thermal waters in Sloveniain relation to seismic activity

    OpenAIRE

    Dolenec, T.; Popit, A.; J. Vaupotic

    2005-01-01

    Pre-seismic related strains in the Earth s crust are the main cause of the observed geophysical and geochemical anomalies in ground waters preceding an earthquake. Posoc?je Region, situated along the Soc?a River, is one of the most seismically active areas of Slovenia. Our measuring stations close to the Posoc?je Region were installed in the thermal springs at Bled in 1998 and at Zatolmin in 1999. Since the beginning of our survey, radon concentration, electrical conductiv...

  2. Linking geodynamics and geophysical inversion with multiobservable probabilistic tomography

    Science.gov (United States)

    Afonso, Juan Carlos; Rawlinson, Nicholas; Yang, Yingjie; Zlotnik, Sergio; Ortega, Olga

    2017-04-01

    Our recent work (Afonso et al., 2013a,b; 2016) has demonstrated that multiobservable probabilistic tomography offers a sound method to characterize the thermochemical structure of the lithosphere and upper mantle and opens exiting new opportunities for deep-Earth imaging. In this method, all physical and chemical parameters defining an Earth model are linked together by fundamental thermodynamic relations, rather than by ad hoc empirical assumptions. This allows us to directly invert for the fundamental variables defining the physical state of the Earth's interior, namely, temperature, pressure, and major-element composition using a multitude of data sets with complementary strengths: body wave teleseismic data, surface wave phase dispersion data, gravity anomalies, long-wavelength gravity gradients, geoid height, receiver functions, absolute elevation, and surface heat flow data. In this probabilistic inversion scheme, traditional tomographic images of physical parameters such as 3-D seismic velocity become a "free" by-product. However, our tomographic images are, by design, also thermodynamically compatible with all the other inverted observables instead of satisfying one type of data set only. This is important, as any model deemed representative of the real physical state of the Earth's interior should pass the test of explaining other geophysical data sets as well. Inverting for "geodynamic" parameters such as viscosity or convection-related topography in 3D within this multiobservable probabilistic inverse framework is a major challenge, mainly due to the computational cost of solving the Stokes equations; we are not aware of previous attempts to do so with a probabilistic approach. However, recent advances on Reduced Order Modelling and Proper Generalized Decompositions have allowed us to overcome the traditional difficulties and create a probabilistic inversion framework that not only inverts for the physical state of the mantle but also for dynamic

  3. The Environmental Geophysics Web Site and Geophysical Decision Support System (GDSS)

    Science.gov (United States)

    This product provides assistance to project managers, remedial project managers, stakeholders, and anyone interested in on-site investigations or environmental geophysics. The APM is the beta version of the new U.S. EPA Environmental Geophysics Web Site which includes the Geophys...

  4. Using Grand Challenges For Innovative Teaching in Structural Geology, Geophysics, and Tectonics

    Science.gov (United States)

    McDaris, J. R.; Tewksbury, B. J.; Wysession, M. E.

    2012-12-01

    An innovative approach to teaching involves using the "Big Ideas" or "Grand Challenges" of a field, as determined by the research community in that area, as the basis for classroom activities. There have been several recent efforts in the areas of structural geology, tectonics, and geophysics to determine these Grand Challenges, including the areas of seismology ("Seismological Grand Challenges in Understanding Earth's Dynamic Systems"), mineral physics ("Unlocking the Building Blocks of the Planet"), EarthScope-related science ("Unlocking the Secrets of the North American Continent: An EarthScope Science Plan for 2010-2020"), and structural geology and tectonics (at the Structural Geology and Tectonics Forum held at Williams College in June, 2012). These research community efforts produced frameworks of the essential information for their fields with the aim of guiding future research. An integral part of this, however, is training the next generation of scientists, and using these Big Ideas as the basis for course structures and activities is a powerful way to make this happen. When activities, labs, and homeworks are drawn from relevant and cutting-edge research topics, students can find the material more fascinating and engaging, and can develop a better sense of the dynamic process of scientific discovery. Many creative ideas for incorporating the Grand Challenges of structural geology, tectonics, and geophysics in the classroom were developed at a Cutting Edge workshop on "Teaching Structural Geology, Geophysics, and Tectonics in the 21st Century" held at the University of Tennessee in July, 2012.

  5. Understanding the lithosphere in complex tectonic scenarios by integrating geophysical data: The Pyrenees case study

    Science.gov (United States)

    Campanyà, Joan; Fullea, Javier; Ledo, Juanjo; Queralt, Pilar; Marcuello, Alex; Liesa, Montserrat; Muñoz, Josep Anton

    2016-04-01

    Tectonic processes dominate the development of the outermost layer of the Earth over a timescale of millions of years. The locations where these processes take place provide a great opportunity for Earth scientists to study and understand the dynamics and properties of the lithosphere. The Pyrenees are a particular case of continental collision formed as a result of the collision between the Iberian and European plates, which caused the subduction of the Iberian lower crust below the European crust. Large amounts of geophysical data have been acquired in the area providing spectacular images of lithospheric subduction beneath the Western and Central Pyrenees, confirming the occurrence of this generally well-understood process. The Eastern Pyrenees, however, are a most puzzling part of the orogen and the geodynamical evolution of this area cannot be understood without the influence of the Neogene Mediterranean rifting, following the continental collision. The complexity of this area and the controversy of the geophysical results set in debate concepts well recognized in the other parts of the Pyrenees such as the subduction of the Iberian lower crust and the depth of the lithosphere-asthenosphere boundary. The aims of this study are to characterise major tectonic and geophysical variations along the Pyrenean mountain range at a lithospheric-scale and constrain the causes of the observed lateral variations. A preliminary model of the lithospheric configuration and dynamics, based on magnetotelluric geophysical results, has been developed and constrained using independent and available geophysical, geological and geochemical data. Computational petrology methods, using Litmod, were used for integrated modelling of all data.

  6. Geophysics: creativity and the archaeological imagination

    Directory of Open Access Journals (Sweden)

    Rose Ferraby

    2017-06-01

    Full Text Available This paper article explores archaeology as a creative practice by engaging specifically with the processes and visuals of geophysics. An area of archaeology considered highly scientific, a different way of looking reveals geophysics to be a poetic form of landscape study. The processes used to collect, alter, interpret and visualize visualise the data are creative acts that have parallels with more easily recognizable recognisable arts practices such as painting, drawing or photography. The paper article explores the ideas behind ways of seeing, the archaeological imagination, technologies and process. The section that follows explores the different elements of work and the ways of seeing and thinking they inspire. The paper article ends by showcasing how other arts practices can give alternative perspectives on geophysics and how these can in turn influence fine art.

  7. Introduction to Rheology and Application to Geophysics

    Science.gov (United States)

    Ancey, C.

    This chapter gives an overview of the major current issues in rheology through a series of different problems of particular relevance to geophysics. For each topic considered here, we will outline the key elements and point the reader to ward the most helpful references and authoritative works. The reader is also referred to available books introducing rheology [1, 2] for a more complete presentation and to the tutorial written by Middleton and Wilcock on mechanical and rheological app lications in geophysics [3]. This chapter will focus on materials encountered by geophysicists (mud, snow, magma, etc.), although in most cases we will consider only suspensions of particles within an interstitial fluid without loss of generality. Other complex fluids such as polymeric liquids are rarely encountered in geophysics.

  8. Dynamical approach to study and interpret geodynamical and geophysical effects

    Science.gov (United States)

    Ferronsky, V.

    2009-04-01

    It was proved by satellite and terrestrial observation that the hydrostatics, which operates by the outer forces, is not able to ensure correct description and interpretation of geodynamical and geophysical effects. In order to find solution of the problem, we applied to dynamics. For this purpose the outer force field of the Earth was replaced by its inner (volumetric) force pressure. Doing so we introduced new physical basis for study dynamics of the planet in its own force field. The analytics for that is as follows. The body is considered as a system of n elementary particles (n → ∞) of masses mi and many degrees of freedom. The volumetric moment of a particle pi is written as pi = midri/dt. Then the moment of momentum M of the system is found to be derivative from the moment of inertia I in the form: M = ∑piri = ∑miridri/dt = d/dt(∑½ miri2) = ½ dI/dt. Then derivative on time from M gives the energy of the system as second derivative from I: M' = ∑pidri/dt + ∑ridpi/dt = ½I" where ∑pidri/dt = 2T is the kinetic energy and ∑ridpi/dt = U is the potential energy of the oscillating moment of inertia (interacting particles). So, equation of dynamical equilibrium (equation of state) of a body, where the interacted particles are presented by nonlinear oscillators, is ½I" = 2T + U. We used this for study and interpretation of oscillation and rotation parameters of the Earth. Note that the center of mass of the Earth is presented here by a surface of asymmetric spheroid. For more information see our works: Ferronsky V.I. and S.V.Ferronsky (2007). Dynamics of the Earth, Scientific World, Moscow; Ferronsky V.I. (2008) Non-averaged virial theorem for natural systems: http://zhurnal.ape.relarn.ru/articles/2008/066e.pdf

  9. Integrated Approaches On Archaeo-Geophysical Data

    Science.gov (United States)

    Kucukdemirci, M.; Piro, S.; Zamuner, D.; Ozer, E.

    2015-12-01

    Key words: Ground Penetrating Radar (GPR), Magnetometry, Geophysical Data Integration, Principal Component Analyse (PCA), Aizanoi Archaeological Site An application of geophysical integration methods which often appealed are divided into two classes as qualitative and quantitative approaches. This work focused on the application of quantitative integration approaches, which involve the mathematical and statistical integration techniques, on the archaeo-geophysical data obtained in Aizanoi Archaeological Site,Turkey. Two geophysical methods were applied as Ground Penetrating Radar (GPR) and Magnetometry for archaeological prospection on the selected archaeological site. After basic data processing of each geophysical method, the mathematical approaches of Sums and Products and the statistical approach of Principal Component Analysis (PCA) have been applied for the integration. These integration approches were first tested on synthetic digital images before application to field data. Then the same approaches were applied to 2D magnetic maps and 2D GPR time slices which were obtained on the same unit grids in the archaeological site. Initially, the geophysical data were examined individually by referencing with archeological maps and informations obtained from archaeologists and some important structures as possible walls, roads and relics were determined. The results of all integration approaches provided very important and different details about the anomalies related to archaeological features. By using all those applications, integrated images can provide complementary informations as well about the archaeological relics under the ground. Acknowledgements The authors would like to thanks to Scientific and Technological Research Council of Turkey (TUBITAK), Fellowship for Visiting Scientists Programme for their support, Istanbul University Scientific Research Project Fund, (Project.No:12302) and archaeologist team of Aizanoi Archaeological site for their support

  10. Earth\\'s Mass Variability

    CERN Document Server

    Mawad, Ramy

    2014-01-01

    The perturbation of the Earth caused by variability of mass of Earth as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November i.e. before transit apoapsis two months, and become latter in February i.e. after transit apoapsis to two months.

  11. A hypothesis of earth quake

    CERN Document Server

    Tsai, Yeong-Shyeong

    2008-01-01

    Without a model, it is impossible for a geophysicist to study the possibility of forecasting earth quakes. In order to make a simple model, we make a hypothesis of earth quakes. The hypothesis is: (i) There are two kinds of earth quakes, one is the triggered breaking (earth quake), the other is spontaneous breaking (earth quake). (ii) Most major quakes in continental plates Eurasian Plate, North America Plate, South America Plate, Africa Plate and Australia Plate are triggered breaking. (iii) These triggered quakes are triggered by the movements of high pressure centers and low pressure centers of the atmosphere on continental plates. (iv) How can the movements of the high pressure centers trigger a quake? It depends on the extent of the high pressure center and the speed of the movement. Here, we stress high pressure center instead of low pressure center because it is dominated by high pressure center mostly. Of course, the boundary of the plates must have stored enough energy to have quakes, that is, near t...

  12. Tamara Shapiro Ledley Receives 2013 Excellence in Geophysical Education Award: Citation

    Science.gov (United States)

    Reiff, Patricia

    2014-01-01

    It gives me great pleasure to cite Tamara Shapiro Ledley for the AGU Excellence in Geophysical Education Award "for her outstanding sustained leadership in Earth systems and climate change education." Tamara has shown an ongoing commitment to bridging the scientific and educational communities to make geophysical science knowledge and data accessible and usable to teachers and students and by extension to all citizens. She works extensively with both the scientific and educational communities. She began her educational work in 1990 as the leader for weather and climate in my Teacher Research program at Rice University. She continued as the lead for atmospheric sciences in our projects Earth Today and Museums Teaching Planet Earth, which introduced her to the Earth Science Information Partners (ESIP Federation). She has served many roles at ESIP, including creating the Standing Committee for Education and serving as vice president. ESIP recognized her many accomplishments with its President's Award in 2012. At TERC her education and outreach efforts have blossomed. She was the lead author of the "Earth as a System" investigation of the GLOBE Teacher's Guide. She was a member of the original Digital Library for Earth System Education (DLESE) Data Access Working Group in 2001, where the idea for a cookbook-like resource to facilitate the use of Earth science data by teachers and students resulted in her leading the development of the "Earth Exploration Toolbook" (EET), which allows teachers to easily access and use real scientific data in the classroom. Her efforts were recognized with the EET being awarded Science Magazine's Science Prize for Online Research in Education in 2011.

  13. Annals of the International Geophysical Year solar radio emission during the International Geophysical Year

    CERN Document Server

    Smerd, S F

    1969-01-01

    Annals of the International Geophysical Year, Volume 34: Solar Radio Emission During the International Geophysical Year covers the significant solar radio emission events observed during the International Geophysical Year (IGY). This book is composed of six chapters, and begins with a summary of tabulated quantities describing solar radio emission during the IGY. The tabulated figures illustrate the method of recording the position of radio sources on the sun, the use of symbols in describing the structure of bursts observed at single frequencies, and the different types used in a spectral

  14. Archaeological Geophysics in Israel: Past, Present and Future

    Science.gov (United States)

    Eppelbaum, L. V.

    2009-04-01

    localization of archaeological targets: An introduction. Geoinformatics, 11, No.1, 19-28. Eppelbaum, L.V., 2005. Multilevel observations of magnetic field at archaeological sites as additional interpreting tool. Proceed. of the 6th Conference of Archaeological Prospection, Roma, Italy, 4 pp. Eppelbaum, L.V., 2007a. Localization of Ring Structures in Earth's Environments. Proceed. of the 7th Conference of Archaeological Prospection. Nitra, Slovakia, 145-148. Eppelbaum, L.V., 2007b. Revealing of subterranean karst using modern analysis of potential and quasi-potential fields. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Denver, USA, 797-810. Eppelbaum, L.V., 2008a. Remote operated vehicle geophysical survey using magnetic and VLF methods: proposed schemes for data processing and interpretation. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Philadelphia, USA, 938-963. Eppelbaum, L.V., 2008b. On the application of near-surface temperature investigations for delineation of archaeological targets. Trans. of the 1st International Workshop on Advances in Remote Sensing for Archaeology and Cultural Heritage Management, Rome, Italy, 179-183. Eppelbaum, L.V., 2009. Application of microgravity at archaeological sites in Israel: some estimation derived from 3D modeling and quantitative analysis of gravity field. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Denver, USA, 10 pp. Eppelbaum, L. and Ben-Avraham, Z., 2002. On the development of 4D geophysical Data Base of archaeological sites in Israel. Trans. of the Conf. of the Israel Geol. Soc. Ann. Meet., MaHagan - Lake Kinneret, Israel, p.21. Eppelbaum, L., Ben-Avraham, Z., and Itkis, S., 2003a. Ancient Roman Remains in Israel provide a challenge for physical-archaeological modeling techniques. First Break, 21 (2), 51-61. Eppelbaum, L.V., Ben-Avraham, Z., and Itkis, S.E., 2003b

  15. Geophysical Hazards and Preventive Disaster Management of Extreme Natural Events

    Science.gov (United States)

    Ismail-Zadeh, A.; Takeuchi, K.

    2007-12-01

    Geophysical hazard is potentially damaging natural event and/or phenomenon, which may cause the loss of life or injury, property damage, social and economic disruption, or environmental degradation. Extreme natural hazards are a key manifestation of the complex hierarchical nonlinear Earth system. An understanding, accurate modeling and forecasting of the extreme hazards are most important scientific challenges. Several recent extreme natural events (e.g., 2004 Great Indian Ocean Earthquake and Tsunami and the 2005 violent Katrina hurricane) demonstrated strong coupling between solid Earth and ocean, and ocean and atmosphere. These events resulted in great humanitarian tragedies because of a weak preventive disaster management. The less often natural events occur (and the extreme events are rare by definition), the more often the disaster managers postpone the preparedness to the events. The tendency to reduce the funding for preventive disaster management of natural catastrophes is seldom follows the rules of responsible stewardship for future generations neither in developing countries nor in highly developed economies where it must be considered next to malfeasance. Protecting human life and property against earthquake disasters requires an uninterrupted chain of tasks: from (i) understanding of physics of the events, analysis and monitoring, through (ii) interpretation, modeling, hazard assessment, and prediction, to (iii) public awareness, preparedness, and preventive disaster management.

  16. Quantitative Analysis of Piezoelectric and Seismoelectric Anomalies in Subsurface Geophysics

    Science.gov (United States)

    Eppelbaum, Lev

    2017-04-01

    , A., 2000, Seismic-electric effect method on guided and reflected waves. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 25, No.4, 333-336. Butler, K.E., Russell, R.D., Kepic A.W. and Maxwell, M., 1994. Mapping of a stratigraphic boundary by its seismoelectric response. SAGEEP '94 Conference Proceedings, 689-699. Eppelbaum, L.V., 2010. Archaeological geophysics in Israel: Past, Present and Future. Advances in Geosciences, 24, 45-68. Dupuis, J.C., Butler, K.E., Kepic, A.W. and Harris, B.D., 2009. Anatomy of a seismoelectric conversion: Measurements and conceptual modeling in boreholes penetrating a sandy aquifer. Journal of Geophysical Research, 114, B10306, doi:10.1029/2008JB005939 Eppelbaum, L.V., 2011. Study of magnetic anomalies over archaeological targets in urban conditions. Physics and Chemistry of the Earth, 36, No. 16, 1318-1330. Eppelbaum, L.V., 2014. Geophysical observations at archaeological sites: Estimating informational content. Archaeological Prospection, 21, No. 2, 25-38. Eppelbaum, L.V., 2015. Quantitative interpretation of magnetic anomalies from thick bed, horizontal plate and intermediate models under complex physical-geological environments in archaeological prospection. Archaeological Prospection, 23, No. 2, 255-268. Eppelbaum, L.V., Alperovich, L., Zheludev, V. and Pechersky, A., 2011. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. Proceed. of the 2011 SAGEEP Conference, Charleston, South Carolina, USA, 24, 24-60. Eppelbaum, L.V., Itkis, S.E. and Khesin, B.E., 2000. Optimization of magnetic investigations in the archaeological sites in Israel, In: Special Issue of Prospezioni Archeologiche "Filtering, Modeling and Interpretation of Geophysical Fields at Archaeological Objects", 65-92. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2001. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli

  17. Digital geologic and geophysical data of Bangladesh

    Science.gov (United States)

    Persits, Feliks M.; Wandrey, C.J.; Milici, R.C.; Manwar, Abdullah

    1997-01-01

    The data set for these maps includes arcs, polygons, and labels that outline and describe the general geologic age and geophysical fields of Bangladesh. Political boundaries are provided to show the general location of administrative regions and state boundaries. Major base topographic data like cities, rivers, etc. were derived from the same paper map source as the geology.

  18. Geophysical tomography in engineering geology: an overview

    CERN Document Server

    Patella, D

    2005-01-01

    An overview of the tomographic interpretation method in engineering geophysics is presented, considering the two approaches of the deterministic tomography inversion, developed for rock elasticity analysis, and the probability tomography imaging developed in the domain of potential fields methods. The theoretical basis of both approaches is shortly outlined before showing a laboratory and a field application.

  19. Geophysical data fusion for subsurface imaging

    Science.gov (United States)

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.

    1993-08-01

    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called 'data fusion' was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site.

  20. Geophysical subsurface imaging for ecological applications.

    Science.gov (United States)

    Jayawickreme, Dushmantha H; Jobbágy, Esteban G; Jackson, Robert B

    2014-03-01

    Ecologists, ecohydrologists, and biogeochemists need detailed insights into belowground properties and processes, including changes in water, salts, and other elements that can influence ecosystem productivity and functioning. Relying on traditional sampling and observation techniques for such insights can be costly, time consuming, and infeasible, especially if the spatial scales involved are large. Geophysical imaging provides an alternative or complement to traditional methods to gather subsurface variables across time and space. In this paper, we review aspects of geophysical imaging, particularly electrical and electromagnetic imaging, that may benefit ecologists seeking clearer understanding of the shallow subsurface. Using electrical resistivity imaging, for example, we have been able to successfully show the effect of land-use conversions to agriculture on salt mobilization and leaching across kilometer-long transects and to depths of tens of meters. Recent advances in ground-penetrating radar and other geophysical imaging methods currently provide opportunities for subsurface imaging with sufficient detail to locate small (≥5 cm diameter) animal burrows and plant roots, observe soil-water and vegetation spatial correlations in small watersheds, estuaries, and marshes, and quantify changes in groundwater storage at local to regional scales using geophysical data from ground- and space-based platforms. Ecologists should benefit from adopting these minimally invasive, scalable imaging technologies to explore the subsurface and advance our collective research.

  1. Predictability of extreme values in geophysical models

    NARCIS (Netherlands)

    Sterk, A.E.; Holland, M.P.; Rabassa, P.; Broer, H.W.; Vitolo, R.

    2012-01-01

    Extreme value theory in deterministic systems is concerned with unlikely large (or small) values of an observable evaluated along evolutions of the system. In this paper we study the finite-time predictability of extreme values, such as convection, energy, and wind speeds, in three geophysical model

  2. New airborne geophysical data from the Waterberg Coalfield

    CSIR Research Space (South Africa)

    Fourie, CJS

    2009-07-01

    Full Text Available in 1920, but little exploration has been done since. Coaltech Research Association commissioned an Airborne Geophysical Survey of the area to enhance the structural understanding of the basin. The airborne geophysical survey was a major contribution...

  3. Geophysics applications in critical zone science: emerging topics

    Science.gov (United States)

    Geophysical studies have resulted in remarkable advances in characterization of critical zone. The geophysics applications uncover the relationships between structure and function in subsurface as they seek to define subsurface structural units with individual properties of retention and trans...

  4. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    Science.gov (United States)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  5. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  6. Geophysical Constraints on Sediment Dispersal Systems

    Science.gov (United States)

    Johnstone, Elizabeth Anne Carruthers

    Geophysical and geological approaches were employed to understand sediment dispersal systems and their response to various forcing functions (i.e., sea level fluctuations, tectonic deformation, sediment supply, and climate change). Two end member marine environments were studied; one with high precipitation and sediment discharge (Gulf of Papua, Papua New Guinea) and the other with low precipitation and sediment discharge (Oceanside Littoral Cell). The high-sedimentation rate in the Gulf of Papua (GoP) yields high-fidelity records of Earth history. As part of the NSF Margins Source-to-Sink (S2S) program, we acquired CHIRP and core data across the GoP continental shelf that complemented onshore and offshore research in the region. CHIRP seismic data imaged three Holocene sedimentary lobes. The older Central lobe is downlapped by two younger lobes to the north and south. Sediment analysis showed that the older Central lobe has an elemental signature similar to the younger Northern lobe with both sourced from the Purari River watershed and lobe migration appears to be climatically controlled. The Southern lobe has elemental signatures more consistent with the Fly River watershed. Our results suggest the northern rivers began depositing sediments on the shelf during the Holocene sea level rise in the central region of the GoP and migrated abruptly north at ~2 kybp. Conversely, during the early Holocene transgression, sediments in the Fly drainage system were sequestered onshore infilling accommodation created in the large low-relief coastal plain during the sea level rise. Upon infilling the onshore accommodation, the Fly River delivered sediment to the ocean and formed the Southern lobe. Such differences in onshore storage capacity may introduce a lag between low-gradient rivers (Type I) with a large coastal plain versus high-gradient river systems (Type II) with small coastal plains. The second study site is in the sediment-starved Oceanside Littoral Cell (OCL) of

  7. Aristoteles - An ESA mission to study the earth's gravity field

    Science.gov (United States)

    Lambeck, K.

    In preparing for its first Solid-Earth Program, ESA has studied a satellite concept for a mission dedicated to the precise determination of the earth's geopotential (gravitational and magnetic) fields. Data from such a mission are expected to make substantial contributions to a number of research and applications fields in solid-earth geophysics, oceanography and global-change monitoring. The impact of a high-resolution gravity-field mission on studies of the various earth-science problems is assessed. The current state of our knowledge in this area is discussed and the ability of low-orbit satellite gradiometry to contribute to their solution is demonstrated.

  8. Decadal variations in geophysical processes and asymmetries in the solar motion about the Solar System's barycentre

    Science.gov (United States)

    Sidorenkov, Nikolay; Wilson, Ian; Khlystov, Anatoly

    2010-05-01

    It is well known that many geophysical processes vary on inter-annual to decadal timescales. These variations are usually attributed to terrestrial causes that include: the Earth's core-mantle coupling, the effects of internal driven stochastic oscillations in the climatic system, the effects of the global conveyer belt in World Ocean and so on. However, we contend that the empirical evidences and facts demand that this generally accepted assumption should be revised and modified. We find that the observed changes in the specific mass of the Antarctic and Greenland ice sheets closely correspond to the specific mass variations that are needed to explain the "decadal-long" fluctuations in LOD (Sidorenkov, 2009). Since the mass of the ice sheets in Antarctic and Greenland depend on long-term climate variations, it is reasonable to assume that the decadal fluctuations in the Earth's rotation may also correlate with the fluctuations in the major climatic indices. Following this line of reasoning, we have found that the atmospheric circulation regimes and the ten-year running mean of the anomalies of the Northern Hemisphere air temperature are well correlated with the changes in the Earth's rotation rate. Stanislav Perov and Nikolay Sidorenkov (2009) found also significant correlation between fluctuations in the Earth's rotational rate and activity of the India monsoon. Ian Wilson (2009) found a relationship between the deviation of the Earth's LOD from its long-term trend and the Pacific Decadal Oscillation (PDO). Whenever there are large deviations in the Earth's LOD from its long--term trend, the PDO index transitions to its positive phase. Note that the observed changes in the LOD precede those in the anomalies of the precipitation in India monsoon and in the PDO by about eight years. Ian Wilson shows that the times when Solar/Lunar tides had their greatest impact upon the Earth are closely synchronized with the times of greatest asymmetry in the Solar Inertial

  9. Geophysical characterisation of a rockslide in an alpine region

    Science.gov (United States)

    Godio, A.; de Bacco, G.; Strobbia, C.

    2003-04-01

    The rock slope stability analysis requires the geomechanical characterisation of the different geological units that may be affected by the instability, and hence the required investigation depth depends on the mechanism of the movement and on its scale. A joint application of laboratory test and in situ extensive geophysical investigation has been used for the geological and geotechnical characterisation of a site with heavy slope and interested by recent events of landslide in the overburden and rockslide. An existing road is going to be substituted by a tunnel, and so both the shallow detritical overburden and the rock mass has to be investigated. The geophysical survey has been planned taking into account the difficult logistical condition of the area; the accessibility also conditioned the positioning of the boreholes. Two horizontal boreholes, each 50 m long, were drilled along the designed tunnel line, and two vertical boreholes, 30m of depth, were realised in order to take samples to test for the estimate of the mechanical properties of the rock mass. They also provided direct punctual information on the thickness of the overburden and allowed to calibrate the geophysical results. The horizontal ones have been used for borehole seismic and for ultrasonic logging; in the vertical ones inclinometers have been installed to monitor the movements. The stratigraphic evidence showed the presence of shallow layer of low-consolidated materials and a hard gneissic bedrock around 20 m deep. Laboratory measurements on samples allowed the determination of the high-strain mechanical behaviour and the dynamic low-strain elastic moduli (P and S wave ultrasonic pulse test). These data are compared with the results of the in situ characterisation: the geophysical investigation had to answer a series of questions about the geometry and the properties of the detritical overburden, the inhomogeneities and the fracture distribution of the rock mass, the eventual presence of

  10. Informing groundwater models with near-surface geophysical data

    DEFF Research Database (Denmark)

    Herckenrath, Daan

    of the geophysical data. The CHI-S yielded a geophysical model that could never be obtained with a separate geophysical inversion. Furthermore, we applied a CHI-S to evaluate the potential for time-lapse relative gravimetry (TL-RG) and magnetic resonance sounding (TL-MRS) to improve the estimation of aquifer...

  11. Human responses to the geophysical daily, annual and lunar cycles.

    Science.gov (United States)

    Foster, Russell G; Roenneberg, Till

    2008-09-09

    Collectively the daily, seasonal, lunar and tidal geophysical cycles regulate much of the temporal biology of life on Earth. The increasing isolation of human societies from these geophysical cycles, as a result of improved living conditions, high-quality nutrition and 24/7 working practices, have led many to believe that human biology functions independently of them. Yet recent studies have highlighted the dominant role that our circadian clock plays in the organisation of 24 hour patterns of behaviour and physiology. Preferred wake and sleep times are to a large extent driven by an endogenous temporal program that uses sunlight as an entraining cue. The alarm clock can drive human activity rhythms but has little direct effect on our endogenous 24 hour physiology. In many situations, our biology and our society appear to be in serious opposition, and the damaging consequences to our health under these circumstances are increasingly recognised. The seasons dominate the lives of non-equatorial species, and until recently, they also had a marked influence on much of human biology. Despite human isolation from seasonal changes in temperature, food and photoperiod in the industrialised nations, the seasons still appear to have a small, but significant, impact upon when individuals are born and many aspects of health. The seasonal changes that modulate our biology, and how these factors might interact with the social and metabolic status of the individual to drive seasonal effects, are still poorly understood. Lunar cycles had, and continue to have, an influence upon human culture, though despite a persistent belief that our mental health and other behaviours are modulated by the phase of the moon, there is no solid evidence that human biology is in any way regulated by the lunar cycle.

  12. Field Geophysics Class at Volcán Tungurahua, Ecuador

    Science.gov (United States)

    Johnson, Jeffrey; Ruiz, Mario

    2009-11-01

    Ecuador's erupting Volcán Tungurahua was the recent site of a 3-week graduate-level geophysical course on volcanoes, hosted by Ecuador's Instituto Geofisico of the Escuela Politecnica Nacional (IG-EPN) and the Department of Earth Science at the New Mexico Institute of Mining and Technology (NMT). Sixteen students from 12 universities and four countries participated in the intensive course, which entailed broadband seismometer and infrasound sensor deployment followed by subsequent data processing, analysis, interpretation, and result synthesis. Hardware for the course was provided by the Incorporated Research Institutes for Seismology (IRIS) through the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL) as well as the IG-EPN and NMT geophysics programs. Since the start of its most recent eruptive period (in 1999), Tungurahua has proved itself a reliable source of both seismicity and infrasound radiating from its typically open vent. As such, Tungurahua provides the ultimate outdoor teaching laboratory where students can deploy instruments for just a few days and then collect earthquake and explosion data. Tungurahua's activity in June 2009 did not disappoint class participants: Frequent earthquakes included long-period and volcano tectonic events, various types of tremor events, and explosion earthquakes manifested by booming “cannon-shot” blasts. Some of the explosion shock waves were recorded 10 kilometers from the vent with excess pressure amplitudes greater than 50 pascals in the infrasonic band. Had these intense sounds been audible, their sound pressure levels at 10 kilometers would have been in excess of about 130 decibels!

  13. Electromagnetic sounding of the Earth's interior

    CERN Document Server

    Spichak, Viacheslav V

    2015-01-01

    Electromagnetic Sounding of the Earth's Interior 2nd edition provides a comprehensive up-to-date collection of contributions, covering methodological, computational and practical aspects of Electromagnetic sounding of the Earth by different techniques at global, regional and local scales. Moreover, it contains new developments such as the concept of self-consistent tasks of geophysics and , 3-D interpretation of the TEM sounding which, so far, have not all been covered by one book. Electromagnetic Sounding of the Earth's Interior 2nd edition consists of three parts: I- EM sounding methods, II- Forward modelling and inversion techniques, and III - Data processing, analysis, modelling and interpretation. The new edition includes brand new chapters on Pulse and frequency electromagnetic sounding for hydrocarbon offshore exploration. Additionally all other chapters have been extensively updated to include new developments. Presents recently developed methodological findings of the earth's study, including seism...

  14. Geophysical Characterization of the Salna Sinking Zone, Garhwal Himalaya, India

    Science.gov (United States)

    Sastry, Rambhatla G.; Mondal, Suman K.

    2013-01-01

    Infrastructure and communication facilities are repeatedly affected by ground deformation in Gharwal Himalaya, India; for effective remediation measures, a thorough understanding of the real reasons for these movements is needed. In this regard, we undertook an integrated geophysical and geotechnical study of the Salna sinking zone close to the Main Central Thrust in Garhwal Himalaya. Our geophysical data include eight combined electrical resistivity tomography (ERT) and induced polarization imaging (IPI) profiles spanning 144-600 m, with 3-10 m electrode separation in the Wenner-Schlumberger configuration, and five micro-gravity profiles with 10-30 m station spacing covering the study region. The ERT sections clearly outline the heterogeneity in the subsurface lithology. Further, the ERT, IPI, and shaliness (shaleyness) sections infer the absence of clayey horizons and slip surfaces at depth. However, the Bouguer gravity analysis has revealed the existence of several faults in the subsurface, much beyond the reach of the majority of ERT sections. These inferred vertical to subvertical faults run parallel to the existing major lineaments and tectonic elements of the study region. The crisscross network of inferred faults has divided the entire study region into several blocks in the subsurface. Our studies stress that the sinking of the Salna village area is presently taking place along these inferred vertical to subvertical faults. The Chamoli earthquake in March 1999 probably triggered seismically induced ground movements in this region. The absence of few gravity-inferred faults in shallow ERT sections may hint at blind faults, which could serve as future source(s) for geohazards in the study region. Soil samples at two sites of study region were studied in a geotechnical laboratory. These, along with stability studies along four slope sections, have indicated the critical state of the study region. Thus, our integrated studies emphasize the crucial role of

  15. Transforming the representations of preschool-age children regarding geophysical entities and physical geography

    Directory of Open Access Journals (Sweden)

    MARIA KAMPEZA

    2009-01-01

    Full Text Available A semi-structured interview was individually administered to 76 preschoolers. The interview raised questions about the conceptual understanding of certain geophysical entities. A teaching intervention designed to attempt an understanding of the relationship between them and earth’s surface was implemented with groups of 5-9 children in order to help children construct a more “realistic” model of earth. The intervention’s effectiveness was consequently evaluated (after two weeks using an interview similar to that conducted prior to the intervention. The results of the study indicated that prior to the intervention many children faced difficulties in descriptive understanding of even familiar geographic features, such as rivers, lakes and islands. After the intervention the majority of children readily conceptualized certain aspects of most of the geophysical entities and correlated them with earth’s surface. Educational and research implications are discussed.

  16. COMPARISON OF FOURIER AND WAVELET TRANSFORMS IN GEOPHYSICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Hakan ALP

    2008-01-01

    Full Text Available In this study, it was compared Fourier Transformation using widely in analysing of geophysics data and image processing and Wavelet Transformation using in image processing, boundary analysis and recently years in use geophysical data analysis. It was applicated and compared two transformations in the both geophysical data and fundamental functions. Then the results obtained were evaluated. In this study it was compared two transformation using earthquake records and Bouger gravity anomalies map of Hatay region geophysical data. At the end of the our study it was clearly seen that wavelet transform can be used by geophysical data analysing.

  17. Review of geophysical characterization methods used at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    GV Last; DG Horton

    2000-03-23

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ``all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts.

  18. Geophysical and Chemical Weathering Signatures Across the Deep Weathered-Unweathered Granite Boundary of the Calhoun Critical Zone Observatory

    Science.gov (United States)

    Richter, D., Jr.; Bacon, A. R.; Brantley, S. L.; Holbrook, W. S.

    2015-12-01

    To understand the relationship between geophysical measurements and chemical weathering at Earth's surface, we combine comprehensive chemical and physical analyses of a 70-m granite weathering profile in the Southern Piedmont in the southeastern United States. The research site is in the uplands of the Calhoun Critical Zone Observatory and is similar to many geomorphically stable, ancient, and highly-weathered Ultisol soils of the region. Surface and downhole geophysical analyses suggest significant physical changes to depths of about 40 m, where geophysical properties are consistent with competent and unweathered granite. At this depth, surface refraction velocities increase to >4.5 km/s; variations in downhole sonic velocities decrease by more than two-fold; and deviations in the downhole caliper log sharply decrease as well. Forty meters depth is also the depth of initiation of plagioclase feldspar weathering, as inferred from bulk geochemical measurement of the full 70-m deep core. Specifically, element-depth profiles, cast as mass transfer coefficient profiles using Ti and Zr as immobile elements, document inferred loss of plagioclase in the depth interval between 15 and 40-m depth. Plagioclase feldspar is the most abundant of the highly reactive minerals in the granite. Such a wide reaction front is characteristic of weathering granites. Some loss of K is observed at these depths but most K loss, as well as Mg loss, occurs at shallower depths. Nearby geophysical profiles and 3D stress models have been interpreted as showing that seismic velocities decrease at 40 m depth due to opening of fractures as rock is exhumed toward the surface. Given our interpretations of both the geochemical and geophysical data, we infer that the onset of chemical weathering of feldspar coincides with the opening of these fractures. The data highlight the ability of geochemistry and geophysics to complement each other and enrich our understanding of Earth's Critical Zone.

  19. The geophysical impact of the Aristoteles mission

    Science.gov (United States)

    Anderson, Allen Joel; Klingele, E.; Sabadini, R.; Tinti, S.; Zerbini, Suzanna

    1991-12-01

    The importance of a precise, high resolution gradiometric and magnetometric mission in some topics of geophysical interest is stressed. Ways in which the planned Aristoteles mission can allow the geophysical community to improve the knowledge and the physical understanding of several important geodynamical processes involving the coupled system consisting of the lithosphere, asthenosphere and upper mantle are discussed. Particular attention is devoted to the inversion of anomalous density structures in collision and subduction zones by means of the joint use of gradiometric and seismic tomographic data. Some modeling efforts accomplished to study the capability of the mission to invert the rheological parameters of the lithosphere and upper mantle through the gravimetric signals of internal and surface density anomalies are described.

  20. Development of geophysical data management system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tai-Sup; Lee, Sang-Kyu; Gu, Sung-Bon [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    (1) Development of a complete geophysical database system under C/S environment for data management. (2) Development of database system for the general user, who has not special knowledge of database, under the Internet environment. (3) Operation of the Web service for the general user. (4) Development of the stand-alone database system for a small-scale research group such as college and engineering consultant firms. (author). 15 refs.

  1. FY97 Geophysics Technology Area Plan.

    Science.gov (United States)

    1997-03-01

    Under the High-frequency Active Auroral Research drag and to provide accurate winds and composition Program ( HAARP ), research was initiated to assess...Satellite Communications FY Fiscal Year GP Geophysics GPS Global Positioning System HAARP High Frequency Active Auroral Research Program BF High...and Combat Operations 3,14 Global Positioning System (GPS) ii,5,6,8,9,12,17 High Frequency Active Auroral Research Program ( HAARP ) 8,11 Industrial

  2. Geophysical, geological, environmental and technical program guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The Canada-Newfoundland Offshore Petroleum Board has created a set of guidelines which describe the information needed by the Board for authorizations relating to geophysical, geological, environmental or geotechnical programs. The guidelines also describe the review process that will be followed in considering a proponent`s application. Since these guidelines are subordinate to the Canada-Newfoundland Atlantic Accord Implementation Act and the Canada-Newfoundland Atlantic Accord Implementation (Newfoundland) Act, proponents must refer to both in preparing their development applications.

  3. Application of geophysical methods for fracture characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H.; Majer, E.L. [Lawrence Berkeley Lab., CA (USA); McEvilly, T.V. [Lawrence Berkeley Lab., CA (USA)]|[California Univ., Berkeley, CA (USA). Dept. of Geology and Geophysics; Morrison, H.F. [Lawrence Berkeley Lab., CA (USA)]|[California Univ., Berkeley, CA (USA). Dept. of Materials Science and Mineral Engineering

    1990-01-01

    One of the most crucial needs in the design and implementation of an underground waste isolation facility is a reliable method for the detection and characterization of fractures in zones away from boreholes or subsurface workings. Geophysical methods may represent a solution to this problem. If fractures represent anomalies in the elastic properties or conductive properties of the rocks, then the seismic and electrical techniques may be useful in detecting and characterizing fracture properties. 7 refs., 3 figs.

  4. Mathematical Methods for Geophysics and Space Physics

    Science.gov (United States)

    Newman, William I.

    2016-05-01

    Graduate students in the natural sciences - including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy - need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. * Provides an authoritative and accessible introduction to the subject * Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics * Features numerous exercises throughout * Ideal for students and researchers alike * An online illustration package is available to professors

  5. Final Report DOE Contract No. DE-FG36-04G014294 ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP P.E. Malin, S.A. Onacha, E. Shalev Division of Earth and Ocean Sciences Nicholas School of the Environment Duke University Durham, NC 27708

    Energy Technology Data Exchange (ETDEWEB)

    Malin, Peter E.; Shalev, Eylon; Onacha, Stepthen A.

    2006-12-15

    In this final report, we discuss both theoretical and applied research resulting from our DOE project, ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP. The abstract below begins with a general discussion of the problem we addressed: the location and characterization of “blind” geothermal resources using microearthquake and magnetotelluric measurements. The abstract then describes the scientific results and their application to the Krafla geothermal area in Iceland. The text following this abstract presents the full discussion of this work, in the form of the PhD thesis of Stephen A. Onacha. The work presented here was awarded the “Best Geophysics Paper” at the 2005 Geothermal Resources Council meeting, Reno. This study presents the modeling of buried fault zones using microearthquake and electrical resistivity data based on the assumptions that fluid-filled fractures cause electrical and seismic anisotropy and polarization. In this study, joint imaging of electrical and seismic data is used to characterize the fracture porosity of the fracture zones. P-wave velocity models are generated from resistivity data and used in locating microearthquakes. Fracture porosity controls fluid circulation in the hydrothermal systems and the intersections of fracture zones close to the heat source form important upwelling zones for hydrothermal fluids. High fracture porosity sites occur along fault terminations, fault-intersection areas and fault traces. Hydrothermal fault zone imaging using resistivity and microearthquake data combines high-resolution multi-station seismic and electromagnetic data to locate rock fractures and the likely presence fluids in high temperature hydrothermal systems. The depths and locations of structural features and fracture porosity common in both the MT and MEQ data is incorporated into a joint imaging scheme to constrain resistivity, seismic velocities, and locations of fracture systems. The imaging of the

  6. Snowball Earth

    OpenAIRE

    2016-01-01

    In the ongoing quest to better understand where life may exist elsewhere in the Universe, important lessons may be gained from our own planet. In particular, much can be learned from planetary glaciation events that Earth suffered ∼600 million years ago, so-called `Snowball Earth' episodes. I begin with an overview of how the climate works. This helps to explain how the ice-albedo feedback effect can destabilise a planet's climate. The process relies on lower temperatures causing more ice to ...

  7. Geophysical investigation of the pressure field produced by water guns at a pond site in La Crosse, Wisconsin

    Science.gov (United States)

    Adams, Ryan F.; Morrow, William S.

    2015-09-03

    Three different geophysical sensor types were used to characterize the underwater pressure waves generated by the underwater firing of a seismic water gun and their suitability for establishing a pressure barrier to potentially direct or prevent the movement of the Asian carps. The sensors used to collect the seismic information were blast rated hydrophones and underwater blast sensors. Specific location information for the water guns and the sensors was obtained using either laser rangefinders or differentially corrected global positioning systems (GPS).

  8. Movement disorders and sleep.

    Science.gov (United States)

    Driver-Dunckley, Erika D; Adler, Charles H

    2012-11-01

    This article summarizes what is currently known about sleep disturbances in several movement disorders including Parkinson disease, essential tremor, parkinsonism, dystonia, Huntington disease, myoclonus, and ataxias. There is an association between movement disorders and sleep. In some cases the prevalence of sleep disorders is much higher in patients with movement disorder, such as rapid eye movement sleep behavior disorder in Parkinson disease. In other cases, sleep difficulties worsen the involuntary movements. In many cases the medications used to treat patients with movement disorder disturb sleep or cause daytime sleepiness. The importance of discussing sleep issues in patients with movement disorders cannot be underestimated.

  9. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  10. Integrated Geophysical Studies in the East-Indian Geothermal Province

    Science.gov (United States)

    Baranwal, V. C.; Sharma, S. P.

    2006-01-01

    Integrated geophysical surveys using vertical electrical sounding (VES), very low frequency (VLF) EM, radiation counting, total magnetic field and self-potential (SP) measurements are carried out to characterize the geothermal area around a hot spring in the Nayagarh district, Orissa, India that lies in the East Indian geothermal province. The study was performed to delineate the fracture pattern, contaminated groundwater movement and possible heating source. VES interpretations suggest a three- to four-layer structure in the area. Resistivity survey near the hot spring suggests that weathered and fractured formations constitute the main aquifer system and extend to 60 m depth. Current flow measured at various electrode separations normalized by the applied voltage suggests that fractures extend to a greater depth. Detailed VLF study shows that fractures extend beyond 70 m depth. VLF anomaly has also very good correlation with the total magnetic field measured along the same profiles. Study results suggest that a gridded pattern of VLF survey could map the underground conductive fracture zones that can identify the movement of contaminated groundwater flow. Therefore, precautionary measures can be taken to check further contamination by delineating subsurface conducting structures. Self potential (SP) measured over the hot spring does not show a large anomaly in favor of the presence of a sulphide mineral body. A small positive (5 15mV) SP anomaly is measured which may be streaming potential due to subsurface fluid flow. A high radiation is measured about four kilometers from the hot spring, suggesting possible radiogenic heating. However, the exact nature of the heating source and its depth is not known in the area. Deep resistivity followed by a magneto-telluric survey could reveal the deeper structures.

  11. Lithosphere types in North China: Evidence from geology and geophysics

    Institute of Scientific and Technical Information of China (English)

    QIU; Ruizhao; DENG; Jinfu; ZHOU; Su; LI; Jinfa; XIAO; Qingh

    2005-01-01

    On the basis of the characteristics of geology and geophysics in North China, three types of lithosphere, namely, the cratonic, the orogenic and the rift lithospheres can be classified. In terms of petrological method (based on the information from Precambrian rock assemblages, igneous activities, deep-seated enclaves, etc.) and the relationship between seismic velocity and rock compositions, the crust-mantle petrological and chemical structure models can be set up. Researching results indicate that the geology and geophysics of North China platform bears the similar characteristics in comparison with those of the global typical cratons. The Eerduosi(Ordos) block located in the west of the North China Platform is a remnant of cratonic lithosphere after the North China platform had undergone "activation" in Mesozoic and "reconstruction" in Cenozoic times. The continental crust consists mainly of TTG rock assemblage while the subcontinental lithosphere mantle mainly consists of strongly depleted harzburgite. The craton was finally formed in late Archaean and early Proterozoic, and has been kept in stability up to present; its crustal-mantle petrological structures of lithosphere can be set up as a reference for the study of North China craton and even Sino-Korean craton. In the Mesozoic period, the middle and east areas of North China platform were activated in the Yanshanian orogenic process, the continental crust was reformed by material and heat-transfer of convective mantle and the original crustal TTG component was reconstructed to be granitic crust, and the subcontinental lithosphere mantle was replaced by the Yanshanian harzburgite-lherzolite. The Yanshan-Taihang Mountains were the remnants of orogenic lithosphere after the rifting in eastern North China in Cenozoic. The present thickness of continental crust and lithosphere in the Yanshan-Taihang Mountains is not equal to their thickness during the Yanshanian orogenic movement because they had undergone the

  12. Using geophysical techniques to control in situ thermal remediation

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, S.; Daily, W.; Ramirez, A.; Wilt, M. [Lawrence Livermore National Lab., CA (United States); Goldman, R.; Kayes, D.; Kenneally, K.; Udell, K. [California Univ., Berkeley, CA (United States); Hunter, R. [Infraseismic, Inc., Bakersfield, CA (United States)

    1994-01-22

    Monitoring the thermal and hydrologic processes that occur during thermal environmental remediation programs in near real-time provides essential information for controlling the process. Geophysical techniques played a crucial role in process control as well as for characterization during the recent Dynamic Underground Stripping Project demonstration in which several thousand gallons of gasoline were removed from heterogeneous soils both above and below the water table. Dynamic Underground Stripping combines steam injection and electrical heating for thermal enhancement with ground water pumping and vacuum extraction for contaminant removal. These processes produce rapid changes in the subsurface properties including changes in temperature fluid saturation, pressure and chemistry. Subsurface imaging methods are used to map the heated zones and control the thermal process. Temperature measurements made in wells throughout the field reveal details of the complex heating phenomena. Electrical resistance tomography (ERT) provides near real-time detailed images of the heated zones between boreholes both during electrical heating and steam injection. Borehole induction logs show close correlation with lithostratigraphy and, by identifying the more permeable gravel zones, can be used to predict steam movement. They are also useful in understanding the physical changes in the field and in interpreting the ERT images. Tiltmeters provide additional information regarding the shape of the steamed zones in plan view. They were used to track the growth of the steam front from individual injectors.

  13. Biomechanics of foetal movement

    Directory of Open Access Journals (Sweden)

    N.C. Nowlan

    2015-01-01

    Full Text Available Foetal movements commence at seven weeks of gestation, with the foetal movement repertoire including twitches, whole body movements, stretches, isolated limb movements, breathing movements, head and neck movements, jaw movements (including yawning, sucking and swallowing and hiccups by ten weeks of gestational age. There are two key biomechanical aspects to gross foetal movements; the first being that the foetus moves in a dynamically changing constrained physical environment in which the freedom to move becomes increasingly restricted with increasing foetal size and decreasing amniotic fluid. Therefore, the mechanical environment experienced by the foetus affects its ability to move freely. Secondly, the mechanical forces induced by foetal movements are crucial for normal skeletal development, as evidenced by a number of conditions and syndromes for which reduced or abnormal foetal movements are implicated, such as developmental dysplasia of the hip, arthrogryposis and foetal akinesia deformation sequence. This review examines both the biomechanical effects of the physical environment on foetal movements through discussion of intrauterine factors, such as space, foetal positioning and volume of amniotic fluid, and the biomechanical role of gross foetal movements in human skeletal development through investigation of the effects of abnormal movement on the bones and joints. This review also highlights computational simulations of foetal movements that attempt to determine the mechanical forces acting on the foetus as it moves. Finally, avenues for future research into foetal movement biomechanics are highlighted, which have potential impact for a diverse range of fields including foetal medicine, musculoskeletal disorders and tissue engineering.

  14. Biomechanics of foetal movement.

    Science.gov (United States)

    Nowlan, N C

    2015-01-02

    Foetal movements commence at seven weeks of gestation, with the foetal movement repertoire including twitches, whole body movements, stretches, isolated limb movements, breathing movements, head and neck movements, jaw movements (including yawning, sucking and swallowing) and hiccups by ten weeks of gestational age. There are two key biomechanical aspects to gross foetal movements; the first being that the foetus moves in a dynamically changing constrained physical environment in which the freedom to move becomes increasingly restricted with increasing foetal size and decreasing amniotic fluid. Therefore, the mechanical environment experienced by the foetus affects its ability to move freely. Secondly, the mechanical forces induced by foetal movements are crucial for normal skeletal development, as evidenced by a number of conditions and syndromes for which reduced or abnormal foetal movements are implicated, such as developmental dysplasia of the hip, arthrogryposis and foetal akinesia deformation sequence. This review examines both the biomechanical effects of the physical environment on foetal movements through discussion of intrauterine factors, such as space, foetal positioning and volume of amniotic fluid, and the biomechanical role of gross foetal movements in human skeletal development through investigation of the effects of abnormal movement on the bones and joints. This review also highlights computational simulations of foetal movements that attempt to determine the mechanical forces acting on the foetus as it moves. Finally, avenues for future research into foetal movement biomechanics are highlighted, which have potential impact for a diverse range of fields including foetal medicine, musculoskeletal disorders and tissue engineering.

  15. National Report for the International Association of Geodesy of the International Union of Geodesy and Geophysics 2011-2014

    CERN Document Server

    Savinykh, V P; Malkin, Z; Pobedinsky, G; Stoliarov, I A; Sermiagin, R; Zotov, L; Gorshkov, V; Shestakov, N; Steblov, G; Dokukin, P; Ustinov, A

    2015-01-01

    In this National Report are given major results of researches conducted by Russian geodesists in 2011-2014 on the topics of the International Association of Geodesy (IAG) of the International Union of Geodesy and Geophysics (IUGG). This report is prepared by the Section of Geodesy of the National Geophysical Committee of Russia. In the report prepared for the XXVI General Assembly of IUGG (Czhech Republic, Prague, 22 June - 2 July 2015), the results of principal researches in geodesy, geodynamics, gravimetry, in the studies of geodetic reference frame creation and development, Earth's shape and gravity field, Earth's rotation, geodetic theory, its application and some other directions are briefly described. For some objective reasons not all results obtained by Russian scientists on the problems of geodesy are included in the report.

  16. MarsTwin: an M-mission to Mars with two geophysical laboratories

    Science.gov (United States)

    Dehant, V. M.; Breuer, D.; Grott, M.; Spohn, T.; Lognonne, P.; Read, P. L.; Vennerstroem, S.; Banerdt, B.

    2010-12-01

    Mars-Twin - a mission proposed for the running ESA cosmic vision M call - if selected it will be the first European mission to focus on interior processes and the early evolution of Mars, providing essential constraints for models of the thermal, geochemical, and geologic evolution of Mars and for a better understanding of SNC meteorites and future samples from Mars. Our fundamental understanding of the interior of the Earth comes from geophysics, geodesy, geochemistry, geomagnetism, and petrology. For geophysics, seismology, geodesy, magnetic field measurements, and surface heat flow have revealed the basic internal layering of the Earth, its thermal structure, its gross compositional stratification, as well as significant lateral variations in these quantities. The landers will also provide meteorological stations to monitor the Martian meteorology and climate and to obtain new measurements in the Martian boundary layer. The Mars-Twin mission will fill a longstanding gap in the scientific exploration of the solar system by performing an in-situ investigation of the interior of an Earth-like planet other than our own. Mars-Twin will provide unique and critical information about the fundamental processes of terrestrial planet formation and evolution. This investigation has been ranked as a high priority in virtually every set of European, US and international high-level planetary science recommendations for the past 30 years, and the objectives for the Mars-Twin mission are derived directly from these recommendations. In addition to geophysics, the mission will provide important constraints for the Astrobiology of Mars by helping to understand why Mars fails to have a magnetic field, by helping to understand the evolution of the climate, and by providing a limit to the chemoautrophic biosphere through a measurement of the heat flow. The paper will also address the synergy between the lander instruments and the possible orbiter instruments.

  17. Global Bathymetric Prediction For Ocean Modeling and Marine Geophysics

    Science.gov (United States)

    Sandwell, David T.; Smith, Walter H. F.; Sichoix, Lydie; Frey, Herbert V. (Technical Monitor)

    2001-01-01

    We proposed to construct a complete bathymetric map of the oceans at a 3-10 km resolution by combining all of the available depth soundings collected over the past 30 years with high resolution marine gravity information provided by the Geosat, ERS-1/2, and Topex/Poseidon altimeters. Detailed bathymetry is essential for understanding physical oceanography and marine geophysics. Currents and tides are controlled by the overall shapes of the ocean basins as well as the smaller sharp ocean ridges and seamounts. Because erosion rates are low in the deep oceans, detailed bathymetry reveals the mantle convection patterns, the plate boundaries, the cooling/subsidence of the oceanic lithosphere, the oceanic plateaus, and the distribution of off-ridge volcanoes. We proposed to: (1) Accumulate all available depth soundings collected over the past 30 years; (2) Use the short wavelength (< 160 km) satellite gravity information to interpolate between sparse ship soundings; (3) Improve the resolution of the marine gravity field using enhanced estimates along repeat altimeter profiles together with the dense altimeter measurements; (4) Refine/improve bathymetric predictions using the improved resolution gravity field and also by investigating computer-intensive methods for bathymetric prediction such as inverse theory; and (5) Produce a 'Globe of the Earth' similar to the globe of Venus prepared by the NASA Magellan investigation. This will also include the best available digital land data.

  18. Final Report DOE Contract No. DE-FG36-04G014294 ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP P.E. Malin, S.A. Onacha, E. Shalev Division of Earth and Ocean Sciences Nicholas School of the Environment Duke University Durham, NC 27708

    Energy Technology Data Exchange (ETDEWEB)

    Malin, Peter E.; Shalev, Eylon; Onacha, Stepthen A.

    2006-12-15

    In this final report, we discuss both theoretical and applied research resulting from our DOE project, ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP. The abstract below begins with a general discussion of the problem we addressed: the location and characterization of “blind” geothermal resources using microearthquake and magnetotelluric measurements. The abstract then describes the scientific results and their application to the Krafla geothermal area in Iceland. The text following this abstract presents the full discussion of this work, in the form of the PhD thesis of Stephen A. Onacha. The work presented here was awarded the “Best Geophysics Paper” at the 2005 Geothermal Resources Council meeting, Reno. This study presents the modeling of buried fault zones using microearthquake and electrical resistivity data based on the assumptions that fluid-filled fractures cause electrical and seismic anisotropy and polarization. In this study, joint imaging of electrical and seismic data is used to characterize the fracture porosity of the fracture zones. P-wave velocity models are generated from resistivity data and used in locating microearthquakes. Fracture porosity controls fluid circulation in the hydrothermal systems and the intersections of fracture zones close to the heat source form important upwelling zones for hydrothermal fluids. High fracture porosity sites occur along fault terminations, fault-intersection areas and fault traces. Hydrothermal fault zone imaging using resistivity and microearthquake data combines high-resolution multi-station seismic and electromagnetic data to locate rock fractures and the likely presence fluids in high temperature hydrothermal systems. The depths and locations of structural features and fracture porosity common in both the MT and MEQ data is incorporated into a joint imaging scheme to constrain resistivity, seismic velocities, and locations of fracture systems. The imaging of the

  19. Research and Teaching About the Deep Earth

    Science.gov (United States)

    Williams, Michael L.; Mogk, David W.; McDaris, John

    2010-08-01

    Understanding the Deep Earth: Slabs, Drips, Plumes and More; Virtual Workshop, 17-19 February and 24-26 February 2010; Images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring new excitement about deep-Earth processes and connections between Earth's internal systems and plate tectonics. The new results and the steady progress of Earthscope's USArray across the country are also providing a special opportunity to reach students and the general public. The pace of discoveries about the deep Earth is accelerating due to advances in experimental, modeling, and sensing technologies; new data processing capabilities; and installation of new networks, especially the EarthScope facility. EarthScope is an interdisciplinary program that combines geology and geophysics to study the structure and evolution of the North American continent. To explore the current state of deep-Earth science and ways in which it can be brought into the undergraduate classroom, 40 professors attended a virtual workshop given by On the Cutting Edge, a program that strives to improve undergraduate geoscience education through an integrated cooperative series of workshops and Web-based resources. The 6-day two-part workshop consisted of plenary talks, large and small group discussions, and development and review of new classroom and laboratory activities.

  20. NASA'S Earth Science Data Stewardship Activities

    Science.gov (United States)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  1. Simulation of the time-variable gravity field by means of coupled geophysical models

    Directory of Open Access Journals (Sweden)

    Th. Gruber

    2011-07-01

    Full Text Available Time variable gravity fields, reflecting variations of mass distribution in the system Earth is one of the key parameters to understand the changing Earth. Mass variations are caused either by redistribution of mass in, on or above the Earth's surface or by geophysical processes in the Earth's interior. The first set of observations of monthly variations of the Earth gravity field was provided by the US/German GRACE satellite mission beginning in 2002. This mission is still providing valuable information to the science community. However, as GRACE has outlived its expected lifetime, the geoscience community is currently seeking successor missions in order to maintain the long time series of climate change that was begun by GRACE. Several studies on science requirements and technical feasibility have been conducted in the recent years. These studies required a realistic model of the time variable gravity field in order to perform simulation studies on sensitivity of satellites and their instrumentation. This was the primary reason for the European Space Agency (ESA to initiate a study on "Monitoring and Modelling individual Sources of Mass Distribution and Transport in the Earth System by Means of Satellites". The goal of this interdisciplinary study was to create as realistic as possible simulated time variable gravity fields based on coupled geophysical models, which could be used in the simulation processes in a controlled environment. For this purpose global atmosphere, ocean, continental hydrology and ice models were used. The coupling was performed by using consistent forcing throughout the models and by including water flow between the different domains of the Earth system. In addition gravity field changes due to solid Earth processes like continuous glacial isostatic adjustment (GIA and a sudden earthquake with co-seismic and post-seismic signals were modelled. All individual model results were combined and converted to gravity field

  2. Geophysical Hunt for Chromite in Ophiolite

    Directory of Open Access Journals (Sweden)

    Mubarik Ali

    2013-12-01

    Full Text Available Ophiolite of Oman are famous world over, and are favorite for exploring chromite, which is a source of chromium that is used widely in steel, nichrome, and plating and painting industries. The best known chromite deposits are found in the Bushveld complex of South africa, however countries like Pakistan and Oman are also contributing but less than 2% of the world production. Chromite is found in the mantle rocks such as peridotite and its altered products. Large economic deposits are generally found in stratiform structure and the smaller ones in pod-like or tabular lenses. In Oman the chromite deposits occur in Oman ophiolite (Semile, mainly in the mantle sequence comprising harzburgite and dunite. The mining efforts for chromite in Oman are in progress but not on scientific grounds. On a site called Izki (670 m asl the chromite was expected on the top of a hill in a small area (150x50 m of ophiolite, and mining through pitting procedure was tried over there but remained unsuccessful. Geophysical methods were applied in the same area to search out the possibility of the existence of the ore. Since chromite is denser, more conductive and magnetically less susceptible deposit as compared to the host rocks harzburgite and serpentinite, it is expected that the existence of a shallow sizable ore body would generate favorable gravity, magnetic, and resistivity signals. The integrated geophysical study (gravity, magnetic and resistivity reveals the probability of chromite within 30 m depth. For confirmation the drilling was recommended on a point upto a depth of 35 meters. The drilling could not be continued beyond 12 meters depth due to reasons known to the lease owner. The drilling showed harzburgite up to 8 meters depth, then a chromite layer of 0.7 meter thickness, after that harzburgite started for the next 3 meters depth. This state of affairs confirms not only the presence of chromite but also the revealing power of geophysics.

  3. Applications of geophysical methods to volcano monitoring

    Science.gov (United States)

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  4. Movement and Space

    DEFF Research Database (Denmark)

    Riisgaard Hansen, Thomas; Eriksson, Eva; Lykke-Olesen, Andreas

    2005-01-01

    In this paper we explore the space in which movement based interaction takes place. We have in several projects explored how fixed and mobile cameras can be used in movement based interaction and will shortly describe these projects. Based on our experience with working with movement-based intera......In this paper we explore the space in which movement based interaction takes place. We have in several projects explored how fixed and mobile cameras can be used in movement based interaction and will shortly describe these projects. Based on our experience with working with movement...

  5. Constitution and structure of earth's mantle

    DEFF Research Database (Denmark)

    Zunino, Andrea; Khan, Amir; Cupillard, Paul

    2016-01-01

    This chapter describes a quantitative approach that integrates data and results from mineral physics, petrological analyses, and geophysical inverse calculations to map geophysical data directly for mantle composition and thermal state. Seismic tomography has proved an important tool to image...... the inaccessible parts of the Earth. Computation of physical properties using thermodynamic models is described and discussed, and an application of the joint inverse methodology is illustrated in a case study where mantle composition and thermal state beneath continental Australia is determined directly from...... seismic data. There is a growing consensus that the cause of the imaged wavespeed anomalies not only relates to variations in temperature, but also bears a strong compositional component. However, separation of thermal and chemical effects from seismic wave speeds alone is difficult and is further...

  6. Auroral phenomenology and magnetospheric processes earth and other planets

    CERN Document Server

    Keiling, Andreas; Bagenal, Fran; Karlsson, Tomas

    2013-01-01

    Published by the American Geophysical Union as part of the Geophysical Monograph Series. Many of the most basic aspects of the aurora remain unexplained. While in the past terrestrial and planetary auroras have been largely treated in separate books, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets takes a holistic approach, treating the aurora as a fundamental process and discussing the phenomenology, physics, and relationship with the respective planetary magnetospheres in one volume. While there are some behaviors common in auroras of the diffe

  7. A fractured rock geophysical toolbox method selection tool

    Science.gov (United States)

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  8. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Bailey, J. E.; Dehn, J.; Webley, P.; Skoog, R.

    2006-12-01

    At the Alaska Volcano Observatory (AVO), Google Earth is being used as a visualization tool for operational satellite monitoring of the region's volcanoes. Through the abilities of the Keyhole Markup Language (KML) utilized by Google Earth, different datasets have been integrated into this virtual globe browser. Examples include the ability to browse thermal satellite image overlays with dynamic control, to look for signs of volcanic activity. Webcams can also be viewed interactively through the Google Earth interface to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits; and animated models of ash plumes within Google Earth, created by a combination of ash dispersion modeling and 3D visualization packages. The globe also provides an ideal interface for displaying near real-time information on detected thermal anomalies or "hotspot"; pixels in satellite images with elevated brightness temperatures relative to the background temperature. The Geophysical Institute at the University of Alaska collects AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) through its own receiving station. The automated processing that follows includes application of algorithms that search for hotspots close to volcano location, flagging those that meet certain criteria. Further automated routines generate folders of KML placemarkers, which are linked to Google Earth through the network link function. Downloadable KML files have been created to provide links to various data products for different volcanoes and past eruptions, and to demonstrate examples of the monitoring tools developed. These KML files will be made accessible through a new website that will become publicly available in December 2006.

  9. Effect of regularization parameters on geophysical reconstruction

    Institute of Scientific and Technical Information of China (English)

    Zhou Hui; Wang Zhaolei; Qiu Dongling; Li Guofa; Shen Jinsong

    2009-01-01

    In this paper we discuss the edge-preserving regularization method in the reconstruction of physical parameters from geophysical data such as seismic and ground-penetrating radar data.In the regularization method a potential function of model parameters and its corresponding functions are introduced.This method is stable and able to preserve boundaries, and protect resolution.The effect of regularization depends to a great extent on the suitable choice of regularization parameters.The influence of the edge-preserving parameters on the reconstruction results is investigated and the relationship between the regularization parameters and the error of data is described.

  10. Predictability of extreme values in geophysical models

    Directory of Open Access Journals (Sweden)

    A. E. Sterk

    2012-09-01

    Full Text Available Extreme value theory in deterministic systems is concerned with unlikely large (or small values of an observable evaluated along evolutions of the system. In this paper we study the finite-time predictability of extreme values, such as convection, energy, and wind speeds, in three geophysical models. We study whether finite-time Lyapunov exponents are larger or smaller for initial conditions leading to extremes. General statements on whether extreme values are better or less predictable are not possible: the predictability of extreme values depends on the observable, the attractor of the system, and the prediction lead time.

  11. Heat transfer in earth science studies

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C. (Lawrence Livermore National Lab., CA (United States)); Chu, T.Y. (Sandia National Labs., Albuquerque, NM (United States))

    1990-01-01

    Earth scientists have long recognized that quantitative models of heat and mass transfer are fundamental to understanding many geophysical phenomena. Transport models have been used to simulate a wide range of earth processes from the crystallization of rock melts to those global mechanisms responsible for driving lithospheric plates and the geodynamo. Since the elegant conductive cooling models of igneous instrusions by Lovering and Jaeger in the 1930's and 1940's, calculations have evolved in their sophistication with the realization of the importance of convective transport and the advent of new methods and supercomputers. Many of the modeling techniques currently used by geoscientists have been adapted from techniques that were originally developed to solve engineering problems. Processes, such as those involving magma transport in volcanic systems, may often be understood by establishing their dynamical similarity with a well-studied engineering application. This book contains a series of papers regarding heat transfer and earth science studies.

  12. Earth Sciences report, 1989--1990

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Peterson, S.J.; Price, M.E. (eds.)

    1991-03-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period.

  13. Innovation of floating time domain electromagnetic method in the case of environmental geophysics

    Science.gov (United States)

    Nurjanah, Siti; Widodo

    2017-07-01

    Geophysics has some methods that can be used to reveal the subsurface structure of the earth. The physical features obtained from the acquisition then analyzed and interpreted, so that it can be a great lead to interpret the physical contents, determine its position and its distribution. Geophysical methods also can be used to help the environment contamination survey which is referred to environmental geophysics. There are many sources of pollution that can harm the nature, for example, the source in the form of solid waste, liquid waste containing heavy metals, or radioactive, and etc. As time passes, these sources might settle in any sedimentary area and become sediments. Time Domain Electromagnetic (TDEM) is a trustworthy method to detect the presence of conductive anomaly due to sediment accumulation. Innovation of floating TDEM created to maximize the potential of the method, so that it can be used in aquatic environments. The configuration of TDEM modified using pipes and tires during the process of measurements. We conducted numerical simulation using Marquardt and Occam Algorithms towards synthetic model to ensure the capability of the proposed design. The development of this innovation is expected to be very useful to repair the natural conditions, especially in the water.

  14. Geophysical evaluation of the Success Dam foundation, Porterville, California

    Science.gov (United States)

    Hunter, L.E.; Powers, M.H.; Haines, S.; Asch, T.; Burton, B.L.; Serafini, D.C.

    2006-01-01

    Success Dam is a zonedearth fill embankment located near Porterville, CA. Studies of Success Dam by the recent Dam Safety Assurance Program (DSAP) have demonstrated the potential for seismic instability and large deformation of the dam due to relatively low levels of earthquake shaking. The U.S. Army Corps of Engineers conducted several phases of investigations to determine the properties of the dam and its underlying foundation. Detailed engineering studies have been applied using a large number of analytical techniques to estimate the response of the dam and foundation system when subjected to earthquake loading. Although a large amount of data have been acquired, most are 'point' data from borings and results have to be extrapolated between the borings. Geophysical techniques were applied to image the subsurface to provide a better understanding of the spatial distribution of key units that potentially impact the stability. Geophysical investigations employing seismic refraction tomography, direct current (DC) resistivity, audio magnetotellurics (AMT) and self-potential (SP) were conducted across the location of the foundation of a new dam proposed to replace the existing one. Depth to bedrock and the occurrence of beds potentially susceptible to liquefaction were the focus of the investigations. Seismic refraction tomography offers a deep investigation of the foundation region and looks at compressional and shear properties of the material. Whereas resistivity surveys determines conductivity relationships in the shallow subsurface and can produce a relatively high-resolution image of geological units with different electrical properties. AMT was applied because it has the potential to look considerably deeper than the other methods, is useful for confirming depth to bedrock, and can be useful in identifying deep seated faults. SP is a passive electrical method that measures the electrical streaming potential in the subsurface that responds to the movement of

  15. Monitoring the ionosphere based on the Crustal Movement Observation Network of China

    Directory of Open Access Journals (Sweden)

    Yunbin Yuan

    2015-03-01

    Full Text Available The Global Navigation Satellite System (GNSS is becoming important for monitoring the variations in the earth's ionosphere based on the total electron content (TEC and ionospheric electron density (IED. The Crustal Movement Observation Network of China (CMONOC, which includes GNSS stations across mainland China, enables the continuous monitoring of the ionosphere over China as accurately as possible. A series of approaches for GNSS-based ionospheric remote sensing and software has been proposed and developed by the Institute of Geodesy and Geophysics (IGG in Wuhan. Related achievements include the retrieval of ionospheric observables from raw GNSS data, differential code biases estimations in satellites and receivers, models of local and regional ionospheric TEC, and algorithms of ionospheric tomography. Based on these achievements, a software for processing GNSS data to determine the variations in ionospheric TEC and IED over China has been designed and developed by IGG. This software has also been installed at the CMONOC data centers belonging to the China Earthquake Administration and China Meteorological Administration. This paper briefly introduces the related research achievements and indicates potential directions of future work.

  16. Tectonic Plate Movement.

    Science.gov (United States)

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  17. Stereotypic movement disorder

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001548.htm Stereotypic movement disorder To use the sharing features on this page, please enable JavaScript. Stereotypic movement disorder is a condition in which a person makes ...

  18. Eye Movement Disorders

    Science.gov (United States)

    ... work properly. There are many kinds of eye movement disorders. Two common ones are Strabismus - a disorder in ... the eyes, sometimes called "dancing eyes" Some eye movement disorders are present at birth. Others develop over time ...

  19. Tectonic Plate Movement.

    Science.gov (United States)

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  20. Geophysical Monitoring of Active Infiltration Experiments for Recharge Estimation: Gains and Pains

    Science.gov (United States)

    Noell, U.; Lamparter, A.; Houben, G.; Koeniger, P.; Stoeckl, L.; Guenther, T.

    2014-12-01

    Drinking water supply on the island of Langeoog, North Sea, solely depends on groundwater from a freshwater lens. The correct estimation of the recharge rate is critical for a sustainable use of the resource. Extensive hydrogeological and geophysical studies have revealed differences in groundwater recharge by a factor of two and more between the top of the dunes and the dune valleys. The most convincing proof of these differences in recharge is based on isotope analysis (age dating) but boreholes are scarce and a direct proof of recharge is desired. For this purpose active infiltration experiments are performed and geophysically monitored. Former applications of this method in sand and loess soil gave evidence for the applicability of the geophysical observation when combined with tensiometers installed in situ at depth. These results showed firstly that in sandy soil the water reaches the groundwater table quicker than anticipated due to the water repellent characteristic of the dry sand, inhibiting the lateral spreading of the water. The studies also revealed that in loess preferential flow is initiated by ponding and that sprinkling caused very slow movement of water within the unsaturated zone and the water remained near the surface. On the island of Langeoog field experiments underlined the importance of water repellency on the dune surface, indicating that the rain water runs off superficially into the dune valleys where higher recharge is found. The active infiltration zone of the experiment covers an area of some 7m² and includes steeper parts of the dune. The infiltration will vary depending on rainfall intensity and duration, original water content and vegetation cover. What results can we reliably expect from the active experiment and what additional measurements are required to back up the findings? Results are ambiguous with regard to the quantitative assessment but the processes can be visualized by geophysical monitoring in situ.

  1. Minimax approach to inverse problems of geophysics

    Science.gov (United States)

    Balk, P. I.; Dolgal, A. S.; Balk, T. V.; Khristenko, L. A.

    2016-03-01

    A new approach is suggested for solving the inverse problems that arise in the different fields of applied geophysics (gravity, magnetic, and electrical prospecting, geothermy) and require assessing the spatial region occupied by the anomaly-generating masses in the presence of different types of a priori information. The interpretation which provides the maximum guaranteed proximity of the model field sources to the real perturbing object is treated as the best interpretation. In some fields of science (game theory, economics, operations research), the decision-making principle that lies in minimizing the probable losses which cannot be prevented if the situation develops by the worst-case scenario is referred to as minimax. The minimax criterion of choice is interesting as, instead of being confined to the indirect (and sometimes doubtful) signs of the "optimal" solution, it relies on the actual properties of the information in the results of a particular interpretation. In the hierarchy of the approaches to the solution of the inverse problems of geophysics ordered by the volume and quality of the retrieved information about the sources of the field, the minimax approach should take special place.

  2. The Continental Crust: A Geophysical Approach

    Science.gov (United States)

    Christensen, Nikolas I.

    Nearly 80 years ago, Yugoslavian seismologist Andrija Mohorovicic recognized, while studying a Balkan earthquake, that velocities of seismic waves increase abruptly at a few tens of kilometers depth , giving rise to the seismological definition of the crust. Since that discovery, many studies concerned with the nature of both the continental and oceanic crusts have appeared in the geophysical literature.Recently, interest in the continental crust has cascaded. This is largely because of an infusion of new data obtained from major reflection programs such as the Consortium for Continental Reflection Profiling (COCORP) and British Institutions Reflection Profiling Syndicate (BIRPS) and increased resolution of refraction studies. In addition, deep continental drilling programs are n ow in fashion. The Continental Crust: A Geophysical Approach is a summary of present knowledge of the continental crust. Meissner has succeeded in writing a book suited to many different readers, from the interested undergraduate to the professional. The book is well documented , with pertinent figures and a complete and up-to-date reference list.

  3. Satellites provide new insights into polar geophysics

    Science.gov (United States)

    Laxon, Seymour; McAdoo, David

    A revolution in polar geophysics is under way thanks to altimeter data, which the ERS satellites have been collecting since 1991. Geophysical surveys in the polar regions have long been hampered by inaccessibility, particularly in areas that are covered yearround by sea ice or land ice. As a result the major remaining uncertainties in global tectonic models of the Mesozoic and Cenozoic tend to lie in the Arctic and Antarctic regions. In fact, major tectonic plate boundaries have been hypothesized, but not confirmed, for both regions. In the Arctic, a divergent plate boundary associated with the Mesozoic opening of the Canada Basin has been proposed [e.g., Lawver et al., 1990] while in the Antarctic a divergent boundary, active during the late Cretaceous in the Amundsen Sea, has been hypothesized [Cande et al., 1995; Stock and Molnar, 1987]. Due to the acute sparseness of seafloor surveys in these areas, however, no one has been able to prove that these plate boundaries actually existed, nor has anyone been able to locate extinct remnants of the boundaries. High-resolution marine gravity fields (Figures 1 and 2) derived from satellite altimeter data are now redressing this problem of sparse surveys.

  4. New perspectives on superparameterization for geophysical turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Majda, Andrew J. [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Center for Prototype Climate Modelling, NYU Abu Dhabi, Abu Dhabi (United Arab Emirates); Grooms, Ian, E-mail: grooms@cims.nyu.edu [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States)

    2014-08-15

    This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse space–time superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades.

  5. Direct Statistical Simulation of Geophysical Flows

    Science.gov (United States)

    Marston, Brad; Chini, Greg; Tobias, Steve

    2015-11-01

    Statistics of models of geophysical and astrophysical fluids may be directly accessed by solving the equations of motion for the statistics themselves as proposed by Lorenz nearly 50 years ago. Motivated by the desire to capture seamlessly multiscale physics we introduce a new approach to such Direct Statistical Simulation (DSS) based upon separating eddies by length scale. Discarding triads that involve only small-scale waves, the equations of motion generalize the quasi-linear approximation (GQL) and are able to accurately reproduce the low-order statistics of a stochastically-driven barotropic jet. Furthermore the two-point statistics of high wavenumber modes close and thus generalize second-order cumulant expansions (CE2) that employ zonal averaging. This GCE2 approach is tested on two-layer primitive equations. Comparison to statistics accumulated from numerical simulation finds GCE2 to be quantitatively accurate. DSS thus leads to new insight into important processes in geophysical and astrophysical flows. Supported in part by NSF DMR-1306806 and NSF CCF-1048701.

  6. Geological and geophysical surveys of Visakhapatnam coast

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.C.S.; Rao, K.M.; Lakshminarayana, S.

    Continuous records of the total earth's magnetic field and the surface sediment samples from the ocean bottom have been collected off Ramakrishna Beach and Lawsons Bay along the Visakhapatnam Coast. The magnetic data has recorded significant...

  7. Digital Underground (Shh. It's really Applied Geophysics!)

    Science.gov (United States)

    McAdoo, B. G.

    2003-12-01

    Digital Underground (Geology/Physics 241) at Vassar College is an applied geophysics course designed for a liberal arts curriculum, and has nothing to do with Shock G and Tupac Shakur. Applied geophysics courses have a history of using geophysical methods on environmental contamination-type applications (underground storage tanks, leach fields, etc.). Inspired in large part by the Keck Geology Consortium project run by Franklin and Marshall College geophysicist (Robert Sternberg) and archaeologist (James Delle) in an old slave village in Jamaica in 1999, this class examines the history of slavery in New York's Hudson Valley region by way of its forgotten African-American graveyards. This multidisciplinary approach to an issue draws students from across the curriculum- we have had our compliments of geologists and physicists, along with students from sociology, environmental studies, history, and Africana studies. The name of the class and content are designed to attract a non-traditional student of geophysics.- The project-based nature of the class appeals to student yearning for an out-of-classroom experience. The uncontrolled nature of the class demonstrates the complications that occur in real-word situations. The class has in the past broken itself into two teams- a surveying team and an archival research team. Archival research is done (usually by the social scientists in the class) to add a human dimension to the geophysical. The surveying equipment used in delineating these forgotten graveyards includes a Total Station surveyor, an electrical resistivity meter, a magnetometer, and a ground penetrating radar. All students must have a rudimentary understanding of the physics behind the equipment (to the level of where they can explain it to the general public), and the methods used by those studying the archives. This is a project-based class, where the instructor acts as a project manager, and the students make the decisions regarding the survey itself. Every

  8. Predicate Movements in Chinese

    Science.gov (United States)

    Shou-hsin, Teng

    1975-01-01

    The movements of such higher predicates as time, locative, and complementation verbs are studied, and Tai's Predicate Placement Constraint is rejected as an incorrect account of predicate movements in Chinese. It is proposed, on the other hand, that there is only leftward movement involving predicates in Chinese. (Author)

  9. Linking Literacy and Movement

    Science.gov (United States)

    Pica, Rae

    2010-01-01

    There are many links between literacy and movement. Movement and language are both forms of communication and self-expression. Rhythm is an essential component of both language and movement. While people may think of rhythm primarily in musical terms, there is a rhythm to words and sentences as well. Individuals develop an internal rhythm when…

  10. Social movements and science

    DEFF Research Database (Denmark)

    Jamison, Andrew

    2006-01-01

    The article examines the role of social movements in the development of scientific knowledge. Interactions between social movements and science in broad, historical terms are discussed. The relations between the new social movements of the 1960s and 1970s and changes in the contemporary scientific...

  11. Cosmic Rays at Earth

    Science.gov (United States)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  12. The dose rate observed on 19-21 October 1989 and its modulation by geophysical effects.

    Science.gov (United States)

    Smart, D F; Shea, M A; Dachev TsP; Bankov, N G; Petrov, V M; Bengin, V V

    1994-10-01

    The Liulin dosimeter-radiometer on the MIR space station detected the 19 October 1989 high energy solar proton event. These results show that the main particle increase contains protons with energies up to about 9 GeV. After the main particle onset the Liulin dosimeter observed a typical geomagnetic cutoff modulation of the dose rate from the solar particles as the MIR space station traversed magnetic latitudes. When the interplanetary shock and associated solar plasma enveloped the earth on 20 October between 14 and 17 UT the radiation exposure increased significantly due to the lowering of the geomagnetic cutoff. The analysis of this event shows how various geophysical phenomena can significantly modulate the dose rate encountered by earth-orbiting spacecraft.

  13. 砂土中刚性挡墙不同主动变位模式任意位移土压力计算%EARTH PRESSURES ON RIGID RETAINING WALLS IN SANDY SOIL WITH DIFFERENT ACTIVE MOVEMENT MODES UNDER ARBITRARRY DEFORMATION

    Institute of Scientific and Technical Information of China (English)

    应宏伟; 郑贝贝

    2012-01-01

    已有模型实验及现场实测表明,刚性挡墙随着变位模式和位移量的变化,主动土压力合力和分布均发生改变,有时甚至与经典理论的线性分布有很大不同。采用中间状态系数定义非极限状态,提出了砂土中刚性挡墙不同主动位移模式下非极限状态土压力合力系数的计算公式;将墙后士体简化为连续非线性弹簧和刚塑性体的组合体作用在挡墙上,得到了不同位移模式任意位移的土压力分布和合力作用点高度。与已有理论方法和实验结果对比表明,该文方法在三种典型位移模式下与实验数据吻合更好。研究还发现,平动模式土压力呈线性分布,其合力随挡墙位移量的增大易趋于稳定并到达极限状态;绕墙底和绕墙顶转动模式下土压力合力随着位移增大只能接近极限状态且呈非线性分布。绕底转动时,土压力分布曲线逐渐向上凹,合力作用点高度趋于降低;绕顶转动时,分布曲线则逐渐向上凸,合力作用点高度趋于升高,墙顶附近表现出明显的土拱效应。%Previous experimental and monitored results on earth pressures had shown that the resultant and distribution of active earth pressures on rigid retaining wails varied with modes and magnitudes of wall movement. The distribution of earth pressures sometimes differed obviously from a linear distribution according to classical earth pressure theories. A middle-state coefficient was adopted to define the non-limit state, and the formulae of the coefficients of the resultant earth pressures on rigid retaining walls in sandy backfills at a non-limit state with different deformations were proposed. The soil behind the wall was simplified as the combination of nonlinear springs and a rigid plasticity object which applied on the wall, and the unit active pressure and the heights of points of application of pressures were obtained. The comparisons among the

  14. Multi-sensor geophysical constraints on crustal melt in the central Andes: the PLUTONS project

    Science.gov (United States)

    Pritchard, M. E.; Comeau, M. J.; West, M. E.; Christensen, D. H.; Mcfarlin, H. L.; Farrell, A. K.; Del Potro, R.; Gottsmann, J.; McNutt, S. R.; Michelfelder, G.; Diez, M.; Elliott, J.; Henderson, S. T.; Keyson, L.; Delgado, F.; Unsworth, M. J.

    2015-12-01

    The central Andes is a key global location to quantify storage, transport, and volumes of magma in the Earth's crust as it is home to the world's largest zone of partial melt (the Altiplano-Puna Magma or Mush Body, APMB) as well as the more recently documented Southern Puna Magma Body (SPMB). We describe results from the recently completed international PLUTONS project that focused inter-disciplinary study on two sites of large-scale surface uplift that presumably represent ongoing magmatic intrusions in the mid to upper crust - Uturuncu, Bolivia (in the center of the APMB) and Lazufre on the Chile-Argentina border (on the edge of the SPMB). In particular, a suite of geophysical techniques (seismology, gravity, surface deformation, and electro-magnetic methods) have been used to infer the current subsurface distribution and quantity of partial melts in combination with geochemical and lab studies on samples from the area. Both Uturuncu and Lazufre show separate geophysical anomalies in the upper and mid/lower crust (e.g., low seismic velocity, low resistivity, etc.) indicating multiple distinct reservoirs of magma and/or hydrothermal fluids with different properties. The characteristics of the geophysical anomalies differ somewhat depending on the technique used - reflecting the different sensitivity of each method to subsurface melt of different compositions, connectivity, and volatile content. For example, the depth to the top of the APMB is shallower in a joint ambient noise tomography and receiver function analysis compared to a 3D magnetotelluric inversion. One possibility is that the seismic methods are detecting brines above the APMB that do not have a large electromagnetic signature. Comparison of the geophysical measurements with laboratory experiments at the APMB indicate a minimum of 4-25% melt averaged over the region is needed -- higher melt volumes are permitted by the gravity and MT data and may exist in small regions. However, bulk melt values above

  15. Methodology of Detailed Geophysical Examination of the Areas of World Recognized Religious and Cultural Artifacts

    Science.gov (United States)

    Eppelbaum, Lev

    2010-05-01

    It is obvious that noninvasive geophysical methods are the main interpreting tools at the areas of world recognized religious and cultural artifacts. Usually in these areas any excavations, drilling and infrastructure activity are forbidden or very strongly limited. According to field experience and results of numerous modeling (Eppelbaum, 1999, 2000, 2009a, 2009b; Eppelbaum and Itkis, 2001, 2003; Eppelbaum et al., 2000, 2001a, 2001b, 2003a, 2006a, 2006b, 2007, 2010, Itkis et al., 2003; Neishtadt et al., 2006), a set of applied geophysical methods may include the following types of surveys: (1) magnetic, (3) GPR (ground penetration radar), (3) gravity, (4) electromagnetic VLF (very low frequency), (5) ER (electric resistivity), (6) SP (self-potential), (7) IP (induced polarization), (8) SE (seismoelectric), and (9) NST (near-surface temperature). As it was shown in (Eppelbaum, 2005), interpretation ambiguity may be sufficiently reduced not only by integrated analysis of several geophysical methods, but also by the way of multilevel observations of geophysical fields. Magnetic, gravity and VLF measurements may be performed at different levels over the earth's surface (0.1 - 3 m), ER, SP and SE observations may be obtained with different depth of electrodes grounding (0.1 - 1 m), and NST sensor may be located at a depth of 0.8 - 2.5 m. GPR method usually allows measuring electromagnetic fields at various frequencies (with corresponding changing of the investigation depth and other parameters). Influence of some typical noise factors to geophysical investigations at archaeological sites was investigated in (Eppelbaum and Khesin, 2001). In many cases various constructions and walls are in the nearest vicinity of the examined artifacts. These constructions can be also utilized for carrying out geophysical measurements (magnetic, gravity and VLF) at different levels. Application of the modern ROV (remote operated vehicles) with registration of magnetic and VLF fields at

  16. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    Science.gov (United States)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  17. Earth Science Education in Sudan

    Science.gov (United States)

    Abdullatif, Osman M.; Farwa, Abdalla G.

    1999-05-01

    This paper describes Earth Science Education in Sudan, with particular emphasis on the University of Khartoum. The first geological department in Sudan was founded in 1958 in the University of Khartoum. In the 1980s, six more geological departments have been added in the newer universities. The types of courses offered include Diploma, B.Sc. (General), B.Sc. (Honours), M.Sc. and Ph.D. The Geology programmes are strongly supported by field work training and mapping. Final-year students follow specialised training in one of the following topics: hydrogeology, geophysics, economic geology, sedimentology and engineering geology. A graduation report, written in the final year, represents 30-40% of the total marks. The final assessment and grading are decided with the help of internal and external examiners. Entry into the Geology programmes is based on merit and performance. The number of students who graduate with Honours and become geologists is between 20% to 40% of the initial intake at the beginning of the second year. Employment opportunities are limited and are found mainly in the Government's geological offices, the universities and research centres, and private companies. The Department of Geology at the University of Khartoum has long-standing internal and external links with outside partners. This has been manifested in the training of staff members, the donation of teaching materials and laboratory facilities. The chief problems currently facing Earth Science Education in Sudan are underfunding, poor equipment, laboratory facilities and logistics. Other problems include a shortage of staff, absence of research, lack of supervision and emigration of staff members. Urgent measures are needed to assess and evaluate the status of Earth Science Education in terms of objectives, needs and difficulties encountered. Earth Science Education is expected to contribute significantly to the exploitation of mineral resources and socio-economic development in the Sudan.

  18. Technical Note: Calibration and validation of geophysical observation models

    NARCIS (Netherlands)

    Salama, M.S.; van der Velde, R.; van der Woerd, H.J.; Kromkamp, J.C.; Philippart, C.J.M.; Joseph, A.T.; O'Neill, P.E.; Lang, R.H.; Gish, T.; Werdell, P.J.; Su, Z.

    2012-01-01

    We present a method to calibrate and validate observational models that interrelate remotely sensed energy fluxes to geophysical variables of land and water surfaces. Coincident sets of remote sensing observation of visible and microwave radiations and geophysical data are assembled and subdivided i

  19. Application of geophysical methods to agriculture: An overview

    Science.gov (United States)

    Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...

  20. Comparison study of selected geophysical and geotechnical parameters

    DEFF Research Database (Denmark)

    Nissen, Randi Warncke; Poulsen, Søren Erbs

    2015-01-01

    Successful foundation of constructions relies on accurate characterization of the geotechnical properties of the subsurface. By implementing data from geophysical surveys, the placement of geotechnical drillings can be significantly improved, potentially reducing the number of required drillings....... This case study is mainly to compare geophysical investigations (MEP/IP) with existing PACES data and information from geotechnical drillings....

  1. Introduction to the JEEG Agricultural Geophysics special issue

    Science.gov (United States)

    Recent advancements such as the availability of personal computers, technologies to store/process large amounts of data, the GPS, and GIS have now made geophysical methods practical for agricultural use. Consequently, there has been a rapid expansion of agricultural geophysics research just over the...

  2. Numerical Inversion of Integral Equations for Medical Imaging and Geophysics

    Science.gov (United States)

    1988-12-13

    Equations for Medical Imaging and Geophysics (Unclassified) 12 PERSONAL AUTHOR(S) Frank Stenger 13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT...9r~S NUMERICAL INVERSION OF INTEGRAL EQUATIONS FOR MEDICAL IMAGING AND GEOPHYSICS FINAL REPORT AUTHOR OF REPORT: Frank Stenger December 13, 1988

  3. Geophysical couples” Discuss jobs, marriage

    Science.gov (United States)

    Some 90 participants attended an open forum, “Dual Career Couples: Challenges and Opportunities,” on December 9 at the AGU Fall 1991 Meeting in San Francisco. Several couples summarized their experiences in “geophysical marriages” while the audience contributed questions and comments.Being forced to live apart was a common complaint among the married panelists. One couple on the panel—Karen Prestegaard of the University of Maryland and Jim Luhr of the Smithsonian Institution's Department of Mineral Physics—have been able to live together only 2 years out of the last 10. Although employer guidelines do not officially prohibit hiring couples, Prestegaard and Luhr expressed frustration that many institutions not only will not do so, but also will not help the second partner find a job nearby.

  4. A mixture theory for geophysical fluids

    Directory of Open Access Journals (Sweden)

    A. C. Eringen

    2004-01-01

    Full Text Available A continuum theory is developed for a geophysical fluid consisting of two species. Balance laws are given for the individual components of the mixture, modeled as micropolar viscous fluids. The continua allow independent rotational degrees of freedom, so that the fluids can exhibit couple stresses and a non-symmetric stress tensor. The second law of thermodynamics is used to develop constitutive equations. Linear constitutive equations are constituted for a heat conducting mixture, each species possessing separate viscosities. Field equations are obtained and boundary and initial conditions are stated. This theory is relevant to an atmospheric mixture consisting of any two species from rain, snow and/or sand. Also, this is a continuum theory for oceanic mixtures, such as water and silt, or water and oil spills, etc.

  5. Cosmic Muon Detection for Geophysical Applications

    Directory of Open Access Journals (Sweden)

    László Oláh

    2013-01-01

    Full Text Available A portable cosmic muon detector has been developed for environmental, geophysical, or industrial applications. The device is a tracking detector based on the Close Cathode Chamber, an MWPC-like technology, allowing operation in natural underground caves or artificial tunnels, far from laboratory conditions. The compact, low power consumption system with sensitive surface of 0.1 m2 measures the angular distribution of cosmic muons with a resolution of 10 mrad, allowing for a detailed mapping of the rock thickness above the muon detector. Demonstration of applicability of the muon telescope (REGARD Muontomograph for civil engineering and measurements in artificial underground tunnels or caverns are presented.

  6. The geology and geophysics of Mars

    Science.gov (United States)

    Saunders, R. S.

    1976-01-01

    The current state of knowledge concerning the regional geology and geophysics of Mars is summarized. Telescopic observations of the planet are reviewed, pre-Mariner models of its interior are discussed, and progress achieved with the Mariner flybys, especially that of Mariner 9, is noted. A map of the Martian geological provinces is presented to provide a summary of the surface geology and morphology. The contrast between the northern and southern hemispheres is pointed out, and the characteristic features of the surface are described in detail. The global topography of the planet is examined along with its gravitational field, gravity anomalies, and moment of inertia. The general sequence of events in Martian geological history is briefly outlined.

  7. Georadar - high resolution geophysical electromagnetic device

    Directory of Open Access Journals (Sweden)

    Janez Stern

    1995-12-01

    Full Text Available Georadar is a high resolution geophysical electromagnetic device that was developed in the first part of the 1980's. In Slovenia it was first tested in 1991 on several objects of economicgeological, geotechnical and hydrogeologic nature.Here its usefulness in karst studied is presented. The first part of the paper deals with description of measurement procedure and methodological bases, and the second part with experience and results of case histories. Shown are radargrams from ornamental stone quarry Hotavlje, calcite mine Stahovica, Golobja jama karstcave near Divača and from highway construction site Razdrto-Čebulovica. All measurements were performed with the georadar instrument Pulse EKKO IV with a lOOMHz antenna according to the method of reflection profiling.

  8. Problems of data bases in geophysics

    Science.gov (United States)

    Hartmann, G. K.

    Ten problems areas in the design and implementation of geophysical data bases are listed and briefly characterized. The emphasis is on software aspects, which are seen as critical given the current state of hardware technology. Topics examined include data sources and users; the difference between information-ordering schemes for the humanities and for the natural sciences; economic limitations on acquisition, evaluation, and storage of data; private versus public data; centralized, decentralized, and distributed computer systems; and the need for structured, transportable, and adequately documented software. A glossary of data terminology, extensive tables and block diagrams listing types of data and applications and illustrating ordering schemes, estimates of the data-processing and storage requirements of typical missions, and a summary of the CODMAC 1982 recommendations are provided.

  9. Software complex for geophysical data visualization

    Science.gov (United States)

    Kryukov, Ilya A.; Tyugin, Dmitry Y.; Kurkin, Andrey A.; Kurkina, Oxana E.

    2013-04-01

    The effectiveness of current research in geophysics is largely determined by the degree of implementation of the procedure of data processing and visualization with the use of modern information technology. Realistic and informative visualization of the results of three-dimensional modeling of geophysical processes contributes significantly into the naturalness of physical modeling and detailed view of the phenomena. The main difficulty in this case is to interpret the results of the calculations: it is necessary to be able to observe the various parameters of the three-dimensional models, build sections on different planes to evaluate certain characteristics and make a rapid assessment. Programs for interpretation and visualization of simulations are spread all over the world, for example, software systems such as ParaView, Golden Software Surfer, Voxler, Flow Vision and others. However, it is not always possible to solve the problem of visualization with the help of a single software package. Preprocessing, data transfer between the packages and setting up a uniform visualization style can turn into a long and routine work. In addition to this, sometimes special display modes for specific data are required and existing products tend to have more common features and are not always fully applicable to certain special cases. Rendering of dynamic data may require scripting languages that does not relieve the user from writing code. Therefore, the task was to develop a new and original software complex for the visualization of simulation results. Let us briefly list of the primary features that are developed. Software complex is a graphical application with a convenient and simple user interface that displays the results of the simulation. Complex is also able to interactively manage the image, resize the image without loss of quality, apply a two-dimensional and three-dimensional regular grid, set the coordinate axes with data labels and perform slice of data. The

  10. Electrokinetics in Earth Sciences: A Tutorial

    Directory of Open Access Journals (Sweden)

    L. Jouniaux

    2012-01-01

    in porous media, to be included in the special issue “Electrokinetics in Earth Sciences” of International Journal of Geophysics. We describe the methodology used for self-potential (SP and for seismoelectromagnetic measurements, for both field and laboratory experiments and for modelling. We give a large bibliography on the studies performed in hydrology to detect at distance the water flow, to deduce the thickness of the aquifer and to predict the hydraulic conductivity. The observation of SP has also been proposed to detect fractures in boreholes, to follow the hydraulic fracturing, and to predict the earthquakes. Moreover, we detail the studies on geothermal applications.

  11. Geotechnology for groundwater and salinisation soil using geophysical prospecting; Butsuri tansa wo mochiita chikasui enrui dojo no tansa gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, A. [Sumitomo Metal Industries, Ltd., Osaka (Japan); Imaizumi, M.; Takeuchi, M. [National Research Institute of Agricultural Engineering, Tsukuba (Japan)

    1997-12-01

    This paper takes a general view of geophysical prospecting on groundwater and salinisation soil. It also explains the following examples of prospecting: an example of pursuing movement of saline water lump charged with a tracer by using a specific resistance monitor, as a monitoring survey being a representative example of `visualization of movement` expected as a direction to which physical prospecting should proceed in the future, an example of elucidating distribution of soil salts vertically and two-dimensionally by using the electromagnetic exploration method, and an example of surveying distribution of three-dimensional water permeation coefficients by utilizing geophysical prospecting systems, as an example of estimating property values from geophysical prospecting. Electrical prospecting has been used as an exploration method related to groundwater, whereas its method has been increasing the diversity, such as from vertical exploration to high-density horizontal exploration and tomography. Noticeable progress can also be seen in electromagnetic exploration and logging techniques. In addition, what is demanded in application of physical prospecting to groundwater field may include visualization of ground water flow, more precise estimation of hydraulic constants, and complement of their distribution. 22 refs., 21 figs., 3 tabs.

  12. Applied Geophysics Opportunities in the Petroleum Industry

    Science.gov (United States)

    Olgaard, D. L.; Tikku, A.; Roberts, J. C.; Martinez, A.

    2012-12-01

    Meeting the increasing global demand for energy over the next several decades presents daunting challenges to engineers and scientists, including geoscientists of all disciplines. Many opportunities exist for geophysicists to find and produce oil and gas in a safe, environmentally responsible and affordable manner. Successful oil and gas exploration involves a 'Plates to Pores' approach that integrates multi-scale data from satellites, marine and land seismic and non-seismic field surveys, lab experiments, and even electron microscopy. The petroleum industry is at the forefront of using high performance computing to develop innovative methods to process and analyze large volumes of seismic data and perform realistic numerical modeling, such as finite element fluid flow and rock deformation simulations. Challenging and rewarding jobs in exploration, production and research exist for students with BS/BA, MS and PhD degrees. Geophysics students interested in careers in the petroleum industry should have a broad foundation in science, math and fundamental geosciences at the BS/BA level, as well as mastery of the scientific method, usually gained through thesis work at MS and PhD levels. Field geology or geophysics experience is also valuable. Other personal attributes typical for geoscientists to be successful in industry include a passion for solving complex geoscience problems, the flexibility to work on a variety of assignments throughout a career and skills such as teamwork, communication, integration and leadership. In this presentation we will give examples of research, exploration and production opportunities for geophysicists in petroleum companies and compare and contrast careers in academia vs. industry.

  13. Thermodynamics of the Earth

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Frank D [CSIRO Exploration and Mining, PO Box 883, Kenmore, Qld. 4069 (Australia)], E-mail: Frank.Stacey@csiro.au

    2010-04-15

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10{sup 12} W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10{sup 4} : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical

  14. Expedited Site Characterization geophysics: Geophysical methods and tools for site characterization

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.

    1994-03-01

    This report covers five classes of geophysical technologies: Magnetics; Electrical/electromagnetic; Seismic reflection; Gamma-ray spectrometry; and Metal-specific spectrometry. Except for radiometry, no other classes of geophysical tedmologies are specific for direct detection of the types of contaminants present at the selected sites. For each of the five classes covered, the report gives a general description of the methodology, its field use, and its general applicability to the ESC Project. In addition, the report gives a sample of the most promising instruments available for each class, including the following information: Hardware/software attributes; Purchase and rental costs; Survey rate and operating costs; and Other applicable information based on case history and field evaluations.

  15. Relevancy of mathematical support for geophysics determinations

    Science.gov (United States)

    Vîlceanu, Clara-Beatrice; Grecea, Carmen; Muşat, Cosmin

    2017-07-01

    The importance of gravity in geodesy is recognized even since the 16th century. Starting with the experiments and theories of Galileo Galilei, the gravity and its global variation has continued to play an important role for those preoccupied with measuring the Earth's surface. The benefits of Physical Geodesy (studying the Earth's gravitational field) are extended to other disciplines such as Seismology, Oceanography, Volcanology etc. The aim of the present paper consists in highlighting the connection between gravity and the geodesist's profession. This was possible only throughout an extended study of Physical Geodesy realized with the support given by the International Gravity Office, Military Topographic Direction, The National Centre of Cartography and different specialists from these domains. Gravity represents the main factor which influences the Earth's shape and dimensions and when it comes to geodetic measurements, the gravity and its influence upon the measurements realized by specialists in geodesy has to be considered.

  16. Earth physics and phase transformations program: A concept and proposal

    Science.gov (United States)

    Bonavito, N. L.; Tanaka, T.

    1971-01-01

    A program to study the geophysical characteristics of the earth is presented as an integration of the different disciplines that constitute the earth sciences, through the foundation of a generalized geodynamic theory of earth physics. A program is considered for defining the physical constants of the earth's material which parametrize the hydrodynamic equation in the microscopic solid state behavior of the crystals of the lithosphere. In addition, in order to lay the foundation for a generalized theory in earth physics, specific research areas are considered, such as the nature of the kinetics of the phase transitions in mineral assemblages, the equilibrium thermodynamic properties of crystals which are major constituents of mineral assemblages, and the transport properties of pure crystals which are major constituents of mineral assemblages.

  17. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  18. Surface Packages for Geophysical Exploration of Small Bodies

    Science.gov (United States)

    Scheeres, D. J.

    2015-12-01

    The geophysical exploration of small rubble pile bodies is fundamentally important for understanding the mechanics of gravitationally bound aggregates. The mechanical and geotechnical properties of these bodies are not understood from an experimental perspective, and have only been studied theoretically and using numerical simulations. To carry out experiments in this environment requires the development and deployment of surface packages to the body surface to enable physical interactions and measurements. This talk will discuss how such experiments can be developed and used in the small body environment. It will particularly focuse on one approach that uses a combination of surface seismic sources and probes to measure the seismic properties of a rubble pile. The small body dynamical environment is particularly well suited for the deployment of such surface packages for exploration and scientific measurement purposes. This is mainly due to their meager gravity fields, which allow the delivery of complex instruments to the surface with impact speeds that are at most a meter per second — equivalent to dropping an object from less than a 5 cm height on Earth. Despite this seeming advantage, the delivery and mobility of such packages on the surface of a small body remains a challenging endeavor, and to date the delivery of surface packages to small bodies has had a mixed success rate. Issues that must be accounted for include the delivery trajectories for probes to the surface, motion on the surface of a small body, and interactions between a probe and a small body surface. Studies of all of these issues both theoretically and experimentally will be presented, along with proposed applications to achieve scientific goals on the surfaces of small bodies.

  19. DART: New Research Using Ensemble Data Assimilation in Geophysical Models

    Science.gov (United States)

    Anderson, Jeffrey; Raeder, Kevin; Hoar, Tim; Collins, Nancy; Romine, Glen; Barre, Jerome; Gaubert, Benjamin; Arellano, Ave; Wuerth, Stephanie

    2016-04-01

    The Data Assimilation Research Testbed (DART) is a community facility for ensemble data assimilation developed and supported by the National Center for Atmospheric Research. DART provides a comprehensive suite of software, documentation, examples and tutorials that can be used for ensemble data assimilation research, operations, and education. Scientists and software engineers from the Data Assimilation Research Section at NCAR are available to actively support DART users who want to use existing DART products or develop their own new applications. Current DART users range from university professors teaching data assimilation, to individual graduate students working with simple models, through national laboratories doing operational prediction with large state-of-the-art models. DART runs efficiently on many computational platforms ranging from laptops through thousands of cores on the newest supercomputers. This poster focuses on several recent research activities using DART with geophysical models: 1). Using CAM/DART to understand whether OCO-2 Total Precipitable Water observations can be useful in numerical weather prediction. 2). Impacts of the synergistic use of Infra-red CO retrievals (MOPITT, IASI) in CAMCHEM/DART assimilations. 3). Assimilation and Analysis of Observations of Amazonian Biomass Burning Emissions by MOPITT (aerosol optical depth), MODIS (carbon monoxide) and MISR (plume height). 4). Long term evaluation of the chemical response of MOPITT-CO assimilation in CAM-CHEM/DART OSSEs for satellite planning and emission inversion capabilities. 5). Improved forward observation operators for land models that have multiple land use/land cover segments in a single grid cell, enabling studies of the inherent variability in a single gridcell. Future enhancements are also discussed: 1). The CICE component of the Community Earth System Model will be added to the existing suite of components, which can be used for data assimilation. 2). Fully coupled

  20. Analysis of the geophysical data using a posteriori algorithms

    Science.gov (United States)

    Voskoboynikova, Gyulnara; Khairetdinov, Marat

    2016-04-01

    The problems of monitoring, prediction and prevention of extraordinary natural and technogenic events are priority of modern problems. These events include earthquakes, volcanic eruptions, the lunar-solar tides, landslides, falling celestial bodies, explosions utilized stockpiles of ammunition, numerous quarry explosion in open coal mines, provoking technogenic earthquakes. Monitoring is based on a number of successive stages, which include remote registration of the events responses, measurement of the main parameters as arrival times of seismic waves or the original waveforms. At the final stage the inverse problems associated with determining the geographic location and time of the registration event are solving. Therefore, improving the accuracy of the parameters estimation of the original records in the high noise is an important problem. As is known, the main measurement errors arise due to the influence of external noise, the difference between the real and model structures of the medium, imprecision of the time definition in the events epicenter, the instrumental errors. Therefore, posteriori algorithms more accurate in comparison with known algorithms are proposed and investigated. They are based on a combination of discrete optimization method and fractal approach for joint detection and estimation of the arrival times in the quasi-periodic waveforms sequence in problems of geophysical monitoring with improved accuracy. Existing today, alternative approaches to solving these problems does not provide the given accuracy. The proposed algorithms are considered for the tasks of vibration sounding of the Earth in times of lunar and solar tides, and for the problem of monitoring of the borehole seismic source location in trade drilling.

  1. FINITE ELEMENT MODELING OF PROBLEMS OF GEOMECHANICS AND GEOPHYSICS

    Directory of Open Access Journals (Sweden)

    Vlasov Alexander Nikolaevich

    2012-10-01

    Full Text Available In the article, the authors consider some classes of problems of geomechanics that are resolved through the application of SIMULIA ABAQUS software. The tasks associated with the assessment of the zone of influence of structures produced on surrounding buildings and structures in the dense urban environment, as well as the tectonic and physical simulation of rifts with the purpose of identification of deformations of the Earth surface and other defects of lithospheric plates. These seemingly different types of tasks can be grouped together on the basis of common characteristics due to the complexity of numerical modeling problems of geomechanics and geophysics. Non-linearity of physical processes, complexity of the geological structure and variable thickness of layers, bed thinning layers, lenses, as well as singular elements, make it hard to consolidate different elements (for example, engineering and geological elements and associated structures of buildings in a single model. In this regard, software SIMULIA ABAQUS looks attractive, since it provides a highly advanced finite-element modeling technique, including a convenient hexahedral mesh generator, a wide range of models of elastic and plastic strain of materials, and the ability to work with certain geometric areas that interrelate through the mechanism of contacting surface pairs that have restrictions. It is noteworthy that the research also facilitates development of personal analytical methods designated for the assessment of physical and mechanical properties of heterogeneous materials as well as new solutions applicable in the vicinity of singular elements of the area that may be used in modeling together with ABAQUS software.

  2. Earth Science Education in Zimbabwe

    Science.gov (United States)

    Walsh, Kevin L.

    1999-05-01

    Zimbabwe is a mineral-rich country with a long history of Earth Science Education. The establishment of a University Geology Department in 1960 allowed the country to produce its own earth science graduates. These graduates are readily absorbed by the mining industry and few are without work. Demand for places at the University is high and entry standards reflect this. Students enter the University after GCE A levels in three science subjects and most go on to graduate. Degree programmes include B.Sc. General in Geology (plus another science), B.Sc. Honours in Geology and M.Sc. in Exploration Geology and in Geophysics. The undergraduate curriculum is broad-based and increasingly vocationally orientated. A well-equipped building caters for relatively large student numbers and also houses analytical facilities used for research and teaching. Computers are used in teaching from the first year onwards. Staff are on average poorly qualified compared to other universities, but there is an impressive research element. The Department has good links with many overseas universities and external funding agencies play a strong supporting role. That said, financial constraints remain the greatest barrier to future development, although increasing links with the mining industry may cushion this.

  3. Marine Geology and Geophysics Field Course Offered by The University of Texas Institute for Geophysics

    Science.gov (United States)

    Duncan, D.; Davis, M. B.; Allison, M. A.; Gulick, S. P.; Goff, J. A.; Saustrup, S.

    2012-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year six, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students participate in an initial period of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas and Galveston, Texas, and Grand Isle, Louisiana, have provided ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf through application of geophysical techniques. In the field, students rotate between two research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, and is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibrocoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for

  4. Paleomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, G.H.M.A.

    2004-01-01

    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally

  5. Palaeomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, Gerardus Henricus Martina Anna

    2004-01-01

    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally

  6. Palaeomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, Gerardus Henricus Martina Anna

    2004-01-01

    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally accept

  7. Paleomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, G.H.M.A.

    2004-01-01

    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally accept

  8. Palaeomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, Gerardus Henricus Martina Anna

    2004-01-01

    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally accept

  9. Paleomagnetism of late Archaean flood basalt terrains : implications for early Earth geodynamics and geomagnetism

    NARCIS (Netherlands)

    Strik, G.H.M.A.

    2004-01-01

    Palaeomagnetic studies are e.g. important for demonstrating and quantifying horizontal movement and rotation of pieces of the Earth's crust. The constant movement and recycling of plates, in other words plate tectonics, is an important mechanism for the Earth to lose its heat. It is generally accept

  10. Combining geomorphological mapping and near surface geophysics (GPR and ERT) to study piping systems

    Science.gov (United States)

    Bernatek-Jakiel, Anita; Kondracka, Marta

    2016-12-01

    This paper aims to provide a more comprehensive characterization of piping systems in mountainous areas under a temperate climate using geomorphological mapping and geophysical methods (electrical resistivity tomography - ERT and ground penetrating radar - GPR). The significance of piping in gully formation and hillslope hydrology has been discussed for many years, and most of the studies are based on surface investigations. However, it seems that most surface investigations underestimate this subsurface process. Therefore, our purpose was to estimate the scale of piping activity based on both surface and subsurface investigations. We used geophysical methods to detect the boundary of lateral water movement fostering pipe development and recognize the internal structure of the underlying materials. The survey was carried out in the Bereźnica Wyżna catchment, in the Bieszczady Mountains. (Eastern Carpathians, Poland), where pipes develop in Cambisols at a mean depth of about 0.7-0.8 m. The geophysical techniques that were used are shown to be successful in identifying pipes. GPR data suggest that the density of piping systems is much larger than that detectible from surface observations alone. Pipe length can be > 6.5-9.2% (maximum = 49%) higher than what surface mapping suggests. Thus, the significance of piping in hillslope hydrology and gully formation can be greater than previously assumed. These results also draw attention to the scale of piping activity in the Carpathians, where this process has been neglected for many years. The ERT profiles reveal areas affected by piping as places of higher resistivity values, which are an effect of a higher content of air-filled pores (due to higher soil porosity, intense biological activity, and well-developed soil structure). In addition, the ERT profiles show that the pipes in the study area develop at the soil-bedrock interface, probably above the layers of shales or mudstones which create a water restrictive layer

  11. Geophysical Investigations at Pahute Mesa, Nevada.

    Science.gov (United States)

    1987-08-12

    Herrmann Department of Earth & Atmospheric Sciences Saint Louis University Saint Louis, MO 63156 Professor Lane R. Johnson Seismographic Station University...Springer 0 Cr87 Lawrence Livermore National Laboratory P.O. Box 808. L-205 Livermore, CA 94550 Dr. Lawrence Turnbull OSWR/ NED Central Intelligence Agency

  12. New Geophysical Techniques for Offshore Exploration.

    Science.gov (United States)

    Talwani, Manik

    1983-01-01

    New seismic techniques have been developed recently that borrow theory from academic institutions and technology from industry, allowing scientists to explore deeper into the earth with much greater precision than possible with older seismic methods. Several of these methods are discussed, including the seismic reflection common-depth-point…

  13. The mathematics of movement

    Science.gov (United States)

    Johnson, D.H.

    1999-01-01

    Review of: Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants. Peter Turchin. 1998. Sinauer Associates, Sunderland, MA. 306 pages. $38.95 (paper).

  14. Gravitation and the earth sciences: the contributions of Robert Dicke

    CERN Document Server

    Kragh, Helge

    2015-01-01

    The American physicist Robert Dicke (1916-1997) is primarily known for his important contributions to gravitation, cosmology, and microwave physics. Much less known is his work in geophysics and related areas of the earth sciences in which he engaged himself and several of his collaborators in the period from about 1957 to 1969. Much of Dicke's work in geophysics was motivated by his wish to obtain evidence in support of the non-Einstenian Brans-Dicke theory of gravitation. The idea of a decreasing gravitational constant, as entertained by Dicke and some other physicists (including Pascual Jordan), played some role in the process that transformed the static picture of the Earth to a dynamical picture. It is not by accident that Dicke appears as a minor actor in histories of the plate tectonic revolution in the 1960s.

  15. Geophysical survey at Tell Barri (Syria)

    Science.gov (United States)

    Florio, Giovanni; Cella, Federico; Pierobon, Raffaella; Castaldo, Raffaele; Castiello, Gabriella; Fedi, Maurizio

    2010-05-01

    A geophysical survey at the archaeological site of Tell Barri (Northeasterm Syria) was carried out. The Tell (Arab word for "hill") is 32 m high with a whole covered area of 37 hectares. The Tell, with its huge dimensions and with a great amount of pottery on the surface, is a precious area to study the regional history from IV mill. BC to Islamic and Medieval period. The geophysical study consisted in magnetic and electromagnetic measurements in the lower town area. The aim of this survey was to provide evidence of the presence of buried archaeological structures around an already excavated area. The wall structures in the Tell Barri are made by backed or crude clay bricks. The instrument used for the magnetic survey was an Overhauser-effect proton magnetometer (Gem GSM-19GF), in gradiometric configuration. The electromagnetic instrument used, Geonics Ltd. EM31, implements a Frequency Domain Electromagnetic Method (FDEM). It was used in vertical coils configuration, and this choice should grant a maximum theoretical investigation depth of about 6 m. Before starting the measurements on a larger scale, we conducted a magnetic and EM test profile on some already excavated, outcropping, baked bricks walls. Results were encouraging, because clear and strong magnetic and EM anomalies were recorded over the outcropping walls. However, in the survey area these structures are covered by 3 to 4 meters of clay material and the increased sensors-structures distance will reduce the anomalies amplitude. Moreover, the cover material is disseminated with bricks, basalt blocks and ceramics, all of which have relevant magnetic properties. After magnetic surveying some 50 m side square areas, we verified that unfortunately their effect resulted to be dominant with respect to the deeper wall structures, degrading too much the signal-to-noise ratio. The processing and analysis of magnetic data is however currently underway and will determine decisions about further use of this method

  16. Earth Sciences Division annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  17. Tectonic Movement and Global Climate Change

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexiang; Chen Dianyou

    2000-01-01

    Glaciation between northern hemisphere and southern hemisphere were synchronous, the ice age occurred not in high but in low value of the eccentricity of the earth's orbit. Such facts went against the precession principle of the astronomical theory of ice age. The inhomogeneous distribution of climate consisted with the inhomogeneous distribution of ocean and continent. The north/south antisymmetry may be attributed to southward deviation of the thermal center and northward deviation of the mass center within the mantle demonstrated by seismic tomography. The core - mantle angular momentum makes rotational energy into thermal energy and mantle plumes erupt in the ocean bottom. The earth's deformation by tidal force makes the eruption of mantle plumes strong. They are the reason that glaciation between the Northern Hemisphere and Southern Hemisphere are synchronous and the ice age occurred in low value of the eccentricity of the earth' s orbit. The tectonic movement is playing a most important part in global climate change.

  18. Redesigning Curricula in Geology and Geophysics

    Science.gov (United States)

    Sparks, D. W.; Ewing, R. C.; Fowler, D.; Macik, M.; Marcantonio, F.; Miller, B.; Newman, J.; Olszewski, T.; Reece, R.; Rosser, S.

    2015-12-01

    In the summer of 2014, the Texas A&M Department of Geology and Geophysics partnered with the Texas A&M Center for Teaching Excellence to implement TAMU's curriculum revision process: a data-informed, faculty-driven, educational-developer-supported rebuilding of our degree programs and course offerings. The current curricula (B.S. and B.A. in Geology, B.S. in Geophysics) were put into place in 1997, following the merger of two separate departments. The needs and capabilities of the Department and the student body have changed significantly since that time: more than 50% turnover of the faculty, a rapidly-changing job climate for geologists and geophysicists, and a nearly five-fold increase in the undergraduate population to over 500 majors in Fall 2015. Surveys of former students, employers and faculty at other universities revealed more reasons to address the curriculum. Some of the most desired skills are also those at which our graduates feel and are perceived to be least prepared: oral communication and the ability to learn software packages (skills that are most challenging to teach with growing class sizes). The challenge facing the Department is to accommodate growing student numbers while maintaining strength in traditional instructor-intensive activities such as microscopy and field mapping, and also improving our graduates' non-geological skills (e.g., communication, software use, teamwork, problem-solving) to insulate them from volatility in the current job market. We formed the Curriculum Study Group, consisting of faculty, graduate students, advisors and curriculum experts, to gather and analyze data and define the knowledge and skill base a graduate of our department must have. In addition to conducting external surveys, this group interviewed current students and faculty to determine the strengths and weaknesses of our program. We developed program learning goals that were further specified into over fifty criteria. For each criteria we defined

  19. TEMPORAL VARIATIONS IN GEOPHYSICAL FIELDS AND EARTHQUAKE FORECASTING ISSUES

    Directory of Open Access Journals (Sweden)

    V. A. Parovyshny

    2015-09-01

    Full Text Available Results of the experimental long-term monitoring programme are presented. It is aimed at studying natural geophysical fields located above the gas deposit in the zone impacted by the active regional fault, and its objectives are to reveal how such fields are changing with time and to establish a relationship between the temporal changes and seismicity. According to the database it determines several typical indicators of variations in the geophysical fields, which take place only above the gas deposit. It is concluded that periods, when natural geophysical fields located above the gas deposit are unstable, are preceding the final phase of preparation of seismic events.

  20. Randomness Of Amoeba Movements

    Science.gov (United States)

    Hashiguchi, S.; Khadijah, Siti; Kuwajima, T.; Ohki, M.; Tacano, M.; Sikula, J.

    2005-11-01

    Movements of amoebas were automatically traced using the difference between two successive frames of the microscopic movie. It was observed that the movements were almost random in that the directions and the magnitudes of the successive two steps are not correlated, and that the distance from the origin was proportional to the square root of the step number.

  1. Exploring pedestrian movement patterns

    NARCIS (Netherlands)

    Orellana, D.A.

    2012-01-01

    The main objective of this thesis is to develop an approach for exploring, analysing and interpreting movement patterns of pedestrians interacting with the environment. This objective is broken down in sub-objectives related to four research questions. A case study of the movement of visitors in a n

  2. Exploring pedestrian movement patterns

    NARCIS (Netherlands)

    Orellana, D.A.

    2012-01-01

    The main objective of this thesis is to develop an approach for exploring, analysing and interpreting movement patterns of pedestrians interacting with the environment. This objective is broken down in sub-objectives related to four research questions. A case study of the movement of visitors in a n

  3. [Dance/Movement Therapy.

    Science.gov (United States)

    Fenichel, Emily, Ed.

    1994-01-01

    This newsletter theme issue focuses on dance, play, and movement therapy for infants and toddlers with disabilities. Individual articles are: "Join My Dance: The Unique Movement Style of Each Infant and Toddler Can Invite Communication, Expression and Intervention" (Suzi Tortora); "Dynamic Play Therapy: An Integrated Expressive Arts Approach to…

  4. Geophysical phenomena classification by artificial neural networks

    Science.gov (United States)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  5. GEOPHYSICAL TECHNIQUES IN DETECTION TO RIVER EMBANKMENTS

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; LIU Jian-ping; XU Shun-fang; XIA Jiang-hai

    2004-01-01

    Geophysical technologies are very effective in environmental, engineering and groundwater applications. Parameters of delineating nature of near-surface materials such as compressional-wave velocity, shear-wave velocity can be obtained using shallow seismic methods. Electric methods are primary approaches for investigating groundwater and detecting leakage. Both of the methods are applied to detect embankment in hope of obtaining evidence of the strength and moisture inside the body. A technological experiment has been done for detecting and discovering the hidden troubles in the embankment of Yangtze River,Songzi, Hubei, China in 2003. Surface-wave and DC multi-channel array resistivity sounding techniques were used to detect hidden trouble inside and under dike like pipe-seeps. This paper discusses the exploration strategy and the effect of geological characteristics. A practical approach of combining seismic and electric resistivity measurements was applied to locate potential pipe-seeps in embankment in the experiment. The method presents a potential leak factor based on the shear-wave velocity and the resistivity of the medium to evaluate anomalies. An anomaly found in a segment of embankment detected was verified, where occurred a pipe-seep during the 98′ flooding.

  6. Understanding biogeobatteries: Where geophysics meets microbiology

    Science.gov (United States)

    Revil, A.; MendonçA, C. A.; Atekwana, E. A.; Kulessa, B.; Hubbard, S. S.; Bohlen, K. J.

    2010-03-01

    Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donors and electron acceptors. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term "biogeobattery." After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field scale investigations conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.

  7. Advanced geophysical underground coal gasification monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, Robert; Yang, X.; White, J. A.; Ramirez, A.; Wagoner, J.; Camp, D. W.

    2014-07-01

    Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Active and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.

  8. Understanding biogeobatteries: Where geophysics meets microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Revil, A.; Mendonca, C.A.; Atekwana, E.A.; Kulessa, B.; Hubbard, S.S.; Bohlen, K.

    2009-08-15

    Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donor and electron acceptor. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term 'biogeobattery'. After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field-scale conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.

  9. Geophysical Surveys Over a Terminal Moraine

    Science.gov (United States)

    Bentley, L. R.; Langston, G.; Hayashi, M.

    2007-12-01

    Alpine watersheds represent the headwaters of many major rivers in western Canada. Consequently, understanding the hydrological cycle within these watersheds is critical for modeling the effects of climate change on water resources in western Canada and for developing informed water management strategies. Terminal moraines represent a significant hydrological response unit within many alpine watersheds in western Canada. Recent studies suggest that these features may provide sites for water storage. The preliminary results of a geophysical survey of a terminal moraine exhibiting geomorphological characteristics suggesting an ice-core will be presented. It is hypothesized that bedrock topography and the presence of ice creates barriers and channels groudwater flow. The focus of the survey was to delineate the hydrologically significant features within the moraine using electrical resistivity imaging (ERI), seismic refraction, and ground penetrating radar (GPR). Buried ice was easily detected using ERI due to high resistivity of over 1 MOhm-m. However, it was not as extensive as expected. Seismic refraction proved to be most useful in detecting the underlying bedrock. GPR images showed many reflection fragments but were noisy and difficult to interpret. Regions of relatively high electrical conductivity suggest some degree of channelization of groundwater in the vicinity of a tarn.

  10. Laser techniques in high-pressure geophysics

    Science.gov (United States)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  11. Laser techniques in high-pressure geophysics

    Science.gov (United States)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  12. Antineutrino Geophysics with Liquid Scintillator Detectors

    CERN Document Server

    Rothschild, C G; Calaprice, F P; Rothschild, Casey G.; Chen, Mark C.; Calaprice, Frank P.

    1997-01-01

    Detecting the antineutrinos emitted by the decay of radioactive elements in the mantle and crust could provide a direct measurement of the total abundance of uranium and thorium in the Earth. In calculating the antineutrino flux at specific sites, the local geology of the crust and the background from the world's nuclear power reactors are important considerations. Employing a global crustal map, with type and thickness data, and using recent estimates of the uranium and thorium distribution in the Earth, we calculate the antineutrino event rate for two new neutrino detectors. We show that spectral features allow terrestrial antineutrino events to be identified above reactor antineutrino backgrounds and that the uranium and thorium contributions can be separately determined.

  13. Engineering geology of underground movements

    Energy Technology Data Exchange (ETDEWEB)

    Bell, F.G.; Culshaw, M.G.; Cripps, J.C.; Lovell, M.A. (eds.) (Teeside Polytechnic, Middlesbrough (UK). Dept. of Civil Engineering)

    1988-01-01

    39 papers are presented under the following session headings: introduction; ground movements due to tunnelling; ground movements due to deep excavations; ground movements and construction operations; ground movements due to abandoned mine workings; ground movements due to longwall mining; abandoned limestone mines in the West Midlands; investigation of ground movements; ground movements due to the abstraction or injection of fluids; and induced seismicity. Each session is followed by a discussion.

  14. Analysis of Geophysical Measurements and Spacecraft Interactions

    Science.gov (United States)

    1993-01-29

    MAnipulater JPL Jet Propulsion Laboratory LEH Low Energy Head LEO Low Earth orbit MACH Mesothermal Auroral Charging Code xvi List of Acronyms (Cont’d) MEB...elements have these perturbative changes removed in a particular way, and are referred to as "mean" element sets ( Brouwer , 1959; Kozai, 19591...I I I I II I l I I I I.. . 5.6 REFERENCES Brouwer , D., "Solution of the Problem of Artificial Satellite Theory Without Drag", The Astronomical

  15. Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications.

    Science.gov (United States)

    Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.

    2016-12-01

    We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for

  16. Computer programs for analysis of geophysical data

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, M.; Nakanishi, K.

    1994-06-01

    This project is oriented toward the application of the mobile seismic array data analysis technique in seismic investigations of the Earth (the noise-array method). The technique falls into the class of emission tomography methods but, in contrast to classic tomography, 3-D images of the microseismic activity of the media are obtained by passive seismic antenna scanning of the half-space, rather than by solution of the inverse Radon`s problem. It is reasonable to expect that areas of geothermal activity, active faults, areas of volcanic tremors and hydrocarbon deposits act as sources of intense internal microseismic activity or as effective sources for scattered (secondary) waves. The conventional approaches of seismic investigations of a geological medium include measurements of time-limited determinate signals from artificial or natural sources. However, the continuous seismic oscillations, like endogenous microseisms, coda and scattering waves, can give very important information about the structure of the Earth. The presence of microseismic sources or inhomogeneities within the Earth results in the appearance of coherent seismic components in a stochastic wave field recorded on the surface by a seismic array. By careful processing of seismic array data, these coherent components can be used to develop a 3-D model of the microseismic activity of the media or images of the noisy objects. Thus, in contrast to classic seismology where narrow windows are used to get the best time resolution of seismic signals, our model requires long record length for the best spatial resolution.

  17. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    Science.gov (United States)

    Duncan, D.; Davis, M. B.; Goff, J. A.; Gulick, S. P. S.; McIntosh, K. D.; Saustrup, S., Sr.

    2014-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers a three-week marine geology and geophysics field course during the spring-summer intersession. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas, and Galveston, TX, and Grand Isle, LA, provide ideal locations for students to investigate coastal processes of the Gulf Coast and continental shelf through application of geophysical techniques in an exploratory mode. At sea, students assist with survey design and instrumentation set up while learning about acquisition parameters, data quality control, trouble-shooting, and safe instrument deployment and retrieval. In teams of four, students work in onshore field labs preparing sediment samples for particle size analysis and data processing. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Echos, Landmark, Caris, and Fledermaus. The course concludes with a series of final presentations and discussions in which students examine geologic history and/or sedimentary processes represented by the Gulf Coast continental shelf with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen

  18. Detecting Buried Archaeological Remains by the Use of Geophysical Data Processing with 'Diffusion Maps' Methodology

    Science.gov (United States)

    Eppelbaum, Lev

    2015-04-01

    observe that as a result of the above operations we embedded the original data into 3-dimensional space where data related to the AT subsurface are well separated from the N data. This 3D set of the data representatives can be used as a reference set for the classification of newly arriving data. Geophysically it means a reliable division of the studied areas for the AT-containing and not containing (N) these objects. Testing this methodology for delineation of archaeological cavities by magnetic and gravity data analysis displayed an effectiveness of this approach. References Alperovich, L., Eppelbaum, L., Zheludev, V., Dumoulin, J., Soldovieri, F., Proto, M., Bavusi, M. and Loperte, A., 2013. A new combined wavelet methodology applied to GPR and ERT data in the Montagnole experiment (French Alps). Journal of Geophysics and Engineering, 10, No. 2, 025017, 1-17. Averbuch, A., Hochman, K., Rabin, N., Schclar, A. and Zheludev, V., 2010. A diffusion frame-work for detection of moving vehicles. Digital Signal Processing, 20, No.1, 111-122. Averbuch A.Z., Neittaanmäki, P., and Zheludev, V.A., 2014. Spline and Spline Wavelet Methods with Applications to Signal and Image Processing. Volume I: Periodic Splines. Springer. Coifman, R.R. and Lafon, S., 2006. Diffusion maps, Applied and Computational Harmonic Analysis. Special issue on Diffusion Maps and Wavelets, 21, No. 7, 5-30. Eppelbaum, L.V., 2011. Study of magnetic anomalies over archaeological targets in urban conditions. Physics and Chemistry of the Earth, 36, No. 16, 1318-1330. Eppelbaum, L.V., 2014a. Geophysical observations at archaeological sites: Estimating informational content. Archaeological Prospection, 21, No. 2, 25-38. Eppelbaum, L.V. 2014b. Four Color Theorem and Applied Geophysics. Applied Mathematics, 5, 358-366. Eppelbaum, L.V., Alperovich, L., Zheludev, V. and Pechersky, A., 2011. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. Proceed

  19. Rare Earth Market Review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Oversupply of rare earths led to the significant price drop of rare earth mineral products and separated products in Chinese domestic market. To stabilize the price, prevent waste of resources, further improve regulation capability on domestic rare earth market and rare earth price and maintain sustaining and healthy development of rare earth industry, partial rare earth producers in Baotou and Jiangxi province projected to cease the production for one month.

  20. Another Earth 2.0? Not So Fast.

    Science.gov (United States)

    Schulze-Makuch, Dirk; Guinan, Edward

    2016-11-01

    The number of confirmed exoplanets now exceeds 3000, with an additional nearly 5000 exoplanet candidates awaiting confirmation in the NASA Exoplanet Archive ( 2016 ). Nearly weekly we hear about the detection of a new exoplanet similar in mass to Earth and located in the so-called habitable zone around its host star. The excitement is understandable given our desire to find a second Earth. However, the excitement should not lead to an over-interpretation of the findings, because the claim can only be to have some crude similarity to Earth based on a few selected geophysical parameters. Only a very small fraction of these planets will actually be Earth-like. Earth-like would imply multiple environmental habitats and presence of a sizable biosphere and complex ecosystems, without which Earth, as we experience it, would not exist. Thus, it should be clearly communicated to the public that we are probably still many years away from having the technological capability to detect an Earth-like planet or Earth 2.0 with adequate certainty. Key Words: Habitable zone-Second Earth-Habitable planet-Habitability-Life. Astrobiology 16, 817-821.

  1. A portable marine geophysical data access and management system

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Narvekar, P.

    data and includes different marine geophysical parameters like bathymetry (corrected depths), magnetic (total magnetic field and magnetic anomaly) and gravity (observed gravity, Eotvos correction, free-air, Bouger anomalies, etc.). For the purpose...

  2. BGP Better Positioned to Compete with Geophysical Giants Worldwide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Bureau of Geophysical Prospecting (GGP), a subsidiary under CNPC, has seen satisfactory results in development of international exploration market in the first three quarters of this year with the success rate of international bidding reaching 61 percent.

  3. Solar Geophysical Data (SGD) Reports (1955-2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Solar-Geophysical Data (SGD) reports were a comprehensive compilation of many different kinds of observational data of the sun's activity and its effects on the...

  4. Geophysics applications in critical zone science: emerging topics.

    Science.gov (United States)

    Pachepsky, Y. A.; Martinez, G.; Guber, A.; Walthall, C. L.; Vereecken, H.

    2012-12-01

    Geophysical studies have resulted in remarkable advances in characterization of critical zone. The geophysics applications uncover the relationships between structure and function in subsurface as they seek to define subsurface structural units with individual properties of retention and transmission of water, energy, solutes, electrical charge, etc. Several focal points of the research have emerged as the knowledge base of the critical zone geophysics grows. Time-lapse or multiple geophysical surveys admittedly improve the subsurface characterization. One of intriguing possibilities here is to use the temporal variation in geophysical parameters among time-lapse surveys directly to model spatial variation in soil properties affecting soil-water contents. Because critical phenomena causing erratic routing have been recently discovered in hillslope subsurface flow networks, it remains to be seen whether the time-lapse imagery depicts the same flow network if weather conditions are seemingly similar. High-frequency network observations usually reveal the temporal stability patterns in soil variables, including water contents, CO2 fluxes, etc. It becomes clear that these patterns can be described with spatiotemporal geostatistics models, and the opportunity arises to infer the spatial correlation structure of soil parameters from temporal variations of soil dynamic variables. There are indications that the spatial correlation structures of the geophysical parameters and soil/plant variables can be similar even though the correlations between these parameters are low. This may open additional avenues for mapping sparsely measured soil and plant variables. Fallacies of scale in geophysical depicting subsurface structural units and patterns are far from being understood. Soil state variables affect geophysical retrieval in nonlinear ways, and therefore scale effects in retrievals are warranted. For this reason, the strength and type of dependencies between geophysical

  5. The problem of the near-earth asteroids encountering the earth

    Institute of Scientific and Technical Information of China (English)

    季江徽[1; 刘林[2

    2000-01-01

    The asteroids are the most important small bodies in the solar system, while the movement of the near-earth-asteroids (NEAs) is specially concerned by the world. The focus on these asteroids is that they encounter the earth. The orbital evolution of this kind of asteroid is studied by analyzing and comparing them; reasonable dynamical models and corresponding algorithm are given, and the formal numbered NEAs are calculated. The results of the minimal distance and the very close-approach time with the earth agree well with those announced by the Minor Planet Center (MFC).

  6. The problem of the near-earth asteroids encountering the earth

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The asteroids are the most important small bodies in the solar system, while the movement of the near-earth-asteroids (NEAs) is specially concerned by the world. The focus on these asteroids is that they encounter the earth. The orbital evolution of this kind of asteroid is studied by analyzing and comparing them; reasonable dynamical models and corresponding algorithm are given, and the formal numbered NEAs are calculated. The results of the minimal distance and the very close-approach time with the earth agree well with those announced by the Minor Planet Center (MPC).

  7. Subduction History and the Evolution of Earth's Lower Mantle

    Science.gov (United States)

    Bull, Abigail; Shephard, Grace; Torsvik, Trond

    2016-04-01

    Understanding the complex structure, dynamics and evolution of the deep mantle is a fundamental goal in solid Earth geophysics. Close to the core-mantle boundary, seismic images reveal a mantle characterised by (1) higher than average shear wave speeds beneath Asia and encircling the Pacific, consistent with sub ducting lithosphere beneath regions of ancient subduction, and (2) large regions of anomalously low seismic wavespeeds beneath Africa and the Central Pacific. The anomalously slow areas are often referred to as Large Low Shear Velocity Provinces (LLSVPs) due to the reduced velocity of seismic waves passing through them. The origin, composition and long-term evolution of the LLSVPs remain enigmatic. Geochemical inferences of multiple chemical reservoirs at depth, strong seismic contrasts, increased density, and an anticorrelation of shear wave velocity to bulk sound velocity in the anomalous regions imply that heterogeneities in both temperature and composition may be required to explain the seismic observations. Consequently, heterogeneous mantle models place the anomalies into the context of thermochemical piles, characterised by an anomalous component whose intrinsic density is a few percent higher relative to that of the surrounding mantle. Several hypotheses have arisen to explain the LLSVPs in the context of large-scale mantle convection. One end member scenario suggests that the LLSVPs are relatively mobile features over short timescales and thus are strongly affected by supercontinent cycles and Earth's plate motion history. In this scenario, the African LLSVP formed as a result of return flow in the mantle due to circum-Pangean subduction (~240 Ma), contrasting a much older Pacific LLSVP, which may be linked to the Rodinia supercontinent and is implied to have remained largely unchanged since Rodinian breakup (~750-700 Ma). This propounds that Earth's plate motion history plays a controlling role in LLSVP development, suggesting that the location

  8. Earth observation technologies in service to the cultural landscape of Cyprus: risk identification and assessment

    Science.gov (United States)

    Cuca, Branka; Tzouvaras, Marios; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.

    2016-08-01

    The Cultural landscapes are witnesses of "the creative genius, social development and the imaginative and spiritual vitality of humanity. They are part of our collective identity", as it is internationally defined and accepted (ICOMOSUNESCO). The need for their protection, management and inclusion in the territorial policies has already been widely accepted and pursued. There is a great number of risks to which the cultural landscapes are exposed, arising mainly from natural (both due to slow geo-physical phenomena as well as hazards) and anthropogenic causes (e.g. urbanisation pressure, agriculture, landscape fragmentation etc.). This paper explores to what extent Earth Observation (EO) technologies can contribute to identify and evaluate the risks to which Cultural Landscapes of Cyprus are exposed, taking into consideration specific phenomena, such as land movements and soil erosion. The research of the paper is illustrated as part of the activities carried out in the CLIMA project - "Cultural Landscape risk Identification, Management and Assessment". It aims to combine the fields of remote sensing technologies, including Sentinel data, and monitoring of cultural landscape for its improved protection and management. Part of this approach will be based on the use of InSAR techniques in order to monitor the temporal evolution of deformations through the detection and measurement of the effects of surface movements caused by various factors. The case study selected for Cyprus is the Nea Paphos archeological site and historical center of Paphos, which are listed as UNESCO World Heritage sites. The interdisciplinary approach adopted in this research was useful to identify major risks affecting the landscape of Cyprus and to classify the most suitable EO methods to assess and map such risks.

  9. Integrated geophysical surveys to assess the structural conditions of a karstic cave of archaeological importance

    Directory of Open Access Journals (Sweden)

    G. Leucci

    2005-01-01

    Full Text Available An integrated geophysical survey using both the electrical resistivity tomography (ERT and ground-penetrating radar (GPR methods was undertaken over a cave of great archaeological interest in southern Italy. The survey was performed to assess the stability of the carbonate rock roof of the cave. A geophysical survey was preferred to boreholes and geotechnical tests, in order to avoid the risk of mass movements. The interpretation of integrated data from ERT and GPR resulted in an evaluation of some of the electromagnetic (EM characteristics (such as the EM wave velocity and the detection of discontinuities (fractures in the carbonate rock. It is well known that rock fractures constitute a serious problem in cave maintenance, and progressive cracking within the bed rock is considered to be one of the main causes of collapse. An analysis of the back-scattered energy was also required for the GPR data interpretation. Cracks within the bedrock were detected to a depth of about 2 m by using GPR, which allowed for the identification of the loosened zone around the cave.

  10. Auxin and chloroplast movements.

    Science.gov (United States)

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Waligórski, Piotr; Gabryś, Halina

    2016-03-01

    Auxin is involved in a wide spectrum of physiological processes in plants, including responses controlled by the blue light photoreceptors phototropins: phototropic bending and stomatal movement. However, the role of auxin in phototropin-mediated chloroplast movements has never been studied. To address this question we searched for potential interactions between auxin and the chloroplast movement signaling pathway using different experimental approaches and two model plants, Arabidopsis thaliana and Nicotiana tabacum. We observed that the disturbance of auxin homeostasis by shoot decapitation caused a decrease in chloroplast movement parameters, which could be rescued by exogenous auxin application. In several cases, the impairment of polar auxin transport, by chemical inhibitors or in auxin carrier mutants, had a similar negative effect on chloroplast movements. This inhibition was not correlated with changes in auxin levels. Chloroplast relocations were also affected by the antiauxin p-chlorophenoxyisobutyric acid and mutations in genes encoding some of the elements of the SCF(TIR1)-Aux/IAA auxin receptor complex. The observed changes in chloroplast movement parameters are not prominent, which points to a modulatory role of auxin in this process. Taken together, the obtained results suggest that auxin acts indirectly to regulate chloroplast movements, presumably by regulating gene expression via the SCF(TIR1)-Aux/IAA-ARF pathway. Auxin does not seem to be involved in controlling the expression of phototropins.

  11. Geophysical Tools, Challenges and Perspectives Related to Natural Hazards, Climate Change and Food Security

    Science.gov (United States)

    Fucugauchi, J. U.

    2013-05-01

    In the coming decades a changing climate and natural hazards will likely increase the vulnerability of agricultural and other food production infrastructures, posing increasing treats to industrialized and developing economies. While food security concerns affect us globally, the huge differences among countries in stocks, population size, poverty levels, economy, technologic development, transportation, health care systems and basic infrastructure will pose a much larger burden on populations in the developing and less developed world. In these economies, increase in the magnitude, duration and frequency of droughts, floods, hurricanes, rising sea levels, heat waves, thunderstorms, freezing events and other phenomena will pose severe costs on the population. For this presentation, we concentrate on a geophysical perspective of the problems, tools available, challenges and short and long-term perspectives. In many instances, a range of natural hazards are considered as unforeseen catastrophes, which suddenly affect without warning, resulting in major losses. Although the forecasting capacity in the different situations arising from climate change and natural hazards is still limited, there are a range of tools available to assess scenarios and forecast models for developing and implementing better mitigation strategies and prevention programs. Earth observation systems, geophysical instrumental networks, satellite observatories, improved understanding of phenomena, expanded global and regional databases, geographic information systems, higher capacity for computer modeling, numerical simulations, etc provide a scientific-technical framework for developing strategies. Hazard prevention and mitigation programs will result in high costs globally, however major costs and challenges concentrate on the less developed economies already affected by poverty, famines, health problems, social inequalities, poor infrastructure, low life expectancy, high population growth

  12. Electromagnetic investigation at the site of the Matra Gravitational and Geophysical Laboratory

    Science.gov (United States)

    Lemperger, István; Wesztergom, Viktor; Lévai, Péter; Huba, Géza; Ván, Péter; Novák, Attila; Dávid, Ernő; Piri, Dániel; Vasúth, Mátyás

    2017-04-01

    The Matra Gravitational and Geophysical Laboratory (MGGL) has been established by the MTA Wigner Research Centre for Physics, Institute of Particle and Nuclear Physics in 2015. The primary goal of the subsurface laboratory is to organize proper environment for accurate estimation of geophysical noise at the potential installation site of a third generation gravitational wave detector. Besides seismic and infrasound monitoring electromagnetic (EM) background noise measurement has also been performed by the Geodetic and Geophysical Institute, RCAES, HAS to ensure the expected sensitivity of the detector. In addition to 1kHz sampling of the local origin background signal, natural source EM spectral components has also been proposed to be identified at certain frequencies. The equipment of the MGGL has been complemented by a surface observation site too, to enable the accurate estimation of the EM transfer parameters of the overlying andesite rock. The focus interval of frequency is in the lower ELF. In the 1-20Hz range the natural origin signal is partly related to the global thunderstorm activity, which excites the Earth-ionosphere cavity and results in standing waves at its eigenfrequencies, the so called Schumann components. Individual lightning discharges also provide contribution to the natural background with few millisecond long broadband transient impulses, determined by the local meteorological conditions. Furthermore magnetotelluric exploration has also been performed to find out the spatial distribution of the electric conductivity in the close vicinity of the subsurface laboratory. In the presentation we provide a brief summary of this comprehensive electromagnetic study of the close environment of MGGL.

  13. Quantitative geophysical log interpretation for rock mass characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Peter Hatherly; Renate Sliwa; Roland Turner; Terry Medhurst

    2004-04-01

    Geophysical borehole logging is routinely employed as part of exploration drilling in open pit and underground mining operations. Analysis of results is often empirical or based on theoretical considerations that need not relate to the actual properties of the rocks under consideration. The objectives of this project are to develop techniques for quantitative geophysical log interpretation techniques to enable: better estimation of coal and rock properties such as strength and permeability; better lithological interpretation and strata correlation between boreholes; a rock mass rating scheme for mine design purposes which is based on geophysical logging. This study has placed the techniques for quantitative geophysical log assessment on a firm footing. The authors have demonstrated an approach for log assessment that can be routinely applied. Many of the mineralogical and physical rock properties that impact on the assessments have been investigated and discussed. They have also demonstrated the benefits of quantitative geophysical log assessment. The major recommendation made is that geologists and engineers in the coal mining industry take the time to study this report and begin to put the approach described into practice. The collective understanding that this experience will provide can only help fuel the drive to take the benefits of geophysical logging to greater levels.

  14. Visions of the Future: Astronomy and Earth Science

    Science.gov (United States)

    Thompson, J. M. T.

    2001-07-01

    Preface J. M. T. Thompson; Part I. Creation and History of the Universe: 1. Big Bang riddles and their revelations Joao Magueijo and Kim Baskerville; 2. The origin of structure in the universe Jaun Garcia-Bellido; 3. The dark side of the universe Ben Moore; Part II. Exploring the Stars and Planets: 4. The hottest spots in space? Malcolm Gray; 5. Our solar system and beyond in the new millennium Andrew J. Coates; 6. Unveiling the face of the Moon Sarah K. Dunkin and David J. Heather; Part III. Understanding Planet Earth: 7. The Earth's deep interior Lidunka Vocadlo and David Dobson; 8. Three-dimensional imaging of a dynamic Earth Lidia Lonergan and Nicky White; Part IV. Global Warming and Climate Change: 9. Geophysical and astrophysical vortices N. Robb McDonald; 10. Earth's future climate Mark A. Saunders.

  15. HydroImage: A New Software for HydroGeophysical and BioGeophysical Data Integration

    Science.gov (United States)

    Suribhatla, R. M.; Mok, C. M.; Kaback, D.; Chen, J.; Hubbard, S. S.

    2011-12-01

    Hydrogeophysical and biogeophysical data integration have recently emerged as cost-effective and rapid techniques for improving subsurface characterization and monitoring. In a Bayesian framework for integration, borehole based data provide prior distribution and geophysical information serve as data to update the prior through likelihood functions obtained from petrophysical models between borehole and cross-well data. We present the application of a Windows-based software called HydroImage that uses this Bayesian framework for data integration and visualization. HydroImage can be used for geostatistical estimation, geophysical tomographic inversion, petrophysical model development, and Bayesian integration. We demonstrate HydroImage using three different field datasets to estimate different subsurface states or parameters. The first example combines wellbore flowmeter test data and crosshole seismic and ground penetrating radar (GPR) data to estimate hydraulic conductivity at the DOE Bacterial Transport Site in Oyster, Virginia. The second example focuses on using time-lapse radar data to estimate moisture content dynamics associated with a desiccation test performed to remediate the deep vadose zone in Hanford, Washington. The third example demonstrates the use of spectral induced polarization data to estimate the spatial and temporal distribution of geochemical parameters that are indicative of the redox state of a contaminated aquifer.

  16. Quality control for quantitative geophysical logging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Kyu; Hwang, Se Ho; Hwang, Hak Soo; Park, In Hwa [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Despite the great availability of geophysical data obtained from boreholes, the interpretation is subject to significant uncertainties. More accurate data with less statistical uncertainties should require an employment of more quantitative techniques in log acquisition and interpretation technique. The long-term objective of this project is the development of techniques in both quality control of log measurement and the quantitative interpretation. In the first year, the goals of the project will include establishing the procedure of log acquisition using various tests, analysing the effect of logging velocity change on the logging data, examining the repeatability and reproducibility, analyzing of filtering effect on the log measurements, and finally the zonation and the correlation of single-and inter-well log data. For the establishment of logging procedure, we have tested the multiple factors affecting the accuracy in depth. The factors are divided into two parts: human and mechanical. These factors include the zero setting of depth, the calculation of offset for the sonde, the stretching effect of cable, and measuring wheel accuracy. We conclude that the error in depth setting results primarily from human factor, and also in part from the stretching of cable. The statistical fluctuation of log measurements increases according to increasing the logging speed for the zone of lower natural gamma. Thus, the problem related with logging speed is a trifling matter in case of the application of resources exploration, the logging speed should run more slowly to reduce the statistical fluctuation of natural gamma with lithologic correlation in mind. The repeatability and reproducibility of logging measurements are tested. The results of repeatability test for the natural gamma sonde are qualitatively acceptable in the reproducibility test, the errors occurs in logging data between two operators and successive trials. We conclude that the errors result from the

  17. Social movements in health.

    Science.gov (United States)

    Brown, Theodore M; Fee, Elizabeth

    2014-01-01

    Most public health practitioners know that public health has relied on biomedical advances and administrative improvements, but it is less commonly understood that social movements in health have also been sources of motivation for population health advances. This review considers the impacts of social movements focused on urban conditions and health, on the health of children, and on behavioral and substance-related determinants of health and illustrates how these movements have significantly influenced public health activities and programs. We hope this review will motivate public health workers to make common cause with social activists and to encourage social activists to ally with public health professionals.

  18. Studying Social Movements

    DEFF Research Database (Denmark)

    Uldam, Julie; McCurdy, Patrick

    2013-01-01

    The research method of participant observation has long been used by scholars interested in the motivations, dynamics, tactics and strategies of social movements from a movement perspective. Despite participant observation being a common research method, there have been very few efforts to bring...... and then draws specific links to how the method has been used in the study of activism and social movements. In doing so, this article brings together key academic debates on participant observation, which have been considered separately, such as insider/outsider and overt/covert, but not previously been brought...

  19. DREAM: Distributed Resources for the Earth System Grid Federation (ESGF) Advanced Management

    Science.gov (United States)

    Williams, D. N.

    2015-12-01

    The data associated with climate research is often generated, accessed, stored, and analyzed on a mix of unique platforms. The volume, variety, velocity, and veracity of this data creates unique challenges as climate research attempts to move beyond stand-alone platforms to a system that truly integrates dispersed resources. Today, sharing data across multiple facilities is often a challenge due to the large variance in supporting infrastructures. This results in data being accessed and downloaded many times, which requires significant amounts of resources, places a heavy analytic development burden on the end users, and mismanaged resources. Working across U.S. federal agencies, international agencies, and multiple worldwide data centers, and spanning seven international network organizations, the Earth System Grid Federation (ESGF) has begun to solve this problem. Its architecture employs a system of geographically distributed peer nodes that are independently administered yet united by common federation protocols and application programming interfaces. However, significant challenges remain, including workflow provenance, modular and flexible deployment, scalability of a diverse set of computational resources, and more. Expanding on the existing ESGF, the Distributed Resources for the Earth System Grid Federation Advanced Management (DREAM) will ensure that the access, storage, movement, and analysis of the large quantities of data that are processed and produced by diverse science projects can be dynamically distributed with proper resource management. This system will enable data from an infinite number of diverse sources to be organized and accessed from anywhere on any device (including mobile platforms). The approach offers a powerful roadmap for the creation and integration of a unified knowledge base of an entire ecosystem, including its many geophysical, geographical, social, political, agricultural, energy, transportation, and cyber aspects. The

  20. Geophysics Methods in Electrometric Assessment of Dams

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, V. A., E-mail: davydov-va@yandex.ru; Baidikov, S. V., E-mail: badikek@mail.ru; Gorshkov, V. Yu., E-mail: vitalaa@yandex.ru; Malikov, A. V., E-mail: alex.mal.1986@mail.ru [Russian Academy of Sciences, Geophysical Institute, Ural Branch (Russian Federation)

    2016-07-15

    The safety assessment of hydraulic structures is proposed to be conducted via geoelectric measurements, which are capable of assessing the health of earth dams in their natural bedding without intervention in their structure. Geoelectric measurements are shown as being capable of pinpointing hazardous parts of a dam, including areas of elevated seepage. Applications of such methods are shown for a number of mini-dams in the Sverdlovsk region. Aparameter (effective longitudinal conductivity) that may be used to monitor the safety of hydraulic structures is proposed. Quantitative estimates of this parameter are given in terms of the degree of safely.

  1. Manifold methods for assimilating geophysical and meteorological data in Earth system models and their components

    Science.gov (United States)

    Safaie, Ammar; Dang, Chinh; Qiu, Han; Radha, Hayder; Phanikumar, Mantha S.

    2017-01-01

    A novel manifold method of reconstructing dynamically evolving spatial fields is presented for assimilating data from sensor networks in integrated land surface - subsurface, oceanic/lake models. The method was developed based on the assumption that data can be mapped onto an underlying differential manifold. In this study, the proposed method was used to reconstruct meteorological forcing over Lake Michigan, the bathymetry of an inland lake (Gull Lake), and precipitation over the Grand River watershed in Michigan. In the first case study, hourly meteorological forcing data were reconstructed and used to run a three-dimensional hydrodynamic model of Lake Michigan and to quantify the improvement that results from the use of the new method. In the second example, the bathymetry of Gull Lake was reconstructed from measured scatter point data using the manifold technique. A hydrodynamic model of Gull Lake was developed and refined using the improved bathymetry. In the last case study, improved daily participation data for a six-year period over the Grand River watershed were used as input to an integrated, distributed hydrologic model. All three examples illustrate the superior performance of the manifold method over standard methods in terms of accuracy and computational efficiency. Our results also indicate that using the cross-validation technique to evaluate the performance of data reconstruction methods can lead to misleading conclusions about their relative performance.

  2. Research in support of the EODAP validation program and solid earth geophysics

    Science.gov (United States)

    Gaposchkin, E. M.

    1978-01-01

    A validation program to verify that geodetic space techniques can measure intersite distances of several hundred to several thousand kilometers and polar motion, both with a precision of about 5 cm is described. Laser data were analyzed using a new analytical approach "scalar translocation." It was found that this approach can give geodynamic information and that the method is promising and can be used on a variety of satellites with data of different accuracy.

  3. Handling geophysical flows: Numerical modelling using Graphical Processing Units

    Science.gov (United States)

    Garcia-Navarro, Pilar; Lacasta, Asier; Juez, Carmelo; Morales-Hernandez, Mario

    2016-04-01

    Computational tools may help engineers in the assessment of sediment transport during the decision-making processes. The main requirements are that the numerical results have to be accurate and simulation models must be fast. The present work is based on the 2D shallow water equations in combination with the 2D Exner equation [1]. The resulting numerical model accuracy was already discussed in previous work. Regarding the speed of the computation, the Exner equation slows down the already costly 2D shallow water model as the number of variables to solve is increased and the numerical stability is more restrictive. On the other hand, the movement of poorly sorted material over steep areas constitutes a hazardous environmental problem. Computational tools help in the predictions of such landslides [2]. In order to overcome this problem, this work proposes the use of Graphical Processing Units (GPUs) for decreasing significantly the simulation time [3, 4]. The numerical scheme implemented in GPU is based on a finite volume scheme. The mathematical model and the numerical implementation are compared against experimental and field data. In addition, the computational times obtained with the Graphical Hardware technology are compared against Single-Core (sequential) and Multi-Core (parallel) CPU implementations. References [Juez et al.(2014)] Juez, C., Murillo, J., & Garca-Navarro, P. (2014) A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed. Advances in Water Resources. 71 93-109. [Juez et al.(2013)] Juez, C., Murillo, J., & Garca-Navarro, P. (2013) . 2D simulation of granular flow over irregular steep slopes using global and local coordinates. Journal of Computational Physics. 225 166-204. [Lacasta et al.(2014)] Lacasta, A., Morales-Hernndez, M., Murillo, J., & Garca-Navarro, P. (2014) An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes Advances in Engineering Software. 78 1-15. [Lacasta

  4. Comparison of the Tangent Linear Properties of Tracer Transport Schemes Applied to Geophysical Problems.

    Science.gov (United States)

    Kent, James; Holdaway, Daniel

    2015-01-01

    A number of geophysical applications require the use of the linearized version of the full model. One such example is in numerical weather prediction, where the tangent linear and adjoint versions of the atmospheric model are required for the 4DVAR inverse problem. The part of the model that represents the resolved scale processes of the atmosphere is known as the dynamical core. Advection, or transport, is performed by the dynamical core. It is a central process in many geophysical applications and is a process that often has a quasi-linear underlying behavior. However, over the decades since the advent of numerical modelling, significant effort has gone into developing many flavors of high-order, shape preserving, nonoscillatory, positive definite advection schemes. These schemes are excellent in terms of transporting the quantities of interest in the dynamical core, but they introduce nonlinearity through the use of nonlinear limiters. The linearity of the transport schemes used in Goddard Earth Observing System version 5 (GEOS-5), as well as a number of other schemes, is analyzed using a simple 1D setup. The linearized version of GEOS-5 is then tested using a linear third order scheme in the tangent linear version.

  5. Geochemical and geophysical monitoring of thermal waters in Sloveniain relation to seismic activity

    Directory of Open Access Journals (Sweden)

    T. Dolenec

    2005-06-01

    Full Text Available Pre-seismic related strains in the Earth s crust are the main cause of the observed geophysical and geochemical anomalies in ground waters preceding an earthquake. Posoc?je Region, situated along the Soc?a River, is one of the most seismically active areas of Slovenia. Our measuring stations close to the Posoc?je Region were installed in the thermal springs at Bled in 1998 and at Zatolmin in 1999. Since the beginning of our survey, radon concentration, electrical conductivity and water temperature have been measured continuously once every hour. In May 2002, the number of geochemical parameters monitored was extended to ionic concentration, pH and Eh, which are analysed once a month. Before seeking a correlation between geochemical and geophysical anomalies with seismic events, the influence of meteorological (atmospheric precipitation, barometric pressure and hydrological (water table of the Tolminka River factors on observed anomalies were studied. Results at Zatolmin showed that some radon variation during the period from June to October 2002 may be related to seismic activity and not only to meteorological effects.

  6. Geophysical information for teachers: Wave tanks, homemade clouds, glacial goo, and more!

    Science.gov (United States)

    Adamec, Bethany Holm

    2012-02-01

    AGU is deeply committed to fostering the next generation of Earth and space scientists. Union activities contribute to this effort in many ways, one of which is partnering with the National Earth Science Teacher's Association (NESTA) to hold the Annual Geophysical Information for Teachers (GIFT) workshop at AGU's annual Fall Meeting. GIFT allows K-12 science teachers to hear about the latest geoscience research from the scientists making the discoveries, explore new classroom resources for their students, and visit exhibits and technical sessions of the AGU meeting for free. In 2011 AGU worked with NESTA to develop an improved rigorous and open application process for scientists and education professionals who wished to work as a team and present their Earth and space science work to teachers, as well as lead the educators in a hands-on, classroom- ready activity. Twenty-four applications were received for five slots, so the selected presentations (on tsunamis, clouds, field campaigns, glaciers, and volcanoes), chosen through a peer- review process, truly represented the best ways of getting cutting-edge science into the classroom.

  7. Terracentric Nuclear Fission Reactor: Background, Basis, Feasibility, Structure, Evidence, and Geophysical Implications

    CERN Document Server

    Herndon, J Marvin

    2013-01-01

    The background, basis, feasibility, structure, evidence, and geophysical implications of a naturally occurring Terracentric nuclear fission georeactor are reviewed. For a nuclear fission reactor to exist at the center of the Earth, all of the following conditions must be met: (1) There must originally have been a substantial quantity of uranium within Earth's core; (2) There must be a natural mechanism for concentrating the uranium; (3) The isotopic composition of the uranium at the onset of fission must be appropriate to sustain a nuclear fission chain reaction; (4) The reactor must be able to breed a sufficient quantity of fissile nuclides to permit operation over the lifetime of Earth to the present; (5) There must be a natural mechanism for the removal of fission products; (6) There must be a natural mechanism for removing heat from the reactor; (7) There must be a natural mechanism to regulate reactor power level, and; (8) The location of the reactor or must be such as to provide containment and prevent ...

  8. Integrating Geophysics, Geology, and Hydrology for Enhanced Hydrogeological Modeling

    Science.gov (United States)

    Auken, E.

    2012-12-01

    Geophysical measurements are important for providing information on the geological structure to hydrological models. Regional scale surveys, where several watersheds are mapped at the same time using helicopter borne transient electromagnetic, results in a geophysical model with a very high lateral and vertical resolution of the geological layers. However, there is a bottleneck when it comes to integrating the information from the geophysical models into the hydrological model. This transformation is difficult, because there is not a simple relationship between the hydraulic conductivity needed for the hydrological model and the electrical conductivity measured by the geophysics. In 2012 the Danish Council for Strategic Research has funded a large research project focusing on the problem of integrating geophysical models into hydrological models. The project involves a number of Danish research institutions, consulting companies, a water supply company, as well as foreign partners, USGS (USA), TNO (Holland) and CSIRO (Australia). In the project we will: 1. Use statistical methods to describe the spatial correlation between the geophysical and the lithological/hydrological data; 2. Develop semi-automatic or automatic methods for transforming spatially sampled geophysical data into geological- and/or groundwater-model parameter fields; 3. Develop an inversion method for large-scale geophysical surveys in which the model space is concordant with the hydrological model space 4. Demonstrate the benefits of spatially distributed geophysical data for informing and updating groundwater models and increasing the predictive power of management scenarios. 5. Develop a new receiver system for Magnetic Resonance Sounding data and further enhance the resolution capability of data from the SkyTEM system. 6. In test areas in Denmark, Holland, USA and Australia we will use data from existing airborne geophysical data, hydrological and geological data and also collect new airborne

  9. Movement and Coordination

    Science.gov (United States)

    ... Español Text Size Email Print Share Movement and Coordination Page Content Article Body At this age, your ... level will strengthen his body and develop his coordination. In the months ahead, your child’s running will ...

  10. The "Children's Rights" Movement.

    Science.gov (United States)

    Miller, Bruce A.

    1981-01-01

    The author argues that the "children's rights" movement is an attack on the authority of parents and teachers and that it is undermining school discipline and traditional family roles. Condensed from "American Educator," Spring 1981, pp30-33. (SJL)

  11. Asteroid Geophysics and Quantifying the Impact Hazard

    Science.gov (United States)

    Sears, D.; Wooden, D. H.; Korycanksy, D. G.

    2015-01-01

    Probably the major challenge in understanding, quantifying, and mitigating the effects of an impact on Earth is understanding the nature of the impactor. Of the roughly 25 meteorite craters on the Earth that have associated meteorites, all but one was produced by an iron meteorite and only one was produced by a stony meteorite. Equally important, even meteorites of a given chemical class produce a wide variety of behavior in the atmosphere. This is because they show considerable diversity in their mechanical properties which have a profound influence on the behavior of meteorites during atmospheric passage. Some stony meteorites are weak and do not reach the surface or reach the surface as thousands of relatively harmless pieces. Some stony meteorites roll into a maximum drag configuration and are strong enough to remain intact so a large single object reaches the surface. Others have high concentrations of water that may facilitate disruption. However, while meteorite falls and meteorites provide invaluable information on the physical nature of the objects entering the atmosphere, there are many unknowns concerning size and scale that can only be determined by from the pre-atmospheric properties of the asteroids. Their internal structure, their thermal properties, their internal strength and composition, will all play a role in determining the behavior of the object as it passes through the atmosphere, whether it produces an airblast and at what height, and the nature of the impact and amount and distribution of ejecta.

  12. UAVs and Patient Movement

    Science.gov (United States)

    2016-04-01

    to mitigate hemorrhage, to optimize airway management , and to reduce the time interval between the point of injury and surgical intervention.72...depth look at the evolution of patient movement and the utilization of advanced technologies from to ultimately decrease the time to care. Future...with its employment for Class VII resupply (i.e., blood) and easily evolves toward full scale patient movement using advanced remote tele-monitoring

  13. The Circular Camera Movement

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used...... such as the circular camera movement. Keywords: embodied perception, embodied style, explicit narration, interpretation, style pattern, television style...

  14. Earth from Above

    Science.gov (United States)

    Stahley, Tom

    2006-01-01

    Google Earth is a free online software that provides a virtual view of Earth. Using Google Earth, students can view Earth by hovering over features and locations they preselect or by serendipitously exploring locations that catch their fascination. Going beyond hovering, they can swoop forward and even tilt images to make more detailed…

  15. Geophysical Inversion With Multi-Objective Global Optimization Methods

    Science.gov (United States)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin

    2016-04-01

    We are investigating the use of Pareto multi-objective global optimization (PMOGO) methods to solve numerically complicated geophysical inverse problems. PMOGO methods can be applied to highly nonlinear inverse problems, to those where derivatives are discontinuous or simply not obtainable, and to those were multiple minima exist in the problem space. PMOGO methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. This allows a more complete assessment of the possibilities and provides opportunities to calculate statistics regarding the likelihood of particular model features. We are applying PMOGO methods to four classes of inverse problems. The first are discrete-body problems where the inversion determines values of several parameters that define the location, orientation, size and physical properties of an anomalous body represented by a simple shape, for example a sphere, ellipsoid, cylinder or cuboid. A PMOGO approach can determine not only the optimal shape parameters for the anomalous body but also the optimal shape itself. Furthermore, when one expects several anomalous bodies in the subsurface, a PMOGO inversion approach can determine an optimal number of parameterized bodies. The second class of inverse problems are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The third class of problems are lithological inversions, which are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the fourth class, surface geometry inversions, we consider a fundamentally different type of problem in which a model comprises wireframe surfaces representing contacts between rock units. The physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. Surface geometry inversion can be

  16. Geophysical remote sensing of water reservoirs suitable for desalinization.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra; Engler, Bruce Phillip

    2009-12-01

    In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at a lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics

  17. Geophysical models of heat and fluid flow in damageable poro-elastic continua

    Science.gov (United States)

    Roubíček, Tomáš

    2017-03-01

    A rather general model for fluid and heat transport in poro-elastic continua undergoing possibly also plastic-like deformation and damage is developed with the goal to cover various specific models of rock rheology used in geophysics of Earth's crust. Nonconvex free energy at small elastic strains, gradient theories (in particular the concept of second-grade nonsimple continua), and Biot poro-elastic model are employed, together with possible large displacement due to large plastic-like strains evolving during long time periods. Also the additive splitting is justified in stratified situations which are of interest in modelling of lithospheric crust faults. Thermodynamically based formulation includes entropy balance (in particular the Clausius-Duhem inequality) and an explicit global energy balance. It is further outlined that the energy balance can be used to ensure, under suitable data qualification, existence of a weak solution and stability and convergence of suitable approximation schemes at least in some particular situations.

  18. Geophysical models of heat and fluid flow in damageable poro-elastic continua

    Science.gov (United States)

    Roubíček, Tomáš

    2017-01-01

    A rather general model for fluid and heat transport in poro-elastic continua undergoing possibly also plastic-like deformation and damage is developed with the goal to cover various specific models of rock rheology used in geophysics of Earth's crust. Nonconvex free energy at small elastic strains, gradient theories (in particular the concept of second-grade nonsimple continua), and Biot poro-elastic model are employed, together with possible large displacement due to large plastic-like strains evolving during long time periods. Also the additive splitting is justified in stratified situations which are of interest in modelling of lithospheric crust faults. Thermodynamically based formulation includes entropy balance (in particular the Clausius-Duhem inequality) and an explicit global energy balance. It is further outlined that the energy balance can be used to ensure, under suitable data qualification, existence of a weak solution and stability and convergence of suitable approximation schemes at least in some particular situations.

  19. CISM-IUTAM International Summer School on Continuum Mechanics in Environmental Sciences and Geophysics

    CERN Document Server

    1993-01-01

    Modern continuum mechanics is the topic of this book. After its introduction it will be applied to a few typical systems arising in the environmental sciences and in geophysics. In large lake/ocean dynamics peculiar effects of the rotation of the Earth will be analyzed in linear/nonlinear processes of a homogenous and inhomogenous water body. Strong thermomechanical coupling paired with nonlinear rheology affects the flow of large ice sheets (such as Antarctica and Greenland) and ice shelves. Its response to the climatic forcing in an environmental of greenhouse warming may significantly affect the life of future generations. The mechanical behavior of granular materials under quasistatic loadings requires non-classical mixture concepts and encounters generally complicated elastic-plastic-type constitutive behavior. Creeping flow of soils, consolidation processes and ground water flow are described by such theories. Rapid shearing flow of granular materials lead to constitutive relations for the stresses whic...

  20. An electric and electromagnetic geophysical approach for subsurface investigation of anthropogenic mounds in an urban environment

    Science.gov (United States)

    Pazzi, Veronica; Tapete, Deodato; Cappuccini, Luca; Fanti, Riccardo

    2016-11-01

    Scientific interest in mounds as geomorphological features that currently represent topographic anomalies in flat urban landscapes mainly lies on the understanding of their origin, either purely natural or anthropogenic. In this second circumstance, another question is whether traces of lost buildings are preserved within the mound subsurface and can be mapped as remnants testifying past settlement. When these landforms have been modified in centuries for civilian use, structural stability is a further element of concern. To address these issues we applied a geophysical approach based on a very low frequency electromagnetic (VLF-EM) technique and two-dimensional electrical resistivity tomography (2D-ERT) and integrated it with well-established surface survey methods within a diagnostic workflow of structural assessment. We demonstrate the practical benefits of this method in the English Cemetery of Florence, Italy, whose mixed nature and history of morphological changes are suggested by archival records. The combination of the two selected geophysical techniques allowed us to overcome the physical obstacles caused by tomb density and to prevent interference from the urban vehicular traffic on the geophysical signals. Eighty-two VLF-EM profiles and five 2D-ERTs were collected to maximise the spatial coverage of the subsurface prospection, while surface indicators of instability (e.g., tomb tilt, location, and direction of ground fractures and wall cracks) were mapped by standard metric survey. High resistive anomalies (> 300 and 400 Ωm) observed in VLF-EM tomographies are attributed to remnants of the ancient perimeter wall that are still buried along the southern side of the mound. While no apparent correlation is found between the causes of tomb and ground movements, the crack pattern map supplements the overall structural assessment. The main outcome is that the northern portion of the retaining wall is classed with the highest hazard rate. The impact of this

  1. Rare Earth Resolution

    Institute of Scientific and Technical Information of China (English)

    Mei Xinyu

    2012-01-01

    BEFORE the early 1970s, China had no rare earth exports, and the world rare earth market was dominated by the United States, Europe and Japan. In the 1970s, China began to enter the world rare earth market and its share has picked up sharply in the following decades. Today, having the monopoly over global rare earth production, China must improve the benefits from rare earth production, not only from producing individual rare earth products, but also from mastering the intensive processing of rare earth products.

  2. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    Science.gov (United States)

    Davis, M. B.; Gulick, S. P.; Allison, M. A.; Goff, J. A.; Duncan, D. D.; Saustrup, S.

    2011-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year five, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students seek to understand coastal and sedimentary processes of the Gulf Coast and continental shelf through application of these techniques in an exploratory mode. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. In the field, students rotate between two small research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibracoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for particle size analysis and initial data processing. During the course's final week, teams

  3. Dynamic active earth pressure on retaining structures

    Indian Academy of Sciences (India)

    Deepankar Choudhury; Santiram Chatterjee

    2006-12-01

    Earth-retaining structures constitute an important topic of research in civil engineering, more so under earthquake conditions. For the analysis and design of retaining walls in earthquake-prone zones, accurate estimation of dynamic earth pressures is very important. Conventional methods either use pseudo-static approaches of analysis even for dynamic cases or a simple single-degree of freedom model for the retaining wall–soil system. In this paper, a simplified two-degree of freedom mass–spring–dashpot (2-DOF) dynamic model has been proposed to estimate the active earth pressure at the back of the retaining walls for translation modes of wall movement under seismic conditions. The horizontal zone of influence on dynamic earth force on the wall is estimated. Results in terms of displacement, velocity and acceleration-time history are presented for some typical cases, which show the final movement of the wall in terms of wall height, which is required for the design. The non-dimensional design chart proposed in the present study can be used to compute the total dynamic earth force on the wall under different input ground motion and backfill conditions. Finally, the results obtained have been compared with those of the available Scott model and the merits of the present results have been discussed.

  4. MIRROR MOVEMENT: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    AA. Momen

    2008-11-01

    Full Text Available Mirror movement is an interesting but often overlooked neurological soft sign;these movements are described as simultaneous contralateral, involuntary, identical movements that accompany voluntary movements. This neurologic problem is very rarely seen in children; in familial cases there is a positive history of these movements in parents, diminishing with time. Here, we have presented the case of an 11-year old girl with mirror movements in her upper limbs which interfered with her hand writing. Her neurological examination revealed normal results. In this report, we have tried to explain some of the pathophysiologic mechanisms related to these abnormal movements.Keywords:Mirror Movements, Children, Soft neurologic sign

  5. Axial focusing of energy from a hypervelocity impact on earth

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-12-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.

  6. Another Earth 2.0? Not So Fast

    Science.gov (United States)

    Schulze-Makuch, Dirk; Guinan, Edward

    2016-11-01

    The number of confirmed exoplanets now exceeds 3000, with an additional nearly 5000 exoplanet candidates awaiting confirmation in the NASA Exoplanet Archive (2016). Nearly weekly we hear about the detection of a new exoplanet similar in mass to Earth and located in the so-called habitable zone around its host star. The excitement is understandable given our desire to find a second Earth. However, the excitement should not lead to an over-interpretation of the findings, because the claim can only be to have some crude similarity to Earth based on a few selected geophysical parameters. Only a very small fraction of these planets will actually be Earth-like. Earth-like would imply multiple environmental habitats and presence of a sizable biosphere and complex ecosystems, without which Earth, as we experience it, would not exist. Thus, it should be clearly communicated to the public that we are probably still many years away from having the technological capability to detect an Earth-like planet or Earth 2.0 with adequate certainty.

  7. Erosion of a model geophysical fluid

    Science.gov (United States)

    Luu, Li-Hua; Philippe, Pierre; Chambon, Guillaume

    2014-05-01

    A specificity of natural flows such as debris flows, landslides or snow avalanches is that, mostly, the material forming the static bed has mechanical properties similar to those of the flowing material (mud/mud, snow/snow). To explore the bed erosion phenomenon induced by such geophysical flows, we consider the geomaterial as a continuum by performing experiments in laboratory on a model fluid that can behaves as a solid or as a liquid, depending on the conditions. Indeed, we propose an experimental study where a yield-stress fluid is implemented to model both the eroding flow and the eroded bed. Our approach is to capture the process of erosion in terms of solid-liquid transition. The studied hydrodynamics consists of a pipe-flow disturbed by the presence of an obstacle. We use a polymer micro-gel Carbopol that exhibits a Hershel-Bulkley (HB) rheology. By taking advantage of the fluid transparency, the flow is monitoring by Particle Image Velocimetry (PIV) internal visualization technique. Upstream of the obstacle, a solid-liquid-like interface between a flow zone and a dead zone appears in the fluid. In this study, we aim to investigate the dominant physical mechanism underlying the formation of the static domain, by combining the rheological characterization of the yield-stress fluid (using a rheometer), with the observation of the morphological evolution of the system substratum / flow and the local measurement of related hydrodynamic parameters. Our first result shows that the flow above the dead zone behaves as a classical plug flow, whose velocity profile can successfully be described by a Hagen-Poiseuille equation including a HB rheology, but except in a thin zone (compared to the whole flow zone) at the close vicinity of the solid-liquid interface. Thanks to a high PIV measurement resolution, we then properly examine the typical feature lying at the tail of the velocity profile. The numerical derivation of the profile shows that the shear rate in this

  8. The Unconventional Revolution in Exploration Geophysics

    Science.gov (United States)

    House, N. J.

    2014-12-01

    how to develop them. MicroSeismic mapping has made completion more efficient and safe. While the geophysics involved in unconventional resource development may not be the first thought in the board room, thier data has become an accepted early development tool of successful oil and gas companies.

  9. Experiment Prevails Over Observation in Geophysical Science

    Science.gov (United States)

    Galvin, C.

    2006-05-01

    , but during that career, Popper painted himself into a philosophical corner by disallowing observation as contaminated with psychological problems and by advocating an aggressive deductive application of crucial experiments. As a result, in a 1974 review of what he really meant, Popper at least twice remembered ""Eddington's famous eclipse experiments of 1919."" The Web in 2006 lists NASA and NOAA acronyms for recent and ongoing research programs with geophysical content. A significant subset of these acronyms end in E or in EX, meaning experiment, but the scientific work done in the associated programs is actually observation. Experiment stands for actual Observation. This reversal in meaning recognizes the higher status of Experiment compared to Observation in the competition for government grants.

  10. Ceres' Geophysical Evolution Inferred from Dawn Data

    Science.gov (United States)

    Castillo-Rogez, Julie; Bowling, Timothy; Ermakov, Anton I.; Fu, Roger; Park, Ryan; Raymond, Carol; De Sanctis, Maria Cristina; Ammannito, Eleonora; Ruesch, Ottaviano; Prettyman, Thomas H.; Y McSween, Harry; Toplis, Michael J.; Russell, Christopher T.; Dawn Team

    2016-10-01

    If Ceres formed as an ice-rich body, as suggested by its low density and the detection of ammoniated phyllosilicates [1], then it should have differentiated an ice-dominated shell, analogous to large icy satellites [2]. Instead, Dawn observations revealed an enrichment of Ceres' shell in strong materials, either a rocky component and/or salts and gas hydrates [3, 4, 5, 6]. We have explored several scenarios for the emplacement of Ceres' surface. Endogenic processes cannot account for its overall homogeneity. Instead we suggest that Ceres differentiated an icy shell upon freezing of its early ocean that was removed as a consequence of frequent exposure by impacting after the dwarf planet migrated from a cold accretional environment to the warmer outer main belt (or when the solar nebula dissipated, if Ceres formed in situ). This scenario implies that Ceres' current surface represents the interface between the original ice shell and the top of the frozen ocean, a region that is extremely rich chemistry-wise, as illustrated by the mineralogical observations returned by Dawn [7]. Thermal modeling shows that the shell could remain warm over the long term and offer a setting for the generation of brines that may be responsible for the emplacement of Ahuna Mons [8] and Occator's bright spots [7] on an otherwise homogeneous surface [9]. An important implication is that Ceres' surface offers an analog for better understanding the deep interior and chemical evolution of large ice-rich bodies.References: [1] De Sanctis et al., Nature, 2015; [2] McCord and Sotin, Journal of Geophysical Research, 2005; [3] Park et al., Nature, 2016 (in press); [4] Hiesinger et al., Science (submitted); [5] Bland et al., Nature Geoscience, 2016 (in press); [6] Fu et al., AGU Fall Meeting, 2015 [7] De Sanctis et al., Nature, 2016 (in press); [8] Ruesch et al., Science, in revision; [9] Ammannito et al., Science, 2016 (accepted).Acknowledgements: Part of this work is being carried out at the Jet

  11. On the genesis of the Earth's magnetism.

    Science.gov (United States)

    Roberts, Paul H; King, Eric M

    2013-09-01

    Few areas of geophysics are today progressing as rapidly as basic geomagnetism, which seeks to understand the origin of the Earth's magnetism. Data about the present geomagnetic field pours in from orbiting satellites, and supplements the ever growing body of information about the field in the remote past, derived from the magnetism of rocks. The first of the three parts of this review summarizes the available geomagnetic data and makes significant inferences about the large scale structure of the geomagnetic field at the surface of the Earth's electrically conducting fluid core, within which the field originates. In it, we recognize the first major obstacle to progress: because of the Earth's mantle, only the broad, slowly varying features of the magnetic field within the core can be directly observed. The second (and main) part of the review commences with the geodynamo hypothesis: the geomagnetic field is induced by core flow as a self-excited dynamo. Its electrodynamics define 'kinematic dynamo theory'. Key processes involving the motion of magnetic field lines, their diffusion through the conducting fluid, and their reconnection are described in detail. Four kinematic models are presented that are basic to a later section on successful dynamo experiments. The fluid dynamics of the core is considered next, the fluid being driven into motion by buoyancy created by the cooling of the Earth from its primordial state. The resulting flow is strongly affected by the rotation of the Earth and by the Lorentz force, which alters fluid motion by the interaction of the electric current and magnetic field. A section on 'magnetohydrodynamic (MHD) dynamo theory' is devoted to this rotating magnetoconvection. Theoretical treatment of the MHD responsible for geomagnetism culminates with numerical solutions of its governing equations. These simulations help overcome the first major obstacle to progress, but quickly meet the second: the dynamics of Earth's core are too complex

  12. New geophysical electromagnetic method of archeological object research in Egypt

    Science.gov (United States)

    Hachay, O. A.; Khachay, O. Yu.; Attia, Magdi.

    2009-04-01

    The demand to the enhanced geophysical technique and device, in addition to the precise interpretation of the geophysical data, is the resolution of the geophysical complex research, especially by the absence of priory information about the researched place. Therefore, an approach to use the planshet method of electromagnetic induction in the frequency geometry was developed by Hachay. et al., 1997a, 1997b, 1999, 2000, 2002, and 2005. The method was adapted to map and monitor the high complicated geological mediums, to determine the structural factors and criteria of the rock massif in the mine subsurface. The field observation and the way of interpretation make the new technology differ from other known earlier methods of field raying or tomography (Hachay et al., 1997c, 1999, and 2000).The 3D geoelectrical medium research is based on the concept of three staged interpreting of the alternating electromagnetic field in a frame of the block-layered isotropic medium with inclusion (Hachay 1997a, and 2002); in the first stage, the geoelectrical parameters of the horizontal block-layered medium, which includes the heterogeneities, are defined. In the second stage a geometrical model of the different local heterogeneities or groups inside the block-layered medium is constructed based on the local geoelectrical heterogeneities produced from the first stage after filtering the anomalous fields plunged in the medium. While in the third stage, the surfaces of the searched heterogeneities could be calculated in account of the physical parameters of the anomalous objects.For practical realization of that conception the system of observation for alternating electromagnetic field with use of vertical magnetic dipole was elaborated. Such local source of excitation and regular net of observations allows realizing overlapping by different angles of observation directions. As incoming data for interpretation, three components of modules of three components of magnetic field are

  13. Moving KML geometry elements within Google Earth

    Science.gov (United States)

    Zhu, Liang-feng; Wang, Xi-feng; Pan, Xin

    2014-11-01

    During the process of modeling and visualizing geospatial information on the Google Earth virtual globe, there is an increasing demand to carry out such operations as moving geospatial objects defined by KML geometry elements horizontally or vertically. Due to the absence of the functionality and user interface for performing the moving transformation, it is either hard or impossible to interactively move multiple geospatial objects only using the existing Google Earth desktop application, especially when the data sets are in large volume. In this paper, we present a general framework and associated implementation methods for moving multiple KML geometry elements within Google Earth. In our proposed framework, we first load KML objects into the Google Earth plug-in, and then extract KML geometry elements from the imported KML objects. Subsequently, we interactively control the movement distance along a specified orientation by employing a custom user interface, calculate the transformed geographic location for each KML geometry element, and adjust geographic coordinates of the points in each KML objects. And finally, transformed KML geometry elements can be displayed in Google Earth for 3D visualization and spatial analysis. A key advantage of the proposed framework is that it provides a simple, uniform and efficient user interface for moving multiple KML geometry elements within Google Earth. More importantly, the proposed framework and associated implementations can be conveniently integrated into other customizable Google Earth applications to support interactively visualizing and analyzing geospatial objects defined by KML geometry elements.

  14. Mapping the geophysical bedrock of the Moesian Platform using H/V ratios and borehole data.

    Science.gov (United States)

    Florinela Manea, Elena; Michel, Clotaire; Fäh, Donat; Ortanza Cioflan, Carmen

    2016-04-01

    The strong effects at long periods observed in the extra-Carpathian area of Romania during large Vrancea intermediate-depth earthquakes were explained by the influence of both source mechanism and mechanical properties of the geological structure. Complex basin geometry and the low seismic velocities of the sediments are the primary responsible for the large amplification and long duration of the seismic records from the extra-Carpathian area during intermediate-depth earthquakes. The aim of this study is to map the geophysical bedrock of this area correlating and interpolating the results obtained from local resonance phenomena evaluation with the available surface geological data. The site was investigated through the computation of H/V spectral ratios from three-directional single station measurements of ambient vibration. The first step was to estimate the depth of the geophysical bedrock at all the Romanian seismic stations located in the extra-Carpathian area (velocity sensors) using the fundamental frequency retrieved from the H/V curves. In the second stage of the study all the relevant peaks from the H/V curves were interpreted in consonance with the available information of the geology. The geological data were obtained from the database developed in the national BIGSEES project by National Institute of Earth Physics. In this database are integrated all the geological, geophysical data from all the past projects, contracts, studies (as refraction, reflexion, etc.), geotechnical drillings and other information publicly available. The mapping of the geophysical bedrock was done interpolating the geological database and information gathered/resulted from H/V using a geographical informational system(GIS). The geology of this area displays very complex features as outcrops in small zones/lines/ near the Danube and then is gradually dipping to about 2 km depth in the N-NE. The depth of the bedrock is (nearly) constant around 100 m depth on the right side of

  15. Escript: Open Source Environment For Solving Large-Scale Geophysical Joint Inversion Problems in Python

    Science.gov (United States)

    Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy

    2014-05-01

    The program package escript has been designed for solving mathematical modeling problems using python, see Gross et al. (2013). Its development and maintenance has been funded by the Australian Commonwealth to provide open source software infrastructure for the Australian Earth Science community (recent funding by the Australian Geophysical Observing System EIF (AGOS) and the AuScope Collaborative Research Infrastructure Scheme (CRIS)). The key concepts of escript are based on the terminology of spatial functions and partial differential equations (PDEs) - an approach providing abstraction from the underlying spatial discretization method (i.e. the finite element method (FEM)). This feature presents a programming environment to the user which is easy to use even for complex models. Due to the fact that implementations are independent from data structures simulations are easily portable across desktop computers and scalable compute clusters without modifications to the program code. escript has been successfully applied in a variety of applications including modeling mantel convection, melting processes, volcanic flow, earthquakes, faulting, multi-phase flow, block caving and mineralization (see Poulet et al. 2013). The recent escript release (see Gross et al. (2013)) provides an open framework for solving joint inversion problems for geophysical data sets (potential field, seismic and electro-magnetic). The strategy bases on the idea to formulate the inversion problem as an optimization problem with PDE constraints where the cost function is defined by the data defect and the regularization term for the rock properties, see Gross & Kemp (2013). This approach of first-optimize-then-discretize avoids the assemblage of the - in general- dense sensitivity matrix as used in conventional approaches where discrete programming techniques are applied to the discretized problem (first-discretize-then-optimize). In this paper we will discuss the mathematical framework for

  16. Field Geophysics at SAGE: Strategies for Effective Education

    Science.gov (United States)

    Braile, L. W.; Baldridge, W. S.; Jiracek, G. R.; Biehler, S.; Ferguson, J. F.; Pellerin, L.; McPhee, D. K.; Bedrosian, P. A.; Snelson, C. M.; Hasterok, D. P.

    2011-12-01

    SAGE (Summer of Applied Geophysical Experience) is a unique program of education and research in geophysical field methods for undergraduate and graduate students from any university and for professionals. The core program is held for 4 weeks each summer in New Mexico and for an additional week in the following academic year in San Diego for U.S. undergraduates supported by the NSF Research Experience for Undergraduates (REU) program. Since SAGE was initiated in 1983, 730 students have participated in the program. NSF REU funding for SAGE began in 1990 and 319 REU students have completed SAGE through 2011. The primary objectives of SAGE are to teach the major geophysical exploration methods (seismic, gravity, magnetics, electromagnetics); apply these methods to the solution of specific problems (environmental, archaeological, hydrologic, geologic structure and stratigraphy); gain experience in processing, modeling and interpretation of geophysical data; and integrate the geophysical models and interpretations with geology. Additional objectives of SAGE include conducting research on the Rio Grande rift of northern New Mexico, and providing information on geophysics careers and professional development experiences to SAGE participants. Successful education, field and research strategies that we have implemented over the years include: 1. learn by doing; 2. mix lecture/discussion, field work, data processing and analysis, modeling and interpretation, and presentation of results; 3. a two-tier team approach - method/technique oriented teams and interpretation/integration teams (where each team includes persons representing different methods), provides focus, in-depth study, opportunity for innovation, and promotes teamwork and a multi-disciplinary approach; 4. emphasis on presentations/reports - each team (and all team members) make presentation, each student completes a written report; 5. experiment design discussion - students help design field program and consider

  17. Engaging students in geodesy: A quantitative InSAR module for undergraduate tectonics and geophysics classes

    Science.gov (United States)

    Taylor, H.; Charlevoix, D. J.; Pritchard, M. E.; Lohman, R. B.

    2013-12-01

    In the last several decades, advances in geodetic technology have allowed us to significantly expand our knowledge of processes acting on and beneath the Earth's surface. Many of these advances have come as a result of EarthScope, a community of scientists conducting multidisciplinary Earth science research utilizing freely accessible data from a variety of instruments. The geodetic component of EarthScope includes the acquisition of synthetic aperture radar (SAR) images, which are archived at the UNAVCO facility. Interferometric SAR complements the spatial and temporal coverage of GPS and allows monitoring of ground deformation in remote areas worldwide. However, because of the complex software required for processing, InSAR data are not readily accessible to most students. Even with these challenges, exposure at the undergraduate level is important for showing how geodesy can be applied in various areas of the geosciences and for promoting geodesy as a future career path. Here we present a module focused on exploring the tectonics of the western United States using InSAR data for use in undergraduate tectonics and geophysics classes. The module has two major objectives: address topics concerning tectonics in the western U.S. including Basin and Range extension, Yellowstone hotspot activity, and creep in southern California, and familiarize students with how imperfect real-world data can be manipulated and interpreted. Module questions promote critical thinking skills and data literacy by prompting students to use the information given to confront and question assumptions (e.g. 'Is there a consistency between seismic rates and permanent earthquake deformation? What other factors might need to be considered besides seismicity?'). The module consists of an introduction to the basics of InSAR and three student exercises, each focused on one of the topics listed above. Students analyze pre-processed InSAR data using MATLAB, or an Excel equivalent, and draw on GPS and

  18. An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates

    Science.gov (United States)

    Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.

    2007-05-01

    The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.

  19. Jupiter's and Saturn's ice moons: geophysical aspects and opportunities of geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons

    Science.gov (United States)

    Ozorovich, Yuri; Linkin, Vacheslav; Kosov, Alexandr; Fournier-Sicre, Alain; Klimov, Stanislav; Novikov, Denis; Ivanov, Anton; Skulachev, Dmitriy; Menshenin, Yaroslav

    2016-04-01

    This paper presents a new conceptual and methodological approach for geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons on the base "conceptual design phase" of the future space missions on the ice moons. At the design stage of such projects is considered the use of various space instruments and tools for the full the complex geophysical studies of the manifestations and planetary processes of the subsurface liquid ocean on the surface ice moons. The existence of various forms of the cryolithozone on terrestrial planets and their moons: advanced Martian permafrost zone in the form of existing of the frozen polar caps, subsurface frozen horizons, geological markers and oreols of the martian ancient (relict) ocean, subsurface oceans of Jupiter's and Saturn's moons-Europe and Enceladus, with the advanced form of permafrost freezes planetary caps, it allows to develop a common methodological basis and operational geophysical instruments (tools) for the future space program and planning space missions on these unique objects of the solar system, specialized for specific scientific problems of planetary missions. Geophysical practices and methodological principles, used in 1985-2015 by aurthors [ 1-5 ], respectively, as an example of the comprehensive geophysical experiment MARSES to study of the Martian permafrost zone and the martian ancient (relict) ocean, creating the preconditions for complex experimental setting and geo-physical monitoring of operational satellites of Jupiter and Saturn- Europe and Enceladus. This range of different planetary (like) planets with its geological history and prehistory of the common planetology formation processes of the planets formation and to define the role of a liquid ocean under the ice as a climate indicator of such planets, which is extremely important for the future construction of the geological and climatic history of the Earth. Main publications: [1

  20. GeoMapApp: A Cross-Platform app for Geophysical Data Exploration and Visualisation

    Science.gov (United States)

    Goodwillie, A. M.

    2015-12-01

    Apps that provide convenient, integrated access to a range of geophysical data have wide applicability in both research and teaching. GeoMapApp (http://www.geomapapp.org), a free, map-based data discovery and visualisation tool developed with NSF funding at Lamont-Doherty Earth Observatory provides casual and specialist users alike with intuitive access to hundreds of built-in geoscience data sets covering geophysics, geochemistry, geology, oceanography, and cryospherics. Users can also import their own data tables, spreadsheets, shapefiles, grids, and images. Simple manipulation and analysis tools combined with layering capabilities and engaging visualisations provide a powerful app with which to explore and interrogate geoscience data in its proper geospatial context thus helping users to more easily gain deeper insight and understanding from real-world data. The backbone of GeoMapApp is a regularly-updated multi-resolution elevation base map covering the oceans and continents and includes measurements ranging from Space Shuttle terrestrial data to ultra-high-resolution surveys of coral reefs and seafloor hydrothermal vent fields. Examples of built-in geophysical data sets include interactive earthquake locations and focal mechanism (CMT) solutions; underway cruise track profiles; plate tectonic velocities, seafloor crustal age and heat flow; multi-channel seismic reflection profiles; gravity, magnetic, and geoid anomalies; sidescan; subduction zone interface depths; and, EarthScope station locations. Dynamic links point to data sources and additional information. There are dedicated menus for GeoPRISMS, MARGINS, and Ridge2000 data sets. A versatile profiling tool provides instant access to data cross-sections, and contouring and 3-D views are also offered. Tabular data - both imported and built-in - can be displayed in a variety of ways and users can quickly select data points directly from the map. Layer opacity and on/off toggles allow easy data set

  1. The Denali EarthScope Education Partnership: Creating Opportunities for Learning About Solid Earth Processes in Alaska and Beyond.

    Science.gov (United States)

    Roush, J. J.; Hansen, R. A.

    2003-12-01

    The Geophysical Institute of the University of Alaska Fairbanks, in partnership with Denali National Park and Preserve, has begun an education outreach program that will create learning opportunities in solid earth geophysics for a wide sector of the public. We will capitalize upon a unique coincidence of heightened public interest in earthquakes (due to the M 7.9 Denali Fault event of Nov. 3rd, 2002), the startup of the EarthScope experiment, and the construction of the Denali Science & Learning Center, a premiere facility for science education located just 43 miles from the epicenter of the Denali Fault earthquake. Real-time data and current research results from EarthScope installations and science projects in Alaska will be used to engage students and teachers, national park visitors, and the general public in a discovery process that will enhance public understanding of tectonics, seismicity and volcanism along the boundary between the Pacific and North American plates. Activities will take place in five program areas, which are: 1) museum displays and exhibits, 2) outreach via print publications and electronic media, 3) curriculum development to enhance K-12 earth science education, 4) teacher training to develop earth science expertise among K-12 educators, and 5) interaction between scientists and the public. In order to engage the over 1 million annual visitors to Denali, as well as people throughout Alaska, project activities will correspond with the opening of the Denali Science and Learning Center in 2004. An electronic interactive kiosk is being constructed to provide public access to real-time data from seismic and geodetic monitoring networks in Alaska, as well as cutting edge visualizations of solid earth processes. A series of print publications and a website providing access to real-time seismic and geodetic data will be developed for park visitors and the general public, highlighting EarthScope science in Alaska. A suite of curriculum modules

  2. Posttraumatic functional movement disorders.

    Science.gov (United States)

    Ganos, C; Edwards, M J; Bhatia, K P

    2017-01-01

    Traumatic injury to the nervous system may account for a range of neurologic symptoms. Trauma location and severity are important determinants of the resulting symptoms. In severe head injury with structural brain abnormalities, the occurrence of trauma-induced movement disorders, most commonly hyperkinesias such as tremor and dystonia, is well recognized and its diagnosis straightforward. However, the association of minor traumatic events, which do not lead to significant persistent structural brain damage, with the onset of movement disorders is more contentious. The lack of clear clinical-neuroanatomic (or symptom lesion) correlations in these cases, the variable timing between traumatic event and symptom onset, but also the presence of unusual clinical features in a number of such patients, which overlap with signs encountered in patients with functional neurologic disorders, contribute to this controversy. The purpose of this chapter is to provide an overview of the movement disorders, most notably dystonia, that have been associated with peripheral trauma and focus on their unusual characteristics, as well as their overlap with functional neurologic disorders. We will then provide details on pathophysiologic views that relate minor peripheral injuries to the development of movement disorders and compare them to knowledge from primary organic and functional movement disorders. Finally, we will comment on the appropriate management of these disorders.

  3. Geophysical methods for locating abandoned wells

    Science.gov (United States)

    Frischknecht, Frank C.; Muth, L.; Grette, R.; Buckley, T.; Kornegay, B.

    1983-01-01

    A preliminary study of the feasibility of using geophysical exploration methods to locate abandoned wells containing steel casing indicated that magnetic methods promise to be effective and that some electrical techniques might be useful as auxiliary methods. Ground magnetic measurements made in the vicinity of several known cased wells yielded total field anomalies with peak values ranging from about 1,500 to 6,000 gammas. The anomalies measured on the ground are very narrow and, considering noise due to other cultural and geologic sources, a line spacing on the order of 50 feet (15.2 m) would be necessary to locate all casings in the test area. The mathematical model used to represent a casing was a set of magnetic pole pairs. By use of a non-linear least squares curve fitting (inversion) program, model parameters which characterize each test casing were determined. The position and strength of the uppermost pole was usually well resolved. The parameters of lower poles were not as well resolved but it appears that the results are adequate for predicting the anomalies which would be observed at aircraft altitudes. Modeling based on the parameters determined from the ground data indicates that all of the test casings could be detected by airborne measurements made at heights of 150 to 200 feet (45.7-61.0 m) above the ground, provided lines spaced as closely as 330 feet (100 m) were used and provided noise due to other cultural and geologic sources is not very large. Given the noise levels of currently available equipment and assuming very low magnetic gradients due to geologic sources, the detection range for total field measurements is greater than that for measurements of the horizontal or vertical gradient of the total intensity. Electrical self-potential anomalies were found to be associated with most of the casings where measurements were made. However, the anomalies tend to be very narrow and, in several cases, they are comparable in magnitude to other small

  4. Legacy of the Environmental Movement

    Science.gov (United States)

    Albrecht, Stan L.

    1976-01-01

    An effort to select an important contemporary social movement (the environmental movement) and to assess some of the important impacts it has had on the larger society. This review of the environmental movement indicates it may be following a path similiar to the life-cycle of previous movements. (Author/BT)

  5. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  6. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  7. Movement as utopia.

    Science.gov (United States)

    Couton, Philippe; López, José Julián

    2009-10-01

    Opposition to utopianism on ontological and political grounds has seemingly relegated it to a potentially dangerous form of antiquated idealism. This conclusion is based on a restrictive view of utopia as excessively ordered panoptic discursive constructions. This overlooks the fact that, from its inception, movement has been central to the utopian tradition. The power of utopianism indeed resides in its ability to instantiate the tension between movement and place that has marked social transformations in the modern era. This tension continues in contemporary discussions of movement-based social processes, particularly international migration and related identity formations, such as open borders transnationalism and cosmopolitanism. Understood as such, utopia remains an ongoing and powerful, albeit problematic instrument of social and political imagination.

  8. Geophysical logging for groundwater investigations in Southern Thailand

    Directory of Open Access Journals (Sweden)

    Phongpiyah Klinmanee

    2012-09-01

    Full Text Available In Thailand the Department of Groundwater Resources is drilling to find vital aquifers. Sometimes groundwater formations cannot be identified clearly during drilling; therefore, geophysical logging was applied after drilling and before casing.The tool used here is measuring nine parameters in one run, natural gamma ray, spontaneous potential, single point resistance, normal resistivity (AM 8’’, 16’’, 32’’, and 64’’, mud temperature and resistivity. Cutting was used to support the geophysical interpretations. In many cases the groundwater bearing zones could be clearly identified. The combination of andthe possibility choosing from nine parameters measured provided the necessary data base to identify groundwater bearingzones in different environments. It has been demonstrated that in different wells different tools are favorable than others.Based on the conclusions of this study geophysical logging in groundwater exploration is recommended as a normalstandard technique that should be applied in every new well drilled.

  9. Joint geophysical data analysis for geothermal energy exploration

    Science.gov (United States)

    Wamalwa, Antony Munika

    Geophysical data modelling often yields non-unique results and hence the interpretation of the resulting models in terms of underlying geological units and structures is not a straightforward problem. However, if multiple datasets are available for a region of study, an integrated interpretation of models for each of the geophysical data may results to a more realistic geological description. This study not only demonstrates the strength of resistivity analysis for geothermal fields but also the gains from interpreting resistivity data together with other geophysical data such as gravity and seismic data. Various geothermal fields have been examined in this study which includes Silali and Menengai geothermal fields in Kenya and Coso geothermal field in California, USA.

  10. Spatial analysis of oil reservoirs using DFA of geophysical data

    Directory of Open Access Journals (Sweden)

    R. A. Ribeiro

    2014-04-01

    Full Text Available We employ Detrended Fluctuation Analysis (DFA technique to investigate spatial properties of an oil reservoir. This reservoir is situated at Bacia de Namorados, RJ, Brazil. The data corresponds to well logs of the following geophysical quantities: sonic, gamma ray, density, porosity and electrical resistivity, measured in 56 wells. We tested the hypothesis of constructing spatial models using data from fluctuation analysis over well logs. To verify this hypothesis we compare the matrix of distances among well logs with the differences among DFA-exponents of geophysical quantities using spatial correlation function and Mantel test. Our data analysis suggests that sonic profile is a good candidate to represent spatial structures. Then, we apply the clustering analysis technique to the sonic profile to identify these spatial patterns. In addition we use the Mantel test to search for correlation among DFA-exponents of geophysical quantities.

  11. Comparing plume characteristics inferred from cross-borehole geophysical data

    DEFF Research Database (Denmark)

    Haarder, Eline Bojsen; Binley, Andrew; Zibar, Majken Caroline Looms

    2012-01-01

    Three cross-borehole geophysical methods are used to image water migration in the unsaturated zone after a point injection of water. Mass balance calculations and moment analysis highlight the differences in resolution between the methods. The choice of moisture content threshold value significan......Three cross-borehole geophysical methods are used to image water migration in the unsaturated zone after a point injection of water. Mass balance calculations and moment analysis highlight the differences in resolution between the methods. The choice of moisture content threshold value...... significantly influences results of the moment analysis. We compare results of three cross-borehole geophysical approaches for imaging tracer migration arising from a point injection of water in the unsaturated zone: three-dimensional electrical resistivity tomography (ERT), two-dimensional ground...

  12. Diurnal signals in length-of-day changes and their geophysical excitation

    Science.gov (United States)

    Schindelegger, Michael; Böhm, Johannes; Salstein, David

    2014-05-01

    State-of-the-art determinations of short period Earth rotation variations from long-term space geodetic observations all report an as-yet unexplained LOD (length-of-day) perturbation of roughly 4 microseconds at the principal diurnal frequency corresponding to 1 cycle per solar day. The present study gives a detailed account of this signal component in terms of its possible geophysical excitation from the atmosphere and oceans, including both a direct effect due to pure atmosphere dynamics as well as an indirect effect associated with the oceans' response to diurnal air pressure variations. In particular, we assemble multi-year excitation estimates from a number of modern-day meteorological analysis systems and different hydrodynamic time-stepping solutions for the oceans. A simultaneous application of two legitimate modeling approaches - using either mass and motion terms of fluid angular momentum or pressure and friction torques acting on the Earth's crust - allows for an examination of the balance relationship existing between torques and the angular momentum derivative within each model. Significant violations of this constraint for each of the atmospheric analysis systems mainly originate from seemingly deficient mass term values and cast doubt on the validity of those estimates for sub-diurnal Earth rotation studies. On the contrary, oceanic angular momentum changes are well balanced by the pressure torque on the bathymetry. In light of these results and after thoroughly discussing possible consistency issues between various model estimates, a combined excitation term is constructed on the basis of atmospheric torques and oceanic angular momentum. The obtained solution displays a sufficiently close agreement with observed diurnal changes in LOD, and by virtue of the computed pressure and friction torques, this result can be augmented by a regional analysis of the underlying angular momentum transfer in the axial direction between the solid Earth and its fluid

  13. Teaching Computational Geophysics Classes using Active Learning Techniques

    Science.gov (United States)

    Keers, H.; Rondenay, S.; Harlap, Y.; Nordmo, I.

    2016-12-01

    We give an overview of our experience in teaching two computational geophysics classes at the undergraduate level. In particular we describe The first class is for most students the first programming class and assumes that the students have had an introductory course in geophysics. In this class the students are introduced to basic Matlab skills: use of variables, basic array and matrix definition and manipulation, basic statistics, 1D integration, plotting of lines and surfaces, making of .m files and basic debugging techniques. All of these concepts are applied to elementary but important concepts in earthquake and exploration geophysics (including epicentre location, computation of travel time curves for simple layered media plotting of 1D and 2D velocity models etc.). It is important to integrate the geophysics with the programming concepts: we found that this enhances students' understanding. Moreover, as this is a 3 year Bachelor program, and this class is taught in the 2nd semester, there is little time for a class that focusses on only programming. In the second class, which is optional and can be taken in the 4th or 6th semester, but often is also taken by Master students we extend the Matlab programming to include signal processing and ordinary and partial differential equations, again with emphasis on geophysics (such as ray tracing and solving the acoustic wave equation). This class also contains a project in which the students have to write a brief paper on a topic in computational geophysics, preferably with programming examples. When teaching these classes it was found that active learning techniques, in which the students actively participate in the class, either individually, in pairs or in groups, are indispensable. We give a brief overview of the various activities that we have developed when teaching theses classes.

  14. National Report for the International Association of Geodesy of the International Union of Geodesy and Geophysics 2007-2010

    CERN Document Server

    Boyarsky, E A; Gerasimenko, M D; Demianov, G V; Kaufman, M B; Kaftan, V I; Mazurova, E M; Malkin, Z M; Molodenskii, S M; Neyman, Yu M; Pevnev, A K; Savinykh, V P; Steblov, G M; Tatevian, S K; Tolchel'nikova, S A; Shestakov, N V

    2015-01-01

    This report submitted to the International Association of Geodesy (IAG) of the International Union of Geodesy and Geophysics (IUGG) contains results obtained by Russian geodesists in 2007-2010. In the report prepared for the XXV General Assembly of IUGG (Australia, Melbourne, 28 June - 7 July 2011), the results of principal researches in geodesy, geodynamics, gravimetry, in the studies of geodetic reference frame creation and development, Earth's shape and gravity field, Earth's rotation, geodetic theory, its application and some other directions are briefly described. The period from 2007 to 2010 was still difficult for Russian geodesy mainly due to the permanent reformation of state geodetic administration as well as state education structure and organization. The report is organized as a sequence of abstracts of principal publications and presentations for symposia, conferences, workshops, etc. Each of the report paragraphs includes a list of scientific papers published in 2007-2010 including those prepare...

  15. Towards an Operational Use of Geophysics for Archaeology in Henan (China: Methodological Approach and Results in Kaifeng

    Directory of Open Access Journals (Sweden)

    Nicola Masini

    2017-08-01

    Full Text Available One of the major issues in buried archeological sites especially if characterized by intense human activity, complex structures, and several constructive phases, is: to what depth conduct the excavation? The answer depends on a number of factors, among these one of the most important is the a priori and reliable knowledge of what the subsoil can preserve. To this end, geophysics (if used in strong synergy with archaeological research can help in the planning of time, depth, and modes of excavation also when the physical characteristics of the remains and their matrix are not ideal for archaeo-geophysical applications. This is the case of a great part of the archaeological sites in Henan, the cradle of the most important cultures in China and the seat of several capitals for more than two millennia. There, the high depth of buried remains covered by alluvial deposits and the building materials, mainly made by rammed earth, did not favor the use of geophysics. In this paper, we present and discuss the GPR and ERT prospection we conducted in Kaifeng (Henan, China, nearby a gate of the city walls dated to the Northern Song Dynasty. The integration of GPR and ERT provided useful information for the identification and characterization of archaeological remains buried at different depths. Actually, each geophysical technique, GPR frequency (used for the data acquisition as well as each way to analyze and visualize the results (from radargrams to time slice only provided partial information of little use if alone. The integration of the diverse techniques, data processing and visualization enabled us to optimize the penetration capability, the resolution for the detection of archaeological features and their interpretation. Finally, the results obtained from the GPR and ERT surveys were correlated with archaeological stratigraphy, available nearby the investigated area. This enabled us to further improve the interpretation of results from GPR and ERT

  16. Secular tidal changes in lunar orbit and Earth rotation

    Science.gov (United States)

    Williams, James G.; Boggs, Dale H.

    2016-11-01

    Small tidal forces in the Earth-Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains d n/d t = -25.97± 0.05 ''/cent2, d a/d t = 38.30 ± 0.08 mm/year, and d i/d t = -0.5 ± 0.1 μas/year. Solving for two terrestrial time delays and an extra d e/d t from unspecified causes gives ˜ 3× 10^{-12}/year for the latter; solving for three LLR tidal time delays without the extra d e/d t gives a larger phase lag of the N2 tide so that total d e/d t = (1.50 ± 0.10)× 10^{-11}/year. For total d n/d t, there is ≤ 1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is -1316 ''/cent2 or 87.5 s/cent2 for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 μas/year. For evolution during past times of slow recession, the eccentricity rate can be negative.

  17. Quantification of vestibular-induced eye movements in zebrafish larvae

    Directory of Open Access Journals (Sweden)

    Mo Weike

    2010-09-01

    Full Text Available Abstract Background Vestibular reflexes coordinate movements or sensory input with changes in body or head position. Vestibular-evoked responses that involve the extraocular muscles include the vestibulo-ocular reflex (VOR, a compensatory eye movement to stabilize retinal images. Although an angular VOR attributable to semicircular canal stimulation was reported to be absent in free-swimming zebrafish larvae, recent studies reveal that vestibular-induced eye movements can be evoked in zebrafish larvae by both static tilts and dynamic rotations that tilt the head with respect to gravity. Results We have determined herein the basis of sensitivity of the larval eye movements with respect to vestibular stimulus, developmental stage, and sensory receptors of the inner ear. For our experiments, video recordings of larvae rotated sinusoidally at 0.25 Hz were analyzed to quantitate eye movements under infrared illumination. We observed a robust response that appeared as early as 72 hours post fertilization (hpf, which increased in amplitude over time. Unlike rotation about an earth horizontal axis, rotation about an earth vertical axis at 0.25 Hz did not evoke eye movements. Moreover, vestibular-induced responses were absent in mutant cdh23 larvae and larvae lacking anterior otoliths. Conclusions Our results provide evidence for a functional vestibulo-oculomotor circuit in 72 hpf zebrafish larvae that relies upon sensory input from anterior/utricular otolith organs.

  18. Geophysical characterization in solid waste landfill for evaluation of geotechnical instability conditioners

    Directory of Open Access Journals (Sweden)

    Carolina Del Roveri

    2013-03-01

    Full Text Available The disposal of solid waste can create environmental problems, in addition to the potential risk of instability even in planned geotechnical works, such as provisions in stacks or high ends of the landfill, because they represent mere adjustments in civil engineering works. The Leme city, SP, generates about 35 t/day of municipal waste, that are deposited in a landfill located in the Barro Preto neighborhood. This work conducted a geophysical survey, based on geotechnical instability evidence in area, for analysis of the conditioners that cause on the sides leachate resurgence landfill and its relationship to mass movements and ravines installation in cover soil, with consequent waste exposure. The results indicate horizons of low resistivity connected with resurgence points generated by the organic matter decomposition contained in the waste. Such horizons result in leachate concentration in some places, which, in turn, may lead to loss of cohesion of the materials constituting the residues mass. The results are areas with mass flow by rotational movements, which, together with the surface flow of rainwater, evolves into ravines and exposed residues, preferably at the resurgence point. The leachate flow on the surface affects areas beyond the limits at landfill with direct impact on local agriculture and risk to pedestrians using the highway bordered by the landfill beyond the soil and the local aquifer.

  19. Compatible finite element spaces for geophysical fluid dynamics

    CERN Document Server

    Natale, Andrea

    2016-01-01

    Compatible finite elements provide a framework for preserving important structures in equations of geophysical fluid dynamics, and are becoming important in their use for building atmosphere and ocean models. We survey the application of compatible finite element spaces to geophysical fluid dynamics, including the application to the nonlinear rotating shallow water equations, and the three-dimensional compressible Euler equations. We summarise analytic results about dispersion relations and conservation properties, and present new results on approximation properties in three dimensions on the sphere, and on hydrostatic balance properties.

  20. Annals of the international geophysical year ionospheric drift observations

    CERN Document Server

    Rawer, K; Beloussov, V V; Beynon, W J G

    2013-01-01

    Annals of the International Geophysical Year, Volume 33: Results of Ionospheric Drift Observations describes the systematic changes in individual ionospheric observations during the International Geophysical Year (IGY). This book is composed of four chapters, and begins with a presentation of the general data on stations and the lists of publications concerning drift work during IGY/IGC. The next chapter contains the results obtained mainly by intercomparison of the time shift between fadings observed on three antenna separated by a distance of roughly a wavelength. These data are followed by